Science.gov

Sample records for adhesin faeg expressed

  1. Immune responses elicited in mice with recombinant Lactococcus lactis expressing F4 fimbrial adhesin FaeG by oral immunization.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2010-08-01

    Enterotoxigenic Escherichia coli (ETEC) is a major pathogenic agent causing piglet diarrhea. The major subunit and adhesin FaeG of F4(+) ETEC is an important virulence factor with strong immunogenicity. To determine whether Lactococcus lactis (L. lactis) could effectively deliver FaeG to the mucosal immune system, recombinant L. lactis expressing FaeG was constructed, and immune responses in mice following oral route delivery of recombinant L. lactis were explored. The production of FaeG expressed in L. lactis was up to approximately 10% of soluble whole-cell proteins, and recombinant FaeG (rFaeG) possessed good immunoreactivity by Western blot analysis. Oral immunization with recombinant L. lactis expressing FaeG induced F4-specific mucosal and systemic immune responses in the mice. In addition, high dose recombinant L. lactis or co-administration of high dose recombinant L. lactis with CTB enhanced the immune responses. These results suggested that L. lactis expressing FaeG was a promising candidate vaccine against ETEC. PMID:20532816

  2. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response. PMID:23386358

  3. Induction of specific immune responses in piglets by intramuscular immunization with fimbrial adhesin FaeG expressed in Lactococcus lactis.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei

    2013-08-01

    Fimbrial adhesin plays a critical role in the pathogenesis of enterotoxigenic Escherichia coli (ETEC)-induced piglet diarrhoea. Lactococcus lactis is an attractive food-grade host for the production of heterologous antigens. We previously demonstrated that fimbrial adhesin FaeG was expressed in L. lactis and that oral immunization in mice with recombinant L. lactis expressing FaeG induced F4-specific mucosal and systemic immune responses. In the present study, we explored the immune responses of piglets induced by intramuscular vaccination with recombinant L. lactis expressing rFaeG. Intramuscular vaccination resulted in significantly elevated serum IgG level and modest increases in serum IgA and IgM levels. In addition, IgG, IgA, and IgM antibody secreting cells were induced in the spleen, mesenteric lymph nodes, and jejunum. The growth performance of piglets was not influenced by intramuscular vaccination. The results suggest that L. lactis expressing FaeG is a promising candidate vaccine against ETEC. PMID:23540979

  4. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    PubMed

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system.

  5. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    PubMed

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system. PMID:20705597

  6. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection.

  7. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection. PMID:26825016

  8. Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis

    PubMed Central

    Garcia, Ana F.; Chang, Te-Hung; Benchimol, Marlene; Klumpp, David Jichael; Lehker, Michael W.; Alderete, John F.

    2007-01-01

    Summary The proteins AP65, AP51, AP33 and AP23 synthesized by Trichomonas vaginalis organisms in high iron play a role in adherence. Multigene families encode enzymes of the hydrogenosome organelles, which have identity to adhesins. This fact raises questions regarding the compartmentalization of the proteins outside the organelle and about the interactions of adhesins with host cells. Data here demonstrate the presence of the proteins outside the organelle under high-iron conditions. Fluorescence and immunocytochemical experiments show that high-iron-grown organisms coexpressed adhesins on the surface and intracellularly in contrast with low-iron parasites. Furthermore, the AP65 epitopes seen by rabbit anti-AP65 serum that blocks adherence and detects surface proteins were identified, and a mAb reacting to those epitopes recognized the trichomonal surface. Two-dimensional electrophoresis and immunoblot of adhesins from surface-labelled parasites provided evidence that all members of the multigene family were co-ordinately expressed and placed on the trichomonal surface. Similar two-dimensional analysis of proteins from purified hydrogenosomes obtained from iodinated trichomonads confirmed the specific surface labelling of proteins. Contact of trichomonads with vaginal epithelial cells increased the amount of surface-expressed adhesins. Moreover, we found a direct relationship between the levels of adherence and amount of adhesins bound to immortalized vaginal and ureter epithelial cells, further reinforcing specific associations. Finally, trichomonads of MR100, a drug-resistant isolate absent in hydrogenosome proteins and adhesins, were non-adherent. Overall, the results confirm an important role for iron and contact in the surface expression of adhesins of T. vaginalis organisms. PMID:12603729

  9. A two-plasmid Escherichia coli system for expression of Dr adhesins.

    PubMed

    Kur, Marta; Piatek, Rafał; Kur, Józef

    2007-10-01

    This paper presents a very efficient expression system for production of Dr adhesins. The system consists of two plasmids. One is the pACYCpBAD-DraC-C-His, which contains the draC gene under the control of the arabinose promoter (pBAD), encoding the DraC usher. The second is the pET30b-syg-DraBE, which contains the draB and draE genes under the control of the T7lac promoter, encoding the DraB chaperone and the DraE adhesin, respectively. Those plasmids have different origin of replication and can therefore coexist in one cell. Since different promoters are present, the protein expression can be controlled. The Dr adhesion expression system constructed opens up a lot of possibilities, and could be very useful in experiments focusing on understanding the biogenesis of Gram-negative bacteria adhesins. For this purpose we showed that the AfaE-III adhesin (98.1% identity between the DraE and the AfaE-III adhesins, with three divergent amino acids within the sequences) was able to pass through the DraC channel in the Escherichia coli BL21(DE3) strain. Immunoblotting analysis and immunofluorescence microscopy showed the presence of AfaE-III on the bacterial cell surface. In addition, the system described can be useful for displaying the immune-relevant sectors of foreign proteins on the bacterial cell. The heterologous epitope sequence of the HSV1 glycoprotein D was inserted into the draE gene in place of the N-terminal region of surface exposed domain 2. Chimeric proteins were exposed on the bacterial surface as evidenced by immunoblotting and immunofluorescence microscopy. The effective display of peptide segments on Dr fimbriae expressed at the bacterial cell surface, can be used for the development of a fimbrial vaccine.

  10. Heterologous expression in Tritrichomonas foetus of functional Trichomonas vaginalis AP65 adhesin

    PubMed Central

    Kucknoor, Ashwini S; Mundodi, Vasanthakrishna; Alderete, JF

    2005-01-01

    Background Trichomonosis, caused by Trichomonas vaginalis, is the number one, nonviral sexually transmitted infection that has adverse consequences for the health of women and children. The interaction of T. vaginalis with vaginal epithelial cells (VECs), a step preparatory to infection, is mediated in part by the prominent surface protein AP65. The bovine trichomonad, Tritrichomonas foetus, adheres poorly to human VECs. Thus, we established a transfection system for heterologous expression of the T. vaginalis AP65 in T. foetus, as an alternative approach to confirm adhesin function for this virulence factor. Results In this study, we show stable transfection and expression of the T. vaginalis ap65 gene in T. foetus from an episomal pBS-ap65-neo plasmid. Expression of the gene and protein was confirmed by RT-PCR and immunoblots, respectively. AP65 in transformed T. foetus bound to host cells. Specific mAbs revealed episomally-expressed AP65 targeted to the parasite surface and hydrogenosome organelles. Importantly, surface-expression of AP65 in T. foetus paralleled increased levels of adherence of transfected bovine trichomonads to human VECs. Conclusion The T. vaginalis AP65 adhesin was stably expressed in T. foetus, and the data obtained using this heterologous system strongly supports the role of AP65 as a prominent adhesin for T. vaginalis. In addition, the heterologous expression in T. foetus of a T. vaginalis gene offers an important, new approach for confirming and characterizing virulence factors. PMID:15748280

  11. F4+ enterotoxigenic Escherichia coli (ETEC) adhesion mediated by the major fimbrial subunit FaeG.

    PubMed

    Xia, Pengpeng; Song, Yujie; Zou, Yajie; Yang, Ying; Zhu, Guoqiang

    2015-09-01

    The FaeG subunit is the major constituent of F4(+) fimbriae, associated with glycoprotein and/or glycolipid receptor recognition and majorly contributes to the pathogen attachment to the host cells. To investigate the key factor involved in the fimbrial binding of F4(+) Escherichia coli, both the recombinant E. coli SE5000 strains carrying the fae operon gene clusters that express the different types of fimbriae in vitro, named as rF4ab, rF4ac, and rF4ad, respectively, corresponding to the fimbrial types F4ab, F4ac, and F4ad, and the three isogenic in-frame faeG gene deletion mutants were constructed. The adhesion assays and adhesion inhibition assays showed that ΔfaeG mutants had a significant reduction in the binding to porcine brush border as well as the intestinal epithelial cell lines, while the complemented strain ΔfaeG/pfaeG restored the adhesion function. The recombinant bacterial strains rF4ab, rF4ac, and rF4ad have the same binding property as wild-type F4(+) E. coli strains do and improvement in terms of binding to porcine brush border and the intestinal epithelial cells, and the adherence was blocked by the monoclonal antibody anti-F4 fimbriae. These data demonstrate that the fimbrial binding of F4(+) E. coli is directly mediated by the major FaeG subunit. PMID:25847483

  12. In vitro Paracoccidioides brasiliensis biofilm and gene expression of adhesins and hydrolytic enzymes

    PubMed Central

    Sardi, Janaina de Cássia Orlandi; Pitangui, Nayla de Souza; Voltan, Aline Raquel; Braz, Jaqueline Derissi; Machado, Marcelo Pelajo; Fusco Almeida, Ana Marisa; Mendes Giannini, Maria Jose Soares

    2015-01-01

    Paracoccidioides species are dimorphic fungi that initially infect the lungs but can also spread throughout the body. The spreading infection is most likely due to the formation of a biofilm that makes it difficult for the host to eliminate the infection. Biofilm formation is crucial for the development of infections and confines the pathogen to an extracellular matrix. Its presence is associated with antimicrobial resistance and avoidance of host defenses. This current study provides the first description of biofilm formation by Paracoccidioides brasiliensis (Pb18) and an analysis of gene expression, using real-time PCR, associated with 3 adhesins and 2 hydrolytic enzymes that could be associated with the virulence profile. Biofilm formation was analyzed using fluorescence microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Metabolic activity was determined using the XTT reduction assay. P. brasiliensis was able to form mature biofilm in 144 h with a thickness of 100 μm. The presence of a biofilm was found to be associated with an increase in the expression of adhesins and enzymes. GP43, enolase, GAPDH and aspartyl proteinase genes were over-expressed, whereas phospholipase was down-regulated in biofilm. The characterization of biofilm formed by P. brasiliensis may contribute to a better understanding of the pathogenesis of paracoccidioidomycosis as well as the search for new therapeutic alternatives; while improving the effectiveness of treatment. PMID:26055497

  13. Bile salts induce expression of the afimbrial LDA adhesin of atypical enteropathogenic Escherichia coli.

    PubMed

    Torres, Alfredo G; Tutt, Christopher B; Duval, Lisabeth; Popov, Vsevolod; Nasr, Abdelhakim Ben; Michalski, Jane; Scaletsky, Isabel C A

    2007-04-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are frequently implicated in infant diarrhoea in developing countries. Not much is known about the adherence properties of aEPEC; however, it has been shown that these strains can adhere to tissue-cultured cells. A chromosomal region designated the locus for diffuse adherence (LDA) confers aEPEC strain 22 the ability to adhere to culture cells. LDA is an afimbrial adhesin that contains a major subunit, LdaG, whose expression is induced on MacConkey agar at 37 degrees C. We hypothesized that the bile salts found in this culture media induce the expression of LdaG. Strain 22 and the LdaG mutant were grown in Luria-Bertani (LB) media in the presence or absence of bile salts and heat-extracted surface-expressed proteins were separated by SDS-PAGE to determine whether expression of the 25 kDa LdaG protein was induced. Western blot analysis with anti-LdaG confirmed that bile salts enhance LdaG expression at 37 degrees C. Adhesion assays on HeLa cells revealed that adhesion in a diffuse pattern of strain 22 increased in the presence of bile salts. We also confirmed that expression of the localized adherence pattern observed in the ldaG mutant required the presence of a large cryptic plasmid found in strain 22 and that this phenotype was not induced by bile salts. At the transcriptional level, the ldaG-lacZ promoter fusion displayed maximum beta-galactosidase activity when the parent strain was grown in LB supplemented with bile salts. Fluorescence Activated Cell Sorting analysis, immunogold labelling electron microscopy and immunofluorescence using anti-LdaG sera confirmed that LDA is a bile salts-inducible surface-expressed afimbrial adhesin. Finally, LdaG expression was induced in presence of individual bile salts but not by other detergents. We concluded that bile salts increase expression of LDA, conferring a diffuse adherence pattern and having an impact on the adhesion properties of this aEPEC strain.

  14. sae is essential for expression of the staphylococcal adhesins Eap and Emp.

    PubMed

    Harraghy, Niamh; Kormanec, Jan; Wolz, Christiane; Homerova, Dagmar; Goerke, Christiane; Ohlsen, Knut; Qazi, Saara; Hill, Philip; Herrmann, Mathias

    2005-06-01

    Eap and Emp are two Staphylococcus aureus adhesins initially described as extracellular matrix binding proteins. Eap has since emerged as being important in adherence to and invasion of eukaryotic cells, as well as being described as an immunomodulator and virulence factor in chronic infections. This paper describes the mapping of the transcription start point of the eap and emp promoters. Moreover, using reporter-gene assays and real-time PCR in defined regulatory mutants, environmental conditions and global regulators affecting expression of eap and emp were investigated. Marked differences were found in expression of eap and emp between strain Newman and the 8325 derivatives SH1000 and 8325-4. Moreover, both genes were repressed in the presence of glucose. Analysis of expression of both genes in various regulatory mutants revealed that sarA and agr were involved in their regulation, but the data suggested that there were additional regulators of both genes. In a sae mutant, expression of both genes was severely repressed. sae expression was also reduced in the presence of glucose, suggesting that repression of eap and emp in glucose-containing medium may, in part, be a consequence of a decrease in expression of sae.

  15. Regulation of Expression of Uropathogenic Escherichia coli Nonfimbrial Adhesin TosA by PapB Homolog TosR in Conjunction with H-NS and Lrp.

    PubMed

    Engstrom, Michael D; Mobley, Harry L T

    2016-01-11

    Urinary tract infections (UTIs) are a major burden to human health. The overwhelming majority of UTIs are caused by uropathogenic Escherichia coli (UPEC) strains. Unlike some pathogens, UPEC strains do not have a fixed core set of virulence and fitness factors but do have a variety of adhesins and regulatory pathways. One such UPEC adhesin is the nonfimbrial adhesin TosA, which mediates adherence to the epithelium of the upper urinary tract. The tos operon is AT rich, resides on pathogenicity island aspV, and is not expressed under laboratory conditions. Because of this, we hypothesized that tosA expression is silenced by H-NS. Lrp, based on its prominent function in the regulation of other adhesins, is also hypothesized to contribute to tos operon regulation. Using a variety of in vitro techniques, we mapped both the tos operon promoter and TosR binding sites. We have now identified TosR as a dual regulator of the tos operon, which could control the tos operon in association with H-NS and Lrp. H-NS is a negative regulator of the tos operon, and Lrp positively regulates the tos operon. Exogenous leucine also inhibits Lrp-mediated tos operon positive regulation. In addition, TosR binds to the pap operon, which encodes another important UPEC adhesin, P fimbria. Induction of TosR synthesis reduces production of P fimbria. These studies advance our knowledge of regulation of adhesin expression associated with uropathogen colonization of a host.

  16. Adhesins of Bartonella spp.

    PubMed

    O'Rourke, Fiona; Schmidgen, Thomas; Kaiser, Patrick O; Linke, Dirk; Kempf, Volkhard A J

    2011-01-01

    Adhesion to host cells represents the first step in the infection process and one of the decisive features in the pathogenicity of Bartonella spp. B. henselae and B. quintana are considered to be the most important human pathogenic species, responsible for cat scratch disease, bacillary angiomatosis, trench fever and other diseases. The ability to cause vasculoproliferative disorders and intraerythrocytic bacteraemia are unique features of the genus Bartonella. Consequently, the interaction with endothelial cells and erythrocytes is a focus in Bartonella research. The genus harbours a variety of trimeric autotransporter adhesins (TAAs) such as the Bartonella adhesin A (BadA) of B. henselae and the variably expressed outer-membrane proteins (Vomps) of B. quintana, which display remarkable variations in length and modular construction. These adhesins mediate many of the biologically-important properties of Bartonella spp. such as adherence to endothelial cells and extracellular matrix proteins and induction of angiogenic gene programming. There is also significant evidence that the laterally acquired Trw-conjugation systems of Bartonella spp. mediate host-specific adherence to erythrocytes. Other potential adhesins are the filamentous haemagglutinins and several outer membrane proteins. The exact molecular functions of these adhesins and their interplay with other pathogenicity factors (e.g., the VirB/D4 type 4 secretion system) need to be analysed in detail to understand how these pathogens adapt to their mammalian hosts.

  17. Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable (STa) toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli.

    PubMed

    Zhang, Chengxian; Zhang, Weiping

    2010-12-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, (8)LCSEYRNTQIYTIN(21)) and an STa toxoid epitope ((5)CCELCCNPQCAGCY(18)) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC. PMID:20980482

  18. The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica

    PubMed Central

    Kakoschke, Tamara Katharina; Kakoschke, Sara Carina; Zeuzem, Catharina; Bouabe, Hicham; Adler, Kristin; Heesemann, Jürgen; Rossier, Ombeline

    2016-01-01

    In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies. PMID:27387855

  19. The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica.

    PubMed

    Kakoschke, Tamara Katharina; Kakoschke, Sara Carina; Zeuzem, Catharina; Bouabe, Hicham; Adler, Kristin; Heesemann, Jürgen; Rossier, Ombeline

    2016-07-08

    In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies.

  20. Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins.

    PubMed

    Roux, Agnès; Beloin, Christophe; Ghigo, Jean-Marc

    2005-02-01

    In bacteria, whereas disruption methods have been improved recently, the use of plasmid complementation strategies are still subject to limitations, such as cloning difficulties, nonphysiological levels of gene expression, or a requirement for antibiotics as plasmid selection pressure. Moreover, because of the pleiotropic modifications of cell physiology often induced by plasmid-based complementation, these strategies may introduce biases when biological process such as adhesion or biofilm formation are studied. We developed a plasmid-free approach that combines the lambda-red linear DNA recombination method with site-directed insertion of a repression and expression (RExBAD) cassette which places a functional pBAD promoter upstream of a target gene. We showed that this method permits both inactivation and modulation of most Escherichia coli gene expression, including expression of toxin and essential genes. We used this strategy to study adhesion and bacterial biofilms by placing the RExBAD cassette in front of the tra operon, encoding the DNA transfer and pilus genes on the F conjugative plasmid, and in front of flu, the antigen 43 (Ag43) autotransporter adhesin-encoding gene. In silico analysis revealed the existence of 10 genes with homology to the Ag43 gene that were good candidates for genes that encode putative new adhesins in E. coli. We used the RExBAD strategy to study these genes and demonstrated that induction of expression of four of them is associated with adhesion of E. coli to abiotic surfaces. The potential use of the RExBAD approach to study the function of cryptic or uncharacterized genes in large-scale postgenomic functional analyses is discussed.

  1. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii.

    PubMed

    Barelli, Larissa; Padilla-Guerrero, Israel Enrique; Bidochka, Michael J

    2011-11-01

    Metarhizium robertsii is an entomopathogenic fungus that is also plant rhizosphere competent. Two adhesin-encoding genes, Metarhizium adhesin-like protein 1 (Mad1) and Mad2, are involved in insect pathogenesis or plant root colonization, respectively. Here we examined the differential expression of the Mad genes when grown on a variety of soluble (carbohydrates and plant root exudate) and insoluble substrates (locust, tobacco hornworm, and cockroach cuticle, chitin, tomato stems, cellulose, and starch) and during insect, Plutella xylostella, infection. On insect cuticles Mad1 was up regulated, whereas bean root exudate and tomato stems resulted in the up regulation of Mad2. During the early stages of insect infection Mad1 was expressed while Mad2 was not expressed until fungal hyphae emerged and conidiated on the insect cadaver. The regulation of Mad2 was compared to that of other stress-related genes (heat shock protein (Hsp)30, Hsp70, and starvation stress gene A (ssgA)). Mad2 was generally up regulated by nutrient starvation (similar to ssgA) but not by pH, temperature, oxidative or osmotic stresses. Whereas Hsp30 and Hsp70 were generally up regulated at 37 °C or by oxidative stress even under nutrient enriched conditions. We fused the promoter of the Mad2 gene to a marker gene (green fluorescent protein (GFP)) and confirmed that Mad2 was up regulated when M. robertsii was grown in the presence of nutrient starvation. Examination of the promoter region of Mad2 revealed that it possessed two copies of a stress-response element (STRE) known to be regulated under the general stress-response pathway. PMID:22036295

  2. EHEC Adhesins

    PubMed Central

    McWilliams, Brian D.; Torres, Alfredo G.

    2014-01-01

    Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics. PMID:25635238

  3. Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family.

    PubMed

    Schielke, Stephanie; Huebner, Claudia; Spatz, Carolin; Nägele, Virginie; Ackermann, Nikolaus; Frosch, Matthias; Kurzai, Oliver; Schubert-Unkmeir, Alexandra

    2009-05-01

    Two closely related pathogenic species have evolved in the genus Neisseria: N. meningitidis and N. gonorrhoeae, which occupy different host niches and cause different clinical entities. In contrast to the pathogen N. gonorrhoeae, N. meningitidis is a commensal and only rarely becomes invasive. Little is known about the genetic background of the entirely different lifestyles in these closely related species. Meningococcal NMB1843 encodes a transcriptional regulator of the MarR family. The gonococcal homologue FarR regulates expression of farAB, mediating fatty acid resistance. We show that NmFarR also directly interacts with NmfarAB. Yet, by contrast to N. gonorrhoeae, no significant sensitivity to fatty acids was observed in a DeltafarR mutant due to intrinsic resistance of meningococci. Further analyses identified an NmFarR-repressed protein absent from N. gonorrhoeae. This protein is the meningococcus-specific adhesin and vaccine component NadA that has most likely been acquired by horizontal gene transfer. NmFarR binds to a 16 base pair palindromic repeat within the nadA promoter. De-repression of nadA resulted in significantly higher association of a DeltafarR strain with epithelial cells. Hence NmFarR has gained control over a meningococcus-specific gene involved in host colonization and thus contributed to divergent niche adaptation in pathogenic Neisseriae.

  4. Pathogenesis of Human Diffusely Adhering Escherichia coli Expressing Afa/Dr Adhesins (Afa/Dr DAEC): Current Insights and Future Challenges

    PubMed Central

    2014-01-01

    SUMMARY The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as “silent pathogens” with the capacity to emerge as “pathobionts” for the development of inflammatory bowel disease and intestinal carcinogenesis. PMID:25278576

  5. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    PubMed Central

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  6. Purification and Expression of the Tf190 Adhesin in Tritrichomonas foetus†

    PubMed Central

    Shaia, Carl I.; Voyich, Jovanka; Gillis, Shaun J.; Singh, B. N.; Burgess, Donald E.

    1998-01-01

    Bovine trichomoniasis is a sexually transmitted disease caused by Tritrichomonas foetus and characterized by early embryo loss. The mechanism of this loss is not known, although the parasite is known to cause inflammation and to have the ability to kill host cells by a contact-dependent cytotoxic mechanism. Antibody specific for a 190,000-Da surface complex (Tf190) was previously shown to inhibit this adhesion. In this study we used immunoaffinity chromatography to purify Tf190 from T. foetus in order to analyze its composition and examine its expression. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified Tf190 followed by silver staining revealed three components of Tf190. Western blotting and antibody-binding experiments showed that the 140- and 60-kDa bands were immunogenic. By using a battery of monoclonal antibodies (MAbs) periodate-sensitive epitopes were identified on Tf190, suggesting that these epitopes contained carbohydrate structures. Analyses of affinity-purified Tf190 by high-performance liquid chromatography and gas-liquid chromatography demonstrated the presence of the monosaccharides and lipids known to be prominent constituents of the lipophosphoglycan (LPG) of T. foetus. Flow cytometry experiments on several isolates of T. foetus with Tf190-specific antibodies revealed that Tf190 was present on subpopulations of all isolates but that not all epitopes were present on every isolate. This pattern of reactivities on the different parasite isolates was confirmed by Western blots of whole-parasite extracts probed with MAbs and antiserum. These results suggest that although variation in the expression of epitopes of Tf190 occurs in different strains of T. foetus, the Tf190 adhesion complex is widespread in different populations of the parasite. The data further suggest that immunogenic structures, important in the adhesion of T. foetus to mammalian cells, are located in the LPG-like component of Tf190. PMID:9488401

  7. Prokaryotic High-Level Expression System in Producing Adhesin Recombinant Protein E of Nontypeable Haemophilus influenzae

    PubMed Central

    Tavakoli, Minoo; Bouzari, Saeed; Siadat, Seyed Davar; Najar Peerayeh, Shahin; Jafari, Anis

    2015-01-01

    Background: Adhesion protein E (PE) of Haemophilus influenzae is a 16 - 18 kDa protein with 160 amino acids which causes adhesion to epithelial cells and acts as a major factor in pathogenesis. Objectives: In this study, we performed cloning, expression and purification of PE as a candidate antigen for vaccine design upon further study. Materials and Methods: At first, the pe gene of NTHi ATCC 49766 strain (483 bp) was amplified by PCR. Then, to sequence the resulted amplicon, it was cloned into TA vector (pTZ57R/T). In the next step, the sequenced gene was sub-cloned in pBAD/gIII A vector and transformed into competent Escherichia coli TOP10. For overexpression, the recombinant bacteria were grown in broth medium containing arabinose and the recombinant protein was purified using metal affinity chromatography (Ni-nitrilotriacetic acid) (Ni-NTA agarose). Finally, the protein was detected using sodium dodecyl sulfate polyacrylamide gel electrophores (SDS-PAG) and confirmed by western blotting. Results: The cloned gene was confirmed by PCR, restriction digestion and sequencing. The sequenced gene was searched for homology in GenBank and 99% similarity was found to the already deposited genes in GenBank. Then we obtained PE using Ni-NTA agarose with up to 7 mg/mL concentration. Conclusions: The pe gene was successfully cloned and confirmed by sequencing. Finally, PE was obtained with high concentration. Due to high homology and similarity among the pe gene from NTHi ATCC 49766 and other NTHi strains in GenBank, we believe that the protein is a universal antigen to be used as a vaccine design candidate and further studies to evaluate its immunogenicity is underway. PMID:26034537

  8. FimH adhesin from host unrestricted Salmonella Enteritidis binds to different glycoprotein ligands expressed by enterocytes from sheep, pig and cattle than FimH adhesins from host restricted Salmonella Abortus-ovis, Salmonella Choleraesuis and Salmonella Dublin.

    PubMed

    Grzymajło, Krzysztof; Ugorski, Maciej; Kolenda, Rafał; Kędzierska, Anna; Kuźmińska-Bajor, Marta; Wieliczko, Alina

    2013-10-25

    Adhesion to gut tissues and colonization of the alimentary tract, two important stages in the pathogenesis of Salmonella, are mediated by FimH adhesin of type 1 fimbriae. It was suggested that minor differences in the structure of FimH are most likely associated with differences in adhesion specificities, and may determine the tropism of various Salmonella serovars to different species and tissues. We investigated this hypothesis by comparing the binding properties of FimH proteins from three Salmonella enterica serovars with limited (Choleraesuis, Dublin) or restricted (Abortusovis) host ranges to FimH from broad host range S. Enteritidis and mannose inactive FimH from S. Gallinarum. Although all active variants of FimH protein were able to bind mannose-rich glycoproteins (RNase B, HRP and Man-BSA) with comparable affinity measured by surface plasmon resonance, there were significant differences in the binding profiles of the FimH proteins from host restricted serovars and host unrestricted serovar Enteritidis, to glycoproteins from enterocyte cell lines established in vitro and derived from sheep, pig and cattle. When low-binding FimH adhesin from S. Enteritidis was subjected to Western blot analysis, it bound to surface membrane protein of about 130 kDa, and high-binding FimH adhesins from S. Abortusovis, S. Choleraesuis and S. Dublin bound to surface membrane protein of about 55 kDa present in each cell line. Differential binding of FimH proteins from host-restricted and broad-host-range Salmonella to intestinal receptors was confirmed using mutant FimH adhesins obtained by site-directed mutagenesis. It was found that the low-binding variant of FimH from S. Choleraesuis with mutation Leu57Pro lost the ability to bind protein band of 55 kDa, but instead interacted with glycoprotein of about 130 kDa. On the other hand, the high-binding variant of FimH adhesin from S. Enteritids with mutation Asn101Ser did not bind to its receptor of 130 kDa, but instead it

  9. [Adhesins of oral streptococci].

    PubMed

    Takahashi, Yukihiro; Urano-Tashiro, Yumiko; Konishi, Kiyoshi

    2013-01-01

    Oral streptococci comprise a numerically prominent group of oral bacteria that occur primarily on the human tooth surface as members of the biofilm community, commonly referred to as dental plaque. These streptococci are not only causative of dental caries and are primers for colonization of periodontopathic bacteria, but also well known for their ability to colonize damaged heart valves, identified most frequently as primary etiological agents of infective endocarditis. A number of streptococcal cell surface components are known to contribute to colonization of the tooth surface including putative adhesins recognizing host sialic acid (sialic acid-binding adhesins). Interactions mediated by these adhesins include the attachment of these bacteria to saliva-coated hydroxyapatite and their adhesion to erythrocytes, both of which are abolished or reduced by sialidase pretreatment of the corresponding host sialoglycoconjugate receptors. The sialic acid-binding adhesin on Streptococcus gordonii, an early colonizer on the tooth surface, has been molecularly analyzed. The adhesin, Hsa (203-kDa protein), consists of an N-terminal non repetitive region (NR1) including a signal sequence, a relatively short serine-rich region (SR1), a second non repetitive region (NR2), a long serine-rich region (SR2) containing 113 dodecapeptide repeats accounting for 75% of the whole protein, and a C-terminal cell wall anchoring domain. Therefore, it has been suggested that NR2, the putative sialic acid-binding domain of Hsa, is presented on the bacterial surface at the end of a long molecular stalk formed by SR2. The present review deals with the function and pathogenicity of oral streptococcal adhesins. PMID:23727707

  10. The bvg-repressed gene brtA, encoding biofilm-associated surface adhesin, is expressed during host infection by Bordetella bronchiseptica.

    PubMed

    Nishikawa, Sayaka; Shinzawa, Naoaki; Nakamura, Keiji; Ishigaki, Keisuke; Abe, Hiroyuki; Horiguchi, Yasuhiko

    2016-02-01

    Bordetella species display phase modulation between Bvg(+) and Bvg(-) phases. Because expression of known virulence factors is up-regulated in the Bvg(+) phase, bacteria in this phase are considered competent for infection. However, the Bvg(-) phase is of negligible importance for infection. No studies have shown that bacterial factors specific to the Bvg(-) phase (bvg-repressed factors) are expressed in the course of Bordetella infection. In the present study, the gene brtA (Bordetella RTX-family Adhesin), which is a typical bvg-repressed gene but is expressed in B. bronchiseptica infecting hosts, was characterized. BrtA is composed of repeated pairs of the VCBS unit and dystroglycan-type cadherin-like unit, the von Willebrand Factor A domain, RTX motif and type I secretion target signal. It is herein demonstrated that BrtA is secreted by the type I secretion system and is essential for Ca(2+) -dependent bacteria-to-substrate adherence, followed by biofilm formation. Although the contribution of BrtA to bacterial colonization of the rat trachea currently remains unclear, this is the first study to present concrete evidence for the expression of a bvg-repressed gene during infection, which may provide a novel aspect for analyses of Bordetella pathogenesis. PMID:26756546

  11. The bvg-repressed gene brtA, encoding biofilm-associated surface adhesin, is expressed during host infection by Bordetella bronchiseptica.

    PubMed

    Nishikawa, Sayaka; Shinzawa, Naoaki; Nakamura, Keiji; Ishigaki, Keisuke; Abe, Hiroyuki; Horiguchi, Yasuhiko

    2016-02-01

    Bordetella species display phase modulation between Bvg(+) and Bvg(-) phases. Because expression of known virulence factors is up-regulated in the Bvg(+) phase, bacteria in this phase are considered competent for infection. However, the Bvg(-) phase is of negligible importance for infection. No studies have shown that bacterial factors specific to the Bvg(-) phase (bvg-repressed factors) are expressed in the course of Bordetella infection. In the present study, the gene brtA (Bordetella RTX-family Adhesin), which is a typical bvg-repressed gene but is expressed in B. bronchiseptica infecting hosts, was characterized. BrtA is composed of repeated pairs of the VCBS unit and dystroglycan-type cadherin-like unit, the von Willebrand Factor A domain, RTX motif and type I secretion target signal. It is herein demonstrated that BrtA is secreted by the type I secretion system and is essential for Ca(2+) -dependent bacteria-to-substrate adherence, followed by biofilm formation. Although the contribution of BrtA to bacterial colonization of the rat trachea currently remains unclear, this is the first study to present concrete evidence for the expression of a bvg-repressed gene during infection, which may provide a novel aspect for analyses of Bordetella pathogenesis.

  12. Haemagglutination induced by Bordetella pertussis filamentous haemagglutinin adhesin (FHA) is inhibited by antibodies produced against FHA(430-873) fragment expressed in Lactobacillus casei.

    PubMed

    Colombi, Débora; Oliveira, Maria L S; Campos, Ivana B; Monedero, Vicente; Pérez-Martinez, Gaspar; Ho, Paulo L

    2006-12-01

    Filamentous haemagglutinin adhesin (FHA) is an important virulence factor from Bordetella pertussis related to the adhesion and spread of the bacteria through the respiratory tract. Three distinct domains have been characterized in mature FHA, and among them, the FHA(442-863) fragment was suggested to be responsible for the heparin-binding activity. In this study, we cloned the gene encoding the HEP fragment (FHA(430-873)) in a Lactobacillus casei-inducible expression vector based on the lactose operon. The recombinant bacteria, transformed with the resulting construct (L. casei-HEP), were able to express the heterologous protein depending on the sugar added to the culture. Subcutaneous inoculation of L. casei-HEP in Balb/C mice, using the cholera toxin B subunit as adjuvant, induced systemic anti-HEP antibodies that were able to inhibit in vitro erythrocyte haemagglutination induced by FHA. This is the first example of a B. pertussis antigen produced in lactic acid bacteria and opens new perspectives for alternative vaccine strategies against whooping cough. PMID:17106803

  13. Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen.

    PubMed

    Six, Anne; Bellais, Samuel; Bouaboud, Abdelouhab; Fouet, Agnès; Gabriel, Christelle; Tazi, Asmaa; Dramsi, Shaynoor; Trieu-Cuot, Patrick; Poyart, Claire

    2015-09-01

    The Group B Streptococcus (GBS) 'hypervirulent' ST-17 clone is strongly associated with invasive neonatal meningitis. Comparative genome analyses revealed that the serine-rich repeat (Srr) glycoprotein Srr2 is a cell wall-anchored protein specific for ST-17 strains, the non-ST-17 isolates expressing Srr1. Here, we unravel the binding capacity of GBS Srr proteins to relevant components of the host fibrinolysis pathway. We demonstrate that: (i) Srr2 binds plasminogen and plasmin whereas Srr1 does not; (ii) the ability of ST-17 strains to bind fibrinogen reflects a high level surface display of Srr2 combined with a higher affinity of Srr2 than Srr1 to bind this ligand; and (iii) Srr2 binding to host plasma proteins results in the formation of bacterial aggregates that are efficiently endocytosed by phagocytes. Importantly, we show that Srr2 increased bacterial survival to phagocytic killing and bacterial persistence in a murine model of meningitis. We conclude that Srr2 is a multifaceted adhesin used by the ST-17 clone to hijack ligands of the host coagulation system, thereby contributing to bacterial dissemination and invasiveness, and ultimately to meningitis. PMID:26094503

  14. Construction of attenuated Salmonella typhimurium Strain expressing Helicobacter pylori conservative region of adhesin antigen and its immunogenicity

    PubMed Central

    Bai, Yang; Zhang, Ya-Li; Wang, Ji-De; Zhang, Zhao-Shan; Zhou, Dian-Yuan

    2004-01-01

    AIM: To construct a non-resistant and attenuated Salmonella typhimurium (S. typhimurium) strain which expresses conservative region of adhesion AB of Helicobacter pylori (H pylori) and evaluate its immunogenicity. METHODS: The AB gene amplified by PCR was inserted into the expression vector pYA248 containing asd gene and through two transformations introduced into the delta Cya, delta Crp, delta Asd attenuated Salmonella typhimurium strain, constructing balanced lethal attenuated Salmonella typhimurium strains X4072 (pYA248-AB). Bridged ELISA method was used to measure the expression of AB antigen in sonicate and culture supernatant. According to the method described by Meacock, stability of the recombinant was evaluated. Semi-lethal capacity test was used to evaluate the safety of recombinant. The immunogenicity of recombinant was evaluated with animal experiments. RESULTS: The attenuated S. typhimurium X4072 (pYA248-AB) which expresses AB was successfully constructed. Furthermore, bridged ELISA assay showed that the content of AB in recombinant X4072 (pYA248- AB) culture supernatant was higher than that was in thallus lytic liquor. And after recombinant X4072 (pYA248- AB) was cultured for 100 generations without selection pressure, the entire recombinant bacteria selected randomly could grow, and the AB antigen was defected positive by ELISA. The growth curve of the recombinant bacteria showed that the growth states of X4072 (pYA248) and X4072 (pYA248-AB) were basically consistent. The survival rate of C57BL/6 was still 100%, at 30 d after mice taking X4072 (pYA248-AB) 1.0 × 1010 cfu orally. Oral immunization of mice with X4072 (pYA248-AB) induced a specific immune response. CONCLUSION: In vitro recombinant plasmid appears to be stable and experiments on animals showed that the recombinant strains were safe and immunogenic in vitro, which providing a new live oral vaccine candidate for protection and care of H pylori infection. PMID:15300892

  15. Importance of adhesins in virulence of Paracoccidioides spp.

    PubMed Central

    de Oliveira, Haroldo C.; da Silva, Julhiany de Fátima; Scorzoni, Liliana; Marcos, Caroline M.; Rossi, Suelen A.; de Paula e Silva, Ana C. A.; Assato, Patrícia A.; da Silva, Rosângela A. M.; Fusco-Almeida, Ana M.; Mendes-Giannini, Maria J. S.

    2015-01-01

    Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts. Paracoccidioides spp. have features that permit their growth under adverse conditions, enable them to adhere to and invade host tissues and may contribute to disease development. Cell wall proteins called adhesins facilitate adhesion and are capable of mediating fungi-host interactions during infection. This study aimed to evaluate the adhesion profile of two species of the genus Paracoccidioides, to analyze the expression of adhesin-encoding genes by real-time PCR and to relate these results to the virulence of the species, as assessed using a survival curve in mice and in Galleria mellonella after blocking the adhesins. A high level of heterogeneity was observed in adhesion and adhesin expression, showing that the 14-3-3 and enolase molecules are the most highly expressed adhesins during pathogen-host interaction. Additionally, a survival curve revealed a correlation between the adhesion rate and survival, with P. brasiliensis showing higher adhesion and adhesin expression levels and greater virulence when compared with P. lutzii. After blocking 14-3-3 and enolase adhesins, we observed modifications in the virulence of these two species, revealing the importance of these molecules during the pathogenesis of members of the Paracoccidioides genus. These results revealed new insights into the host-pathogen interaction of this genus and may enhance our understanding of different isolates that could be useful for the treatment of this mycosis. PMID:25914695

  16. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB

    PubMed Central

    Sievers, Susanne; Sternkopf Lillebæk, Eva Maria; Jacobsen, Kirstine; Lund, Anja; Mollerup, Maria Storm; Nielsen, Pia Kiil; Kallipolitis, Birgitte Haahr

    2014-01-01

    The multicopy sRNA LhrC of the intracellular pathogen Listeria monocytogenes has been shown to be induced under infection-relevant conditions, but its physiological role and mechanism of action is not understood. In an attempt to pinpoint the exact terms of LhrC expression, cell envelope stress could be defined as a specific inducer of LhrC. In this process, the two-component system LisRK was shown to be indispensable for expression of all five copies of LhrC. lapB mRNA, encoding a cell wall associated protein that was recently identified as an important virulence factor, was disclosed to be directly bound by LhrC leading to an impediment of its translation. Although LhrC binds to Hfq, it does not require the RNA chaperone for stability or lapB mRNA interaction. The mechanism of LhrC-lapB mRNA binding was shown to involve three redundant CU-rich sites and a structural rearrangement in the sRNA. This study represents an extensive depiction of a so far uncharacterized multicopy sRNA and reveals interesting new aspects concerning its regulation, virulence association and mechanism of target binding. PMID:25034691

  17. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence.

    PubMed

    Ocádiz-Ruiz, Ramón; Fonseca, Wendy; Linford, Alicia S; Yoshino, Timothy P; Orozco, Esther; Rodríguez, Mario A

    2016-01-01

    Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.

  18. Use of purified F1845 fimbrial adhesin to study localization and expression of receptors for diffusely adhering Escherichia coli during enterocytic differentiation of human colon carcinoma cell lines HT-29 and Caco-2 in culture.

    PubMed Central

    Kerneis, S; Bilge, S S; Fourel, V; Chauviere, G; Coconnier, M H; Servin, A L

    1991-01-01

    Whole diffusely adhering Escherichia coli (DAEC) C1845 cells bearing the F1845 adhesive factor bind diffusely to differentiated human colon carcinoma cell lines HT-29 and Caco-2. By using antibodies directed against the purified fimbrial adhesin F1845 factor, the expression of the DAEC F1845-specific brush border receptors in the polarized human intestinal HT-29 and Caco-2 epithelial cells was studied by indirect immunofluorescence. A low level of DAEC F1845 receptors in undifferentiated intestinal cells was detected; they were localized in a cluster of cells. DAEC F1845 receptors were expressed at a high level in differentiated HT-29 and Caco-2 cells. DAEC F1845 receptors were expressed at a strikingly high level in the apical domains of the cells and developed during enterocytic differentiation in culture, in parallel with the apical expression of the intestinal brush border hydrolase, sucrase-isomaltase. Images PMID:1682255

  19. A Conserved PapB Family Member, TosR, Regulates Expression of the Uropathogenic Escherichia coli RTX Nonfimbrial Adhesin TosA while Conserved LuxR Family Members TosE and TosF Suppress Motility

    PubMed Central

    Engstrom, Michael D.; Alteri, Christopher J.

    2014-01-01

    A heterogeneous subset of extraintestinal pathogenic Escherichia coli (ExPEC) strains, referred to as uropathogenic E. coli (UPEC), causes most uncomplicated urinary tract infections. However, no core set of virulence factors exists among UPEC strains. Instead, the focus of the analysis of urovirulence has shifted to studying broad classes of virulence factors and the interactions between them. For example, the RTX nonfimbrial adhesin TosA mediates adherence to host cells derived from the upper urinary tract. The associated tos operon is well expressed in vivo but poorly expressed in vitro and encodes TosCBD, a predicted type 1 secretion system. TosR and TosEF are PapB and LuxR family transcription factors, respectively; however, no role has been assigned to these potential regulators. Thus, the focus of this study was to determine how TosR and TosEF regulate tosA and affect the reciprocal expression of adhesins and flagella. Among a collection of sequenced UPEC strains, 32% (101/317) were found to encode TosA, and nearly all strains (91% [92/101]) simultaneously carried the putative regulatory genes. Deletion of tosR alleviates tosA repression. The tos promoter was localized upstream of tosR using transcriptional fusions of putative promoter regions with lacZ. TosR binds to this region, affecting a gel shift. A 100-bp fragment 220 to 319 bp upstream of tosR inhibits binding, suggesting localization of the TosR binding site. TosEF, on the other hand, downmodulate motility when overexpressed by preventing the expression of fliC, encoding flagellin. Deletion of tosEF increased motility. Thus, we present an additional example of the reciprocal control of adherence and motility. PMID:24935980

  20. MAAP: malarial adhesins and adhesin-like proteins predictor.

    PubMed

    Ansari, Faraz Alam; Kumar, Naveen; Bala Subramanyam, Mekapati; Gnanamani, Muthiah; Ramachandran, Srinivasan

    2008-02-15

    Malaria caused by protozoan parasites belonging to the genus Plasmodium is a dreaded disease, second only to tuberculosis. The emergence of parasites resistant to commonly used drugs and the lack of availability of vaccines aggravates the problem. One of the preventive approaches targets adhesion of parasites to host cells and tissues. Adhesion of parasites is mediated by proteins called adhesins. Abrogation of adhesion by either immunizing the host with adhesins or inhibiting the interaction using structural analogs of host cell receptors holds the potential to develop novel preventive strategies. The availability of complete genome sequence offers new opportunities for identifying adhesin and adhesin-like proteins. Development of computational algorithms can simplify this task and accelerate experimental characterization of the predicted adhesins from complete genomes. A curated positive dataset of experimentally known adhesins from Plasmodium species was prepared by careful examination of literature reports. "Controversial" or "hypothetical" adhesins were excluded. The negative dataset consisted of proteins representing various intracellular functions including information processing, metabolism, and interface (transporters). We did not include proteins likely to be on the surface with unknown adhesin properties or which are linked even indirectly to the adhesion process in either of the training sets. A nonhomology-based approach using 420 compositional properties of amino acid dipeptide and multiplet frequencies was used to develop MAAP Web server with Support Vector Machine (SVM) model classifier as its engine for the prediction of malarial adhesins and adhesin-like proteins. The MAAP engine has six SVM classifier models identified through an exhaustive search from 728 kernel parameters set. These models displayed an efficiency (Mathews correlation coefficient) of 0.860-0.967. The final prediction P(maap) score is the maximum score attained by a given

  1. Oral immunization of a live attenuated Escherichia coli strain expressing a holotoxin-structured adhesin-toxoid fusion (1FaeG-FedF-LTA₂:5LTB) protected young pigs against enterotoxigenic E. coli (ETEC) infection.

    PubMed

    Ruan, Xiaosai; Zhang, Weiping

    2013-03-01

    ETEC strains expressing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of porcine post-weaning diarrhea (PWD). PWD continues causing significant economic losses to swine producers worldwide. Vaccines effectively protecting against PWD are needed. Our recent study revealed that a tripartite adhesin-toxin monomer (FaeG-FedF-LT(A2-B)) elicited protective antibodies. In this study, we constructed a new adhesin-toxoid fusion, expressed it as a 1A:5B holotoxin-structured antigen (1FaeG-FedF-LT(192A2):5LT(B)) in an avirulent Escherichia coli strain, and evaluated its vaccine potential in pig challenge studies. Piglets orally inoculated with this live strain showed no adverse effects but developed systemic and mucosal antibodies that neutralized cholera toxin and inhibited adherence of K88 and F18 fimbriae in vitro. Moreover, the immunized piglets, when were challenged with ETEC strain 3030-2 (K88ac/LT/STb), had significant fewer bacteria colonized at small intestines and did not develop diarrhea; whereas the control piglets developed severe diarrhea and died. These results indicated the 1FaeG-FedF-LT(192A2):5LT(B) fusion antigen induced protective antiadhesin and antitoxin immunity in pigs, and suggested a live attenuated vaccine can be potentially developed against porcine ETEC diarrhea. Additionally, presenting antigens in a holotoxin structure to target host local mucosal immunity can be used in vaccine development against other enteric diseases. PMID:23375979

  2. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

    PubMed

    Tavano, Regina; Franzoso, Susanna; Cecchini, Paola; Cartocci, Elena; Oriente, Francesca; Aricò, Beatrice; Papini, Emanuele

    2009-07-01

    Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).

  3. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

    PubMed Central

    Schaeffer, Carolyn R.; Hoang, Tra-My N.; Sudbeck, Craig M.; Alawi, Malik; Tolo, Isaiah E.; Robinson, D. Ashley; Horswill, Alexander R.; Rohde, Holger

    2016-01-01

    ABSTRACT Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCE Staphylococcus epidermidis is a leading cause of

  4. The Biology of Neisseria Adhesins

    PubMed Central

    Hung, Miao-Chiu; Christodoulides, Myron

    2013-01-01

    Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology. PMID:24833056

  5. The apicomplexan glideosome and adhesins -- structures and function

    PubMed Central

    Boucher, Lauren E.; Bosch, Jürgen

    2015-01-01

    The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models. PMID:25764948

  6. The apicomplexan glideosome and adhesins - Structures and function.

    PubMed

    Boucher, Lauren E; Bosch, Jürgen

    2015-05-01

    The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.

  7. Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis.

    PubMed

    Kumar, Sanjiv; Puniya, Bhanwar Lal; Parween, Shahila; Nahar, Pradip; Ramachandran, Srinivasan

    2013-01-01

    Pathogenic bacteria interacting with eukaryotic host express adhesins on their surface. These adhesins aid in bacterial attachment to the host cell receptors during colonization. A few adhesins such as Heparin binding hemagglutinin adhesin (HBHA), Apa, Malate Synthase of M. tuberculosis have been identified using specific experimental interaction models based on the biological knowledge of the pathogen. In the present work, we carried out computational screening for adhesins of M. tuberculosis. We used an integrated computational approach using SPAAN for predicting adhesins, PSORTb, SubLoc and LocTree for extracellular localization, and BLAST for verifying non-similarity to human proteins. These steps are among the first of reverse vaccinology. Multiple claims and attacks from different algorithms were processed through argumentative approach. Additional filtration criteria included selection for proteins with low molecular weights and absence of literature reports. We examined binding potential of the selected proteins using an image based ELISA. The protein Rv2599 (membrane protein) binds to human fibronectin, laminin and collagen. Rv3717 (N-acetylmuramoyl-L-alanine amidase) and Rv0309 (L,D-transpeptidase) bind to fibronectin and laminin. We report Rv2599 (membrane protein), Rv0309 and Rv3717 as novel adhesins of M. tuberculosis H37Rv. Our results expand the number of known adhesins of M. tuberculosis and suggest their regulated expression in different stages.

  8. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. PMID:27228947

  9. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis.

    PubMed Central

    Patti, J M; Bremell, T; Krajewska-Pietrasik, D; Abdelnour, A; Tarkowski, A; Rydén, C; Höök, M

    1994-01-01

    The importance of a collagen-binding adhesin in the pathogenesis of septic arthritis has been examined by comparing the virulence of two sets of Staphylococcus aureus mutants in an animal model. Collagen adhesin-negative mutant PH100 was constructed by replacing the chromosomal collagen adhesin gene (cna) in a clinical strain, Phillips, with an inactivated copy of the gene. Collagen adhesin-positive mutant S. aureus CYL574 was generated by introducing the cna gene into CYL316, a strain that normally lacks the cna gene. Biochemical, immunological, and functional analyses of the generated mutants and their respective parent strains showed that binding of 125I-labeled collagen, expression of an immunoreactive collagen adhesin, and bacterial adherence to cartilage were directly correlated with the presence of a functional cna gene. Greater than 70% of the mice injected with the Cna+ strains developed clinical signs of arthritis, whereas less than 27% of the animals injected with Cna- strains showed symptoms of disease. Furthermore, mice injected with the Cna+ strain Phillips had remarkably elevated levels of immunoglobulin G1 and interleukin-6 compared with mice injected with the Cna- mutant PH100. Taken together, these results demonstrate that collagen adhesin plays an important role in the pathogenesis of septic arthritis induced by S. aureus. Images PMID:8262622

  10. Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli.

    PubMed

    Arthur, M; Johnson, C E; Rubin, R H; Arbeit, R D; Campanelli, C; Kim, C; Steinbach, S; Agarwal, M; Wilkinson, R; Goldstein, R

    1989-02-01

    The pap, prs, pil, and hly operons of the pyelonephritic Escherichia coli isolate J96 code for the expression of P, F, and type 1 adhesins and the production of hemolysin, respectively; the afaI operon of the pyelonephritic E. coli KS52 encodes an X adhesin. Using different segments of these operons as probes, colony hybridizations were performed on 97 E. coli urinary tract and 40 fecal clinical isolates to determine (i) the presence in the infecting bacteria of nucleotide sequences related to virulence operons, and (ii) the phenotypic properties associated with such sequences. Coexpression of P and F adhesins encoded by pap-related sequences was detected more frequently among isolates from patients with pyelonephritis (32 of 49, 65%) than among those with cystitis (11 of 48, 23%; P less than 0.0001) or from fecal specimens (6 of 40, 15%; P less than 0.0001). Therefore, the expression of both adhesins appears to be critical in the colonization of the upper urinary tract. In contrast, afaI-related sequences were detected significantly more frequently among isolates from patients with cystitis, suggesting that this class of X adhesin may have a role in lower urinary tract infections. Urinary tract isolates differed from fecal isolates by a low incidence of type 1 adhesin expression among pil probe-positive isolates. hly-related sequences were only detected in pap probe-positive isolates. The frequency of hemolysin production among pap probe-positive isolates was not associated with a particular pattern of infection. The distribution of these virulence factors was similar in the presence or absence of reflux, indicating that structural abnormalities of the urinary tract did not facilitate colonization by adhesin-negative isolates.

  11. Distribution and degree of heterogeneity of the afimbrial-adhesin-encoding operon (afa) among uropathogenic Escherichia coli isolates.

    PubMed

    Labigne-Roussel, A; Falkow, S

    1988-03-01

    The afimbrial adhesin (AFA-I) from a pyelonephritic Escherichia coli isolate (KS52) is a mannose-resistant, P-independent, X-binding adhesin, expressed by the afa-1 operon. It is distinct from the E. coli X-binding adhesins with M and S specificity. A total of 138 E. coli isolates belonging to various serotypes, mostly from urinary tract infections, were screened for the presence of DNA sequences related to the afa operon and for the expression of an X-adhesin able to mediate mannose-resistant hemagglutination (MRHA) and adhesion to uroepithelial cells. Fifteen strains were shown to harbor DNA sequences related to the AFA-I-encoding operon, and 13 of them expressed an X-adhesin. Using as probes different DNA segments of the AFA-I-encoding operon in Southern experiments, we demonstrated that only three of these clinical isolates contained genetic determinants closely related to those identified in the original afa prototype strain (KS52): presence of the afaA, afaB, afaC, afaD, and afaE genes associated with the expression of a 16,000-dalton hemagglutinin-adhesin which strongly cross-reacted with AFA-I-specific antibodies. The other E. coli isolates harbored DNA sequences homologous to the afaA, afaB, afaC, and afaD genes, but lacked the sequence corresponding to the adhesin-producing gene afaE; Western blots allowed the detection of polypeptides (15,000, 15,500, or 16,000 daltons) in these strains which cross-reacted with variable intensity with antibodies raised against the denatured AFA-I protein, but did not cross-react with native AFA-I-specific antibodies. Following DNA cloning experiments from chromosomal DNA of two of those strains (A22 and A30), we demonstrated that although the AFA-related operon in A22 and A30 strains lacked the AFA-I adhesin-encoding gene, they synthesized a functional X-adhesin. Thus, strains A22 and A30 encode adhesins designated AFA-II and AFA-III, which were cloned on recombinant plasmids pILL72 and pILL61, respectively. Southern

  12. Assessment of Adhesins as an Indicator of Pathovar-Associated Virulence Factors in Bovine Escherichia coli.

    PubMed

    Valat, Charlotte; Forest, Karine; Auvray, Frédéric; Métayer, Véronique; Méheut, Thomas; Polizzi, Charlène; Gay, Emilie; Haenni, Marisa; Oswald, Eric; Madec, Jean-Yves

    2014-12-01

    The CS31A, F17, and F5 adhesins are usually targeted by serology-based methods to detect pathogenic Escherichia coli associated with calf enteritis. However, the virulence traits of the selected isolates are still poorly described. Here, from a set of 349 diarrheagenic E. coli isolates from cattle, we demonstrated a 70.8% concordance rate (Cohen's kappa, 0.599) between serology- and PCR-based approaches for the detection of adhesins under field conditions. A 79% to 82.4% correspondence between the two methods was found for fimbrial adhesins, whereas major discrepancies (33%) were observed for CS31A-type antigens. Various F17A variants were found, such as F17Ac (20K) (50%), F17Aa (FY) (18.9%), F17Ab (8.1%), and F17Ad (111K) (5.4%), including a high proportion (17.6%) of new F17A internal combinations (F17Aab, F17Aac, and F17Abc) or untypeable variants. In addition, the highest proportion of pathovar-associated virulence factor (VF) genes was observed among E. coli isolates that produced F5/F41 adhesins. A specific link between the heat-stable toxins related to the enterotoxigenic E. coli (ETEC) pathovar and adhesins was identified. STa was significantly linked to F5/F41 and EAST1 to CS31A adhesins (P < 0.001), respectively, whereas NTEC was associated with F17 adhesin (P = 0.001). Clustering between phylogroups according to the adhesin types was also observed. Also, few Shiga toxin-producing E. coli (STEC) or enteropathogenic E. coli (EPEC) pathovars were identified. Finally, no statistically significant difference was observed in the occurrence of extended-spectrum beta lactamase (ESBL) production according to the adhesins expressed by the isolates (P = 0.09). Altogether, this study gives new insights into the relationship between adhesins, VF, and antimicrobial resistance in calf enteritis and supports the need for further standardization of methodologies for such approaches. PMID:25217019

  13. Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model.

    PubMed

    Byeon, Hoyeon; Hur, Jin; Kim, Bo Ram; Lee, John Hwa

    2014-09-01

    An expression/secretion plasmid containing genes encoding the FimA, CP39, PtfA, ToxA and F1P2 antigens associated with porcine pneumonic pasteurellosis and progressive atrophic rhinitis (PAR) was constructed and harbored in an attenuated Salmonella Typhimurium, which was used as the vaccine candidate. The immune responses induced by this delivery strain were investigated in a murine model. Each antigen secreted from the delivery strain was confirmed by Western blot analysis. Thirty BALB/c mice were divided equally into two groups; group A were intranasally inoculated with the mixture of the five delivery strains, and group B were inoculated with sterile PBS. In group A, all antigen-specific serum IgG were significantly increased compared to those of group B from the 2nd week post-inoculation (WPI) till the 8th WPI. All antigen-specific mucosal IgA in group A were also significantly greater than those of group B. In addition, the significant splenic lymphocyte proliferative responses, the elevations of CD3(+)CD4(+), CD3(+)CD8(+) and B-cell populations, and the induction of IFN-γ expression in group A were observed. In conclusion, the mixture of five delivery strains expressing specific antigen for these diseases was found to be capable of inducing significant humoral and cellular immune responses. PMID:25045826

  14. Immunologic study and optimization of Salmonella delivery strains expressing adhesin and toxin antigens for protection against progressive atrophic rhinitis in a murine model.

    PubMed

    Hur, Jin; Byeon, Hoyeon; Lee, John Hwa

    2014-10-01

    Mice were intranasally inoculated at various times to optimize the vaccination strategy with a new live candidate vaccine expressing the antigens CP39, FimA, PtfA, and ToxA of Pasteurella multocida and F1P2 of Bordetella bronchiseptica in an attenuated live Salmonella system to protect against progressive atrophic rhinitis (PAR). Sixty BALB/c mice were divided equally into 4 groups. The group A mice were vaccinated only at 12 wk of age, the group B mice received a primary vaccination at 9 wk of age and a booster at 12 wk of age, the group C mice received a primary vaccination at 6 wk of age and boosters at 9 and 12 wk of age, and the group D mice were inoculated intranasally with sterile phosphate-buffered saline as a control. The humoral and mucosal immune responses of groups A, B, and C increased significantly compared with those of the control group. Expression of the cytokines interleukin-4 and interferon-γ in splenocytes also increased significantly. In addition, the group B mice exhibited significantly fewer gross lesions in lung tissue compared with the other vaccinated groups after challenge with a virulent P. multocida strain. These results indicate that a strategy of double intranasal vaccination can optimize protection against PAR. PMID:25355999

  15. Comparative evaluation of a vaccine candidate expressing enterotoxigenic Escherichia coli (ETEC) adhesins for colibacillosis with a commercial vaccine using a pig model.

    PubMed

    Hur, Jin; Lee, John Hwa

    2012-06-01

    In this study, a comparative evaluation of a novel live vaccine candidate expressing enterotoxigenic Escherichia coli (ETEC) fimbriae and a commercial ETEC vaccine was carried out in suckling to weaned piglets. The E. coli K88ab, K88ac, K99, FasA and F41 fimbrial genes were individually inserted into an expression/secretion plasmid, pBP244. These plasmids were subsequently transfected into attenuated Salmonella, which were used as the vaccine candidate. Eighteen pregnant sows and 107 of their piglets were used in this comparative study. All the vaccinated groups of sows and piglets exhibited significantly increased antibody levels relative to specific antigens when compared with those in the unimmunized control. The experimental piglets with the vaccine candidate did not experience diarrhea following challenge with the virulent ETEC strains. However, diarrhea was observed in 36.8% of the piglets in the group immunized with the commercial vaccine and in 50% of the control group after challenge with the ETEC strains. These findings indicate that immunization of sows with the candidate vaccine can effectively protect their young pigs against colibacillosis. PMID:22507658

  16. FaaPred: A SVM-Based Prediction Method for Fungal Adhesins and Adhesin-Like Proteins

    PubMed Central

    Ramana, Jayashree; Gupta, Dinesh

    2010-01-01

    Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence, identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM) based method for the prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features, namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections. PMID:20300572

  17. Identification of Coli Surface Antigen 23, a Novel Adhesin of Enterotoxigenic Escherichia coli

    PubMed Central

    Del Canto, Felipe; Botkin, Douglas J.; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P.; Levine, Myron M.; Stine, O. Colin; Pop, Mihai

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains. PMID:22645287

  18. Identification of Coli Surface Antigen 23, a novel adhesin of enterotoxigenic Escherichia coli.

    PubMed

    Del Canto, Felipe; Botkin, Douglas J; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P; Levine, Myron M; Stine, O Colin; Pop, Mihai; Torres, Alfredo G; Vidal, Roberto

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains. PMID:22645287

  19. Identification of Coli Surface Antigen 23, a novel adhesin of enterotoxigenic Escherichia coli.

    PubMed

    Del Canto, Felipe; Botkin, Douglas J; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P; Levine, Myron M; Stine, O Colin; Pop, Mihai; Torres, Alfredo G; Vidal, Roberto

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains.

  20. Cloning and Expression of Genes Encoding F107-C and K88-1NT Fimbrial Proteins of Enterotoxigenic Escherichia coli from Piglets.

    PubMed

    Loc, Nguyen Hoang; Ngoc, Le My Tieu; Lan, Tran Thuy; Viet, Le Quoc; Thao, Le Duc; Quang, Hoang Tan; Lan, Dinh Thi Bich; Long, Phung Thang

    2013-12-01

    We cloned two genes coding F107-C and K88-1NT fimbrial subunits from strains E. coli C and 1NT isolated from Thua Thien Hue province, Vietnam. The mature peptide of faeG gene from strain E. coli 1NT (called faeG-1NT) is 100 % similarity with faeG gene, while the CDS of fedA gene from strain C (called fedA-C) has a similarity of 97 % with the fedA gene. Expression of the faeG-1NT and fedA-C genes in E. coli BL21 Star™ (DE3) produced proteins of ~31 and 22 kDa, respectively. The effect of IPTG concentration on the K88-1NT and F107-C fimbriae production was investigated. The results showed that 0.5 mM IPTG is suitable for higher expression of K88-1NT subunit, while 0.75 mM IPTG strongly stimulated expression of F107-C subunit. The optimal induction time for expression was also examined. Generally, highest expression of K88-1NT subunit occurred after 6 h of induction, while that of F107-C subunit is after 14 h. PMID:24426156

  1. Phase variation and host immunity against high molecular weight (HMW) adhesins shape population dynamics of nontypeable Haemophilus influenzae within human hosts.

    PubMed

    Davis, Gregg S; Marino, Simeone; Marrs, Carl F; Gilsdorf, Janet R; Dawid, Suzanne; Kirschner, Denise E

    2014-08-21

    Nontypeable Haemophilus influenzae (NTHi) is a bacterium that resides within the human pharynx. Because NTHi is human-restricted, its long-term survival is dependent upon its ability to successfully colonize new hosts. Adherence to host epithelium, mediated by bacterial adhesins, is one of the first steps in NTHi colonization. NTHi express several adhesins, including the high molecular weight (HMW) adhesins that mediate attachment to the respiratory epithelium where they interact with the host immune system to elicit a strong humoral response. hmwA, which encodes the HMW adhesin, undergoes phase variation mediated by 7-base pair tandem repeats located within its promoter region. Repeat number affects both hmwA transcription and HMW-adhesin production such that as the number of repeats increases, adhesin production decreases. Cells expressing large amounts of HMW adhesins may be critical for the establishment and maintenance of NTHi colonization, but they might also incur greater fitness costs when faced with an adhesin-specific antibody-mediated immune response. We hypothesized that the occurrence of large deletion events within the hmwA repeat region allows NTHi cells to maintain adherence in the presence of antibody-mediated immunity. To study this, we developed a mathematical model, incorporating hmwA phase variation and antibody-mediated immunity, to explore the trade-off between bacterial adherence and immune evasion. The model predicts that antibody levels and avidity, catastrophic loss rates, and population carrying capacity all significantly affected numbers of adherent NTHi cells within a host. These results suggest that the occurrence of large, yet rare, deletion events allows for stable maintenance of a small population of adherent cells in spite of HMW adhesin specific antibody-mediated immunity. These adherent subpopulations may be important for sustaining colonization and/or maintaining transmission. PMID:24747580

  2. Neisseria meningitidis adhesin NadA targets beta1 integrins: functional similarity to Yersinia invasin.

    PubMed

    Nägele, Virginie; Heesemann, Jürgen; Schielke, Stephanie; Jiménez-Soto, Luisa F; Kurzai, Oliver; Ackermann, Nikolaus

    2011-06-10

    Meningococci are facultative-pathogenic bacteria endowed with a set of adhesins allowing colonization of the human upper respiratory tract, leading to fulminant meningitis and septicemia. The Neisseria adhesin NadA was identified in about 50% of N. meningitidis isolates and is closely related to the Yersinia adhesin YadA, the prototype of the oligomeric coiled-coil adhesin (Oca) family. NadA is known to be involved in cell adhesion, invasion, and induction of proinflammatory cytokines. Because of the enormous diversity of neisserial cell adhesins the analysis of the specific contribution of NadA in meningococcal host interactions is limited. Therefore, we used a non-invasive Y. enterocolitica mutant as carrier to study the role of NadA in host cell interaction. NadA was shown to be efficiently produced and localized in its oligomeric form on the bacterial surface of Y. enterocolitica. Additionally, NadA mediated a β1 integrin-dependent adherence with subsequent internalization of yersiniae by a β1 integrin-positive cell line. Using recombinant NadA(24-210) protein and human and murine β1 integrin-expressing cell lines we could demonstrate the role of the β1 integrin subunit as putative receptor for NadA. Subsequent inhibition assays revealed specific interaction of NadA(24-210) with the human β1 integrin subunit. Cumulatively, these results indicate that Y. enterocolitica is a suitable toolbox system for analysis of the adhesive properties of NadA, revealing strong evidence that β1 integrins are important receptors for NadA. Thus, this study demonstrated for the first time a direct interaction between the Oca-family member NadA and human β1 integrins.

  3. Programming Controlled Adhesion of E. coli to Target Surfaces, Cells, and Tumors with Synthetic Adhesins

    PubMed Central

    2014-01-01

    In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repertoires. SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a robust, fast, and specific adhesion of bacteria to target antigenic surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E. coli, lower doses of engineered E. coli are sufficient to colonize solid tumors expressing an antigen recognized by the SA. In addition, lower levels of engineered bacteria were found in non-target tissues. Therefore, SAs provide stable and specific adhesion capabilities to E. coli against target surfaces of interest for diverse applications using live bacteria. PMID:25045780

  4. A domain dictionary of trimeric autotransporter adhesins.

    PubMed

    Bassler, Jens; Hernandez Alvarez, Birte; Hartmann, Marcus D; Lupas, Andrei N

    2015-02-01

    Trimeric autotransporter adhesins (TAAs) are modular, highly repetitive outer membrane proteins that mediate adhesion to external surfaces in many Gram-negative bacteria. In recent years, several TAAs have been investigated in considerable detail, also at the structural level. However, in their vast majority, putative TAAs in prokaryotic genomes remain poorly annotated, due to their sequence diversity and changeable domain architecture. In order to achieve an automated annotation of these proteins that is both detailed and accurate we have taken a domain dictionary approach, in which we identify recurrent domains by sequence comparisons, produce bioinformatic descriptors for each domain type, and connect these to structural information where available. We implemented this approach in a web-based platform, daTAA, in 2008 and demonstrated its applicability by reconstructing the complete fiber structure of a TAA conserved in enterobacteria. Here we review current knowledge on the domain structure of TAAs.

  5. Structure and copy number of gene clusters related to the pap P-adhesin operon of uropathogenic Escherichia coli.

    PubMed

    Arthur, M; Campanelli, C; Arbeit, R D; Kim, C; Steinbach, S; Johnson, C E; Rubin, R H; Goldstein, R

    1989-02-01

    The structurally related pap and prs operons of the uropathogenic Escherichia coli isolate J96 encode a P and an F adhesin that mediate bacterial attachment to the human P blood group antigen and the Forssman antigen, respectively. Using probes prepared from different segments of the pap operon, Southern blot hybridizations were performed to characterize pap-related sequences of 30 E. coli clinical isolates expressing different adhesin phenotypes. Gene clusters encoding P and F adhesins displayed no restriction site polymorphism in sequences homologous to the papH, papC, and papD genes that encode proteins essential to the transport and polymerization of the subunits of the P-pilus adhesin. In contrast, pap-related genetic elements associated with a null phenotype either lacked homology to the papH, papC, and papD genes or displayed a restriction site polymorphism in this region. Sequences within and surrounding the J96 papG and prsG adhesin genes that determine the binding specificities to the P and F antigens, respectively, were not conserved. However, gene clusters encoding different binding specificities could not be distinguished based on such restriction site polymorphisms. The majority of clinical isolates had more than one copy of pap-related sequences that involved gene clusters similar to the J96 pap operon, as well as genetic elements that were related only to a part of this operon. The implications of this unexpected copy number polymorphism with respect to possible recombination events involving pap-related sequences are discussed.

  6. Evaluation of Cell Binding Activities of Leptospira ECM Adhesins

    PubMed Central

    Robbins, Gregory T.; Hahn, Beth L.; Evangelista, Karen V.; Padmore, Lavinia; Aranda, Patrick S.; Coburn, Jenifer

    2015-01-01

    Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection. PMID:25875373

  7. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  8. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects

    PubMed Central

    Arciola, Carla Renata; Campoccia, Davide; Ravaioli, Stefano; Montanaro, Lucio

    2015-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection. PMID

  9. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects.

    PubMed

    Arciola, Carla Renata; Campoccia, Davide; Ravaioli, Stefano; Montanaro, Lucio

    2015-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection. PMID

  10. Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli

    PubMed Central

    Lonardi, Emanuela; Moonens, Kristof; Buts, Lieven; de Boer, Arjen R.; Olsson, Johan D. M.; Weiss, Manfred S.; Fabre, Emeline; Guérardel, Yann; Deelder, André M.; Oscarson, Stefan; Wuhrer, Manfred; Bouckaert, Julie

    2013-01-01

    Fimbriae are long, proteinaceous adhesion organelles expressed on the bacterial envelope, evolutionarily adapted by Escherichia coli strains for the colonization of epithelial linings. Using glycan arrays of the Consortium for Functional Glycomics (CFG), the lectin domains were screened of the fimbrial adhesins F17G and FedF from enterotoxigenic E. coli (ETEC) and of the FimH adhesin from uropathogenic E. coli. This has led to the discovery of a more specific receptor for F17G, GlcNAcβ1,3Gal. No significant differences emerged from the glycan binding profiles of the F17G lectin domains from five different E. coli strains. However, strain-dependent amino acid variations, predominantly towards the positively charged arginine, were indicated by sulfate binding in FedF and F17G crystal structures. For FedF, no significant binders could be observed on the CFG glycan array. Hence, a shotgun array was generated from microvilli scrapings of the distal jejunum of a 3-week old piglet about to be weaned. On this array, the blood group A type 1 hexasaccharide emerged as a receptor for the FedF lectin domain and remarkably also for F18-fimbriated E. coli. F17G was found to selectively recognize glycan species with a terminal GlcNAc, typifying intestinal mucins. In conclusion, F17G and FedF recognize long glycan sequences that could only be identified using the shotgun approach. Interestingly, ETEC strains display a large capacity to adapt their fimbrial adhesins to ecological niches via charge-driven interactions, congruent with binding to thick mucosal surfaces displaying an acidic gradient along the intestinal tract. PMID:24833052

  11. Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum

    SciTech Connect

    Nithianantham, Stanley; Xu, Minghua; Wu, Nan; Han, Yiping W.; Shoham, Menachem

    2006-12-01

    The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: the intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.

  12. Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli.

    PubMed

    Lonardi, Emanuela; Moonens, Kristof; Buts, Lieven; de Boer, Arjen R; Olsson, Johan D M; Weiss, Manfred S; Fabre, Emeline; Guérardel, Yann; Deelder, André M; Oscarson, Stefan; Wuhrer, Manfred; Bouckaert, Julie

    2013-01-01

    Fimbriae are long, proteinaceous adhesion organelles expressed on the bacterial envelope, evolutionarily adapted by Escherichia coli strains for the colonization of epithelial linings. Using glycan arrays of the Consortium for Functional Glycomics (CFG), the lectin domains were screened of the fimbrial adhesins F17G and FedF from enterotoxigenic E. coli (ETEC) and of the FimH adhesin from uropathogenic E. coli. This has led to the discovery of a more specific receptor for F17G, GlcNAcb1,3Gal. No significant differences emerged from the glycan binding profiles of the F17G lectin domains from five different E. coli strains. However, strain-dependent amino acid variations, predominantly towards the positively charged arginine, were indicated by sulfate binding in FedF and F17G crystal structures. For FedF, no significant binders could be observed on the CFG glycan array. Hence, a shotgun array was generated from microvilli scrapings of the distal jejunum of a 3-week old piglet about to be weaned. On this array, the blood group A type 1 hexasaccharide emerged as a receptor for the FedF lectin domain and remarkably also for F18-fimbriated E. coli. F17G was found to selectively recognize glycan species with a terminal GlcNAc, typifying intestinal mucins. In conclusion, F17G and FedF recognize long glycan sequences that could only be identified using the shotgun approach. Interestingly, ETEC strains display a large capacity to adapt their fimbrial adhesins to ecological niches via charge-driven interactions, congruent with binding to thick mucosal surfaces displaying an acidic gradient along the intestinal tract. PMID:24833052

  13. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo

    PubMed Central

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  14. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo.

    PubMed

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  15. Human monocytes/macrophages are a target of Neisseria meningitidis Adhesin A (NadA).

    PubMed

    Franzoso, Susanna; Mazzon, Cristina; Sztukowska, Maryta; Cecchini, Paola; Kasic, Tihana; Capecchi, Barbara; Tavano, Regina; Papini, Emanuele

    2008-05-01

    Specific surface proteins of Neisseria meningitidis have been proposed to stimulate leukocytes during tissue invasion and septic shock. In this study, we demonstrate that the adhesin N. meningitidis Adhesin A (NadA) involved in the colonization of the respiratory epithelium by hypervirulent N. meningitidis B strains also binds to and activates human monocytes/macrophages. Expression of NadA on the surface on Escherichia coli does not increase bacterial-monocyte association, but a NadA-positive strain induced a significantly higher amount of TNF-alpha and IL-8 compared with the parental NadA-negative strain, suggesting that NadA has an intrinsic stimulatory action on these cells. Consistently, highly pure, soluble NadA(Delta351-405), a proposed component of an antimeningococcal vaccine, efficiently stimulates monocytes/macrophages to secrete a selected pattern of cytokines and chemotactic factors characterized by high levels of IL-8, IL-6, MCP-1, and MIP-1alpha and low levels of the main vasoactive mediators TNF-alpha and IL-1. NadA(Delta351-405) also inhibited monocyte apoptosis and determined its differentiation into a macrophage-like phenotype.

  16. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins

    PubMed Central

    Ielasi, Francesco S.; Alioscha-Perez, Mitchel; Donohue, Dagmara; Claes, Sandra; Sahli, Hichem; Schols, Dominique

    2016-01-01

    ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. PMID:27406561

  17. A novel Plasmodium falciparum rhoptry associated adhesin mediates erythrocyte invasion through the sialic-acid dependent pathway

    PubMed Central

    Anand, Gaurav; Reddy, K. Sony; Pandey, Alok Kumar; Mian, Syed Yusuf; Singh, Hina; Mittal, Shivani Arora; Amlabu, Emmanuel; Bassat, Quique; Mayor, Alfredo; Chauhan, Virander Singh; Gaur, Deepak

    2016-01-01

    Erythrocyte invasion by Plasmodium falciparum merozoites is central to blood-stage infection and malaria pathogenesis. This intricate process is coordinated by multiple parasite adhesins that bind erythrocyte receptors and mediate invasion through several alternate pathways. P. falciparum expresses 2700 genes during the blood-stages, of which the identity and function of many remains unknown. Here, we have identified and characterized a novel P. falciparum rhoptry associated adhesin (PfRA) that mediates erythrocyte invasion through the sialic-acid dependent pathway. PfRA appears to play a significant functional role as it is conserved across different Plasmodium species. It is localized in the rhoptries and further translocated to the merozoite surface. Both native and recombinant PfRA specifically bound erythrocytes in a sialic-acid dependent, chymotrypsin and trypsin resistant manner, which was abrogated by PfRA antibodies confirming a role in erythrocyte invasion. PfRA antibodies inhibited erythrocyte invasion and in combination with antibodies against other parasite ligands produced an additive inhibitory effect, thus validating its important role in erythrocyte invasion. We have thus identified a novel P. falciparum adhesin that binds with a sialic acid containing erythrocyte receptor. Our observations substantiate the strategy to block P. falciparum erythrocyte invasion by simultaneously targeting multiple conserved merozoite antigens involved in alternate invasion pathways. PMID:27383149

  18. Oral vaccination of weaned rabbits against enteropathogenic Escherichia coli-like E. coli O103 infection: use of heterologous strains harboring lipopolysaccharide or adhesin of pathogenic strains.

    PubMed Central

    Milon, A; Esslinger, J; Camguilhem, R

    1992-01-01

    To test the importance of lipopolysaccharide (LPS) and adhesin as major antigens in vaccination against rabbit enteropathogenic Escherichia coli (EPEC)-like E. coli O103 infection, we used two nonpathogenic wild-type strains to immunize rabbits at weaning. One of these strains (C127) harbors the O103 LPS but does not express the 32,000-molecular-weight adhesin that characterizes the highly pathogenic O103 strains. The other (C6) belongs to the O128 serogroup, which does not cross-react with the O103 serogroup, but expresses the adhesin. These strains were administered orally, either live or after Formalin inactivation. After vaccination, the animals were challenged with highly pathogenic O103 strain B10. Compared with rabbits vaccinated with the Formalin-killed homologous strain, rabbits vaccinated with killed C127 or C6 showed partial but significant protection. When given live, these strains colonized more or less heavily the digestive tract of the animals and provided nearly complete (C127) or complete (C6) protection against challenge. They induced a quick local immune response, as judged by fecal immunoglobulin A anti-LPS kinetics. Furthermore, strain C6 induced an ecological effect of "resistance to colonization" against challenge strain B10. This effect may have been due to the adhesin that is shared by both strains and to the production of a colicin. Strain C6 could inhibit in vitro the growth of highly pathogenic O103 strains. On the whole, our results show that adhesins and LPS are important, although probably not exclusive, protection-inducing components in rabbit EPEC-like colibacillosis and provide insight into possible protection of rabbits against EPEC-like E. coli infection with live strains. Images PMID:1351880

  19. The giant adhesin SiiE of Salmonella enterica.

    PubMed

    Barlag, Britta; Hensel, Michael

    2015-01-01

    Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2-3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE. PMID:25587788

  20. The giant adhesin SiiE of Salmonella enterica.

    PubMed

    Barlag, Britta; Hensel, Michael

    2015-01-12

    Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2-3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE.

  1. Genetic analysis of the gene cluster encoding nonfimbrial adhesin I from an Escherichia coli uropathogen.

    PubMed Central

    Ahrens, R; Ott, M; Ritter, A; Hoschützky, H; Bühler, T; Lottspeich, F; Boulnois, G J; Jann, K; Hacker, J

    1993-01-01

    The chromosomally encoded nonfimbrial adhesion I (NFA-I) from Escherichia coli urinary tract isolate 827 (O83:K1:H4) mediates agglutination of human erythrocytes. Subclones were constructed from an NFA-I-expressing recombinant E. coli K-12 clone, derived from a genomic library of E. coli 827. Minicell analysis and nucleotide sequencing revealed that proteins of 30.5, 9, 80, 15, and 19 kDa encoded on a stretch of approximately 6 kb are involved in the expression of NFA-I. NFA-I exhibits a polymeric structure, which disintegrates with elevated temperature into a 19-kDa monomer but with some relatively stable dimers. By using gold-conjugated monoclonal antibodies directed against NFA-I in electron microscopy, the adhesin could be localized on the outer surface of the recombinant E. coli K-12 bacteria. The nucleotide sequence of the nfaA gene encoding the monomeric structural subunit of the adhesin was determined. An open reading frame of 184 amino acids encoding the NfaA precursor, which is processed to the mature protein, was found; it consisted of 156 amino acids with a calculated molecular weight of 16,000. Peptide sequencing of the NFA-I subunit protein confirmed that this open reading frame corresponds to the NfaA coding locus. Furthermore, the nucleotide sequence of the open reading frame termed NfaE, located at the proximal part of the DNA stretch responsible for NFA-I expression, was elaborated. NfaE consists of 247 amino acids, including a presumptive 29-amino-acid signal peptide, leading to a molecular weight of 24,000 for the mature protein. The nfaE sequence shares homology with the 27-kDa CS3 protein, which is involved in the assembly of CS3 fibrillae, and might encode the 30.5-kDa protein, detected in minicells. Images PMID:8099066

  2. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p

    PubMed Central

    Peters, Brian M.; Ovchinnikova, Ekaterina S.; Krom, Bastiaan P.; Schlecht, Lisa Marie; Zhou, Han; Hoyer, Lois L.; Busscher, Henk J.; van der Mei, Henny C.; Jabra-Rizk, Mary Ann

    2012-01-01

    The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive

  3. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Kansal, Rita; Bartels, Scott R; Hamilton, David J; Shaaban, Salwa; Fleckenstein, James M

    2011-08-26

    Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development. PMID:21757737

  4. Mannitol promotes adherence of an outbreak strain of Burkholderia multivorans via an exopolysaccharide-independent mechanism that is associated with upregulation of newly identified fimbrial and afimbrial adhesins.

    PubMed

    Denman, Carmen C; Brown, Alan R

    2013-04-01

    Burkholderia multivorans, a member of the Burkholderia cepacia complex (Bcc), is an important pathogen of the cystic fibrosis (CF) lung. Mannitol, approved as an inhaled osmolyte therapy for use in CF patients, promotes exopolysaccharide (EPS) production by the Bcc. In the present study, we investigated the role of mannitol-induced EPS in the adherence of B. multivorans. We report that mannitol promoted adherence of two representative B. multivorans strains. However, whilst this enhanced adherence was largely EPS-dependent in an environmental isolate, it was EPS-independent within a CF outbreak strain, suggesting strain-to-strain variation in adhesins. Genome sequencing of the outbreak strain enabled the identification of two distinct loci encoding putative fimbrial and afimbrial adhesins. The putative fimbriae-encoding locus was found to be widely distributed amongst clinical and environmental B. multivorans. In contrast, the locus encoding the putative afimbrial adhesin (of the filamentous haemagglutinin family, FHA) was restricted to clinical isolates. Both loci contributed to biofilm formation and mucin adherence. Furthermore, we report that mannitol promoted expression of both loci, and that the locus encoding the putative FHA-family adhesin is a key determinant of the enhanced adherence observed following growth in mannitol. Our studies provide the first characterization, to our knowledge, of B. multivorans adhesins, and in so doing highlight the strain-dependent role of EPS in the Bcc and the difficulties in assigning phenotypic traits to Bcc EPS due to the wider response to mannitol. Our observations also highlight the need to monitor the microbiological effects of inhaled mannitol therapy in Bcc-infected CF patients.

  5. Binding Forces of Streptococcus mutans P1 Adhesin

    PubMed Central

    Sullan, Ruby May A.; Li, James K.; Crowley, Paula J.; Brady, L. Jeannine; Dufrêne, Yves F.

    2015-01-01

    Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (~50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (~500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans–SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy. PMID:25671413

  6. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Howell, Steven A; Grainger, Munira; Moon, Robert W; Green, Judith L; Holder, Anthony A

    2016-01-01

    Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity. PMID

  7. The novel chlamydial adhesin CPn0473 mediates the lipid raft‐dependent uptake of Chlamydia pneumoniae

    PubMed Central

    Fechtner, Tim; Galle, Jan N.

    2016-01-01

    Summary Chlamydiae are Gram‐negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down‐stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473‐coupled fluorescent latex beads adhere to human epithelial HEp‐2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp‐2 cells with rCPn0473 does not attenuate adhesion but promotes dose‐dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473‐dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae. PMID:26780295

  8. The novel chlamydial adhesin CPn0473 mediates the lipid raft-dependent uptake of Chlamydia pneumoniae.

    PubMed

    Fechtner, Tim; Galle, Jan N; Hegemann, Johannes H

    2016-08-01

    Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down-stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473-coupled fluorescent latex beads adhere to human epithelial HEp-2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp-2 cells with rCPn0473 does not attenuate adhesion but promotes dose-dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473-dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.

  9. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation

    PubMed Central

    Diaz, Suraya A.; Martin, Stephen R.; Howell, Steven A.; Grainger, Munira; Moon, Robert W.; Green, Judith L.

    2016-01-01

    Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity. PMID

  10. Structural and functional insight into the carbohydrate receptor binding of F4 fimbriae-producing enterotoxigenic Escherichia coli.

    PubMed

    Moonens, Kristof; Van den Broeck, Imke; De Kerpel, Maia; Deboeck, Francine; Raymaekers, Hanne; Remaut, Han; De Greve, Henri

    2015-03-27

    Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D'-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe(150)-Glu(152) and Val(166)-Glu(170) of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D'-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes. PMID:25631050

  11. [Role of Bacterial Adhesin RAPA1 in Formation of Efficient Symbiosis of Rhizobium leguminosarum with Bean Plants].

    PubMed

    Nigmatullina, L R; Lavina, A M; Vershinina, Z R; Baimiev, Al Kh

    2015-01-01

    Bacterial adhesins, the proteins responsible for attachment of plant growth-promoting rhizobacteria to plant roots, are involved in formation of stable associative symbioses. In the present work enhanced expression of the rapA1 adhesin gene in Rhizobium leguminosarum PVu5 was shown to improve the efficiency of nodulation on bean roots inoculated with the modified strain. The rapA1 gene was cloned into the pJN105Turbo plasmid, this construct was used for transformation of R. leguminosarum PVu5, bean plants were inoculated by this transgenic strain, and efficiency of root nodule formation was determined. In the plants treated with rapA1-transgenic rhizobia, the number of root nodules was on average two times higher than in the plants inoculated with the original strain. Aggregation of R. leguminosarum was achieved when the rapA1 gene expression was enhanced either in rhizobia or in the co-cultured modified strain E. coli pJN105TurboRapA1.

  12. [Role of Bacterial Adhesin RAPA1 in Formation of Efficient Symbiosis of Rhizobium leguminosarum with Bean Plants].

    PubMed

    Nigmatullina, L R; Lavina, A M; Vershinina, Z R; Baimiev, Al Kh

    2015-01-01

    Bacterial adhesins, the proteins responsible for attachment of plant growth-promoting rhizobacteria to plant roots, are involved in formation of stable associative symbioses. In the present work enhanced expression of the rapA1 adhesin gene in Rhizobium leguminosarum PVu5 was shown to improve the efficiency of nodulation on bean roots inoculated with the modified strain. The rapA1 gene was cloned into the pJN105Turbo plasmid, this construct was used for transformation of R. leguminosarum PVu5, bean plants were inoculated by this transgenic strain, and efficiency of root nodule formation was determined. In the plants treated with rapA1-transgenic rhizobia, the number of root nodules was on average two times higher than in the plants inoculated with the original strain. Aggregation of R. leguminosarum was achieved when the rapA1 gene expression was enhanced either in rhizobia or in the co-cultured modified strain E. coli pJN105TurboRapA1. PMID:26964360

  13. Adhesins and host serum factors drive Yop translocation by yersinia into professional phagocytes during animal infection.

    PubMed

    Maldonado-Arocho, Francisco J; Green, Carlos; Fisher, Michael L; Paczosa, Michelle K; Mecsas, Joan

    2013-01-01

    Yersinia delivers Yops into numerous types of cultured cells, but predominantly into professional phagocytes and B cells during animal infection. The basis for this cellular tropism during animal infection is not understood. This work demonstrates that efficient and specific Yop translocation into phagocytes by Yersinia pseudotuberculosis (Yptb) is a multi-factorial process requiring several adhesins and host complement. When WT Yptb or a multiple adhesin mutant strain, ΔailΔinvΔyadA, colonized tissues to comparable levels, ΔailΔinvΔyadA translocated Yops into significantly fewer cells, demonstrating that these adhesins are critical for translocation into high numbers of cells. However, phagocytes were still selectively targeted for translocation, indicating that other bacterial and/or host factors contribute to this function. Complement depletion showed that complement-restricted infection by ΔailΔinvΔyadA but not WT, indicating that adhesins disarm complement in mice either by prevention of opsonophagocytosis or by suppressing production of pro-inflammatory cytokines. Furthermore, in the absence of the three adhesins and complement, the spectrum of cells targeted for translocation was significantly altered, indicating that Yersinia adhesins and complement direct Yop translocation into neutrophils during animal infection. In summary, these findings demonstrate that in infected tissues, Yersinia uses adhesins both to disarm complement-dependent killing and to efficiently translocate Yops into phagocytes.

  14. Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC)

    PubMed Central

    2010-01-01

    Background Extraintestinal pathogenic E. coli (ExPEC) represent a phylogenetically diverse group of bacteria which are implicated in a large range of infections in humans and animals. Although subgroups of different ExPEC pathotypes, including uropathogenic, newborn meningitis causing, and avian pathogenic E. coli (APEC) share a number of virulence features, there still might be factors specifically contributing to the pathogenesis of a certain subset of strains or a distinct pathotype. Thus, we made use of suppression subtractive hybridization and compared APEC strain IMT5155 (O2:K1:H5; sequence type complex 95) with human uropathogenic E. coli strain CFT073 (O6:K2:H5; sequence type complex 73) to identify factors which may complete the currently existing model of APEC pathogenicity and further elucidate the position of this avian pathoype within the whole ExPEC group. Results Twenty-eight different genomic loci were identified, which are present in IMT5155 but not in CFT073. One of these loci contained a gene encoding a putative autotransporter adhesin. The open reading frame of the gene spans a 3,498 bp region leading to a putative 124-kDa adhesive protein. A specific antibody was raised against this protein and expression of the adhesin was shown under laboratory conditions. Adherence and adherence inhibition assays demonstrated a role for the corresponding protein in adhesion to DF-1 chicken fibroblasts. Sequence analyses revealed that the flanking regions of the chromosomally located gene contained sequences of mobile genetic elements, indicating a probable spread among different strains by horizontal gene transfer. In accordance with this hypothesis, the adhesin was found to be present not only in different phylogenetic groups of extraintestinal pathogenic but also of commensal E. coli strains, yielding a significant association with strains of avian origin. Conclusions We identified a chromosomally located autotransporter gene in a highly virulent APEC

  15. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria

    PubMed Central

    Berne, Cécile; Ducret, Adrien; Hardy, Gail G; Brun, Yves V.

    2015-01-01

    During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending upon the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or non-specific adhesion under various environmental conditions. This chapter will review the recent advances in our understanding of the secretion, assembly and regulation of the bacterial adhesins during biofilm formation with a particular emphasis on the fimbrial, non-fimbrial and discrete polysaccharide adhesins in Gram-negative bacteria. PMID:26350310

  16. Novel adhesin from Pasteurella multocida that binds to the integrin-binding fibronectin FnIII9-10 repeats.

    PubMed

    Mullen, Lisa M; Nair, Sean P; Ward, John M; Rycroft, Andrew N; Williams, Rachel J; Robertson, Giles; Mordan, Nicky J; Henderson, Brian

    2008-03-01

    Phage display screening with fragmented genomic DNA from the animal pathogen Pasteurella multocida has identified a gene encoding a putative fibronectin binding protein (19). Homologues of this gene (PM1665) are found in all other sequenced members of the Pasteurellaceae. Gene PM1665 has been cloned, and the protein has been expressed. Recombinant PM1665 protein binds to both soluble and immobilized fibronectin and is unique in that it interacts with the integrin-binding fibronectin type III (FnIII) repeats FnIII(9-10) and not, as is the case for almost all other fibronectin adhesins, to the N-terminal type I repeats. Surface plasmon resonance analysis revealed a complex binding mechanism with a K(D) (equilibrium dissociation constant) of 150 nM +/- 70 nM. Bioinformatics analysis suggests that the PM1665 protein contains two helix-hairpin-helix (HhH) motifs, and truncation mutation studies have identified the binding site in the protein as a combination of these two HhH motifs in conjunction with a conserved amino acid motif, VNINTA. We have shown that the PM1665 protein is on the cell surface and that binding of P. multocida to fibronectin is almost completely inhibited by anti-PM1665 antiserum. These results support the hypothesis that the PM1665 protein is a member of a new family of fibronectin binding adhesins that are important in the adhesion of P. multocida to fibronectin. PMID:18160478

  17. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    PubMed

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain.

  18. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy.

    PubMed

    Arnal, L; Longo, G; Stupar, P; Castez, M F; Cattelan, N; Salvarezza, R C; Yantorno, O M; Kasas, S; Vela, M E

    2015-11-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions. PMID:26446736

  19. The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells

    PubMed Central

    Shivshankar, Pooja; Sanchez, Carlos; Rose, Lloyd F.; Orihuela, Carlos J.

    2009-01-01

    Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that mediates attachment to lung cells. It is a member of the Serine-rich repeat protein (SRRP) family and the largest bacterial protein known. PsrP production by S. pneumoniae was confirmed by immunoblotting and a truncated version of the protein was determined to be glycosylated. Using isogenic psrP mutants complemented with various PsrP constructs and competitive inhibition assays with recombinant proteins, we determined that PsrP requires an extended SRR2 domain for function and that adhesion is mediated through amino acids 273-341 of its Basic Region (BR) domain. Affinity chromatography, immunoprecipitation, ELISA, FACS, and immunofluorescent co-localization studies determined that PsrP binds to Keratin 10 (K10) on the surface of lung but not nasopharyngeal epithelial cells. Unglycosylated K10 bound to wild type but not psrP deficient pneumococci; suggesting that unlike other SRRPs, PsrP-mediated adhesion was independent of lectin activity. Finally, mice immunized with recombinant (r)PsrPBR had significantly less bacteria in their blood and improved survival versus controls following intranasal challenge. We conclude that the BR domain of PsrP binds to K10 in a lectin-independent manner; that K10 is expressed on lung cells; and that vaccination with rPsrPBR is protective against pneumococcal disease. PMID:19627498

  20. Targeted Gene Disruption Reveals an Adhesin Indispensable for Pathogenicity of Blastomyces dermatitidis

    PubMed Central

    Tristan Brandhorst, T.; Wüthrich, Marcel; Warner, Thomas; Klein, Bruce

    1999-01-01

    Systemic fungal infections are becoming more common and difficult to treat, yet the pathogenesis of these infectious diseases remains poorly understood. In many cases, pathogenicity can be attributed to the ability of the fungi to adhere to target tissues, but the lack of tractable genetic systems has limited progress in understanding and interfering with the offending fungal products. In Blastomyces dermatitidis, the agent of blastomycosis, a respiratory and disseminated mycosis of people and animals worldwide, expression of the putative adhesin encoded by the WI-1 gene was investigated as a possible virulence factor. DNA-mediated gene transfer was used to disrupt the WI-1 locus by allelic replacement, resulting in impaired binding and entry of yeasts into macrophages, loss of adherence to lung tissue, and abolishment of virulence in mice; each of these properties was fully restored after reconstitution of WI-1 by means of gene transfer. These findings establish the pivotal role of WI-1 in adherence and virulence of B. dermatitidis yeasts. To our knowledge, they offer the first example of a genetically proven virulence determinant among systemic dimorphic fungi, and underscore the value of reverse genetics for studies of pathogenesis in these organisms. PMID:10209038

  1. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences.

    PubMed Central

    Garcia, M I; Labigne, A; Le Bouguenec, C

    1994-01-01

    The afa gene clusters encode afimbrial adhesins (AFAs) that are expressed by uropathogenic and diarrhea-associated Escherichia coli strains. The plasmid-borne afa-3 gene cluster is responsible for the biosynthesis of the AFA-III adhesin that belongs to the Dr family of hemagglutinins. Reported in this work is the nucleotide sequence of the 9.2-kb insert of the recombinant plasmid pILL61, which contains the afa-3 gene cluster cloned from a cystitis-associated E. coli strain (A30). The afa-3 gene cluster was shown to contain six open reading frames, designated afaA to afaF. It was organized in two divergent transcriptional units. Five of the six Afa products showed marked homologies with proteins encoded by previously described adhesion systems that allowed us to attribute to each of them a putative function in the biogenesis of the AFA-III adhesin. AfaE was identified as the structural adhesin product, whereas AfaB and AfaC were recognized as periplasmic chaperone and outer membrane anchor proteins, respectively. The AfaA and AfaF products were shown to be homologous to the PapI-PapB transcriptional regulatory proteins. No function could be attributed to the AfaD product, the gene of which was previously shown to be dispensable for the synthesis of a functional adhesin. Upstream of the afa-3 gene cluster, a 1.2-kb region was found to be 96% identical to the RepFIB sequence of one of the enterotoxigenic E. coli plasmids (P307), suggesting a common ancestor plasmid. This region contains an integrase-like gene (int). Sequence analysis revealed the presence of an IS1 element between the int gene and the afa-3 gene cluster. Two other IS1 elements were detected and located in the vicinity of the afa-3 gene cluster by hybridization experiments. The afa-3 gene cluster was therefore found to be flanked by two IS1 elements in direct orientation and two in opposite orientations. The afa-3 gene cluster, flanked by two directly oriented IS1 elements, was shown to translocate

  2. Description of a Novel Adhesin of Mycobacterium avium Subsp. paratuberculosis

    PubMed Central

    Viale, Mariana Noelia; Echeverria-Valencia, Gabriela; Romasanta, Pablo; Mon, María Laura; Fernandez, Marisa; Malchiodi, Emilio; Romano, María Isabel; Gioffré, Andrea Karina; Santangelo, María de la Paz

    2014-01-01

    The binding and ingestion of Mycobacterium avium subsp. paratuberculosis (MAP) by host cells are fibronectin (FN) dependent. In several species of mycobacteria, a specific family of proteins allows the attachment and internalization of these bacteria by epithelial cells through interaction with FN. Thus, the identification of adhesion molecules is essential to understand the pathogenesis of MAP. The aim of this study was to identify and characterize FN binding cell wall proteins of MAP. We searched for conserved adhesins within a large panel of surface immunogenic proteins of MAP and investigated a possible interaction with FN. For this purpose, a cell wall protein fraction was obtained and resolved by 2D electrophoresis. The immunoreactive spots were identified by MALDI-TOF MS and a homology search was performed. We selected elongation factor Tu (EF-Tu) as candidate for further studies. We demonstrated the FN-binding capability of EF-Tu using a ligand blot assay and also confirmed the interaction with FN in a dose-dependent manner by ELISA. The dissociation constant of EF-Tu was determined by surface plasmon resonance and displayed values within the μM range. These data support the hypothesis that this protein could be involved in the interaction of MAP with epithelial cells through FN binding. PMID:25136616

  3. The Staphylococcal Biofilm: Adhesins, regulation, and host response

    PubMed Central

    Paharik, Alexandra E.; Horswill, Alexander R.

    2015-01-01

    The Staphylococci comprise a diverse genus of Gram-positive, non-motile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, Staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. S. aureus and S. epidermidis are a major source of hospital-acquired infections and are the most common causes of surgical site infections and central line-associated bloodstream infections. The ability of Staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device implants, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of Staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how Staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the Staphylococcus genus and how this mode of growth impacts the host. PMID:27227309

  4. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response.

    PubMed

    Paharik, Alexandra E; Horswill, Alexander R

    2016-04-01

    The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host. PMID:27227309

  5. Description of a novel adhesin of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Viale, Mariana Noelia; Echeverria-Valencia, Gabriela; Romasanta, Pablo; Mon, María Laura; Fernandez, Marisa; Malchiodi, Emilio; Romano, María Isabel; Gioffré, Andrea Karina; Santangelo, María de la Paz

    2014-01-01

    The binding and ingestion of Mycobacterium avium subsp. paratuberculosis (MAP) by host cells are fibronectin (FN) dependent. In several species of mycobacteria, a specific family of proteins allows the attachment and internalization of these bacteria by epithelial cells through interaction with FN. Thus, the identification of adhesion molecules is essential to understand the pathogenesis of MAP. The aim of this study was to identify and characterize FN binding cell wall proteins of MAP. We searched for conserved adhesins within a large panel of surface immunogenic proteins of MAP and investigated a possible interaction with FN. For this purpose, a cell wall protein fraction was obtained and resolved by 2D electrophoresis. The immunoreactive spots were identified by MALDI-TOF MS and a homology search was performed. We selected elongation factor Tu (EF-Tu) as candidate for further studies. We demonstrated the FN-binding capability of EF-Tu using a ligand blot assay and also confirmed the interaction with FN in a dose-dependent manner by ELISA. The dissociation constant of EF-Tu was determined by surface plasmon resonance and displayed values within the μM range. These data support the hypothesis that this protein could be involved in the interaction of MAP with epithelial cells through FN binding. PMID:25136616

  6. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae.

    PubMed

    Rego, Sara; Heal, Timothy J; Pidwill, Grace R; Till, Marisa; Robson, Alice; Lamont, Richard J; Sessions, Richard B; Jenkinson, Howard F; Race, Paul R; Nobbs, Angela H

    2016-07-29

    Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712

  7. Neisseria adhesin A variation and revised nomenclature scheme.

    PubMed

    Bambini, Stefania; De Chiara, Matteo; Muzzi, Alessandro; Mora, Marirosa; Lucidarme, Jay; Brehony, Carina; Borrow, Ray; Masignani, Vega; Comanducci, Maurizio; Maiden, Martin C J; Rappuoli, Rino; Pizza, Mariagrazia; Jolley, Keith A

    2014-07-01

    Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/.

  8. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract

  9. FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia

    SciTech Connect

    Lee, Jongseok; Shin, Sooan; Teng, C.-H.; Hong, Suk Jin; Kim, Kwang Sik . E-mail: kwangkim@jhmi.edu

    2005-09-02

    The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-{alpha}. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-{kappa}B were involved in FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.

  10. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates.

    PubMed

    Sincock, Stephanie A; Hall, Eric R; Woods, Colleen M; O'Dowd, Aisling; Poole, Steven T; McVeigh, Annette L; Nunez, Gladys; Espinoza, Nereyda; Miller, Milagros; Savarino, Stephen J

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach. PMID:26597148

  11. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates.

    PubMed

    Sincock, Stephanie A; Hall, Eric R; Woods, Colleen M; O'Dowd, Aisling; Poole, Steven T; McVeigh, Annette L; Nunez, Gladys; Espinoza, Nereyda; Miller, Milagros; Savarino, Stephen J

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.

  12. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens

    PubMed Central

    2011-01-01

    Background The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients. Description We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum and P. brasiliensis thus showing high sensitivity and specificity at a threshold of 0.511. In case of P. brasiliensis the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics

  13. The HMW1 and HMW2 Adhesins Enhance the Ability of Nontypeable Haemophilus influenzae To Colonize the Upper Respiratory Tract of Rhesus Macaques.

    PubMed

    Rempe, Katherine A; Porsch, Eric A; Wilson, Jolaine M; St Geme, Joseph W

    2016-10-01

    Nontypeable Haemophilus influenzae (NTHi) initiates infection by colonizing the upper respiratory tract and is a common cause of localized respiratory tract disease. Previous work has established that the NTHi HMW1 and HMW2 proteins are potent adhesins that mediate efficient in vitro adherence to cultured human respiratory epithelial cells. In this study, we used a rhesus macaque model to assess the contributions of HMW1 and HMW2 to in vivo colonization. In experiments involving inoculation of individual isogenic derivatives of NTHi strain 12, the parent strain expressing both HMW1 and HMW2 and the mutant strains expressing either HMW1 or HMW2 were able to colonize more frequently than the double mutant strain lacking HMW1 and HMW2. In competition experiments, the parent strain efficiently outcompeted the double mutant lacking HMW1 and HMW2. Colonization with strains expressing HMW2 resulted in development of antibody against HMW2 in a number of the animals, demonstrating that colonization can stimulate an antibody response. In conclusion, we have established that the HMW1 and HMW2 adhesins play a major role in facilitating colonization of the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response.

  14. Comparison of Surface Proteomes of Adherence Variants of Listeria Monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins

    PubMed Central

    Tiong, Hung King; Hartson, Steven D.; Muriana, Peter M.

    2016-01-01

    The ability of Listeria monocytogenes to adhere and form biofilms leads to persistence in food processing plants and food-associated listeriosis. The role of specific surface proteins as adhesins to attach Listeria cells to various contact surfaces has not been well characterized to date. In prior research comparing different methods for surface protein extraction, the Ghost urea method revealed cleaner protein content as verified by the least cytoplasmic protein detected in surface extracts using LC-MS/MS. The same technique was utilized to extract and detect surface proteins among two surface-adherent phenotypic strains of L. monocytogenes (i.e., strongly and weakly adherent). Of 640 total proteins detected among planktonic and sessile cells, 21 protein members were exclusively detected in the sessile cells. Relative LC-MS/MS detection and quantification of surface-extracted proteins from the planktonic weakly adherent (CW35) and strongly adherent strains (99-38) were examined by protein mass normalization of proteins. We found that L. monocytogenes 99-38 exhibited a total of 22 surface proteins that were over-expressed: 11 proteins were detected in surface extracts of both sessile and planktonic 99-38 that were ≥5-fold over-expressed while another 11 proteins were detected only in planktonic 99-38 cells that were ≥10-fold over-expressed. Our results suggest that these protein members are worthy of further investigation for their involvement as surface adhesins. PMID:27196934

  15. Specificity of Campylobacter jejuni Adhesin PEB3 for Phosphates and Structural Differences among Its Ligand Complexes

    SciTech Connect

    Min, Tongpil; Vedadi, Masoud; Watson, David C.; Wasney, Gregory A.; Munger, Christine; Cygler, Miroslaw; Matte, Allan; Young, N. Martin

    2009-04-22

    PEB3 is a glycoprotein adhesin from Campylobacter jejuni whose structure suggested a role in transport. We have investigated potential ligands for PEB3 and characterized their binding properties using biophysical methods in solution and by X-ray crystallography. A thermal aggregation assay of PEB3 with a library of physiological compounds identified three possible ligands [3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP), and aconitate], which stabilized wild-type PEB3 but did not stabilize either a PEB3 form containing two mutations at the ligand-binding site, T138A/S139A, or a second PEB3 mutant, K135E, at a site {approx}14 {angstrom} away. Fluorescence titration experiments and cocrystal structures with various ligands were used to characterize the binding of 3-PG, PEP, and phosphate to PEB3. Further, a C. jejuni growth experiment in minimal medium supplemented with 3-PG showed that this molecule enhances the growth of wild-type C. jejuni, but not of the PEB3 mutants. Crystallographic analysis of PEB3 complexes revealed that the Ser171-Gln180 region in the presence of 3-PG or other phosphates is helical and similar to those of other transport proteins, but it is nonhelical when citrate is bound. The K135E mutation resulted in expression of a more highly glycosylated form of PEB3 in vivo, and its crystal structure showed the conformation of the first two residues of the glycan. On the basis of our findings, we suggest that PEB3 is a transport protein that may function in utilization of 3-PG or other phosphate-containing molecules from the host.

  16. Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Śmietana, Mateusz; Koba, Marcin; Górska, Sabina; Pawlik, Krzysztof; Gamian, Andrzej; Bock, Wojtek J

    2015-05-15

    In this paper we present a new type of highly sensitive label-free sensor based on long-period gratings (LPG) coated with T4 bacteriophage (phage) adhesin. The adhesin (gp37) binds Escherichia coli B (E. coli B) by recognizing its bacterial lipopolysaccharide (LPS). The LPG biofunctionalization methodology is based on coating LPG surface with nickel ions capable of gp37 histidine tag reversible binding. For the first time recombinant adhesive phage protein has been used as a receptor molecule in biosensing scheme. The specificity of LPS binding by adhesin has been tested with LPG-based device and confirmed using Western blot, Enzyme-Linked Immunosorbent Assay (ELISA) and BIACORE methods. The LPG-based sensor can measure bacterial contamination in real time and with a high accuracy. We show that T4 phage adhesin binds E. coli B LPS in its native or denatured form. The binding is highly specific and irreversible. The applied procedure allows for obtaining reusable biosensors. PMID:25067838

  17. Characterization of the binding activities of proteinase-adhesin complexes from Porphyromonas gingivalis.

    PubMed Central

    Pike, R N; Potempa, J; McGraw, W; Coetzer, T H; Travis, J

    1996-01-01

    Adhesins from oral bacteria perform an important function in colonizing target tissues within the dentogingival cavity. In Porphyromonas gingivalis certain of these adhesion proteins exist as a complex with either of two major proteinases referred to as gingipain R (arginine-specific gingipain) and gingipain K (lysine-specific gingipain) (R. N. Pike, W. T. McGraw, J. Potempa, and J. Travis, J. Biol. Chem. 269:406-411, 1994). With specific proteinase inhibitors, it was shown that hemagglutination by either proteinase-adhesin complex could occur independently of proteinase activity. Significantly, low concentrations of fibrinogen, fibronectin, and laminin inhibited hemagglutination, indicating that adherence to these proteins and not the hemagglutination activity was a primary property of the adhesin activity component of complexes. Binding studies with gingipain K and gingipain R suggest that interaction with fibrinogen is a major function of the adhesin domain, with dissociation constants for binding to fibrinogen being 4 and 8.5 nM, respectively. Specific association with fibronectin and laminin was also found. All bound proteins were degraded by the functional proteinase domain, with gingipain R being more active on laminin and fibronectin and gingipain K being more effective in the digestion of fibrinogen. Cumulatively, these data suggest that gingipain R and gingipain K, acting as proteinase-adhesin complexes, progressively attach to, degrade, and detach from target proteins. Since such complexes appear to be present on the surfaces of both vesicles and membranes of P. gingivalis, they may play an important role in the attachment of this bacterium to host cell surfaces. PMID:8631676

  18. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins.

    PubMed Central

    Parkkinen, J; Virkola, R; Korhonen, T K

    1988-01-01

    Earlier studies on the binding of Escherichia coli adhesins to the human urinary tract have indicated that the ability to recognize binding sites on the urinary tract epithelial cells is not a characteristic for P fimbriae only, but is also shared by some other adhesins that are not associated with pyelonephritis, especially S fimbriae. In the present study we have investigated whether human urine contains inhibitors of the binding of E. coli adhesins. Normal human urine was found to inhibit hemagglutination by S and type 1 fimbriae but not P fimbriae. The major inhibitor of S fimbriae in normal urine was identified as Tamm-Horsfall glycoprotein, and the interaction with S fimbriae is probably mediated by its sialyloligosaccharide chains. No significant variation was observed in the inhibitory effect of T-H glycoprotein preparations originating from different individuals. In contrast to S fimbriae, the major inhibitors of type 1 fimbriae in urine were identified as low-molecular-weight compounds. Gel filtration and ion-exchange chromatography and alpha-mannosidase treatment indicated that they were neutral alpha-mannosides, probably manno-oligosaccharides with three to five saccharides. Studies of urine samples collected from several individuals indicated the common occurrence of these inhibitory alpha-mannosides. Type 1 fimbriae bound to immobilized T-H glycoprotein, but, unlike S fimbriae, their binding was poorly inhibited by soluble T-H glycoprotein. Some urine samples were also found to contain low-molecular-weight inhibitors for the O75X adhesin of E. coli. These results emphasize that to function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptor structures at the infection sites that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type 1 or S fimbriae. PMID:2901405

  19. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.

    PubMed

    Moonens, Kristof; Van den Broeck, Imke; Okello, Emmanuel; Pardon, Els; De Kerpel, Maia; Remaut, Han; De Greve, Henri

    2015-01-01

    Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding. PMID:25828907

  20. Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA.

    PubMed Central

    Hannah, J H; Menozzi, F D; Renauld, G; Locht, C; Brennan, M J

    1994-01-01

    Filamentous hemagglutinin (FHA) is a major adhesin present on the surface of the gram-negative respiratory pathogen Bordetella pertussis. A number of binding mechanisms have been described for the interaction of FHA with eukaryotic cells. We have focused on its function as a sulfated polysaccharide-binding protein and on identifying potential receptors for FHA on the epithelial cell surface. Using a thin-layer overlay technique, we found that FHA binds specifically to sulfated glycolipids but not to gangliosides or other neutral glycolipids. These results suggest that epithelial cell surface sulfated glycolipids function as receptors for FHA. Further studies demonstrated that a Chinese hamster ovary (CHO) cell strain deficient in glycosaminoglycan expression exhibits greatly diminished attachment to FHA. By FHA-Affi-Gel chromatography, a putative receptor for FHA that has characteristics consistent with a heparan sulfate proteoglycan was isolated from epithelial cell extracts. In addition, by using recombinant FHA fusion proteins, a specific glycosaminoglycan-binding domain located near the N terminus of the FHA molecule was identified. Our results indicate that the B. pertussis adhesin FHA may utilize sulfated glycolipids and proteoglycans commonly found on the surface of human cells and tissues to initiate infection. Images PMID:7927782

  1. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin

    PubMed Central

    Liu, Wendy; Hao, Yujun; Cai, Guifang; Han, Yiping W.

    2013-01-01

    SUMMARY Fusobacterium nucleatum (Fn) has been associated with colorectal cancer (CRC), but causality and underlying mechanisms remain to be established. We demonstrate that Fn adheres to, invades and induces oncogenic and inflammatory responses to stimulate growth of CRC cells through its unique FadA adhesin. FadA binds to E-cadherin, activates β-catenin signaling, and differentially regulates the inflammatory and oncogenic responses. The FadA-binding site on E-cadherin is mapped to an 11 amino acid region. A synthetic peptide derived from this region of E-cadherin abolishes FadA-induced CRC cell growth, and oncogenic and inflammatory responses. FadA levels in the colon tissue from patients with adenomas and adenocarcinomas is >10–100 times higher compared to normal individuals. The increased FadA expression in CRC correlates with increased expression of oncogenic and inflammatory genes. This study unveils a mechanism by which Fn can drive CRC and identifies FadA as a potential diagnostic and therapeutic target for CRC. PMID:23954158

  2. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.

    PubMed

    Gómez-Molero, Emilia; de Boer, Albert D; Dekker, Henk L; Moreno-Martínez, Ana; Kraneveld, Eef A; Ichsan; Chauhan, Neeraj; Weig, Michael; de Soet, Johannes J; de Koster, Chris G; Bader, Oliver; de Groot, Piet W J

    2015-12-01

    Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections. PMID:26546455

  3. The gp38 Adhesins of the T4 Superfamily: A Complex Modular Determinant of the Phage’s Host Specificity

    PubMed Central

    Trojet, Sabrina N.; Caumont-Sarcos, Anne; Perrody, Elsa; Comeau, André M.; Krisch, H. M.

    2011-01-01

    The tail fiber adhesins are the primary determinants of host range in the T4-type bacteriophages. Among the indispensable virion components, the sequences of the long tail fiber genes and their associated adhesins are among the most variable. The predominant form of the adhesin in the T4-type phages is not even the version of the gene encoded by T4, the archetype of the superfamily, but rather a small unrelated protein (gp38) encoded by closely related phages such as T2 and T6. This gp38 adhesin has a modular design: its N-terminal attachment domain binds at the tip of the tail fiber, whereas the C-terminal specificity domain determines its host receptor affinity. This specificity domain has a series of four hypervariable segments (HVSs) that are separated by a set of highly conserved glycine-rich motifs (GRMs) that apparently form the domain’s conserved structural core. The role of gp38’s various components was examined by a comparative analysis of a large series of gp38 adhesins from T-even superfamily phages with differing host specificities. A deletion analysis revealed that the individual HVSs and GRMs are essential to the T6 adhesin’s function and suggests that these different components all act in synergy to mediate adsorption. The evolutionary advantages of the modular design of the adhesin involving both conserved structural elements and multiple independent and easily interchanged specificity determinants are discussed. PMID:21746838

  4. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death.

    PubMed

    Nilsson, I M; Patti, J M; Bremell, T; Höök, M; Tarkowski, A

    1998-06-15

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. Morbidity and mortality due to infections such as sepsis, osteomyelitis, septic arthritis, and invasive endocarditis remain high despite the use of antibiotics. The emergence of antibiotic resistant super bugs mandates that alternative strategies for the prevention and treatment of S. aureus infections are developed. We investigated the ability of vaccination with a recombinant fragment of the S. aureus collagen adhesin to protect mice against sepsis-induced death. Actively immunized NMRI mice were intravenously inoculated with the S. aureus clinical isolate strain Phillips. 14 d after inoculation, mortality in the collagen adhesin-vaccinated group was only 13%, compared with 87% in the control antigen immunized group (P < 0.001). To determine if the protective effect was antibody mediated, we passively immunized naive mice with collagen adhesin-specific antibodies. Similar to the active immunization strategy, passive transfer of collagen adhesin-specific antibodies protected mice against sepsis-induced death. In vitro experiments indicated that S. aureus opsonized with sera from collagen adhesin immunized mice promoted phagocytic uptake and enhanced intracellular killing compared with bacteria opsonized with sera from control animals. These results indicate that the collagen adhesin is a viable target in the development of immunotherapeutics against S. aureus.

  5. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.

    PubMed

    Bensing, Barbara A; Loukachevitch, Lioudmila V; McCulloch, Kathryn M; Yu, Hai; Vann, Kendra R; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-04-01

    Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site.

  6. Bacteriophage adhesin-coated long-period gratings for bacterial lipopolysaccharide recognition

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Bock, Wojtek J.

    2014-05-01

    In this work we report an application of the optical fiber long-period gratings (LPGs) working near the dispersion turning point of higher order cladding modes for bacterial lipopolysaccharide (LPS) recognition. We show that when the LPG is functionalized with the bacteriophage adhesin, it is capable of very specific LPS detection. Thus, we compare label-free binding effect for specific to the adhesin LPS-positive and non-specific LPS-negative. The resonance wavelength shift induced by the LPS-positive reaches 2.9 nm, while for LPS-negative the shift is negligible. The LPG-based sensing structure allows for monitoring of the binding phenomenon in real time and with good accuracy.

  7. Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci.

    PubMed Central

    Lowe, A M; Lambert, P A; Smith, A W

    1995-01-01

    Serum from a patient with Enterococcus faecalis endocarditis was used to identify the gene efaA cloned in Lambda ZapII in Escherichia coli. Nucleotide sequence analysis revealed a 924-bp open reading frame encoding a protein with a predicted molecular weight of 34,768. The amino acid sequence of EfaA shows 55 to 60% homology to a group of streptococcal proteins, FimA from Streptococcus parasanguis, SsaB from Streptococcus sanguis, ScaA from Streptococcus gordonii, and PsaA from Streptococcus pneumoniae. Members of this group have been shown to be adhesins, and we hypothesize that EfaA may function as an adhesin in endocarditis. PMID:7822045

  8. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG.

    PubMed

    von Ossowski, Ingemar; Satokari, Reetta; Reunanen, Justus; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; de Vos, Willem M; Palva, Airi

    2011-07-01

    In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic.

  9. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains.

    PubMed

    Qin, Xiaohua; Hu, Fupin; Wu, Shi; Ye, Xinyu; Zhu, Demei; Zhang, Ying; Wang, Minggui

    2013-01-01

    The presence of adhesins is arguably an important determinant of pathogenicity for Uropathogenic Escherichia coli (UPEC). Antimicrobial susceptibilities were tested by agar dilution method, fifteen adhesin genes were detected by polymerase chain reaction, and multilocus sequence typing (MLST) was analyzed in 70 UPEC isolates and 41 commensal E. coli strains. Extended-spectrum β-lactamase (ESBL) was determined with confirmatory test. The prevalence of ESBL-producers in UPEC (53%, 37/70) was higher than the commensal intestinal isolates (7%, 3/41), and 97% (36/37) of the ESBL-producing UPEC harbored bla CTX-M genes. afa was present in 36% (10/28) UPEC isolates from recurrent lower urinary tract infection (UTI), and none in the acute pyelonephritis, acute uncomplicated cystitis or commensal strains (P<0.0001). papG was detected in 28% (20/70) of UPEC isolates, while 5% (2/41) of the commensal strains were papG positive (P = 0.0025), and the prevalence of papG was significantly higher in acute pyelonephritis group (71%) than the other two UTI groups (P<0.0001). The prevalence of flu, yqi, yadN and ygiL was significantly higher in UPEC isolates than in the commensal strains. ESBL-producing UPEC showed a lower prevalence of adhesin genes compared with non-ESBL-producing strains. The MLST profiles were different between UPEC and commensal strains, with ST131 (19%, 13/70) and ST10 (20%, 8/41) being the most common MLSTs, respectively. This study demonstrated that several adhesin genes were more prevalent in UPEC isolates than in commensal E. coli, and afa may be associated with recurrent lower UTI whereas papG is more frequently associated with acute pyelonephritis.

  10. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG.

    PubMed

    von Ossowski, Ingemar; Satokari, Reetta; Reunanen, Justus; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; de Vos, Willem M; Palva, Airi

    2011-07-01

    In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic. PMID:21602388

  11. Adhesin contribution to nanomechanical properties of the virulent Bordetella pertussis envelope.

    PubMed

    Arnal, L; Serra, D O; Cattelan, N; Castez, M F; Vázquez, L; Salvarezza, R C; Yantorno, O M; Vela, M E

    2012-05-15

    Adherence to a biological surface allows bacteria to colonize and persist within the host and represents an essential first step in the pathogenesis of most bacterial diseases. Consequently, the physicochemical properties of the outer membrane in bacteria play a key role for attachment to surfaces and therefore for biofilm formation. Bordetella pertussis is a Gram-negative bacterium that colonizes the respiratory tract of humans, producing whooping cough or pertussis, a highly infectious disease. B. pertussis uses various adhesins exposed on its surface to promote cell-surface and cell-cell interactions. The most dominant adhesin function is displayed by filamentous hemagglutinin (FHA). B. pertussis Tohama I wild-type (Vir+) strain and two defective mutants, an avirulent (Vir-) and a FHA-deficient (FHA-) B. pertussis strains were studied by AFM under physiological conditions to evaluate how the presence or absence of adhesins affects the mechanical properties of the B. pertussis cell surface. Quantitative information on the nanomechanical properties of the bacterial envelope was obtained by AFM force-volume analysis. These studies suggested that the presence of virulence factors is correlated with an increase in the average membrane rigidity, which is largely influenced by the presence of FHA. Moreover, for this system we built a nanoscale stiffness map that reveals an inhomogeneous spatial distribution of Young modulus as well as the presence of rigid nanodomains on the cell surface.

  12. Characterization of an Acidic-pH-Inducible Stress Protein (hsp70), a Putative Sulfatide Binding Adhesin, from Helicobacter pylori

    PubMed Central

    Huesca, Mario; Goodwin, Avery; Bhagwansingh, Arianna; Hoffman, Paul; Lingwood, Clifford A.

    1998-01-01

    The in vitro glycolipid binding specificity of the gastric pathogen Helicobacter pylori is altered to include sulfated glycolipids (sulfatides) following brief exposure of the organism to acid pH typical of the stomach. This change is prevented by anti-hsp70 antibodies, suggesting that hsp70 may be a stress-induced surface adhesin, mediating sulfatide recognition. To facilitate investigation of the role of hsp70 in attachment, we have cloned and sequenced the H. pylori hsp70 gene (dnaK). The hsp70 gene was identified by probing a cosmid DNA library made from H. pylori 439 with a PCR amplicon generated with oligonucleotides synthesized to highly conserved regions of dnaK. The 1.9-kb H. pylori hsp70 gene encodes a product of 616 amino acids. Primer extension analysis revealed a single transcription start site, while Northern blot analysis established that hsp70 was preferentially induced by low pH rather than by heat shock. The ability of H. pylori to alter its glycolipid binding specificity following exposure to low pH by upregulating hsp70 and by expressing hsp70 on the bacterial surface may provide a survival advantage during periods of high acid stress. PMID:9712748

  13. A novel lily anther-specific gene encodes adhesin-like proteins associated with exine formation during anther development

    PubMed Central

    Liu, Ming-Che; Yang, Cheng-Shou; Wang, Co-Shine

    2014-01-01

    The anther-specific gene LLA1271 isolated from lily (Lilium longiflorum Thunb.) anthers is novel and exists in two forms. The protein encoded by LLA1271 may represent an adhesin-like protein first found in higher plants. The protein contains a typical N-terminal signal peptide followed by a highly conserved repeat domain. The LLA1271 gene is temporally expressed at the phase of microspore development. RNA blot and RNA in situ hybridization analyses demonstrated that the gene was expressed both in the tapetum and in the microspore. The gene is endo- and exogenously induced by gibberellin. Studies with the gibberellin biosynthesis inhibitor uniconazole and an inhibitor of ethylene activity, 2,5-norbornadien (NBD), revealed that LLA1271 is negatively regulated by ethylene, and a cross-talk of regulation between gibberellin and ethylene occurs in young anthers. The treatment with NBD caused the tapetum to become densely cytoplasmic and highly polarized, whereas uniconazole arrested tapetal development in a state close to that of a tapetum without treatment. The LLA1271 protein is heat stable and heterogeneous. An immunoblot of separated protein fractions of the anther revealed that the LLA1271 protein was detected in protein fraction of the microspore released from the cell wall by treatment with either 0.5% or 2% Triton X-100. Ectopic expression of LLA1271 resulted in impaired stamen and low pollen germination. Scanning electron microscopy of TAP::LLA1271 pollen showed distorted exine formation and patterning. The LLA1271 protein once synthesized in both the tapetum and microspore is secreted and deposited on the surface of microspores, moderately affecting exine formation and patterning. PMID:24591055

  14. Identification of adhesin-like protein ALP41 from Spiroplasma eriocheiris and induction immune response of Eriocheir sinensis.

    PubMed

    Meng, Qingguo; Li, Wenjie; Liang, Tingming; Jiang, Xuejiao; Gu, Wei; Wang, Wen

    2010-10-01

    Spiroplasma eriocheiris is a causative agent of the tremor disease (TD) of Chinese mitten crab Eriocheir sinensis which is a novel pathogen of aquatic animals found in recent years. A gene, adhesin-like protein (ALP41), of S. eriocheiris from E. sinensis was identified and its characteristics were analyzed in present paper. The role of this pathogen's host-binding protein in promoting immune responses was characterized through analyzing the interaction between S. eriocheiris and E. sinensis. The full-length DNA of ALP41 is 1074 bp and encodes 357 amino acid residues. The theoretical molecular weight and isoelectric point for the ALP41 are 40.94 kDa and 4.79, respectively. Since UGA is read as a tryptophan codon and not as a termination signal in most Mollicute species, the ALP41 gene was site-mutated from TGA to TGG and transcribed in Escherichia coli to full expression; the titer of rabbits anti-ALP41 serum was about 1:6000. A specific immunoreactive band was identified when rabbits anti-S. eriocheiris serum was opposed to the recombinant protein. The ALP41 band was detected using anti-ALP41 serum and the total proteins of S. eriocheiris. Realtime-PCR was used for detection of expression levels of the immune genes in E. sinensis. Among the examined genes, the mRNA expression of anti-lipopolysaccharide factor (ALF), prophenoloxidase (proPO), peroxiredoxin 6 (Prx6) and pacifastin light chain (PLC) in E. sinensis were significantly induced after ALP41 treatment. PMID:20538062

  15. Oligosaccharide-receptor interaction of the Gal alpha 1-4Gal binding adhesin of Streptococcus suis. Combining site architecture and characterization of two variant adhesin specificities.

    PubMed

    Haataja, S; Tikkanen, K; Nilsson, U; Magnusson, G; Karlsson, K A; Finne, J

    1994-11-01

    The sugar binding specificities of two groups of Streptococcus suis, a pig pathogen that causes meningitis also in man, were determined. Both the group represented by a recently characterized strain inhibitable by galactose and N-acetylgalactosamine (type PN) and the group inhibitable by galactose (type PO) were found by hemagglutination and solid-phase binding inhibition experiments to recognize the disaccharide Gal alpha 1-4Gal of the P1 and Pk blood group antigens. Both types preferred the disaccharide in terminal position. PN showed some, whereas PO showed almost no, binding to the globoside oligosaccharide containing an additional GalNAc beta 1-3 residue. The complete hydrogen bonding patterns were determined by using deoxy and other synthetic derivatives of the receptor disaccharide, and the constructed models of the interactions were compared with that of Escherichia coli PapG396 adhesin. The essential hydroxyls for binding were the HO-4', HO-6', HO-2, and HO-3 hydroxyls on the beta' alpha-side of the Gal alpha 1-4Gal molecule. Type PO adhesin also formed weak interactions with the hydroxyls HO-6 and HO-3'. The mechanism differed from that of E. coli, which binds to a cluster of five hydroxyls (HO-6, HO-2', HO-3', HO-4', and HO-6') and thus to a different part of the receptor disaccharide. These results represent the first example of the comparison of the saccharide receptor hydrogen bonding patterns of two bacterial organisms of different origin and show that the same saccharide may be recognized by two different binding mechanisms.

  16. Characterization and Functional Analysis of AatB, a Novel Autotransporter Adhesin and Virulence Factor of Avian Pathogenic Escherichia coli

    PubMed Central

    ZhuGe, Xiangkai; Wang, Shaohui; Fan, Hongjie; Pan, Zihao; Ren, Jianluan; Yi, Li; Meng, Qingmei; Yang, Xuqiu; Lu, Chengping

    2013-01-01

    Autotransporter (AT) proteins constitute a large family of extracellular proteins that contribute to bacterial virulence. A novel AT adhesin gene, aatB, was identified in avian pathogenic Escherichia coli (APEC) DE205B via genomic analyses. The open reading frame of aatB was 1,017 bp, encoding a putative 36.3-kDa protein which contained structural motifs characteristic for AT proteins: a signal peptide, a passenger domain, and a translocator domain. The predicted three-dimensional structure of AatB consisted of two distinct domains, the C-terminal β-barrel translocator domain and an N-terminal passenger domain. The prevalence analyses of aatB in APEC indicated that aatB was detected in 26.4% (72/273) of APEC strains and was strongly associated with phylogenetic groups D and B2. Quantitative real-time reverse transcription-PCR analyses revealed that AatB expression was increased during infection in vitro and in vivo. Moreover, AatB could elicit antibodies in infected ducks, suggesting that AatB is involved in APEC pathogenicity. Thus, APEC DE205B strains with a mutated aatB gene and mutated strains complemented with the aatB gene were constructed. Inactivation of aatB resulted in a reduced capacity to adhere to DF-1 cells, defective virulence capacity in vivo, and decreased colonization capacity in lung during systemic infection compared with the capacities of the wild-type strain. Furthermore, these capacities were restored in the complementation strains. These results indicated that AatB makes a significant contribution to APEC virulence through bacterial adherence to host tissues in vivo and in vitro. In addition, biofilm formation assays with strain AAEC189 expressing AatB indicated that AatB mediates biofilm formation. PMID:23630958

  17. BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood.

    PubMed

    Santi, Isabella; Scarselli, Maria; Mariani, Massimo; Pezzicoli, Alfredo; Masignani, Vega; Taddei, Annarita; Grandi, Guido; Telford, John L; Soriani, Marco

    2007-02-01

    By the analysis of the recently sequenced genomes of Group B Streptococcus (GBS) we have identified a novel immunogenic adhesin with anti-phagocytic activity, named BibA. The bibA gene is present in 100% of the 24 GBS strains analysed. BibA-specific IgG were found in human sera from normal healthy donors. The putative protein product is a polypeptide of 630 amino acids containing a helix-rich N-terminal domain, a proline-rich region and a canonical LPXTG cell wall-anchoring domain. BibA is expressed on the surface of several GBS strains, but is also recovered in GBS culture supernatants. BibA specifically binds to human C4-binding protein, a regulator of the classic complement pathway. Deletion of the bibA gene severely reduced the capacity of GBS to survive in human blood and to resist opsonophagocytic killing by human neutrophils. In addition, BibA expression increased the virulence of GBS in a mouse infection model. The role of BibA in GBS adhesion was demonstrated by the impaired ability of a bibA knockout mutant strain to adhere to both human cervical and lung epithelial cells. Furthermore, we calculated that recombinant BibA bound to human epithelial cells of distinct origin with an affinity constant of approximately 10(-8) M for cervical epithelial cells. Hence BibA is a novel multifunctional protein involved in both resistance to phagocytic killing and adhesion to host cells. The identification of this potential new virulence factor represents an important step in the development of strategies to combat GBS-associated infections.

  18. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells.

    PubMed

    King, Nathan P; Beatson, Scott A; Totsika, Makrina; Ulett, Glen C; Alm, Richard A; Manning, Paul A; Schembri, Mark A

    2011-04-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.

  19. BtaE, an Adhesin That Belongs to the Trimeric Autotransporter Family, Is Required for Full Virulence and Defines a Specific Adhesive Pole of Brucella suis

    PubMed Central

    Ruiz-Ranwez, Verónica; Posadas, Diana M.; Van der Henst, Charles; Estein, Silvia M.; Arocena, Gastón M.; Abdian, Patricia L.; Martín, Fernando A.; Sieira, Rodrigo; De Bolle, Xavier

    2013-01-01

    Brucella is responsible for brucellosis, one of the most common zoonoses worldwide that causes important economic losses in several countries. Increasing evidence indicates that adhesion of Brucella spp. to host cells is an important step to establish infection. We have previously shown that the BmaC unipolar monomeric autotransporter mediates the binding of Brucella suis to host cells through cell-associated fibronectin. Our genome analysis shows that the B. suis genome encodes several additional potential adhesins. In this work, we characterized a predicted trimeric autotransporter that we named BtaE. By expressing btaE in a nonadherent Escherichia coli strain and by phenotypic characterization of a B. suis ΔbtaE mutant, we showed that BtaE is involved in the binding of B. suis to hyaluronic acid. The B. suis ΔbtaE mutant exhibited a reduction in the adhesion to HeLa and A549 epithelial cells compared with the wild-type strain, and it was outcompeted by the wild-type strain in the binding to HeLa cells. The knockout btaE mutant showed an attenuated phenotype in the mouse model, indicating that BtaE is required for full virulence. BtaE was immunodetected on the bacterial surface at one cell pole. Using old and new pole markers, we observed that both the BmaC and BtaE adhesins are consistently associated with the new cell pole, suggesting that, in Brucella, the new pole is functionally differentiated for adhesion. This is consistent with the inherent polarization of this bacterium, and its role in the invasion process. PMID:23319562

  20. Minimum chemical requirements for adhesin activity of the acid-stable part of Candida albicans cell wall phosphomannoprotein complex.

    PubMed

    Kanbe, T; Cutler, J E

    1998-12-01

    This study was conducted to define adhesive characteristics of the acid-stable moiety of the Candida albicans phosphomannoprotein complex (PMPC) on adherence of this fungus to marginal zone macrophages of the mouse spleen. Complete digestion of the acid-stable moiety (Fr.IIS) of the C. albicans PMPC with an alpha-mannosidase or hydrolysis with 0.6 N sulfuric acid destroyed adhesin activity, as determined by the inability of the soluble digests to inhibit yeast cell adherence to the splenic marginal zone. Fr.IIS adhesin activity was decreased following digestion with an alpha-1,2-specific mannosidase. Oligomannosyls consisting of one to six mannose units, which were isolated from the acid-stable part of the PMPC, did not inhibit yeast cell binding and thus do not function alone as adhesin sites in the PMPC. To gain more insight into the minimum requirements for adhesin activity, PMPCs were isolated from a Saccharomyces cerevisiae wild-type strain and from mutant strains mnn1, mnn2, and mnn4; the PMPCs were designated scwt/Fr.II, scmn1/Fr.II, scmn2/Fr.II, and scmn4/Fr.II, respectively. S. cerevisiae scmn2/Fr.II lacks oligomannosyl side chain branches from the outer core mannan, and scmn2/Fr.II was the only PMPC without adhesin activity. S. cerevisiae scwt/Fr.II, scmn1/Fr.II, and scmn4/Fr.II showed adhesin activities less than that of C. albicans Fr.II. These three S. cerevisiae PMPCs are generally similar to Fr. IIS, except that the S. cerevisiae structure has fewer and shorter side chains. Immunofluorescence microscopy show that the acid-stable part of the PMPC is displayed homogeneously on the C. albicans yeast cell surface, which would be expected for a surface adhesin. Our results indicate that both the mannan core and the oligomannosyl side chains are responsible for the adhesin activity of the acid-stable part of the PMPC. PMID:9826359

  1. Redefinition of the Carbohydrate Binding Specificity of Helicobacter pylori BabA Adhesin*

    PubMed Central

    Benktander, John; Ångström, Jonas; Breimer, Michael E.; Teneberg, Susann

    2012-01-01

    Certain Helicobacter pylori strains adhere to the human gastric epithelium using the blood group antigen-binding adhesin (BabA). All BabA-expressing H. pylori strains bind to the blood group O determinants on type 1 core chains, i.e. to the Lewis b antigen (Fucα2Galβ3(Fucα4)GlcNAc; Leb) and the H type 1 determinant (Fucα2Galβ3GlcNAc). Recently, BabA strains have been categorized into those recognizing only Leb and H type 1 determinants (designated specialist strains) and those that also bind to A and B type 1 determinants (designated generalist strains). Here, the structural requirements for carbohydrate recognition by generalist and specialist BabA were further explored by binding of these types of strains to a panel of different glycosphingolipids. Three glycosphingolipids recognized by both specialist and generalist BabA were isolated from the small intestine of a blood group O pig and characterized by mass spectrometry and proton NMR as H type 1 pentaglycosylceramide (Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer), Globo H hexaglycosylceramide (Fucα2Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), and a mixture of three complex glycosphingolipids (Fucα2Galβ4GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, and Fucα2Galβ4(Fucα3)GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer). In addition to the binding of both strains to the Globo H hexaglycosylceramide, i.e. a blood group O determinant on a type 4 core chain, the generalist strain bound to the Globo A heptaglycosylceramide (GalNAcα3(Fucα2)Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), i.e. a blood group A determinant on a type 4 core chain. The binding of BabA to the two sets of isoreceptors is due to conformational similarities of the terminal disaccharides of H type 1 and Globo H and of the terminal trisaccharides of A type 1 and Globo A. PMID:22822069

  2. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    PubMed

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive.

  3. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose

    PubMed Central

    Sarabia-Sainz, Andre-i; Sarabia-Sainz, Hector Manuel; Ramos-Clamont Montfort, Gabriela; Mata-Haro, Veronica; Guzman-Partida, Ana María; Guzman, Roberto; Garcia-Soto, Mariano; Vazquez-Moreno, Luz

    2015-01-01

    The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10–17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections. PMID:26389896

  4. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose.

    PubMed

    Sarabia-Sainz, Andre-I; Sarabia-Sainz, Hector Manuel; Montfort, Gabriela Ramos-Clamont; Mata-Haro, Veronica; Guzman-Partida, Ana María; Guzman, Roberto; Garcia-Soto, Mariano; Vazquez-Moreno, Luz

    2015-09-16

    The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10-17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections.

  5. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose.

    PubMed

    Sarabia-Sainz, Andre-I; Sarabia-Sainz, Hector Manuel; Montfort, Gabriela Ramos-Clamont; Mata-Haro, Veronica; Guzman-Partida, Ana María; Guzman, Roberto; Garcia-Soto, Mariano; Vazquez-Moreno, Luz

    2015-01-01

    The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10-17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections. PMID:26389896

  6. Structure of the Head of the Bartonella Adhesin BadA

    PubMed Central

    Szczesny, Pawel; Linke, Dirk; Ursinus, Astrid; Bär, Kerstin; Schwarz, Heinz; Riess, Tanja M.; Kempf, Volkhard A. J.; Lupas, Andrei N.; Martin, Jörg; Zeth, Kornelius

    2008-01-01

    Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 Å. Both domains are β-prisms, the N-terminal one formed by interleaved, five-stranded β-meanders parallel to the trimer axis and the C-terminal one by five-stranded β-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens. PMID:18688279

  7. Identification of Mycobacterium tuberculosis adherence-mediating components: a review of key methods to confirm adhesin function

    PubMed Central

    Ramsugit, Saiyur; Pillay, Manormoney

    2016-01-01

    Anti-adhesion therapy represents a potentially promising avenue for the treatment and prevention of tuberculosis in a post-antibiotic era. Adhesins are surface-exposed microbial structures or molecules that enable pathogenic organisms to adhere to host surfaces, a fundamental step towards host infection. Although several Mycobacterium tuberculosis adhesins have been identified, it is predicted that numerous additional adherence-mediating components contribute to the virulence and success of this pathogen. Significant further research to discern and characterize novel M. tuberculosis adhesins is, therefore, required to gain a holistic account of M. tuberculosis adhesion to the host. This would enable the identification of potential drug and vaccine targets for attenuating M. tuberculosis adherence and infectivity. Several methods have been successfully applied to the study and identification of M. tuberculosis adhesins. In this manuscript, we review these methods, which include adherence assays that utilize wild-type and gene knockout mutant strains, epitope masking and competitive inhibition analyses, extracellular matrix protein binding assays, microsphere adhesion assays, M. tuberculosis auto-aggregation assays, and in silico analyses. PMID:27482337

  8. Essential Functional Role of the Polysaccharide Intercellular Adhesin of Staphylococcus epidermidis in Hemagglutination

    PubMed Central

    Mack, Dietrich; Riedewald, Joachim; Rohde, Holger; Magnus, Tim; Feucht, Hubert H.; Elsner, Holger-A.; Laufs, Rainer; Rupp, Mark E.

    1999-01-01

    Hemagglutination of erythrocytes is a common property of Staphylococcus epidermidis strains, which is related to adherence and biofilm formation and may be essential for the pathogenesis of biomaterial-associated infections caused by S. epidermidis. In three independent biofilm-producing, hemagglutination-positive S. epidermidis isolates, interruption of the icaADBC operon essential for polysaccharide intercellular adhesin (PIA) synthesis by Tn917 insertions led to a hemagglutination-negative phenotype. An immunoglobulin G fraction of antiserum to PIA greatly reduced hemagglutination. Purified PIA led to a 64-fold decrease of hemagglutination titers of these strains; however, it did not mediate hemagglutination by itself. These observations define PIA as the hemagglutinin of S. epidermidis or at least as its major functional component. PMID:9916125

  9. Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.

    2015-09-01

    In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.

  10. Re-Evaluation of a Bacterial Antifreeze Protein as an Adhesin with Ice-Binding Activity

    PubMed Central

    Guo, Shuaiqi; Garnham, Christopher P.; Whitney, John C.; Graham, Laurie A.; Davies, Peter L.

    2012-01-01

    A novel role for antifreeze proteins (AFPs) may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII) and region IV (RIV), divide MpAFP into five distinct regions, all of which require mM Ca2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX)-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2) server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice. PMID:23144980

  11. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice

    PubMed Central

    Vance, Tyler D. R.; Olijve, Luuk L. C.; Campbell, Robert L.; Voets, Ilja K.; Davies, Peter L.; Guo, Shuaiqi

    2014-01-01

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches. PMID:24892750

  12. Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of Helicobacter pylori affect transcription.

    PubMed

    Harvey, Vivian C; Acio, Catherine R; Bredehoft, Amy K; Zhu, Laurence; Hallinger, Daniel R; Quinlivan-Repasi, Vanessa; Harvey, Samuel E; Forsyth, Mark H

    2014-10-01

    The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.

  13. Efficiency of Direct Microscopy of Stool Samples Using an Antigen-Specific Adhesin Test for Entamoeba Histolytica

    PubMed Central

    İrvem, Arzu; Özdil, Kamil; Çalışkan, Zuhal; Yücel, Muhterem

    2016-01-01

    Background: E. histolytica is among the common causes of acute gastroenteritis. The pathogenic species E. histolytica and the nonpathogenic species E. dispar cannot be morphologically differentiated, although correct identification of these protozoans is important for treatment and public health. In many laboratories, the screening of leukocytes, erythrocytes, amoebic cysts, trophozoites and parasite eggs is performed using Native-Lugol’s iodine for pre-diagnosis. Aims: In this study, we aimed to investigate the frequency of E. histolytica in stool samples collected from 788 patients residing in the Anatolian region of İstanbul who presented with gastrointestinal complaints. We used the information obtained to evaluate the effectiveness of microscopic examinations when used in combination with the E. histolytica adhesin antigen test. Study Design: Retrospective cross-sectional study Methods: Preparations of stool samples stained with Native-Lugol’s iodine were evaluated using the E. histolytica adhesin test and examined using standard light microscopy at ×40 magnification. Pearson’s Chi-square and Fisher’s exact tests were used for statistical analysis. Logistic regression analysis was used for multivariate analysis. Results: Of 788 samples, 38 (4.8%) were positive for E. histolytica adhesin antigens. When evaluated together with the presences of erythrocytes, leukocytes, cysts, and trophozoites, respectively, using logistic regression analysis, leukocyte positivity was significantly higher. The odds ratio of leukocyte positivity increased adhesin test-positivity by 2,530-fold (95% CI=1.01–6.330). Adhesin test-positivity was significant (p=0.047). Conclusion: In line with these findings, the consistency between the presence of cysts and erythrocytes and adhesin test-positivity was found to be highly significant, but that of higher levels of leukocytes was found to be discordant. It was concluded that leukocytes and trophozoites were easily misjudged

  14. An adhesin-like protein, Lam29, from Lactobacillus mucosae ME-340 binds to histone H3 and blood group antigens in human colonic mucus.

    PubMed

    Watanabe, Masamichi; Kinoshita, Hideki; Huang, I-Nung; Eguchi, Kei; Tsurumi, Takuya; Kawai, Yasushi; Kitazawa, Haruki; Kimura, Katsunori; Taketomo, Naoki; Kikuchi, Daisuke; Sase, Tomohiko; Miura, Koh; Ogawa, Hitoshi; Shibata, Chikashi; Horii, Akira; Saito, Tadao

    2012-01-01

    A cell-surface 29-kDa protein (Lam29, cysteine-binding protein of the ABC transporter) from Lactobacillus mucosae ME-340 showed an adhesin-like property for human ABO blood group antigens expressed on the gastrointestinal mucosa. In addition, here we report that Lam29 also bound to an 18-kDa protein on human colonic mucus. By ligand blot assay and N-terminal amino acid sequence of the protein, it was identified as human histone H3. By ligand blot and microplate binding assays with recombinant histone H3, binding between Lam29 and histone H3 was confirmed. The adhesion of ME-340 cells to histone H3 was significantly inhibited by 26% after the addition of 2.5 mg/mL Lam29 as compared to the absence of Lam29 (p<0.01). By GHCl extraction and transcription attenuation of ME-340 cells, binding reduction of ME340 cells against histone H3 was detected at 12% and 13% respectively, as compared to control cells by the BIACORE assay (p<0.01). These data indicate that Lam29 shows multiple binding activities to blood group antigens and histone H3 in human colonic mucus. This is the first report to indicate that lactobacilli expressing Lam29 adhere to histone H3 on gastrointestinal mucosa.

  15. The dynamics and pH-dependence of Ag43 adhesins' self-association probed by atomic force spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacquot, Adrien; Sakamoto, Chizuko; Razafitianamarahavo, Angelina; Caillet, Céline; Merlin, Jenny; Fahs, Ahmad; Ghigo, Jean-Marc; Duval, Jérôme F. L.; Beloin, Christophe; Francius, Grégory

    2014-10-01

    Self-associating auto-transporter (SAAT) adhesins are two-domain cell surface proteins involved in bacteria auto-aggregation and biofilm formation. Antigen 43 (Ag43) is a SAAT adhesin commonly found in Escherichia coli whose variant Ag43a has been shown to promote persistence of uropathogenic E. coli within the bladder. The recent resolution of the tri-dimensional structure of the 499 amino-acids' β-domain in Ag43a has shed light on the possible mechanism governing the self-recognition of SAAT adhesins, in particular the importance of trans-interactions between the L shaped β-helical scaffold of two α-domains of neighboring adhesins. In this study, we use single-molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to unravel the dynamics of Ag43-self association under various pH and molecular elongation rate conditions that mimic the situations encountered by E. coli in its natural environment. Results evidenced an important stretchability of Ag43α with unfolding of sub-domains leading to molecular extension as long as 150 nm. Nanomechanical analysis of molecular stretching data suggested that self-association of Ag43 can lead to the formation of dimers and tetramers driven by rapid and weak cis- as well as slow but strong trans-interaction forces with a magnitude as large as 100-250 pN. The dynamics of cis- and trans-interactions were demonstrated to be strongly influenced by pH and applied shear force, thus suggesting that environmental conditions can modulate Ag43-mediated aggregation of bacteria at the molecular level.Self-associating auto-transporter (SAAT) adhesins are two-domain cell surface proteins involved in bacteria auto-aggregation and biofilm formation. Antigen 43 (Ag43) is a SAAT adhesin commonly found in Escherichia coli whose variant Ag43a has been shown to promote persistence of uropathogenic E. coli within the bladder. The recent resolution of the tri-dimensional structure of the 499 amino-acids' β-domain in Ag43a has shed

  16. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems?

    PubMed

    Backert, Steffen; Fronzes, Remi; Waksman, Gabriel

    2008-09-01

    Many type-IV secretion systems (T4SSs) of plant and human pathogens assemble a pilus used to inject virulence molecules (effectors) into host target cells. The T4SS of Agrobacterium tumefaciens consists of VirB1-VirB11 and VirD4 proteins. Whether targeting of T4SSs to the host requires a T4SS-adhesin that specifically engages host receptors for delivery of effectors has, until recently, remained unclear. Recent data of Agrobacterium and Helicobacter indicate that two classes of T4SS components, VirB2 and VirB5, might function as adhesins that mediate host-cell targeting through binding to specific host receptors. Here, we discuss this important issue and recent progress in the field. PMID:18706815

  17. Streptococcus gordonii DL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide of Actinomyces oris T14V.

    PubMed

    Back, C R; Douglas, S K; Emerson, J E; Nobbs, A H; Jenkinson, H F

    2015-10-01

    Streptococcus gordonii SspA and SspB proteins, members of the antigen I/II (AgI/II) family of Streptococcus adhesins, mediate adherence to cysteine-rich scavenger glycoprotein gp340 and cells of other oral microbial species. In this article we investigated further the mechanism of coaggregation between S. gordonii DL1 and Actinomyces oris T14V. Previous mutational analysis of S. gordonii suggested that SspB was necessary for coaggregation with A. oris T14V. We have confirmed this by showing that Lactococcus lactis surrogate host cells expressing SspB coaggregated with A. oris T14V and PK606 cells, while L. lactis cells expressing SspA did not. Coaggregation occurred independently of expression of A. oris type 1 (FimP) or type 2 (FimA) fimbriae. Polysaccharide was prepared from cells of A. oris T14V and found to contain 1,4-, 4,6- and 3,4-linked glucose, 1,4-linked mannose, and 2,4-linked galactose residues. When immobilized onto plastic wells this polysaccharide supported binding of L. lactis expressing SspB, but not binding of L. lactis expressing other AgI/II family proteins. Purified recombinant NAVP region of SspB, comprising amino acid (aa) residues 41-847, bound A. oris polysaccharide but the C-domain (932-1470 aa residues) did not. A site-directed deletion of 29 aa residues (Δ691-718) close to the predicted binding cleft within the SspB V-region ablated binding of the NAVP region to polysaccharide. These results infer that the V-region head of SspB recognizes an actinomyces polysaccharide ligand, so further characterizing a lectin-like coaggregation mechanism occurring between two important primary colonizers.

  18. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins.

    PubMed Central

    Erickson, A K; Baker, D R; Bosworth, B T; Casey, T A; Benfield, D A; Francis, D H

    1994-01-01

    We have previously identified two K88ac adhesion receptors (210 and 240 kDa) which are present in membrane preparations from adhesive but not nonadhesive porcine intestinal brush border cells; these adhesin receptors are postulated to be important determinants of the susceptibility of pigs to K88ac+ enterotoxigenic Escherichia coli infections (A.K. Erickson, J.A. Willgohs, S.Y. McFarland, D.A. Benfield, and D.F. Francis, Infect. Immun. 60:983-988, 1992). We now describe a procedure for the purification of these two receptors. Receptors were solubilized from adhesive intestinal brush border vesicles using deoxycholate and were purified by gel filtration chromatography on Sepharose CL-4B and then by hydroxyapatite chromatography. Amino acid compositional analyses indicated that the two receptors have similar amino acid compositions. The most distinguishing characteristic of both receptors is a high percentage of threonine and proline residues. Neuraminidase treatment caused the K88ac adhesin receptors to migrate with a slower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, indicating that these receptors are sialoglycoproteins. Results from lectin-binding studies indicated that the receptors contain O-linked oligosaccharides composed of galactosyl (beta-1,3)N-acetylgalactosamine, alpha-linked fucose, galactosyl(beta-1,4)N-acetylglucosamine, sialic acid, galactose, and N-acetylgalactosamine. Collectively, these characteristics indicate that the K88ac adhesin receptors are mucin-type sialoglycoproteins. Images PMID:7960120

  19. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth.

    PubMed

    Coppenhagen-Glazer, S; Sol, A; Abed, J; Naor, R; Zhang, X; Han, Y W; Bachrach, G

    2015-03-01

    Fusobacterium nucleatum is a common oral anaerobe involved in periodontitis that is known to translocate and cause intrauterine infections. In the oral environment, F. nucleatum adheres to a large diversity of species, facilitating their colonization and creating biological bridges that stabilize the multispecies dental biofilm. Many of these interactions (called coadherences or coaggregations) are galactose sensitive. Galactose-sensitive interactions are also involved in the binding of F. nucleatum to host cells. Hemagglutination of some F. nucleatum strains is also galactose sensitive, suggesting that a single galactose-sensitive adhesin might mediate the interaction of fusobacteria with many partners and targets. In order to identify the fusobacterial galactose-sensitive adhesin, a system for transposon mutagenesis in fusobacteria was created. The mutant library was screened for hemagglutination deficiency, and three clones were isolated. All three clones were found to harbor the transposon in the gene coding for the Fap2 outer membrane autotransporter. The three fap2 mutants failed to show galactose-inhibitable coaggregation with Porphyromonas gingivalis and were defective in cell binding. A fap2 mutant also showed a 2-log reduction in murine placental colonization compared to that of the wild type. Our results suggest that Fap2 is a galactose-sensitive hemagglutinin and adhesin that is likely to play a role in the virulence of fusobacteria.

  20. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria.

  1. Fap2 of Fusobacterium nucleatum Is a Galactose-Inhibitable Adhesin Involved in Coaggregation, Cell Adhesion, and Preterm Birth

    PubMed Central

    Coppenhagen-Glazer, S.; Sol, A.; Abed, J.; Naor, R.; Zhang, X.

    2015-01-01

    Fusobacterium nucleatum is a common oral anaerobe involved in periodontitis that is known to translocate and cause intrauterine infections. In the oral environment, F. nucleatum adheres to a large diversity of species, facilitating their colonization and creating biological bridges that stabilize the multispecies dental biofilm. Many of these interactions (called coadherences or coaggregations) are galactose sensitive. Galactose-sensitive interactions are also involved in the binding of F. nucleatum to host cells. Hemagglutination of some F. nucleatum strains is also galactose sensitive, suggesting that a single galactose-sensitive adhesin might mediate the interaction of fusobacteria with many partners and targets. In order to identify the fusobacterial galactose-sensitive adhesin, a system for transposon mutagenesis in fusobacteria was created. The mutant library was screened for hemagglutination deficiency, and three clones were isolated. All three clones were found to harbor the transposon in the gene coding for the Fap2 outer membrane autotransporter. The three fap2 mutants failed to show galactose-inhibitable coaggregation with Porphyromonas gingivalis and were defective in cell binding. A fap2 mutant also showed a 2-log reduction in murine placental colonization compared to that of the wild type. Our results suggest that Fap2 is a galactose-sensitive hemagglutinin and adhesin that is likely to play a role in the virulence of fusobacteria. PMID:25561710

  2. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria. PMID:27231592

  3. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings

    PubMed Central

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J.

    2016-01-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests – ELISA and BIAcore – the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria. PMID:27231592

  4. Erythrocyte gangliosides act as receptors for Neisseria subflava: identification of the Sia-1 adhesin.

    PubMed Central

    Nyberg, G; Strömberg, N; Jonsson, A; Karlsson, K A; Normark, S

    1990-01-01

    Neisseria gonorrhoeae was recently shown to bind to a subset of lactose-containing glycolipids (N. Strömberg, C. Deal, G. Nyberg, S. Normark, M. So, and K.-A. Karlsson, Proc. Natl. Acad. Sci. USA 85:4902-4906, 1988). A number of commensal Neisseria strains were also shown to be lactose binders. In addition, Neisseria subflava bound to immobilized gangliosides, such as hematoside and sialosyl paragloboside, carrying the NeuAc alpha 2-3Gal beta 1-4Glc sequence. To a lesser extent, N. gonorrhoeae also bound to this receptor in vitro. In N. subflava GN01, this binding property mediated agglutination of human erythrocytes in a neuraminidase-sensitive fashion. Nitrosoguanidine-induced nonhemagglutinative mutants of N. subflava GN01 had lost the ability to bind hematoside and sialosylparagloboside but remained able to bind lactosylceramide and gangliotetraosylceramide. These mutants fell into three classes with respect to their outer membrane protein profiles in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Class 1 mutants were identical to the parent strain save for the loss of a 27-kilodalton (kDa) protein. Class 2 mutants showed an outer membrane protein profile identical to that of the wild type, whereas mutants belonging to class 3 showed a number of changes, including the apparent absence of the 27-kDa protein. The 27-kDa protein from N. subflava GN01 was purified from the supernatant. A polyclonal antiserum to the purified Sia-1 protein as well as a Sia-1-specific monoclonal antibody inhibited hemagglutination by strain GN01. The purified Sia-1 protein in the presence of diluted anti-Sia-1 antiserum mediated a neuraminidase-sensitive hemagglutination. The purified Sia protein from a class 2 mutant was not able to hemagglutinate when cross-linked with antibodies, suggesting that it is a mutant form of Sia-1 affected in the receptor-binding site. Immunoelectron microscopy with a Sia-1-specific monoclonal antibody revealed that the adhesin was

  5. Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding region of the Streptococcus gordonii adhesin GspB

    SciTech Connect

    Pyburn, Tasia M.; Yankovskaya, Victoria; Bensing, Barbara A.; Cecchini, Gary; Sullam, Paul M.; Iverson, T.M.

    2012-07-11

    The carbohydrate-binding region of the bacterial adhesin GspB from Streptococcus gordonii strain M99 (GspB{sub BR}) was expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. Separate sparse-matrix screening of GspB{sub BR} buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts and additives supported crystallization of GspB{sub BR} in each buffer. While both sets of conditions supported crystal growth in space group P2{sub 1}2{sub 1}2{sub 1}, the crystals had distinct unit-cell parameters of a = 33.3, b = 86.7, c = 117.9 {angstrom} for crystal form 1 and a = 34.6, b = 98.3, c = 99.0 {angstrom} for crystal form 2. Additive screening improved the crystals grown in both conditions such that diffraction extended to beyond 2 {angstrom} resolution. A complete data set has been collected to 1.3 {angstrom} resolution with an overall R{sub merge} value of 0.04 and an R{sub merge} value of 0.33 in the highest resolution shell.

  6. Structure of the Streptococcus pneumoniae Surface Protein and Adhesin PfbA

    PubMed Central

    Suits, Michael D.; Boraston, Alisdair B.

    2013-01-01

    PfbA (plasmin- and fibronectin-binding protein A) is an extracellular Streptococcus pneumoniae cell-wall attached surface protein that binds to fibronectin, plasmin, and plasminogen. Here we present a structural analysis of the surface exposed domains of PfbA using a combined approach of X-ray crystallography and small-angle X-ray scattering (SAXS). The crystal structure of the PfbA core domain, here called PfbAβ, determined to 2.28 Å resolution revealed an elongated 12-stranded parallel β-helix fold, which structure-based comparisons reveal is most similar to proteins with carbohydrate modifying activity. A notable feature of the PfbAβ is an extensive cleft on one face of the protein with electrochemical and spatial features that are analogous to structurally similar carbohydrate-active enzymes utilizing this feature for substrate accommodation. Though this cleft displays a combination of basic amino acid residues and solvent exposed aromatic amino acids that are distinct features for recognition of carbohydrates, no obvious arrangement of amino acid side chains that would constitute catalytic machinery is evident. The pseudo-atomic SAXS model of a larger fragment of PfbA suggests that it has a relatively well-ordered structure with the N-terminal and core domains of PfbA adopting an extend organization and reveals a novel structural class of surface exposed pneumococcal matrix molecule adhesins. PMID:23894284

  7. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    PubMed

    Mallegol, Julia; Duncan, Carla; Prashar, Akriti; So, Jannice; Low, Donald E; Terebeznik, Mauricio; Guyard, Cyril

    2012-01-01

    Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface. PMID:23029523

  8. Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress

    PubMed Central

    Vuong, Cuong; Kidder, Joshua B.; Jacobson, Erik R.; Otto, Michael; Proctor, Richard A.; Somerville, Greg A.

    2005-01-01

    Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production. PMID:15838022

  9. Catch-bond mechanism of the bacterial adhesin FimH

    PubMed Central

    Sauer, Maximilian M.; Jakob, Roman P.; Eras, Jonathan; Baday, Sefer; Eriş, Deniz; Navarra, Giulio; Bernèche, Simon; Ernst, Beat; Maier, Timm; Glockshuber, Rudi

    2016-01-01

    Ligand–receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell–cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins. Here we establish peptide-complemented FimH as a model system for fimbrial FimH function. We reveal a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction and molecular dynamics simulations. In the absence of tensile force, the FimH pilin domain allosterically accelerates spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity. Separation of the FimH domains under stress abolishes allosteric interplay and increases the affinity of the lectin domain. Cell tracking demonstrates that rapid ligand dissociation from FimH supports motility of piliated E. coli on mannosylated surfaces in the absence of shear force. PMID:26948702

  10. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization

    PubMed Central

    Lin, Yi-Pin; Chen, Qiang; Ritchie, Jennifer A.; Dufour, Nicholas P.; Fischer, Joshua R.; Coburn, Jenifer; Leong, John M.

    2014-01-01

    SUMMARY Microbial pathogens that colonize multiple tissues commonly produce adhesive surface proteins that mediate attachment to cells and/or extracellular matrix in target organs. Many of these ‘adhesins’ bind to multiple ligands, complicating efforts to understand the role of each ligand-binding activity. Borrelia burgdorferi, the causative agent of Lyme disease, produces BBK32, first identified as a fibronectin-binding adhesin that promotes skin and joint colonization. BBK32 also binds to glycosaminoglycan (GAG), which, like fibronectin is ubiquitously present on cell surfaces. To determine which binding activity is relevant for BBK32-promoted infectivity, we generated a panel of BBK32 truncation and internal deletion mutants, and identified variants specifically defective for binding to either fibronectin or GAG. These variants promoted bacterial attachment to different mammalian cell types in vitro, suggesting that fibronectin and GAG binding may play distinct roles during infection. Intravenous inoculation of mice with a high-passage non-infectious B. burgdorferi strain that produced wild type BBK32 or BBK32 mutants defective for GAG or fibronectin binding, revealed that only GAG-binding activity was required for significant localization to joints at 60 minutes post-infection. An otherwise infectious B. burgdorferi strain producing BBK32 specifically deficient in fibronectin binding was fully capable of both skin and joint colonization in the murine model, whereas a strain producing BBK32 selectively attenuated for GAG binding colonized the inoculation site but not knee or tibiotarsus joints. Thus, the BBK32 fibronectin- and GAG-binding activities are separable in vivo, and BBK32-mediated GAG binding, but not fibronectin binding, contributes to joint colonization. PMID:25486989

  11. Blastomyces Virulence Adhesin-1 Protein Binding to Glycosaminoglycans Is Enhanced by Protein Disulfide Isomerase

    PubMed Central

    Beaussart, Audrey; Brandhorst, Tristan

    2015-01-01

    ABSTRACT Blastomyces adhesin-1 (BAD-1) protein mediates the virulence of the yeast Blastomyces dermatitidis, in part by binding host lung tissue, the extracellular matrix, and cellular receptors via glycosaminoglycans (GAGs), such as heparan sulfate. The tandem repeats that make up over 90% of BAD-1 appear in their native state to be tightly folded into an inactive conformation, but recent work has shown that they become activated and adhesive upon reduction of a disulfide linkage. Here, atomic force microscopy (AFM) of a single BAD-1 molecule interacting with immobilized heparin revealed that binding is enhanced upon treatment with protein disulfide isomerase and dithiothreitol (PDI/DTT). PDI/DTT treatment of BAD-1 induced a plateau effect in atomic force signatures that was consistent with sequential rupture of tandem binding domains. Inhibition of PDI in murine macrophages blunted BAD-1 binding to heparin in vitro. Based on AFM, we found that a short Cardin-Weintraub sequence paired with a WxxWxxW sequence in the first, degenerate repeat at the N terminus of BAD-1 was sufficient to initiate heparin binding. Removal of half of the 41 BAD-1 tandem repeats led to weaker adhesion, illustrating their role in enhanced binding. Mass spectroscopy of the tandem repeat revealed that the PDI-induced interaction with heparin is characterized by ruptured disulfide bonds and that cysteine thiols remain reduced. Further binding studies showed direct involvement of thiols in heparin ligation. Thus, we propose that the N-terminal domain of BAD-1 governs the initial association with host GAGs and that proximity to GAG-associated host PDI catalyzes activation of additional binding motifs conserved within the tandem repeats, leading to enhanced avidity and availability of reduced thiols. PMID:26396244

  12. A Collagen-Binding Adhesin, Acb, and Ten Other Putative MSCRAMM and Pilus Family Proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, Biotype I)▿ §

    PubMed Central

    Sillanpää, Jouko; Nallapareddy, Sreedhar R.; Qin, Xiang; Singh, Kavindra V.; Muzny, Donna M.; Kovar, Christie L.; Nazareth, Lynne V.; Gibbs, Richard A.; Ferraro, Mary J.; Steckelberg, James M.; Weinstock, George M.; Murray, Barbara E.

    2009-01-01

    Members of the Streptococcus bovis group are important causes of endocarditis. However, factors associated with their pathogenicity, such as adhesins, remain uncharacterized. We recently demonstrated that endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates frequently adhere to extracellular matrix (ECM) proteins. Here, we generated a draft genome sequence of an ECM protein-adherent S. gallolyticus subsp. gallolyticus strain and found, by genome-wide analyses, 11 predicted LPXTG-type cell wall-anchored proteins with characteristics of MSCRAMMs, including a modular architecture of domains predicted to adopt immunoglobulin (Ig)-like folding. A recombinant segment of one of these, Acb, showed high-affinity binding to immobilized collagen, and cell surface expression of Acb correlated with the presence of acb and collagen adherence of isolates. Three of the 11 proteins have similarities to major pilus subunits and are organized in separate clusters, each including a second Ig-fold-containing MSCRAMM and a class C sortase, suggesting that the sequenced strain encodes three distinct types of pili. Reverse transcription-PCR demonstrated that all three genes of one cluster, acb-sbs7-srtC1, are cotranscribed, consistent with pilus operons of other gram-positive bacteria. Further analysis detected expression of all 11 genes in cells grown to mid to late exponential growth phases. Wide distribution of 9 of the 11 genes was observed among S. gallolyticus subsp. gallolyticus isolates with fewer genes present in other S. bovis group species/subspecies. The high prevalence of genes encoding putative MSCRAMMs and pili, including a collagen-binding MSCRAMM, among S. gallolyticus subsp. gallolyticus isolates may play an important role in the predominance of this subspecies in S. bovis endocarditis. PMID:19717590

  13. Subtractive hybridization and identification of putative adhesins in a Shiga toxin-producing eae-negative Escherichia coli.

    PubMed

    Vidal, Maricel; Prado, Valeria; Whitlock, Gregory C; Solari, Aldo; Torres, Alfredo G; Vidal, Roberto M

    2008-12-01

    Adherence to epithelial cells by specific adhesins is a characteristic of Shiga toxin-producing Escherichia coli (STEC) strains. The eae-encoded protein intimin is the main adhesin implicated in intestinal colonization in vivo. We recently showed that STEC strains isolated in Chile displayed a wide variety of adhesins; here we demonstrate that some of these STEC strains are eae-negative and still adhere to epithelial cells at a level 100-fold higher than enterohaemorrhagic E. coli (EHEC) O157 : H7 prototype strain EDL933. This phenotype is associated with the presence of adherence factors different from the intimin protein. Subtractive hybridization between EHEC EDL933 and STEC eae-negative strain 472-1 was used to identify regions implicated in adhesion. In addition to the saa gene, we identified 18 specific genes in STEC 472-1, 16 of which had nucleotide identity to Salmonella ST46 phage genes; the two remaining ones shared identity to a gene encoding a hypothetical protein of uropathogenic E. coli. The DNA sequence of the STEC 472-1 psu-int region identified five open reading frames with homology to phage genes. We constructed mutant strains in the saa gene and the psu-int region to study the participation of these genes in the adherence to epithelial cells and our results demonstrated that STECDeltasaa and STECDeltapsu-int mutants displayed a 10-fold decrease in adherence as compared to the STEC 472-1 wild-type strain. Overall, our results suggest that STEC strain 472-1 adheres to epithelial cells in an eae-independent matter and that saa and psu-int participate in this adhesion process.

  14. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand.

    PubMed

    Parreira, P; Shi, Q; Magalhaes, A; Reis, C A; Bugaytsova, J; Borén, T; Leckband, D; Martins, M C L

    2014-12-01

    The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Le(b)), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor-ligand pairs were performed between the purified BabA and immobilized Le(b) structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion.

  15. That's my story, and I'm sticking to it—an update on B. burgdorferi adhesins

    PubMed Central

    Brissette, Catherine A.; Gaultney, Robert A.

    2014-01-01

    Adhesion is the initial event in the establishment of any infection. Borrelia burgdorferi, the etiological agent of Lyme disease, possesses myriad proteins termed adhesins that facilitate contact with its vertebrate hosts. B. burgdorferi adheres to host tissues through interactions with host cells and extracellular matrix, as well as other molecules present in serum and extracellular fluids. These interactions, both general and specific, are critical in the establishment of infection. Modulation of borrelial adhesion to host tissues affects the microorganisms's ability to colonize, disseminate, and persist. In this review, we update the current knowledge on structure, function, and role in pathogenesis of these “sticky” B. burgdorferi infection-associated proteins. PMID:24772392

  16. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings

    PubMed Central

    Rojas, Clemencia M.; Ham, Jong Hyun; Deng, Wen-Ling; Doyle, Jeff J.; Collmer, Alan

    2002-01-01

    Erwinia chrysanthemi is representative of a broad class of bacterial pathogens that are capable of inducing necrosis in plants. The E. chrysanthemi EC16 hecA gene predicts a 3,850-aa member of the Bordetella pertussis filamentous hemagglutinin family of adhesins. A hecA∷Tn7 mutant was reduced in virulence on Nicotiana clevelandii seedlings after inoculation without wounding. Epifluorescence and confocal laser-scanning microscopy observations of hecA and wild-type cells expressing the green fluorescent protein revealed that the mutant is reduced in its ability to attach and then form aggregates on leaves and to cause an aggregate-associated killing of epidermal cells. Cell killing also depended on production of the major pectate lyase isozymes and the type II, but not the type III, secretion pathway in E. chrysanthemi. HecA homologs were found in bacterial pathogens of plants and animals and appear to be unique to pathogens and universal in necrogenic plant pathogens. Phylogenetic comparison of the conserved two-partner secretion domains in the proteins and the 16S rRNA sequences in respective bacteria revealed the two datasets to be fundamentally incongruent, suggesting horizontal acquisition of these genes. Furthermore, hecA and its two homologs in Yersinia pestis had a G+C content that was 10% higher than that of their genomes and similar to that of plant pathogenic Ralstonia, Xylella, and Pseudomonas spp. Our data suggest that filamentous hemagglutinin-like adhesins are broadly important virulence factors in both plant and animal pathogens. PMID:12271135

  17. In vitro effect of temperature on the conformational structure and collagen binding of SdrF, a Staphylococcus epidermidis adhesin.

    PubMed

    Di Poto, Antonella; Papi, Massimiliano; Trivedi, Sheetal; Maiorana, Alessandro; Gavazzo, Paola; Vassalli, Massimo; Lowy, Franklin D; De Spirito, Marco; Montanaro, Lucio; Imbriani, Marcello; Arciola, Carla Renata; Visai, Livia

    2015-07-01

    Staphylococcus epidermidis is the leading etiologic agent of device-related infections. S. epidermidis is able to bind, by means of the adhesins of its cell wall, the host matrix proteins filming the artificial surfaces. Thence, bacteria cling to biomaterials and infection develops. The effect of temperature on integrity, structure, and biological activity of the collagen-binding adhesin (SdrF) of S. epidermidis has been here investigated. By cloning in E. coli XL1-Blue, a recombinant of the SdrF binding domain B (rSdrFB), carrying an N-terminal polyhistidine, was obtained. Purification was by HiTrap(TM) Chelating HP columns. Assessment of purity, molecular weight, and integrity was by SDS-PAGE. The rSdrFB-collagen binding was investigated by ELISA. A full three-dimensional reconstruction of rSdrFB was achieved by small-angle X-ray scattering (SAXS). At 25 °C, rSdrFB bound to type I collagen in a dose-dependent, saturable manner, with a Kd of 2.48 × 10(-7) M. When temperature increased from 25 to 37 °C, a strong conformational change occurred, together with the abolition of the rSdrFB-collagen binding. The rSdrFB integrity was not affected by temperature variation. SdrFB-collagen binding is switched on/off depending on the temperature. Implications with the infection pathogenesis are enlightened.

  18. Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability.

    PubMed

    Sahoo, Prasana K; Janissen, Richard; Monteiro, Moniellen P; Cavalli, Alessandro; Murillo, Duber M; Merfa, Marcus V; Cesar, Carlos L; Carvalho, Hernandes F; de Souza, Alessandra A; Bakkers, Erik P A M; Cotta, Monica A

    2016-07-13

    Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues. PMID:27336224

  19. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis

    PubMed Central

    Kern, Justin; Schneewind, Olaf

    2010-01-01

    Summary Microbial pathogens use adhesive surface proteins to bind to and interact with host tissues, events that are universal for the pathogenesis of infectious diseases. A surface adhesin of Bacillus anthracis, the causative agent of anthrax, required to mediate these steps has not been discovered. Previous work identified BslA, an S-layer protein, to be necessary and sufficient for adhesion of the anthrax vaccine strain, Bacillus anthracis Sterne, to host cells. Here we asked whether encapsulated bacilli require BslA for anthrax pathogenesis in guinea pigs. Compared with the highly virulent parent strain B. anthracis Ames, bslA mutants displayed a dramatic increase in the lethal dose and in mean time-to-death. Whereas all tissues of animals infected with B. anthracis Ames contained high numbers of bacilli, only few vegetative forms could be recovered from internal organs of animals infected with the bslA mutant. Surface display of BslA occurred at the poles of encapsulated bacilli and enabled the binding of vegetative forms to host cells. Together these results suggest that BslA functions as the surface adhesin of the anthrax pathogen B. anthracis strain Ames. PMID:19906175

  20. Exploiting chimeric human antibodies to characterize a protective epitope of Neisseria adhesin A, one of the Bexsero vaccine components.

    PubMed

    Bertoldi, Isabella; Faleri, Agnese; Galli, Barbara; Lo Surdo, Paola; Liguori, Alessia; Norais, Nathalie; Santini, Laura; Masignani, Vega; Pizza, Mariagrazia; Giuliani, Marzia Monica

    2016-01-01

    Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown. In order to further investigate its immunogenic properties, we have characterized the murine IgG1 mAb (6E3) that was able to recognize the 2 main antigenic variants of NadA on the surface of MenB strains. The epitope targeted by mAb 6E3 was mapped by hydrogen-deuterium exchange mass spectrometry and shown to be located on the coiled-coil stalk region of NadA (aa 206-249). Although no serum bactericidal activity was observed for murine IgG1 mAb 6E3, functional activity was restored when using chimeric antibodies in which the variable regions of the murine mAb 6E3 were fused to human IgG3 constant regions, thus confirming the protective nature of the mAb 6E3 epitope. The use of chimeric antibody molecules will enable future investigations of complement-mediated antibody functionality independently of the Fc-mediated differences in complement activation.

  1. Differential Roles of Individual Domains in Selection of Secretion Route of a Streptococcus parasanguinis Serine-Rich Adhesin, Fap1▿

    PubMed Central

    Chen, Qiang; Sun, Baiming; Wu, Hui; Peng, Zhixiang; Fives-Taylor, Paula M.

    2007-01-01

    Fimbria-associated protein 1 (Fap1) is a high-molecular-mass glycosylated surface adhesin required for fimbria biogenesis and biofilm formation in Streptococcus parasanguinis. The secretion of mature Fap1 is dependent on the presence of SecA2, a protein with some homology to, but with a different role from, SecA. The signals that direct the secretion of Fap1 to the SecA2-dependent secretion pathway rather than the SecA-dependent secretion pathway have not yet been identified. In this study, Fap1 variants containing different domains were expressed in both secA2 wild-type and mutant backgrounds and were tested for their ability to be secreted by the SecA- or SecA2-dependent pathway. The presence or absence of the cell wall anchor domain (residues 2531 to 2570) at the C terminus did not alter the selection of the Fap1 secretion route. The Fap1 signal peptide (residues 1 to 68) was sufficient to support the secretion of a heterologous protein via the SecA-dependent pathway, suggesting that the signal peptide was sufficient for recognition by the SecA-dependent pathway. The minimal sequences of Fap1 required for the SecA2-dependent pathway included the N-terminal signal peptide, nonrepetitive region I (residues 69 to 102), and part of nonrepetitive region II (residues 169 to 342). The two serine-rich repeat regions (residues 103 to 168 and 505 to 2530) were not required for Fap1 secretion. However, they were both involved in the specific inhibition of Fap1 secretion via the SecA-dependent pathway. PMID:17766425

  2. Lysine Residue 117 of the FasG Adhesin of Enterotoxigenic Escherichia coli Is Essential for Binding of 987P Fimbriae to Sulfatide

    PubMed Central

    Choi, Byung-Kwon; Schifferli, Dieter M.

    1999-01-01

    The FasG subunit of the 987P fimbriae of enterotoxigenic strains of Escherichia coli was previously shown to mediate fimbrial binding to a glycoprotein and a sulfatide receptor on intestinal brush borders of piglets. Moreover, the 987P adhesin FasG is required for fimbrial expression, since fasG null mutants are nonfimbriated. In this study, fasG was modified by site-directed mutagenesis to study its sulfatide binding properties. Twenty single mutants were generated by replacing positively charged lysine (K) or arginine (R) residues with small, nonpolar alanine (A) residues. Reduced levels of binding to sulfatide-containing liposomes correlated with reduced fimbriation and FasG surface display in four fasG mutants (R27A, R286A, R226A, and R368). Among the 16 remaining normally fimbriated mutants with wild-type levels of surface-exposed FasG, only one mutant (K117A) did not interact at all with sulfatide-containing liposomes. Four mutants (K117A, R116A, K118A, and R200A) demonstrated reduced binding to such liposomes. Since complete phenotypic dissociation between the structure and specific function of 987P was observed only with mutant K117A, this residue is proposed to play an essential role in the FasG-sulfatide interaction, possibly communicating with the sulfate group of sulfatide by hydrogen bonding and/or salt bridge formation. Residues K17, R116, K118, and R200 may stabilize this interaction. PMID:10531225

  3. Dynamics of Lewis b Binding and Sequence Variation of the babA Adhesin Gene during Chronic Helicobacter pylori Infection in Humans

    PubMed Central

    Nell, Sandra; Kennemann, Lynn; Schwarz, Sandra; Josenhans, Christine

    2014-01-01

    ABSTRACT Helicobacter pylori undergoes rapid microevolution during chronic infection, but very little is known about how this affects host interaction factors. The best-studied adhesin of H. pylori is BabA, which mediates binding to the blood group antigen Lewis b [Le(b)]. To study the dynamics of Le(b) adherence during human infection, we analyzed paired H. pylori isolates obtained sequentially from chronically infected individuals. A complete loss or significant reduction of Le(b) binding was observed in strains from 5 out of 23 individuals, indicating that the Le(b) binding phenotype is quite stable during chronic human infection. Sequence comparisons of babA identified differences due to mutation and/or recombination in 12 out of 16 strain pairs analyzed. Most amino acid changes were found in the putative N-terminal extracellular adhesion domain. One strain pair that had changed from a Le(b) binding to a nonbinding phenotype was used to study the role of distinct sequence changes in Le(b) binding. By transformations of the nonbinding strain with a babA gene amplified from the binding strain, H. pylori strains with mosaic babA genes were generated. Recombinants were enriched for a gain of Le(b) binding by biopanning or for BabA expression on the bacterial surface by pulldown assay. With this approach, we identified several amino acid residues affecting the strength of Le(b) binding. Additionally, the data showed that the C terminus of BabA, which is predicted to encode an outer membrane β-barrel domain, plays an essential role in the biogenesis of this protein. PMID:25516619

  4. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine.

    PubMed

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.

  5. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine

    PubMed Central

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development. PMID:26990554

  6. Detection of pap, sfa, afa, foc, and fim Adhesin-Encoding Operons in Uropathogenic Escherichia coli Isolates Collected From Patients With Urinary Tract Infection

    PubMed Central

    Rahdar, Masoud; Rashki, Ahmad; Miri, Hamid Reza; Rashki Ghalehnoo, Mehdi

    2015-01-01

    Background: Uropathogenic Escherichia coli (UPEC) with its virulence factors is the most prevalent cause of urinary tract infection (UTI). Objectives; This study aimed to determine the occurrence of fim, pap, sfa, and afa genes among 100 UPEC isolates collected from patients diagnosed with UTI. Materials and Methods A total of 100 UPEC isolates were obtained from urine samples of patients with UTI. The prevalence of 5 virulence genes encoding type 1 fimbriae (fimH), pili associated with pyelonephritis (pap), S and F1C fimbriae (sfa and foc) and afimbrial adhesins (afa) were determined through PCR method. We also investigated the phylogenetic background of all isolates. In addition, the distribution of adhesin-encoding operons between the phylogroups was assessed. Results: The prevalence of genes encoding for fimbrial adhesive systems was 95% for fim, 57% for pap, 16% for foc, and 81% for sfa. The operons encoding for afa afimbrial adhesins were identified in 12% of isolates. The various combinations of detected genes were designated as virulence patterns. The fim gene, which occurred in strains from all phylogenetic groups (A, B1, B2, and D) was evaluated and no significant differences were found among these groups. Conversely, significant differences were observed in relation to pap, afa, foc, and sfa operons. Conclusions: These results indicate that the PCR method is a powerful genotypic assay for the detection of adhesin-encoding operons. Thus, this assay can be recommended for clinical use to detect virulent urinary E. coli strains, as well as epidemiological studies. PMID:26464770

  7. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein.

  8. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. PMID:26643468

  9. Oral Streptococci Utilize a Siglec-Like Domain of Serine-Rich Repeat Adhesins to Preferentially Target Platelet Sialoglycans in Human Blood

    PubMed Central

    Deng, Lingquan; Bensing, Barbara A.; Thamadilok, Supaporn; Yu, Hai; Lau, Kam; Chen, Xi; Ruhl, Stefan; Sullam, Paul M.; Varki, Ajit

    2014-01-01

    Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a

  10. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    SciTech Connect

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.; Melancon, Bruce J.; Tomasiak, Thomas M.; Ward, Nicholas J.; Yankovskaya, Victoria; Oliver, Kevin M.; Cecchini, Gary; Sulikowski, Gary A.; Tyska, Matthew J.; Sullam, Paul M.; Iverson, T.M.

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  11. The Screw-Like Movement of a Gliding Bacterium Is Powered by Spiral Motion of Cell-Surface Adhesins.

    PubMed

    Shrivastava, Abhishek; Roland, Thibault; Berg, Howard C

    2016-09-01

    Flavobacterium johnsoniae, a rod-shaped bacterium, glides over surfaces at speeds of ∼2 μm/s. The propulsion of a cell-surface adhesin, SprB, is known to enable gliding. We used cephalexin to generate elongated cells with irregular shapes and followed their displacement in three dimensions. These cells rolled about their long axes as they moved forward, following a right-handed trajectory. We coated gold nanoparticles with an SprB antibody and tracked them in three dimensions in an evanescent field where the nanoparticles appeared brighter when they were closer to the glass. The nanoparticles followed a right-handed spiral trajectory on the surface of the cell. Thus, if SprB were to adhere to the glass rather than to a nanoparticle, the cell would move forward along a right-handed trajectory, as observed, but in a direction opposite to that of the nanoparticle. PMID:27602728

  12. Maternal Vaccination with a Fimbrial Tip Adhesin and Passive Protection of Neonatal Mice against Lethal Human Enterotoxigenic Escherichia coli Challenge

    PubMed Central

    Luiz, Wilson B.; Rodrigues, Juliana F.; Crabb, Joseph H.

    2015-01-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 107 bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126

  13. Number of positive blood cultures, biofilm formation, and adhesin genes in differentiating true coagulase-negative staphylococci bacteremia from contamination.

    PubMed

    Papadimitriou-Olivgeri, I; Giormezis, N; Papadimitriou-Olivgeris, M; Zotou, A; Kolonitsiou, F; Koutsileou, K; Fligou, F; Marangos, M; Anastassiou, E D; Spiliopoulou, I

    2016-01-01

    The significance of the number of coagulase-negative staphylococci (CNS)-positive blood cultures remains obscure in regards to determining true bacteremia versus contamination. The goal of this study was to determine the predictors of real CNS bloodstream infection among intensive care unit (ICU) patients. ICU patients with at least one CNS-positive blood culture were identified from the microbiology database. Biofilm formation was tested by glass tube and microtiter plate assay. mecA gene, ica operon genes (icaA, icaB, icaD), and adhesin genes (aap, bap, atlE, fbe, fnbA) were detected by polymerase chain reaction (PCR). CNS were recovered from 120 septic episodes, 20 of which were true CNS bacteremias, whereas from the remaining 100 episodes, the isolated CNS were characterized as contaminants. The number of positive blood cultures was significantly associated with true CNS bacteremia. Nineteen true bacteremic Staphylococcus epidermidis strains were compared to 38 contaminants. Biofilm synthesis was documented in 37 isolates associated with the presence of the ica operon (p = 0.048). There were 39, 26, 38, 21, and 10 strains positive for the presence of atlE, bap, fbe, aap, and fnbA genes, respectively. Rifampicin resistance, absence of severe sepsis, number of S. epidermidis-positive blood cultures, and absence of the bap gene were independently associated with true S. epidermidis bacteremia as compared to contaminant strains. The number of positive blood cultures is associated with true CNS bacteremia. The presence of adhesin genes may play a role in differentiating true infection from contamination, whereas absence of the bap gene is associated with true S. epidermidis bacteremia. PMID:26490138

  14. Tight conformational coupling between the domains of the enterotoxigenic Escherichia coli fimbrial adhesin CfaE regulates binding state transition.

    PubMed

    Liu, Yang; Esser, Lothar; Interlandi, Gianluca; Kisiela, Dagmara I; Tchesnokova, Veronika; Thomas, Wendy E; Sokurenko, Evgeni; Xia, Di; Savarino, Stephen J

    2013-04-01

    CfaE, the tip adhesin of enterotoxigenic Escherichia coli colonization factor antigen I fimbriae, initiates binding of this enteropathogen to the small intestine. It comprises stacked β-sandwich adhesin (AD) and pilin (PD) domains, with the putative receptor-binding pocket at one pole and an equatorial interdomain interface. CfaE binding to erythrocytes is enhanced by application of moderate shear stress. A G168D replacement along the AD facing the CfaE interdomain region was previously shown to decrease the dependence on shear by increasing binding at lower shear forces. To elucidate the structural basis for this functional change, we studied the properties of CfaE G168D (with a self-complemented donor strand) and solved its crystal structure at 2.6 Å resolution. Compared with native CfaE, CfaE G168D showed a downward shift in peak erythrocyte binding under shear stress and greater binding under static conditions. The thermal melting transition of CfaE G168D occurred 10 °C below that of CfaE. Compared with CfaE, the atomic structure of CfaE G168D revealed a 36% reduction in the buried surface area at the interdomain interface. Despite the location of this single modification in the AD, CfaE G168D exhibited structural derangements only in the adjoining PD compared with CfaE. In molecular dynamics simulations, the G168D mutation was associated with weakened interdomain interactions under tensile force. Taken together, these findings indicate that the AD and PD of CfaE are conformationally tightly coupled and support the hypothesis that opening of the interface plays a critical modulatory role in the allosteric activation of CfaE. PMID:23393133

  15. Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge.

    PubMed

    Luiz, Wilson B; Rodrigues, Juliana F; Crabb, Joseph H; Savarino, Stephen J; Ferreira, Luis C S

    2015-12-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126

  16. Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection.

    PubMed

    Deuschle, Eva; Keller, Birgit; Siegfried, Alexandra; Manncke, Birgit; Spaeth, Tanja; Köberle, Martin; Drechsler-Hake, Doreen; Reber, Julia; Böttcher, Ralph T; Autenrieth, Stella E; Autenrieth, Ingo B; Bohn, Erwin; Schütz, Monika

    2016-02-01

    Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.

  17. Structural and Functional Analysis of a New Subfamily of Glycosyltransferases Required for Glycosylation of Serine-rich Streptococcal Adhesins

    SciTech Connect

    Zhu, Fan; Erlandsen, Heidi; Ding, Lei; Li, Jingzhi; Huang, Ying; Zhou, Meixian; Liang, Xiaobo; Ma, Jinbiao; Wu, Hui

    2011-09-16

    Serine-rich repeat glycoproteins (SRRPs) are a growing family of bacterial adhesins found in many streptococci and staphylococci; they play important roles in bacterial biofilm formation and pathogenesis. Glycosylation of this family of adhesins is essential for their biogenesis. A glucosyltransferase (Gtf3) catalyzes the second step of glycosylation of a SRRP (Fap1) from an oral streptococcus, Streptococcus parasanguinis. Although Gtf3 homologs are highly conserved in SRRP-containing streptococci, they share minimal homology with functionally known glycosyltransferases. We report here the 2.3 {angstrom} crystal structure of Gtf3. The structural analysis indicates that Gtf3 forms a tetramer and shares significant structural homology with glycosyltransferases from GT4, GT5, and GT20 subfamilies. Combining crystal structural analysis with site-directed mutagenesis and in vitro glycosyltransferase assays, we identified residues that are required for UDP- or UDP-glucose binding and for oligomerization of Gtf3 and determined their contribution to the enzymatic activity of Gtf3. Further in vivo studies revealed that the critical amino acid residues identified by the structural analysis are crucial for Fap1 glycosylation in S. parasanguinis in vivo. Moreover, Gtf3 homologs from other streptococci were able to rescue the gtf3 knock-out mutant of S. parasanguinis in vivo and catalyze the sugar transfer to the modified SRRP substrate in vitro, demonstrating the importance and conservation of the Gtf3 homologs in glycosylation of SRRPs. As the Gtf3 homologs only exist in SRRP-containing streptococci, we conclude that the Gtf3 homologs represent a unique subfamily of glycosyltransferases.

  18. The heat-resistant agglutinin family includes a novel adhesin from enteroaggregative Escherichia coli strain 60A.

    PubMed

    Mancini, Justin; Weckselblatt, Brooke; Chung, Yoonjie K; Durante, Julia C; Andelman, Steven; Glaubman, Jessica; Dorff, Justin D; Bhargava, Samhita; Lijek, Rebeccah S; Unger, Katherine P; Okeke, Iruka N

    2011-09-01

    Heat-resistant agglutinin 1 (Hra1) is an accessory colonization factor of enteroaggregative Escherichia coli (EAEC) strain 042. Tia, a close homolog of Hra1, is an invasin and adhesin that has been described in enterotoxigenic E. coli. We devised a PCR-restriction fragment length polymorphism screen for the associated genes and found that they occur among 55 (36.7%) of the enteroaggregative E. coli isolates screened, as well as lower proportions of enterotoxigenic, enteropathogenic, enterohemorrhagic, and commensal E. coli isolates. Overall, 25%, 8%, and 3% of 150 EAEC strains harbored hra1 alone, tia alone, or both genes, respectively. One EAEC isolate, 60A, produced an amplicon with a unique restriction profile, distinct from those of hra1 and tia. We cloned and sequenced the full-length agglutinin gene from strain 60A and have designated it hra2. The hra2 gene was not detected in any of 257 diarrheagenic E. coli isolates in our collection but is present in the genome of Salmonella enterica serovar Heidelberg strain SL476. The cloned hra2 gene from strain 60A, which encodes a predicted amino acid sequence that is 64% identical to that of Hra1 and 68% identical to that of Tia, was sufficient to confer adherence on E. coli K-12. We constructed an hra2 deletion mutant of EAEC strain 60A. The mutant was deficient in adherence but not autoaggregation or invasion, pointing to a functional distinction from the autoagglutinin Hra1 and the Tia invasin. Hra1, Tia, and the novel accessory adhesin Hra2 are members of a family of integral outer membrane proteins that confer different colonization-associated phenotypes. PMID:21764925

  19. Express

    Integrated Risk Information System (IRIS)

    Express ; CASRN 101200 - 48 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  20. Multiepitope fusion antigen induces broadly protective antibodies that prevent adherence of Escherichia coli strains expressing colonization factor antigen I (CFA/I), CFA/II, and CFA/IV.

    PubMed

    Ruan, Xiaosai; Knudsen, David E; Wollenberg, Katie M; Sack, David A; Zhang, Weiping

    2014-02-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block adherence of ETEC strains that express immunologically heterogeneous CFA adhesins are expected to protect against ETEC diarrhea. In this study, we created a CFA multiepitope fusion antigen (MEFA) carrying representative epitopes of CFA/I, CFA/II (CS1, CS2, and CS3), and CFA/IV (CS4, CS5, and CS6), examined its immunogenicity in mice, and assessed the potential of this MEFA as an antiadhesin vaccine against ETEC. Mice intraperitoneally immunized with this CFA MEFA exhibited no adverse effects and developed immune responses to CFA/I, CFA/II, and CFA/IV adhesins. Moreover, after incubation with serum of the immunized mice, ETEC or E. coli strains expressing CFA/I, CFA/II, or CFA/IV adhesins were significantly inhibited in adherence to Caco-2 cells. Our results indicated this CFA MEFA elicited antibodies that not only cross-reacted to CFA/I, CFA/II and CFA/IV adhesins but also broadly inhibited adherence of E. coli strains expressing these seven adhesins and suggested that this CFA MEFA could be a candidate to induce broad-spectrum antiadhesin protection against ETEC diarrhea. Additionally, this antigen construction approach (creating an MEFA) may be generally used in vaccine development against heterogenic pathogens. PMID:24351757

  1. Adherence of Pseudomonas aeruginosa and Candida albicans to glycosphingolipid (Asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins.

    PubMed Central

    Yu, L; Lee, K K; Hodges, R S; Paranchych, W; Irvin, R T

    1994-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium, and Candida albicans, a dimorphic yeast, are evolutionarily distant microorganisms which can utilize filamentous structures termed pili and fimbriae, respectively, to mediate adherence to glycosphingolipids (asialoganglioside-GM1) receptors. The mechanism of adherence to glycosphingolipid receptors was investigated in these studies. By using monoclonal antibodies (MAbs) against purified pili of P. aeruginosa PAK (PK99H) and monospecific anti-peptide antibodies against the PAK pilin peptides [anti-PAK(128-144) and anti-PAK(134-140)], we demonstrated that these antibodies agglutinated C. albicans whole cells and cross-reacted with C. albicans fimbriae in immunoblots. A control MAb, PKL1, and anti-PAK(75-84) peptide antibodies failed to agglutinate C. albicans whole cells or cross-react with the fimbrial proteins. Conversely, the anti-C. albicans fimbrial MAb Fm16, but not Fm34, agglutinated P. aeruginosa PAK whole cells and Western blots (immunoblots). The interactions between PK99H and Fm16 and their respective homologous antigens were competitively inhibited by heterologous antigens; this demonstrated that the interactions between the antibodies and the heterologous antigens, i.e., PK99H with C. albicans fimbriae and Fm16 with P. aeruginosa pili, were highly specific and suggested that both adhesins share a common antigenic determinant. The immunological cross-reactivity between Fm16 and P. aeruginosa PAK pilin is localized onto the PAK(134-140) region as shown by a competitive enzyme-linked immunosorbent assay. The PAK(134-140) region of PAK pilin contains the epitope recognized by PK99H and also constitutes part of the receptor-binding domain of the pilus adhesin. Thus, the results from these studies suggest that common cell surface receptors are recognized by the P. aeruginosa and C. albicans adhesins because of a conserved receptor-binding domain on the adhesins. Images PMID:7525482

  2. Protection of gerbils from amebic liver abscess by immunization with a recombinant protein derived from the 170-kilodalton surface adhesin of Entamoeba histolytica.

    PubMed Central

    Zhang, T; Stanley, S L

    1994-01-01

    The protozoan parasite Entamoeba histolytica causes extensive morbidity and mortality worldwide through intestinal infection and amebic liver abscess. Here we show that vaccination of gerbils, a standard model for amebic liver abscess, with recombinant proteins derived from the 170-kDa galactose-binding adhesin of E. histolytica and the serine-rich E. histolytica protein or a combination of the two recombinant antigens provides excellent protection against subsequent hepatic challenge with virulent E. histolytica trophozoites. PMID:8188384

  3. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium

    PubMed Central

    Sillanpää, Jouko; Nallapareddy, Sreedhar R.; Prakash, Vittal P.; Qin, Xiang; Hook, Magnus; Weinstock, George M.; Murray, Barbara E.

    2009-01-01

    SUMMARY Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about pathogenic determinants of this organism. We have previously identified a cell wall anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad spectrum binding to extracellular matrix proteins. Here, we analyzed the draft genome of strain TX0016 for potential MSCRAMMs (microbial surface component recognizing adhesive matrix molecules). Genome-based bioinformatics identified 22 predicted cell wall anchored E. faeciumsurface proteins (Fms) of which 15 (including Acm) have typical characteristics of MSCRAMMs including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one (Fms10, redesignated Scm for second collagen adhesin of E. faeciu m) revealed that recombinant Scm65 (A- and B-domains) and Scm36 (A-domain) bound efficiently to collagen type V in a concentration dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism of recombinant Scm36 and of Acm37 indicated that these proteins are rich in β-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; 9 of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated as EbpCfm), detected a “ladder” pattern of high-molecular weight protein bands in a Western blot

  4. Eugenol Production in Achenes and Receptacles of Strawberry Fruits Is Catalyzed by Synthases Exhibiting Distinct Kinetics1[W][OPEN

    PubMed Central

    Aragüez, Irene; Osorio, Sonia; Hoffmann, Thomas; Rambla, José Luis; Medina-Escobar, Nieves; Granell, Antonio; Botella, Miguel Ángel; Schwab, Wilfried; Valpuesta, Victoriano

    2013-01-01

    Eugenol is a volatile that serves as an attractant for pollinators of flowers, acts as a defense compound in various plant tissues, and contributes to the aroma of fruits. Its production in a cultivated species such as strawberry (Fragaria × ananassa), therefore, is important for the viability and quality of the fruit. We have identified and functionally characterized three strawberry complementary DNAs (cDNAs) that encode proteins with high identity to eugenol synthases from several plant species. Based on a sequence comparison with the wild relative Fragaria vesca, two of these cDNAs, FaEGS1a and FaEGS1b, most likely correspond to transcripts derived from allelic gene variants, whereas the third cDNA, FaEGS2, corresponds to a different gene. Using coniferyl acetate as a substrate, FaEGS1a and FaEGS1b catalyze the in vitro formation of eugenol, while FaEGS2 catalyzes the formation of eugenol and also of isoeugenol with a lower catalytic efficiency. The expression of these genes is markedly higher in the fruit than in other tissues of the plant, with FaEGS1a and FaEGS1b mostly expressed in the green achenes, whereas FaEGS2 expression is almost restricted to the red receptacles. These expression patterns correlate with the eugenol content, which is highest in the achene at the green stage and in the receptacle at the red stage. The transient expression of the corresponding cDNAs in strawberry fruit and the subsequent volatile analyses confirm FaEGSs as genuine eugenol synthases in planta. These results provide new insights into the diversity of phenylpropene synthases in plants. PMID:23983228

  5. Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics.

    PubMed

    Aragüez, Irene; Osorio, Sonia; Hoffmann, Thomas; Rambla, José Luis; Medina-Escobar, Nieves; Granell, Antonio; Botella, Miguel Ángel; Schwab, Wilfried; Valpuesta, Victoriano

    2013-10-01

    Eugenol is a volatile that serves as an attractant for pollinators of flowers, acts as a defense compound in various plant tissues, and contributes to the aroma of fruits. Its production in a cultivated species such as strawberry (Fragaria × ananassa), therefore, is important for the viability and quality of the fruit. We have identified and functionally characterized three strawberry complementary DNAs (cDNAs) that encode proteins with high identity to eugenol synthases from several plant species. Based on a sequence comparison with the wild relative Fragaria vesca, two of these cDNAs, FaEGS1a and FaEGS1b, most likely correspond to transcripts derived from allelic gene variants, whereas the third cDNA, FaEGS2, corresponds to a different gene. Using coniferyl acetate as a substrate, FaEGS1a and FaEGS1b catalyze the in vitro formation of eugenol, while FaEGS2 catalyzes the formation of eugenol and also of isoeugenol with a lower catalytic efficiency. The expression of these genes is markedly higher in the fruit than in other tissues of the plant, with FaEGS1a and FaEGS1b mostly expressed in the green achenes, whereas FaEGS2 expression is almost restricted to the red receptacles. These expression patterns correlate with the eugenol content, which is highest in the achene at the green stage and in the receptacle at the red stage. The transient expression of the corresponding cDNAs in strawberry fruit and the subsequent volatile analyses confirm FaEGSs as genuine eugenol synthases in planta. These results provide new insights into the diversity of phenylpropene synthases in plants.

  6. A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property.

    PubMed

    Liang, Xiaobo; Liu, Bing; Zhu, Fan; Scannapieco, Frank A; Haase, Elaine M; Matthews, Steve; Wu, Hui

    2016-01-01

    Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase. PMID:27492581

  7. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    SciTech Connect

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  8. A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property

    PubMed Central

    Liang, Xiaobo; Liu, Bing; Zhu, Fan; Scannapieco, Frank A.; Haase, Elaine M.; Matthews, Steve; Wu, Hui

    2016-01-01

    Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase. PMID:27492581

  9. Crystal Structure of FadA Adhesin from Fusobacterium nucleatum Reveals a Novel Oligomerization Motif, the Leucine Chain

    SciTech Connect

    Nithianantham, Stanley; Xu, Minghua; Yamada, Mitsunori; Ikegami, Akihiko; Shoham, Menachem; Han, Yiping W.

    2009-04-07

    Many bacterial appendages have filamentous structures, often composed of repeating monomers assembled in a head-to-tail manner. The mechanisms of such linkages vary. We report here a novel protein oligomerization motif identified in the FadA adhesin from the Gram-negative bacterium Fusobacterium nucleatum. The 2.0 {angstrom} crystal structure of the secreted form of FadA (mFadA) reveals two antiparallel {alpha}-helices connected by an intervening 8-residue hairpin loop. Leucine-leucine contacts play a prominent dual intra- and intermolecular role in the structure and function of FadA. First, they comprise the main association between the two helical arms of the monomer; second, they mediate the head-to-tail association of monomers to form the elongated polymers. This leucine-mediated filamentous assembly of FadA molecules constitutes a novel structural motif termed the 'leucine chain.' The essential role of these residues in FadA is corroborated by mutagenesis of selected leucine residues, which leads to the abrogation of oligomerization, filament formation, and binding to host cells.

  10. An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure

    PubMed Central

    Yoshimoto, Shogo; Nakatani, Hajime; Iwasaki, Keita; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA’s passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA’s higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA’s nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces. PMID:27305955

  11. MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae

    PubMed Central

    Robinson, Mark W.; Buchtmann, Kyle A.; Jenkins, Cheryl; Tacchi, Jessica L.; Raymond, Benjamin B. A.; To, Joyce; Roy Chowdhury, Piklu; Woolley, Lauren K.; Labbate, Maurizio; Turnbull, Lynne; Whitchurch, Cynthia B.; Padula, Matthew P.; Djordjevic, Steven P.

    2013-01-01

    Bacterial aminopeptidases play important roles in pathogenesis by providing a source of amino acids from exogenous proteins, destroying host immunological effector peptides and executing posttranslational modification of bacterial and host proteins. We show that MHJ_0125 from the swine respiratory pathogen Mycoplasma hyopneumoniae represents a new member of the M42 class of bacterial aminopeptidases. Despite lacking a recognizable signal sequence, MHJ_0125 is detectable on the cell surface by fluorescence microscopy and LC-MS/MS of (i) biotinylated surface proteins captured by avidin chromatography and (ii) peptides released by mild trypsin shaving. Furthermore, surface-associated glutamyl aminopeptidase activity was detected by incubation of live M. hyopneumoniae cells with the diagnostic substrate H-Glu-AMC. MHJ_0125 moonlights as a multifunctional adhesin, binding to both heparin and plasminogen. Native proteomics and comparative modelling studies suggest MHJ_0125 forms a dodecameric, homopolymeric structure and provide insight into the positions of key residues that are predicted to interact with heparin and plasminogen. MHJ_0125 is the first aminopeptidase shown to both bind plasminogen and facilitate its activation by tissue plasminogen activator. Plasmin cleaves host extracellular matrix proteins and activates matrix metalloproteases, generating peptide substrates for MHJ_0125 and a source of amino acids for growth of M. hyopneumoniae. This unique interaction represents a new paradigm in microbial pathogenesis. PMID:23594879

  12. Inhibition of leukocyte-endothelial cell interactions and inflammation by peptides from a bacterial adhesin which mimic coagulation factor X.

    PubMed Central

    Rozdzinski, E; Sandros, J; van der Flier, M; Young, A; Spellerberg, B; Bhattacharyya, C; Straub, J; Musso, G; Putney, S; Starzyk, R

    1995-01-01

    Factor X (factor ten) of the coagulation cascade binds to the integrin CD11b/CD18 during inflammation, initiating procoagulant activity on the surface of leukocytes (Altieri, D.C., O.R. Etingin, D.S. Fair, T.K. Brunk, J.E. Geltosky, D.P. Hajjar, and T. S. Edgington. 1991. Science [Wash.DC]. 254:1200-1202). Filamentous hemagglutinin (FHA), an adhesin of Bordetella pertussis also binds to the CD11b/CD18 integrin (Relman D., E. Tuomanen, S. Falkow, D.T. Golenbock, K. Saukkonen, and S.D. Wright. 1990. Cell. 61:1375-1382). FHA and the CD11b/CD18 binding loops of Factor X share amino acid sequence similarity. FHA peptides similar to Factor X binding loops inhibited 125I-Factor X binding to human neutrophils and prolonged clotting time. In addition, ETKEVDG and its Factor X analogue prevented transendothelial migration of leukocytes in vitro and reduced leukocytosis and blood brain barrier disruption in vivo. Interference with leukocyte migration by a coagulation-based peptide suggests a novel strategy for antiinflammatory therapy. PMID:7883955

  13. Phage display revisited: Epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology.

    PubMed

    Cariccio, Veronica Lanza; Domina, Maria; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Faleri, Agnese; Bruttini, Marco; Bartolini, Erika; Giuliani, Marzia Monica; Santini, Laura; Brunelli, Brunella; Norais, Nathalie; Borgogni, Erica; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero(®) anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes. PMID:26963435

  14. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p

    PubMed Central

    Li, Li; Lipke, Peter N.; Dranginis, Anne M.

    2016-01-01

    ABSTRACT FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the

  15. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p.

    PubMed

    Barua, Subit; Li, Li; Lipke, Peter N; Dranginis, Anne M

    2016-01-01

    FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of

  16. Identification of Lysine Residues in the Borrelia burgdorferi DbpA Adhesin Required for Murine Infection

    PubMed Central

    Fortune, Danielle E.; Lin, Yi-Pin; Deka, Ranjit K.; Groshong, Ashley M.; Moore, Brendan P.; Hagman, Kayla E.; Leong, John M.; Tomchick, Diana R.

    2014-01-01

    Decorin-binding protein A (DbpA) of Borrelia burgdorferi mediates bacterial adhesion to heparin and dermatan sulfate associated with decorin. Lysines K82, K163, and K170 of DbpA are known to be important for in vitro interaction with decorin, and the DbpA structure, initially solved by nuclear magnetic resonance (NMR) spectroscopy, suggests these lysine residues colocalize in a pocket near the C terminus of the protein. In the current study, we solved the structure of DbpA from B. burgdorferi strain 297 using X-ray crystallography and confirmed the existing NMR structural data. In vitro binding experiments confirmed that recombinant DbpA proteins with mutations in K82, K163, or K170 did not bind decorin, which was due to an inability to interact with dermatan sulfate. Most importantly, we determined that the in vitro binding defect observed upon mutation of K82, K163, or K170 in DbpA also led to a defect during infection. The infectivity of B. burgdorferi expressing individual dbpA lysine point mutants was assessed in mice challenged via needle inoculation. Murine infection studies showed that strains expressing dbpA with mutations in K82, K163, and K170 were significantly attenuated and could not be cultured from any tissue. Proper expression and cellular localization of the mutated DbpA proteins were examined, and NMR spectroscopy determined that the mutant DbpA proteins were structurally similar to wild-type DbpA. Taken together, these data showed that lysines K82, K163, and K170 potentiate the binding of DbpA to dermatan sulfate and that an interaction(s) mediated by these lysines is essential for B. burgdorferi murine infection. PMID:24842928

  17. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan.

    PubMed

    Ishikawa, Masahito; Yoshimoto, Shogo; Hayashi, Ayumi; Kanie, Junichi; Hori, Katsutoshi

    2016-08-01

    Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis. PMID:27074146

  18. Structural mechanisms underlying sequence-dependent variations in GAG affinities of decorin binding protein A, a Borrelia burgdorferi adhesin.

    PubMed

    Morgan, Ashli M; Wang, Xu

    2015-05-01

    Decorin-binding protein A (DBPA) is an important surface adhesin of the bacterium Borrelia burgdorferi, the causative agent of Lyme disease. DBPA facilitates the bacteria's colonization of human tissue by adhering to glycosaminoglycan (GAG), a sulfated polysaccharide. Interestingly, DBPA sequence variation among different strains of Borrelia spirochetes is high, resulting in significant differences in their GAG affinities. However, the structural mechanisms contributing to these differences are unknown. We determined the solution structures of DBPAs from strain N40 of B. burgdorferi and strain PBr of Borrelia garinii, two DBPA variants whose GAG affinities deviate significantly from strain B31, the best characterized version of DBPA. Our structures revealed that significant differences exist between PBr DBPA and B31/N40 DBPAs. In particular, the C-terminus of PBr DBPA, unlike C-termini from B31 and N40 DBPAs, is positioned away from the GAG-binding pocket and the linker between helices one and two of PBr DBPA is highly structured and retracted from the GAG-binding pocket. The repositioning of the C-terminus allowed the formation of an extra GAG-binding epitope in PBr DBPA and the retracted linker gave GAG ligands more access to the GAG-binding epitopes than other DBPAs. Characterization of GAG ligands' interactions with wild-type (WT) PBr and mutants confirmed the importance of the second major GAG-binding epitope and established the fact that the two epitopes are independent of one another and the new epitope is as important to GAG binding as the traditional epitope.

  19. Immunogenicity and Protective Efficacy against Enterotoxigenic Escherichia coli Colonization following Intradermal, Sublingual, or Oral Vaccination with EtpA Adhesin.

    PubMed

    Luo, Qingwei; Vickers, Tim J; Fleckenstein, James M

    2016-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETEC in vitro Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen. PMID:27226279

  20. Analysis of the Mycoplasma genitalium MgpB Adhesin to Predict Membrane Topology, Investigate Antibody Accessibility, Characterize Amino Acid Diversity, and Identify Functional and Immunogenic Epitopes

    PubMed Central

    Iverson-Cabral, Stefanie L.; Wood, Gwendolyn E.; Totten, Patricia A.

    2015-01-01

    Mycoplasma genitalium is a sexually transmitted pathogen and is associated with reproductive tract disease that can be chronic in nature despite the induction of a strong antibody response. Persistent infection exacerbates the likelihood of transmission, increases the risk of ascension to the upper tract, and suggests that M. genitalium may possess immune evasion mechanism(s). Antibodies from infected patients predominantly target the MgpB adhesin, which is encoded by a gene that recombines with homologous donor sequences, thereby generating sequence variation within and among strains. We have previously characterized mgpB heterogeneity over the course of persistent infection and have correlated the induction of variant-specific antibodies with the loss of that particular variant from the infected host. In the current study, we examined the membrane topology, antibody accessibility, distribution of amino acid diversity, and the location of functional and antigenic epitopes within the MgpB adhesin. Our results indicate that MgpB contains a single transmembrane domain, that the majority of the protein is surface exposed and antibody accessible, and that the attachment domain is located within the extracellular C-terminus. Not unexpectedly, amino acid diversity was concentrated within and around the three previously defined variable regions (B, EF, and G) of MgpB; while nonsynonymous mutations were twice as frequent as synonymous mutations in regions B and G, region EF had equal numbers of nonsynonymous and synonymous mutations. Interestingly, antibodies produced during persistent infection reacted predominantly with the conserved C-terminus and variable region B. In contrast, infection-induced antibodies reacted poorly with the N-terminus, variable regions EF and G, and intervening conserved regions despite the presence of predicted B cell epitopes. Overall, this study provides an important foundation to define how different segments of the MgpB adhesin contribute to

  1. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  2. The Soluble Recombinant Neisseria meningitidis Adhesin NadAΔ351–405 Stimulates Human Monocytes by Binding to Extracellular Hsp90

    PubMed Central

    Cecchini, Paola; Tavano, Regina; Polverino de Laureto, Patrizia; Franzoso, Susanna; Mazzon, Cristina; Montanari, Paolo; Papini, Emanuele

    2011-01-01

    The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadAΔ351–405, devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadAΔ351–405 cellular effects in monocytes. We show that NadAΔ351–405 (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadAΔ351–405 cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadAΔ351–405 /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadAΔ351–405 and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadAΔ351–405 determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadAΔ351–405 alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by

  3. The soluble recombinant Neisseria meningitidis adhesin NadA(Δ351-405) stimulates human monocytes by binding to extracellular Hsp90.

    PubMed

    Cecchini, Paola; Tavano, Regina; Polverino de Laureto, Patrizia; Franzoso, Susanna; Mazzon, Cristina; Montanari, Paolo; Papini, Emanuele

    2011-01-01

    The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadA(Δ351-405,) devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadA(Δ351-405) cellular effects in monocytes. We show that NadA(Δ351-405) (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadA(Δ351-405) cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadA(Δ351-405) /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadA(Δ351-405) and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadA(Δ351-405) determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadA(Δ351-405) alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by

  4. OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila.

    PubMed

    Kebbi-Beghdadi, Carole; Domröse, Andreas; Becker, Elisabeth; Cisse, Ousmane H; Hegemann, Johannes H; Greub, Gilbert

    2015-08-01

    Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.

  5. Investigation of engineered bacterial adhesins for opportunity to interface cells with abiotic materials

    NASA Astrophysics Data System (ADS)

    Terrell, Jessica L.; Dong, Hong; Holthoff, Ellen L.; Small, Meagan C.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    The convenience of cellular genetic engineering has afforded the power to build `smart' synthetic biological tools with novel applications. Here, we have explored opportunities to hybridize engineered cells with inorganic materials toward the development of 'living' device-compatible systems. Cellular structural biology is engineerable based on the ability to rewrite genetic code to generate recombinant, foreign, or even unnatural proteins. With this capability on the biological end, it should be possible to achieve superior abio-compatibility with the inorganic materials that compose current microfabricated technology. This work investigated the hair-like appendages of Escherichia coli known as Type 1 fimbriae that enable natural adhesion to glycosylated substrates. Sequence alterations within the fimbrial gene cluster were found to be well-tolerated, evidenced by tagging the fimbriae with peptide-based probes. As a further development, fimbriae tips could be reconfigured to, in turn, alter cell binding. In particular, the fimbriae were fused with a genetically optimized peptide-for-inorganics to enable metal binding. This work established methodologies to systematically survey cell adhesion properties across a suite of fimbriae-modified cell types as well as to direct patterned cell adhesion. Cell types were further customized for added complexity including turning on secondary gene expression and binding to gold surfaces. The former demonstrates potential for programmable gene switches and the latter for interfacing biology with inorganic materials. In general, the incorporation of 'programmed' cells into devices can be used to provide the feature of dynamic and automated cell response. The outcomes of this study are foundational toward the critical feature of deliberate positioning of cells as configurable biocomponentry. Overall, cellular integration into bioMEMs will yield advanced sensing and actuation.

  6. Relationship between adhesin genes and biofilm formation in vancomycin-intermediate Staphylococcus aureus clinical isolates.

    PubMed

    Mirzaee, Mohsen; Najar-Peerayeh, Shahin; Behmanesh, Mehrdad; Moghadam, Mahdi Forouzandeh

    2015-05-01

    The adherence ability and biofilm production are the characteristic of enhanced virulence among isolates of vancomycin-intermediate Staphylococcus aureus (VISA) strains. Although biofilm-forming properties have been well demonstrated in S. aureus, they still remain unclear among the recently emerged types of VISA strains. The aim of this study was to investigate correlations between the distribution of genes encoding staphylococcal microbial surface components which recognise adhesive matrix molecules (MSCRAMMs), the surface protein A (Spa) types, MLST types and the ability of VISA strains to biofilm formation. Microtiter plate assay (Mtp) results showed that all eleven biofilm producer isolates were adherent at various levels. PCR experiments showed that nine MSCRAMM genes, clfA, clfB, fnbA and fib were detected in all of the strains, indicating a high prevalence. The prevalences of other MSCRAMMs and icaABCD genes were found to be variable and not equally distributed among the VISA strains. There was no direct correlation between the distribution of adhesion-related genes and biofilm formation, which indicates that the presence or absence of these genes cannot be employed as an indicator of the ability to biofilm formation. Isolates which belong to the same Spa and ST types showed similar adherence capacities in the Mtp assay, but significant differences were observed between different Spa types. The findings of this study, using quantitative methods, have shown that genotypically different strains of VISA have different capabilities to produce biofilms. This may be caused by a difference in the spa types of VISA isolates or due to their differences in the expression of MSCRAMM and icaABCD genes.

  7. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    PubMed Central

    Caro-Astorga, Joaquín; Pérez-García, Alejandro; de Vicente, Antonio; Romero, Diego

    2015-01-01

    Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed (i) the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and (ii) the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog. PMID:25628606

  8. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae.

    PubMed

    Stahlhut, Steen G; Chattopadhyay, Sujay; Struve, Carsten; Weissman, Scott J; Aprikian, Pavel; Libby, Stephen J; Fang, Ferric C; Krogfelt, Karen Angeliki; Sokurenko, Evgeni V

    2009-03-01

    FimH is an adhesive subunit of type 1 fimbriae expressed by different enterobacterial species. The enteric bacterium Klebsiella pneumoniae is an environmental organism that is also a frequent cause of sepsis, urinary tract infection (UTI), and liver abscess. Type 1 fimbriae have been shown to be critical for the ability of K. pneumoniae to cause UTI in a murine model. We show here that the K. pneumoniae fimH gene is found in 90% of strains from various environmental and clinical sources. The fimH alleles exhibit relatively low nucleotide and structural diversity but are prone to frequent horizontal-transfer events between different bacterial clones. Addition of the fimH locus to multiple-locus sequence typing significantly improved the resolution of the clonal structure of pathogenic strains, including the K1 encapsulated liver isolates. In addition, the K. pneumoniae FimH protein is targeted by adaptive point mutations, though not to the same extent as FimH from uropathogenic Escherichia coli or TonB from the same K. pneumoniae strains. Such adaptive mutations include a single amino acid deletion from the signal peptide that might affect the length of the fimbrial rod by affecting FimH translocation into the periplasm. Another FimH mutation (S62A) occurred in the course of endemic circulation of a nosocomial uropathogenic clone of K. pneumoniae. This mutation is identical to one found in a highly virulent uropathogenic strain of E. coli, suggesting that the FimH mutations are pathoadaptive in nature. Considering the abundance of type 1 fimbriae in Enterobacteriaceae, our present finding that fimH genes are subject to adaptive microevolution substantiates the importance of type 1 fimbria-mediated adhesion in K. pneumoniae.

  9. [The role of E. coli adhesins in the pathogenesis of urinary infection].

    PubMed

    Dalet Escribá, F; Segovia Talero, T; del Río Pérez, G

    1991-06-01

    One thousand five hundred strains obtained from patients suffering from different clinical forms of urinary infections (UI) and dependent glands have been studied with the aim of establishing the pathogenic responsibility of E. coli adhesion protein (ADH) in urinary infections (UI). ADH were determined using agglutination techniques with guinea pig and human red cells, C. albicans and S. cerevisiae spores and GAL-GAL sensitized latex. In non complicated UI, the presence of ADH is the main invasion mechanism for E. coli. The frequency of adherent strains is very high (569/648) in acute cases (207/247 cystitis + 69/98 recurrent cystitis + 108/114 pyelonephritis + 140/154 prostatitis + 28/35 orchyepidimitis and scarce (14/184) in asymptomatic or chronic cases (6/107 bacteriurias + 7/67 prostatitis + 1/10 orchyepidimitis). A close relationship is established between the presence of ADH and clinical symptoms. The acute cases with general symptoms are caused in 85% of cases (188/216) by strains with ADH type MR specially subtype P. The acute cases with local symptoms (only urinary syndrome) are caused in 77% of cases (297/387) by strains with ADH type Ms. In complicated UI the expression of adhesion proteins does not constitute and essential requisite in order to invade the urinary tract. It is suggested that males are significantly more resistant the females to UI both parenchymal and urinary tract. It is deduced that underlying factors are more predisposing to UI the smaller the adherence rate of isolated strains is. Thus, reflux and neurogenic bladder probes are by far more aggressive alterations than prostatic adenoma, bladder tumor and lithiasis.

  10. Surfactant Protein A (SP-A)-mediated Clearance of Staphylococcus aureus Involves Binding of SP-A to the Staphylococcal Adhesin Eap and the Macrophage Receptors SP-A Receptor 210 and Scavenger Receptor Class A*

    PubMed Central

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V.; Kobzik, Lester; Chroneos, Zissis C.

    2011-01-01

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap+) but not Eap-deficient (Eap−) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap+ S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap+ but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap+ S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap− S. aureus was impaired. Macrophages express two isoforms: SP-R210L and SP-R210S. The results show that WT alveolar macrophages are distinguished by expression of SP-R210L, whereas SR-A−/− alveolar macrophages are deficient in SP-R210L expressing only SP-R210S. Accordingly, SR-A−/− mice were highly susceptible to both Eap+ and Eap− S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210L mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A. PMID:21123169

  11. Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin

    PubMed Central

    Heiniger, Ryan W.; Winther-Larsen, Hanne C.; Pickles, Raymond J.; Koomey, Michael; Wolfgang, Matthew C.

    2010-01-01

    Summary Tissue damage predisposes humans to life-threatening disseminating infection by the opportunistic pathogen Pseudomonas aeruginosa. Bacterial adherence to host tissue is a critical first step in this infection process. It is well established that P. aeruginosa attachment to host cells involves type IV pili (TFP), which are retractile surface fibers. The molecular details of attachment and the identity of the bacterial adhesin and host receptor remain controversial. Using a mucosal epithelium model system derived from primary human tissue, we show that the pilus-associated protein PilY1 is required for bacterial adherence. We establish that P. aeruginosa preferentially binds to exposed basolateral host cell surfaces, providing a mechanistic explanation for opportunistic infection of damaged tissue. Further, we demonstrate that invasion and fulminant infection of intact host tissue requires the coordinated and mutually dependent action of multiple bacterial factors, including pilus fiber retraction and the host cell intoxication system, termed type III secretion. Our findings offer new and important insights into the complex interactions between a pathogen and its human host and provide compelling evidence that PilY1 serves as the principal P. aeruginosa adhesin for human tissue and that it specifically recognizes a host receptor localized or enriched on basolateral epithelial cell surfaces. PMID:20331639

  12. A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron.

    PubMed

    Moreno-Brito, Verónica; Yáñez-Gómez, Carmina; Meza-Cervantez, Patricia; Avila-González, Leticia; Rodríguez, Mario Alberto; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2005-02-01

    Trichomonas vaginalis, a human sexually transmitted protozoan, relies on adherence to the vaginal epithelium for colonization and maintenance of infection in the host. Thus, adherence molecules play a fundamental role in the trichomonal infection. Here, we show the identification and characterization of a 120 kDa surface glycoprotein (AP120) induced by iron, which participates in cytoadherence. AP120 is synthesized by the parasite when grown in 250 microM iron medium. Antibodies to AP120 and the electro-eluted AP120 inhibited parasite adherence in a concentration-dependent manner, demonstrating its participation in cytoadherence. In addition, a protein of 130 kDa was detected on the surface of HeLa cells as the putative receptor for AP120. By peptide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the AP120 adhesin showed homology with a hydrogenosomal enzyme, the pyruvate:ferredoxin oxidoreductase (PFO) encoded by the pfoa gene. This homology was confirmed by immunoblot and indirect immunofluorescence assays with an antibody to the carboxy-terminus region of the Entamoeba histolytica PFO. Reverse transcription polymerase chain reaction (RT-PCR) assays showed that a pfoa-like gene was better transcribed in trichomonads grown in iron-rich medium. In conclusion, the homology of AP120 to PFO suggests that this novel adhesin induced by iron could be an example of moonlighting protein in T. vaginalis.

  13. Cooperative role of antibodies against heat-labile toxin and the EtpA Adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Hamilton, David J; Fleckenstein, James M

    2012-10-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonization in vivo and toxin delivery to epithelial cells in vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development. PMID:22875600

  14. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction.

    PubMed

    Chae, Keun; Gonong, Benedict J; Kim, Seung-Chul; Kieslich, Chris A; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M

    2010-10-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction.

  15. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction

    PubMed Central

    Chae, Keun; Gonong, Benedict J.; Kim, Seung-Chul; Kieslich, Chris A.; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M.

    2010-01-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction. PMID:20667964

  16. Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli.

    PubMed

    Zhou, Mingxu; Guo, Zhiyan; Yang, Yang; Duan, Qiangde; Zhang, Qi; Yao, Fenghua; Zhu, Jun; Zhang, Xinjun; Hardwidge, Philip R; Zhu, Guoqiang

    2014-01-10

    Bacteria that form biofilms are often highly resistant to antibiotics and are capable of evading the host immune system. To evaluate the role of flagellin and F4 fimbriae on biofilm formation by enterotoxigenic Escherichia coli (ETEC), we deleted the fliC (encoding the major flagellin protein) and/or the faeG (encoding the major subunit of F4 fimbriae) genes from ETEC C83902. Biofilm formation was reduced in the fliC mutant but increased in the faeG mutant, as compared with the wild-type strain. The expression of AI-2 quorum sensing associated genes was regulated in the fliC and faeG mutants, consistent with the biofilm formation of these strains. But, deleting fliC and/or faeG also inhibited AI-2 quorum sensing activity. PMID:24238669

  17. Relationship between phylogenetic groups, antibiotic resistance and patient characteristics in terms of adhesin genes in cystitis and pyelonephritis isolates of Escherichia coli.

    PubMed

    Er, Doganhan Kadir; Dundar, Devrim; Uzuner, Huseyin; Osmani, Agim

    2015-12-01

    Extraintestinal pathogenic Escherichia coli (E. coli) is considered as the main causative agent of urinary tract infections worldwide. The relationship between antimicrobial resistance, phylogenetic groups, patient characteristics and adhesin virulence genes are complex and not fully understood. In this study, among 146 urinary isolates of E. coli, phylogenetic groups and various adhesin virulence genes were examined with multiplex Polymerase Chain Reaction methods. Patient characteristics divided into sex, cystitis and pyelonephritis; community-acquired and hospital-acquired; complicated and uncomplicated infection. Antimicrobial resistance was also determined. The papAH gene was seen more often in pyelonephritis than cystitis and female than male patients. iha gene was more frequent in hospital-acquired infections than in community-acquired infections. sfa/focDE was more frequent in ampicillin, amikacin, gentamicin, nalidixic acid, norfloxacin, cefuroxime, ceftriaxone, cefazolin, cefotaxime, ciprofloxacin and trimethoprim/sulfamethoxazole susceptible and extended-spectrum β-lactamase (ESBL) and multi-drug resistance (MDR) negative isolates. focG was seen more often in nalidixic acid, norfloxacin, cefuroxime, ceftriaxone, ciprofloxacin susceptible and MDR negative isolates. fimH and papAH were more commonly observed in amoxicillin/clavulanic acid and cefotaxime susceptible isolates, respectively. iha and afa/draBC genes were more frequent in resistant isolates than the susceptible ones; for iha, in ampicillin, amoxicillin/clavulanic acid, nalidixic acid, cefuroxime, ceftriaxone resistant and ESBL and MDR positive isolates; for afa/draBC, in cefotaxime, cefuroxime, ciprofloxacin, trimethoprim/sulfamethoxazole resistant and ESBL and MDR positive isolates, this trend was observed. ST 131 E. coli virulence gene pattern has a direct effect on resistance profile. Isolates belong to that clonal group has MDR and commonly harbour afa/draBC and iha genes. Our findings may

  18. The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding.

    PubMed

    Kingsley, Robert A; Keestra, A Marijke; de Zoete, Marcel R; Bäumler, Andreas J

    2004-04-01

    Introduction of Salmonella enterica serotype Typhimurium into food products results from its ability to persist in the intestine of healthy livestock by mechanisms that are poorly understood. The non-fimbrial adhesin ShdA is a fibronectin binding protein required for persistent intestinal carriage of S. Typhimurium. We further investigated the molecular mechanism of ShdA-mediated intestinal persistence by determining the binding-site of this receptor in fibronectin. Analysis of ShdA binding to fibronectin proteolytic fragments and to recombinant fibronectin fusion proteins identified the (13)FnIII repeat module of the Hep-2 domain as the primary binding site for this adhesin. The (13)FnIII repeat module of fibronectin contains a cationic cradle formed by six basic residues (R6, R7, R9, R23, K25 and R54) that is a high affinity heparin-binding site conserved among fibronectin sequences from frogs to man. Binding of ShdA to the (13)FnIII repeat module of fibronectin and to a second extracellular matrix protein, Collagen I, could be inhibited by heparin. Furthermore, binding of ShdA to the Hep-2 domain was sensitive to the ionic buffer strength, suggesting that binding involved ionic interactions. We therefore determined whether amino acid substitutions of basic residues in the cationic cradle of the Hep-2 domain that inhibit heparin binding also abrogate binding of ShdA. Combined substitution of R6S and R7S strongly reduced ShdA binding to (13)FnIII. These data suggest that ShdA binds the Hep-2 domain of fibronectin by a mechanism that may mimic binding of the host polysaccharide heparin. PMID:15066025

  19. Emerging ST121/agr4 community-associated methicillin-resistant Staphylococcus aureus (MRSA) with strong adhesin and cytolytic activities: trigger for MRSA pneumonia and fatal aspiration pneumonia in an influenza-infected elderly.

    PubMed

    Wan, T-W; Tomita, Y; Saita, N; Konno, K; Iwao, Y; Hung, W-C; Teng, L-J; Yamamoto, T

    2016-09-01

    The pathogenesis of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) pneumonia in influenza-infected elderly individuals has not yet been elucidated in detail. In the present study, a 92-year-old man infected with influenza developed CA-MRSA pneumonia. His CA-MRSA was an emerging type, originated in ST121/agr4 S. aureus, with diversities of Panton-Valentine leucocidin (PVL)(-)/spat5110/SCCmecV(+) versus PVL(+)/spat159((etc.))/SCCmec (-), but with common virulence potentials of strong adhesin and cytolytic activities. Resistance to erythromycin/clindamycin (inducible-type) and gentamicin was detected. Pneumonia improved with the administration of levofloxacin, but with the subsequent development of fatal aspiration pneumonia. Hence, characteristic CA-MRSA with strong adhesin and cytolytic activities triggered influenza-related sequential complications.

  20. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes.

    PubMed

    Guillotte, Micheline; Juillerat, Alexandre; Igonet, Sébastien; Hessel, Audrey; Petres, Stéphane; Crublet, Elodie; Le Scanf, Cécile; Lewit-Bentley, Anita; Bentley, Graham A; Vigan-Womas, Inès; Mercereau-Puijalon, Odile

    2015-01-01

    Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting. PMID:26222304

  1. Detection of fusobacterium nucleatum and fadA adhesin gene in patients with orthodontic gingivitis and non-orthodontic periodontal inflammation.

    PubMed

    Liu, Ping; Liu, Yi; Wang, Jianning; Guo, Yang; Zhang, Yujie; Xiao, Shuiqing

    2014-01-01

    Fusobacterium nucleatum is one of the most abundant gram-negative bacilli colonizing the subgingival plaque and closely associated with periodontal disease. However it is unclear whether F. nucleatum is involved in gingival inflammation under orthodontic appliance. A novel adhesin, FadA, which is unique to oral Fusobacteria, is required for F. nucleatum binding and invasion to epithelial cells and thus may play an important role in colonization of Fusobacterium in the host. In this study, we evaluated the prevalence of F. nucleatum and its virulence factor FadA adhesion gene (fadA) in 169 subgingival biofilm samples from 55 cases of gingivitis patients with orthodontic appliances, 49 cases of gingivitis patients without orthodontic treatment, 35 cases of periodontitis patients and 30 cases of periodontally healthy people via PCR. The correlations between the F. nucleatum/fadA and gingivitis index(GI)was also analyzed. The detection rate of F. nucleatum/fadA in periodontitis group and non-orthodontic gingivitis group was higher than the other two groups (p<0.01) while it was higher in orthodontic gingivitis group than in health people (p<0.05). An obviously positive correlation was observed between the prevalence of F. nucleatum/fadA and GI. F. nucleatum carrying fadA may be more closely related to the development of gingivitis and periodontal disease compared with orthodontic gingivitis.

  2. The Actinobacillus pleuropneumoniae HMW1C-Like Glycosyltransferase Mediates N-Linked Glycosylation of the Haemophilus influenzae HMW1 Adhesin

    PubMed Central

    Choi, Kyoung-Jae; Grass, Susan; Paek, Seonghee; St. Geme, Joseph W.; Yeo, Hye-Jeong

    2010-01-01

    The Haemophilus influenzae HMW1 adhesin is an important virulence exoprotein that is secreted via the two-partner secretion pathway and is glycosylated at multiple asparagine residues in consensus N-linked sequons. Unlike the heavily branched glycans found in eukaryotic N-linked glycoproteins, the modifying glycan structures in HMW1 are mono-hexoses or di-hexoses. Recent work demonstrated that the H. influenzae HMW1C protein is the glycosyltransferase responsible for transferring glucose and galactose to the acceptor sites of HMW1. An Actinobacillus pleuropneumoniae protein designated ApHMW1C shares high-level homology with HMW1C and has been assigned to the GT41 family, which otherwise contains only O-glycosyltransferases. In this study, we demonstrated that ApHMW1C has N-glycosyltransferase activity and is able to transfer glucose and galactose to known asparagine sites in HMW1. In addition, we found that ApHMW1C is able to complement a deficiency of HMW1C and mediate HMW1 glycosylation and adhesive activity in whole bacteria. Initial structure-function studies suggested that ApHMW1C consists of two domains, including a 15-kDa N-terminal domain and a 55-kDa C-terminal domain harboring glycosyltransferase activity. These findings suggest a new subfamily of HMW1C-like glycosyltransferases distinct from other GT41 family O-glycosyltransferases. PMID:21209858

  3. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development

    SciTech Connect

    Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.; Dwivedi, Prabhat; Krishnan, Vengadesan; Cisar, John O.; Das, Asis; Narayana, Sthanam V.L.; Ton-That, Hung

    2011-09-06

    By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.

  4. Inhibition and Reversal of Microbial Attachment by an Antibody with Parasteric Activity against the FimH Adhesin of Uropathogenic E. coli

    PubMed Central

    Friend, Della; Jalan, Aachal; Gupta, Shivani; Interlandi, Gianluca; Liu, Yan; Tchesnokova, Veronika; Rodriguez, Victoria B.; Sumida, John P.; Strong, Roland K.; Wu, Xue-Ru; Thomas, Wendy E.; Sokurenko, Evgeni V.

    2015-01-01

    Attachment proteins from the surface of eukaryotic cells, bacteria and viruses are critical receptors in cell adhesion or signaling and are primary targets for the development of vaccines and therapeutic antibodies. It is proposed that the ligand-binding pocket in receptor proteins can shift between inactive and active conformations with weak and strong ligand-binding capability, respectively. Here, using monoclonal antibodies against a vaccine target protein - fimbrial adhesin FimH of uropathogenic Escherichia coli, we demonstrate that unusually strong receptor inhibition can be achieved by antibody that binds within the binding pocket and displaces the ligand in a non-competitive way. The non-competitive antibody binds to a loop that interacts with the ligand in the active conformation of the pocket but is shifted away from ligand in the inactive conformation. We refer to this as a parasteric inhibition, where the inhibitor binds adjacent to the ligand in the binding pocket. We showed that the receptor-blocking mechanism of parasteric antibody differs from that of orthosteric inhibition, where the inhibitor replaces the ligand or allosteric inhibition where the inhibitor binds at a site distant from the ligand, and is very potent in blocking bacterial adhesion, dissolving surface-adherent biofilms and protecting mice from urinary bladder infection. PMID:25974133

  5. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Fang, Sunan; McDonald, Melissa A; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V; Plikaytis, Bonnie B; Posey, James E; Amara, Rama Rao; Sable, Suraj B

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.

  6. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin

    PubMed Central

    Li, Yirong; Chen, Yabing; Huang, Xiang; Zhou, Meixian; Wu, Ren; Dong, Shengli; Pritchard, David G.; Fives-Taylor, Paula; Wu, Hui

    2010-01-01

    Summary Fap1-like serine-rich proteins are a new family of bacterial adhesins found in a variety of streptococci and staphylococci that have been implicated in bacterial pathogenesis. A gene cluster encoding glycosyltransferases and accessory Sec components is required for Fap1 glycosylation and biogenesis in Streptococcus parasanguinis. Here we report that the glycosylation-associated protein, Gap1, contributes to glycosylation and biogenesis of Fap1 by interacting with another glycosylation-associated protein, Gap3. Gap1 shares structural homology with glycosyltransferases. The gap1 mutant, like the gap3 mutant, produced an aberrantly-glycosylated Fap1 precursor and failed to produce mature Fap1, suggesting that Gap1 and Gap3 might function in concert in the Fap1 glycosylation and biogenesis. Indeed, Gap1 interacted with Gap3 in vitro and in vivo. A Gap1 amino-terminal motif, within a highly conserved domain of unknown function (DUF1975) identified in many bacterial glycosyltrasnferases, was required for the Gap1-Gap3 interaction. Deletion of one, four, and nine amino acids within the conserved motif gradually inhibited the Gap1-Gap3 interaction and diminished production of mature Fap1 and concurrently increased production of the Fap1 precursor. Consequently, bacterial adhesion to an in vitro tooth model was also reduced. These data demonstrate that the Gap1-Gap3 interaction is required for Fap1 biogenesis and Fap1-dependent bacterial adhesion. PMID:18826412

  7. Methicillin-Susceptible Staphylococcus aureus Endocarditis Isolates Are Associated With Clonal Complex 30 Genotype and a Distinct Repertoire of Enterotoxins and Adhesins

    PubMed Central

    Nienaber, Juhsien J.C.; Sharma Kuinkel, Batu K.; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H.; Barriere, Steve; Woods, Christopher W.; Chu, Vivian H.; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G.Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R.; Reller, L. Barth

    2011-01-01

    Background. Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. Methods. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. Results. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). Conclusions. MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study. PMID:21844296

  8. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model.

    PubMed

    Rupp, M E; Ulphani, J S; Fey, P D; Bartscht, K; Mack, D

    1999-05-01

    The production of biofilm is thought to be crucial in the pathogenesis of prosthetic-device infections caused by Staphylococcus epidermidis. An experimental animal model was used to assess the importance of biofilm production, which is mediated by polysaccharide intercellular adhesin/hemagglutinin (PIA/HA), in the pathogenesis of a biomaterial-based infection. Mice were inoculated along the length of a subcutaneously implanted intravenous catheter with either wild-type S. epidermidis 1457 or its isogenic PIA/HA-negative mutant. The wild-type strain was significantly more likely to cause a subcutaneous abscess than the mutant strain (P < 0.01) and was significantly less likely to be eradicated from the inoculation site by host defense (P < 0.05). In addition, the wild-type strain was found to adhere to the implanted catheters more abundantly than the PIA/HA-negative mutant (P < 0.05). The reliability of the adherence assay was assessed by scanning electron microscopy. To exclude contamination or spontaneous infection, bacterial strains recovered from the experimental animals were compared to inoculation strains by analysis of restriction fragment length polymorphism patterns by pulsed-field gel electrophoresis. In vitro binding of the wild-type strain and its isogenic mutant to a fibronectin-coated surface was similar. These results confirm the importance of biofilm production, mediated by PIA/HA, in the pathogenesis of S. epidermidis experimental foreign body infection.

  9. Detection of fusobacterium nucleatum and fadA adhesin gene in patients with orthodontic gingivitis and non-orthodontic periodontal inflammation.

    PubMed

    Liu, Ping; Liu, Yi; Wang, Jianning; Guo, Yang; Zhang, Yujie; Xiao, Shuiqing

    2014-01-01

    Fusobacterium nucleatum is one of the most abundant gram-negative bacilli colonizing the subgingival plaque and closely associated with periodontal disease. However it is unclear whether F. nucleatum is involved in gingival inflammation under orthodontic appliance. A novel adhesin, FadA, which is unique to oral Fusobacteria, is required for F. nucleatum binding and invasion to epithelial cells and thus may play an important role in colonization of Fusobacterium in the host. In this study, we evaluated the prevalence of F. nucleatum and its virulence factor FadA adhesion gene (fadA) in 169 subgingival biofilm samples from 55 cases of gingivitis patients with orthodontic appliances, 49 cases of gingivitis patients without orthodontic treatment, 35 cases of periodontitis patients and 30 cases of periodontally healthy people via PCR. The correlations between the F. nucleatum/fadA and gingivitis index(GI)was also analyzed. The detection rate of F. nucleatum/fadA in periodontitis group and non-orthodontic gingivitis group was higher than the other two groups (p<0.01) while it was higher in orthodontic gingivitis group than in health people (p<0.05). An obviously positive correlation was observed between the prevalence of F. nucleatum/fadA and GI. F. nucleatum carrying fadA may be more closely related to the development of gingivitis and periodontal disease compared with orthodontic gingivitis. PMID:24416378

  10. Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections.

    PubMed

    Arciola, Carla Renata; Campoccia, Davide; Gamberini, Simonetta; Donati, M Elena; Montanaro, Lucio

    2004-08-01

    Attention has recently been paid to identify and elucidate those pathogenetic mechanisms, which play a significant role in sustaining the early phases of Staphylococcus epidermidis colonisation and infection development. Several analogies with the physiology of Staphylococcus aureus, a more thoroughly investigated pathogen, have lead to carefully consider all bacterial surface components that mediate cell adhesion. This study aimed at investigating the presence of the fbe gene encoding for a fibrinogen-binding protein in a collection of 107 S. epidermidis strains isolated from orthopaedic infections and 67 from central venous catheter-associated infections. The strains isolated from orthopaedic infections were in large part associated to four different classes of orthopaedic devices, respectively: internal fixation devices, external fixation devices, knee arthroprostheses and hip arthroprostheses. The molecular epidemiology analysis performed by PCR enlightened a statistically significant difference in the prevalence of this adhesion mechanism between orthopaedic infections and catheter-related infections, respectively, of 78% and 91%. The prevalence of fbe ranged from 67% to 91%, suggesting that, even though this adhesin is not strictly necessary for the development of infection, nevertheless it represents a rather common characteristic of strains causing clinical infections, this independently on the presence or the absence of implant materials. PMID:15120529

  11. The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity.

    PubMed

    Wang, Lei; Qin, Wanhai; Yang, Shuxin; Zhai, Ruidong; Zhou, Liang; Sun, Changjiang; Pan, Fengguang; Ji, Qun; Wang, Yu; Gu, Jingmin; Feng, Xin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-05-15

    Actinobacillus pleuropneumoniae is a causative agent of porcine pleuropneumonia, which is a highly contagious endemic disease of pigs. Adhesion is a critical first step in the infection process. Trimeric autotransporter adhesions (TAAs) have been identified as novel virulence factors; however, little is known on their roles in A. pleuropneumoniae pathogenicity. Here, our data show that YadA-like head region (Adh) of Apa1 was the optimal adhesion functional domain via segment expression and adhesion assays in vitro. Additionally, Adh induced partial protection against A. pleuropneumoniae 5b L20 and serotypes 1, 3, and 5a in mice. The deletion of Adh gene significantly decreased autoaggregation, biofilm formation and adherence to host cells in vitro. Furthermore, with delaying of clinical symptoms, reducing production of pro-inflammatory cytokines and lessening the lung injury after infection, Adh deletion strain (5bϕAdh) significantly reduced the pathogenicity to piglets. To elucidate the mechanism of lung injury, the differentially expressed genes in the lung tissues of piglets infected with the 5b L20 or 5bϕAdh strains were investigated using microarray analysis and validated by qRT-PCR. Compared with the 5b L20 infected piglets, 495 genes were differentially expressed in 5bϕAdh infected lung tissue (221 upregulated and 274 downregulated). Especially, the antigen processing and presentation gene IFI30 was increased following infection with the 5bϕAdh strain. Thus, Adh may enhance pathogenicity by depressing host immune recognition. We conclude that the head domain of the A. pleuropneumoniae trimeric autotransporter Apa1 regulates autoagglutination, biofilm formation, adhesion to host cells and pathogenicity.

  12. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    PubMed

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.

  13. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65.

    PubMed

    Kucknoor, Ashwini S; Mundodi, Vasanthakrishna; Alderete, John F

    2007-11-01

    We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65. PMID:17590165

  14. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65

    PubMed Central

    Kucknoor, Ashwini S.; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65. PMID:17590165

  15. Strain-Specific Variation of the Decorin-Binding Adhesin DbpA Influences the Tissue Tropism of the Lyme Disease Spirochete

    PubMed Central

    Lin, Yi-Pin; Benoit, Vivian; Yang, Xiuli; Martínez-Herranz, Raúl; Pal, Utpal; Leong, John M.

    2014-01-01

    Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the U.S., is closely associated with arthritis. The attachment of microbial pathogens to cells or to the extracellular matrix of target tissues may promote colonization and disease, and the Lyme disease spirochete encodes several surface proteins, including the decorin- and dermatan sulfate-binding adhesin DbpA, which vary among strains and have been postulated to contribute to strain-specific differences in tissue tropism. DbpA variants differ in their ability to bind to its host ligands and to cultured mammalian cells. To directly test whether variation in dbpA influences tissue tropism, we analyzed murine infection by isogenic B. burgdorferi strains that encode different dbpA alleles. Compared to dbpA alleles of B. afzelii strain VS461 or B. burgdorferi strain N40-D10/E9, dbpA of B. garinii strain PBr conferred the greatest decorin- and dermatan sulfate-binding activity, promoted the greatest colonization at the inoculation site and heart, and caused the most severe carditis. The dbpA of strain N40-D10/E9 conferred the weakest decorin- and GAG-binding activity, but the most robust joint colonization and was the only dbpA allele capable of conferring significant joint disease. Thus, dbpA mediates colonization and disease by the Lyme disease spirochete in an allele-dependent manner and may contribute to the etiology of distinct clinical manifestations associated with different Lyme disease strains. This study provides important support for the long-postulated model that strain-specific variations of Borrelia surface proteins influence tissue tropism. PMID:25079227

  16. The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH.

    PubMed

    Wellens, Adinda; Lahmann, Martina; Touaibia, Mohamed; Vaucher, Jonathan; Oscarson, Stefan; Roy, René; Remaut, Han; Bouckaert, Julie

    2012-06-19

    Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections. During infection, UPEC adhere to mannosylated glycoreceptors on the urothelium via the FimH adhesin located at the tip of type 1 pili. Synthetic FimH antiadhesives such as alkyl and phenyl α-D-mannopyranosides are thus ideal candidates for the chemical interception of this crucial step in pathogenesis. The crystal structures of the FimH lectin domain in its ligand-free form and in complexes with eight medium- and high-affinity mannopyranoside inhibitors are presented. The thermodynamic profiles of the FimH-inhibitor interactions indicate that the binding of FimH to α-D-mannopyranose is enthalpy-driven and has a negative entropic change. Addition of a hydrophobic aglycon influences the binding enthalpy and can induce a favorable entropic change. The alleviation of the entropic cost is at least in part explained by increased dynamics in the tyrosine gate (Tyr48 and Tyr137) of the FimH receptor-binding site upon binding of the ligand. Ligands with a phenyl group directly linked to the anomeric oxygen of α-D-mannose introduce the largest dynamics into the Tyr48 side chain, because conjugation with the anomeric oxygen of α-D-mannose forces the aromatic aglycon into a conformation that comes into close contact (≈2.65 Å) with Tyr48. A propargyl group in this position predetermines the orientation of the aglycon and significantly decreases affinity. FimH has the highest affinity for α-D-mannopyranosides substituted with hydrophobic aglycons that are compatible in shape and electrostatic properties to the tyrosine gate, such as heptyl α-D-mannose. PMID:22657089

  17. Analysis of the genetic determinants coding for the S-fimbrial adhesin (sfa) in different Escherichia coli strains causing meningitis or urinary tract infections.

    PubMed

    Ott, M; Hacker, J; Schmoll, T; Jarchau, T; Korhonen, T K; Goebel, W

    1986-12-01

    Recently we have described the molecular cloning of the genetic determinant coding for the S-fimbrial adhesin (Sfa), a sialic acid-recognizing pilus frequently found among extraintestinal Escherichia coli isolates. Fimbriae from the resulting Sfa+ E. coli K-12 clone were isolated, and an Sfa-specific antiserum was prepared. Western blots indicate that S fimbriae isolated from different uropathogenic and meningitis-associated E. coli strains, including O83:K1 isolates, were serologically related. The Sfa-specific antibodies did not cross-react with P fimbriae, but did cross-react with F1C fimbriae. Furthermore the sfa+ recombinant DNAs and some cloned sfa-flanking regions were used as probes in Southern experiments. Chromosomal DNAs isolated from O18:K1 and O83:K1 meningitis strains with and without S fimbriae and from uropathogenic O6:K+ strains were hybridized against these sfa-specific probes. Only one copy of the sfa determinant was identified on the chromosome of these strains. No sfa-specific sequences were observed on the chromosome of E. coli K-12 strains and an O7:K1 isolate. With the exception of small alterations in the sfa-coding region the genetic determinants for S fimbriae were identical in uropathogenic O6:K+ and meningitis O18:K1 and O83:K1 strains. The sfa determinant was also detected on the chromosome of K1 isolates with an Sfa-negative phenotype, and specific cross-hybridization signals were visible after blotting against F1C-specific DNA. In addition homology among the different strains was observed in the sfa-flanking regions.

  18. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete.

    PubMed

    Lin, Yi-Pin; Benoit, Vivian; Yang, Xiuli; Martínez-Herranz, Raúl; Pal, Utpal; Leong, John M

    2014-07-01

    Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the U.S., is closely associated with arthritis. The attachment of microbial pathogens to cells or to the extracellular matrix of target tissues may promote colonization and disease, and the Lyme disease spirochete encodes several surface proteins, including the decorin- and dermatan sulfate-binding adhesin DbpA, which vary among strains and have been postulated to contribute to strain-specific differences in tissue tropism. DbpA variants differ in their ability to bind to its host ligands and to cultured mammalian cells. To directly test whether variation in dbpA influences tissue tropism, we analyzed murine infection by isogenic B. burgdorferi strains that encode different dbpA alleles. Compared to dbpA alleles of B. afzelii strain VS461 or B. burgdorferi strain N40-D10/E9, dbpA of B. garinii strain PBr conferred the greatest decorin- and dermatan sulfate-binding activity, promoted the greatest colonization at the inoculation site and heart, and caused the most severe carditis. The dbpA of strain N40-D10/E9 conferred the weakest decorin- and GAG-binding activity, but the most robust joint colonization and was the only dbpA allele capable of conferring significant joint disease. Thus, dbpA mediates colonization and disease by the Lyme disease spirochete in an allele-dependent manner and may contribute to the etiology of distinct clinical manifestations associated with different Lyme disease strains. This study provides important support for the long-postulated model that strain-specific variations of Borrelia surface proteins influence tissue tropism.

  19. O-Glycosylation of the N-terminal Region of the Serine-rich Adhesin Srr1 of Streptococcus agalactiae Explored by Mass Spectrometry *

    PubMed Central

    Chaze, Thibault; Guillot, Alain; Valot, Benoît; Langella, Olivier; Chamot-Rooke, Julia; Di Guilmi, Anne-Marie; Trieu-Cuot, Patrick; Dramsi, Shaynoor; Mistou, Michel-Yves

    2014-01-01

    Serine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93–639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques

  20. Characterization of Inhibitors and Monoclonal Antibodies That Modulate the Interaction between Plasmodium falciparum Adhesin PfRh4 with Its Erythrocyte Receptor Complement Receptor 1*

    PubMed Central

    Lim, Nicholas T. Y.; Harder, Markus J.; Kennedy, Alexander T.; Lin, Clara S.; Weir, Christopher; Cowman, Alan F.; Call, Melissa J.; Schmidt, Christoph Q.; Tham, Wai-Hong

    2015-01-01

    Plasmodium falciparum parasites must invade red blood cells to survive within humans. Entry into red blood cells is governed by interactions between parasite adhesins and red blood cell receptors. Previously we identified that P. falciparum reticulocyte binding protein-like homologue 4 (PfRh4) binds to complement receptor 1 (CR1) to mediate entry of malaria parasites into human red blood cells. In this report we characterize a collection of anti-PfRh4 monoclonal antibodies and CR1 protein fragments that modulate the interaction between PfRh4 and CR1. We identify an anti-PfRh4 monoclonal that blocks PfRh4-CR1 interaction in vitro, inhibits PfRh4 binding to red blood cells, and as a result abolishes the PfRh4-CR1 invasion pathway in P. falciparum. Epitope mapping of anti-PfRh4 monoclonal antibodies identified distinct functional regions within PfRh4 involved in modulating its interaction with CR1. Furthermore, we designed a set of protein fragments based on extensive mutagenesis analyses of the PfRh4 binding site on CR1 and determined their interaction affinities using surface plasmon resonance. These CR1 protein fragments bind tightly to PfRh4 and also function as soluble inhibitors to block PfRh4 binding to red blood cells and to inhibit the PfRh4-CR1 invasion pathway. Our findings can aid future efforts in designing specific single epitope antibodies to block P. falciparum invasion via complement receptor 1. PMID:26324715

  1. Flavobacterium johnsoniae GldK, GldL, GldM, and SprA Are Required for Secretion of the Cell Surface Gliding Motility Adhesins SprB and RemA

    PubMed Central

    Shrivastava, Abhishek; Johnston, Joseph J.; van Baaren, Jessica M.

    2013-01-01

    Flavobacterium johnsoniae cells move rapidly over surfaces by gliding motility. Gliding results from the movement of adhesins such as SprB and RemA along the cell surface. These adhesins are delivered to the cell surface by a Bacteroidetes-specific secretion system referred to as the type IX secretion system (T9SS). GldN, SprE, SprF, and SprT are involved in secretion by this system. Here we demonstrate that GldK, GldL, GldM, and SprA are each also involved in secretion. Nonpolar deletions of gldK, gldL, or gldM resulted in the absence of gliding motility and in T9SS defects. The mutant cells produced SprB and RemA proteins but failed to secrete them to the cell surface. The mutants were resistant to phages that use SprB or RemA as a receptor, and they failed to attach to glass, presumably because of the absence of cell surface adhesins. Deletion of sprA resulted in similar but slightly less dramatic phenotypes. sprA mutant cells failed to secrete SprB and RemA, but cells remained susceptible to some phages and retained some limited ability to glide. The phenotype of the sprA mutant was similar to those previously described for sprE and sprT mutants. SprA, SprE, and SprT are needed for secretion of SprB and RemA but may not be needed for secretion of other proteins targeted to the T9SS. Genetic and molecular experiments demonstrate that gldK, gldL, gldM, and gldN form an operon and suggest that the proteins encoded by these genes may interact to form part of the F. johnsoniae T9SS. PMID:23667240

  2. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers.

    PubMed

    Inic-Kanada, Aleksandra; Stojanovic, Marijana; Schlacher, Simone; Stein, Elisabeth; Belij-Rammerstorfer, Sandra; Marinkovic, Emilija; Lukic, Ivana; Montanaro, Jacqueline; Schuerer, Nadine; Bintner, Nora; Kovacevic-Jovanovic, Vesna; Krnjaja, Ognjen; Mayr, Ulrike Beate; Lubitz, Werner; Barisani-Asenbauer, Talin

    2015-01-01

    Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), remains the world's leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs). We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1-893) of the chlamydial polymorphic membrane protein C (PmpC) of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs) in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both humoral and

  3. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers

    PubMed Central

    Inic-Kanada, Aleksandra; Stojanovic, Marijana; Schlacher, Simone; Stein, Elisabeth; Belij-Rammerstorfer, Sandra; Marinkovic, Emilija; Lukic, Ivana; Montanaro, Jacqueline; Schuerer, Nadine; Bintner, Nora; Kovacevic-Jovanovic, Vesna; Krnjaja, Ognjen; Mayr, Ulrike Beate; Lubitz, Werner; Barisani-Asenbauer, Talin

    2015-01-01

    Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), remains the world’s leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs). We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1–893) of the chlamydial polymorphic membrane protein C (PmpC) of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs) in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both humoral and

  4. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans.

    PubMed

    Choy, Henry A; Kelley, Melissa M; Croda, Julio; Matsunaga, James; Babbitt, Jane T; Ko, Albert I; Picardeau, Mathieu; Haake, David A

    2011-01-01

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react

  5. Adhesin competence repressor (AdcR) from Streptococcus pyogenes controls adaptive responses to zinc limitation and contributes to virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Flores, Anthony R.; Olsen, Randall J.; Musser, James M.; Kumaraswami, Muthiah

    2015-01-01

    Altering zinc bioavailability to bacterial pathogens is a key component of host innate immunity. Thus, the ability to sense and adapt to the alterations in zinc concentrations is critical for bacterial survival and pathogenesis. To understand the adaptive responses of group A Streptococcus (GAS) to zinc limitation and its regulation by AdcR, we characterized gene regulation by AdcR. AdcR regulates the expression of 70 genes involved in zinc acquisition and virulence. Zinc-bound AdcR interacts with operator sequences in the negatively regulated promoters and mediates differential regulation of target genes in response to zinc deficiency. Genes involved in zinc mobilization and conservation are derepressed during mild zinc deficiency, whereas the energy-dependent zinc importers are upregulated during severe zinc deficiency. Further, we demonstrated that transcription activation by AdcR occurs by direct binding to the promoter. However, the repression and activation by AdcR is mediated by its interactions with two distinct operator sequences. Finally, mutational analysis of the metal ligands of AdcR caused impaired DNA binding and attenuated virulence, indicating that zinc sensing by AdcR is critical for GAS pathogenesis. Together, we demonstrate that AdcR regulates GAS adaptive responses to zinc limitation and identify molecular components required for GAS survival during zinc deficiency. PMID:25510500

  6. Antisense RNA decreases AP33 gene expression and cytoadherence by T. vaginalis

    PubMed Central

    Mundodi, V; Kucknoor, AS; Alderete, JF

    2007-01-01

    Background Host parasitism by Trichomonas vaginalis is complex. Adherence to vaginal epithelial cells (VECs) is mediated by surface proteins. We showed before that antisense down-regulation of expression of adhesin AP65 decreased amounts of protein, which lowered levels of T. vaginalis adherence to VECs. We now perform antisense down-regulation of expression of the ap33 gene to evaluate and confirm a role for AP33 in adherence by T. vaginalis. We also used an established transfection system for heterologous expression of AP33 in T. foetus as an additional confirmatory approach. Results We successfully select stable trichomonads with sense (S) and antisense (AS) plasmids. RT-PCR confirmed decreased amounts of ap33 mRNA in AS-transfected parasites, and decreased amounts of AP33 had no effect on growth and viability when compared to wild-type (wt) trichomonads. Immunoblots of proteins from AS-transfectants gave significant decreased amounts of functional AP33 capable of binding to host cells compared to wt- and S-transfected trichomonads. As expected, AS-transfectants had lower levels of adherence to VECs, which was related to reduction in surface expression of AP33. Stable expression of T. vaginalis AP33::HA fusion in T. foetus was confirmed by immunoblots and fluorescence. The episomally-expressed surface AP33::HA fusion increased adherence of trichomonads to human VECs, which was abrogated with anti-AP33 serum. Conclusion These results using both antisense inhibition of gene expression and AP33 synthesis and the heterologous expression of AP33 in T. foetus confirms a role for this protein as an adhesin in T. vaginalis. PMID:17608941

  7. Monoclonal antibodies recognizing the Enterococcus faecalis collagen-binding MSCRAMM Ace: conditional expression and binding analysis.

    PubMed

    Hall, Andrea E; Gorovits, Elena L; Syribeys, Peter J; Domanski, Paul J; Ames, Brenda R; Chang, Cathy Y; Vernachio, John H; Patti, Joseph M; Hutchins, Jeff T

    2007-01-01

    Enterococci are opportunistic pathogens known to cause numerous clinical infections and complications in humans. Adhesin-mediated binding to extracellular matrix (ECM) proteins of the host is thought to be a crucial step in the pathogenesis of these bacterial infections. Adhesin of collagen from Enterococcus faecalis (Ace) is a cell-wall anchored protein of E. faecalis that has been shown to be important for bacterial binding to the ECM. In this report, we characterize the conditions for Ace expression and demonstrate Ace binding to mammalian epithelial and endothelial cells as well as to collagens found in the ECM. To further characterize Ace expression and function, we report the generation of a panel of monoclonal antibodies (mAbs) directed against this important E. faecalis virulence factor. Through the use of multiple in vitro assays, surface plasmon resonance and flow cytometry, we have characterized this panel of mAbs which may prove to be not only beneficial in studies that address the precise biological role of adhesion of E. faecalis, but may also serve as beneficial therapeutic agents against E. faecalis infections. PMID:17521860

  8. Pseudomonas putida Fis Binds to the lapF Promoter In Vitro and Represses the Expression of LapF

    PubMed Central

    Lahesaare, Andrio; Moor, Hanna; Kivisaar, Maia; Teras, Riho

    2014-01-01

    The biofilm matrix of the rhizospheric bacterium Pseudomonas putida consists mainly of a proteinaceous component. The two largest P. putida proteins, adhesins LapA and LapF, are involved in biofilm development but prevail in different developmental stages of the biofilm matrix. LapA is abundant in the initial stage of biofilm formation whereas LapF is found in the mature biofilm. Although the transcriptional regulation of the adhesins is not exhaustively studied, some factors that can be involved in their regulation have been described. For example, RpoS, the major stress response sigma factor, activates, and Fis represses LapF expression. This study focused on the LapF expression control by Fis. Indeed, using DNase I footprint analysis a Fis binding site Fis-F2 was located 150 bp upstream of the lapF gene coding sequence. The mapped 5′ end of the lapF mRNA localized the promoter to the same region, overlapping with the Fis binding site Fis-F2. Monitoring the lapF promoter activity by a β-galactosidase assay revealed that Fis overexpression causes a 4-fold decrease in the transcriptional activity. Furthermore, mutations that diminished Fis binding to the Fis-F2 site abolished the repression of the lapF promoter. Thus, these data suggest that Fis is involved in the biofilm regulation via repression of LapF expression. PMID:25545773

  9. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    PubMed

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  10. MtrR control of a transcriptional regulatory pathway in Neisseria meningitidis that influences expression of a gene (nadA) encoding a vaccine candidate.

    PubMed

    Cloward, Jason M; Shafer, William M

    2013-01-01

    The surface-exposed NadA adhesin produced by a subset of capsular serogroup B strains of Neisseria meningitidis is currently being considered as a vaccine candidate to prevent invasive disease caused by a hypervirulent lineage of meningococci. Levels of NadA are known to be controlled by both transcriptional regulatory factors and a component of human saliva, 4-hydroxyphenylacetic acid. Herein, we confirmed the capacity of a DNA-binding protein termed FarR to negatively control nadA expression. We also found that a known transcriptional regulator of farR in N. gonorrhoeae termed MtrR can have a negative regulatory impact on farR and nadA expression, especially when over-expressed. MtrR-mediated repression of nadA was found to be direct, and its binding to a target DNA sequence containing the nadA promoter influenced formation and/or stability of FarR::nadA complexes. The complexity of the multi-layered regulation of nadA uncovered during this investigation suggests that N. meningitidis modulates NadA adhesin protein levels for the purpose of interacting with host cells yet avoiding antibody directed against surface exposed epitopes.

  11. A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.

    PubMed

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea. PMID:21813665

  12. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    PubMed

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile.

  13. Selection and Counterselection of Hia Expression Reveals a Key Role for Phase-Variable Expression of Hia in Infection Caused by Nontypeable Haemophilus influenzae

    PubMed Central

    Atack, John M.; Winter, Linda E.; Jurcisek, Joseph A.; Bakaletz, Lauren O.; Barenkamp, Stephen J.; Jennings, Michael P.

    2015-01-01

    Hia is a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investigated as a vaccine candidate. Here we show that Hia phase variation is controlled by changes in the length of a polythymidine tract located in the hia promoter. Studies of an invasive clinical isolate (strain R2866) show that strains expressing high Hia levels are more efficiently killed by opsonophagocytosis. An opsonophagocytic assay was used to select for a subpopulation of variants that expressed a low level of Hia, which facilitated their escape from killing by anti-Hia antisera. Conversely, a subpopulation of variants expressing a high level of Hia was selected for during passaging through Chang cells. In both cases, phase variation of Hia expression corresponded directly with discrete modal changes in polythymidine tract length. In the chinchilla model of NTHi infection, we observed consistent selection for high Hia expression upon nasopharyngeal colonization, confirming the key role of phase-variable expression of Hia within a specific niche in vivo. PMID:25712964

  14. Avirulent K88 (F4)+ Escherichia coli strains constructed to express modified enterotoxins protect young piglets from challenge with a virulent enterotoxigenic Escherichia coli strain that expresses the same adhesion and enterotoxins.

    PubMed

    Santiago-Mateo, Kristina; Zhao, Mojun; Lin, Jun; Zhang, Weiping; Francis, David H

    2012-10-12

    Virulence of enterotoxigenic Escherichia coli (ETEC) is associated with fimbrial adhesins and enterotoxins such as heat-labile (LT) and/or heat-stable (ST) enterotoxins. Previous studies using a cell culture model suggest that exclusion of ETEC from attachment to epithelial cells requires expression of both an adhesin such as K88 (F4) fimbriae, and LT. To test the ability of non-pathogenic E. coli constructs to exclude virulent ETEC sufficiently to prevent clinical disease, we utilized a piglet ETEC challenge model. Thirty-nine 5-day-old piglets were inoculated with a placebo (control), or with either of the three K88(+)E. coli strains isogenic with regard to modified LT expression: 8017 (pBR322 plasmid vector control), non-toxigenic mutant 8221 (LT(R192G)) in pBR322, or 8488, with the LT gene fused to the STb gene in pBR322 (LT(R192G)-STb). Piglets were challenged with virulent ETEC Strain 3030-2 (K88(+)/LT/STb) 24h post-inoculation. K88ac receptor-positive piglets in the control group developed diarrhea and became dehydrated 12-24h post-challenge. Piglets inoculated with 8221 or 8488 did not exhibit clinical signs of ETEC disease; most piglets inoculated with 8017 showed diarrhea. Control pigs exhibited significant weight loss, increased blood total protein, and higher numbers of colony-forming units of 3030-2 E. coli in washed ileum and jejunum than treated pigs. This study shows for the first time that pre-inoculation with an avirulent strain expressing adhesive fimbriae and a non-toxic form of LT provides significant short term protection from challenge with a virulent ETEC strain that expresses the same fimbrial adhesion and enterotoxin. PMID:22541162

  15. Salicylic acid diminishes Staphylococcus aureus capsular polysaccharide type 5 expression.

    PubMed

    Alvarez, Lucía P; Barbagelata, María S; Gordiola, Mariana; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2010-03-01

    Capsular polysaccharides (CP) of serotypes 5 (CP5) and 8 (CP8) are major Staphylococcus aureus virulence factors. Previous studies have shown that salicylic acid (SAL), the main aspirin metabolite, affects the expression of certain bacterial virulence factors. In the present study, we found that S. aureus strain Reynolds (CP5) cultured with SAL was internalized by MAC-T cells in larger numbers than strain Reynolds organisms not exposed to SAL. Furthermore, the internalization of the isogenic nonencapsulated Reynolds strain into MAC-T cells was not significantly affected by preexposure to SAL. Pretreatment of S. aureus strain Newman with SAL also enhanced internalization into MAC-T cells compared with that of untreated control strains. Using strain Newman organisms, we evaluated the activity of the major cap5 promoter, which was significantly decreased upon preexposure to SAL. Diminished transcription of mgrA and upregulation of the saeRS transcript, both global regulators of CP expression, were found in S. aureus cultured in the presence of SAL, as ascertained by real-time PCR analysis. In addition, CP5 production by S. aureus Newman was also decreased by treatment with SAL. Collectively, our data demonstrate that exposure of encapsulated S. aureus strains to low concentrations of SAL reduced CP production, thus unmasking surface adhesins and leading to an increased capacity of staphylococci to invade epithelial cells. The high capacity of internalization of the encapsulated S. aureus strains induced by SAL pretreatment may contribute to the persistence of bacteria in certain hosts.

  16. The mannose-specific lectin domains of Flo1p from Saccharomyces cerevisiae and Lg-Flo1p from S. pastorianus: crystallization and preliminary X-ray diffraction analysis of the adhesin-carbohydrate complexes.

    PubMed

    Ielasi, Francesco S; Goyal, Parveen; Sleutel, Mike; Wohlkonig, Alexandre; Willaert, Ronnie G

    2013-07-01

    Flo1p and Lg-Flo1p are two cell-wall adhesins belonging to the Flo (flocculation) protein family from the yeasts Saccharomyces cerevisiae and S. pastorianus. The main function of these modular proteins endowed with calcium-dependent lectin activity is to mediate cell-cell adhesion events during yeast flocculation, a process which is well known at the cellular level but still not fully characterized from a molecular perspective. Recently, structural features of the N-terminal Flo lectin domains, including the N-terminal domain of Lg-Flo1p (N-Lg-Flo1p), and their interactions with carbohydrate molecules have been investigated. However, structural data concerning the N-terminal domain of Flo1p (N-Flo1p), which is the most specific among the Flo proteins, are missing and information about the N-Lg-Flo1p-carbohydrate interaction still lacks detailed structural insight. Here, the crystallization and preliminary X-ray characterization of the apo form and the mannose complex of N-Flo1p and X-ray analysis of N-Lg-Flo1p crystals soaked in α-1,2-mannobiose are reported. The N-Flo1p crystals diffracted to a resolution of 1.43 Å in the case of the apo form and to 2.12 Å resolution for the mannose complex. Both crystals were orthorhombic and belonged to space group P212121, with one molecule in the asymmetric unit. The N-Lg-Flo1p-α-1,2-mannobiose complex crystal diffracted to 1.73 Å resolution and belonged to the monoclinic space group P1211 with two molecules in the asymmetric unit.

  17. Immunization with the Haemophilus ducreyi trimeric autotransporter adhesin DsrA with alum, CpG or imiquimod generates a persistent humoral immune response that recognizes the bacterial surface.

    PubMed

    Samo, Melissa; Choudhary, Neelima R; Riebe, Kristina J; Shterev, Ivo; Staats, Herman F; Sempowski, Gregory D; Leduc, Isabelle

    2016-02-24

    The Ducreyi serum resistance A (DsrA) protein of Haemophilus ducreyi belongs to a large family of multifunctional outer membrane proteins termed trimeric autotransporter adhesins responsible for resistance to the bactericidal activity of human complement (serum resistance), agglutination and adhesion. The ability of DsrA to confer serum resistance and bind extracellular matrix proteins lies in its N-terminal passenger domain. We have previously reported that immunization with a recombinant form of the passenger domain of DsrA, rNT-DsrA, in complete/incomplete Freund's adjuvant, protects against a homologous challenge in swine. We present herein the results of an immunogenicity study in mice aimed at investigating the persistence, type of immune response, and the effect of immunization route and adjuvants on surrogates of protection. Our results indicate that a 20 μg dose of rNT-DsrA administered with alum elicited antisera with comparable bacterial surface reactivity to that obtained with complete/incomplete Freund's adjuvant. At that dose, high titers and bacterial surface reactivity persisted for 211 days after the first immunization. Administration of rNT-DsrA with CpG or imiquimod as adjuvants elicited a humoral response with similar quantity and quality of antibodies (Abs) as seen with Freund's adjuvant. Furthermore, intramuscular administration of rNT-DsrA elicited high-titer Abs with significantly higher reactivity to the bacterial surface than those obtained with subcutaneous immunization. All rNT-DsrA/adjuvant combinations tested, save CpG, elicited a Th2-type response. Taken together, these findings show that a 20 μg dose of rNT-DsrA administered with the adjuvants alum, CpG or imiquimod elicits high-quality Abs with reactivity to the bacterial surface that could protect against an H. ducreyi infection. PMID:26812077

  18. Directed Shotgun Proteomics Guided by Saturated RNA-seq Identifies a Complete Expressed Prokaryotic Proteome

    SciTech Connect

    Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.

    2013-11-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.

  19. Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin.

    PubMed

    Love, R M; McMillan, M D; Park, Y; Jenkinson, H F

    2000-03-01

    Cell wall-anchored polypeptides of the antigen I/II family are produced by many species of oral streptococci. These proteins mediate adhesion of streptococci to salivary glycoproteins and to other oral microorganisms and promote binding of cells to collagen type I and invasion of dentinal tubules. Since infections of the root canal system have a mixed anaerobic bacterial etiology, we investigated the hypothesis that coadhesion of anaerobic bacteria with streptococci may facilitate invasive endodontic disease. Porphyromonas gingivalis ATCC 33277 cells were able to invade dentinal tubules when cocultured with Streptococcus gordonii DL1 (Challis) but not when cocultured with Streptococcus mutans NG8. An isogenic noninvasive mutant of S. gordonii, with production of SspA and SspB (antigen I/II family) polypeptides abrogated, was deficient in binding to collagen and had a 40% reduced ability to support adhesion of P. gingivalis. Heterologous expression of the S. mutans SpaP (antigen I/II) protein in this mutant restored collagen binding and tubule invasion but not adhesion to P. gingivalis or the ability to promote P. gingivalis coinvasion of dentin. An isogenic afimbrial mutant of P. gingivalis had 50% reduced binding to S. gordonii cells but was unaffected in the ability to coinvade dentinal tubules with S. gordonii wild-type cells. Expression of the S. gordonii SspA or SspB polypeptide on the surface of Lactococcus lactis cells endowed these bacteria with the abilities to bind P. gingivalis, penetrate dentinal tubules, and promote P. gingivalis coinvasion of dentin. The results demonstrate that collagen-binding and P. gingivalis-binding properties of antigen I/II polypeptides are discrete functions. Specificity of antigen I/II polypeptide recognition accounts for the ability of P. gingivalis to coinvade dentinal tubules with S. gordonii but not with S. mutans. This provides evidence that the specificity of interbacterial coadhesion may influence directly the etiology

  20. The surface protease ompT serves as Escherichia coli K1 adhesin in binding to human brain micro vascular endothelial cells.

    PubMed

    Wan, Lei; Guo, Yan; Hui, Chang-Ye; Liu, Xiao-Lu; Zhang, Wen-Bing; Cao, Hong; Cao, Hong

    2014-05-01

    Escherichia coli (E. coli) K1 is the most common bacteria that cause meningitis in the neonatal period. But it's not entirely clear about how E. coli crosses the blood-brain barrier. The features of the ompT deletion in meningitic E. coli infection were texted in vitro. In comparison with the parent strain, the isogenic ompT deletion mutant was significantly less adhesive to human brain microvascular endothelial cells (HBMEC). The adhesion-deficient phenotype of the mutant was restored to the level of the wild-type by complementing with low-level OmpT expression plasmid. Interestingly, the adhesion was enhanced by point mutation at the OmpT proposed catalytic residue D85. Compared with the poor adhesive activity of bovine serum albumin-coated fluorescent beads, recombinant OmpT or catalytically inactive variant of OmpT-coated beads bound to HBMEC monolayer effectively. Our study suggests that OmpT is important for bacterial adhesion while entering into central nervous system, and the adhesion does not involve in the proteolytic activity of OmpT.

  1. Staphylococcus epidermidis Affinity for Fibrinogen-Coated Surfaces Correlates with the Abundance of the SdrG Adhesin on the Cell Surface.

    PubMed

    Vanzieleghem, Thomas; Herman-Bausier, Philippe; Dufrene, Yves F; Mahillon, Jacques

    2015-04-28

    Staphylococcus epidermidis is a world-leading pathogen in healthcare facilities, mainly causing medical device-associated infections. These nosocomial diseases often result in complications such as bacteremia, fibrosis, or peritonitis. The virulence of S. epidermidis relies on its ability to colonize surfaces and develop thereupon in the form of biofilms. Bacterial adherence on biomaterials, usually covered with plasma proteins after implantation, is a critical step leading to biofilm infections. The cell surface protein SdrG mediates adhesion of S. epidermidis to fibrinogen (Fg) through a specific "dock, lock, and latch" mechanism, which results in greatly stabilized protein-ligand complexes. Here, we combine single-molecule, single-cell, and whole population assays to investigate the extent to which the surface density of SdrG determines the ability of S. epidermidis clinical strains HB, ATCC 35984, and ATCC 12228 to bind to Fg-coated surfaces. Strains that showed enhanced adhesion on Fg-coated polydimethylsiloxane (PDMS) were characterized by increased amounts of SdrG proteins on the cell surface, as observed by single-molecule analysis. Consistent with previous reports showing increased expression of SdrG following in vivo exposure, this work provides direct evidence that abundance of SdrG on the cell surface of S. epidermidis strains dramatically improves their ability to bind to Fg-coated implanted medical devices.

  2. Staphylococcus epidermidis Affinity for Fibrinogen-Coated Surfaces Correlates with the Abundance of the SdrG Adhesin on the Cell Surface.

    PubMed

    Vanzieleghem, Thomas; Herman-Bausier, Philippe; Dufrene, Yves F; Mahillon, Jacques

    2015-04-28

    Staphylococcus epidermidis is a world-leading pathogen in healthcare facilities, mainly causing medical device-associated infections. These nosocomial diseases often result in complications such as bacteremia, fibrosis, or peritonitis. The virulence of S. epidermidis relies on its ability to colonize surfaces and develop thereupon in the form of biofilms. Bacterial adherence on biomaterials, usually covered with plasma proteins after implantation, is a critical step leading to biofilm infections. The cell surface protein SdrG mediates adhesion of S. epidermidis to fibrinogen (Fg) through a specific "dock, lock, and latch" mechanism, which results in greatly stabilized protein-ligand complexes. Here, we combine single-molecule, single-cell, and whole population assays to investigate the extent to which the surface density of SdrG determines the ability of S. epidermidis clinical strains HB, ATCC 35984, and ATCC 12228 to bind to Fg-coated surfaces. Strains that showed enhanced adhesion on Fg-coated polydimethylsiloxane (PDMS) were characterized by increased amounts of SdrG proteins on the cell surface, as observed by single-molecule analysis. Consistent with previous reports showing increased expression of SdrG following in vivo exposure, this work provides direct evidence that abundance of SdrG on the cell surface of S. epidermidis strains dramatically improves their ability to bind to Fg-coated implanted medical devices. PMID:25821995

  3. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2

    PubMed Central

    Li, Quan; Liu, Hanze; Du, Dechao; Yu, Yanfei; Ma, Caifeng; Jiao, Fangfang; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2015-01-01

    Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5′-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions. PMID:26636044

  4. Differential Expression and Roles of Staphylococcus aureus Virulence Determinants during Colonization and Disease

    PubMed Central

    Jenkins, Amy; Diep, Binh An; Mai, Thuy T.; Vo, Nhung H.; Warrener, Paul; Suzich, Joann; Stover, C. Kendall

    2015-01-01

    ABSTRACT Staphylococcus aureus is a Gram-positive, commensal bacterium known to asymptomatically colonize the human skin, nares, and gastrointestinal tract. Colonized individuals are at increased risk for developing S. aureus infections, which range from mild skin and soft tissue infections to more severe diseases, such as endocarditis, bacteremia, sepsis, and osteomyelitis. Different virulence factors are required for S. aureus to infect different body sites. In this study, virulence gene expression was analyzed in two S. aureus isolates during nasal colonization, bacteremia and in the heart during sepsis. These models were chosen to represent the stepwise progression of S. aureus from an asymptomatic colonizer to an invasive pathogen. Expression of 23 putative S. aureus virulence determinants, representing protein and carbohydrate adhesins, secreted toxins, and proteins involved in metal cation acquisition and immune evasion were analyzed. Consistent upregulation of sdrC, fnbA, fhuD, sstD, and hla was observed in the shift between colonization and invasive pathogen, suggesting a prominent role for these genes in staphylococcal pathogenesis. Finally, gene expression data were correlated to the roles of the genes in pathogenesis by using knockout mutants in the animal models. These results provide insights into how S. aureus modifies virulence gene expression between commensal and invasive pathogens. PMID:25691592

  5. Campylobacter jejuni Increases Flagellar Expression and Adhesion of Noninvasive Escherichia coli: Effects on Enterocytic Toll-Like Receptor 4 and CXCL-8 Expression

    PubMed Central

    Reti, Kristen L.; Tymensen, Lisa D.; Davis, Shevaun P.; Amrein, Matthias W.

    2015-01-01

    Campylobacter jejuni is the most common cause of bacterium-induced gastroenteritis, and while typically self-limiting, C. jejuni infections are associated with postinfectious intestinal disorders, including flares in patients with inflammatory bowel disease and postinfectious irritable bowel syndrome (PI-IBS), via mechanisms that remain obscure. Based on the hypothesis that acute campylobacteriosis may cause pathogenic microbiota dysbiosis, we investigated whether C. jejuni may activate dormant virulence genes in noninvasive Escherichia coli and examined the epithelial pathophysiological consequences of these alterations. Microarray and quantitative real-time PCR analyses revealed that E. coli adhesin, flagellum, and hemolysin gene expression were increased when E. coli was exposed to C. jejuni-conditioned medium. Increased development of bacterial flagella upon exposure to live C. jejuni or C. jejuni-conditioned medium was observed under transmission electron microscopy. Atomic force microscopy demonstrated that the forces of bacterial adhesion to colonic T84 enterocytes, and the work required to rupture this adhesion, were significantly increased in E. coli exposed to C. jejuni-conditioned media. Finally, C. jejuni-modified E. coli disrupted TLR4 gene expression and induced proinflammatory CXCL-8 gene expression in colonic enterocytes. Together, these data suggest that exposure to live C. jejuni, and/or to its secretory-excretory products, may activate latent virulence genes in noninvasive E. coli and that these alterations may directly trigger proinflammatory signaling in intestinal epithelia. These observations shed new light on mechanisms that may contribute, at least in part, to postcampylobacteriosis inflammatory disorders. PMID:26371123

  6. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes.

    PubMed Central

    Sokurenko, E V; Courtney, H S; Ohman, D E; Klemm, P; Hasty, D L

    1994-01-01

    We recently reported that the type 1-fimbriated Escherichia coli strains CSH-50 and HB101(pPKL4), both K-12 derivatives, have different patterns of adhesion to yeast mannan, human plasma fibronectin, and fibronectin derivatives, suggesting functional heterogeneity of type 1 fimbriae. In this report, we provide evidence that this functional heterogeneity is due to variations in the fimH genes. We also investigated functional heterogeneity among clinical isolates and whether variation in fimH genes accounts for differences in receptor specificity. Twelve isolates obtained from human urine were tested for their ability to adhere to mannan, fibronectin, periodate-treated fibronectin, and a synthetic peptide copying the 30 amino-terminal residues of fibronectin. CSH-50 and HB101(pPKL4) were tested for comparison. Selected isolates were also tested for adhesion to purified fragments spanning the entire fibronectin molecule. Three distinct functional classes, designated M, MF, and MFP, were observed. The fimH genes were amplified by PCR from chromosomal DNA obtained from representative strains and expressed in a delta fim strain (AAEC191A) transformed with a recombinant plasmid containing the entire fim gene cluster but with a translational stop-linker inserted into the fimH gene (pPKL114). Cloned fimH genes conferred on AAEC191A(pPKL114) receptor specificities mimicking those of the parent strains from which the fimH genes were obtained, demonstrating that the FimH subunits are responsible for the functional heterogeneity. Representative fimH genes were sequenced, and the deduced amino acid sequences were compared with the previously published FimH sequence. Allelic variants exhibiting >98% homology and encoding proteins differing by as little as a single amino acid substitution confer distinct adhesive phenotypes. This unexpected adhesive diversity within the FimH family broadens the scope of potential receptors for enterobacterial adhesion and may lead to a fundamental

  7. Who's Expressing in "Expressive Writing"?

    ERIC Educational Resources Information Center

    Reed, Janine

    In an attempt to understand what expressive writing means to themselves and to their students, teachers should explore and reflect on various questions regarding expressive writing theories and practices. For many, self-expression is the basis of all serious writing and an important stage in any act of learning, so it is essential to uncover the…

  8. Symbiotic Expressions

    NASA Astrophysics Data System (ADS)

    Bernecky, Robert; Herhut, Stephan; Scholz, Sven-Bodo

    We introduce symbiotic expressions, a method for algebraic simplification within a compiler, in lieu of an SMT solver, such as Yices or the Omega Calculator. Symbiotic expressions are compiler-generated expressions, temporarily injected into a program's abstract syntax tree (AST). The compiler's normal optimizations interpret and simplify those expressions, making their results available for the compiler to use as a basis for decisions about further optimization of the source program. The expressions are symbiotic, in the sense that both parties benefit: an optimization benefits, by using the compiler itself to simplify expressions that have been attached, lamprey-like, to the AST by the optimization; the program being compiled benefits, from improved run-time in both serial and parallel environments.

  9. Trichomonas vaginalis promotes apoptosis of human neutrophils by activating caspase-3 and reducing Mcl-1 expression.

    PubMed

    Kang, J H; Song, H O; Ryu, J S; Shin, M H; Kim, J M; Cho, Y S; Alderete, J F; Ahn, M H; Min, D Y

    2006-09-01

    Neutrophils are the predominant inflammatory cells found in the vaginal discharge of patients with Trichomonas vaginalis infection. However, it is not known whether neutrophil apoptosis is induced by live T. vaginalis. Therefore, we examined whether T. vaginalis can influence neutrophil apoptosis, and also whether caspase-3 and the Bcl-2 family members are involved in the apoptosis. Thus, human neutrophils were incubated with live T. vaginalis and neutrophil apoptosis was evaluated by Giemsa, annexin V-PI, and DiOC6 stainings. The neutrophil apoptosis was significantly higher in those incubated with T. vaginalis than in the control group. When trichomonads were pre-treated with mAb to AP65 (adhesin protein), or when trophozoites were separated from neutrophils using a Transwell chamber, neutrophil apoptosis was significantly reduced. The activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis but was markedly enhanced during T. vaginalis-induced apoptosis. Moreover, the inhibition of caspase-3 effectively reduced T. vaginalis-induced apoptosis. Trichomonad-induced apoptosis was also associated with reduced expression of the neutrophil anti-apoptotic protein, Mcl-1. These results indicate that T. vaginalis alters Mcl-1 expression and caspase-3 activation, thereby inducing apoptosis of human neutrophils. PMID:16916367

  10. E-selectin and P-selectin expression in endothelium of leprosy skin lesions.

    PubMed

    Souza, Juarez de; Sousa, Jorge Rodrigues de; Hirai, Kelly Emi; Silva, Luciana Mota; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; Aarão, Tinara Leila de Souza; Quaresma, Juarez Antonio Simões

    2015-09-01

    Leprosy is an infectious-contagious disease whose clinical evolution depends on the immune response pattern of the host. Adhesion molecules and leukocyte migration from blood to tissue are of the utmost importance for the recognition and elimination of infectious pathogens. Selectins are transmembrane glycoproteins that share a similar structural organization and can be divided into three types according to their site of expression. The biopsies were cut into 5μm thick sections and submitted to immunohistochemistry using antibodies against E-selectin and P-selectin. The number of E-selectin-positive cells was significantly higher in the tuberculoid form than in the lepromatous form. The immunostaining pattern of P-selectin differed from that of E-selectin. Analysis showed a larger number of endothelial cells expressing CD62P in the lepromatous form compared to the tuberculoid form. The presence of these adhesins in the endothelium contributing to or impairing the recruitment of immune cells to inflamed tissue and consequently influences the pattern of immune response and the clinical presentation of the disease.

  11. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  12. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis.

    PubMed

    Marcos, Caroline Maria; Silva, Julhiany de Fátima ds; Oliveira, Haroldo Cesar de; Assato, Patrícia Akemi; Singulani, Junya de Lacorte; Lopez, Angela Maria; Tamayo, Diana Patricia; Hernandez-Ruiz, Orville; McEwen, Juan G; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-01-01

    The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis. PMID:26646480

  13. Trichomonas vaginalis promotes apoptosis of human neutrophils by activating caspase-3 and reducing Mcl-1 expression

    PubMed Central

    KANG, J. H.; SONG, H. O.; RYU, J. S.; SHIN, M. H.; KIM, J. M.; CHO, Y. S.; ALDERETE, J. F.; AHN, M. H.; MIN, D. Y.

    2007-01-01

    SUMMARY Neutrophils are the predominant inflammatory cells found in the vaginal discharge of patients with Trichomonas vaginalis infection. However, it is not known whether neutrophil apoptosis is induced by live T. vaginalis. Therefore, we examined whether T. vaginalis can influence neutrophil apoptosis, and also whether caspase-3 and the Bcl-2 family members are involved in the apoptosis. Thus, human neutrophils were incubated with live T. vaginalis and neutrophil apoptosis was evaluated by Giemsa, annexin V-PI, and DiOC6 stainings. The neutrophil apoptosis was significantly higher in those incubated with T. vaginalis than in the control group. When trichomonads were pre-treated with mAb to AP65 (adhesin protein), or when trophozoites were separated from neutrophils using a Transwell chamber, neutrophil apoptosis was significantly reduced. The activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis but was markedly enhanced during T. vaginalis-induced apoptosis. Moreover, the inhibition of caspase-3 effectively reduced T. vaginalis-induced apoptosis. Trichomonad-induced apoptosis was also associated with reduced expression of the neutrophil anti-apoptotic protein, Mcl-1. These results indicate that T. vaginalis alters Mcl-1 expression and caspase-3 activation, thereby inducing apoptosis of human neutrophils. PMID:16916367

  14. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.

  15. Differential Expression of Genes Involved in Host Recognition, Attachment, and Degradation in the Mycoparasite Tolypocladium ophioglossoides

    PubMed Central

    Quandt, C. Alisha; Di, Yanming; Elser, Justin; Jaiswal, Pankaj; Spatafora, Joseph W.

    2016-01-01

    The ability of a fungus to infect novel hosts is dependent on changes in gene content, expression, or regulation. Examining gene expression under simulated host conditions can explore which genes may contribute to host jumping. Insect pathogenesis is the inferred ancestral character state for species of Tolypocladium, however several species are parasites of truffles, including Tolypocladium ophioglossoides. To identify potentially crucial genes in this interkingdom host switch, T. ophioglossoides was grown on four media conditions: media containing the inner and outer portions of its natural host (truffles of Elaphomyces), cuticles from an ancestral host (beetle), and a rich medium (Yeast Malt). Through high-throughput RNASeq of mRNA from these conditions, many differentially expressed genes were identified in the experiment. These included PTH11-related G-protein-coupled receptors (GPCRs) hypothesized to be involved in host recognition, and also found to be upregulated in insect pathogens. A divergent chitinase with a signal peptide was also found to be highly upregulated on media containing truffle tissue, suggesting an exogenous degradative activity in the presence of the truffle host. The adhesin gene, Mad1, was highly expressed on truffle media as well. A BiNGO analysis of overrepresented GO terms from genes expressed during each growth condition found that genes involved in redox reactions and transmembrane transport were the most overrepresented during T. ophioglossoides growth on truffle media, suggesting their importance in growth on fungal tissue as compared to other hosts and environments. Genes involved in secondary metabolism were most highly expressed during growth on insect tissue, suggesting that their products may not be necessary during parasitism of Elaphomyces. This study provides clues into understanding genetic mechanisms underlying the transition from insect to truffle parasitism. PMID:26801645

  16. Differential Expression of Genes Involved in Host Recognition, Attachment, and Degradation in the Mycoparasite Tolypocladium ophioglossoides.

    PubMed

    Quandt, C Alisha; Di, Yanming; Elser, Justin; Jaiswal, Pankaj; Spatafora, Joseph W

    2016-01-22

    The ability of a fungus to infect novel hosts is dependent on changes in gene content, expression, or regulation. Examining gene expression under simulated host conditions can explore which genes may contribute to host jumping. Insect pathogenesis is the inferred ancestral character state for species of Tolypocladium, however several species are parasites of truffles, including Tolypocladium ophioglossoides. To identify potentially crucial genes in this interkingdom host switch, T. ophioglossoides was grown on four media conditions: media containing the inner and outer portions of its natural host (truffles of Elaphomyces), cuticles from an ancestral host (beetle), and a rich medium (Yeast Malt). Through high-throughput RNASeq of mRNA from these conditions, many differentially expressed genes were identified in the experiment. These included PTH11-related G-protein-coupled receptors (GPCRs) hypothesized to be involved in host recognition, and also found to be upregulated in insect pathogens. A divergent chitinase with a signal peptide was also found to be highly upregulated on media containing truffle tissue, suggesting an exogenous degradative activity in the presence of the truffle host. The adhesin gene, Mad1, was highly expressed on truffle media as well. A BiNGO analysis of overrepresented GO terms from genes expressed during each growth condition found that genes involved in redox reactions and transmembrane transport were the most overrepresented during T. ophioglossoides growth on truffle media, suggesting their importance in growth on fungal tissue as compared to other hosts and environments. Genes involved in secondary metabolism were most highly expressed during growth on insect tissue, suggesting that their products may not be necessary during parasitism of Elaphomyces. This study provides clues into understanding genetic mechanisms underlying the transition from insect to truffle parasitism.

  17. Porcine aminopeptidase N binds to F4+ enterotoxigenic Escherichia coli fimbriae.

    PubMed

    Xia, Pengpeng; Wang, Yiting; Zhu, Congrui; Zou, Yajie; Yang, Ying; Liu, Wei; Hardwidge, Philip R; Zhu, Guoqiang

    2016-02-09

    F4(+) enterotoxigenic Escherichia coli (ETEC) strains cause diarrheal disease in neonatal and post-weaned piglets. Several different host receptors for F4 fimbriae have been described, with porcine aminopeptidase N (APN) reported most recently. The FaeG subunit is essential for the binding of the three F4 variants to host cells. Here we show in both yeast two-hybrid and pulldown assays that APN binds directly to FaeG, the major subunit of F4 fimbriae, from three serotypes of F4(+) ETEC. Modulating APN gene expression in IPEC-J2 cells affected ETEC adherence. Antibodies raised against APN or F4 fimbriae both reduced ETEC adherence. Thus, APN mediates the attachment of F4(+) E. coli to intestinal epithelial cells.

  18. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus.

    PubMed

    Kumar, Amit; Ting, Yen Peng

    2015-11-01

    Although Staphylococcus aureus and Pseudomonas aeruginosa can individually colonize and infect their hosts, the commensalistic effect of the two is more tenacious and lethal. In this study, it was shown that in co-culture with P. aeruginosa, a sub-population of S. aureus exhibited improved resistance to kanamycin by selection of small colony variant (SCV) phenotype. Additionally, biofilm formation by the two bacteria was denser in the co-culture, compared with biofilm formed in individual pure cultures. Using Atomic Force Microscope (AFM) force spectroscopy for single cells, it was demonstrated that S. aureus cultured in the presence of P. aeruginosa bound more tenaciously to substrates. Surface-shaved peptides were isolated and identified using ultra-performance liquid chromatography-quadrupole-time of flight and a homology search program spider. Results indicated that serine-rich adhesin, extracellular matrix binding protein and other putative adhesion proteins could be responsible for the enhanced attachment of S. aureus in the co-culture. Besides, several other proteins were differentially expressed, indicating the occurrence of a range of other interactions. Of particular interest was a multidrug resistant protein named ABC transporter permease which is known to expel xenobiotics out of the cells. Positive regulation of this protein could be involved in the SCV selection of S. aureus in the co-culture. PMID:25925222

  19. Bordetella pertussis isolates in Finland: Serotype and fimbrial expression

    PubMed Central

    Heikkinen, Eriikka; Xing, Dorothy K; Ölander, Rose-Marie; Hytönen, Jukka; Viljanen, Matti K; Mertsola, Jussi; He, Qiushui

    2008-01-01

    Background Bordetella pertussis causes whooping cough or pertussis in humans. It produces several virulence factors, of which the fimbriae are considered adhesins and elicit immune responses in the host. B. pertussis has three distinct serotypes Fim2, Fim3 or Fim2,3. Generally, B. pertussis Fim2 strains predominate in unvaccinated populations, whereas Fim3 strains are often isolated in vaccinated populations. In Finland, pertussis vaccination was introduced in 1952. The whole-cell vaccine contained two strains, 18530 (Fim3) since 1962 and strain 1772 (Fim2,3) added in 1976. After that the vaccine has remained the same until 2005 when the whole-cell vaccine was replaced by the acellular vaccine containing pertussis toxin and filamentous hemagglutinin. Our aims were to study serotypes of Finnish B. pertussis isolates from 1974 to 2006 in a population with > 90% vaccination coverage and fimbrial expression of the isolates during infection. Serotyping was done by agglutination and serotype-specific antibody responses were determined by blocking ELISA. Results Altogether, 1,109 isolates were serotyped. Before 1976, serotype distributions of Fim2, Fim3 and Fim2,3 were 67%, 19% and 10%, respectively. From 1976 to 1998, 94% of the isolates were Fim2 serotype. Since 1999, the frequency of Fim3 strains started to increase and reached 83% during a nationwide epidemic in 2003. A significant increase in level of serum IgG antibodies against purified fimbriae was observed between paired sera of 37 patients. The patients infected by Fim3 strains had antibodies which blocked the binding of monoclonal antibodies to Fim3 but not to Fim2. Moreover, about one third of the Fim2 strain infected patients developed antibodies capable of blocking of binding of both anti-Fim2 and Fim3 monoclonal antibodies. Conclusion Despite extensive vaccinations in Finland, B. pertussis Fim2 strains were the most common serotype. Emergence of Fim3 strains started in 1999 and coincided with nationwide

  20. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger.

    PubMed

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L; Fox, James G; Berg, Douglas E; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.

  1. Electron Microscopic, Genetic and Protein Expression Analyses of Helicobacter acinonychis Strains from a Bengal Tiger

    PubMed Central

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A.; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L.; Fox, James G.; Berg, Douglas E.; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5–6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections. PMID:23940723

  2. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger.

    PubMed

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L; Fox, James G; Berg, Douglas E; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections. PMID:23940723

  3. Investigation of the relationship between SLA-1 and SLA-3 gene expression and susceptibility to Escherichia coli F18 in post-weaning pigs.

    PubMed

    Ye, L; Zi, C; Pan, Z Y; Zhu, J; Du, Z D; Zhu, G Q; Huang, X G; Bao, W B; Wu, S L

    2012-01-01

    Porcine post-weaning diarrhea and edema disease are principally caused by Escherichia coli strains that produce F18 adhesin. FUT1 genotyping and receptor binding studies divided piglets into E. coli F18-resistant and -sensitive groups, and the roles of SLA-1 and SLA-3 were investigated. SLA-1 and SLA-3 expression was detected in 11 pig tissues, with higher levels of SLA-1 in lung, immune tissues and gastrointestinal tract, and higher levels of SLA-3 also in lung and lymphoid tissues. Both genes were expressed higher in F18-resistant piglets, and their expression was positively correlated in different tissues; a negative correlation was observed in some tissues of F18-sensitive group, particularly in lung and lymphatic samples. Gene ontology and pathway analyses showed that SLA-1 and SLA-3 were involved in 37 biological processes, including nine pathways related to immune functions. These observations help to elucidate the relationship between SLA class I genes and E. coli F18-related porcine gastrointestinal tract diseases.

  4. Insect-cell expression, crystallization and X-ray data collection of the bradyzoite-specific antigen BSR4 from Toxoplasma gondii

    SciTech Connect

    Grujic, Ognjen; Grigg, Michael E.; Boulanger, Martin J.

    2008-05-01

    Preliminary X-ray diffraction studies of the bradyzoite-specific surface antigen BSR4 from T. gondii are described. Toxoplasma gondii is an important global pathogen that infects nearly one third of the world’s adult population. A family of developmentally expressed structurally related surface-glycoprotein adhesins (SRSs) mediate attachment to and are utilized for entry into host cells. The latent bradyzoite form of T. gondii persists for the life of the host and expresses a distinct family of SRS proteins, of which the bradyzoite-specific antigen BSR4 is a prototypical member. Structural studies of BSR4 were initiated by first recombinantly expressing BSR4 in insect cells, which was followed by crystallization and preliminary X-ray data collection to 1.95 Å resolution. Data processing showed that BSR4 crystallized with one molecule in the asymmetric unit of the P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 space group, with a solvent content of 60% and a corresponding Matthews coefficient of 2.98 Å{sup 3} Da{sup −1}.

  5. Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen

    PubMed Central

    Kawai, Mikihiko; Higashiura, Norie; Hayasaki, Kimie; Okamoto, Naruhei; Takami, Akiko; Hirakawa, Hideki; Matsushita, Kazunobu; Azuma, Yoshinao

    2015-01-01

    Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions. PMID:26358298

  6. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis.

    PubMed

    Sugisaki, Kentaro; Hanawa, Tomoko; Yonezawa, Hideo; Osaki, Takako; Fukutomi, Toshiyuki; Kawakami, Hayato; Yamamoto, Tomoko; Kamiya, Shigeru

    2013-07-01

    Bordetella pertussis, the causative agent of whooping cough, is highly adapted to cause human infection. The production of virulence factors, such as adhesins and toxins, is just part of an array of mechanisms by which B. pertussis causes infection. The stringent response is a global bacterial response to nutritional limitation that is mediated by the accumulation of cellular ppGpp and pppGpp [termed together as (p)ppGpp]. Here, we demonstrate that production of (p)ppGpp was controlled by RelA and SpoT proteins in B. pertussis, and that mutation-induced loss of both proteins together caused deficiencies in (p)ppGpp production. The (p)ppGpp-deficient mutants also exhibited defects in growth regulation, decreases in viability under nutritionally limited conditions, increases in susceptibility to oxidative stress and defects in biofilm formation. Analysis of the secreted proteins and the respective transcripts showed that lack of (p)ppGpp led to decreased expression of fim3 and bsp22, which encode a fimbrial subunit and the self-polymerizing type III secretion system tip protein, respectively. Moreover, electron microscopic analysis also indicated that (p)ppGpp regulated the formation of filamentous structures. Most virulence genes - including fim3 and bsp22 - were expressed in the Bvg(+) phase during which the BvgAS two-component system was activated. Although fim3 and bsp22 were downregulated in a (p)ppGpp-deficient mutant, normal expression of fhaB, cyaA and ptxA persisted. Lack of coherence between virulence gene expression and (p)ppGpp production indicated that (p)ppGpp did not modulate the Bvg phase. Taken together, our data indicate that (p)ppGpp may govern an as-yet-unrecognized system that influences B. pertussis pathogenicity.

  7. RfaH Suppresses Small RNA MicA Inhibition of fimB Expression in Escherichia coli K-12

    PubMed Central

    Moores, Alexandra; Chipper-Keating, Saranna; Sun, Lei; McVicker, Gareth; Wales, Lynn; Gashi, Krishna

    2014-01-01

    The phase variation (reversible on-off switching) of the type 1 fimbrial adhesin of Escherichia coli involves a DNA inversion catalyzed by FimB (switching in either direction) or FimE (on-to-off switching). Here, we demonstrate that RfaH activates expression of a FimB-LacZ protein fusion while having a modest inhibitory effect on a comparable fimB-lacZ operon construct and on a FimE-LacZ protein fusion, indicating that RfaH selectively controls fimB expression at the posttranscriptional level. Further work demonstrates that loss of RfaH enables small RNA (sRNA) MicA inhibition of fimB expression even in the absence of exogenous inducing stress. This effect is explained by induction of σE, and hence MicA, in the absence of RfaH. Additional work confirms that the procaine-dependent induction of micA requires OmpR, as reported previously (A. Coornaert et al., Mol. Microbiol. 76:467–479, 2010, doi:10.1111/j.1365-2958.2010.07115.x), but also demonstrates that RfaH inhibition of fimB transcription is enhanced by procaine independently of OmpR. While the effect of procaine on fimB transcription is shown to be independent of RcsB, it was found to require SlyA, another known regulator of fimB transcription. These results demonstrate a complex role for RfaH as a regulator of fimB expression. PMID:24163336

  8. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  9. Occurrence of S and F1C/S-related fimbrial determinants and their expression in Escherichia coli strains isolated from extraintestinal infections.

    PubMed

    Sokolowska-Köhler, W; Schönian, G; Bollmann, R; Schubert, A; Parschau, J; Seeberg, A; Presber, W

    1997-05-01

    The presence of S and F1C/S-related fimbrial determinants was determined in 462 E. coli strains obtained from different extraintestinal infections and in 162 control isolates of E. coli by using two different DNA probes: an oligonucleotide probe consisting of three oligonucleotides that bind specifically to the S adhesin gene and a polynucleotide probe which is not able to distinguish between S, F1C, and S-related sequences. The expression of S and F1C phenotypes was tested by dot enzyme immunoassay with the corresponding monoclonal antibodies. S fimbriae genotypes were observed more frequently in septic (25%) and urinary (12%) isolates of E. coli than in faecal and water isolates (1%) and often occurred together with O2, O6, O18 and O83 antigens. F1C/S-related fimbrial DNA was detected with a higher frequency in UTI isolates (26%) than in septic (16%) and faecal (10%) isolates and was most frequently associated with O4, O6, and O75 serotypes. Since the production of S and F1C fimbriae was comparatively rare in all clinical and control isolates of E. coli, DNA hybridization assays which allow the sensitive and specific detection of fimbrial determinants even in the absence of their expression are preferable to phenotypic assays.

  10. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis.

    PubMed

    Conlon, Kevin M; Humphreys, Hilary; O'Gara, James P

    2002-08-01

    Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR+) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation.

  11. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis.

    PubMed

    Conlon, Kevin M; Humphreys, Hilary; O'Gara, James P

    2002-08-01

    Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR+) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation. PMID:12142410

  12. Pseudomonas aeruginosa Type IV Pilus Expression in Neisseria gonorrhoeae: Effects of Pilin Subunit Composition on Function and Organelle Dynamics▿ †

    PubMed Central

    Winther-Larsen, Hanne C.; Wolfgang, Matthew C.; van Putten, Jos P. M.; Roos, Norbert; Aas, Finn Erik; Egge-Jacobsen, Wolfgang M.; Maier, Berenike; Koomey, Michael

    2007-01-01

    Type IV pili (TFP) play central roles in the expression of many phenotypes including motility, multicellular behavior, sensitivity to bacteriophages, natural genetic transformation, and adherence. In Neisseria gonorrhoeae, these properties require ancillary proteins that act in conjunction with TFP expression and influence organelle dynamics. Here, the intrinsic contributions of the pilin protein itself to TFP dynamics and associated phenotypes were examined by expressing the Pseudomonas aeruginosa PilAPAK pilin subunit in N. gonorrhoeae. We show here that, although PilAPAK pilin can be readily assembled into TFP in this background, steady-state levels of purifiable fibers are dramatically reduced relative those of endogenous pili. This defect is due to aberrant TFP dynamics as it is suppressed in the absence of the PilT pilus retraction ATPase. Functionally, PilAPAK pilin complements gonococcal adherence for human epithelial cells but only in a pilT background, and this property remains dependent on the coexpression of both the PilC adhesin and the PilV pilin-like protein. Since P. aeruginosa pilin only moderately supports neisserial sequence-specific transformation despite its assembly proficiency, these results together suggest that PilAPAK pilin functions suboptimally in this environment. This appears to be due to diminished compatibility with resident proteins essential for TFP function and dynamics. Despite this, PilAPAK pili support retractile force generation in this background equivalent to that reported for endogenous pili. Furthermore, PilAPAK pili are both necessary and sufficient for bacteriophage PO4 binding, although the strain remains phage resistant. Together, these findings have significant implications for TFP biology in both N. gonorrhoeae and P. aeruginosa. PMID:17573479

  13. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins

    PubMed Central

    Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan

    2014-01-01

    In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. PMID:24942546

  14. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    PubMed

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae.

  15. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    PubMed

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae. PMID:27377430

  16. Global Pattern of Gene Expression of Xanthomonas axonopodis pv. glycines Within Soybean Leaves.

    PubMed

    Chatnaparat, Tiyakhon; Prathuangwong, Sutruedee; Lindow, Steven E

    2016-06-01

    To better understand the behavior of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean within its host, its global transcriptome within soybean leaves was compared with that in a minimal medium in vitro, using deep sequencing of mRNA. Of 5,062 genes predicted from a draft genome of X. axonopodis pv. glycines, 534 were up-regulated in the plant, while 289 were down-regulated. Genes encoding YapH, a cell-surface adhesin, as well as several others encoding cell-surface proteins, were down-regulated in soybean. Many genes encoding the type III secretion system and effector proteins, cell wall-degrading enzymes and phosphate transporter proteins were strongly expressed at early stages of infection. Several genes encoding RND multidrug efflux pumps were induced in planta and by isoflavonoids in vitro and were required for full virulence of X. axonopodis pv. glycines, as well as resistance to soybean phytoalexins. Genes encoding consumption of malonate, a compound abundant in soybean, were induced in planta and by malonate in vitro. Disruption of the malonate decarboxylase operon blocked growth in minimal media with malonate as the sole carbon source but did not significantly alter growth in soybean, apparently because genes for sucrose and fructose uptake were also induced in planta. Many genes involved in phosphate metabolism and uptake were induced in planta. While disruption of genes encoding high-affinity phosphate transport did not alter growth in media varying in phosphate concentration, the mutants were severely attenuated for growth in soybean. This global transcriptional profiling has provided insight into both the intercellular environment of this soybean pathogen and traits used by X. axonopodis pv. glycines to promote disease. PMID:27003800

  17. Global Pattern of Gene Expression of Xanthomonas axonopodis pv. glycines Within Soybean Leaves.

    PubMed

    Chatnaparat, Tiyakhon; Prathuangwong, Sutruedee; Lindow, Steven E

    2016-06-01

    To better understand the behavior of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean within its host, its global transcriptome within soybean leaves was compared with that in a minimal medium in vitro, using deep sequencing of mRNA. Of 5,062 genes predicted from a draft genome of X. axonopodis pv. glycines, 534 were up-regulated in the plant, while 289 were down-regulated. Genes encoding YapH, a cell-surface adhesin, as well as several others encoding cell-surface proteins, were down-regulated in soybean. Many genes encoding the type III secretion system and effector proteins, cell wall-degrading enzymes and phosphate transporter proteins were strongly expressed at early stages of infection. Several genes encoding RND multidrug efflux pumps were induced in planta and by isoflavonoids in vitro and were required for full virulence of X. axonopodis pv. glycines, as well as resistance to soybean phytoalexins. Genes encoding consumption of malonate, a compound abundant in soybean, were induced in planta and by malonate in vitro. Disruption of the malonate decarboxylase operon blocked growth in minimal media with malonate as the sole carbon source but did not significantly alter growth in soybean, apparently because genes for sucrose and fructose uptake were also induced in planta. Many genes involved in phosphate metabolism and uptake were induced in planta. While disruption of genes encoding high-affinity phosphate transport did not alter growth in media varying in phosphate concentration, the mutants were severely attenuated for growth in soybean. This global transcriptional profiling has provided insight into both the intercellular environment of this soybean pathogen and traits used by X. axonopodis pv. glycines to promote disease.

  18. Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage.

    PubMed

    Alvarez-Sánchez, María Elizbeth; Carvajal-Gamez, Bertha Isabel; Solano-González, Eduardo; Martínez-Benitez, Máximo; Garcia, Ana F; Alderete, John F; Arroyo, Rossana

    2008-01-01

    Recently, we found that inhibition of putrescine synthesis by ornithine decarboxylase (ODC) significantly increased Trichomonas vaginalis adherence mediated by protein adhesins. Surprisingly and unexpectedly, trichomonal contact-dependent cytotoxicity was absent. Therefore, a role for polyamine depletion on regulation of T. vaginalis cytotoxicity mediated by the cysteine proteinase (CP) of 65-kDa, CP65, was investigated. We performed cytotoxicity and cell-binding assays followed by zymograms, as well as Western blot and indirect immunofluorescence assays using specific anti-CP65 antibodies to detect CP65. Trichomonads grown in the presence of the ODC inhibitor, 1-4-diamino-2-butanone (DAB) had lower levels of cytotoxicity that corresponded with diminished CP65 proteolytic activity when compared to untreated organisms handled identically. Likewise, semiquantitative and qRT-PCR as well as Western blot and immunofluorescence assays showed decreased amounts of tvcp65 mRNA and CP65 protein in DAB-treated parasites. These effects were reversed by addition of exogenous putrescine. These data show a direct link between polyamine metabolism and expression of the cytotoxic CP65 proteinase involved in trichomonal host cellular damage.

  19. Disorder of written expression

    MedlinePlus

    Written expression disorder; Dysgraphia; Specific learning disorder with impairment in written expression ... disorder appears by itself or along with other learning disabilities, such as: Developmental coordination disorder (includes poor handwriting) ...

  20. High expression Zymomonas promoters

    DOEpatents

    Viitanen, Paul V.; Tao, Luan; Zhang, Yuying; Caimi, Perry G.; McCole, Laura : Zhang, Min; Chou, Yat-Chen; McCutchen, Carol M.; Franden, Mary Ann

    2011-08-02

    Identified are mutants of the promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene, which direct improved expression levels of operably linked heterologous nucleic acids. These are high expression promoters useful for expression of chimeric genes in Zymomonas, Zymobacter, and other related bacteria.

  1. Artistic Expression and the Unfolding Self: Expressive Adults, Expressive Children.

    ERIC Educational Resources Information Center

    Dantus, Olga

    1999-01-01

    Discusses the role of Montessori education in developing lifelong skills for creativity. Considers self-expression the key to recovering human authenticity and spirit. Urges teachers and parents to develop this inner self in themselves and their children as a barrier against contemporary materialism, hurried life, and alienation caused by…

  2. Nuclear factor-kappa B directs carcinoembryonic antigen-related cellular adhesion molecule 1 receptor expression in Neisseria gonorrhoeae-infected epithelial cells.

    PubMed

    Muenzner, Petra; Billker, Oliver; Meyer, Thomas F; Naumann, Michael

    2002-03-01

    The human-specific pathogen Neisseria gonorrhoeae expresses opacity-associated (Opa) protein adhesins that bind to various members of the carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. In this study, we have analyzed the mechanism underlying N. gonorrhoeae-induced CEACAM up-regulation in epithelial cells. Epithelial cells represent the first barrier for the microbial pathogen. We therefore characterized CEACAM expression in primary human ovarian surface epithelial (HOSE) cells and found that CEACAM1-3 (L, S) and CEACAM1-4 (L, S) splice variants mediate an increased Opa(52)-dependent gonoccocal binding to HOSE cells. Up-regulation of these CEACAM molecules in HOSE cells is a direct process that takes place within 2 h postinfection and depends on close contact between microbial pathogen and HOSE cells. N. gonorrhoeae-triggered CEACAM1 up-regulation involves activation of the transcription factor nuclear factor kappaB (NF-kappaB), which translocates as a p50/p65 heterodimer into the nucleus, and an NF-kappaB-specific inhibitory peptide inhibited CEACAM1-receptor up-regulation in N. gonorrhoeae-infected HOSE cells. Bacterial lipopolysaccharides did not induce NF-kappaB and CEACAM up-regulation, which corresponds to our findings that HOSE cells do not express toll-like receptor 4. The ability of N. gonorrhoeae to up-regulate its epithelial receptor CEACAM1 through NF-kappaB suggests an important mechanism allowing efficient bacterial colonization during the initial infection process. PMID:11751883

  3. Holistic facial expression classification

    NASA Astrophysics Data System (ADS)

    Ghent, John; McDonald, J.

    2005-06-01

    This paper details a procedure for classifying facial expressions. This is a growing and relatively new type of problem within computer vision. One of the fundamental problems when classifying facial expressions in previous approaches is the lack of a consistent method of measuring expression. This paper solves this problem by the computation of the Facial Expression Shape Model (FESM). This statistical model of facial expression is based on an anatomical analysis of facial expression called the Facial Action Coding System (FACS). We use the term Action Unit (AU) to describe a movement of one or more muscles of the face and all expressions can be described using the AU's described by FACS. The shape model is calculated by marking the face with 122 landmark points. We use Principal Component Analysis (PCA) to analyse how the landmark points move with respect to each other and to lower the dimensionality of the problem. Using the FESM in conjunction with Support Vector Machines (SVM) we classify facial expressions. SVMs are a powerful machine learning technique based on optimisation theory. This project is largely concerned with statistical models, machine learning techniques and psychological tools used in the classification of facial expression. This holistic approach to expression classification provides a means for a level of interaction with a computer that is a significant step forward in human-computer interaction.

  4. Curli fimbria: an Escherichia coli adhesin associated with human cystitis.

    PubMed

    Cordeiro, Melina Aparecida; Werle, Catierine Hirsch; Milanez, Guilherme Paier; Yano, Tomomasa

    2016-01-01

    Escherichia coli is the major causative agent of human cystitis. In this study, a preliminary molecular analysis carried out by PCR (polymerase chain reaction) demonstrated that 100% of 31 E. coli strains isolated from patients with recurrent UTIs (urinary tract infections) showed the presence of the curli fimbria gene (csgA). Curli fimbria is known to be associated with bacterial biofilm formation but not with the adhesion of human cystitis-associated E. coli. Therefore, this work aimed to study how curli fimbria is associated with uropathogenic E. coli (UPEC) as an adhesion factor. For this purpose, the csgA gene was deleted from strain UPEC-4, which carries three adhesion factor genes (csgA, fimH and ompA). The wild-type UPEC-4 strain and its mutant (ΔcsgA) were analyzed for their adhesion ability over HTB-9 (human bladder carcinoma), Vero (kidney cells of African green monkey) and HUVEC (human umbilical vein) cells in the presence of α-d-mannose. All the wild-type UPEC strains tested (100%) were able to adhere to all three cell types, while the UPEC-4 ΔcsgA mutant lost its adherence to HTB-9 but continued to adhere to the HUVEC and Vero cells. The results suggest that curli fimbria has an important role in the adhesion processes associated with human UPEC-induced cystitis.

  5. Darwin and Emotion Expression

    ERIC Educational Resources Information Center

    Hess, Ursula; Thibault, Pascal

    2009-01-01

    In his book "The Expression of the Emotions in Man and Animals," Charles Darwin (1872/1965) defended the argument that emotion expressions are evolved and adaptive (at least at some point in the past) and serve an important communicative function. The ideas he developed in his book had an important impact on the field and spawned rich domains of…

  6. Pleiotrophin expression during odontogenesis.

    PubMed

    Erlandsen, Heidi; Ames, Jennifer E; Tamkenath, Amena; Mamaeva, Olga; Stidham, Katherine; Wilson, Mary E; Perez-Pinera, Pablo; Deuel, Thomas F; Macdougall, Mary

    2012-05-01

    Pleiotrophin (PTN) is an extracellular matrix-associated growth factor and chemokine expressed in mesodermal and ectodermal cells. It plays an important role in osteoblast recruitment and differentiation. There is limited information currently available about PTN expression during odontoblast differentiation and tooth formation, and thus the authors aimed to establish the spatiotemporal expression pattern of PTN during mouse odontogenesis. Immortalized mouse dental pulp (MD10-D3, MD10-A11) and odontoblast-like (M06-G3) and ameloblast-like (EOE-3M) cell lines were grown and samples prepared for immunocytochemistry, Western blot, and conventional and quantitative PCR analysis. Effects of BMP2, BMP4, and BMP7 treatment on PTN expression in odontoblast-like M06-G3 cells were tested by quantitative PCR. Finally, immunohistochemistry of sectioned mice mandibles and maxillaries at developmental stages E16, E18, P1, P6, P10, and P28 was performed. The experiments showed that PTN, at both the mRNA and protein level, was expressed in all tested epithelial and mesenchymal dental cell lines and that the level of PTN mRNA was influenced differentially by the bone morphogenetic proteins. The authors observed initial expression of PTN in the inner enamel epithelium with prolonged expression in the ameloblasts and odontoblasts throughout their stages of maturation and strong expression in the terminally differentiated and enamel matrix-secreting ameloblasts and odontoblasts of the adult mouse incisors and molars.

  7. Darwin's puzzling Expression.

    PubMed

    Radick, Gregory

    2010-02-01

    Charles Darwin's The Expression of the Emotions in Man and Animals (1872) is a very different kind of work from On the Origin of Species (1859). This "otherness" is most extreme in the character of the explanations that Darwin offers in the Expression. Far from promoting his theory of natural selection, the Expression barely mentions that theory, instead drawing on explanatory principles which recall less Darwinian than Lamarckian and structuralist biological theorizing. Over the years, historians have offered a range of solutions to the puzzle of why the Expression is so "non-Darwinian". Close examination shows that none of these meets the case. However, recent research on Darwin's lifelong engagement with the controversies in his day over the unity of the human races makes possible a promising new solution. For Darwin, emotional expression served the cause of defending human unity precisely to the extent that natural selection theory did not apply. PMID:20338535

  8. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  9. Darwin's puzzling Expression.

    PubMed

    Radick, Gregory

    2010-02-01

    Charles Darwin's The Expression of the Emotions in Man and Animals (1872) is a very different kind of work from On the Origin of Species (1859). This "otherness" is most extreme in the character of the explanations that Darwin offers in the Expression. Far from promoting his theory of natural selection, the Expression barely mentions that theory, instead drawing on explanatory principles which recall less Darwinian than Lamarckian and structuralist biological theorizing. Over the years, historians have offered a range of solutions to the puzzle of why the Expression is so "non-Darwinian". Close examination shows that none of these meets the case. However, recent research on Darwin's lifelong engagement with the controversies in his day over the unity of the human races makes possible a promising new solution. For Darwin, emotional expression served the cause of defending human unity precisely to the extent that natural selection theory did not apply.

  10. Darwin and emotion expression.

    PubMed

    Hess, Ursula; Thibault, Pascal

    2009-01-01

    In his book The Expression of the Emotions in Man and Animals, Charles Darwin (1872/1965) defended the argument that emotion expressions are evolved and adaptive (at least at some point in the past) and serve an important communicative function. The ideas he developed in his book had an important impact on the field and spawned rich domains of inquiry. This article presents Darwin's three principles in this area and then discusses some of the research topics that developed out of his theoretical vision. In particular, the focus is on five issues--(a) the question of what emotion expressions express, (b) the notion of basic emotions, (c) the universality of emotion expressions, (d) the question of emotion prototypes, and (e) the issue of animal emotions--all of which trace their roots to Darwin's discussion of his first two principles.

  11. Regulation of melanopsin expression.

    PubMed

    Hannibal, Jens

    2006-01-01

    Circadian rhythms in mammals are adjusted daily to the environmental day/night cycle by photic input via the retinohypothalamic tract (RHT). Retinal ganglion cells (RGCs) of the RHT constitute a separate light-detecting system in the mammalian retina used for irradiance detection and for transmission to the circadian system and other non-imaging forming processes in the brain. The RGCs of the RHT are intrinsically photosensitive due to the expression of melanopsin, an opsin-like photopigment. This notion is based on anatomical and functional data and on studies of mice lacking melanopsin. Furthermore, heterologous expression of melanopsin in non-neuronal mammalian cell lines was found sufficient to render these cells photosensitive. Even though solid evidence regarding the function of melanopsin exists, little is known about the regulation of melanopsin gene expression. Studies in albino Wistar rats showed that the expression of melanopsin is diurnal at both the mRNA and protein levels. The diurnal changes in melanopsin expression seem, however, to be overridden by prolonged exposure to light or darkness. Significant increase in melanopsin expression was observed from the first day in constant darkness and the expression continued to increase during prolonged exposure in constant darkness. Prolonged exposure to constant light, on the other hand, decreased melanopsin expression to an almost undetectable level after 5 days of constant light. The induction of melanopsin by darkness was even more pronounced if darkness was preceded by light suppression for 5 days. These observations show that dual mechanisms regulate melanopsin gene expression and that the intrinsic light-responsive RGCs in the albino Wistar rat adapt their expression of melanopsin to environmental light and darkness.

  12. Alteration of the Microbiota and Virulence Gene Expression in E. coli O157:H7 in Pig Ligated Intestine with and without AE Lesions

    PubMed Central

    Yu, Hai; Feng, Yanni; Ying, Xin; Gong, Joshua; Gyles, Carlton L.

    2015-01-01

    Background Previously we found that E. coli O157:H7 inoculated into ligated pig intestine formed attaching and effacing (AE) lesions in some pigs but not in others. The present study evaluated changes in the microbial community and in virulence gene expression in E. coli O157:H7 in ligated pig intestine in which the bacteria formed AE lesions or failed to form AE lesions. Methodology/Principal Findings The intestinal microbiota was assessed by RNA-based denaturing gradient gel electrophoresis (DGGE) analysis. The DGGE banding patterns showed distinct differences involving two bands which had increased intensity specifically in AE-negative pigs (AE- bands) and several bands which were more abundant in AE-positive pigs. Sequence analysis revealed that the two AE- bands belonged to Veillonella caviae, a species with probiotic properties, and Bacteroides sp. Concurrent with the differences in microbiota, gene expression analysis by quantitative PCR showed that, compared with AE negative pigs, E. coli O157:H7 in AE positive pigs had upregulated genes for putative adhesins, non-LEE encoded nleA and quorum sensing qseF, acid resistance gene ureD, and genes from the locus of enterocyte effacement (LEE). Conclusions/Significance The present study demonstrated that AE-positive pigs had reduced activities or populations of Veillonella caviae and Bacterioides sp. compared with AE-negative pigs. Further studies are required to understand how the microbiota was changed and the role of these organisms in the control of E. coli O157:H7. PMID:26090813

  13. EXPRESS Pallet Payload Interface Requirements

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    2004-01-01

    A viewgraph presentation describing the EXPRESS Pallet Space Station payload interface requirements is shown. The topics include: 1) External Payload Sites; 2) EXPRESS Pallet with Six Payload Envelopes; 3) EXPRESS Pallet in Payload Bay Representative Layout; 4) EXPRESS Pallet Installation SSRMS positions pallet for PAS mating on S3 truss; 5) EXPRESS Pallet Major Components; 6) EXPRESS Pallet Adapter; 7) EXPRESS Pallet Center Location Payload Envelope; 8) Envelope Restriction for EXPRESS Pallet Corner Payload Locations; 9) EXPRESS Pallet-PAS Truss Configuration; and 10) EXPRESS Pallet Payload Services and Specifications.

  14. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  15. Epigenetics and gene expression.

    PubMed

    Gibney, E R; Nolan, C M

    2010-07-01

    Transcription, translation and subsequent protein modification represent the transfer of genetic information from the archival copy of DNA to the short-lived messenger RNA, usually with subsequent production of protein. Although all cells in an organism contain essentially the same DNA, cell types and functions differ because of qualitative and quantitative differences in their gene expression. Thus, control of gene expression is at the heart of differentiation and development. Epigenetic processes, including DNA methylation, histone modification and various RNA-mediated processes, are thought to influence gene expression chiefly at the level of transcription; however, other steps in the process (for example, translation) may also be regulated epigenetically. The following paper will outline the role epigenetics is believed to have in influencing gene expression.

  16. Correctly Expressing Atomic Weights

    NASA Astrophysics Data System (ADS)

    Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo

    2000-11-01

    Very often, atomic or molecular weights are expressed as dimensionless quantities, but although the historical importance of their definition as "pure numbers" is acknowledged, it is inconsistent with experimental formulas and with the theory of measure in general. Here, we propose on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.

  17. Memory beyond expression.

    PubMed

    Delorenzi, A; Maza, F J; Suárez, L D; Barreiro, K; Molina, V A; Stehberg, J

    2014-01-01

    The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.

  18. Urovirulence determinants in Escherichia coli isolates causing first-episode and recurrent cystitis in women.

    PubMed

    Stapleton, A; Moseley, S; Stamm, W E

    1991-04-01

    To assess the prevalence of urovirulence determinants among Escherichia coli isolates from women with acute uncomplicated cystitis, 121 isolates from 87 women with first-episode or recurrent cystitis and 156 fecal isolates from 52 women without recent urinary tract infection were tested using DNA probes for P fimbriae, hemolysin, aerobactin, and diffuse adhesin and for expression of hemolysin and P and F adhesins. P fimbrial genotype (P = .002), hemolysin phenotype (P = .007), and the diffuse adhesin determinant (P = .03), but not aerobactin, were found more frequently in E. coli from women with acute cystitis, and expression of the F adhesin (41%) was more common than the P adhesin (24%; P = .001). E. coli isolates that caused cystitis in women using diaphragms had fewer virulence determinants than those from nonusers (P = .04), suggesting that diaphragm use may allow infection with less virulent E. coli.

  19. In Silico Expression Analysis.

    PubMed

    Bolívar, Julio; Hehl, Reinhard; Bülow, Lorenz

    2016-01-01

    Information on the specificity of cis-sequences enables the design of functional synthetic plant promoters that are responsive to specific stresses. Potential cis-sequences may be experimentally tested, however, correlation of genomic sequence with gene expression data enables an in silico expression analysis approach to bioinformatically assess the stress specificity of candidate cis-sequences prior to experimental verification. The present chapter demonstrates an example for the in silico validation of a potential cis-regulatory sequence responsive to cold stress. The described online tool can be applied for the bioinformatic assessment of cis-sequences responsive to most abiotic and biotic stresses of plants. Furthermore, a method is presented based on a reverted in silico expression analysis approach that predicts highly specific potentially functional cis-regulatory elements for a given stress. PMID:27557772

  20. In Silico Expression Analysis.

    PubMed

    Bolívar, Julio; Hehl, Reinhard; Bülow, Lorenz

    2016-01-01

    Information on the specificity of cis-sequences enables the design of functional synthetic plant promoters that are responsive to specific stresses. Potential cis-sequences may be experimentally tested, however, correlation of genomic sequence with gene expression data enables an in silico expression analysis approach to bioinformatically assess the stress specificity of candidate cis-sequences prior to experimental verification. The present chapter demonstrates an example for the in silico validation of a potential cis-regulatory sequence responsive to cold stress. The described online tool can be applied for the bioinformatic assessment of cis-sequences responsive to most abiotic and biotic stresses of plants. Furthermore, a method is presented based on a reverted in silico expression analysis approach that predicts highly specific potentially functional cis-regulatory elements for a given stress.

  1. PCA facial expression recognition

    NASA Astrophysics Data System (ADS)

    El-Hori, Inas H.; El-Momen, Zahraa K.; Ganoun, Ali

    2013-12-01

    This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. The comparative study of Facial Expression Recognition (FER) techniques namely Principal Component's analysis (PCA) and PCA with Gabor filters (GF) is done. The objective of this research is to show that PCA with Gabor filters is superior to the first technique in terms of recognition rate. To test and evaluates their performance, experiments are performed using real database by both techniques. The universally accepted five principal emotions to be recognized are: Happy, Sad, Disgust and Angry along with Neutral. The recognition rates are obtained on all the facial expressions.

  2. Venus Express arrives

    NASA Astrophysics Data System (ADS)

    Coates, Andrew

    2006-06-01

    Venus Express uses some hardware and ideas already in use on Mars Express and Rosetta to explore Venus, a planet with intriguing similarities to and differences from Earth. As the mission proper begins, I examine what we have learnt from other missions and what we hope to discover at Venus. Instruments on the mission will look at the thick atmosphere of Venus below its sulphuric acid clouds and how it interacts with the surface and escapes to space. They will also try to understand the runaway greenhouse effect and search for active volcanism.

  3. Alphavirus expression systems.

    PubMed

    Liljeström, P

    1994-10-01

    Alphavirus vectors are newcomers in the field of heterologous gene expression. Nevertheless, they have rapidly become popular and are now being used in a wide range of applications. During the past year, new vectors and new methods for their use have improved levels of gene expression. As alphaviruses are capable of infecting humans, biosafety was an important issue during early work with these vectors. The construction of a conditional lethal helper system has now largely overcome this problem, and should further increase the utility of these types of vector in animal cell systems.

  4. FimW Is a Negative Regulator Affecting Type 1 Fimbrial Expression in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Tinker, Juliette K.; Hancox, Lisa S.; Clegg, Steven

    2001-01-01

    Type 1 fimbriae are proteinaceous surface appendages that carry adhesins specific for mannosylated glycoproteins. These fimbriae are found on most members of the family Enterobacteriaceae and are known to facilitate binding to a variety of eukaryotic cells, including those found on the mucosal surfaces of the alimentary tract. We have shown that the regulation of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium is controlled, in part, by the products of four genes found within the fim gene cluster: fimZ, fimY, fimW, and fimU. To better understand the specific role of FimW in fimbrial expression, a mutation was constructed in this gene by the insertion of a kanamycin resistance DNA cassette into the chromosome. The resulting fimW mutation was characterized by mannose-sensitive hemagglutination and agglutination with fimbria-specific antiserum. Assays suggested that this mutant was more strongly fimbriate than the parental strain, exhibiting a four- to eightfold increase in fimbrial production. The fimW mutation was introduced into a second strain of Salmonella enterica serovar Typhimurium, and this mutant was also found to be strongly fimbriate compared to the parental strain. Consistent with the role of this protein as a negative regulator, fimA-lacZ expression in serovar Typhimurium, as well as in Escherichia coli, was increased twofold in the absence of functional FimW. Primer extension analysis determined that fimW transcription is initiated from its own promoter 31 bp upstream of the translation start site. Analysis using a fimW-lacZ reporter indicated that fimW expression in serovar Typhimurium was increased under conditions that select for poorly fimbriate bacteria and low fimA expression. FimW also appears to act as an autoregulator, since expression from the fimW-lacZ reporter was increased in a fimW mutant. FimW was partially purified by fusion with the E. coli maltose-binding protein. Use of this FimW protein extract, as well as

  5. Facial expressions recognition with an emotion expressive robotic head

    NASA Astrophysics Data System (ADS)

    Doroftei, I.; Adascalitei, F.; Lefeber, D.; Vanderborght, B.; Doroftei, I. A.

    2016-08-01

    The purpose of this study is to present the preliminary steps in facial expressions recognition with a new version of an expressive social robotic head. So, in a first phase, our main goal was to reach a minimum level of emotional expressiveness in order to obtain nonverbal communication between the robot and human by building six basic facial expressions. To evaluate the facial expressions, the robot was used in some preliminary user studies, among children and adults.

  6. Immune Responses Induced by Replication-Defective Adenovirus Expressing the C-Terminal Portion of the Mycoplasma hyopneumoniae P97 Adhesin▿

    PubMed Central

    Okamba, F. R.; Moreau, E.; Cheikh Saad Bouh, K.; Gagnon, C. A.; Massie, B.; Arella, M.

    2007-01-01

    Mycoplasma hyopneumoniae, the causative agent of porcine enzootic pneumonia, colonizes the respiratory cilia of affected swine, causing significant economic losses to swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of this disease. The goal of this study was to design and evaluate a replication-defective recombinant adenovirus, rAdP97c, expressing the C-terminal portion of P97 adhesin (P97c), an important pathogenesis-associated protein of M. hyopneumoniae, as a new vaccine candidate against M. hyopneumoniae infection. P97c-specific immune responses were evaluated in BALB/c mice following intranasal and intramuscular inoculation with rAdP97c. Mice inoculated by both routes of immunization produced significant levels of specific immunoglobulin G (IgG) antibodies in the serum and in bronchoalveolar lavage fluids (BALs). Animals immunized intranasally also produced a significant level of P97c-specific IgA in BALs. Intramuscular inoculation of rAdP97c induced a systemic and mucosal Th1-type biased response, evidenced by the predominance of IgG2a in the serum and BALs, whereas intranasal inoculation resulted in a mixed Th1/Th2-type response (balanced levels of IgG1 and IgG2a) in both sytemic and mucosal compartments. P97c-specific antibodies were able to inhibit the growth of M. hyopneumoniae cells in vitro. These data suggest that rAdP97c vaccine may represent a new strategy for controlling infection by M. hyopneumoniae. PMID:17409219

  7. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes

    PubMed Central

    Sievers, Susanne; Lund, Anja; Menendez-Gil, Pilar; Nielsen, Aaraby; Storm Mollerup, Maria; Lambert Nielsen, Stine; Buch Larsson, Pernille; Borch-Jensen, Jonas; Johansson, Jörgen; Kallipolitis, Birgitte Haahr

    2015-01-01

    Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress. PMID:26176322

  8. Expressive Costume Portraits

    ERIC Educational Resources Information Center

    Lott, Debra

    2008-01-01

    This article describes how contemporary costumes, expressive techniques, and mixed media can take "the ordinary" out of figure studies. To pique student interest and create a meaningful figurative study, students are instructed to bring in their latest fashion accessories (hats, shawls, neck warmers, denim jackets, etc.), or shop the local thrift…

  9. Virtual Self-Expression

    ERIC Educational Resources Information Center

    Black, David V.

    2008-01-01

    This article introduces the art of three-dimensional modelling. Three-dimensional modelling is gaining acceptance as a new medium for self-expression. Students must first master the software programs, learn the tools and functions, the menu choices and settings, and use them to create realistic objects. (Contains 4 online resources.)

  10. Expression of Concern

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien

    2016-08-01

    This is a note of a temporary expression of concern related to the publication titled, "Sapphirine and fluid inclusions in Tel Thanoun mantle xenoliths, Syria" by Ahmad Bilal, which appeared in Journal of African Earth Sciences, 116 (2016) 105-113.

  11. Encircling Creative Expression

    ERIC Educational Resources Information Center

    Brown, Susannah

    2007-01-01

    Artworks that are circular in nature are often referred to as mandalas. "Mandala" means center, circle, or circumference. Mandalas are created in many cultures for a variety of reasons, most of which are related to self-expression, ritual, and religion. In this article, the author describes how her students created mandalas. She also provides…

  12. Gene structure and expression

    SciTech Connect

    Hawkins, J. )

    1990-01-01

    This book describes the structure of genes in molecular terms and summarizes present knowledge about how their activity is regulated. It covers a range of topics, including a review of the structure and replication of DNA, transcription and translation, prokaryotic and eukaryotic gene organization and expression, retroviruses and oncogenes. The book also includes a chapter on the methodology of DNA manipulation including sections on site-directed mutagenesis, the polymerase chain reaction, reporter genes and restriction fragment length polymorphisms. The hemoglobin gene system and the genetics of the proteins of the immune system are presented in the latter half of the book to show the structure and expression of the most well-studied systems in higher eukaryotes. The final chapter reviews the differences between prokaryotic and the eukaryotic genomes.

  13. A gene expression screen.

    PubMed Central

    Wang, Z; Brown, D D

    1991-01-01

    A gene expression screen identifies mRNAs that differ in abundance between two mRNA mixtures by a subtractive hybridization method. The two mRNA populations are converted to double-stranded cDNAs, fragmented, and ligated to linkers for polymerase chain reaction (PCR) amplification. The multiple cDNA fragments isolated from any given gene can be treated as alleles in a genetic screen. Probability analysis of the frequency with which multiple alleles are found provides an estimation of the total number of up- and down-regulated genes. We have applied this method to genes that are differentially expressed in amphibian tadpole tail tissue in the first 24 hr after thyroid hormone treatment, which ultimately induces tail resorption. We estimate that there are about 30 up-regulated genes; 16 have been isolated. Images PMID:1722336

  14. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses.

    PubMed

    Fernandez, V; Hommel, M; Chen, Q; Hagblom, P; Wahlgren, M

    1999-11-15

    Disease severity in Plasmodium falciparum infections is a direct consequence of the parasite's efficient evasion of the defense mechanisms of the human host. To date, one parasite-derived molecule, the antigenically variant adhesin P. falciparum erythrocyte membrane protein 1 (PfEMP1), is known to be transported to the infected erythrocyte (pRBC) surface, where it mediates binding to different host receptors. Here we report that multiple additional proteins are expressed by the parasite at the pRBC surface, including a large cluster of clonally variant antigens of 30-45 kD. We have found these antigens to be identical to the rifins, predicted polypeptides encoded by the rif multigene family. These parasite products, formerly called rosettins after their identification in rosetting parasites, are prominently expressed by fresh isolates of P. falciparum. Rifins are immunogenic in natural infections and strain-specifically recognized by human immune sera in immunoprecipitation of surface-labeled pRBC extracts. Furthermore, human immune sera agglutinate pRBCs digested with trypsin at conditions such that radioiodinated PfEMP1 polypeptides are not detected but rifins are detected, suggesting the presence of epitopes in rifins targeted by agglutinating antibodies. When analyzed by two-dimensional electrophoresis, the rifins resolved into several isoforms in the pI range of 5.5-6.5, indicating molecular microheterogeneity, an additional potential novel source of antigenic diversity in P. falciparum. Prominent polypeptides of 20, 22, 76-80, 140, and 170 kD were also detected on the surfaces of pRBCs bearing in vitro-propagated or field-isolated parasites. In this report, we describe the rifins, the second family of clonally variant antigens known to be displayed by P. falciparum on the surface of the infected erythrocyte.

  15. Kuiper Express: a sciencecraft

    NASA Astrophysics Data System (ADS)

    Rodgers, David H.; Alkalai, Leon; Beauchamp, Patricia M.; Chen, Gun-Shing; Crisp, Michael P.; Brown, Robert H.; Davidson, J. M.; Huxtable, Douglas D.; Penzo, P. A.; Petrick, Stanley W.; Soderblom, Laurance A.; Stewart, A.; Vane, Gregg; Yelle, Roger V.

    1996-10-01

    The Kuiper Express is a mission to achieve the first reconnaissance of one of the primitive objects that reside in the Kuiper Belt. The objects in the Kuiper Belt are the remnants of the planetesimal swarm that formed the four giant planets of the outer Solar System. These objects, because they are far from the Sun, have not been processed by solar heating and are essentially in their primordial state. This makes them unique objects and their study will provide information on the composition of the solar nebula that cannot be extracted from a study of other objects in the Solar System. The Kuiper Express is a sciencecraft mission. A sciencecraft is an integrated unit that combines into a single system the essential elements (but no more) necessary to achieve the science objectives of the mission, including science instruments, electronics, telecommunications, power, and propulsion. The design of a sciencecraft begins with the definition of mission science objectives and cost constraint. An observational sequence and sensor subsystem are then designed. This sensor subsystem in turn becomes the design driver for the sciencecraft architecture and hardware subsystems needed to deliver the sensor to its target and return the science data to the earth. Throughout the design process, shared functionality, shared redundancy, and reduced cost are strongly emphasized. The Kuiper Express will be launched using a Delta vehicle and will use solar electric propulsion to add velocity and shape its trajectory in the inner Solar System, executing two earth gravity-assist flybys. It will also execute flybys of main belt asteroids, Mars, Uranus, and Neptune/Triton en route to its target in the Kuiper belt, where it will arrive about ten years after launch. It will use no nuclear power. The surface constituents and morphology of the objects visited will be measured and their atmospheres will be characterized. The cost of the detailed design, fabrication, and launch of the Kuiper

  16. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  17. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome. PMID:25421600

  18. Freedom of Expression at Yale

    ERIC Educational Resources Information Center

    AAUP Bulletin, 1975

    1975-01-01

    A report of the Committee on Freedom of Expression at Yale appointed by the president to examine the condition of free expression, peaceful dissent, mutual respect and tolerance at Yale and to draft recommendations for maintenance of those principles. (JT)

  19. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  20. Maximally Expressive Modeling

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth; Richardson, Lea

    2004-01-01

    Planning and scheduling systems organize tasks into a timeline or schedule. Tasks are logically grouped into containers called models. Models are a collection of related tasks, along with their dependencies and requirements, that when met will produce the desired result. One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed; the information sought is at the cutting edge of scientific endeavor; and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a maximally expressive modeling schema.

  1. Maximally Expressive Task Modeling

    NASA Technical Reports Server (NTRS)

    Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.

  2. Genomic expression during human myelopoiesis

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Basso, Dario; Bicciato, Silvio; Zini, Roberta; Gemelli, Claudia; Danieli, Gian Antonio; Ferrari, Sergio

    2007-01-01

    Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions. PMID:17683550

  3. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.

    PubMed

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-06-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522

  4. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.

    PubMed

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-06-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles.

  5. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles1

    PubMed Central

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C.; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (EMISSION OF BENZENOID II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of CINNAMYL ALCOHOL DEHYDROGENASE1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522

  6. Automated Learning of Temporal Expressions.

    PubMed

    Redd, Douglas; Shaoa, YiJun; Yang, Jing; Divita, Guy; Zeng-Treitler, Qing

    2015-01-01

    Clinical notes contain important temporal information that are critical for making clinical diagnosis and treatment as well as for retrospective analyses. Manually created regular expressions are commonly used for the extraction of temporal information; however, this can be a time consuming and brittle approach. We describe a novel algorithm for automatic learning of regular expressions in recognizing temporal expressions. Five classes of temporal expressions are identified. Keywords specific to those classes are used to retrieve snippets of text representing the same keywords in context. Those snippets are used for Regular Expression Discovery Extraction (REDEx). These learned regular expressions are then evaluated using 10-fold cross validation. Precision and recall are very high, above 0.95 for most classes.

  7. Expression Data Analysis with Reactome

    PubMed Central

    Jupe, Steve; Fabregat, Antonio; Hermjakob, Henning

    2015-01-01

    The Reactome database of curated biological pathways provides a tool for visualizing user-supplied expression data as an overlay on pathway diagrams, thereby providing an effective means to examine expression of the constituents of the pathway and determine whether all that are necessary are present. Several experiments can be visualized in succession, to determine whether expression changes with experimental conditions, a useful feature for examining a time-course, dose-response or disease progression. PMID:25754994

  8. Gene expression and fractionation resistance

    PubMed Central

    2014-01-01

    Background Previous work on whole genome doubling in plants established the importance of gene functional category in provoking or suppressing duplicate gene loss, or fractionation. Other studies, particularly in Paramecium have correlated levels of gene expression with vulnerability or resistance to duplicate loss. Results Here we analyze the simultaneous effect of function category and expression in two plant data sets, rosids and asterids. Conclusion We demonstrate function category and expression level have independent effects, though expression does not play the dominant role it does in Paramecium. PMID:25573431

  9. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  10. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  11. Creating an Expressive Performance Mindset

    ERIC Educational Resources Information Center

    Broomhead, Paul; Skidmore, Jon B.

    2014-01-01

    Students in performance situations sometimes experience physiological symptoms that inhibit their ability to perform as expressively as they otherwise might possess the understanding and ability to do. As students set out to perform with an expressive mindset, the brain's limbic system may detect some perceived danger in the situation and…

  12. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  13. Measuring facial expression of emotion.

    PubMed

    Wolf, Karsten

    2015-12-01

    Research into emotions has increased in recent decades, especially on the subject of recognition of emotions. However, studies of the facial expressions of emotion were compromised by technical problems with visible video analysis and electromyography in experimental settings. These have only recently been overcome. There have been new developments in the field of automated computerized facial recognition; allowing real-time identification of facial expression in social environments. This review addresses three approaches to measuring facial expression of emotion and describes their specific contributions to understanding emotion in the healthy population and in persons with mental illness. Despite recent progress, studies on human emotions have been hindered by the lack of consensus on an emotion theory suited to examining the dynamic aspects of emotion and its expression. Studying expression of emotion in patients with mental health conditions for diagnostic and therapeutic purposes will profit from theoretical and methodological progress.

  14. Measuring facial expression of emotion

    PubMed Central

    Wolf, Karsten

    2015-01-01

    Research into emotions has increased in recent decades, especially on the subject of recognition of emotions. However, studies of the facial expressions of emotion were compromised by technical problems with visible video analysis and electromyography in experimental settings. These have only recently been overcome. There have been new developments in the field of automated computerized facial recognition; allowing real-time identification of facial expression in social environments. This review addresses three approaches to measuring facial expression of emotion and describes their specific contributions to understanding emotion in the healthy population and in persons with mental illness. Despite recent progress, studies on human emotions have been hindered by the lack of consensus on an emotion theory suited to examining the dynamic aspects of emotion and its expression. Studying expression of emotion in patients with mental health conditions for diagnostic and therapeutic purposes will profit from theoretical and methodological progress. PMID:26869846

  15. Leishmania-based expression systems.

    PubMed

    Taheri, Tahereh; Seyed, Negar; Mizbani, Amir; Rafati, Sima

    2016-09-01

    Production of therapeutic or medical recombinant proteins, such as monoclonal antibodies, proteins, or active enzymes, requires a highly efficient system allowing natural folding and perfect post-translation modifications of the expressed protein. These requirements lead to the generation of a variety of gene expression systems from bacteria to eukaryotes. To achieve the best form of eukaryotic proteins, two factors need to be taken into consideration: choosing a suitable organism to express the protein of interest, and selecting an efficient delivery system. For this reason, the expression of recombinant proteins in eukaryotic nonpathogenic Leishmania parasites is an interesting approach which meets both criteria. Here, new Leishmania-based expression systems are compared with current systems that have long histories in research and industry. PMID:27435294

  16. Cortical control of facial expression.

    PubMed

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system. PMID:26418049

  17. Analysis of Facial Expression by Taste Stimulation

    NASA Astrophysics Data System (ADS)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  18. Mars Express: exploration of Phobos

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.

    2001-01-01

    The ESA Mars Express Orbiter will be nearly polar and have an initial orbital period of 7.6 hours for the first 440 days and then will reduce its period to 6.7 hours. As periapsis of the elliptical orbit walks around Mars every 2 years, the ascending and descending nodes of the Mars Express orbit on the Mars equatorial plane will have the same radius as the orbit of Phobos and close encounters of Phobos will occur when Phobos is near the node as Mars Express passes.

  19. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  20. A Tattoo Is Expression, Too.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    1997-01-01

    In "Stephenson v. Davenport Community School District," the U.S. Eighth Circuit Court of Appeals ruled that schools cannot adopt unduly vague policies to regulate student expression, in this case, a cross-shaped tattoo. (LMI)

  1. DEK Expression in Melanocytic Lesions

    PubMed Central

    Kappes, Ferdinand; Khodadoust, Michael S; Yu, Limin; Kim, David SL; Fullen, Douglas R; Markovitz, David M; Ma, Linglei

    2011-01-01

    The diagnosis of malignant melanoma presents a clinical challenge and relies principally on histopathological evaluation. Previous studies have indicated that increased expression of the DEK oncogene, a chromatin-bound factor, could contribute to the development of melanoma and may be a frequent event in melanoma progression. Here, we investigated DEK expression by immunohistochemistry in a total of 147 melanocytic lesions, including ordinary nevi, dysplastic nevi, Spitz nevi, melanoma in situ, primary invasive melanomas, and metastatic melanomas. Most benign nevi (ordinary, dysplastic and Spitz nevi) were negative or exhibited weak staining for DEK with only 4 of 49 cases showing strong staining. Similar to benign nevi, melanoma in situ also demonstrated low levels of DEK expression. In contrast, the expression of DEK in primary invasive melanomas was significantly higher than benign nevi (p<0.0001). Moreover, DEK expression was significantly increased in deep melanomas (Breslow depth > 1mm) and metastatic melanomas as compared to superficial melanomas (Breslow depth ≤ 1mm) (p<0.05). Our findings indicate that DEK overexpression may be a frequent event in invasive melanomas, and further augmentation of DEK expression may be associated with the acquisition of ominous features such as deep dermal invasion and metastasis. These data suggest a role of DEK in melanoma progression. PMID:21316078

  2. The motivation to express prejudice

    PubMed Central

    Forscher, Patrick S.; Cox, William T. L.; Graetz, Nicholas; Devine, Patricia G.

    2015-01-01

    Contemporary prejudice research focuses primarily on people who are motivated to respond without prejudice and the ways in which unintentional bias can cause these people to act inconsistent with this motivation. However, some real-world phenomena (e.g., hate speech, hate crimes) and experimental findings (e.g., Plant & Devine, 2001; 2009) suggest that some expressions of prejudice are intentional. These phenomena and findings are difficult to explain solely from the motivations to respond without prejudice. We argue that some people are motivated to express prejudice, and we develop the motivation to express prejudice (MP) scale to measure this motivation. In seven studies involving more than 6,000 participants, we demonstrate that, across scale versions targeted at Black people and gay men, the MP scale has good reliability and convergent, discriminant, and predictive validity. In normative climates that prohibit prejudice, the internal and external motivations to express prejudice are functionally non-independent, but they become more independent when normative climates permit more prejudice toward a target group. People high in the motivation to express prejudice are relatively likely to resist pressure to support programs promoting intergroup contact and vote for political candidates who support oppressive policies. The motivation to express prejudice predicted these outcomes even when controlling for attitudes and the motivations to respond without prejudice. This work encourages contemporary prejudice researchers to broaden the range of samples, target groups, and phenomena that they study, and more generally to consider the intentional aspects of negative intergroup behavior. PMID:26479365

  3. Avian retroviral expression of luciferase.

    PubMed

    Garber, E A; Rosenblum, C I; Chute, H T; Scheidel, L M; Chen, H

    1991-12-01

    Biologically active replication-competent (subgroups A, B, and C) and replication-defective Rous sarcoma virus-derived vectors containing the cDNA encoding firefly luciferase as a reporter gene were constructed. In these retroviral vectors, luciferase is expressed from a spliced subgenomic mRNA. A biologically active replication-defective UR2 virus-derived vector expressing the reporter gene as a gag-luciferase fusion protein from an unspliced genomic mRNA was also constructed. The luciferase reporter gene was used because it lacks homology with chicken genomic sequences and because a rapid and sensitive direct enzymatic assay is available to monitor luciferase expression in retrovirus-infected cells. The levels of luciferase expression in luciferase recombinant retrovirus-infected chicken embryo fibroblasts are greater than 10(3) higher than that detected in uninfected cells or in cells infected with retroviral vectors carrying other genes. Endpoint dilution titration experiments demonstrated that one infected cell can be detected in a background of 10(3) uninfected cells. The vectors are stable in tissue culture and high level expression of the unselected luciferase reporter gene is maintained. The vectors were used to express luciferase in chicken embryos, demonstrating the potential utility of luciferase as a reporter in vivo.

  4. TGFα expression in myeloid malignancies

    PubMed Central

    Mirzai, Bob; Fuller, Kathy; Erber, Wendy N

    2016-01-01

    Background Transforming growth factor α (TGFα) is a peptide growth factor known to be expressed in normal haemopoiesis. It is also expressed in a range of epithelial neoplasms but has not been assessed in haemopoietic malignancies. We have performed an immunohistochemical evaluation of TGFα in acute and chronic myeloid malignancies. Methods TGFα expression was semiquantitatively assessed in 69 normal bone marrow trephines and 157 cases of myeloid malignancy using an immunohistochemical approach. Results Blast cells of myeloid origin in acute myeloid leukaemia (AML), myelodysplasia and accelerated and blast phases of chronic myeloid leukaemia (CML) were TGFα positive. In acute promyelocytic leukaemia the neoplastic cells had significantly weaker TGFα expression than seen in other forms of AML. The blast cells in CML-accelerated and blast phases were positive with similar expression to AML. Conclusions TGFα is expressed in neoplastic myeloblasts and could, therefore, be used as blast cell biomarker in diagnostic haematopathology. In addition, TGFα immunohistochemistry may be of use in identifying a therapeutic target. PMID:26984929

  5. Compound facial expressions of emotion.

    PubMed

    Du, Shichuan; Tao, Yong; Martinez, Aleix M

    2014-04-15

    Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories--happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another.

  6. Compound facial expressions of emotion

    PubMed Central

    Du, Shichuan; Tao, Yong; Martinez, Aleix M.

    2014-01-01

    Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories—happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. PMID:24706770

  7. Force Sensitivity in Saccharomyces cerevisiae Flocculins.

    PubMed

    Chan, Cho X J; El-Kirat-Chatel, Sofiane; Joseph, Ivor G; Jackson, Desmond N; Ramsook, Caleen B; Dufrêne, Yves F; Lipke, Peter N

    2016-01-01

    Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca(2+), yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on

  8. Force Sensitivity in Saccharomyces cerevisiae Flocculins

    PubMed Central

    Chan, Cho X. J.; El-Kirat-Chatel, Sofiane; Joseph, Ivor G.; Jackson, Desmond N.; Ramsook, Caleen B.; Dufrêne, Yves F.

    2016-01-01

    ABSTRACT Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends

  9. Nanobody Mediated Inhibition of Attachment of F18 Fimbriae Expressing Escherichia coli

    PubMed Central

    Moonens, Kristof; De Kerpel, Maia; Coddens, Annelies; Cox, Eric; Pardon, Els; Remaut, Han; De Greve, Henri

    2014-01-01

    Post-weaning diarrhea and edema disease caused by F18 fimbriated E. coli are important diseases in newly weaned piglets and lead to severe production losses in farming industry. Protective treatments against these infections have thus far limited efficacy. In this study we generated nanobodies directed against the lectin domain of the F18 fimbrial adhesin FedF and showed in an in vitro adherence assay that four unique nanobodies inhibit the attachment of F18 fimbriated E. coli bacteria to piglet enterocytes. Crystallization of the FedF lectin domain with the most potent inhibitory nanobodies revealed their mechanism of action. These either competed with the binding of the blood group antigen receptor on the FedF surface or induced a conformational change in which the CDR3 region of the nanobody displaces the D″-E loop adjacent to the binding site. This D″-E loop was previously shown to be required for the interaction between F18 fimbriated bacteria and blood group antigen receptors in a membrane context. This work demonstrates the feasibility of inhibiting the attachment of fimbriated pathogens by employing nanobodies directed against the adhesin domain. PMID:25502211

  10. Studying Emotional Expression in Music Performance.

    ERIC Educational Resources Information Center

    Gabrielsson, Alf

    1999-01-01

    Explores the importance of emotional expression in music performance. Performers played music to express different emotions and then listening tests were conducted in order to determine whether the intended expressions were perceived. Presents and discusses the results. (CMK)

  11. The motivation to express prejudice.

    PubMed

    Forscher, Patrick S; Cox, William T L; Graetz, Nicholas; Devine, Patricia G

    2015-11-01

    Contemporary prejudice research focuses primarily on people who are motivated to respond without prejudice and the ways in which unintentional bias can cause these people to act in a manner inconsistent with this motivation. However, some real-world phenomena (e.g., hate speech, hate crimes) and experimental findings (e.g., Plant & Devine, 2001, 2009) suggest that some prejudice is intentional. These phenomena and findings are difficult to explain solely from the motivations to respond without prejudice. We argue that some people are motivated to express prejudice, and we develop the Motivation to Express Prejudice Scale (MP) to measure this motivation. In 7 studies involving more than 6,000 participants, we demonstrate that, across scale versions targeted at Black people and gay men, the MP has good reliability and convergent, discriminant, and predictive validity. In normative climates that prohibit prejudice, the internal and external motivations to express prejudice are functionally nonindependent, but they become more independent when normative climates permit more prejudice toward a target group. People high in the motivation to express prejudice are relatively likely to resist pressure to support programs promoting intergroup contact and to vote for political candidates who support oppressive policies. The motivation to express prejudice predicted these outcomes even when controlling for attitudes and the motivations to respond without prejudice. This work encourages contemporary prejudice researchers to give greater consideration to the intentional aspects of negative intergroup behavior and to broaden the range of phenomena, target groups, and samples that they study. PMID:26479365

  12. The motivation to express prejudice.

    PubMed

    Forscher, Patrick S; Cox, William T L; Graetz, Nicholas; Devine, Patricia G

    2015-11-01

    Contemporary prejudice research focuses primarily on people who are motivated to respond without prejudice and the ways in which unintentional bias can cause these people to act in a manner inconsistent with this motivation. However, some real-world phenomena (e.g., hate speech, hate crimes) and experimental findings (e.g., Plant & Devine, 2001, 2009) suggest that some prejudice is intentional. These phenomena and findings are difficult to explain solely from the motivations to respond without prejudice. We argue that some people are motivated to express prejudice, and we develop the Motivation to Express Prejudice Scale (MP) to measure this motivation. In 7 studies involving more than 6,000 participants, we demonstrate that, across scale versions targeted at Black people and gay men, the MP has good reliability and convergent, discriminant, and predictive validity. In normative climates that prohibit prejudice, the internal and external motivations to express prejudice are functionally nonindependent, but they become more independent when normative climates permit more prejudice toward a target group. People high in the motivation to express prejudice are relatively likely to resist pressure to support programs promoting intergroup contact and to vote for political candidates who support oppressive policies. The motivation to express prejudice predicted these outcomes even when controlling for attitudes and the motivations to respond without prejudice. This work encourages contemporary prejudice researchers to give greater consideration to the intentional aspects of negative intergroup behavior and to broaden the range of phenomena, target groups, and samples that they study.

  13. Monoallelic Expression of Olfactory Receptors

    PubMed Central

    Monahan, Kevin; Lomvardas, Stavros

    2016-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron’s odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  14. Regulation of Neuronal Gene Expression

    NASA Astrophysics Data System (ADS)

    Thiel, Gerald; Lietz, Michael; Leichter, Michael

    Humans as multicellular organisms contain a variety of different cell types where each cell population must fulfill a distinct function in the interest of the whole organism. The molecular basis for the variations in morphology, biochemistry, molecular biology, and function of the various cell types is the cell-type specific expression of genes. These genes encode proteins necessary for executing the specialized functions of each cell type within an organism. We describe here a regulatory mechanism for the expression of neuronal genes. The zinc finger protein REST binds to the regulatory region of many neuronal genes and represses neuronal gene expression in nonneuronal tissues. A negative regulatory mechanism, involving a transcriptional repressor, seems to play an important role in establishing the neuronal phenotype.

  15. Somatic mosaicism and variable expressivity.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-02-01

    For more than 50 years geneticists have assumed that variations in phenotypic expression are caused by alterations in genotype. Recent evidence shows that 'simple' mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained entirely by a gene or allelic alteration. In certain cases of androgen insensitivity syndrome caused by identical mutations in the androgen receptor gene, phenotypic variability is caused by somatic mosaicism, that is, somatic mutations that occur only in certain androgen-sensitive cells. Recently, more than 30 other genetic conditions that exhibit variable expressivity have been linked to somatic mosaicism. Somatic mutations have also been identified in diseases such as prostate and colorectal cancer. Therefore, the concept of somatic mutations and mosaicism is likely to have far reaching consequences for genetics, in particular in areas such as genetic counseling.

  16. Somatic mosaicism and variable expressivity.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-02-01

    For more than 50 years geneticists have assumed that variations in phenotypic expression are caused by alterations in genotype. Recent evidence shows that 'simple' mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained entirely by a gene or allelic alteration. In certain cases of androgen insensitivity syndrome caused by identical mutations in the androgen receptor gene, phenotypic variability is caused by somatic mosaicism, that is, somatic mutations that occur only in certain androgen-sensitive cells. Recently, more than 30 other genetic conditions that exhibit variable expressivity have been linked to somatic mosaicism. Somatic mutations have also been identified in diseases such as prostate and colorectal cancer. Therefore, the concept of somatic mutations and mosaicism is likely to have far reaching consequences for genetics, in particular in areas such as genetic counseling. PMID:11173116

  17. EXPRESS Service to the International Space Station: EXPRESS Pallet

    NASA Technical Reports Server (NTRS)

    Primm, Lowell; Bergmann, Alan

    1998-01-01

    The International Space Station (ISS) will be the ultimate scientific accomplishment in the history of NASA, with its primary objective of providing unique scientific investigation opportunities. This objective is the basis for the creation of the EXPRESS Pallet System (ExPs). The EXPRESS Pallet will provide extremal/unpressurized accommodations for a wide variety of external users. The payload developers represent many science disciplines, including earth observation, communications, solar and deep space viewing, long-term exposure, and many others. The EXPRESS Pallet will provide a mechanism to maximum utilization of the limited ISS unpressurized payload volume, standard physical payload interfaces for users, a standard integration template for users and the capability to changeout payloads on-orbit. The EXPRESS Pallet provides access to Ram, Wake, Starboard, Port, Nadir, Zenith and Earth Limb for exposure and viewing. 'Me ExPs consists of the Pallet structure, payload Adapters, and a subsystem assembly which includes data controller, power distribution and conversion, and Extra Vehicular Robotics/Extra-Vehicular Activity systems.

  18. Expression Profiling in Alcoholism Research.

    PubMed

    Bergeson, Susan E; Berman, Ari E; Dodd, Peter R; Edenberg, Howard J; Hitzemann, Robert J; Lewohl, Joanne M; Lodowski, Kerrie H; Sommer, Wolfgang H

    2005-06-01

    This article represents the proceedings of a symposium at the 2004 International Society for Biomedical Research on Alcoholism in Mannheim, Germany, organized and co-chaired by Susan E. Bergeson and Wolfgang Sommer. The presentations and presenter were (1) Gene Expression in Brains of Alcohol-Preferring and Non-Preferring Rats, by Howard J. Edenberg (2) Candidate Treatment Targets for Alcoholism: Leads from Functional Genomics Approaches, by Wolfgang Sommer (3) Microarray Analysis of Acute and Chronic Alcohol Response in Brain, by Susan E. Bergeson (4) On the Integration of QTL and Gene Expression Analysis, by Robert J. Hitzemann (5) Microarray and Proteomic Analysis of the Human Alcoholic Brain, by Peter R. Dodd.

  19. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  20. The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect

    PubMed Central

    Song, Miao; Shinomori, Keizo; Qian, Qian; Yin, Jun; Zeng, Weiming

    2015-01-01

    The present study examined the influence of expression configuration on cross-identity expression aftereffect. The expression configuration refers to the spatial arrangement of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs. a closed-mouth smile. In the first of two experiments, the expression aftereffect is measured using a cross-identity/cross-expression configuration factorial design. The facial identities of test faces were the same or different from the adaptor, while orthogonally, the expression configurations of those facial identities were also the same or different. The results show that the change of expression configuration impaired the expression aftereffect when the facial identities of adaptor and tests were the same; however, the impairment effect disappears when facial identities were different, indicating the identity-independent expression representation is more robust to the change of the expression configuration in comparison with the identity-dependent expression representation. In the second experiment, we used schematic line faces as adaptors and real faces as tests to minimize the similarity between the adaptor and tests, which is expected to exclude the contribution from the identity-dependent expression representation to expression aftereffect. The second experiment yields a similar result as the identity-independent expression aftereffect observed in Experiment 1. The findings indicate the different neural sensitivities to expression configuration for identity-dependent and identity-independent expression systems. PMID:26733922

  1. The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect.

    PubMed

    Song, Miao; Shinomori, Keizo; Qian, Qian; Yin, Jun; Zeng, Weiming

    2015-01-01

    The present study examined the influence of expression configuration on cross-identity expression aftereffect. The expression configuration refers to the spatial arrangement of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs. a closed-mouth smile. In the first of two experiments, the expression aftereffect is measured using a cross-identity/cross-expression configuration factorial design. The facial identities of test faces were the same or different from the adaptor, while orthogonally, the expression configurations of those facial identities were also the same or different. The results show that the change of expression configuration impaired the expression aftereffect when the facial identities of adaptor and tests were the same; however, the impairment effect disappears when facial identities were different, indicating the identity-independent expression representation is more robust to the change of the expression configuration in comparison with the identity-dependent expression representation. In the second experiment, we used schematic line faces as adaptors and real faces as tests to minimize the similarity between the adaptor and tests, which is expected to exclude the contribution from the identity-dependent expression representation to expression aftereffect. The second experiment yields a similar result as the identity-independent expression aftereffect observed in Experiment 1. The findings indicate the different neural sensitivities to expression configuration for identity-dependent and identity-independent expression systems.

  2. Nutritional regulation of gene expression.

    PubMed

    Cousins, R J

    1999-01-25

    Genes are regulated by complex arrays of response elements that influence the rate of transcription. Nutrients and hormones either act directly to influence these rates or act indirectly through specialized signaling pathways. Metabolites of vitamins A and D, fatty acids, some sterols, and zinc are among the nutrients that influence transcription directly. Components of dietary fiber may influence gene expression indirectly through changes in hormonal signaling, mechanical stimuli, and metabolites produced by the intestinal microflora. In addition, consumption of water-soluble fibers may lead to changes in gene expression mediated through indirect mechanisms that influence transcription rates. In the large intestine, short-chain fatty acids, including butyric acid, are produced by microflora. Butyric acid can indirectly influence gene expression. Some sources of fiber limit nutrient absorption, particularly of trace elements. This could have direct or indirect effects on gene expression. Identification of genes in colonic epithelial cells that are differentially regulated by dietary fiber will be an important step toward understanding the role of dietary factors in colorectal cancer progression.

  3. Freedom of Expression? It's Academic.

    ERIC Educational Resources Information Center

    Hayes, Louis

    1999-01-01

    Examines the educational environment in Japan since World War II. Assesses both elementary and secondary levels of education, and evaluates the psychology of dependence as a factor in the lack of freedom of expression in academic settings. Delves into the external and internal structure of Japanese cultural society. (CCM)

  4. Increasing Originality in Written Expression.

    ERIC Educational Resources Information Center

    Belasco, Jack Thomas

    This study partially replicated Moss's "A Study of the Effect of Selected Methods of Instruction Designed to Increase Originality in Written Expression," except for the fact that this investigator taught a 5th grade and an 11th grade class for most of a school year. Some of the conclusions of the study were: no particular teaching technique was…

  5. Academic Freedom and Artistic Expression.

    ERIC Educational Resources Information Center

    Academe, 1990

    1990-01-01

    The concluding statement by participants in the 1990 Wolf Trap Conference on Academic Freedom and Artistic Expression (Virginia, April 29-May 1) proposes policies to assist institutions in responding to issues of accountability, audience, and public funding arising from presentation of artistic works to the public in a manner that preserves…

  6. Mapping and Manipulating Facial Expression

    ERIC Educational Resources Information Center

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  7. Spirit Boxes: Expressions of Culture.

    ERIC Educational Resources Information Center

    DeMuro, Ted

    1984-01-01

    After studying the culture and art of the ancient civilizations of South America, Mesopotamia, Greece, and Egypt, secondary level art students made spirit boxes as expressions of the various cultures. How to make the boxes and how to prepare the face molds are described. (RM)

  8. Decoding Children's Expressions of Affect.

    ERIC Educational Resources Information Center

    Feinman, Joel A.; Feldman, Robert S.

    Mothers' ability to decode the emotional expressions of their male and female children was compared to the decoding ability of non-mothers. Happiness, sadness, fear and anger were induced in children in situations that varied in terms of spontaneous and role-played encoding modes. It was hypothesized that mothers would be more accurate decoders of…

  9. Neuroticism Delays Detection of Facial Expressions.

    PubMed

    Sawada, Reiko; Sato, Wataru; Uono, Shota; Kochiyama, Takanori; Kubota, Yasutaka; Yoshimura, Sayaka; Toichi, Motomi

    2016-01-01

    The rapid detection of emotional signals from facial expressions is fundamental for human social interaction. The personality factor of neuroticism modulates the processing of various types of emotional facial expressions; however, its effect on the detection of emotional facial expressions remains unclear. In this study, participants with high- and low-neuroticism scores performed a visual search task to detect normal expressions of anger and happiness, and their anti-expressions within a crowd of neutral expressions. Anti-expressions contained an amount of visual changes equivalent to those found in normal expressions compared to neutral expressions, but they were usually recognized as neutral expressions. Subjective emotional ratings in response to each facial expression stimulus were also obtained. Participants with high-neuroticism showed an overall delay in the detection of target facial expressions compared to participants with low-neuroticism. Additionally, the high-neuroticism group showed higher levels of arousal to facial expressions compared to the low-neuroticism group. These data suggest that neuroticism modulates the detection of emotional facial expressions in healthy participants; high levels of neuroticism delay overall detection of facial expressions and enhance emotional arousal in response to facial expressions.

  10. Neuroticism Delays Detection of Facial Expressions

    PubMed Central

    Sawada, Reiko; Sato, Wataru; Uono, Shota; Kochiyama, Takanori; Kubota, Yasutaka; Yoshimura, Sayaka; Toichi, Motomi

    2016-01-01

    The rapid detection of emotional signals from facial expressions is fundamental for human social interaction. The personality factor of neuroticism modulates the processing of various types of emotional facial expressions; however, its effect on the detection of emotional facial expressions remains unclear. In this study, participants with high- and low-neuroticism scores performed a visual search task to detect normal expressions of anger and happiness, and their anti-expressions within a crowd of neutral expressions. Anti-expressions contained an amount of visual changes equivalent to those found in normal expressions compared to neutral expressions, but they were usually recognized as neutral expressions. Subjective emotional ratings in response to each facial expression stimulus were also obtained. Participants with high-neuroticism showed an overall delay in the detection of target facial expressions compared to participants with low-neuroticism. Additionally, the high-neuroticism group showed higher levels of arousal to facial expressions compared to the low-neuroticism group. These data suggest that neuroticism modulates the detection of emotional facial expressions in healthy participants; high levels of neuroticism delay overall detection of facial expressions and enhance emotional arousal in response to facial expressions. PMID:27073904

  11. Facial and vocal expressions of emotion.

    PubMed

    Russell, James A; Bachorowski, Jo-Anne; Fernandez-Dols, Jose-Miguel

    2003-01-01

    A flurry of theoretical and empirical work concerning the production of and response to facial and vocal expressions has occurred in the past decade. That emotional expressions express emotions is a tautology but may not be a fact. Debates have centered on universality, the nature of emotion, and the link between emotions and expressions. Modern evolutionary theory is informing more models, emphasizing that expressions are directed at a receiver, that the interests of sender and receiver can conflict, that there are many determinants of sending an expression in addition to emotion, that expressions influence the receiver in a variety of ways, and that the receiver's response is more than simply decoding a message.

  12. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  13. Positively regulated bacterial expression systems

    PubMed Central

    Brautaset, Trygve; Lale, Rahmi; Valla, Svein

    2009-01-01

    Summary Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications. PMID:21261879

  14. Positively regulated bacterial expression systems.

    PubMed

    Brautaset, Trygve; Lale, Rahmi; Valla, Svein

    2009-01-01

    Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high-level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC-XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (L-arabinose, L-rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone-related compounds, ε-caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC-XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/P(BAD), RhaR-RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.

  15. Ins and Outs of Microbial Adhesion

    NASA Astrophysics Data System (ADS)

    Virji, Mumtaz

    Microbial adhesion is generally a complex process, involving multiple adhesins on a single microbe and their respective target receptors on host cells. In some situations, various adhesins of a microbe may co-operate in an apparently hierarchical and sequential manner whereby the first adhesive event triggers the target cell to express receptors for additional microbial adhesins. In other instances, adhesins may act in concert leading to high avidity interactions, often a prelude to cellular invasion and tissue penetration. Mechanisms used to target the host include both lectin-like interactions and protein-protein interactions; the latter are often highly specific for the host or a tissue within the host. This reflective chapter aims to offer a point of view on microbial adhesion by presenting some experiences and thoughts especially related to respiratory pathogens and explore if there can be any future hope of controlling bacterial infections via preventing adhesion or invasion stages of microbial pathogenesis.

  16. Adhesion determinants of the Streptococcus species

    PubMed Central

    Moschioni, Monica; Pansegrau, Werner; Barocchi, Michèle A.

    2010-01-01

    Summary Streptococci are clinically important Gram‐positive bacteria that are capable to cause a wide variety of diseases in humans and animals. Phylogenetic analyses based on 16S rRNA sequences of the streptococcal species reveal a clustering pattern, reflecting, with a few exceptions, their pathogenic potential and ecological preferences. Microbial adhesion to host tissues is the initial critical event in the pathogenesis of most infections. Streptococci use multiple adhesins to attach to the epithelium, and their expression is regulated in response to environmental and growth conditions. Bacterial adhesins recognize and bind cell surface molecules and extracellular matrix components through specific domains that for certain adhesin families have been well defined and found conserved across the streptococcal species. In this review, we present the different streptococcal adhesin families categorized on the basis of their adhesive properties and structural characteristics, and, when available, we focus the attention on conserved functional domains. PMID:21255337

  17. AN EXPRESSION TEMPLATE AWARE LAMBDA FUNCTION

    SciTech Connect

    S. A. SMITH; J. STRIEGNITZ

    2000-09-19

    The authors show how the paradigms of lambda functions and expression templates fit together in order to provide a means to increase the expressiveness of existing STL algorithms. They demonstrate how the expression templates approach could be extended in order to work with built-in types. To be portable, their solution is based on the Portable Expression Template Engine (PETE), which is a framework that enables the development of expression template aware classes.

  18. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco.

    PubMed

    Kolotilin, Igor; Kaldis, Angelo; Devriendt, Bert; Joensuu, Jussi; Cox, Eric; Menassa, Rima

    2012-01-01

    Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD. PMID:22879967

  19. Fascin expression in colorectal carcinomas

    PubMed Central

    Ozerhan, Ismail Hakki; Ersoz, Nail; Onguru, Onder; Ozturk, Mustafa; Kurt, Bulent; Cetiner, Sadettin

    2010-01-01

    PURPOSE The purpose of this study was to investigate the significance of fascin expression in colorectal carcinoma. METHODS This is a retrospective study of 167 consecutive, well-documented cases of primary colorectal adenocarcinoma for which archival material of surgical specimens from primary tumor resections were available. We chose a representative tissue sample block and examined fascin expression by immunohistochemistry using a primary antibody against “fascin”. We calculated the “immunohistochemical score (IHS)” of fascin for each case, which was calculated from the multiplication of scores for the percentage of stained cells and the staining intensity. RESULTS Fascin immunoreactivity was observed in 59 (35.3%) of all cases with strong reactivity in 24 (14.4%), moderate reactivity in 25 (14.9%) and weak reactivity in 10 (6.0%) cases. Strong/moderate immunoreactivities were mostly observed in invasive fronts of the tumors or in both invasive and other areas. Fascin immunoreactivity scores were significantly higher in tumors with lymph node metastasis (p:0.002) and advanced stage presentation (p:0.007). There was no relation between fascin expression and age, gender, depth of invasion, distant metastasis or histological grade (p>0.05). There was a higher and statistically significant correlation between fascin immunoreactivity in the invasive borders of tumors and lymph node metastasis (r:0.747, p:0.005). In stage III/IV tumors, two-year survival was 92.2% in tumors without fascin immunoreactivity, and only 60.0% in tumors with a fascin IHS>10 (p:0.003). CONCLUSION These findings suggest that fascin is heterogeneously expressed in approximately one third of colorectal carcinomas with a significant association with lymph node metastasis, tumor stage and location. Moreover, these results indicate that fascin may have a role in the lymph node metastasis of colorectal carcinomas. PMID:20186299

  20. Vénus version Express

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël

    2010-04-01

    En avril 2006, Vénus a "capturé" un objet d'un genre particulier: une sonde robotique européenne, baptisée Venus Express et destinée à scruter cette planète sous tous les angles. Bilan de cette mission 5 ans après le lancement de la sonde, dont 4 d'observations vénusiennes.

  1. Optimization of sunflower oil expression

    SciTech Connect

    Singh, M.S.; Farsaie, A.; Stewart, L.E.

    1983-12-01

    Models to predict input energy for sunflower oil extraction were developed for four seed types. Input energy was found to be the lowest in case of whole seed at low seed moisture content (up to 7%), whereas, at higher moisture content, coarsely ground seed required the minimum input energy. Maximum net energy was obtained for coarsely ground seed with 8% moisture content, heated to 35/sup 0/C and expressed at 28 MPa for 5.5 minutes.

  2. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  3. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  4. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  5. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  6. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  7. Expression profiling of cardiovascular disease

    PubMed Central

    2004-01-01

    Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers. PMID:15588496

  8. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  9. Expression of ectopeptidases in scleroderma.

    PubMed Central

    Bou-Gharios, G; Osman, J; Atherton, A; Monoghan, P; Vancheeswaran, R; Black, C; Olsen, I

    1995-01-01

    OBJECTIVES--To examine the expression and concentrations of three ectopeptidases likely to be involved in regulating the functional levels of adhesion molecules and the turnover of connective tissue components, in patients with scleroderma (systemic sclerosis) (SSc) and in normal individuals. METHODS--Monoclonal antibodies against these antigens were used for immunoperoxidase staining of cryostat skin sections and for flow cytometric (fluorescence activated cell sorter) analysis of cultured dermal fibroblasts grown from SSc patients and normal controls. RESULTS--Although neutral endopeptidase-24.11 (NEP) (CD10) was not detected in either SSc or normal skin, aminopeptidase N (APN) (CD13) and dipeptidyl peptidase IV (DPPIV) (CD26) were both readily visualised. However, DPPIV appeared to be present in smaller concentrations in the SSc biopsy specimens. Moreover, while fibroblasts grown in vitro from both SSc and normal skin also had similar concentrations of APN, the expression of DPPIV in the cultured SSc cells was found to be very much less than that present in the normal fibroblasts. It is noteworthy that NEP, which was not detected in the tissue sections, was nevertheless readily detected in fibroblasts in culture. CONCLUSIONS--These results show that a number of cell surface proteases are expressed by dermal fibroblasts both in vivo and in vitro, and it is suggested that the marked downregulation of DPPIV in SSc could be at least partly responsible for the increased concentrations of adhesion molecules and matrix proteins associated with the molecular pathology of this disease. Images PMID:7702397

  10. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales.

    PubMed

    Margres, Mark J; Wray, Kenneth P; Seavy, Margaret; McGivern, James J; Herrera, Nathanael D; Rokyta, Darin R

    2016-01-01

    Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our

  11. Strategies for multigene expression in eukaryotic cells.

    PubMed

    Mansouri, Maysam; Berger, Philipp

    2014-09-01

    Multigene delivery systems for heterologous multiprotein expression in mammalian cells are a key technology in contemporary biological research. Multiprotein expression is essential for a variety of applications, including multiparameter analysis of living cells in vitro, changing the fate of stem cells, or production of multiprotein complexes for structural biology. Depending on the application, these expression systems have to fulfill different requirements. For some applications, homogenous expression in all cells with defined stoichiometry is necessary, whereas other applications need long term expression or require that the proteins are not modified at the N- and C-terminus. Here we summarize available multiprotein expression systems and discuss their advantages and disadvantages.

  12. Strategies for multigene expression in eukaryotic cells.

    PubMed

    Mansouri, Maysam; Berger, Philipp

    2014-09-01

    Multigene delivery systems for heterologous multiprotein expression in mammalian cells are a key technology in contemporary biological research. Multiprotein expression is essential for a variety of applications, including multiparameter analysis of living cells in vitro, changing the fate of stem cells, or production of multiprotein complexes for structural biology. Depending on the application, these expression systems have to fulfill different requirements. For some applications, homogenous expression in all cells with defined stoichiometry is necessary, whereas other applications need long term expression or require that the proteins are not modified at the N- and C-terminus. Here we summarize available multiprotein expression systems and discuss their advantages and disadvantages. PMID:25034976

  13. The College Student's Freedom of Expression

    ERIC Educational Resources Information Center

    Gibbs, Annette

    1974-01-01

    Discussion of means to ensure freedom of expression by college students. Areas of expression noted are student newspapers, lectures by off-campus speakers, freedom to assemble peaceably and freedom to associate. (EK)

  14. Pluto Express power system architecture

    SciTech Connect

    Carr, G.A.

    1996-12-31

    The Pluto Express power system must answer the challenge of the next generation spacecraft by reducing its power, mass and volume envelopes. Technology developed by the New Millennium Program will enable the power system to meet the stringent requirements for the Pluto Express mission without exceeding the spacecraft mass and volume budgets. Traditionally, there has been an increasing trend of the percentage of mass of the power system electronics with respect to the total spacecraft mass. With all of the previous technology focus on high density digital packaging, the power system electronics have not been keeping pace forcing the spacecraft to absorb a relative increase in the power system mass. The increasing trend can be reversed by using mixed signal ASICs and high density multi-chip-module (MCM) packaging techniques validated by the New Millennium Program. As the size of the spacecraft shrinks, the power system electronics must become tightly integrated with the spacecraft loads. The power system architecture needs the flexibility to accommodate the specific load requirements without sacrificing the capability for growth or reduction as the spacecraft requirements change throughout the development. Modularity is a key requirement that will reduce the overall power system cost. Although the focus has been on shrinking the power system volume and mass, the efficiency and functionality cannot be ignored. Increased efficiency and functionality will only enhance the power systems capability to reduce spacecraft power requirements. The combination of the New Millennium packaging technologies with the Pluto Express power system architecture will produce a product with the capability to meet a wide range of mission profiles while reducing system development costs.

  15. [Perception, expression and psychosomatic functions].

    PubMed

    Bühler, K E

    1988-01-01

    The investigation starts with the mind/body-problem and with epistemological peculiarities of psychophysical processes. Every monism has to be conceived at least as a dualism of properties. As a special kind of dualism the functionalism is an example against the type/type-identity thesis but not against the token-/token-identity thesis. But the last one is no serious alternative for genuine psychological methods. But also the functionalism does not offer a complete psychological theory: there is an ambivalence concerning the secondary qualities and also concerning intentionality. Bodily expressions were analyzed according the semiotic theory of Charles Sanders Peirce.

  16. The Use of Expressive Techniques in Counseling

    ERIC Educational Resources Information Center

    Bradley, Loretta J.; Whiting, Peggy; Hendricks, Bret; Parr, Gerald; Jones, Eugene Gordon, Jr.

    2008-01-01

    This manuscript explores and identifies the use of expressive techniques in counseling. Although verbal techniques are important, sometimes the best of verbal techniques are not sufficient. Creative, expressive techniques can add a new, important dimension to counseling. Such expressive techniques as cinema, art, and music are described to help…

  17. Facial Expressivity in Infants of Depressed Mothers.

    ERIC Educational Resources Information Center

    Pickens, Jeffrey; Field, Tiffany

    1993-01-01

    Facial expressions were examined in 84 3-month-old infants of mothers classified as depressed, nondepressed, or low scoring on the Beck Depression Inventory. Infants of both depressed and low-scoring mothers showed significantly more sadness and anger expressions and fewer interest expressions than infants of nondepressed mothers. (Author/MDM)

  18. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression

    PubMed Central

    Jourdain, Alexis A.; Boehm, Erik; Maundrell, Kinsey

    2016-01-01

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized “mitochondrial RNA granules,” mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  19. NUDC expression during amphibian development.

    PubMed

    Moreau, N; Aumais, J P; Prudhomme, C; Morris, S M; Yu-Lee, L Y

    2001-10-01

    To identify gene products important for gastrulation in the amphibian Pleurodeles waltl, a screen for regional differences in new protein expression at the early gastrula stage was performed. A 45 kDa protein whose synthesis was specific for progenitor endodermal cells was identified. Microsequencing and cDNA cloning showed that P45 is highly homologous to rat NUDC, a protein suggested to play a role in nuclear migration. Although PNUDC can be detected in all regions of the embryo, its de novo synthesis is tightly regulated spatially and temporally throughout oogenesis and embryonic development. New PNUDC synthesis in the progenitor endodermal cells depends on induction by the mesodermal cells in the gastrula. During development, PNUDC is localized in the egg cortical cytoplasm, at the cleavage furrow during the first embryonic division, around the nuclei and cortical regions of bottle cells in the gastrula, and at the basal region of polarized tissues in the developing embryo. These results show for the first time the expression and compartmentalization of PNUDC at distinct stages during amphibian development. PMID:11732844

  20. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  1. Moxibustion upregulates hippocampal progranulin expression.

    PubMed

    Yi, Tao; Qi, Li; Li, Ji; Le, Jing-Jing; Shao, Lei; Du, Xin; Dong, Jing-Cheng

    2016-04-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin. PMID:27212922

  2. Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts.

    PubMed

    Neriya, Yutaro; Maejima, Kensaku; Nijo, Takamichi; Tomomitsu, Tatsuya; Yusa, Akira; Himeno, Misako; Netsu, Osamu; Hamamoto, Hiroshi; Oshima, Kenro; Namba, Shigetou

    2014-12-01

    Adhesins are microbial surface proteins that mediate the adherence of microbial pathogens to host cell surfaces. In Mollicutes, several adhesins have been reported in mycoplasmas and spiroplasmas. Adhesins P40 of Mycoplasma agalactiae and P89 of Spiroplasma citri contain a conserved amino acid sequence known as the Mollicutes adhesin motif (MAM), whose function in the host cell adhesion remains unclear. Here, we show that phytoplasmas, which are plant-pathogenic mollicutes transmitted by insect vectors, possess an adhesion-containing MAM that was identified in a putative membrane protein, PAM289 (P38), of the 'Candidatus Phytoplasma asteris,' OY strain. P38 homologs and their MAMs were highly conserved in related phytoplasma strains. While P38 protein was expressed in OY-infected insect and plant hosts, binding assays showed that P38 interacts with insect extract, and weakly with plant extract. Interestingly, the interaction of P38 with the insect extract depended on MAM. These results suggest that P38 is a phytoplasma adhesin that interacts with the hosts. In addition, the MAM of adhesins is important for the interaction between P38 protein and hosts.

  3. Displacement technique and meibomian gland expression.

    PubMed

    Hom, M M; Silverman, M W

    1987-03-01

    Despite the absence of rosettes and malformed meibomian orifices, meibomian gland dysfunction cannot be easily detected with biomicroscopy unless the gland is expressed. The clarity of the expression at the orifice is sometimes difficult to ascertain. A dark field effect can be produced in conjunction with biomicroscopy to determine the amount of material present in the tear film. A more accurate determination of clarity can be made by expressing the distal contents of the meibomian gland into the tear film with the displacement phenomenon or technique. Dynamic assessment of the expressed contents allows easier differentiation of normal vs. abnormal expression.

  4. Facial expression recognition using thermal image.

    PubMed

    Jiang, Guotai; Song, Xuemin; Zheng, Fuhui; Wang, Peipei; Omer, Ashgan

    2005-01-01

    Facial expression recognition will be studied in this paper using mathematics morphology, through drawing and analyzing the whole geometry characteristics and some geometry characteristics of the interesting area of Infrared Thermal Imaging (IRTI). The results show that geometry characteristic in the interesting region of different expression are obviously different; Facial temperature changes almost with the expression at the same time. Studies have shown feasibility of facial expression recognition on the basis of IRTI. This method can be used to monitor the facial expression in real time, which can be used in auxiliary diagnosis and medical on disease.

  5. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  6. Facial Expressions, Emotions, and Sign Languages

    PubMed Central

    Elliott, Eeva A.; Jacobs, Arthur M.

    2013-01-01

    Facial expressions are used by humans to convey various types of meaning in various contexts. The range of meanings spans basic possibly innate socio-emotional concepts such as “surprise” to complex and culture specific concepts such as “carelessly.” The range of contexts in which humans use facial expressions spans responses to events in the environment to particular linguistic constructions within sign languages. In this mini review we summarize findings on the use and acquisition of facial expressions by signers and present a unified account of the range of facial expressions used by referring to three dimensions on which facial expressions vary: semantic, compositional, and iconic. PMID:23482994

  7. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes

    PubMed Central

    Tham, Wai-Hong; Lim, Nicholas T. Y.; Weiss, Greta E.; Lopaticki, Sash; Ansell, Brendan R. E.; Bird, Megan; Lucet, Isabelle; Dorin-Semblat, Dominique; Doerig, Christian; Gilson, Paul R.; Crabb, Brendan S.; Cowman, Alan F.

    2015-01-01

    The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL) and reticulocyte binding-like (Rh) protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process. PMID:26694741

  8. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis

    SciTech Connect

    Li, N.; Yun, P.; Nadkarni, M.A.; Ghadikolaee, N.B.; Nguyen, K.A.; Lee, M.; Hunter, N.; Collyer, C.A.

    2010-08-27

    Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a 'jelly-roll' fold with two anti-parallel {beta}-sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions of K2 were investigated. K2 induced haemolysis of erythrocytes in a dose-dependent manner that was augmented by the blocking of anion transport. Further, cysteine-activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.

  9. The Bfp60 surface adhesin is an extracellular matrix and plasminogen protein interacting in Bacteroides fragilis

    PubMed Central

    de Oliveira Ferreira, Eliane; Teixeira, Felipe; Cordeiro, Fabiana; Lobo, Leandro Araujo; Rocha, Edson R.; Smith, Jeffrey C.; Domingues, Regina M C P

    2014-01-01

    Plasminogen (Plg) is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by several pathogenic species of bacteria to manipulate the host plasminogen system and facilitate invasion of tissues during infection by modifying the activation of this process through the binding of Plg at their surface. Bacteroides fragilis is the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses and anaerobic bacteraemia. The ability of B. fragilis to convert plasminogen (Plg) into plasmin has been associated with an outer membrane protein named Bfp60. In this study, we characterized the function of Bfp60 protein in B. fragilis 638R by constructing the bfp60 defective strain and comparing its with that of the wild type regarding binding to laminin-1 (LMN-1) and activation of Plg into plasmin. Although the results showed in this study indicate that Bfp60 surface protein of B. fragilis is important for the recognition of LMN-1 and Plg activation, a significant slow activation of Plg into plasmin was observed in the mutant strain. For that reason, the possibility of another unidentified mechanism activating Plg is also present in B. fragilis can not be discarded. The results demonstrate that Bfp60 protein is responsible for the recognition of laminin and Plg-plasmin activation. Although the importance of this protein is still unclear in the pathogenicity of the species, it is accepted that since other pathogenic bacteria use this mechanism to disseminate through the extracellular matrix during the infection, it should also contribute to the virulence of B. fragilis. PMID:23850366

  10. Biofilm formation by Psychrobacter arcticus and the role of a large adhesin in attachment to surfaces.

    PubMed

    Hinsa-Leasure, Shannon M; Koid, Cassandra; Tiedje, James M; Schultzhaus, Janna N

    2013-07-01

    Psychrobacter arcticus strain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt. P. arcticus is also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation by P. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame as cat1, for cold attachment gene 1. The cat1 mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined that cat1 mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments, cat1 mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces. PMID:23603675

  11. Characterization of the Interaction between the Chlamydial Adhesin OmcB and the Human Host Cell

    PubMed Central

    Fechtner, Tim; Stallmann, Sonja; Moelleken, Katja; Meyer, Klaus L.

    2013-01-01

    In a previous study, we reported that the OmcB protein from Chlamydia pneumoniae mediates adhesion of the infectious elementary body to human HEp-2 cells by interacting with heparin/heparan sulfate-like glycosaminoglycans (GAGs) via basic amino acids located in the first of a pair of XBBXBX heparin-binding motifs (K. Moelleken and J. H. Hegemann, Mol. Microbiol. 67:403–419, 2008). In the present study, we show that the basic amino acid at position 57 (arginine) in the first XBBXBX motif, the basic amino acid at position 61 (arginine) in the second motif, and another amino acid (lysine 69) C terminal to it play key roles in the interaction. In addition, we show that discrimination between heparin-dependent and -independent adhesion by C. trachomatis OmcBs is entirely dependent on three variable amino acids in the so-called variable domain C terminal to the conserved XBBXBX motif. Here, the predicted conformational change in the secondary structure induced by the proline at position 66 seems to be crucial for heparin recognition. Finally, we performed neutralization experiments using different anti-heparan sulfate antibodies to gain insight into the nature of the GAGs recognized by OmcB. The results suggest that C. trachomatis serovar L2 OmcB interacts with 6-O-sulfated domains of heparan sulfate, while C. pneumoniae OmcB apparently interacts with domains of heparan sulfate harboring a diverse subset of O-sulfations. PMID:24056107

  12. Adhesins and ligands involved in the interaction of Candida spp. with epithelial and endothelial surfaces.

    PubMed Central

    Hostetter, M K

    1994-01-01

    Adhesion of candidal species to the epithelium of the gastrointestinal or genitourinary tract stands as a critical first step in the pathogenesis of candidal infection. After colonization and replication at mucosal surfaces, Candida albicans and other pathogenic species may penetrate the mucosal barrier, enter the vascular tree, and disseminate hematogenously. The consequences of this pathogenic cascade evoke considerable morbidity and mortality, especially among immunocompromised patients. Thus, interactions of C. albicans and other candidal species with epithelium and endothelium may lead to serious consequences for the human host. This review evaluates candidate candidal adhesions for epithelial and endothelial surfaces, with emphasis on the specificity of the interaction, the inhibitors that have been employed, and the ligands that have been identified on mammalian cells or matrices. Three types of interactions are described: protein-protein interactions, lectin-like interactions, and incompletely defined interactions in which the adhesive ligand is as yet unidentified. Special attention is given to the roles of integrin-like proteins. Differences in the mechanisms of candidal attachment to epithelium and endothelium are delineated. Last, on the basis of the available literature, avenues of potentially fruitful investigation are proposed. Images PMID:8118789

  13. Biofilm Formation by Psychrobacter arcticus and the Role of a Large Adhesin in Attachment to Surfaces

    PubMed Central

    Koid, Cassandra; Tiedje, James M.; Schultzhaus, Janna N.

    2013-01-01

    Psychrobacter arcticus strain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt. P. arcticus is also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation by P. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame as cat1, for cold attachment gene 1. The cat1 mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined that cat1 mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments, cat1 mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces. PMID:23603675

  14. The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase

    PubMed Central

    Wan, Zhe; Brown, Pamela J.B.; Elliott, Ellen N.; Brun, Yves V.

    2013-01-01

    △Bacterial exopolysaccharide synthesis is a prevalent and indispensible activity in many biological processes, including surface adhesion and biofilm formation. In Caulobacter crescentus, surface attachment and subsequent biofilm growth depend on the ability to synthesize an adhesive polar polysaccharide known as the holdfast. In this work, we show that polar polysaccharide synthesis is a conserved phenomenon among Alphaproteobacterial species closely related to C. crescentus. Among them, mutagenesis of Asticcacaulis biprosthecum showed that disruption of the hfsH gene, which encodes a putative polysaccharide deacetylase, leads to accumulation of holdfast in the culture supernatant. Examination of the hfsH deletion mutant in C. crescentus revealed that this strain synthesizes holdfast; however like the A. biprosthecum hfsH mutant, the holdfasts are shed into the medium and have decreased adhesiveness and cohesiveness. Site-directed mutagenesis at the predicted catalytic site of C. crescentus HfsH phenocopied the ΔhfsH mutant and abolished the esterase activity of HfsH. In contrast, overexpression of HfsH increased cell adherence without increasing holdfast synthesis. We conclude that the polysaccharide deacetylase activity of HfsH is required for the adhesive and cohesive properties of the holdfast, as well as for the anchoring of the holdfast to the cell envelope. PMID:23517529

  15. A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces

    PubMed Central

    Absalon, Cedric; Van Dellen, Katrina; Watnick, Paula I.

    2011-01-01

    While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm. PMID:21901100

  16. Structural basis of Lewisb antigen binding by the Helicobacter pylori adhesin BabA

    PubMed Central

    Hage, Naim; Howard, Tina; Phillips, Chris; Brassington, Claire; Overman, Ross; Debreczeni, Judit; Gellert, Paul; Stolnik, Snow; Winkler, G. Sebastiaan; Falcone, Franco H.

    2015-01-01

    Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewisb (Leb) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Leb antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Leb at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Leb binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Leb, which is characterized by low affinity under acidic [KD (dissociation constant) of ~227 μM] and neutral (KD of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Leb Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Leb, respectively. Knowledge of the molecular basis of Leb recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa. PMID:26601230

  17. Expressed concerns of Yemeni adolescents.

    PubMed

    Alzubaidi, A; Upton, G; Baluch, B

    1998-01-01

    This study examined the concerns of adolescents in the Republic of Yemen. A short version of the Mooney Problem Check List was administered to 150 13- to 17-year-old males and females. Results indicated that the major concerns and problems reported by Yemeni adolescents were related to their vocational and educational future, recreational activities, religious matters, and school curriculum and teaching methods. Problems related to social life, family, and health and physical issues were less prominent. Results also showed that though there were similarities in the number of concerns expressed by males and females, males reported more difficulties with their vocational and educational future, marriage and sexual matters, and finances and employment, while females reported more problems with recreational activities, personal relationships, and health. PMID:9583671

  18. Generalized expression for polarization density

    SciTech Connect

    Wang Lu; Hahm, T. S.

    2009-06-15

    A general polarization density which consists of classical and neoclassical parts is systematically derived via modern gyrokinetics and bounce kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width and finite-Larmor-radius effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. The generalized analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.

  19. Recognizing involuntary emotional expression disorder.

    PubMed

    Robinson-Smith, Gale; Grill, Joshua D

    2007-08-01

    Involuntary crying or laughing are symptoms of a condition known as involuntary emotional expression disorder (IEED). This disorder is common among patients with stroke and other neurological disorders, such as multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury. Despite its prevalence, this condition is underrecognized and consequently undertreated in neurological settings. IEED can become disabling for patients who are not accurately diagnosed and treated. Differential diagnosis depends on recognition of the condition as an affective disorder and on its delineation from unipolar depression and other major psychiatric disorders. Clinical evaluation is essential for effective nursing care of this disorder. When the condition is found to be present, effective management must include education, pharmacological treatment, and teaching of self-care strategies. As patient advocates, neuroscience nurses are in a unique position to identify and assess such patients and to effectively guide patients and families in the management of this condition.

  20. Generalized Expression for Polarization Density

    SciTech Connect

    Lu Wang and T.S. Hahm

    2009-04-23

    A general polarization density which consists of classical and neoclassical parts is system-atically derived via modern gyrokinetics and bounce-kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width (FBW) and finite-Larmor-radius (FLR) effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. Our analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.

  1. Mapping and manipulating facial expression.

    PubMed

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R; Brick, Timothy R; Cohn, Jeffrey F; Boker, Steven M

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial gestures in video sequences of people engaged in conversation. We are developing a system for use in psychological experiments, where the effects of manipulating individual components of nonverbal visual behavior during live face-to-face conversation can be studied. In particular, the techniques we describe operate in real-time at video frame-rate and the manipulation can be applied so both participants in a conversation are kept blind to the experimental conditions. PMID:19624037

  2. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  3. Emerin expression in tubular aggregates.

    PubMed

    Manta, Panagiota; Terzis, Gerasimos; Papadimitriou, Constantinos; Kontou, Chrysanthi; Vassilopoulos, Demetris

    2004-06-01

    Emerin is an inner nuclear membrane protein that is mutated or not expressed in patients with X-linked Emery-Dreifuss muscular dystrophy (X-EDMD/EMD). Cytoplasmic localization of emerin in cultured cells or tissues has been reported, although this remains a controversial issue. Tubular aggregates (TAs) are pathological structures seen in the sarcoplasm of human skeletal muscle fibers in various disorders. The TAs derive from the sarcoplasmic reticulum (SR) and represent, probably, an adaptive response of the SR to various insults to the muscle fibers. In the present study, we present immunohistochemical evidence of emerin expression in TAs. Muscle biopsies with tubular aggregates from four male, unrelated patients were studied. The percentage of muscle fibers containing TAs varied between 5 and 20%. Routine histochemistry revealed intense reaction of TAs with NADH-TR, AMPDA, and NSE, but not with COX, SDH, myosin ATPase (pH 9.4, 4.3, 4.6), PAS, and Oil red O staining. Immunohistochemical study revealed strong immunostaining of TAs with antibodies against emerin and 7 SERCA2-ATPase. Immunostaining of TAs was also seen with antibodies against heat shock protein and dysferlin, but not with antibodies to lamin A, dystrophin, adhalin, beta, gamma, delta sarcoglycans, and merosin. These results suggest that emerin, an inner nuclear membrane protein, is present at the TAs. The interpretation and significance of this finding is discussed in relation to experimental data suggesting that normal emerin localization at the inner nuclear membrane depends on lamin A and mutations in the N-terminal domain of emerin cause mislocalization of the protein to the sarcoplasmic membranes.

  4. Baculovirus expression system and method for high throughput expression of genetic material

    DOEpatents

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  5. Cerebral regulation of facial expressions of pain.

    PubMed

    Kunz, Miriam; Chen, Jen-I; Lautenbacher, Stefan; Vachon-Presseau, Etienne; Rainville, Pierre

    2011-06-15

    Facial expression of affective states plays a key role in social interactions. Interestingly, however, individuals differ substantially in their level of expressiveness, ranging from high expressive to stoic individuals. Here, we investigate which brain mechanisms underlie the regulation of facial expressiveness to acute pain. Facial responses, pain ratings, and brain activity (BOLD-fMRI) evoked by noxious heat and warm (control) stimuli were recorded in 34 human volunteers with different degrees of facial expressiveness. Within-subject and between-subject variations in blood oxygenation level-dependent (BOLD) responses were examined specifically in relation to facial responses. Pain expression was inversely related to frontostriatal activity, consistent with a role in downregulating facial displays. More detailed analyses of the peak activity in medial prefrontal cortex revealed negative BOLD responses to thermal stimuli, an effect generally associated with the default mode network. Given that this negative BOLD response was weaker in low expressive individuals during pain, it could reflect stronger engagement in, or reduced disengagement from, self-reflective processes in stoic individuals. The occurrence of facial expressions during pain was coupled with stronger primary motor activity in the face area and-interestingly-in areas involved in pain processing. In conclusion, these results indicate that spontaneous pain expression reflects activity within nociceptive pathways while stoicism involves the active suppression of expression, a manifestation of learned display rules governing emotional communication and possibly related to an increased self-reflective or introspective focus. PMID:21677157

  6. Emotional attention capture by facial expressions

    PubMed Central

    Sawada, Reiko; Sato, Wataru

    2015-01-01

    Previous studies have shown that emotional facial expressions capture visual attention. However, it has been unclear whether attentional modulation is attributable to their emotional significance or to their visual features. We investigated this issue using a spatial cueing paradigm in which non-predictive cues were peripherally presented before the target was presented in either the same (valid trial) or the opposite (invalid trial) location. The target was an open dot and the cues were photographs of normal emotional facial expressions of anger and happiness, their anti-expressions and neutral expressions. Anti-expressions contained the amount of visual changes equivalent to normal emotional expressions compared with neutral expressions, but they were usually perceived as emotionally neutral. The participants were asked to localize the target as soon as possible. After the cueing task, they evaluated their subjective emotional experiences to the cue stimuli. Compared with anti-expressions, the normal emotional expressions decreased and increased the reaction times (RTs) in the valid and invalid trials, respectively. Shorter RTs in the valid trials and longer RTs in the invalid trials were related to higher subjective arousal ratings. These results suggest that emotional facial expressions accelerate attentional engagement and prolong attentional disengagement due to their emotional significance. PMID:26365083

  7. Connexin expression in renin-producing cells.

    PubMed

    Kurtz, Lisa; Janssen-Bienhold, Ulrike; Kurtz, Armin; Wagner, Charlotte

    2009-03-01

    Absence of connexin 40 (Cx40) leads to ectopic juxtaglomerular renin expression and abrogates recruitment of renin-expressing cells in the adult kidney but does not disturb renin expression during kidney development. To find an explanation for these observations, we aimed to analyze the expression pattern of major vascular Cxs in normal juxtaglomerular epithelioid cells, in recruited renin-expressing cells, and in fetal renin-expressing cells. We found that during kidney development, the appearance of renin-producing cells paralleled the expression of Cx40 and, to a lesser extent, Cx45 but not other Cxs. In the adult kidney, juxtaglomerular epithelioid cells expressed Cx40 and lesser amounts of Cx37 and Cx43 but not Cx45, which localized to arteriolar smooth muscle cells. Recruitment of renin-producing cells in adult kidneys in response to long-term salt deprivation of mice correlated with the reappearance of only Cx40. Cx40-null renin-producing cells did not express Cx37, Cx43, or Cx45. These findings suggest that Cx40 expression is a characteristic of renin-producing cells in the kidney, and it seems to be essential in the recruitment of renin-producing cells in the adult but not the fetal kidney. PMID:19073828

  8. The Mouse Gene Expression Database (GXD)

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Begley, Dale A.; Corradi, John P.; McCright, Ingeborg J.; Hayamizu, Terry F.; Hill, David P.; Kadin, James A.; Richardson, Joel E.

    2001-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. By combining the different types of expression data, GXD aims to provide increasingly complete information about the expression profiles of genes in different mouse strains and mutants, thus enabling valuable insights into the molecular networks that underlie normal development and disease. GXD is integrated with the Mouse Genome Database (MGD). Extensive interconnections with sequence databases and with databases from other species, and the development and use of shared controlled vocabularies extend GXD’s utility for the analysis of gene expression information. GXD is accessible through the Mouse Genome Informatics web site at http://www.informatic s.jax.org/ or directly at http://www.informatics.jax.org/me nus/expression_menu.shtml. PMID:11125060

  9. Recognizing Facial Expressions Automatically from Video

    NASA Astrophysics Data System (ADS)

    Shan, Caifeng; Braspenning, Ralph

    Facial expressions, resulting from movements of the facial muscles, are the face changes in response to a person's internal emotional states, intentions, or social communications. There is a considerable history associated with the study on facial expressions. Darwin [22] was the first to describe in details the specific facial expressions associated with emotions in animals and humans, who argued that all mammals show emotions reliably in their faces. Since that, facial expression analysis has been a area of great research interest for behavioral scientists [27]. Psychological studies [48, 3] suggest that facial expressions, as the main mode for nonverbal communication, play a vital role in human face-to-face communication. For illustration, we show some examples of facial expressions in Fig. 1.

  10. TPRV-1 expression in human preeclamptic placenta.

    PubMed

    Martínez, Nora; Abán, Cyntia E; Leguizamón, Gustavo F; Damiano, Alicia E; Farina, Mariana G

    2016-04-01

    Preeclampsia is a multisystem disorder unique to human pregnancy, characterized by abnormal placentation. Although its causes remain unclear, it is known that the expression of several transporters is altered. Transient receptor potential vanilloid 1 (TRPV-1) is a nonselective cation channel, present in human placenta. Here, we evaluated the expression of TRPV-1 in preeclamptic placentas. We observed a deregulation in TRPV-1 expression in these placentas which may explain the impaired Ca(2+) homeostasis found in preeclampsia. PMID:27016779

  11. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  14. Profiling Gene Expression in Germinating Brassica Roots.

    PubMed

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  15. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  16. Social Use of Facial Expressions in Hylobatids.

    PubMed

    Scheider, Linda; Waller, Bridget M; Oña, Leonardo; Burrows, Anne M; Liebal, Katja

    2016-01-01

    Non-human primates use various communicative means in interactions with others. While primate gestures are commonly considered to be intentionally and flexibly used signals, facial expressions are often referred to as inflexible, automatic expressions of affective internal states. To explore whether and how non-human primates use facial expressions in specific communicative interactions, we studied five species of small apes (gibbons) by employing a newly established Facial Action Coding System for hylobatid species (GibbonFACS). We found that, despite individuals often being in close proximity to each other, in social (as opposed to non-social contexts) the duration of facial expressions was significantly longer when gibbons were facing another individual compared to non-facing situations. Social contexts included grooming, agonistic interactions and play, whereas non-social contexts included resting and self-grooming. Additionally, gibbons used facial expressions while facing another individual more often in social contexts than non-social contexts where facial expressions were produced regardless of the attentional state of the partner. Also, facial expressions were more likely 'responded to' by the partner's facial expressions when facing another individual than non-facing. Taken together, our results indicate that gibbons use their facial expressions differentially depending on the social context and are able to use them in a directed way in communicative interactions with other conspecifics.

  17. Social Use of Facial Expressions in Hylobatids

    PubMed Central

    Scheider, Linda; Waller, Bridget M.; Oña, Leonardo; Burrows, Anne M.; Liebal, Katja

    2016-01-01

    Non-human primates use various communicative means in interactions with others. While primate gestures are commonly considered to be intentionally and flexibly used signals, facial expressions are often referred to as inflexible, automatic expressions of affective internal states. To explore whether and how non-human primates use facial expressions in specific communicative interactions, we studied five species of small apes (gibbons) by employing a newly established Facial Action Coding System for hylobatid species (GibbonFACS). We found that, despite individuals often being in close proximity to each other, in social (as opposed to non-social contexts) the duration of facial expressions was significantly longer when gibbons were facing another individual compared to non-facing situations. Social contexts included grooming, agonistic interactions and play, whereas non-social contexts included resting and self-grooming. Additionally, gibbons used facial expressions while facing another individual more often in social contexts than non-social contexts where facial expressions were produced regardless of the attentional state of the partner. Also, facial expressions were more likely ‘responded to’ by the partner’s facial expressions when facing another individual than non-facing. Taken together, our results indicate that gibbons use their facial expressions differentially depending on the social context and are able to use them in a directed way in communicative interactions with other conspecifics. PMID:26978660

  18. Classifying Chimpanzee Facial Expressions Using Muscle Action

    PubMed Central

    Parr, Lisa A.; Waller, Bridget M.; Vick, Sarah J.; Bard, Kim A.

    2010-01-01

    The Chimpanzee Facial Action Coding System (ChimpFACS) is an objective, standardized observational tool for measuring facial movement in chimpanzees based on the well-known human Facial Action Coding System (FACS; P. Ekman & W. V. Friesen, 1978). This tool enables direct structural comparisons of facial expressions between humans and chimpanzees in terms of their common underlying musculature. Here the authors provide data on the first application of the ChimpFACS to validate existing categories of chimpanzee facial expressions using discriminant functions analyses. The ChimpFACS validated most existing expression categories (6 of 9) and, where the predicted group memberships were poor, the authors discuss potential problems with ChimpFACS and/or existing categorizations. The authors also report the prototypical movement configurations associated with these 6 expression categories. For all expressions, unique combinations of muscle movements were identified, and these are illustrated as peak intensity prototypical expression configurations. Finally, the authors suggest a potential homology between these prototypical chimpanzee expressions and human expressions based on structural similarities. These