Science.gov

Sample records for adhesion adaptor protein

  1. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration

    PubMed Central

    Braiman, Alex; Isakov, Noah

    2015-01-01

    Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites. PMID:26500649

  2. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    PubMed

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian

    2015-11-01

    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  3. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1.

  4. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. PMID:24388971

  5. XB130: A novel adaptor protein in cancer signal transduction

    PubMed Central

    ZHANG, RUIYAO; ZHANG, JINGYAO; WU, QIFEI; MENG, FANDI; LIU, CHANG

    2016-01-01

    Adaptor proteins are functional proteins that contain two or more protein-binding modules to link signaling proteins together, which affect cell growth and shape and have no enzymatic activity. The actin filament-associated protein (AFAP) family is an important member of the adaptor proteins, including AFAP1, AFAP1L1 and AFAP1L2/XB130. AFAP1 and AFAP1L1 share certain common characteristics and function as an actin-binding protein and a cSrc-activating protein. XB130 exhibits certain unique features in structure and function. The mRNA of XB130 is expressed in human spleen, thyroid, kidney, brain, lung, pancreas, liver, colon and stomach, and the most prominent disease associated with XB130 is cancer. XB130 has a controversial effect on cancer. Studies have shown that XB130 can promote cancer progression and downregulation of XB130-reduced growth of tumors derived from certain cell lines. A higher mRNA level of XB130 was shown to be associated with a better survival in non-small cell lung cancer. Previous studies have shown that XB130 can regulate cell growth, migration and invasion and possibly has the effect through the cAMP-cSrc-phosphoinositide 3-kinase/Akt pathway. Except for cancer, XB130 is also associated with other pathological or physiological procedures, such as airway repair and regeneration. PMID:26998266

  6. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    PubMed

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  7. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  8. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  9. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins.

    PubMed

    Thoms, Matthias; Thomson, Emma; Baßler, Jochen; Gnädig, Marén; Griesel, Sabine; Hurt, Ed

    2015-08-27

    The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.

  10. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export

    PubMed Central

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.

    2016-01-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680

  11. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. PMID:26944680

  12. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  13. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5.

    PubMed Central

    Candau, R; Moore, P A; Wang, L; Barlev, N; Ying, C Y; Rosen, C A; Berger, S L

    1996-01-01

    Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation. PMID:8552087

  14. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    PubMed Central

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  15. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.

    PubMed

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven; Højrup, Peter; Emanuelsson, Cecilia; von Wachenfeldt, Claes

    2016-09-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress-alleviating proteins. The adaptor protein YjbH is thus a key player involved in these interactions but its structure is unknown. To gain insight into its structure and interactions we have used chemical crosslinking mass spectrometry. Distance constraints obtained from the crosslinked monomer were used to select and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby suggesting one side of the YjbH for the interaction with Spx. Another lysine residue that crosslinked to Spx was YjbH K5, located in the long and presumably very flexible N-terminal arm of YjbH. Our crosslinking data lend support to a model proposed based on site-directed mutagenesis where the YjbH interaction with Spx can stabilize and present the C-terminal region of Spx for protease recognition and proteolysis. Proteins 2016; 84:1234-1245. © 2016 Wiley Periodicals, Inc. PMID:27191337

  16. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.

    PubMed

    Kirstein, Janine; Molière, Noël; Dougan, David A; Turgay, Kürşad

    2009-08-01

    Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.

  17. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling.

    PubMed

    Kazi, Julhash U; Kabir, Nuzhat N; Rönnstrand, Lars

    2015-07-01

    SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.

  18. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  19. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    PubMed

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  20. Binding of AP-2 adaptor complex to brain membrane is regulated by phosphorylation of proteins

    SciTech Connect

    Alberdi, A. . E-mail: aalberdi@fcm.uncu.edu.ar; Sartor, T.; Sosa, M.A.

    2005-05-13

    Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of {alpha} subunits of AP-2 adaptor complex to cytosol and this effect was higher in the {alpha}2 subunit. A high serine phosphorylation status of {alpha} subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.

  1. Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2.

    PubMed

    Braun, Gerald S; Kuszka, Andrzej; Dau, Cécile; Kriz, Wilhelm; Moeller, Marcus J

    2016-03-25

    Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression. PMID:26903299

  2. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis1[OPEN

    PubMed Central

    Wang, Chao; Hu, Tianwei; Yan, Xu; Meng, Tingting; Wang, Yutong; Wang, Qingmei; Zhang, Xiaoyue; Gu, Ying; Sánchez-Rodríguez, Clara; Gadeyne, Astrid; Lin, Jinxing

    2016-01-01

    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME. Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells. PMID:26945051

  3. Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors.

    PubMed

    Deiss, Silvia; Hernandez Alvarez, Birte; Bär, Kerstin; Ewers, Carolin P; Coles, Murray; Albrecht, Reinhard; Hartmann, Marcus D

    2014-06-01

    This work presents a protein structure that has been designed purely for aesthetic reasons, symbolizing decades of coiled-coil research and praising its most fundamental model system, the GCN4 leucine zipper. The GCN4 leucine zipper is a highly stable coiled coil which can be tuned to adopt different oligomeric states via mutation of its core residues. For these reasons it is used in structural studies as a stabilizing fusion adaptor. On the occasion of the 50th birthday of Andrei N. Lupas, we used it to create the first personalized protein structure: we fused the sequence ANDREI-N-LVPAS in heptad register to trimeric GCN4 adaptors and determined its structure by X-ray crystallography. The structure demonstrates the robustness and versatility of GCN4 as a fusion adaptor. We learn how proline can be accommodated in trimeric coiled coils, and put the structure into the context of the other GCN4-fusion structures known to date. PMID:24486584

  4. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia.

    PubMed

    Gryaznova, Tetyana; Kropyvko, Sergii; Burdyniuk, Mariia; Gubar, Olga; Kryklyva, Valentyna; Tsyba, Liudmyla; Rynditch, Alla

    2015-07-01

    Invasive cancer cells form actin-rich membrane protrusions called invadopodia that degrade extracellular matrix and facilitate cell invasion and metastasis. WIP (WASP-interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) are localized in invadopodia and play a crucial role in their formation. Here we show that WIP interacts with endocytic adaptor proteins of the intersectin (ITSN) family, ITSN1 and ITSN2. The interaction is mediated by the SH3 domains of ITSNs and the middle part of the WIP proline-rich motifs. We have also demonstrated that ITSN1, WIP and N-WASP can form a complex in cells. Endogenous ITSN1 and ITSN2 are located in invasive protrusions of MDA-MB-231 breast cancer cell line. Moreover, data from immunofluorescent analysis revealed co-localization of ITSN1 and WIP at sites of invadopodia formation and in clathrin-coated pits. Together, these findings provide insights into the molecular mechanisms of invadopodia formation and identify ITSNs as scaffold proteins involved in this process.

  5. A Role for the Adaptor Proteins TRAM and TRIF in Toll-like Receptor 2 Signaling*

    PubMed Central

    Nilsen, Nadra J.; Vladimer, Gregory I.; Stenvik, Jørgen; Orning, M. Pontus A.; Zeid-Kilani, Maria V.; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G.; Fitzgerald, Katherine A.; Espevik, Terje; Lien, Egil

    2015-01-01

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2. PMID:25505250

  6. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.

    PubMed

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L; Herr, Andrew B; Ji, Jun-Yuan; Li, Pingwei

    2016-06-14

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  7. A novel role of Shc adaptor proteins in steroid hormone-regulated cancers

    PubMed Central

    Alam, Syed Mahfuzul; Rajendran, Mythilypriya; Ouyang, Shouqiang; Veeramani, Suresh; Zhang, Li; Lin, Ming-Fong

    2009-01-01

    Tyrosine phosphorylation plays a critical role in growth regulation, and its aberrant regulation can be involved in carcinogenesis. The association of Shc (Src homolog and collagen homolog) adaptor protein family members in tyrosine phosphorylation signaling pathway is well recognized. Shc adaptor proteins transmit activated tyrosine phosphorylation signaling that suggest their plausible role in growth regulation including carcinogenesis and metastasis. In parallel, by sharing a similar mechanism of carcinogenesis, the steroids are involved in the early stage of carcinogenesis as well as the regulation of cancer progression and metastatic processes. Recent evidence indicates a cross-talk between tyrosine phosphorylation signaling and steroid hormone action in epithelial cells, including prostate and breast cancer cells. Therefore, the members of Shc proteins may function as mediators between tyrosine phosphorylation and steroid signaling in steroid-regulated cell proliferation and carcinogenesis. In this communication, we discuss the novel roles of Shc proteins, specifically p52Shc and p66Shc, in steroid hormone-regulated cancers and a novel molecular mechanism by which redox signaling induced by p66Shc mediates steroid action via a non-genomic pathway. The p66Shc protein may serve as an effective biomarker for predicting cancer prognosis as well as a useful target for treatment. PMID:19001530

  8. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  9. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  10. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    PubMed

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  11. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    SciTech Connect

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S

    2010-01-01

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  12. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation

    PubMed Central

    Stylli, Stanley S.; I, Stacey T. T.; Verhagen, Anne M.; Xu, San San; Pass, Ian; Courtneidge, Sara A.; Lock, Peter

    2009-01-01

    Summary Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation. PMID:19596797

  13. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    PubMed

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  14. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity.

    PubMed

    Horn, Anselm H C; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  15. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity

    PubMed Central

    Horn, Anselm H. C.; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  16. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity.

    PubMed

    Horn, Anselm H C; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  17. A role for adaptor protein-3 complex in the organization of the endocytic pathway in Dictyostelium.

    PubMed

    Charette, Steve J; Mercanti, Valentina; Letourneur, François; Bennett, Nelly; Cosson, Pierre

    2006-11-01

    Dictyostelium discoideum cells continuously internalize extracellular material, which accumulates in well-characterized endocytic vacuoles. In this study, we describe a new endocytic compartment identified by the presence of a specific marker, the p25 protein. This compartment presents features reminiscent of mammalian recycling endosomes: it is localized in the pericentrosomal region but distinct from the Golgi apparatus. It specifically contains surface proteins that are continuously endocytosed but rapidly recycled to the cell surface and thus absent from maturing endocytic compartments. We evaluated the importance of each clathrin-associated adaptor complex in establishing a compartmentalized endocytic system by studying the phenotype of the corresponding mutants. In knockout cells for mu3, a subunit of the AP-3 clathrin-associated complex, membrane proteins normally restricted to p25-positive endosomes were mislocalized to late endocytic compartments. Our results suggest that AP-3 plays an essential role in the compartmentalization of the endocytic pathway in Dictyostelium. PMID:17010123

  18. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells

    PubMed Central

    Mavuluri, Jayadev; Beesetti, Swarnalatha; Surabhi, Rohan; Kremerskothen, Joachim

    2016-01-01

    Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRA per se (KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential

  19. Structural and motional contributions of the Bacillus subtilis ClpC N-domain in adaptor protein interactions

    PubMed Central

    Kojetin, Douglas J.; McLaughlin, Patrick D.; Thompson, Richele J.; Dubnau, David; Prepiak, Peter; Rance, Mark; Cavanagh, John

    2009-01-01

    Summary The AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility, as well as conformational exchange on the μs-ms time-scale. The electrostatic surface of N-ClpCR differs substantially compared to the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC. PMID:19361434

  20. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50.

    PubMed

    Hao, Nan; Zeng, Yaxue; Elston, Timothy C; Dohlman, Henrik G

    2008-12-01

    Many different signaling pathways share common components but nevertheless invoke distinct physiological responses. In yeast, the adaptor protein Ste50 functions in multiple mitogen-activated protein (MAP) kinase pathways, each with unique dynamical and developmental properties. Although Kss1 activity is sustained and promotes invasive growth, Hog1 activity is transient and promotes cell adaptation to osmotic stress. Here we show that osmotic stress activates Kss1 as well as Hog1. We show further that Hog1 phosphorylates Ste50 and that phosphorylation of Ste50 limits the duration of Kss1 activation and prevents invasive growth under high osmolarity growth conditions. Thus feedback regulation of a shared component can restrict the activity of a competing MAP kinase to ensure signal fidelity. PMID:18854322

  1. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein.

    PubMed

    Garcia, C K; Wilund, K; Arca, M; Zuliani, G; Fellin, R; Maioli, M; Calandra, S; Bertolini, S; Cossu, F; Grishin, N; Barnes, R; Cohen, J C; Hobbs, H H

    2001-05-18

    Atherogenic low density lipoproteins are cleared from the circulation by hepatic low density lipoprotein receptors (LDLR). Two inherited forms of hypercholesterolemia result from loss of LDLR activity: autosomal dominant familial hypercholesterolemia (FH), caused by mutations in the LDLR gene, and autosomal recessive hypercholesterolemia (ARH), of unknown etiology. Here we map the ARH locus to an approximately 1-centimorgan interval on chromosome 1p35 and identify six mutations in a gene encoding a putative adaptor protein (ARH). ARH contains a phosphotyrosine binding (PTB) domain, which in other proteins binds NPXY motifs in the cytoplasmic tails of cell-surface receptors, including the LDLR. ARH appears to have a tissue-specific role in LDLR function, as it is required in liver but not in fibroblasts. PMID:11326085

  2. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    SciTech Connect

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  3. Calmodulin has the Potential to Function as a Ca2+-Dependent Adaptor Protein

    PubMed Central

    Yamniuk, Aaron P; Rainaldi, Mario

    2007-01-01

    Calmodulin (CaM) is a versatile Ca2+-binding protein that regulates the activity of numerous effector proteins in response to Ca2+ signals. Several CaM-dependent regulatory mechanisms have been identified, including autoinhibitory domain displacement, sequestration of a ligand-binding site, active site reorganization, and target protein dimerization. We recently showed that the N- and C-lobes of animal and plant CaM isoforms could independently and sequentially bind to target peptides derived from the CaM-binding domain of Nicotiana tabacum mitogen-activated protein kinase phosphatase (NtMKP1), to form a 2:1 peptide:CaM complex. This suggests that CaM might facilitate the dimerization of NtMKP1, although the dimerization mechanism is distinct from the previously described simultaneous binding of other target peptides to CaM. The independent and sequential binding of the NtMKP1 peptides to CaM also suggests an alternative plausible scenario in which the C-lobe of CaM remains tethered to NtMKP1, and the N-lobe is free to recruit a second target protein to the complex, such as an NtMKP1 target. Thus, we hypothesize that CaM may be capable of functioning as a Ca2+-dependent adaptor or recruiter protein. PMID:19704657

  4. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP.

    PubMed

    Kirstein, Janine; Dougan, David A; Gerth, Ulf; Hecker, Michael; Turgay, Kürşad

    2007-04-18

    Cells of the soil bacterium Bacillus subtilis have to adapt to fast environmental changes in their natural habitat. Here, we characterized a novel system in which cells respond to heat shock by regulatory proteolysis of a transcriptional repressor CtsR. In B. subtilis, CtsR controls the synthesis of itself, the tyrosine kinase McsB, its activator McsA and the Hsp100/Clp proteins ClpC, ClpE and their cognate peptidase ClpP. The AAA+ protein family members ClpC and ClpE can form an ATP-dependent protease complex with ClpP and are part of the B. subtilis protein quality control system. The regulatory response is mediated by a proteolytic switch, which is formed by these proteins under heat-shock conditions, where the tyrosine kinase McsB acts as a regulated adaptor protein, which in its phosphorylated form activates the Hsp100/Clp protein ClpC and targets the repressor CtsR for degradation by the general protease ClpCP.

  5. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation.

    PubMed

    Chen, Jie; Leskov, Igor L; Yurdagul, Arif; Thiel, Bonnie; Kevil, Christopher G; Stokes, Karen Y; Orr, A Wayne

    2015-02-24

    Oxidative stress stimulates nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We found that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidative stress-induced activation of NF-κB through the classic IκB kinase-dependent pathway. Depletion of Nck prevented oxidative stress induced by exogenous hydrogen peroxide or hypoxia/reoxygenation injury from activating NF-κB in endothelial cells, increasing the abundance of the proinflammatory molecules ICAM-1 (intracellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) and recruiting leukocytes. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors but not those encoding antioxidants. Nck promoted oxidative stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of PECAM-1 (platelet endothelial cell adhesion molecule-1) to the activation of p21-activated kinase, which mediates oxidative stress-induced NF-κB signaling. Consistent with this mechanism, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide blocked leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidative stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury. PMID:25714462

  6. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc

    PubMed Central

    Kumar, Ajay; Hoffman, Timothy A.; DeRicco, Jeremy; Naqvi, Asma; Jain, Mukesh K.; Irani, Kaikobad

    2009-01-01

    The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.—Kumar, A., Hoffman, T. A., DeRicco, J., Naqvi, A., Jain, M. K., Irani, K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. PMID:19696221

  7. A Novel Nuclear Function for the Interleukin-17 Signaling Adaptor Protein Act1

    PubMed Central

    Velichko, Sharlene; Zhou, Xu; Zhu, Lingxiang; Anderson, Johnathon David; Wu, Reen; Chen, Yin

    2016-01-01

    In the context of the human airway, interleukin-17A (IL-17A) signaling is associated with severe inflammation, as well as protection against pathogenic infection, particularly at mucosal surfaces such as the airway. The intracellular molecule Act1 has been demonstrated to be an essential mediator of IL-17A signaling. In the cytoplasm, it serves as an adaptor protein, binding to both the intracellular domain of the IL-17 receptor as well as members of the canonical nuclear factor kappa B (NF-κB) pathway. It also has enzymatic activity, and serves as an E3 ubiquitin ligase. In the context of airway epithelial cells, we demonstrate for the first time that Act1 is also present in the nucleus, especially after IL-17A stimulation. Ectopic Act1 expression can also increase the nuclear localization of Act1. Act1 can up-regulate the expression and promoter activity of a subset of IL-17A target genes in the absence of IL-17A signaling in a manner that is dependent on its N- and C-terminal domains, but is NF-κB independent. Finally, we show that nuclear Act1 can bind to both distal and proximal promoter regions of DEFB4, one of the IL-17A responsive genes. This transcriptional regulatory activity represents a novel function for Act1. Taken together, this is the first report to describe a non-adaptor function of Act1 by directly binding to the promoter region of IL-17A responsive genes and directly regulate their transcription. PMID:27723765

  8. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein.

    PubMed

    Todd, Matthew A M; Ivanochko, Danton; Picketts, David J

    2015-01-01

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson-Forssman-Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.

  9. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    PubMed Central

    Todd, Matthew A.M.; Ivanochko, Danton; Picketts, David J.

    2015-01-01

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis. PMID:26103525

  10. Protein adhesion force dynamics and single adhesion events.

    PubMed Central

    Sagvolden, G

    1999-01-01

    Using the manipulation force microscope, a novel atomic force microscope, the adhesion forces of bovine serum albumin, myoglobin, ferritin, and lysozyme proteins to glass and polystyrene substrates were characterized by following the force necessary to displace an adsorbed protein-covered microsphere over several orders of magnitude in time. This force was consistent with a power law with exponent a = 0.37 +/- 0.03 on polystyrene, indicating that there is no typical time scale for adhesion on this substrate. On glass, the rate of adhesion depended strongly on protein charge. Forces corresponding to single protein adhesion events were identified. The typical rupture force of a single lysozyme, ferritin, bovine serum albumin, and myoglobin protein adhering to glass was estimated to be 90 +/- 10 pN, 115 +/- 13 pN, 277 +/- 44 pN, and 277 +/- 44 pN, respectively, using a model of the experimental system. These forces, as well as the force amplitudes on hydrophobic polystyrene, correlate with protein stiffness. PMID:10388777

  11. The proteolysis adaptor, NblA, initiates protein pigment degradation by interacting with the cyanobacterial light-harvesting complexes.

    PubMed

    Sendersky, Eleonora; Kozer, Noga; Levi, Mali; Garini, Yuval; Shav-Tal, Yaron; Schwarz, Rakefet

    2014-07-01

    Degradation of the cyanobacterial protein pigment complexes, the phycobilisomes, is a central acclimation response that controls light energy capture. The small protein, NblA, is essential for proteolysis of these large complexes, which may reach a molecular mass of up to 4 MDa. Interactions of NblA in vitro supported the suggestion that NblA is a proteolysis adaptor that labels the pigment proteins for degradation. The mode of operation of NblA in situ, however, remained unresolved. Particularly, it was unclear whether NblA interacts with phycobilisome proteins while part of the large complex, or alternatively interaction with NblA, necessitates dissociation of pigment subunits from the assembly. Fluorescence intensity profiles demonstrated the preferential presence of NblA::GFP (green fluorescent protein) at the photosynthetic membranes, indicating co-localization with phycobilisomes. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for interaction of NblA with phycobilisome protein pigments. Additionally, we demonstrated the role of NblA in vivo as a proteolysis tag based on the rapid degradation of the fusion protein NblA::GFP compared with free GFP. Taken together, these observations demonstrated in vivo the role of NblA as a proteolysis adaptor. Additionally, the interaction of NblA with phycobilisomes indicates that the dissociation of protein pigment subunits from the large complex is not a prerequisite for interaction with this adaptor and, furthermore, implicates NblA in the disassembly of the protein pigment complex. Thus, we suggest that, in the case of proteolysis of the phycobilisome, the adaptor serves a dual function: undermining the complex stability and designating the dissociated pigments for degradation.

  12. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion. PMID:26519625

  13. Adaptor Protein 2 Regulates Receptor-Mediated Endocytosis and Cyst Formation in Giardia lamblia

    PubMed Central

    Rivero, Maria R.; Vranych, Cecilia V.; Bisbal, Mariano; Maletto, Belkys A.; Ropolo, Andrea S.; Touz, Maria C.

    2010-01-01

    Synopsis The parasite Giardia lamblia possesses peripheral vacuoles (PVs) that function as both endosomes and lysosomes and are implicated in the adaptation, differentiation, and survival of the parasite in different environments. The mechanisms by which Giardia traffics essential proteins to these organelles and regulates their secretion have important implications in the control of parasite dissemination. In this study, we describe the participation of the heterotetrameric clathrin-adaptor protein gAP2 complex in lysosomal protein trafficking. A specific monoclonal antibody against the medium subunit (gμ2) of gAP2 showed localization of this complex to the PVs, cytoplasm, and plasma membrane in the growing trophozoites. gAP2 also colocalized with clathrin in the PVs, suggesting its involvement in endocytosis. Uptake experiments using standard molecules for the study of endocytosis revealed that gAP2 specifically participated in the endocytosis of LDL. Targeted downregulation of the gene encoding gμ2 in growing and encysting trophozoites resulted in a large decrease in the amount of cell growth and cyst wall formation, suggesting a distinct mechanism in which gAP2 is directly involved in both endocytosis and vesicular trafficking. PMID:20199400

  14. Src-like Adaptor Protein (Slap) Is a Negative Regulator of T Cell Receptor Signaling

    PubMed Central

    Sosinowski, Tomasz; Pandey, Akhilesh; Dixit, Vishva M.; Weiss, Arthur

    2000-01-01

    Initiation of T cell antigen receptor (TCR) signaling is dependent on Lck, a Src family kinase. The Src-like adaptor protein (SLAP) contains Src homology (SH)3 and SH2 domains, which are highly homologous to those of Lck and other Src family members. Because of the structural similarity between Lck and SLAP, we studied its potential role in TCR signaling. Here, we show that SLAP is expressed in T cells, and that when expressed in Jurkat T cells it can specifically inhibit TCR signaling leading to nuclear factor of activated T cells (NFAT)-, activator protein 1 (AP-1)–, and interleukin 2–dependent transcription. The SH3 and SH2 domains of SLAP are required for maximal attenuation of TCR signaling. This inhibitory activity can be bypassed by the combination of phorbol myristate acetate (PMA) and ionomycin, suggesting that SLAP acts proximally in the TCR signaling pathway. SLAP colocalizes with endosomes in Jurkat and in HeLa cells, and is insoluble in mild detergents. In stimulated Jurkat cells, SLAP associates with a molecular signaling complex containing CD3ζ, ZAP-70, SH2 domain–containing leukocyte protein of 76 kD (SLP-76), Vav, and possibly linker for activation of T cells (LAT). These results suggest that SLAP is a negative regulator of TCR signaling. PMID:10662792

  15. Src-like adaptor protein (SLAP) is a negative regulator of T cell receptor signaling.

    PubMed

    Sosinowski, T; Pandey, A; Dixit, V M; Weiss, A

    2000-02-01

    Initiation of T cell antigen receptor (TCR) signaling is dependent on Lck, a Src family kinase. The Src-like adaptor protein (SLAP) contains Src homology (SH)3 and SH2 domains, which are highly homologous to those of Lck and other Src family members. Because of the structural similarity between Lck and SLAP, we studied its potential role in TCR signaling. Here, we show that SLAP is expressed in T cells, and that when expressed in Jurkat T cells it can specifically inhibit TCR signaling leading to nuclear factor of activated T cells (NFAT)-, activator protein 1 (AP-1)-, and interleukin 2-dependent transcription. The SH3 and SH2 domains of SLAP are required for maximal attenuation of TCR signaling. This inhibitory activity can be bypassed by the combination of phorbol myristate acetate (PMA) and ionomycin, suggesting that SLAP acts proximally in the TCR signaling pathway. SLAP colocalizes with endosomes in Jurkat and in HeLa cells, and is insoluble in mild detergents. In stimulated Jurkat cells, SLAP associates with a molecular signaling complex containing CD3zeta, ZAP-70, SH2 domain-containing leukocyte protein of 76 kD (SLP-76), Vav, and possibly linker for activation of T cells (LAT). These results suggest that SLAP is a negative regulator of TCR signaling.

  16. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  17. Reconstitution of Rad53 Activation by Mec1 through Adaptor Protein Mrc1*

    PubMed Central

    Chen, Sheng-hong; Zhou, Huilin

    2009-01-01

    Upon DNA replication stress, stalled DNA replication forks serve as a platform to recruit many signaling proteins, leading to the activation of the DNA replication checkpoint. Activation of Rad53, a key effector kinase in the budding yeast Saccharomyces cerevisiae, is essential for stabilizing DNA replication forks during replication stress. Using an activity-based assay for Rad53, we found that Mrc1, a replication fork-associated protein, cooperates with Mec1 to activate Rad53 directly. Reconstitution of Rad53 activation using purified Mec1 and Mrc1 showed that the addition of Mrc1 stimulated a more than 70-fold increase in the ability of Mec1 to activate Rad53. Instead of increasing the catalytic activity of Mec1, Mrc1 was found to facilitate the phosphorylation of Rad53 by Mec1 via promotion of a stronger enzyme-substrate interaction between them. Further, the conserved C-terminal domain of Mrc1 was found to be required for Rad53 activation. These results thus provide insights into the role of the adaptor protein Mrc1 in activating Rad53 in the DNA replication checkpoint. PMID:19457865

  18. Merkel Cell Polyomavirus Small T Antigen Targets the NEMO Adaptor Protein To Disrupt Inflammatory Signaling

    PubMed Central

    Griffiths, David A.; Abdul-Sada, Hussein; Knight, Laura M.; Jackson, Brian R.; Richards, Kathryn; Prescott, Emma L.; Peach, A. Howard S.; Blair, G. Eric

    2013-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST) as an inhibitor of NF-κB-mediated transcription. This effect is due to an interaction between MCPyV ST and the NF-κB essential modulator (NEMO) adaptor protein. MCPyV ST expression inhibits IκB kinase α (IKKα)/IKKβ-mediated IκB phosphorylation, which limits translocation of the NF-κB heterodimer to the nucleus. Regulation of this process involves a previously undescribed interaction between MCPyV ST and the cellular phosphatase subunits, protein phosphatase 4C (PP4C) and/or protein phosphatase 2A (PP2A) Aβ, but not PP2A Aα. Together, these results highlight a novel function of MCPyV ST to subvert the innate immune response, allowing establishment of early or persistent infection within the host cell. PMID:24109239

  19. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2.

    PubMed

    DaSilva, Luis L P; Wall, Mark J; P de Almeida, Luciana; Wauters, Sandrine C; Januário, Yunan C; Müller, Jürgen; Corrêa, Sonia A L

    2016-01-01

    The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc-AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  20. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2123

    PubMed Central

    Wall, Mark J.; P. de Almeida, Luciana; Wauters, Sandrine C.; Januário, Yunan C.; Müller, Jürgen

    2016-01-01

    Abstract The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc–AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  1. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

    PubMed

    Balasubramaniam, Vinod R M T; Hong Wai, Tham; Ario Tejo, Bimo; Omar, Abdul Rahman; Syed Hassan, Sharifah

    2013-01-01

    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

  2. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    PubMed

    Symmons, Martyn F; Marshall, Robert L; Bavro, Vassiliy N

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.

  3. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  4. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    PubMed

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2. PMID:27207797

  5. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    PubMed

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.

  6. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies

    PubMed Central

    Symmons, Martyn F.; Marshall, Robert L.

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  7. Crk adaptor proteins act as key signaling integrators for breast tumorigenesis

    PubMed Central

    2012-01-01

    Introduction CT10 regulator of kinase (Crk) adaptor proteins (CrkI, CrkII and CrkL) play a role in integrating signals for migration and invasion of highly malignant breast cancer cell lines. This has important implications, as elevated CrkI/II protein levels were observed in a small cohort of breast cancer patients, which identified a potential role for Crk proteins in breast cancer progression. Numerous in vitro studies identified a role for Crk proteins in cell motility, but little is known about how Crk proteins contribute to breast cancer progression in vivo. Methods The clinical significance of Crk proteins in human breast cancer was assessed by analyzing published breast cancer datasets using a gene expression signature that was generated following CrkII over-expression and by examining Crk protein expression in tissue microarrays of breast tumors (n = 254). Stable knockdown of Crk (CrkI/CrkII/CrkL) proteins was accomplished using a short hairpin RNA (shRNA)-mediated approach in two basal breast cancer cell lines, MDA-231 1833TR and SUM1315, where the former have a high affinity to form bone metastases. Both in vitro assays (cell migration, invasion, soft agar growth) and in vivo experiments (intra-cardiac, tibial and mammary fat pad injections) were performed to assess the functional significance of Crk proteins in breast cancer. Results A gene signature derived following CrkII over-expression correlated significantly with basal breast cancers and with high grade and poor outcome in general. Moreover, elevated Crk immunostaining on tissue microarrays revealed a significant association with highly proliferative tumors within the basal subtype. RNAi-mediated knockdown of all three Crk proteins in metastatic basal breast cancer cells established a continued requirement for Crk in cell migration and invasion in vitro and metastatic growth in vivo. Furthermore, Crk ablation suppressed anchorage independent growth and in vivo orthotopic tumor growth. This was

  8. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures.

    PubMed

    Schreiber, Andreas; Huber, Matthias C; Cölfen, Helmut; Schiller, Stefan M

    2015-01-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based 'adaptors/connectors' with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties. PMID:25813537

  9. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  10. The p66Shc Adaptor Protein Controls Oxidative Stress Response in Early Bovine Embryos

    PubMed Central

    Betts, Dean H.; Bain, Nathan T.; Madan, Pavneesh

    2014-01-01

    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2–4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2–4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos. PMID:24475205

  11. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    PubMed Central

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way. PMID:27243007

  12. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation

    PubMed Central

    Saleh, Mohamed A.; McMaster, William G.; Wu, Jing; Norlander, Allison E.; Funt, Samuel A.; Thabet, Salim R.; Kirabo, Annet; Xiao, Liang; Chen, Wei; Itani, Hana A.; Michell, Danielle; Huan, Tianxiao; Zhang, Yahua; Takaki, Satoshi; Titze, Jens; Levy, Daniel; Harrison, David G.; Madhur, Meena S.

    2015-01-01

    The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II–induced (Ang II–induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk–/– mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk–/– mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ–producing CD8+ T cells in the spleen and kidneys of Lnk–/– mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela. PMID:25664851

  13. Modulation of Hepatitis C Virus Genome Replication by Glycosphingolipids and Four-Phosphate Adaptor Protein 2

    PubMed Central

    Khan, Irfan; Katikaneni, Divya S.; Han, Qingxia; Sanchez-Felipe, Lorena; Hanada, Kentaro; Ambrose, Rebecca L.; Mackenzie, Jason M.

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) assembles its replication complex on cytosolic membrane vesicles often clustered in a membranous web (MW). During infection, HCV NS5A protein activates PI4KIIIα enzyme, causing massive production and redistribution of phosphatidylinositol 4-phosphate (PI4P) lipid to the replication complex. However, the role of PI4P in the HCV life cycle is not well understood. We postulated that PI4P recruits host effectors to modulate HCV genome replication or virus particle production. To test this hypothesis, we generated cell lines for doxycycline-inducible expression of short hairpin RNAs (shRNAs) targeting the PI4P effector, four-phosphate adaptor protein 2 (FAPP2). FAPP2 depletion attenuated HCV infectivity and impeded HCV RNA synthesis. Indeed, FAPP2 has two functional lipid-binding domains specific for PI4P and glycosphingolipids. While expression of the PI4P-binding mutant protein was expected to inhibit HCV replication, a marked drop in replication efficiency was observed unexpectedly with the glycosphingolipid-binding mutant protein. These data suggest that both domains are crucial for the role of FAPP2 in HCV genome replication. We also found that HCV significantly increases the level of some glycosphingolipids, whereas adding these lipids to FAPP2-depleted cells partially rescued replication, further arguing for the importance of glycosphingolipids in HCV RNA synthesis. Interestingly, FAPP2 is redistributed to the replication complex (RC) characterized by HCV NS5A, NS4B, or double-stranded RNA (dsRNA) foci. Additionally, FAPP2 depletion disrupts the RC and alters the colocalization of HCV replicase proteins. Altogether, our study implies that HCV coopts FAPP2 for virus genome replication via PI4P binding and glycosphingolipid transport to the HCV RC. IMPORTANCE Like most viruses with a positive-sense RNA genome, HCV replicates its RNA on remodeled host membranes composed of lipids hijacked from various internal membrane compartments

  14. Genetic association study of adaptor protein complex 4 with cerebral palsy in a Han Chinese population.

    PubMed

    Wang, Honglian; Xu, Yiran; Chen, Mingjie; Shang, Qing; Sun, Yanyan; Zhu, Dengna; Wang, Lei; Huang, Zhiheng; Ma, Caiyun; Li, Tongchuan; He, Lin; Xing, Qinghe; Zhu, Changlian

    2013-11-01

    Adaptor protein complex 4 (AP-4) plays a key role in vesicle formation, trafficking, and sorting processes that are critical for brain development and function. AP-4 consists of four subunits encoded by the AP4E1, AP4B1, AP4M1, and AP4S1 genes. A number of studies have pointed to the involvement of AP-4-mediated vesicular trafficking pathways in the etiology of cerebral palsy (CP), the most notable of which are the causative mutations that have recently been identified in each of the AP-4 genes in different CP families. We postulated, therefore, that variations in AP-4 genes might influence an indivual's susceptibility to CP. In the present study, 16 SNPs were genotyped among 517 CP patients and 502 healthy controls from the Han Chinese population. We systematically analyzed the association of the AP4E1, AP4B1, AP4M1, and AP4S1 genes with CP on the basis of clinical characteristics. No significant associations were found between these variants and the overall risk of CP. Subgroup analysis showed that rs1217401 of AP4B1 was significantly associated with CP as a sequela of hypoxic-ischemic encephalopathy (HIE) (CP + HIE) (allele: p = 0.042151; genotype: p = 4.46 × 10(-6)). Our results indicate that the 16 variants studied in the genes of the four subunits of AP-4 have no detectable effects on the overall susceptibility to CP, but AP4B1 appears to be a susceptibility gene for CP + HIE in the Han Chinese population. PMID:24065543

  15. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  16. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting

    PubMed Central

    Whitfield, Shawn T.; Burston, Helen E.; Bean, Björn D. M.; Raghuram, Nandini; Maldonado-Báez, Lymarie; Davey, Michael; Wendland, Beverly; Conibear, Elizabeth

    2016-01-01

    Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes. PMID:26658609

  17. SHP2-interacting Transmembrane Adaptor Protein (SIT), A Novel Disulfide-linked Dimer Regulating Human T Cell Activation

    PubMed Central

    Marie-Cardine, Anne; Kirchgessner, Henning; Bruyns, Eddy; Shevchenko, Andrej; Mann, Matthias; Autschbach, Frank; Ratnofsky, Sheldon; Meuer, Stefan; Schraven, Burkhart

    1999-01-01

    T lymphocytes express several low molecular weight transmembrane adaptor proteins that recruit src homology (SH)2 domain–containing intracellular molecules to the cell membrane via tyrosine-based signaling motifs. We describe here a novel molecule of this group termed SIT (SHP2 interacting transmembrane adaptor protein). SIT is a disulfide-linked homodimeric glycoprotein that is expressed in lymphocytes. After tyrosine phosphorylation by src and possibly syk protein tyrosine kinases SIT recruits the SH2 domain–containing tyrosine phosphatase SHP2 via an immunoreceptor tyrosine-based inhibition motif. Overexpression of SIT in Jurkat cells downmodulates T cell receptor– and phytohemagglutinin-mediated activation of the nuclear factor of activated T cells (NF-AT) by interfering with signaling processes that are probably located upstream of activation of phospholipase C. However, binding of SHP2 to SIT is not required for inhibition of NF-AT induction, suggesting that SIT not only regulates NF-AT activity but also controls NF-AT unrelated pathways of T cell activation involving SHP2. PMID:10209036

  18. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer. PMID:26772997

  19. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  20. The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein

    PubMed Central

    Xu, Qi; Gao, Wenchen; Ding, Shi-You; Kenig, Rina; Shoham, Yuval; Bayer, Edward A.; Lamed, Raphael

    2003-01-01

    designated ScaA. In addition, ScaB is thought to assume the role of an adaptor protein, which connects the primary scaffoldin (ScaA) to the cohesin-containing anchoring scaffoldin (ScaC). The cellulosome system of A. cellulolyticus thus appears to exhibit a special type of organization that reflects the function of the ScaB adaptor protein. The intercalation of three multiple cohesin-containing scaffoldins results in marked amplification of the number of enzyme subunits per cellulosome unit. At least 96 enzymes can apparently be incorporated into an individual A. cellulolyticus cellulosome. The role of such amplified enzyme incorporation and the resultant proximity of the enzymes within the cellulosome complex presumably contribute to the enhanced synergistic action and overall efficient digestion of recalcitrant forms of cellulose. Comparison of the emerging organization of the A. cellulolyticus cellulosome with the organizations in other cellulolytic bacteria revealed the diversity of the supramolecular architecture. PMID:12867464

  1. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-02-21

    World-to-chip (macro-to-micro) interface continues to be one of the most complicated, ineffective, and unreliable components in the development of emerging lab-on-a-chip systems involving integrated microfluidic operations. A number of irreversible (e.g., adhesive gluing) and reversible techniques (e.g., press fitting) have attempted to provide dedicated fluidic passage from standard tubing to miniature on-chip devices, none of which completely addresses the above concerns. In this paper, we present standardized adhesive-free microfluidic adaptors, referred to as Fit-to-Flow (F2F) Interconnects, to achieve reliable hermetic seal, high-density tube packing, self-aligned plug-in, reworkable connectivity, straightforward scalability and expandability, and applicability to broad lab-on-a-chip platforms; analogous to the modular plug-and-play USB architecture employed in modern electronics. Specifically, two distinct physical packaging mechanisms are applied, with one utilizing induced tensile stress in elastomeric socket to establish reversible seal and the other using negative pressure to provide on demand vacuum shield, both of which can be adapted to a variety of experimental configurations. The non-leaking performance (up to 336 kPa) along with high tube-packing density (of 1 tube/mm(2)) and accurate self-guided alignment (of 10 μm) have been characterized. In addition, a 3D microfluidic mixer and a 6-level chemical gradient generator paired with the corresponding F2F Interconnects have been devised to illustrate the applicability of the universal fluidic connections to classic lab-on-a-chip operations.

  2. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner. PMID:16169192

  3. Single Amino Acid Substitutions Confer the Antiviral Activity of the TRAF3 Adaptor Protein onto TRAF5

    PubMed Central

    Zhang, Peng; Reichardt, Anna; Liang, Huanhuan; Aliyari, Roghiyh; Cheng, David; Wang, Yaya; Xu, Feng

    2014-01-01

    The TRAF [tumor necrosis factor receptor–associated factor] family of cytoplasmic adaptor proteins link cell-surface receptors to intracellular signaling pathways that regulate innate and adaptive immune responses. In response to activation of RIG-I (retinoic acid–inducible gene I), a component of a pattern recognition receptor that detects viruses, TRAF3 binds to the adaptor protein Cardif [caspase activation and recruitment domain (CARD) adaptor–inducing interferon-b (IFN-b)], leading to induction of type I IFNs. We report the crystal structures of the TRAF domain of TRAF5 and that of TRAF3 bound to a peptide from the TRAF-interacting motif of Cardif. By comparing these structures, we identified two residues located near the Cardif binding pocket in TRAF3 (Tyr440 and Phe473) that potentially contributed to Cardif recognition. In vitro and cellular experiments showed that forms of TRAF5 with mutation of the corresponding residues to those of TRAF3 had TRAF3-like antiviral activity. Our results provide a structural basis for the critical role of TRAF3 in activating RIG-I–mediated IFN production. PMID:23150880

  4. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner.

  5. An adhesive protein capsule of Escherichia coli.

    PubMed Central

    Orskov, I; Birch-Andersen, A; Duguid, J P; Stenderup, J; Orskov, F

    1985-01-01

    The nature of the adhesive capacity of three hemagglutinating Escherichia coli strains that had earlier been described as nonfimbriated was studied. The strains that were isolated from human disease adhered to human buccal and urinary tract epithelial cells, an adhesion that was not inhibited by D-mannose. By crossed immunoelectrophoresis it was shown that the three strains produced a common antigen, Z1, developed after growth at 37 degrees C but not 18 degrees C. One of the strains produced an additional antigen, Z2, of almost the same electrophoretic mobility in crossed immunoelectrophoresis. A mutant of this strain deficient of its polysaccharide K antigen had maintained the adhesive capacity, indicating that the K antigen was not responsible for adhesion. A further mutant of the acapsular mutant produced a strongly reduced amount of the Z antigens and had lost the ability to adhere. The Z1 (and Z2?) antigens were therefore deemed to be responsible for adhesion. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracts of cells of the three strains, a heavy Coomassie-blue stained line was seen, indicating the presence of a protein subunit of molecular weight slightly above 14,400. By immunoblotting with absorbed antiserum, it was shown that this protein was the same as that detected by crossed immunoelectrophoresis. Protease from Streptomyces griseus, but not trypsin, digested the protein. Heating to 100 degrees C did not affect it. By immunoelectron microscopy of embedded and sectioned bacteria that had first been treated with specific antisera and ferritin-labeled antirabbit immunoglobulin, the protein adhesin-antibody complex was found to surround the bacteria as a heavy capsule. After negative staining with uranylacetate (pH approximately 4), the capsule appeared as a mesh of very fine filaments. The possible role of this capsule in the pathogenesis of disease is discussed. Images PMID:2856913

  6. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING.

    PubMed

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J; Chen, Chuo

    2015-07-21

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein-ligand interactions.

  7. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin

    PubMed Central

    Wood, Stephen; Goldufsky, Josef; Shafikhani, Sasha H.

    2015-01-01

    Previously, we demonstrated that Pseudomonas aeruginosa ExoT induces potent apoptosis in host epithelial cells in a manner that primarily depends on its ADP-ribosyltransferase domain (ADPRT) activity. However, the mechanism underlying ExoT/ADPRT-induced apoptosis remains undetermined. We now report that ExoT/ADPRT disrupts focal adhesion sites, activates p38β and JNK, and interferes with integrin-mediated survival signaling; causing atypical anoikis. We show that ExoT/ADPRT-induced anoikis is mediated by the Crk adaptor protein. We found that Crk-/- knockout cells are significantly more resistant to ExoT-induced apoptosis, while Crk-/- cells complemented with Crk are rendered sensitive to ExoT-induced apoptosis. Moreover, a dominant negative (DN) mutant form of Crk phenocopies ExoT-induced apoptosis both kinetically and mechanistically. Crk is generally believed to be a component of focal adhesion (FA) and its role in cellular survival remains controversial in that it has been found to be either pro-survival or pro-apoptosis. Our data demonstrate that although Crk is recruited to FA sites, its function is likely not required for FA assembly or for survival per se. However, when modified by ExoT or by mutagenesis, it can be transformed into a cytotoxin that induces anoikis by disrupting FA sites and interfering with integrin survival signaling. To our knowledge, this is the first example whereby a bacterial toxin exerts its cytotoxicity by subverting the function of an innocuous host cellular protein and turning it against the host cell. PMID:26020630

  8. Soy and cottonseed protein blends as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an environmentally friendlier alternative to adhesives from petroleum feedstock, soy proteins are currently being formulated as wood adhesives. Cottonseed proteins have also been found to provide good adhesive properties. In at least some cases, cottonseed proteins appear to form greater shear ...

  9. The adaptor proteins p140CAP and p130CAS as molecular hubs in cell migration and invasion of cancer cells

    PubMed Central

    Di Stefano, Paola; Leal, Maria Pilar Camacho; Tornillo, Giusy; Bisaro, Brigitte; Repetto, Daniele; Pincini, Alessandra; Santopietro, Emanuela; Sharma, Nanaocha; Turco, Emilia; Cabodi, Sara; Defilippi, Paola

    2011-01-01

    The assembly of molecular hubs upon integrin and growth factor stimulation represents a preferential way to transduce signals throughout the cell. Among the intracellular kinases that are responsive to integrin and growth factor activation, Src Family Kinases (SFKs) are crucial regulators of cell migration and invasion. Increasing evidence highlight the importance of adaptor proteins in these processes, based on their ability to create signalling platforms that control downstream signals. Among these adaptors we will discuss the molecular features of p130Cas and p140Cap proteins in terms of regulation of cell migration and invasion in normal and transformed cells. PMID:21994904

  10. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling.

    PubMed

    Khatlani, Tanvir; Pradhan, Subhashree; Da, Qi; Shaw, Tanner; Buchman, Vladimir L; Cruz, Miguel A; Vijayan, K Vinod

    2016-08-12

    The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity. PMID:27334924

  11. Interactions of the Protein-tyrosine Phosphatase-α with the Focal Adhesion Targeting Domain of Focal Adhesion Kinase Are Involved in Interleukin-1 Signaling in Fibroblasts*

    PubMed Central

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2014-01-01

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca2+ release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα. PMID:24821720

  12. Interactions of the protein-tyrosine phosphatase-α with the focal adhesion targeting domain of focal adhesion kinase are involved in interleukin-1 signaling in fibroblasts.

    PubMed

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P; McCulloch, Christopher A

    2014-06-27

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca(2+) release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα.

  13. Functional characterization of the interactions between endosomal adaptor protein APPL1 and the NuRD co-repressor complex

    PubMed Central

    Banach-Orlowska, Magdalena; Pilecka, Iwona; Torun, Anna; Pyrzynska, Beata; Miaczynska, Marta

    2009-01-01

    Multifunctional adaptor protein APPL1 [adaptor protein containing PH (pleckstrin homology) domain, PTB (phosphotyrosine binding) domain and leucine zipper motif] belongs to a growing group of endocytic proteins which actively participate in various stages of signalling pathways. Owing to its interaction with the small GTPase Rab5, APPL1 localizes predominantly to a subpopulation of early endosomes but is also capable of nucleocytoplasmic shuttling. Among its various binding partners, APPL1 was reported to associate with the nuclear co-repressor complex NuRD (nucleosome remodelling and deacetylase), containing both nucleosome remodelling and HDAC (histone deacetylase) activities, but the biochemical basis or functional relevance of this interaction remained unknown. Here we characterized the binding between APPL1 and NuRD in more detail, identifying HDAC2 as the key NuRD subunit responsible for this association. APPL1 interacts with the NuRD complex containing enzymatically active HDAC2 but not HDAC1 as the only deacetylase. However, the cellular levels of HDAC1 can regulate the extent of APPL1–NuRD interactions, which in turn modulates the nucleocytoplasmic distribution of APPL1. Increased binding of APPL1 to NuRD upon silencing of HDAC1 promotes the nuclear localization of APPL1, whereas HDAC1 overexpression exerts an opposite effect. Moreover, we also uncovered a NuRD-independent interaction of APPL1 with HDAC1. APPL1 overexpression affects the composition of the HDAC1-containing NuRD complex and the expression of HDAC1 target p21WAF1/CIP1. Cumulatively, these data reveal a surprising complexity of APPL1 interactions with HDACs, with functional consequences for the modulation of gene expression. In a broader sense, these results contribute to an emerging theme of endocytic proteins playing alternative roles in the cell nucleus. PMID:19686092

  14. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex. PMID:21620353

  15. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    PubMed Central

    Korpos, Éva; Deák, Ferenc; Kiss, Ibolya

    2015-01-01

    The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2) in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth. PMID:26199591

  16. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    PubMed

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein.

  17. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    PubMed

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein. PMID:27231351

  18. The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Lamb, James L.; Hutson, Tom H.; Drury, Cassa; Rau, Kristofer K.; Bunge, Mary Barlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin E.; Rouchka, Eric C.; Moon, Lawrence D.F.

    2016-01-01

    Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA+/RAB5+ signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may

  19. Halogenated DOPA in a Marine Adhesive Protein

    PubMed Central

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R.; Waite, J. Herbert

    2009-01-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and 1H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered. PMID:20126508

  20. Halogenated DOPA in a Marine Adhesive Protein.

    PubMed

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R; Waite, J Herbert

    2009-02-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and (1)H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered.

  1. Characterization of a protein phosphatase 2A holoenzyme that dephosphorylates the clathrin adaptors AP-1 and AP-2.

    PubMed

    Ricotta, Doris; Hansen, Jens; Preiss, Carolin; Teichert, Dominic; Höning, Stefan

    2008-02-29

    The AP-2 complex is a key factor in the formation of endocytic clathrin-coated vesicles (CCVs). AP-2 sorts and packages cargo membrane proteins into CCVs, binds the coat protein clathrin, and recruits numerous other factors to the site of vesicle formation. Structural information on the AP-2 complex and biochemical work have allowed understanding its function on the molecular level, and recent studies showed that cycles of phosphorylation are key steps in the regulation of AP-2 function. The complex is phosphorylated on both large subunits (alpha- and beta2-adaptins) as well as at a single threonine residue (Thr-156) of the medium subunit mu2. Phosphorylation of mu2 is necessary for efficient cargo recruitment, whereas the functional context of the large subunit phosphorylation is unknown. Here, we show that the subunit phosphorylation of AP-2 exhibits striking differences, with calculated half-lives of <1 min for mu2, approximately 25 min for beta2, and approximately 70 min for alpha. We were also able to purify a phosphatase that dephosphorylates the mu2 subunit. The enzyme is a member of the protein phosphatase 2A family and composed of a catalytic Cbeta subunit, a scaffolding Abeta subunit, and a regulatory Balpha subunit. RNA interference knock down of the latter subunit in HeLa cells resulted in increased levels of phosphorylated adaptors and altered endocytosis, showing that a specific PP2A holoenzyme is an important regulatory enzyme in CCV-mediated transport.

  2. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration

    PubMed Central

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  3. Role of Adaptor TrfA and ClpPC in Controlling Levels of SsrA-Tagged Proteins and Antitoxins in Staphylococcus aureus

    PubMed Central

    Donegan, Niles P.; Marvin, Jonathan S.

    2014-01-01

    Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus. PMID:25225270

  4. Adaptor Protein Complex 2–Mediated Endocytosis Is Crucial for Male Reproductive Organ Development in Arabidopsis[W

    PubMed Central

    Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jiří; Juergens, Gerd; Hwang, Inhwan

    2013-01-01

    Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs. PMID:23975898

  5. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL.

    PubMed

    Zhu, Minghua; Liu, Yan; Koonpaew, Surapong; Granillo, Olivia; Zhang, Weiguo

    2004-10-18

    Linker for activation of B cells (LAB, also called NTAL; a product of wbscr5 gene) is a newly identified transmembrane adaptor protein that is expressed in B cells, NK cells, and mast cells. Upon BCR activation, LAB is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT-deficient mice. To study the in vivo function of LAB, LAB-deficient mice were generated. Although disruption of the Lab gene did not affect lymphocyte development, it caused mast cells to be hyperresponsive to stimulation via the FcepsilonRI, evidenced by enhanced Erk activation, calcium mobilization, degranulation, and cytokine production. These data suggested that LAB negatively regulates mast cell function. However, mast cells that lacked both linker for activation of T cells (LAT) and LAB proteins had a more severe block in FcepsilonRI-mediated signaling than LAT(-/-) mast cells, demonstrating that LAB also shares a redundant function with LAT to play a positive role in FcepsilonRI-mediated signaling.

  6. Transmembrane Adaptor Protein PAG/CBP Is Involved in both Positive and Negative Regulation of Mast Cell Signaling

    PubMed Central

    Draberova, Lubica; Bugajev, Viktor; Potuckova, Lucie; Halova, Ivana; Bambouskova, Monika; Polakovicova, Iva; Xavier, Ramnik J.; Seed, Brian

    2014-01-01

    The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved. PMID:25246632

  7. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex.

    PubMed

    Mattera, Rafael; Guardia, Carlos M; Sidhu, Sachdev S; Bonifacino, Juan S

    2015-12-25

    The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat. PMID:26542808

  8. Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins*

    PubMed Central

    Chen, Buxin; Siderovski, David P.; Neubig, Richard R.; Lawson, Mark A.; Trejo, JoAnn

    2014-01-01

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  9. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    PubMed

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  10. The adaptor protein LAD/TSAd mediates laminin-dependent T cell migration via association with the 67 kDa laminin binding protein

    PubMed Central

    Park, Eunkyung; Choi, Youngbong; Ahn, Eunseon; Park, Inyoung

    2009-01-01

    The adaptor protein, LAD/TSAd, plays essential roles in T cell activation. To further understand the functions of this protein, we performed yeast two-hybrid screening using TSAd as bait and identified 67 kDa laminin binding protein (LBP) as the interacting partner. Subsequently, TSAd-LBP interaction was confirmed in D1.1 T cell line. Upon costimulation by T cell receptor (TCR) plus laminin crosslinking or TCR plus integrin α6 crosslinking, LBP was coimmunoprecipitated with TSAd. Moreover, TCR plus laminin costimulation-dependent T cell migration was enhanced in D1.1 T cells overexpressing TSAd but was disrupted in D1.1 cells overexpressing dominant negative form of TSAd or TSAd shRNA. These data show that, upon TCR plus integrin costimulation, TSAd associates with LBP and mediates T lymphocyte migration. PMID:19561400

  11. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  12. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  13. Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins

    PubMed Central

    Jay, Kyle A.; Smith, Dana L.

    2016-01-01

    Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress. PMID:27161319

  14. The Adaptor Protein-1 μ1B Subunit Expands the Repertoire of Basolateral Sorting Signal Recognition in Epithelial Cells

    PubMed Central

    Guo, Xiaoli; Mattera, Rafael; Ren, Xuefeng; Chen, Yu; Retamal, Claudio; González, Alfonso; Bonifacino, Juan S.

    2014-01-01

    SUMMARY An outstanding question in protein sorting is why polarized epithelial cells express two isoforms of the μ1 subunit of the AP-1 clathrin adaptor complex: the ubiquitous μ1A and the epithelial-specific μ1B. Previous studies led to the notion that μ1A and μ1B mediate basolateral sorting predominantly from the trans-Golgi network (TGN) and recycling endosomes, respectively. Using improved analytical tools, however, we find that μ1A and μ1B largely colocalize with each other. They also colocalize to similar extents with TGN and recycling endosome markers, as well as with basolateral cargoes transiting biosynthetic and endocytic-recycling routes. Instead, the two isoforms differ in their signal-recognition specificity. In particular, μ1B preferentially binds a subset of signals from cargoes that are sorted basolaterally in a μ1B-dependent manner. We conclude that expression of distinct μ1 isoforms in epithelial cells expands the repertoire of signals recognized by AP-1 for sorting of a broader range of cargoes to the basolateral surface. PMID:24229647

  15. Novel signaling collaboration between TGF-β and adaptor protein Crk facilitates EMT in human lung cancer

    PubMed Central

    Elmansuri, Aiman Z.; Tanino, Mishie A.; Mahabir, Roshan; Wang, Lei; Kimura, Taichi; Nishihara, Hiroshi; Kinoshita, Ichiro; Dosaka-Akita, Hirotoshi; Tsuda, Masumi; Tanaka, Shinya

    2016-01-01

    The signaling adaptor protein Crk has been shown to play an important role in various human cancers. However, its regulatory machinery is not clear. Here, we demonstrated that Crk induced EMT in A549 human lung adenocarcinoma cells through differential regulation of Rac1/Snail and RhoA/Slug, leading to decreased expression of E-cadherin and increased N-cadherin, fibronectin, and MMP2 expression. Cancer cells with mesenchymal features produced TGF-β and also increased the levels of TGF-β receptor. TGF-β increased the endogenous levels of Crk and also augmented Crk-dependent expression of Snail and Slug, and conversely TGF-β receptor inhibitor suppressed the levels of Snail and Slug. Overexpression of Crk was observed at the invasive front of human lung cancer tissues and was significantly associated with poor prognosis. Thus, TGF-β and Crk collaborate to form a positive feedback loop to facilitate EMT, which may lead to the malignancy of human cancers possibly being affected by their microenvironment. PMID:27027347

  16. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  17. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  18. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?

    PubMed

    Murphy-Ullrich, J E

    2001-04-01

    The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as

  19. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation.

    PubMed

    Tsuchiya, Yoshihiro; Asano, Tomoichiro; Nakayama, Keiko; Kato, Tomohisa; Karin, Michael; Kamata, Hideaki

    2010-08-27

    Proinflammatory cytokines activate NF-kappaB using the IkappaB kinase (IKK) complex that phosphorylates inhibitory proteins (IkappaBs) at N-terminal sites resulting in their ubiquitination and degradation in the cytoplasm. Although ultraviolet (UV) irradiation does not lead to IKK activity, it activates NF-kappaB by an unknown mechanism through IkappaBalpha degradation without N-terminal phosphorylation. Here, we describe an adaptor function of nuclear IKKbeta in UV-induced IkappaBalpha degradation. UV irradiation induces the nuclear translocation of IkappaBalpha and association with IKKbeta, which constitutively interacts with beta-TrCP through heterogeneous ribonucleoprotein-U (hnRNP-U) leading to IkappaBalpha ubiquitination and degradation. Furthermore, casein kinase 2 (CK2) and p38 associate with IKKbeta and promote IkappaBalpha degradation by phosphorylation at C-terminal sites. Thus, nuclear IKKbeta acts as an adaptor protein for IkappaBalpha degradation in UV-induced NF-kappaB activation. NF-kappaB activated by the nuclear IKKbeta adaptor protein suppresses anti-apoptotic gene expression and promotes UV-induced cell death.

  20. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ

    PubMed Central

    Durand, Nisha; Bastea, Ligia I.; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-01-01

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process. PMID:27775029

  1. Characterization of canine platelet adhesion to extracellular matrix proteins.

    PubMed

    Pelagalli, Alessandra; Pero, Maria Elena; Mastellone, Vincenzo; Cestaro, Anna; Signoriello, Simona; Lombardi, Pietro; Avallone, Luigi

    2011-07-01

    Canine platelets have been extensively studied but little is known about specific aspects such as adhesion. Platelet adhesion is a critical step during haemostasis and thrombosis as well as during inflammatory and immunopathogenic responses. The aim of this study was to evaluate the adhesive properties of canine platelets using fibrinogen and collagen as substrates immobilized on plates. Adhesion was monitored for 120 min and the effect of adenosine 5'-diphosphate (ADP) was assayed. The results showed that canine platelets displayed good adhesion activity that was significantly time-dependent. Moreover, ADP was able to enhance platelet adhesion in a dose-dependent manner. The findings aid knowledge of the adhesion process and suggest a specific role of surface platelet receptors in mediating the interaction with extracellular matrix proteins.

  2. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme.

    PubMed

    Bonnemaison, Mathilde L; Bäck, Nils; Duffy, Megan E; Ralle, Martina; Mains, Richard E; Eipper, Betty A

    2015-08-28

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised.

  3. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    PubMed Central

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  4. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  5. Soy protein isolate molecular level contributions to bulk adhesive properties

    NASA Astrophysics Data System (ADS)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  6. Association of Genetic Variation in Adaptor Protein APPL1/APPL2 Loci with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Barbieri, Michelangela; Esposito, Antonietta; Angellotti, Edith; Rizzo, Maria Rosaria; Marfella, Raffaele; Paolisso, Giuseppe

    2013-01-01

    The importance of genetics and epigenetic changes in the pathogenesis of non alcoholic fatty liver disease (NAFLD) has been increasingly recognized. Adiponectin has a central role in regulating glucose and lipid metabolism and controlling inflammation in insulin-sensitive tissues and low adiponectin levels have been linked to NAFLD. APPL1 and APPL2 are adaptor proteins that interact with the intracellular region of adiponectin receptors and mediate adiponectin signaling and its effects on metabolism. The aim of our study was the evaluation of a potential association between variants at APPL1 and APPL2 loci and NAFLD occurrence. The impact on liver damage and hepatic steatosis severity has been also evaluated. To this aim allele frequency and genotype distribution of APPL1- rs3806622 and -rs4640525 and APPL2-rs 11112412 variants were evaluated in 223 subjects with clinical diagnosis of NAFLD and compared with 231 healthy subjects. The impact of APPL1 and APPL2 SNPs on liver damage and hepatic steatosis severity has been also evaluated. The minor-allele combination APPL1-C/APPL2-A was associated with an increased risk of NAFLD (OR = 2.50 95% CI 1.45–4.32; p<0.001) even after adjustment for age, sex, body mass index, insulin resistance (HOMA-IR), triglycerides and adiponectin levels. This allele combination carrier had higher plasma alanine aminotransferase levels (Diff = 15.08 [7.60–22.57] p = 0.001) and an increased frequency of severe steatosis compared to the reference allele combination (OR = 3.88; 95% CI 1.582–9.531; p<0.001). In conclusion, C-APPL1/A-APPL2 allele combination is associated with NAFLD occurrence, with a more severe hepatic steatosis grade and with a reduced adiponectin cytoprotective effect on liver. PMID:23977033

  7. Both TRIF and IPS-1 adaptor proteins contribute to the cerebral innate immune response against herpes simplex virus 1 infection.

    PubMed

    Menasria, Rafik; Boivin, Nicolas; Lebel, Manon; Piret, Jocelyne; Gosselin, Jean; Boivin, Guy

    2013-07-01

    Toll-like receptors (TLRs) and RNA helicases (RLHs) are important cell sensors involved in the immunological control of viral infections through production of type I interferon (IFN). The impact of a deficiency in the TRIF and IPS-1 adaptor proteins, respectively, implicated in TLR3 and RLH signaling pathways, was investigated during herpes simplex virus 1 (HSV-1) encephalitis. TRIF(-/-), IPS-1(-/-), and C57BL/6 wild-type (WT) mice were infected intranasally with 7.5 × 10(5) PFU of HSV-1. Mice were monitored for neurological signs and survival over 20 days. Groups of mice were sacrificed on days 3, 5, 7, 9, and 11 postinfection for determination of brain viral replication by quantitative PCR (qPCR), plaque assay, and immunohistochemistry and for alpha/beta interferon (IFN-α/β) levels and phosphorylation of interferon regulatory factors 3 and 7 (IRF-3 and -7) in brain homogenates by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. TRIF(-/-) and IPS-1(-/-) mice had higher mortality rates than WT mice (P = 0.02 and P = 0.09, respectively). Viral antigens were more disseminated throughout the brain, correlating with a significant increase in brain viral load for TRIF(-/-) (days 5 to 9) and IPS-1(-/-) (days 7 and 9) mice compared to results for the WT. IFN-β production was reduced in brain homogenates of TRIF(-/-) and IPS-1(-/-) mice on day 5 compared to results for the WT, whereas IFN-α levels were increased on day 7 in TRIF(-/-) mice. Phosphorylation levels of IRF-3 and IRF-7 were decreased in TRIF(-/-) and IPS-1(-/-) mice, respectively. These data suggest that both the TRIF and IPS-1 signaling pathways are important for the control of HSV replication in the brain and survival through IFN-β production. PMID:23596298

  8. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  9. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  10. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion.

    PubMed

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-07-16

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery.

  11. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans

    PubMed Central

    Garafalo, Steven D.; Luth, Eric S.; Moss, Benjamin J.; Monteiro, Michael I.; Malkin, Emily; Juo, Peter

    2015-01-01

    Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway. PMID:25788288

  12. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma

    PubMed Central

    Agarwal, Saurabh; Ghosh, Rajib; Chen, Zaowen; Lakoma, Anna; Gunaratne, Preethi H.; Kim, Eugene S.; Shohet, Jason M.

    2016-01-01

    (NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB. PMID:26993602

  13. Impaired Fracture Healing Caused by Deficiency of the Immunoreceptor Adaptor Protein DAP12.

    PubMed

    Kamimura, Masayuki; Mori, Yu; Sugahara-Tobinai, Akiko; Takai, Toshiyuki; Itoi, Eiji

    2015-01-01

    Osteoclasts play an important role in bone metabolism, but their exact role in fracture healing remains unclear. DAP12 is an immunoadaptor protein with associated immunoreceptors on myeloid lineage cells, including osteoclasts. Its deficiency causes osteopetrosis due to suppression of osteoclast development and activation. In this report, we assessed the impact of DAP12 on the fracture healing process using C57BL/6 (B6) and DAP12-/- mice. Healing was evaluated using radiography, micro-CT, histology, immunohistochemistry and real-time RT-PCR. Radiography showed lower callus volume and lower callus radiolucency in DAP12-/- mice during later stages. Micro-CT images and quantitative structural analysis indicated that DAP12-/- mice developed calluses of dense trabecular structures and experienced deteriorated cortical shell formation on the surface. Histologically, DAP12-/- mice showed less cartilaginous resorption and woven bone formation. In addition, prominent cortical shell formation was much less in DAP12-/- mice. Immunohistochemistry revealed lower invasion of F4/80 positive monocytes and macrophages into the fracture hematoma in DAP12-/- mice. The expression levels of Col1a1, Col2a1 and Col10a1 in DAP12-/- mice increased and subsequently became higher than those in B6 mice. There was a decrease in the gene expression of Tnf during the early stages in DAP12-/- mice. Our results indicate that DAP12 deficiency impairs fracture healing, suggesting a significant role of DAP12 in the initial inflammatory response, bone remodeling and regeneration. PMID:26030755

  14. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor.

    PubMed

    Foucault, Isabelle; Le Bras, Séverine; Charvet, Céline; Moon, Chéol; Altman, Amnon; Deckert, Marcel

    2005-02-01

    Engagement of the B-cell antigen receptor (BCR) activates kinases of the Src and Syk families and signaling complexes assembled by adaptor proteins, which dictate B-cell fate and function. The adaptor 3BP2/SH3BP2, an Abl Src homology domain 3 (SH3)-binding and Syk-kinases interacting protein, exhibits positive regulatory roles in T, natural killer (NK), and basophilic cells. However, its involvement in BCR signaling is completely unknown. Here we show that 3BP2 is tyrosine phosphorylated following BCR aggregation on B lymphoma cells, and that 3BP2 is a substrate for Syk and Fyn, but not Btk. To further explore the function of 3BP2 in B cells, we screened a yeast 2-hybrid B-lymphocyte library and found 3BP2 as a binding partner of Vav proteins. The interaction between 3BP2 and Vav proteins involved both constitutive and inducible mechanisms. 3BP2 also interacted with other components of the BCR signaling pathway, including Syk and phospholipase C gamma (PLC-gamma). Furthermore, overexpression and RNAi blocking experiments showed that 3BP2 regulated BCR-mediated activation of nuclear factor of activated T cells (NFATs). Finally, evidence was provided that 3BP2 functionally cooperates with Vav proteins and Rho GTPases to activate NFATs. Our results show that 3BP2 may regulate BCR-mediated gene activation through Vav proteins.

  15. Spatial distribution of proteins in the quagga mussel adhesive apparatus.

    PubMed

    Rees, David J; Hanifi, Arash; Manion, Joseph; Gantayet, Arpita; Sone, Eli D

    2016-01-01

    The invasive freshwater mollusc Dreissena bugensis (quagga mussel) sticks to underwater surfaces via a proteinacious 'anchor' (byssus), consisting of a series of threads linked to adhesive plaques. This adhesion results in the biofouling of crucial underwater industry infrastructure, yet little is known about the proteins responsible for the adhesion. Here the identification of byssal proteins extracted from freshly secreted byssal material is described. Several new byssal proteins were observed by gel electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to characterize proteins in different regions of the byssus, particularly those localized to the adhesive interface. Byssal plaques and threads contain in common a range of low molecular weight proteins, while several proteins with higher mass were observed only in the plaque. At the adhesive interface, a plaque-specific ~8.1 kDa protein had a relative increase in signal intensity compared to the bulk of the plaque, suggesting it may play a direct role in adhesion.

  16. Impaired Fracture Healing Caused by Deficiency of the Immunoreceptor Adaptor Protein DAP12

    PubMed Central

    Kamimura, Masayuki; Mori, Yu; Sugahara-Tobinai, Akiko; Takai, Toshiyuki; Itoi, Eiji

    2015-01-01

    Osteoclasts play an important role in bone metabolism, but their exact role in fracture healing remains unclear. DAP12 is an immunoadaptor protein with associated immunoreceptors on myeloid lineage cells, including osteoclasts. Its deficiency causes osteopetrosis due to suppression of osteoclast development and activation. In this report, we assessed the impact of DAP12 on the fracture healing process using C57BL/6 (B6) and DAP12–/– mice. Healing was evaluated using radiography, micro-CT, histology, immunohistochemistry and real-time RT-PCR. Radiography showed lower callus volume and lower callus radiolucency in DAP12–/– mice during later stages. Micro-CT images and quantitative structural analysis indicated that DAP12–/– mice developed calluses of dense trabecular structures and experienced deteriorated cortical shell formation on the surface. Histologically, DAP12–/– mice showed less cartilaginous resorption and woven bone formation. In addition, prominent cortical shell formation was much less in DAP12–/– mice. Immunohistochemistry revealed lower invasion of F4/80 positive monocytes and macrophages into the fracture hematoma in DAP12–/– mice. The expression levels of Col1a1, Col2a1 and Col10a1 in DAP12–/– mice increased and subsequently became higher than those in B6 mice. There was a decrease in the gene expression of Tnf during the early stages in DAP12–/– mice. Our results indicate that DAP12 deficiency impairs fracture healing, suggesting a significant role of DAP12 in the initial inflammatory response, bone remodeling and regeneration. PMID:26030755

  17. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    PubMed Central

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were found to have differential abilities to evict hydration layers from the surfaces—a necessary step for adsorption and adhesion. It was anticipated that Dopa would mediate dehydration given its efficacy forbio-inspired wet adhesion. Instead, hydrophobic side-chains are found to be a critical component in bringing about protein-surface intimacy. This is the first direct measurement of interfacial water dynamics during force-free adsorptive interactions at solid surfaces, and offers guidance for engineering wet adhesives and coatings. PMID:25168789

  18. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex.

    PubMed

    Boucard, Antony A; Ko, Jaewon; Südhof, Thomas C

    2012-03-16

    The G-protein-coupled receptor CIRL1/latrophilin-1 (CL1) and the type-1 membrane proteins neurexins represent distinct neuronal cell adhesion molecules that exhibit no similarities except for one common function: both proteins are receptors for α-latrotoxin, a component of black widow spider venom that induces massive neurotransmitter release at synapses. Unexpectedly, we have now identified a direct binding interaction between the extracellular domains of CL1 and neurexins that is regulated by alternative splicing of neurexins at splice site 4 (SS4). Using saturation binding assays, we showed that neurexins lacking an insert at SS4 bind to CL1 with nanomolar affinity, whereas neurexins containing an insert at SS4 are unable to bind. CL1 competed for neurexin binding with neuroligin-1, a well characterized neurexin ligand. The extracellular sequences of CL1 contain five domains (lectin, olfactomedin-like, serine/threonine-rich, hormone-binding, and G-protein-coupled receptor autoproteolysis-inducing (GAIN) domains). Of these domains, the olfactomedin-like domain mediates neurexin binding as shown by deletion mapping. Cell adhesion assays using cells expressing neurexins and CL1 revealed that their interaction produces a stable intercellular adhesion complex, indicating that their interaction can be trans-cellular. Thus, our data suggest that CL1 constitutes a novel ligand for neurexins that may be localized postsynaptically based on its well characterized interaction with intracellular SH3 and multiple ankyrin repeats adaptor proteins (SHANK) and could form a trans-synaptic complex with presynaptic neurexins.

  19. Role for the adaptor protein Grb10 in the activation of Akt.

    PubMed

    Jahn, Thomas; Seipel, Petra; Urschel, Susanne; Peschel, Christian; Duyster, Justus

    2002-02-01

    Grb10 is a member of the Grb7 family of adapter proteins lacking intrinsic enzymatic function and encodes functional domains including a pleckstrin homology (PH) domain and an SH2 domain. The role of different Grb10 splice variants in signal transduction of growth factors like insulin or insulin-like growth factor has been described as inhibitory or stimulatory depending on the presence of a functional PH and/or SH2 domain. Performing a yeast two-hybrid screen with the c-kit cytoplasmic tail fused to LexA as a bait and a mouse embryo cDNA library as prey, we found that the Grb10 SH2 domain interacted with the c-kit receptor tyrosine kinase. In the course of SCF-mediated activation of c-kit, Grb10 is recruited to the c-kit receptor in an SH2 domain- and phosphotyrosine-dependent but PH domain-independent manner. We found that Akt and Grb10 form a constitutive complex, suggesting a role for Grb10 in the translocation of Akt to the cell membrane. Indeed, coexpression studies revealed that Grb10 and c-kit activate Akt in a synergistic manner. This dose-dependent effect of Grb10 is wortmannin sensitive and was also seen at a lower level in cells in which c-kit was not expressed. Expression of a Grb10 mutant lacking the SH2 domain as well as a mutant lacking the PH domain did not influence Akt activity. Grb10-induced Akt activation was observed without increased phosphatidylinositol 3-kinase (PI3-kinase) activity, suggesting that Grb10 is a positive regulator of Akt downstream of PI3-kinase. Significantly, deficient activation of Akt by a constitutively activated c-kit mutant lacking the binding site for PI3-kinase (c-kitD814V/Y719F) could be fully compensated by overexpression of Grb10. In Ba/F3 cells, the incapacity of c-kitD814V/Y719F to induce interleukin-3 (IL-3)-independent growth could be rescued by overexpression of Grb10. In contrast, expression of the SH2 deletion mutant of Grb10 together with c-kitD814V/Y719F did not render Ba/F3 cells independent of IL-3. In

  20. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface. PMID:23580642

  1. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  2. Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

    PubMed Central

    Prabhu, Yogikala; Burgos, Patricia V.; Schindler, Christina; Farías, Ginny G.; Magadár, Javier G.; Bonifacino, Juan S.

    2012-01-01

    The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway. PMID:22553349

  3. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2

    PubMed Central

    Glenewinkel, Florian; Cohen, Michael J.; King, Cason R.; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S.; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  4. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2.

    PubMed

    Glenewinkel, Florian; Cohen, Michael J; King, Cason R; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  5. The COPII adaptor protein TMED7 is required to initiate and mediate the anterograde trafficking of Toll-like receptor 4 to the plasma membrane

    PubMed Central

    Liaunardy-Jopeace, Ardiyanto; Bryant, Clare E.; Gay, Nicholas J.

    2015-01-01

    Toll-like receptor 4 (TLR4), the receptor for the bacterial product endotoxin, is subject to multiple points of regulation at the levels of signaling, biogenesis, and trafficking. Dysregulation of TLR4 signaling can cause serious inflammatory diseases, such as sepsis. We found that the p24 family protein TMED7 (transmembrane emp24 protein transport domain containing 7) is required for the trafficking of TLR4 from the endoplasmic reticulum to the cell surface through the Golgi. TMED7 formed a stable complex with the ectodomain of TLR4, an interaction that required the coiled-coil and GOLD domains, but not the cytosolic, COP II sorting motif, of TMED7. Depletion of TMED7 reduced TLR4 signaling mediated by the adaptor protein MyD88, but not that mediated by the adaptor proteins TRAM and TRIF. Truncated forms of TMED7 lacking the COP II sorting motif or the transmembrane domain were mislocalized and resulted in constitutive activation of TLR4 signaling. Together, these results support the hypothesis that p24 proteins perform a quality control step by recognizing correctly folded anterograde cargo, such as TLR4, in early secretory compartments and facilitating the translocation of this cargo to the cell surface. PMID:25074978

  6. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  7. Novel protein-repellent dental adhesive containing 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Zhang, Ning; Melo, Mary Anne S.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilms at tooth-restoration margins can produce acids and cause secondary caries. A protein-repellent adhesive resin can potentially inhibition bacteria attachment and biofilm growth. However, there has been no report on protein-repellent dental resins. The objectives of this study were to develop a protein-repellent bonding agent incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate its resistance to protein adsorption and biofilm growth for the first time. Methods MPC was incorporated into Scotchbond Multi-Purpose (SBMP) at 0%, 3.75%, 7.5%, 11.25%, and 15% by mass. Extracted human teeth were used to measure dentin shear bond strengths. Protein adsorption onto resins was determined by a micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure biofilm metabolic activity and colony-forming unit (CFU) counts. Results Adding 7.5% MPC into primer and adhesive did not decrease the dentin bond strength, compared to control (p > 0.1). Incorporation of 7.5% of MPC achieved the lowest protein adsorption, which was 20-fold less than that of control. Incorporation of 7.5% of MPC greatly reduced bacterial adhesion, yielding biofilm total microorganism, total streptococci, and mutans streptococci CFU that were an order of magnitude less than control. Conclusions A protein-repellent dental adhesive resin was developed for the first time. Incorporation of MPC into primer and adhesive at 7.5% by mass greatly reduced the protein adsorption and bacterial adhesion, without compromising the dentin bond strength. The novel protein-repellent primer and adhesive are promising to inhibit biofilm formation and acid production, to protect the tooth-restoration margins and prevent secondary caries. PMID:25234652

  8. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  9. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  10. Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins.

    PubMed

    Schröder, Markus S; Stellmacher, Anne; Romorini, Stefano; Marini, Claudia; Montenegro-Venegas, Carolina; Altrock, Wilko D; Gundelfinger, Eckart D; Fejtova, Anna

    2013-01-01

    The proper organization of the presynaptic cytomatrix at the active zone is essential for reliable neurotransmitter release from neurons. Despite of the virtual stability of this tightly interconnected proteinaceous network it becomes increasingly clear that regulated dynamic changes of its composition play an important role in the processes of synaptic plasticity. Bassoon, a core component of the presynaptic cytomatrix, is a key player in structural organization and functional regulation of presynaptic release sites. It is one of the most highly phosphorylated synaptic proteins. Nevertheless, to date our knowledge about functions mediated by any one of the identified phosphorylation sites of Bassoon is sparse. In this study, we have identified an interaction of Bassoon with the small adaptor protein 14-3-3, which depends on phosphorylation of the 14-3-3 binding motif of Bassoon. In vitro phosphorylation assays indicate that phosphorylation of the critical Ser-2845 residue of Bassoon can be mediated by a member of the 90-kDa ribosomal S6 protein kinase family. Elimination of Ser-2845 from the 14-3-3 binding motif results in a significant decrease of Bassoon's molecular exchange rates at synapses of living rat neurons. We propose that the phosphorylation-induced 14-3-3 binding to Bassoon modulates its anchoring to the presynaptic cytomatrix. This regulation mechanism might participate in molecular and structural presynaptic remodeling during synaptic plasticity.

  11. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis.

    PubMed

    Wong, Deysi V T; Lima-Júnior, Roberto C P; Carvalho, Cibele B M; Borges, Vanessa F; Wanderley, Carlos W S; Bem, Amanda X C; Leite, Caio A V G; Teixeira, Maraiza A; Batista, Gabriela L P; Silva, Rangel L; Cunha, Thiago M; Brito, Gerly A C; Almeida, Paulo R C; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL-1β (405%), IL-18 (365%), COX-2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.

  12. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis

    PubMed Central

    Wong, Deysi V. T.; Lima-Júnior, Roberto C. P.; Carvalho, Cibele B. M.; Borges, Vanessa F.; Wanderley, Carlos W. S.; Bem, Amanda X. C.; Leite, Caio A. V. G.; Teixeira, Maraiza A.; Batista, Gabriela L. P.; Silva, Rangel L.; Cunha, Thiago M.; Brito, Gerly A. C.; Almeida, Paulo R. C.; Cunha, Fernando Q.; Ribeiro, Ronaldo A.

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis. PMID:26440613

  13. The crucial role of the MyD88 adaptor protein in the inflammatory response induced by Bothrops atrox venom.

    PubMed

    Moreira, Vanessa; Teixeira, Catarina; Borges da Silva, Henrique; D'Império Lima, Maria Regina; Dos-Santos, Maria Cristina

    2013-06-01

    Most snake accidents in North Brazil are attributed to Bothrops atrox, a snake species of the Viperidae family whose venom simultaneously induces local and systemic effects in the victims. The former are clinically more important than the latter, as they cause severe tissue lesions associated with strong inflammatory responses. Although several studies have shown that inflammatory mediators are produced in response to B. atrox venom (BaV), there is little information concerning the molecular pathways involved in innate immune system signaling. Myeloid differentiation factor 88 (MyD88) is an adaptor molecule responsible for transmitting intracellular signals from most toll-like receptors (TLRs) after they interact with pathogen-associated molecular patterns (PAMPs) or other stimuli such as endogenous damage-associated molecular patterns (DAMPs). The MyD88-dependent pathway leads to activation of transcription factors, which in turn induce synthesis of inflammatory mediators such as eicosanoids, cytokines and chemokines. The aim of this study was to investigate the involvement of MyD88 on the acute inflammatory response induced by BaV. Wild-type (WT) C57BL/6 mice and MyD88 knockout (MyD88(-/-)) mice were intraperitoneally injected with BaV. Compared to WT mice, MyD88(-/-) animals showed an impaired inflammatory response to BaV, with lower influx of polymorphonuclear and mononuclear cells to the peritoneal cavity. Furthermore, peritoneal leukocytes from BaV-injected MyD88(-/-) mice did not induce COX-2 or LTB4 protein expression and released low concentrations of PGE2. These mice also failed to produce Th1 and Th17 cytokines and CCL-2, but IL-10 levels were similar to those of BaV-injected WT mice. Our results indicate that MyD88 signaling is required for activation of the inflammatory response elicited by BaV, raising the possibility of developing new therapeutic targets to treat Bothrops sp. poisoning. PMID:23474268

  14. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  15. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients. PMID:26907692

  16. The Adaptor Proteins p66Shc and Grb2 Regulate the Activation of the GTPases ARF1 and ARF6 in Invasive Breast Cancer Cells*

    PubMed Central

    Haines, Eric; Saucier, Caroline; Claing, Audrey

    2014-01-01

    Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells. PMID:24407288

  17. The μ Subunit of Arabidopsis Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins.

    PubMed

    Hatsugai, Noriyuki; Hillmer, Rachel; Yamaoka, Shohei; Hara-Nishimura, Ikuko; Katagiri, Fumiaki

    2016-05-01

    Endocytosis has been suggested to be important in the cellular processes of plant immune responses. However, our understanding of its role during effector-triggered immunity (ETI) is still limited. We have previously shown that plant endocytosis, especially clathrin-coated vesicle formation at the plasma membrane, is mediated by the adaptor protein-2 (AP-2) complex and that loss of the μ subunit of AP-2 (AP2M) affects plant growth and floral organ development. Here, we report that AP2M is required for full-strength ETI mediated by the disease resistance (R) genes RPM1 and RPS2 in Arabidopsis. Reduced ETI was observed in an ap2m mutant plant, measured by growth of Pseudomonas syringae pv. tomato DC3000 strains carrying the corresponding effector genes avrRpm1 or avrRpt2 and by hypersensitive cell death response and defense gene expression triggered by these strains. In contrast, RPS4-mediated ETI and its associated immune responses were not affected by the ap2m mutation. While RPM1 and RPS2 are localized to the plasma membrane, RPS4 is localized to the cytoplasm and nucleus. Our results suggest that AP2M is involved in ETI mediated by plasma membrane-localized R proteins, possibly by mediating endocytosis of the immune receptor complex components from the plasma membrane.

  18. Allelic Exclusion of the T Cell Receptor β Locus Requires the Sh2 Domain–Containing Leukocyte Protein (Slp)-76 Adaptor Protein

    PubMed Central

    Aifantis, Iannis; Pivniouk, Vadim I.; Gärtner, Frank; Feinberg, Jacqueline; Swat, Wojciech; Alt, Frederick W.; von Boehmer, Harald; Geha, Raif S.

    1999-01-01

    Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4−CD8− double-negative (DN) thymocytes into CD4+CD8+ double-positive (DP) cells and for TCR-β allelic exclusion. The adaptor protein SH2 domain–containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76−/− mice are arrested at the CD25+CD44− DN stage. Here we show that SLP-76−/− DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-α/β transgene into the SLP-76−/− background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-β rearrangement in SLP-76−/− TCR-transgenic mice or in single CD25+CD44− DN cells from SLP-76−/− mice indicates an essential role of SLP-76 in TCR-β allelic exclusion. PMID:10523607

  19. High Fat Diet Enhances β-Site Cleavage of Amyloid Precursor Protein (APP) via Promoting β-Site APP Cleaving Enzyme 1/Adaptor Protein 2/Clathrin Complex Formation.

    PubMed

    Maesako, Masato; Uemura, Maiko; Tashiro, Yoshitaka; Sasaki, Kazuki; Watanabe, Kiwamu; Noda, Yasuha; Ueda, Karin; Asada-Utsugi, Megumi; Kubota, Masakazu; Okawa, Katsuya; Ihara, Masafumi; Shimohama, Shun; Uemura, Kengo; Kinoshita, Ayae

    2015-01-01

    Obesity and type 2 diabetes are risk factors of Alzheimer's disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by β-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP β (sAPPβ). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPPβ. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of β-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage. PMID:26414661

  20. GrpL, a Grb2-related Adaptor Protein, Interacts with SLP-76 to Regulate Nuclear Factor of Activated T Cell Activation

    PubMed Central

    Law, Che-Leung; Ewings, Maria K.; Chaudhary, Preet M.; Solow, Sasha A.; Yun, Theodore J.; Marshall, Aaron J.; Hood, Leroy; Clark, Edward A.

    1999-01-01

    Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain–containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL–SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells. PMID:10209041

  1. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  2. Adhesion Proteins - An Impact on Skeletal Myoblast Differentiation

    PubMed Central

    Przewoźniak, Marta; Czaplicka, Iwona; Czerwińska, Areta M.; Markowska-Zagrajek, Agnieszka; Moraczewski, Jerzy; Stremińska, Władysława; Jańczyk-Ilach, Katarzyna; Ciemerych, Maria A.; Brzoska, Edyta

    2013-01-01

    Formation of mammalian skeletal muscle myofibers, that takes place during embryogenesis, muscle growth or regeneration, requires precise regulation of myoblast adhesion and fusion. There are few evidences showing that adhesion proteins play important role in both processes. To follow the function of these molecules in myoblast differentiation we analysed integrin alpha3, integrin beta1, ADAM12, CD9, CD81, M-cadherin, and VCAM-1 during muscle regeneration. We showed that increase in the expression of these proteins accompanies myoblast fusion and myotube formation in vivo. We also showed that during myoblast fusion in vitro integrin alpha3 associates with integrin beta1 and ADAM12, and also CD9 and CD81, but not with M-cadherin or VCAM-1. Moreover, we documented that experimental modification in the expression of integrin alpha3 lead to the modification of myoblast fusion in vitro. Underexpression of integrin alpha3 decreased myoblasts' ability to fuse. This phenomenon was not related to the modifications in the expression of other adhesion proteins, i.e. integrin beta1, CD9, CD81, ADAM12, M-cadherin, or VCAM-1. Apparently, aberrant expression only of one partner of multiprotein adhesion complexes necessary for myoblast fusion, in this case integrin alpha3, prevents its proper function. Summarizing, we demonstrated the importance of analysed adhesion proteins in myoblast fusion both in vivo and in vitro. PMID:23671573

  3. Adaptor Autoregulation Promotes Coordinated Binding within Clathrin Coats*

    PubMed Central

    Hung, Chao-Wei; Aoh, Quyen L.; Joglekar, Ajit P.; Payne, Gregory S.; Duncan, Mara C.

    2012-01-01

    Membrane traffic is an essential process that allows protein and lipid exchange between the endocytic, lysosomal, and secretory compartments. Clathrin-mediated traffic between the trans-Golgi network and endosomes mediates responses to the environment through the sorting of biosynthetic and endocytic protein cargo. Traffic through this pathway is initiated by the controlled assembly of a clathrin-adaptor protein coat on the cytosolic surface of the originating organelle. In this process, clathrin is recruited by different adaptor proteins that act as a bridge between clathrin and the transmembrane cargo proteins to be transported. Interactions between adaptors and clathrin and between different types of adaptors lead to the formation of a densely packed protein network within the coat. A key unresolved issue is how the highly complex adaptor-clathrin interaction and adaptor-adaptor interaction landscape lead to the correct spatiotemporal assembly of the clathrin coat. Here we report the discovery of a new autoregulatory motif within the clathrin adaptor Gga2 that drives synergistic binding of Gga2 to clathrin and the adaptor Ent5. This autoregulation influences the temporal and/or spatial location of the Gga2-Ent5 interaction. We propose that this synergistic binding provides built-in regulation to ensure the correct assembly of clathrin coats. PMID:22457357

  4. Structural basis for the recognition of the scaffold protein Frmpd4/Preso1 by the TPR domain of the adaptor protein LGN.

    PubMed

    Takayanagi, Hiroki; Yuzawa, Satoru; Sumimoto, Hideki

    2015-02-01

    The adaptor protein LGN interacts via the N-terminal domain comprising eight tetratricopeptide-repeat (TPR) motifs with its partner proteins mInsc, NuMA, Frmpd1 and Frmpd4 in a mutually exclusive manner. Here, the crystal structure of the LGN TPR domain in complex with human Frmpd4 is described at 1.5 Å resolution. In the complex, the LGN-binding region of Frmpd4 (amino-acid residues 990-1011) adopts an extended structure that runs antiparallel to LGN along the concave surface of the superhelix formed by the TPR motifs. Comparison with the previously determined structures of the LGN-Frmpd1, LGN-mInsc and LGN-NuMA complexes reveals that these partner proteins interact with LGN TPR1-6 via a common core binding region with consensus sequence (E/Q)XEX4-5(E/D/Q)X1-2(K/R)X0-1(V/I). In contrast to Frmpd1, Frmpd4 makes additional contacts with LGN via regions N- and C-terminal to the core sequence. The N-terminal extension is replaced by a specific α-helix in mInsc, which drastically increases the direct contacts with LGN TPR7/8, consistent with the higher affinity of mInsc for LGN. A crystal structure of Frmpd4-bound LGN in an oxidized form is also reported, although oxidation does not appear to strongly affect the interaction with Frmpd4.

  5. Regulation of Embryonic Cell Adhesion by the Prion Protein

    PubMed Central

    Schrock, Yvonne; Geiss, Corinna; Luncz, Lydia; Thomanetz, Venus; Stuermer, Claudia A. O

    2009-01-01

    Prion proteins (PrPs) are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1) mediates Ca+2-independent homophilic cell adhesion and signaling; and (2) modulates Ca+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin–based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development. PMID:19278297

  6. The adaptor Grb7 links netrin-1 signaling to regulation of mRNA translation

    PubMed Central

    Tsai, Nien-Pei; Bi, Jing; Wei, Li-Na

    2007-01-01

    We previously reported a novel biological activity of Netrin-1 in translational stimulation of kappa opioid receptor (KOR). We now identify Grb7 as a new RNA-binding protein that serves as the molecular adaptor for transmitting Netrin-1 signals, through focal adhesion kinase (FAK), to the translation machinery. Grb7 binds specifically to the first stem loop of kor mRNA 5′-UTR through a new RNA-binding domain located in its amino terminus. Upon binding to its capped, target mRNA, Grb7 blocks the recruitment of eIF4E, rendering mRNA untranslatable. The RNA-binding and translation-repressive activity is reduced by FAK-mediated hyperphosphorylation on two tyrosine residues of its carboxyl terminus. This study reports an adaptor protein Grb7 that transmits the stimulating signals of Netrin-1 to the translational machinery to rapidly regulate mRNA translation. PMID:17318180

  7. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling.

    PubMed

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2015-02-01

    SLAP (Src like adaptor protein) contains adjacent Src homology 3 (SH3) and Src homology 2 (SH2) domains closely related in sequence to that of cytoplasmic Src family tyrosine kinases. Expressed most abundantly in the immune system, SLAP function has been predominantly studied in the context of lymphocyte signaling, where it functions in the Cbl dependent downregulation of antigen receptor signaling. However, accumulating evidence suggests that SLAP plays a role in the regulation of a broad range of membrane receptors including members of the receptor tyrosine kinase (RTK) family. In this review we highlight the role of SLAP in the ubiquitin dependent regulation of type III RTKs PDGFR, CSF-1R, KIT and Flt3, as well as Eph family RTKs. SLAP appears to bind activated type III and Eph RTKs via a conserved autophosphorylated juxtamembrane tyrosine motif in an SH2-dependent manner, suggesting that SLAP is important in regulating RTK signaling.

  8. Endocytic adaptors – social networking at the plasma membrane

    PubMed Central

    Reider, Amanda; Wendland, Beverly

    2011-01-01

    Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors. PMID:21536832

  9. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  10. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  11. Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca2+ signaling.

    PubMed

    Wang, Qin; Rajshankar, Dhaarmini; Branch, Donald R; Siminovitch, Katherine A; Herrera Abreu, Maria Teresa; Downey, Gregory P; McCulloch, Christopher A

    2009-07-31

    Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) alpha in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPalpha to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPalpha was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPalpha was required for the association of PTPalpha with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPalpha acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.

  12. Protein-tyrosine Phosphatase-α and Src Functionally Link Focal Adhesions to the Endoplasmic Reticulum to Mediate Interleukin-1-induced Ca2+ Signaling*

    PubMed Central

    Wang, Qin; Rajshankar, Dhaarmini; Branch, Donald R.; Siminovitch, Katherine A.; Abreu, Maria Teresa Herrera; Downey, Gregory P.; McCulloch, Christopher A.

    2009-01-01

    Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) α in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPα to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPα was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPα was required for the association of PTPα with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPα acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling. PMID:19497848

  13. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of the MAPKKK Mkh1.

    PubMed

    Kanda, Yuki; Satoh, Ryosuke; Matsumoto, Saki; Ikeda, Chisato; Inutsuka, Natsumi; Hagihara, Kanako; Matzno, Sumio; Tsujimoto, Sho; Kita, Ayako; Sugiura, Reiko

    2016-08-15

    The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signaling module composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKK) and MAPKs. The MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast (Schizosaccharomyces pombe). Our genetic screen for regulators of Pmk1 signaling identified Shk1 kinase binding protein 5 (Skb5), an SH3-domain-containing adaptor protein. Here, we show that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips through its interaction with the SH3 domain. Consistent with this, the Mkh1(3PA) mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as the Mkh1-Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Taken together, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1, and Skb5 spatially regulates this process. PMID:27451356

  14. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  15. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    SciTech Connect

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  16. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  17. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  18. LINKIN, a new transmembrane protein necessary for cell adhesion

    PubMed Central

    Kato, Mihoko; Chou, Tsui-Fen; Yu, Collin Z; DeModena, John; Sternberg, Paul W

    2014-01-01

    In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI: http://dx.doi.org/10.7554/eLife.04449.001 PMID:25437307

  19. CCM1 and the second life of proteins in adhesion complexes

    PubMed Central

    van den Berg, Maaike CW; Burgering, Boudewijn MT

    2014-01-01

    It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life. PMID:24714220

  20. The Src Homology and Collagen A (ShcA) Adaptor Protein Is Required for the Spatial Organization of the Costamere/Z-disk Network during Heart Development*

    PubMed Central

    Mlih, Mohamed; Host, Lionel; Martin, Sophie; Niederhoffer, Nathalie; Monassier, Laurent; Terrand, Jérôme; Messaddeq, Nadia; Radke, Michael; Gotthardt, Michael; Bruban, Véronique; Kober, Frank; Bernard, Monique; Canet-Soulas, Emmanuelle; Abt-Jijon, Francisco; Boucher, Philippe; Matz, Rachel L.

    2015-01-01

    Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere. PMID:25488665

  1. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions.

    PubMed

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-10-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production.

  2. The association between the SH2-containing inositol polyphosphate 5-Phosphatase 2 (SHIP2) and the adaptor protein APS has an impact on biochemical properties of both partners.

    PubMed

    Onnockx, Sheela; De Schutter, Julie; Blockmans, Marianne; Xie, Jingwei; Jacobs, Christine; Vanderwinden, Jean-Marie; Erneux, Christophe; Pirson, Isabelle

    2008-01-01

    SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.

  3. Cytoskeletal and cellular adhesion proteins in zebrafish (Danio rerio) myogenesis.

    PubMed

    Costa, M L; Escaleira, R; Manasfi, M; de Souza, L F; Mermelstein, C S

    2003-08-01

    The current myogenesis and myofibrillogenesis model has been based mostly on in vitro cell culture studies, and, to a lesser extent, on in situ studies in avian and mammalian embryos. While the more isolated artificial conditions of cells in culture permitted careful structural analysis, the actual in situ cellular structures have not been described in detail because the embryos are more difficult to section and manipulate. To overcome these difficulties, we used the optically clear and easy to handle embryos of the zebrafish Danio rerio. We monitored the expression of cytoskeletal and cell-adhesion proteins (actin, myosin, desmin, alpha-actinin, troponin, titin, vimentin and vinculin) using immunofluorescence microscopy and video-enhanced, background-subtracted, differential interference contrast of 24- to 48-h zebrafish embryos. In the mature myotome, the mononucleated myoblasts displayed periodic striations for all sarcomeric proteins tested. The changes in desmin distribution from aggregates to perinuclear and striated forms, although following the same sequence, occurred much faster than in other models. All desmin-positive cells were also positive for myofibrillar proteins and striated, in contrast to that which occurs in cell cultures. Vimentin appeared to be striated in mature cells, while it is developmentally down-regulated in vitro. The whole connective tissue septum between the somites was positive for adhesion proteins such as vinculin, instead of the isolated adhesion plaques observed in cell cultures. The differences in the myogenesis of zebrafish in situ and in cell culture in vitro suggest that some of the previously observed structures and protein distributions in cultures could be methodological artifacts.

  4. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. PMID:24698155

  5. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  6. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth.

    PubMed

    Riera, Ludovica; Lasorsa, Elena; Ambrogio, Chiara; Surrenti, Nadia; Voena, Claudia; Chiarle, Roberto

    2010-08-20

    Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.

  7. Endoproteolytic cleavage of FE65 converts the adaptor protein to a potent suppressor of the sAPPalpha pathway in primates.

    PubMed

    Hu, Qubai; Wang, Lin; Yang, Zheng; Cool, Bethany H; Zitnik, Galynn; Martin, George M

    2005-04-01

    Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, beta-amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the alpha-cleaved APP ectodomain (sAPPalpha) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPPalpha. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating alpha-secretion of APP, particularly in primates. PMID:15647266

  8. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A).

    PubMed

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai

    2010-10-01

    Kidney anion exchanger 1 (kAE1) mediates chloride (Cl⁻) and bicarbonate (HCO₃⁻) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl⁻/HCO₃⁻ exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease--distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXØ motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells. PMID:20833140

  9. The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells.

    PubMed Central

    Warner, A J; Lopez-Dee, J; Knight, E L; Feramisco, J R; Prigent, S A

    2000-01-01

    Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually expressed in fibroblasts or porcine aortic endothelial cells have not been entirely consistent with those observed in other endothelial cells expressing both receptors endogenously. It has also been difficult to demonstrate VEGF-induced phosphorylation of Flt1, which has led to speculation that KDR may be the more important receptor for the mitogenic action of VEGF on endothelial cells. In an attempt to identify physiologically important effectors which bind to KDR, we have screened a yeast two-hybrid mouse embryo library with the cytoplasmic domain of KDR. Here we describe the identification of the adaptor protein, Shc-like protein (Sck), as a binding partner for KDR. We demonstrate that this interaction requires phosphorylation of KDR, and identify the binding site for the Src-homology 2 (SH2) domain as tyrosine-1175 of KDR. We have also shown that the SH2 domain of Sck, but not that of Src-homology collagen protein (Shc), can precipitate phosphorylated KDR from VEGF-stimulated porcine aortic endothelial cells expressing KDR, and that an N-terminally truncated Sck protein can associate with KDR, in a phosphorylation-dependent fashion, when co-expressed in human embryonic kidney 293 cells. Furthermore, we demonstrate that in the two-hybrid assay, both Shc and Sck SH2 domains can associate with the related receptor Flt1. PMID:10749680

  10. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function.

    PubMed

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V; Liang, Chen; Dudzinski, Natasha R; Brzustowicz, Linda M; Firestein, Bonnie L

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  11. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function

    PubMed Central

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V.; Liang, Chen; Dudzinski, Natasha R.; Brzustowicz, Linda M.; Firestein, Bonnie L.

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  12. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease.

    PubMed

    Atkins, Kathleen; Dasgupta, Asish; Chen, Kuang-Hueih; Mewburn, Jeff; Archer, Stephen L

    2016-11-01

    Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury. PMID

  13. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  14. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    PubMed

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  15. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    PubMed

    Kazi, Julhash U; Rönnstrand, Lars

    2012-01-01

    Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  16. A novel class of antihyperlipidemic agents with low density lipoprotein receptor up-regulation via the adaptor protein autosomal recessive hypercholesterolemia.

    PubMed

    Asano, Shigehiro; Ban, Hitoshi; Tsuboya, Norie; Uno, Shinsaku; Kino, Kouichi; Ioriya, Katsuhisa; Kitano, Masafumi; Ueno, Yoshihide

    2010-04-22

    We have previously reported compound 2 as a inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT) and up-regulator of the low density lipoprotein receptor (LDL-R) expression. In this study we focused on compound 2, a unique LDL-R up-regulator, and describe the discovery of a novel class of up-regulators of LDL-R. Replacement the methylene urea linker in compound 2 with an acylsulfonamide linker kept a potent LDL-R up-regulatory activity, and subsequent optimization work gave compound 39 as a highly potent LDL-R up-regulator (39; EC(25) = 0.047 microM). Compound 39 showed no ACAT inhibitory activity even at 1 microM. The sodium salts of compound 39 reduced plasma total and LDL cholesterol levels in a dose-dependent manner in an experimental animal model of hyperlipidemia. Moreover, we revealed in this study using RNA interference that autosomal recessive hypercholesterolemia (ARH), an adaptor protein of LDL-R, is essential for compound 39 up-regulation of LDL-R expression. PMID:20356098

  17. The Interaction of the Cellular Export Adaptor Protein Aly/REF with ICP27 Contributes to the Efficiency of Herpes Simplex Virus 1 mRNA Export

    PubMed Central

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export. PMID:23637401

  18. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  19. Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.

    PubMed

    Shen, Xinchun; Mo, Xiaoqun; Moore, Robyn; Frazier, Shawnalea J; Iwamoto, Takeo; Tomich, John M; Sun, Xiuzhi Susan

    2006-03-01

    Protein polymers are being used or considered for biobased adhesives and coating materials. Most adhesives derived from macro protein molecules work through receptors or cross-links to bring about adhesion. The adhesion mechanism of protein polymers would lead to better understanding of adhesives and the discovery of new practical properties of protein polymers at both nano- and macro-scales. The objective of this research work was to study adhesion properties of protein polymers at nanoscale (a peptide adhesive with nanometer-scale units that range in size of several nanometers, defined as protein nanomaterial). Seven protein nanomaterial samples with different degrees of adhesive strength were designed and synthesized using solid phase chemistries. All protein nanomaterials contain a common hydrophobic core flanked by charged amino acid sequences. The adhesion properties of the protein nanomaterials were investigated at different pH values and curing temperatures. The protein nanomaterials self aggregate and interact with the wood surface. The protein nanomaterial KKK-FLIVIGSII-KKK identified in this study had high adhesive strength toward wood. It had the highest shear strength at pH 12, with an amino acid sequence that was very hydrophobic and uncharged. This protein nanomaterial underwent structural analyses using circular dichroism, laser-Fourier transform infrared, and laser desorption mass spectrometry. At pH 12 this peptide adopted a pH-induced beta-like conformation. Adhesive strength reflects contributions of both hydrogen bonding and van der Waals interactions. Ionic and covalent bonds do not appear to be significant factors for adhesion in this study.

  20. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-01

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV.

  1. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    PubMed

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  2. Use of additives to enhance the properties of cottonseed protein as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein is currently being used commercially as a “green” wood adhesive. Previous work in this laboratory has shown that cottonseed protein isolate, tested on maple wood veneer, produced higher adhesive strength and hot water resistance relative to soy protein. In the present study, cottonseed...

  3. Expression of epithelial adhesion proteins and integrins in chronic inflammation.

    PubMed Central

    Haapasalmi, K.; Mäkelä, M.; Oksala, O.; Heino, J.; Yamada, K. M.; Uitto, V. J.; Larjava, H.

    1995-01-01

    Epithelial cell behavior in chronic inflammation is poorly characterized. During inflammation of tooth-supporting structures (periodontal disease), increased proliferation of epithelial cells into the inflamed connective tissue stroma is commonly seen. In some areas ulceration and degeneration take place. We studied alterations in the expression of adhesion molecules and integrins during chronic periodontal inflammation. In inflamed tissue, laminin-1 and type IV collagen were still present in the basement membrane and surrounding blood vessels, but they were also found extravascularly in inflamed connective tissue stroma. Type VII collagen and laminin-5 (also known as kalinin, epiligrin, or nicein) were poorly preserved in the basement membrane zone, but both were found in unusual streak-like distributions in the subepithelial connective tissue stroma in inflamed tissue. Both fibronectin and tenascin were substantially decreased in chronically inflamed connective tissue, showing only punctate staining at the basement membrane zone. Integrins of the beta 1 family showed two distinct staining patterns in epithelial cells during chronic inflammation; focal losses of beta 1 integrins (alpha 2 beta 1 and alpha 3 beta 1) were found in most areas, while in other areas the entire pocket epithelium was found to be strongly positive for beta 1 integrins. No members of the alpha v integrin family were found in any epithelia studied. Expression of the alpha 6 beta 4 integrin was high in basal cells of healthy tissue, but weak in epithelium associated with chronic inflammation. Chronic inflammation therefore involves alterations in both adhesion proteins and integrins expressed by epithelial cells. Basement membrane components found at abnormal sites in stroma in chronic inflammation might serve as new adhesive ligands for various cell types in inflamed stroma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7541610

  4. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G.; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis. PMID:27636711

  5. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

    PubMed

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis. PMID:27636711

  6. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

    PubMed

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.

  7. Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica

    PubMed Central

    Israelachvili, Jacob N.; Chen, Yunfei; Waite, J. Herbert

    2014-01-01

    The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH. Oxidation can lead to loss of adhesive function and undesired covalent cross-linking. Mussel foot protein 5 (Mfp-5), which contains ∼30 mole % Dopa, is a superb adhesive under reducing conditions but becomes nonadhesive after pH-induced oxidation. Here we report that the bidentate complexation of borate by Dopa to form a catecholato-boronate can be exploited to retard oxidation. Although exposure of Mfp-5 to neutral pH typically oxidizes Dopa, resulting in a>95% decrease in adhesion, inclusion of borate retards oxidation at the same pH. Remarkably, this Dopa-boronate complex dissociates upon contact with mica to allow for a reversible Dopa-mediated adhesion. The borate protection strategy allows for Dopa redox stability and maintained adhesive function in an otherwise oxidizing environment. PMID:25303409

  8. Affixing plant sections without protein based adhesives for protease histochemistry.

    PubMed

    Jona, R; Griglione, R

    1999-01-01

    To submit a section of plant tissue to histochemical analysis using protease, the protein based adhesives which keep the slices attached to the slides must be replaced because they are attacked by the enzyme and the slices are washed off the slides. We devised a method to keep the slices attached to the slides during histochemical extractions and subsequent staining. Slides are frosted on two lateral zones by spreading on them a fluoride paste composed of 15 g barium sulfate, 15 g ammonium difluoride, 8 g oxalic acid, 40 ml glycerine and 12 ml deionized water using a thin paint brush. After removing the paste with tap water and drying the slides, the sections are placed on the central clear zone of the slide and covered with an ethyl-cellulose film that keeps the slices in place and allows the reagents to act through it. To do this, the slides are dipped into 0.5% ethyl cellulose (ETC) prepared in a 4:1 mixture of toluene and absolute ethanol. The ETC coating is layered three times to improve its firmness and its ability to retain the slices on the slides. To obtain perfect adhesion, the slide should be oven dried (40-50 C for 10-15 min) to remove any trace of humidity before applying each layer of ETC. Subsequently the sections can be extracted and stained without undue loss of material. PMID:10190256

  9. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    PubMed

    Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

    2015-05-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.

  10. The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons.

    PubMed

    Buttermore, Elizabeth D; Dupree, Jeffrey L; Cheng, JrGang; An, Xiuli; Tessarollo, Lino; Bhat, Manzoor A

    2011-06-01

    Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here, we report the generation and characterization of 4.1B-null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axoglial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in the study by Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after 1 year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at ∼ 1 year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons. PMID:21632923

  11. The Cytoskeletal Adaptor Protein Band 4.1B is Required for the Maintenance of Paranodal Axo-Glial Septate Junctions in Myelinated Axons

    PubMed Central

    Buttermore, Elizabeth D.; Dupree, Jeffrey L.; Cheng, JrGang; An, Xiuli; Tessarollo, Lino; Bhat, Manzoor A.

    2011-01-01

    Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here we report the generation and characterization of 4.1B null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axo-glial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after one year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at about one year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons. PMID:21632923

  12. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster

    PubMed Central

    Rodriguez-Fernandez, Imilce A.; Dell’Angelica, Esteban C.

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated

  13. Structural and functional insights into CARDs of zebrafish (Danio rerio) NOD1 and NOD2, and their interaction with adaptor protein RIP2.

    PubMed

    Maharana, Jitendra; Dehury, Budheswar; Sahoo, Jyoti Ranjan; Jena, Itishree; Bej, Aritra; Panda, Debashis; Sahoo, Bikash Ranjan; Patra, Mahesh Chandra; Pradhan, Sukanta Kumar

    2015-08-01

    Nucleotide-binding and oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern-recognition receptors (PRRs) composed of an N-terminal caspase activation and recruitment domain (CARD), a central NACHT domain and C-terminal leucine-rich repeats (LRRs). They play a vital role in innate immune signaling by activating the NF-κB pathway via recognition of peptidoglycans by LRRs, and ATP-dependent self-oligomerization of NACHT followed by downstream signaling. After oligomerization, CARD/s play a crucial role in activating downstream signaling via the adaptor molecule, RIP2. Due to the inadequacy of experimental 3D structures of CARD/s of NOD2 and RIP2, and results from differential experimental setups, the RIP2-mediated CARD-CARD interaction has remained as a contradictory statement. We employed a combinatorial approach involving protein modeling, docking, molecular dynamics simulation, and binding free energy calculation to illuminate the molecular mechanism that shows the possible involvement of either the acidic or basic patch of zebrafish NOD1/2-CARD/a and RIP2-CARD in CARD-CARD interaction. Herein, we have hypothesized 'type-I' mode of CARD-CARD interaction in NOD1 and NOD2, where NOD1/2-CARD/a involve their acidic surfaces to interact with RIP2. Asp37 and Glu51 (of NOD1) and Arg477, Arg521 and Arg529 (of RIP2) were identified to be crucial for NOD1-RIP2 interaction. However, in NOD2-RIP2, Asp32 (of NOD2) and Arg477 and Arg521 (of RIP2) were anticipated to be significant for downstream signaling. Furthermore, we found that strong electrostatic contacts and salt bridges are crucial for protein-protein interactions. Altogether, our study has provided novel insights into the RIP2-mediated CARD-CARD interaction in zebrafish NOD1 and NOD2, which will be helpful to understand the molecular basis of the NOD1/2 signaling mechanism. PMID:26079944

  14. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  15. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    PubMed

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.

  16. Protein-based underwater adhesives and the prospects for their biotechnological production.

    PubMed

    Stewart, Russell J

    2011-01-01

    Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.

  17. The Arabidopsis adaptor protein AP-3μ interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development.

    PubMed

    Kansup, Jeeraporn; Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2013-12-01

    Heterotrimeric G-proteins (G-proteins) have been implicated in ubiquitous signalling mechanisms in eukaryotes. In plants, G-proteins modulate hormonal and stress responses and regulate diverse developmental processes. However, the molecular mechanisms of their functions are largely unknown. A yeast two-hybrid screen was performed to identify interacting partners of the Arabidopsis G-protein β subunit AGB1. One of the identified AGB1-interacting proteins is the Arabidopsis adaptor protein AP-3µ. The interaction between AGB1 and AP-3µ was confirmed by an in vitro pull-down assay and bimolecular fluorescence complementation assay. Two ap-3µ T-DNA insertional mutants were found to be hyposensitive to abscisic acid (ABA) during germination and post-germination growth, whereas agb1 mutants were hypersensitive to ABA. During seed germination, agb1/ap-3µ double mutants were more sensitive to ABA than the wild type but less sensitive than agb1 mutants. However, in post-germination growth, the double mutants were as sensitive to ABA as agb1 mutants. These data suggest that AP-3µ positively regulates the ABA responses independently of AGB1 in seed germination, while AP-3µ does require AGB1 to regulate ABA responses during post-germination growth.

  18. Allosteric Coupling in the Bacterial Adhesive Protein FimH*

    PubMed Central

    Rodriguez, Victoria B.; Kidd, Brian A.; Interlandi, Gianluca; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Thomas, Wendy E.

    2013-01-01

    The protein FimH is expressed by the majority of commensal and uropathogenic strains of Escherichia coli on the tips of type 1 fimbriae and mediates adhesion via a catch bond to its ligand mannose. Crystal structures of FimH show an allosteric conformational change, but it remains unclear whether all of the observed structural differences are part of the allosteric mechanism. Here we use the protein structural analysis tool RosettaDesign combined with human insight to identify and synthesize 10 mutations in four regions that we predicted would stabilize one of the conformations of that region. The function of each variant was characterized by measuring binding to the ligand mannose, whereas the allosteric state was determined using a conformation-specific monoclonal antibody. These studies demonstrated that each region investigated was indeed part of the FimH allosteric mechanism. However, the studies strongly suggested that some regions were more tightly coupled to mannose binding and others to antibody binding. In addition, we identified many FimH variants that appear locked in the low affinity state. Knowledge of regulatory sites outside the active and effector sites as well as the ability to make FimH variants locked in the low affinity state may be crucial to the future development of novel antiadhesive and antimicrobial therapies using allosteric regulation to inhibit FimH. PMID:23821547

  19. The beta-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2.

    PubMed Central

    Lundmark, Richard; Carlsson, Sven R

    2002-01-01

    Adaptor protein (AP) complexes are essential components for the formation of coated vesicles and the recognition of cargo proteins for intracellular transport. Each AP complex exposes two appendage domains with that function to bind regulatory accessory proteins in the cytosol. Secondary structure predictions, sequence alignments and CD spectroscopy were used to relate the beta-appendages of all human AP complexes to the previously published crystal structure of AP-2. The results suggested that the beta-appendages of AP-1, AP-2 and AP-3 have similar structures, consisting of two subdomains, whereas that of AP-4 lacks the inner subdomain. Pull-down and overlay assays showed partial overlap in the binding specificities of the beta-appendages of AP-1 and AP-2, whereas the corresponding domain of AP-3 displayed a unique binding pattern. That AP-4 may have a truncated, non-functional domain was indicated by its apparent inability to bind any proteins from cytosol. Of several novel beta-appendage-binding proteins detected, one that had affinity exclusively for AP-2 was identified as sorting nexin 9 (SNX9). SNX9, which contains a phox and an Src homology 3 domain, was found in large complexes and was at least partially associated with AP-2 in the cytosol. SNX9 may function to assist AP-2 in its role at the plasma membrane. PMID:11879186

  20. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)

    SciTech Connect

    Li, Xiaofeng; Zhang, Rong; Draheim, Kyle M.; Liu, Weizhi; Calderwood, David A.; Boggon, Titus J.

    2012-09-17

    Cerebral cavernous malformations (CCMs) affect 0.1-0.5% of the population resulting in leaky vasculature and severe neurological defects. KRIT1 (Krev interaction trapped-1) mutations associate with {approx}40% of familial CCMs. KRIT1 is an effector of Ras-related protein 1 (Rap1) GTPase. Rap1 relocalizes KRIT1 from microtubules to cell membranes to impact integrin activation, potentially important for CCM pathology. We report the 1.95 {angstrom} co-crystal structure of KRIT1 FERM domain in complex with Rap1. Rap1-KRIT1 interaction encompasses an extended surface, including Rap1 Switch I and II and KRIT1 FERM F1 and F2 lobes. Rap1 binds KRIT1-F1 lobe using a GTPase-ubiquitin-like fold interaction but binds KRIT1-F2 lobe by a novel interaction. Point mutagenesis confirms the interaction. High similarity between KRIT1-F2/F3 and talin is revealed. Additionally, the mechanism for FERM domains acting as GTPase effectors is suggested. Finally, structure-based alignment of each lobe suggests classification of FERM domains as ERM-like and TMFK-like (talin-myosin-FAK-KRIT-like) and that FERM lobes resemble domain 'modules.'

  1. Aberrant Glycosylation of Plasma Proteins in Severe Preeclampsia Promotes Monocyte Adhesion

    PubMed Central

    Kazanjian, Avedis A.; Tinnemore, Deborah; Gafken, Philip R.; Ogata, Yuko; Napolitano, Peter G.; Stallings, Jonathan D.; Ippolito, Danielle L.

    2014-01-01

    Glycosylation of plasma proteins increases during pregnancy. Our objectives were to investigate an anti-inflammatory role of these proteins in normal pregnancies and determine whether aberrant protein glycosylation promotes monocyte adhesion in preeclampsia. Plasma was prospectively collected from nonpregnant controls and nulliparous patients in all 3 trimesters. Patients were divided into cohorts based on the applicable postpartum diagnosis. U937 monocytes were preconditioned with enzymatically deglycosylated plasma, and monocyte adhesion to endothelial cell monolayers was quantified by spectrophotometry. Plasma from nonpregnant controls, first trimester normotensives, and first trimester patients with mild preeclampsia inhibited monocyte–endothelial cell adhesion (P < .05), but plasma from first trimester patients with severe preeclampsia and second and third trimester normotensives did not. Deglycosylating plasma proteins significantly increased adhesion in all the cohorts. These results support a role of plasma glycoprotein interaction in monocyte–endothelial cell adhesion and could suggest a novel therapeutic target for severe preeclampsia. PMID:23757314

  2. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    PubMed

    Hannan, Fadil M; Howles, Sarah A; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M; Babinsky, Valerie N; Reed, Anita A; Thakker, Clare E; Bockenhauer, Detlef; Brown, Rosalind S; Connell, John M; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J; McKnight, John A; Morrison, Patrick J; Mughal, M Zulf; O'Halloran, Domhnall; Pearce, Simon H; Porteous, Mary E; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; Van't Hoff, William G; Wang, Timothy; Whyte, Michael P; Nesbit, M Andrew; Thakker, Rajesh V

    2015-09-15

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue. PMID:26082470

  3. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    PubMed

    Hannan, Fadil M; Howles, Sarah A; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M; Babinsky, Valerie N; Reed, Anita A; Thakker, Clare E; Bockenhauer, Detlef; Brown, Rosalind S; Connell, John M; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J; McKnight, John A; Morrison, Patrick J; Mughal, M Zulf; O'Halloran, Domhnall; Pearce, Simon H; Porteous, Mary E; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; Van't Hoff, William G; Wang, Timothy; Whyte, Michael P; Nesbit, M Andrew; Thakker, Rajesh V

    2015-09-15

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.

  4. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  5. Molecular Architecture of a Complex between an Adhesion Protein from the Malaria Parasite and Intracellular Adhesion Molecule 1*

    PubMed Central

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A.; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G.; Higgins, Matthew K.

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  6. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    NASA Astrophysics Data System (ADS)

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical

  7. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces.

    PubMed

    Xu, Li-Chong; Siedlecki, Christopher A

    2007-08-01

    Atomic force microscopy (AFM) was used to directly measure the adhesion forces between three test proteins and low density polyethylene (LDPE) surfaces treated by glow discharge plasma to yield various levels of water wettability. The adhesion of proteins to the LDPE substrates showed a step dependence on the wettability of surfaces as measured by the water contact angle (theta). For LDPE surfaces with theta> approximately 60-65 degrees , stronger adhesion forces were observed for bovine serum albumin, fibrinogen and human FXII than for the surfaces with theta<60 degrees . Smaller adhesion forces were observed for FXII than for the other two proteins on all surfaces although trends were identical. Increasing the contact time from 0 to 50s for each protein-surface combination increased the adhesion force regardless of surface wettability. Time varying adhesion data was fit to an exponential model and free energies of protein unfolding were calculated. This data, viewed in light of previously published studies, suggests a 2-step model of protein denaturation, an early stage on the order of seconds to minutes where the outer surface of the protein interacts with the substrate and a second stage involving movement of hydrophobic amino acids from the protein core to the protein/surface interface. Impact statement: The work described in this manuscript shows a stark transition between protein adherent and protein non-adherent materials in the range of water contact angles 60-65 degrees , consistent with known changes in protein adsorption and activity. Time-dependent changes in adhesion force were used to calculate unfolding energies relating to protein-surface interactions. This analysis provides justification for a 2-step model of protein denaturation on surfaces. PMID:17466368

  8. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  9. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    PubMed

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  10. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths

    NASA Astrophysics Data System (ADS)

    Thormann, Esben; MizunoPresent Address: Nihon L'Oreal, Research; Innovation Center, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa, Japan., Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M. Soledad; Arias, José Luis; Rutland, Mark W.; PaiPresent Address: CenterFunctional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973., Ranjith Krishna; Bergström, Lennart

    2012-06-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude.The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30536d

  11. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.

    PubMed

    Webster, T J; Ergun, C; Doremus, R H; Siegel, R W; Bizios, R

    2000-09-01

    Osteoblast, fibroblast, and endothelial cell adhesion on nanophase (that is, materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) was investigated using in vitro cellular models. Osteoblast adhesion was significantly (p < 0.01) greater after 4 h on nanophase alumina, titania, and HA than it was on conventional formulations of the same ceramics. In contrast, compared to conventional alumina, titania, and HA, after 4 h fibroblast adhesion was significantly (p < 0.01) less on nanophase ceramics. Examination of the underlying mechanism(s) of cell adhesion on nanophase ceramics revealed that these ceramics adsorbed significantly (p < 0.01) greater quantities of vitronectin, which, subsequently, may have contributed to the observed select enhanced adhesion of osteoblasts. Select enhanced osteoblast adhesion was independent of surface chemistry and material phase but was dependent on the surface topography (specifically on grain and pore size) of nanophase ceramics. The capability of synthesizing and processing nanomaterials with tailored (through, for example, specific grain and pore size) structures and topographies to control select subsequent cell functions provides the possibility of designing the novel proactive biomaterials (that is, materials that elicit specific, timely, and desirable responses from surrounding cells and tissues) necessary for improved implant efficacy.

  12. Phosphoprotein Associated with Glycosphingolipid-Enriched Microdomains (Pag), a Novel Ubiquitously Expressed Transmembrane Adaptor Protein, Binds the Protein Tyrosine Kinase Csk and Is Involved in Regulation of T Cell Activation

    PubMed Central

    Brdic̆ka, Tomás̆; Pavlis̆tová, Dagmar; Leo, Albrecht; Bruyns, Eddy; Kor̆ínek, Vladimír; Angelisová, Pavla; Scherer, Jeanette; Shevchenko, Andrej; Shevchenko, Anna; Hilgert, Ivan; C̆erný, Jan; Drbal, Karel; Kuramitsu, Yasuhiro; Kornacker, Birgit; Hor̆ejs̆í, Václav; Schraven, Burkhart

    2000-01-01

    According to a recently proposed hypothesis, initiation of signal transduction via immunoreceptors depends on interactions of the engaged immunoreceptor with glycosphingolipid-enriched membrane microdomains (GEMs). In this study, we describe a novel GEM-associated transmembrane adaptor protein, termed phosphoprotein associated with GEMs (PAG). PAG comprises a short extracellular domain of 16 amino acids and a 397-amino acid cytoplasmic tail containing ten tyrosine residues that are likely phosphorylated by Src family kinases. In lymphoid cell lines and in resting peripheral blood α/β T cells, PAG is expressed as a constitutively tyrosine-phosphorylated protein and binds the major negative regulator of Src kinases, the tyrosine kinase Csk. After activation of peripheral blood α/β T cells, PAG becomes rapidly dephosphorylated and dissociates from Csk. Expression of PAG in COS cells results in recruitment of endogenous Csk, altered Src kinase activity, and impaired phosphorylation of Src-specific substrates. Moreover, overexpression of PAG in Jurkat cells downregulates T cell receptor–mediated activation of the transcription factor nuclear factor of activated T cells. These findings collectively suggest that in the absence of external stimuli, the PAG–Csk complex transmits negative regulatory signals and thus may help to keep resting T cells in a quiescent state. PMID:10790433

  13. Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis

    DOEpatents

    Silverman, Heather G.; Roberto, Francisco F.

    2006-01-17

    The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  14. Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis

    DOEpatents

    Silverman, Heather G.; Roberto, Francisco F.

    2006-02-07

    The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  15. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO).

    PubMed

    Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  16. Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli

    PubMed Central

    Hwang, Dong Soo; Yoo, Hyo Jin; Jun, Jong Hyub; Moon, Won Kyu; Cha, Hyung Joon

    2004-01-01

    Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments. PMID:15184131

  17. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  18. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    PubMed

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored.

  19. Strong underwater adhesives made by self-assembling multi-protein nanofibres.

    PubMed

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M; Lu, Timothy K

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m(-2), which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  20. Strong underwater adhesives made by self-assembling multi-protein nanofibres

    NASA Astrophysics Data System (ADS)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A.; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K.

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m-2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  1. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.

    PubMed

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).

  2. Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities

    PubMed Central

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

  3. Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties.

    PubMed

    Fahs, Ahmad; Louarn, Guy

    2013-07-21

    The present work was focused on the nanomechanical and adhesion properties of the napin (2S albumin) and cruciferin (12S globulin) rapeseed (Brassica napus L.) proteins, respectively, a low and high molecular weight seed protein. Using chemically modified AFM tips, force spectroscopy experiments demonstrated notable differences in the tip-protein interaction strength with regard to the nature of the protein and pH of the aqueous environment. The results clearly underline the role of residence time and electrostatic interactions in the protein-protein adhesion force. Although the nanomechanical experiments concerned more than a single molecule, unfolding length and force characteristics of the rapeseed proteins have been statistically found to be sensitive to the structural properties of the protein. This study provides insight into the characterization of rapeseed proteins and then a better knowledge of their interaction and assembling at the nanoscale range.

  4. Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties.

    PubMed

    Fahs, Ahmad; Louarn, Guy

    2013-07-21

    The present work was focused on the nanomechanical and adhesion properties of the napin (2S albumin) and cruciferin (12S globulin) rapeseed (Brassica napus L.) proteins, respectively, a low and high molecular weight seed protein. Using chemically modified AFM tips, force spectroscopy experiments demonstrated notable differences in the tip-protein interaction strength with regard to the nature of the protein and pH of the aqueous environment. The results clearly underline the role of residence time and electrostatic interactions in the protein-protein adhesion force. Although the nanomechanical experiments concerned more than a single molecule, unfolding length and force characteristics of the rapeseed proteins have been statistically found to be sensitive to the structural properties of the protein. This study provides insight into the characterization of rapeseed proteins and then a better knowledge of their interaction and assembling at the nanoscale range. PMID:23732983

  5. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae.

    PubMed

    Gohad, Neeraj V; Aldred, Nick; Hartshorn, Christopher M; Jong Lee, Young; Cicerone, Marcus T; Orihuela, Beatriz; Clare, Anthony S; Rittschof, Dan; Mount, Andrew S

    2014-07-11

    Thoracian barnacles rely heavily upon their ability to adhere to surfaces and are environmentally and economically important as biofouling pests. Their adhesives have unique attributes that define them as targets for bio-inspired adhesive development. With the aid of multi-photon and broadband coherent anti-Stokes Raman scattering microscopies, we report that the larval adhesive of barnacle cyprids is a bi-phasic system containing lipids and phosphoproteins, working synergistically to maximize adhesion to diverse surfaces under hostile conditions. Lipids, secreted first, possibly displace water from the surface interface creating a conducive environment for introduction of phosphoproteins while simultaneously modulating the spreading of the protein phase and protecting the nascent adhesive plaque from bacterial biodegradation. The two distinct phases are contained within two different granules in the cyprid cement glands, implying far greater complexity than previously recognized. Knowledge of the lipidic contribution will hopefully inspire development of novel synthetic bioadhesives and environmentally benign antifouling coatings.

  6. Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer.

    PubMed

    Ghang, Yoo-Jin; Perez, Lizeth; Morgan, Melissa A; Si, Fang; Hamdy, Omar M; Beecher, Consuelo N; Larive, Cynthia K; Julian, Ryan R; Zhong, Wenwan; Cheng, Quan; Hooley, Richard J

    2014-12-28

    An anionic self-folding deep cavitand is capable of immobilizing unmodified proteins and enzymes at a supported lipid bilayer interface, providing a simple, soft bioreactive surface that allows enzymatic function under mild conditions. The adhesion is based on complementary charge interactions, and the hosts are capable of binding enzymes such as trypsin at the bilayer interface: the catalytic activity is retained upon adhesion, allowing selective reactions to be performed at the membrane surface. PMID:25366572

  7. Effects of ECM Protein Mimetics on Adhesion and Proliferation of Chorion Derived Mesenchymal Stem Cells

    PubMed Central

    Kim, Ji-Hyun; Jekarl, Dong Wook; Kim, Myungshin; Oh, Eun-Jee; Kim, Yonggoo; Park, In Yang; Shin, Jong Chul

    2014-01-01

    Background: We evaluated the effects of fibronectin, collagen, cadherin, and laminin based extracellular matrix (ECM) protein mimetics coated with mussel derived adhesive protein (MAP) on adhesion and proliferation of chorionic mesenchymal stem cells (cMSCs). Methods: Human placental chorionic tissues from term third-trimester pregnancies (n=3) were used. The cMSCs were cultured on rationally designed ECM protein mimetics coated with MAP on plastic surfaces with the addition of reduced fetal bovine serum (0.5%, 1% FBS). Adhesion capabilities were monitored by a real time cell analysis system (RTCA) utilizing an impedance method. Proliferation capabilities were monitored by RTCA and MTS assay. Results: Of the ECM protein mimetics tested, GRGDSP(FN) coated surfaces exhibited the highest adhesion and proliferation capabilities on RTCA at FBS concentration of 0.5% and 1%. When 0.5% FBS was added to ECM protein mimetics during the MTS assay, GRGDSP(FN), REDV(FN), and collagen mimetics, GPKGAAGEPGKP(ColI) showed higher cMSCs proliferation compared with the control. When 1% FBS was added, GRGDSP(FN) and TAIPSCPEGTVPLYS(ColIV) showed significant cMSCs proliferation capacity. Conclusions: Fibronectin mimetics, GRGDSP(FN) amino acid sequence showed the highest adhesion and proliferation capabilities. In addition, results from RTCA assessment of cell viability correlated well with the tetrazolium-based MTS assay. PMID:24516355

  8. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  9. Wheat proteins enhance stability and function of adhesion molecules in cryopreserved hepatocytes.

    PubMed

    Grondin, Mélanie; Hamel, Francine; Averill-Bates, Diana A; Sarhan, Fathey

    2009-01-01

    Cryopreserved hepatocytes with good hepatospecific functions upon thawing are important for clinical transplantation and for in vitro drug toxicity testing. However, cryopreservation reduces viability and certain hepatospecific functions, but the most pronounced change is diminished attachment efficiency of hepatocytes. Adhesion of cells to the extracellular matrix and cell-cell contacts are crucial for many aspects of cellular function. These processes are partly mediated and controlled by cellular adhesion molecules. The mechanisms responsible for reduced attachment efficiency of cryopreserved hepatocytes are not well understood. To address this question, we investigated the effect of a new cryopreservation procedure, using wheat proteins (WPs) or mixtures of recombinant forms of wheat freezing tolerance-associated proteins, on the stability of three important adhesion molecules (beta1-integrin, E-cadherin, and beta-catenin). Immunoblot analyses revealed that the levels of beta1-integrin, E-cadherin, and beta-catenin were much lower in cryopreserved rat hepatocytes, when compared to fresh cells. Protein expression of the adhesion molecules was generally lower in cells cryopreserved with DMSO, compared to WPs. Moreover, the stability of the adhesion molecules was not affected by cryopreservation to the same degree, with more pronounced decreases occurring for beta1-integrin (62-74%) > beta-catenin (51-58%) > E-cadherin (21-37%). However, when hepatocytes were cryopreserved with partially purified WPs (SulWPE, AcWPE) or with mixtures of recombinant wheat proteins, there was a clear protective effect against the loss of protein expression of beta1-integrin, E-cadherin, and beta-catenin. Protein expression was only 10-20% lower than that observed in fresh hepatocytes. These findings clearly demonstrate that WPs, and more particularly, partially purified WPs and recombinant wheat proteins, were more efficient for cryopreservation of rat hepatocytes by maintaining good

  10. Rapid functional analysis in Xenopus oocytes of Po protein adhesive interactions.

    PubMed

    Yoshida, M; Colma, D R

    2001-06-01

    We have developed a coupled Xenopus oocyte expression system for evaluating the functional effects of mutations in known or suspected adhesion molecules, which allows for a very rapid assessment of intercellular adhesion. As a model protein, we first used Protein zero (Po), an adhesion molecule that mediates self-adhesion of the Schwann cell plasma membrane to form compact myelin in the mammalian PNS. A wide variety of mutations in Po cause certain human peripheral neuropathies, such as the Charcot-Marie-Tooth disease (CMT) type 1B and Dejerine-Sottas syndrome (DSS). After wild-type Po mRNA is injected, the protein is synthesized and correctly targeted to the oocyte cell surface. When two oocytes are paired, wild-type Po redistributes and concentrates at the cell-cell apposition region, and by electron microscopy, the oocyte pairs show close cell-cell appositions and are devoid of the microvilli that are observed in uninjected oocyte pairs. These are hallmark features of highly adhesive cell:cell interfaces. Several point mutations in Po were engineered, corresponding to the molecular defects in the CMT type 1B or DSS. The proteins encoded by these mutations reached the cell surface but failed to concentrate at the oocyte interface. Po carrying a point mutation that is found in DSS is not targeted on the plasma membrane and fail to accumulate at the cell-cell contact site. PMID:11519730

  11. Intraperitoneal administration of activated protein C prevents postsurgical adhesion band formation.

    PubMed

    Dinarvand, Peyman; Hassanian, Seyed Mahdi; Weiler, Hartmut; Rezaie, Alireza R

    2015-02-19

    Postsurgical peritoneal adhesion bands are the most important causes of intestinal obstruction, pelvic pain, and female infertility. In this study, we used a mouse model of adhesion and compared the protective effect of activated protein C (APC) to that of the Food and Drug Administration-approved antiadhesion agent, sodium hyaluronate/carboxymethylcellulose (Seprafilm) by intraperitoneal administration of either APC or Seprafilm to experimental animals. Pathological adhesion bands were graded on day 7, and peritoneal fluid concentrations of tissue plasminogen activator (tPA), d-dimer, thrombin-antithrombin complex, and cytokines (IL-1β, IL-6, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1) were evaluated. Inflammation scores were also measured based on histologic data obtained from peritoneal tissues. Relative to Seprafilm, intraperitoneal administration of human APC led to significantly higher reduction of postsurgical adhesion bands. Moreover, a markedly lower inflammation score was obtained in the adhesive tissues of the APC-treated group, which correlated with significantly reduced peritoneal concentrations of proinflammatory cytokines and an elevated tPA level. Further studies using variants of human APC with or without protease-activated receptor 1 (PAR1) signaling function and mutant mice deficient for either endothelial protein C receptor (EPCR) or PAR1 revealed that the EPCR-dependent signaling activity of APC is primarily responsible for its protective activity in this model. These results suggest APC has therapeutic potential for preventing postsurgical adhesion bands. PMID:25575539

  12. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of s

  13. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  14. A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption.

    PubMed

    Kim, Dong Jin; Lee, Jong Min; Park, Jin-Goo; Chung, Bong Geun

    2011-05-01

    We developed a surface micropatterning technique to control the cell adhesion and protein adsorption. This micropatterned array system was fabricated by a photolithography technique and self-assembled monolayer (SAM) deposition. It was hypothesized that the wettability and functional terminal group would regulate cell adhesion and protein adsorption. To demonstrate this hypothesis, glass-based micropatterned arrays with various functional terminal groups, such as amine (NH(2)) group (3-aminopropyl-triethoxysilane, APT), methyl (CH(3)) group (trichlorovinylsilane, TVS), and fluorocarbon (CF(3)) group (trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, FOTS), were used. The contact angle was measured to determine the hydrophilic and hydrophobic properties of materials, demonstrating that TVS and FOTS were hydrophobic, whereas APTs were relatively hydrophilic. The cell adhesion was significantly affected by the wettability, showing that the cells were not adhered to hydrophobic surfaces, such as TVS and FOTS. Thus, the cells were selectively adhered to glass substrates within TVS- and FOTS-based micropatterned arrays. However, the cells were randomly adhered to APTs-based micropatterned arrays due to hydrophilic property of APTs. Furthermore, the protein adsorption of the SAM-based micropatterned array was analyzed, showing that the protein was more absorbed to the TVS surface. The surface functional terminal group enabled the control of protein adsorption. Therefore, this SAM-based micropatterned array system enabled the control of cell adhesion and protein adsorption and could be a potentially powerful tool for regulating the cell-cell interactions in a well-defined microenvironment.

  15. A unique feature of Toll/IL-1 receptor domain-containing adaptor protein is partially responsible for lipopolysaccharide insensitivity in zebrafish with a highly conserved function of MyD88.

    PubMed

    Liu, Yanhui; Li, Mengzhen; Fan, Shan; Lin, Yiqun; Lin, Bin; Luo, Fang; Zhang, Chenxu; Chen, Shangwu; Li, Yingqiu; Xu, Anlong

    2010-09-15

    MyD88 and Toll/IL-1R domain-containing adaptor protein (TIRAP) are required for the TLR4 response to LPS stimulation in mammals, but the functions of the two adaptors and their involvement in zebrafish insensitivity to LPS remains unknown. We present a functional analysis of zebrafish Myd88 and Tirap and suggest that Myd88 is more important than Tirap for the activation of Tlr-mediated NF-kappaB, which may be a novel mechanism of Myd88-dependent TLR signaling in teleosts. Zebrafish Tirap lacks the phosphatidylinositol 4,5-bisphosphate binding motif required for human TIRAP location and has leucine at position 233 rather than the conserved proline of human TIRAP, as well as 105 additional aa at the N terminus. Overexpression of zebrafish Tirap in HEK293T cells did not activate NF-kappaB and IFN-beta, but slightly activated NF-kappaB in carp leukocyte cells. Zebrafish Myd88 alone strongly induced the activation of NF-kappaB and IFN-beta both in HEK293T and carp leukocyte cells. The function of Myd88 was dependent on its cellular location and the proline in the Toll/IL-1R domain. Although zebrafish Tirap was distributed throughout the cell rather than localized to the cytoplasmic membrane, its impaired ability to activate downstream Tlr molecules was unlikely to be related to its location because chimera TIRAP with a human TIRAP N terminus and membrane-binding domain also did not activate NF-kappaB. However, the mutation of leucine to proline increased the ability of Tirap to activate NF-kappaB. We suggest that the zebrafish Tirap needs a longer N terminus to perform its function and could be partially responsible for the resistance to LPS in zebrafish.

  16. Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition

    PubMed Central

    Elkins, Claire M.; Qi, Qin M.; Fuller, Gerald G.

    2014-01-01

    Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS), borate buffered saline (BBS), or Sensitive Eyes Plus Saline Solution (Sensitive Eyes), either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes) exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo. PMID:25144576

  17. Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins

    NASA Astrophysics Data System (ADS)

    Kirchenbüchler, David; Born, Simone; Kirchgeßner, Norbert; Houben, Sebastian; Hoffmann, Bernd; Merkel, Rudolf

    2010-05-01

    Mechanosensing is a vital prerequisite for dynamic remodeling of focal adhesions and cytoskeletal structures upon substrate deformation. For example, tissue formation, directed cell orientation or cell differentiation are regulated by such mechanosensing processes. Focal adhesions and the actin cytoskeleton are believed to be involved in these processes, but where mechanosensing molecules are located and how elastic substrate, focal adhesions and the cytoskeleton couple with each other upon substrate deformation still remains obscure. To approach these questions we have developed a sensitive method to apply defined spatially decaying deformation fields to cells cultivated on ultrasoft elastic substrates and to accurately quantify the resulting displacements of the actin cytoskeleton, focal adhesions, as well as the substrate. Displacement fields were recorded in live cell microscopy by tracking either signals from fluorescent proteins or marker particles in the substrate. As model cell type we used myofibroblasts. These cells are characterized by highly stable adhesion and force generating structures but are still able to detect mechanical signals with high sensitivity. We found a rigid connection between substrate and focal adhesions. Furthermore, stress fibers were found to be barely extendable almost over their whole lengths. Plastic deformation took place only at the very ends of actin filaments close to focal adhesions. As a result, this area became elongated without extension of existing actin filaments by polymerization. Both ends of the stress fibers were mechanically coupled with detectable plastic deformations on either site. Interestingly, traction force dependent substrate deformation fields remained mostly unaffected even when stress fiber elongations were released. These data argue for a location of mechanosensing proteins at the ends of actin stress fibers and describe, except for these domains, the whole system to be relatively rigid for tensile

  18. Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain

    PubMed Central

    1996-01-01

    The myelin Po protein is believed to hold myelin together via interactions of both its extracellular and cytoplasmic domains. We have already shown that the extracellular domains of Po can interact in a homophilic manner (Filbin, M.T., F.S. Walsh, B.D. Trapp, J.A. Pizzey, and G.I. Tennekoon. 1990. Nature (Lond.). 344:871-872). In addition, we have shown that for this homophilic adhesion to take place, the cytoplasmic domain of Po must be intact and most likely interacting with the cytoskeleton; Po proteins truncated in their cytoplasmic domains are not adhesive (Wong, M.H., and M.T. Filbin, 1994. J. Cell Biol. 126:1089-1097). To determine if the presence of these truncated forms of Po could have an effect on the functioning of the full-length Po, we coexpressed both molecules in CHO cells. The adhesiveness of CHO cells expressing both full-length Po and truncated Po was then compared to cells expressing only full-length Po. In these coexpressors, both the full-length and the truncated Po proteins were glycosylated. They reached the surface of the cell in approximately equal amounts as shown by an ELISA and surface labeling, followed by immunoprecipitation. Furthermore, the amount of full-length Po at the cell surface was equivalent to other cell lines expressing only full-length Po that we had already shown to be adhesive. Therefore, there should be sufficient levels of full-length Po at the surface of these coexpressors to measure adhesion of Po. However, as assessed by an aggregation assay, the coexpressors were not adhesive. By 60 min they had not formed large aggregates and were indistinguishable from the control transfected cells not expressing Po. In contrast, in the same time, the cells expressing only the full-length Po had formed large aggregates. This indicates that the truncated forms of Po have a dominant-negative effect on the adhesiveness of the full-length Po. Furthermore, from cross-linking studies, full-length Po, when expressed alone but not when

  19. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3).

    PubMed

    Rouka, Evgenia; Simister, Philip C; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R C; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H; Feller, Stephan M

    2015-10-16

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3. PMID:26296892

  20. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3)*

    PubMed Central

    Rouka, Evgenia; Simister, Philip C.; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R. C.; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H.; Feller, Stephan M.

    2015-01-01

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3. PMID:26296892

  1. Nuclear magnetic resonance spectroscopy of mussel adhesive protein repeating peptide segment.

    PubMed

    Olivieri, M P; Wollman, R M; Alderfer, J L

    1997-12-01

    Mussel adhesive protein (MAP) is the adhesive agent used by the common blue sea mussel (Mytilus edulis) to attach the animal to various underwater surfaces. It is generally composed of 75 to 85 repeating decameric units with the reported primary sequence NH2-Ala(1)-Lyst(2)-Pro(3)-Ser(4)-Tyr(5)-Hyp(6)-Hyp(7)-Thr(8)-DOPA( 9)- Lys(10)-COOH. This study examines this peptide's solution-state conformation using proton nuclear magnetic resonance (NMR) spectroscopy. NMR and molecular modeling of the decamer before and after molecular dynamics calculations in water suggests a conformation that retains an overall bent helix.

  2. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion.

    PubMed

    Hennebert, Elise; Leroy, Baptiste; Wattiez, Ruddy; Ladurner, Peter

    2015-10-14

    Sea stars rely on epidermal secretions to cope with their benthic life. Their integument produces a mucus, which represents the first barrier against invaders; and their tube feet produce adhesive secretions to pry open mussels and attach strongly but temporarily to rocks. In this study, we combined high-throughput sequencing of expressed mRNA and mass-spectrometry-based identification of proteins to establish the first proteome of mucous and adhesive secretions from the sea star Asterias rubens. We show that the two secretions differ significantly, the major adhesive proteins being only present in trace amounts in the mucus secretion. Except for 41 proteins which were present in both secretions, a total of 34 and 244 proteins were identified as specific of adhesive secretions and mucus, respectively. We discuss the role of some of these proteins in the adhesion of sea stars as well as in their protection against oxygen reactive species and microorganisms. In addition, 58% of the proteins identified in adhesive secretions did not present significant similarity to other known proteins, revealing a list of potential novel sea star adhesive proteins uncharacterized so far. The panel of proteins identified in this study offers unprecedented opportunities for the development of sea star-inspired biomimetic materials.

  3. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    PubMed

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions.

  4. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae.

    PubMed

    Truckses, Dagmar M; Bloomekatz, Joshua E; Thorner, Jeremy

    2006-02-01

    In Saccharomyces cerevisiae, pheromone response requires Ste5 scaffold protein, which ensures efficient G-protein-dependent recruitment of mitogen-activated protein kinase (MAPK) cascade components Ste11 (MAPK kinase kinase), Ste7 (MAPK kinase), and Fus3 (MAPK) to the plasma membrane for activation by Ste20 protein kinase. Ste20, which phosphorylates Ste11 to initiate signaling, is activated by binding to Cdc42 GTPase (membrane anchored via its C-terminal geranylgeranylation). Less clear is how activated and membrane-localized Ste20 contacts Ste11 to trigger invasive growth signaling, which also requires Ste7 and the MAPK Kss1, but not Ste5. Ste50 protein associates constitutively via an N-terminal sterile-alpha motif domain with Ste11, and this interaction is required for optimal invasive growth and hyperosmotic stress (high-osmolarity glycerol [HOG]) signaling but has a lesser role in pheromone response. We show that a conserved C-terminal, so-called "Ras association" (RA) domain in Ste50 is also essential for invasive growth and HOG signaling in vivo. In vitro the Ste50 RA domain is not able to associate with Ras2, but it does associate with Cdc42 and binds to a different face than does Ste20. RA domain function can be replaced by the nine C-terminal, plasma membrane-targeting residues (KKSKKCAIL) of Cdc42, and membrane-targeted Ste50 also suppresses the signaling deficiency of cdc42 alleles specifically defective in invasive growth. Thus, Ste50 serves as an adaptor to tether Ste11 to the plasma membrane and can do so via association with Cdc42, thereby permitting the encounter of Ste11 with activated Ste20. PMID:16428446

  5. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.

    PubMed

    Wallace, Christopher; Jacob, Jean T; Stoltz, Albert; Bi, Jingjing; Bundy, Kirk

    2005-01-01

    In this study, we investigated the suitability of microjet impingement for use on hydrogel materials to determine the cellular adhesion strength of corneal epithelial cells grown on novel hydrogels with extracellular matrix proteins (laminin and/or fibronectin) or a peptide sequence (fibronectin adhesion promoting peptide, FAP) tethered to their surface with poly(ethylene glycol) chains. The deformation of the hydrogel surface in response to the force of the microjet was analyzed both visually and mathematically. After the results of these experiments and calculations determined that no deformation occurred and that the pressure required for indentation (1.25 x 10(6) Pa) was three factors of 10 greater than the maximum pressure of the microjet, the relative mean adhesion strength of primary rabbit corneal epithelial cells grown on the novel poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels was determined and compared with that of the same type of cells grown on control glass surfaces. Only confluent cell layers were tested. Cells grown on control glass surfaces adhered with a mean relative adhesion strength of 488 +/- 28 dynes/cm2. Under identical conditions, cells grown on laminin- and FAP-tethered hydrogel surfaces were unable to be removed, indicating an adhesion strength greater than 516 dynes/cm2. Cells grown on fibronectin- and fibronectin/laminin (1:1)-tethered surfaces showed significantly lower relative adhesion strengths (201 +/- 50 and 189 +/- 11 dynes/cm2, respectively), compared with laminin- and FAP-tethered surfaces (p = 0.001). Our results demonstrate that the microjet impingement method of cell adhesion analysis is applicable to hydrogel substrates. Additionally, analysis of our test surfaces indicates that fibronectin tethered to this hydrogel in the quantity and by the method used here does not induce stable ligand/receptor bonding to the epithelial cell membrane to the same degree as does laminin or FAP. PMID:15534866

  6. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    PubMed

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board.

  7. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function.

    PubMed

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

  8. Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins.

    PubMed

    Seong, Jihye; Tajik, Arash; Sun, Jie; Guan, Jun-Lin; Humphries, Martin J; Craig, Susan E; Shekaran, Asha; García, Andrés J; Lu, Shaoying; Lin, Michael Z; Wang, Ning; Wang, Yingxiao

    2013-11-26

    Matrix mechanics controls cell fate by modulating the bonds between integrins and extracellular matrix (ECM) proteins. However, it remains unclear how fibronectin (FN), type 1 collagen, and their receptor integrin subtypes distinctly control force transmission to regulate focal adhesion kinase (FAK) activity, a crucial molecular signal governing cell adhesion/migration. Here we showed, using a genetically encoded FAK biosensor based on fluorescence resonance energy transfer, that FN-mediated FAK activation is dependent on the mechanical tension, which may expose its otherwise hidden FN synergy site to integrin α5. In sharp contrast, the ligation between the constitutively exposed binding motif of type 1 collagen and its receptor integrin α2 was surprisingly tension-independent to induce sufficient FAK activation. Although integrin α subunit determines mechanosensitivity, the ligation between α subunit and the ECM proteins converges at the integrin β1 activation to induce FAK activation. We further discovered that the interaction of the N-terminal protein 4.1/ezrin/redixin/moesin basic patch with phosphatidylinositol 4,5-biphosphate is crucial during cell adhesion to maintain the FAK activation from the inhibitory effect of nearby protein 4.1/ezrin/redixin/moesin acidic sites. Therefore, different ECM proteins either can transmit or can shield from mechanical forces to regulate cellular functions, with the accessibility of ECM binding motifs by their specific integrin α subunits determining the biophysical mechanisms of FAK activation during mechanotransduction.

  9. Adhesion of Fusobacterium necrophorum to bovine endothelial cells is mediated by outer membrane proteins.

    PubMed

    Kumar, Amit; Gart, Elena; Nagaraja, T G; Narayanan, Sanjeev

    2013-03-23

    Fusobacterium necrophorum, a Gram-negative anaerobe, is frequently associated with suppurative and necrotic infections of animals and humans. The organism is a major bovine pathogen, and in cattle, the common fusobacterial infections are hepatic abscesses, foot rot, and necrotic laryngitis. The species comprises two subspecies: F. necrophorum subsp. necrophorum and F. necrophorum subsp. funduliforme. Bacterial adhesion to the host cell surface is a critical initial step in the pathogenesis, and outer membrane proteins (OMP) play an important role in adhesion and establishment of certain Gram-negative bacterial infections. The means by which F. necrophorum attaches to epithelial or endothelial cells has not been determined. We evaluated whether OMP of F. necrophorum, isolated from a liver abscess, mediated adhesion to bovine endothelial cells (adrenal gland capillary endothelial cell line). The extent of binding of subsp. necrophorum to the endothelial cells was higher than that of F. necrophorum subsp. funduliforme. Trypsin treatment of bacterial cells decreased their binding to endothelial cells indicating the protein nature of adhesins. Preincubation of endothelial cells with OMP extracted from F. necrophorum decreased the binding of bacterial cells. In addition, binding of each subspecies to endothelial cells was inhibited by polyclonal antibodies raised against respective OMP and the antibody-mediated inhibition was subspecies specific. The western blot analysis of OMP bound to endothelial cells with anti-OMP antibodies showed four OMP of 17, 24, 40 and 74 kDa. We conclude that OMP of F. necrophorum play a role in adhesion of bacterial cells to the endothelial cells.

  10. Mussel adhesive protein provides cohesive matrix for collagen type-1α

    PubMed Central

    Martinez Rodriguez, Nadine R.; Das, Saurabh; Kaufman, Yair; Wei, Wei; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant loadbearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m2) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, π-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen. PMID:25770997

  11. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    NASA Astrophysics Data System (ADS)

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  12. Antioxidant efficacy and adhesion rescue by a recombinant mussel foot protein-6.

    PubMed

    Nicklisch, Sascha C T; Das, Saurabh; Martinez Rodriguez, Nadine R; Waite, J Herbert; Israelachvili, Jacob N

    2013-01-01

    Mytilus foot protein type 6 (mfp-6) is crucial for maintaining the reducing conditions needed for optimal wet adhesion in marine mussels. In this report, we describe the expression and production of a recombinant Mytilus californianus foot protein type 6 variant 1 (rmfp-6.1) fused with a hexahistidine affinity tag in Escherichia coli and its purification by affinity chromatography. Recombinant mfp-6 showed high purification yields of 5-6 mg L(-1) cell culture and excellent solubility in low pH buffers that retard oxidation of its many thiol groups. Purified rmfp-6.1 protein showed high 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity when compared with vitamin C. Using the highly sensitive surface forces apparatus (SFA) technique to measure interfacial surface forces in the nano-Newton range, we show that rmfp-6.1 is also able to rescue the oxidation-dependent adhesion loss of mussel foot protein 3 (mfp-3) at pH 3. The adhesion rescue is related to a reduction of dopaquinone back to 3,4-dihydroxyphenyl-l-alanine in mfp-3, which is the reverse reaction observed during the detrimental enzymatic browning process in fruits and vegetables. Broadly viewed, rmfp-6.1 has potential as a versatile antioxidant for applications ranging from personal products to antispoilants for perishable foods during processing and storage. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1587-1593, 2013. PMID:24106182

  13. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion.

    PubMed

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A; Dhinojwala, Ali

    2015-01-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments. PMID:25761668

  14. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    PubMed

    Hsieh, Yi-Wen; Chang, Chieh; Chuang, Chiou-Fen

    2012-01-01

    The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON) and AWC(OFF), by inhibiting a calcium-mediated signaling pathway in the future AWC(ON) cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON) fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON) cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON) identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON) neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON), in which mir-71 is expressed at a higher level than in AWC(OFF). In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON) identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  15. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo

    PubMed Central

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response. PMID:26317969

  16. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo.

    PubMed

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4(+) T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15 kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4(+) T cells. TCR-stimulated PEA-15-deficient CD4(+) T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4(+) T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4(+) CD62L(+) PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response. PMID:26317969

  17. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable.

    PubMed

    Johnson, Lisa A; Li, Ling; Sandri-Goldin, Rozanne M

    2009-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 has been shown to shuttle between the nucleus and cytoplasm and to bind viral RNA during infection. ICP27 was found to interact with the cellular RNA export adaptor protein Aly/REF, which is part of the TREX complex, and to relocalize Aly/REF to viral replication sites. ICP27 is exported to the cytoplasm through the export receptor TAP/NXF1, and ICP27 must be able to interact with TAP/NXF1 for efficient export of HSV-1 early and late transcripts. We examined the dynamics of ICP27 movement and its localization with respect to Aly/REF and TAP/NXF1 in living cells during viral infection. Recombinant viruses with a yellow fluorescent protein (YFP) tag on the N or C terminus of ICP27 were constructed. While the N-terminally tagged ICP27 virus behaved like wild-type HSV-1, the C-terminally tagged virus was defective in viral replication and gene expression, and ICP27 was confined to the nucleus, suggesting that the C-terminal YFP tag interfered with ICP27's C-terminal interactions, including the interaction with TAP/NXF1. To assess the role of Aly/REF and TAP/NXF1 in viral RNA export, these factors were knocked down using small interfering RNA. Knockdown of Aly/REF had little effect on the export of ICP27 or poly(A)(+) RNA during infection. In contrast, a decrease in TAP/NXF1 levels severely impaired export of ICP27 and poly(A)(+) RNA. We conclude that TAP/NXF1 is essential for ICP27-mediated export of RNA during HSV-1 infection, whereas Aly/REF may be dispensable.

  18. Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity.

    PubMed

    Thomé, Carolina H; dos Santos, Guilherme A; Ferreira, Germano A; Scheucher, Priscila S; Izumi, Clarice; Leopoldino, Andreia M; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T; Chin, Alice; Hanash, Samir M; Falcão, Roberto P; Rego, Eduardo M; Greene, Lewis J; Faça, Vitor M

    2012-12-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy.

  19. Linker for Activation of T-cell Family Member2 (LAT2) a Lipid Raft Adaptor Protein for AKT Signaling, Is an Early Mediator of Alkylphospholipid Anti-leukemic Activity*

    PubMed Central

    Thomé, Carolina H.; dos Santos, Guilherme A.; Ferreira, Germano A.; Scheucher, Priscila S.; Izumi, Clarice; Leopoldino, Andreia M.; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T.; Chin, Alice; Hanash, Samir M.; Falcão, Roberto P.; Rego, Eduardo M.; Greene, Lewis J.; Faça, Vitor M.

    2012-01-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. PMID:23001822

  20. Application of tung oil to improve adhesion strength and water resistance of cottonseed meal and protein adhesives on maple veneer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed meal-based products show promise in serving as environment-friendly wood adhesives. However, their practical utilization is currently limited due to low durability and water resistant properties. In this research, we tested the improvement of adhesion strength and water resistance of cott...

  1. Endocytosis Regulates Cell Soma Translocation and the Distribution of Adhesion Proteins in Migrating Neurons

    PubMed Central

    Shieh, Jennifer C.; Schaar, Bruce T.; Srinivasan, Karpagam; Brodsky, Frances M.; McConnell, Susan K.

    2011-01-01

    Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons. PMID:21445347

  2. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts: Role of cell surface proteins

    PubMed Central

    Pagano, RE; Takeichi, M

    1977-01-01

    The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions. PMID:407233

  3. L1-CAM and N-CAM: From Adhesion Proteins to Pharmacological Targets.

    PubMed

    Colombo, Federico; Meldolesi, Jacopo

    2015-11-01

    L1 cell adhesion molecule (L1-CAM) and neural cell adhesion molecule (N-CAM), key members of the immunoglobulin-like CAM (Ig-CAM) family, were first recognized to play critical roles in surface interactions of neurons, by binding with each other and with extracellular matrix (ECM) proteins. Subsequently, adhesion was recognized to include signaling due to both activation of β-integrin, with the generation of intracellular cascades, and integration with the surface cytoskeleton. The importance of the two Ig-CAMs was revealed by their activation of the tyrosine kinase receptors of fibroblast growth factor (FGF), epidermal growth factor (EGF), and nerve growth factor (NGF). Based on these complex signaling properties, L1-CAM and N-CAM have become of great potential pharmacological interest in neurons and cancers. Treatment of neurodegenerative disorders and cognitive deficits of neurons is aimed to increase the cell Ig-CAM tone, possibly provided by synthetic/mimetic peptides. In cancer cells, where Ig-CAMs are often overexpressed, the proteins are employed for prognosis. The approaches to therapy are based on protein downregulation, antibodies, and adoptive immunotherapy. PMID:26478212

  4. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  5. The L1 family of cell adhesion molecules: a sickening number of mutations and protein functions.

    PubMed

    Hortsch, Michael; Nagaraj, Kakanahalli; Mualla, Rula

    2014-01-01

    L1-type proteins are transmembrane cell adhesion molecules with an evolutionary well-conserved protein domain structure of usually six immunoglobulin and five fibronectin type III domains. By engaging in many different protein-protein interactions they are involved in a multitude of molecular functions and are important players during the formation and maintenance of metazoan nervous systems. As a result, mutations in L1-type genes cause a great variety of phenotypes, most of which are neurological in nature. In humans, mutations in the L1CAM gene are responsible for L1 syndrome and other L1-type genes have been implicated in conditions as varied as mental retardation, autism, schizophrenia, multiple sclerosis, and other disorders. Equally, the overexpression of L1-type proteins appears to have deleterious effects in various types of human tumor cells, where they generally contribute to an increase in cell mobility and metastatic potential. PMID:25300138

  6. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  7. Cellular localization and trafficking of vascular adhesion protein-1 as revealed by an N-terminal GFP fusion protein.

    PubMed

    Weston, Chris J; Shepherd, Emma L; Adams, David H

    2013-06-01

    Recent studies of vascular adhesion protein-1 (VAP-1) have greatly advanced our understanding of the important role this protein plays in the establishment and progression of inflammatory disease. To facilitate more detailed studies on the function of VAP-1, we developed a GFP-fusion protein that enabled us to monitor the trafficking of the protein in three selected cell types: hepatic sinusoidal endothelial cells, liver myofibroblasts and an hepatic stellate cell line (LX-2). The fusion protein was detected as punctate cytoplasmic GFP staining, but was present only at low levels at the cell surface in all cell types studied. The subcellular distribution of the protein was not altered in a catalytically inactive mutant form of the protein (Tyr471Phe) or in the presence of exogenous VAP-1 substrate (methylamine) or inhibitor (semicarbazide). The GFP-VAP-1 protein was localized to the Golgi apparatus (GM-130), endoplasmic reticulum (GRP94) and early endosomes (EEA-1). Additional staining for VAP-1 revealed that the overexpressed protein was also present in vesicles that were negative for GFP fluorescent signal and did not express EEA-1. We propose that these vesicles are responsible for recycling the fusion protein and that the fluorescence of the GFP moiety is quenched at the low pH within these vesicles. This feature of the protein makes it well suited for live cell imaging studies where we wish to track protein that is being actively trafficked within the cell in preference to that which is being recycled.

  8. Vitamin E (E) supplementation reverses the age associated decline in phosphorylation of the adaptor protein LAT in CD4+ T cells of old mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell proliferation and interleukin (IL-2) production declines with age. Engagement of the T cell receptor (TCR) by antigen (Ag), known as the immune synapse (IS), in coordination with phosphorylation of key signaling proteins, leads to increased IL-2 synthesis and T cell proliferation. Defects in ...

  9. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    NASA Astrophysics Data System (ADS)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  10. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Lü, Xiaoying; Jingwu, Ma; Huang, Nan

    2008-11-01

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG ( RA/I) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ( γS,Alb) to interfacial tension between surface and IgG ( γS,IgG) ( γS,Alb/ γS,IgG). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of γS,Alb/ γS,IgG may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  11. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin

    PubMed Central

    Chamma, Ingrid; Letellier, Mathieu; Butler, Corey; Tessier, Béatrice; Lim, Kok-Hong; Gauthereau, Isabel; Choquet, Daniel; Sibarita, Jean-Baptiste; Park, Sheldon; Sainlos, Matthieu; Thoumine, Olivier

    2016-01-01

    The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1β, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures. PMID:26979420

  12. Clathrin binding by the adaptor Ent5 promotes late stages of clathrin coat maturation

    PubMed Central

    Hung, Chao-Wei; Duncan, Mara C.

    2016-01-01

    Clathrin is a ubiquitous protein that mediates membrane traffic at many locations. To function, clathrin requires clathrin adaptors that link it to transmembrane protein cargo. In addition to this cargo selection function, many adaptors also play mechanistic roles in the formation of the transport carrier. However, the full spectrum of these mechanistic roles is poorly understood. Here we report that Ent5, an endosomal clathrin adaptor in Saccharomyces cerevisiae, regulates the behavior of clathrin coats after the recruitment of clathrin. We show that loss of Ent5 disrupts clathrin-dependent traffic and prolongs the lifespan of endosomal structures that contain clathrin and other adaptors, suggesting a defect in coat maturation at a late stage. We find that the direct binding of Ent5 with clathrin is required for its role in coat behavior and cargo traffic. Surprisingly, the interaction of Ent5 with other adaptors is dispensable for coat behavior but not cargo traffic. These findings support a model in which Ent5 clathrin binding performs a mechanistic role in coat maturation, whereas Ent5 adaptor binding promotes cargo incorporation. PMID:26842894

  13. Promyelocytic Leukemia (PML) Protein Plays Important Roles in Regulating Cell Adhesion, Morphology, Proliferation and Migration

    PubMed Central

    Tang, Mei Kuen; Liang, Yong Jia; Chan, John Yeuk Hon; Wong, Sing Wan; Chen, Elve; Yao, Yao; Gan, Jingyi; Xiao, Lihai; Leung, Hin Cheung; Kung, Hsiang Fu; Wang, Hua; Lee, Kenneth Ka Ho

    2013-01-01

    PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation. PMID:23555679

  14. Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro

    PubMed Central

    Koo, Ok Kyung; Amalaradjou, Mary Anne Roshni; Bhunia, Arun K.

    2012-01-01

    Background Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. Methodology/Principal Findings The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. Conclusions/Significance Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant

  15. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    PubMed

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.

  16. Fabrication of a Dual Substrate Display to Test Roles of Cell Adhesion Proteins in Vesicle Targeting to Plasma Membrane Domains

    PubMed Central

    Hunt, Stephen J.; Nelson, W. James

    2009-01-01

    While much is known of the molecular machinery involved in protein sorting during exocytosis, less is known about the spatial regulation of exocytosis at the plasma membrane (PM). This study outlines a novel method, Dual Substrate Display, used to formally test the hypothesis that E-cadherin-mediated adhesion directs basolateral vesicle exocytosis to specific sites at the PM. We show that vesicles containing the basolateral marker protein VSV-G preferentially target to sites of adhesion to E-cadherin rather than collagen VI or a control peptide. These results support the hypothesis that E-cadherin adhesion initiates signaling at the PM resulting in targeted sites for exocytosis. PMID:17803993

  17. In Vivo Detection of Vascular Adhesion Protein-1 in Experimental Inflammation

    PubMed Central

    Jaakkola, Kimmo; Nikula, Tuomo; Holopainen, Riikka; Vähäsilta, Tommi; Matikainen, Marja-Terttu; Laukkanen, Marja-Leena; Huupponen, Risto; Halkola, Lauri; Nieminen, Lauri; Hiltunen, Jukka; Parviainen, Sakari; Clark, Michael R.; Knuuti, Juhani; Savunen, Timo; Kääpä, Pekka; Voipio-Pulkki, Liisa Maria; Jalkanen, Sirpa

    2000-01-01

    Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial glycoprotein which mediates leukocyte-endothelial cell interactions. To study the pathogenetic significance of VAP-1 in inflammatory disorders, an in vivo immunodetection method was used to detect the regulation of luminally expressed VAP-1 in experimental skin and joint inflammation in the pig and dog. Moreover, VAP-1 was studied as a potential target to localize inflammation by radioimmunoscintigraphy. Up-regulation of VAP-1 in experimental dermatitis and arthritis could be visualized by specifically targeted immunoscintigraphy. Moreover, the translocation of VAP-1 to the functional position on the endothelial surface was only seen in inflamed tissues. These results suggest that VAP-1 is both an optimal candidate for anti-adhesive therapy and a potential target molecule for imaging inflammation. PMID:10934150

  18. Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela L.; Frey, Eric W.; Patel, Jay M.; Nolasco, Leticia; Turner, Nancy A.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa

    2013-03-01

    The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF’s crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.

  19. Force Activation of a Multimeric Adhesive Protein through Domain Conformational Change

    NASA Astrophysics Data System (ADS)

    Wijeratne Sithara S

    The force-induced activation of adhesive proteins such as von Willebrand factor (VWF), which experience high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force induced functional change is manifested in the multimeric VWF's crucial role in blood coagulation, when high fluid shear stress activates pVWF multimers to bind platelets. Here we showed that a pathological level of high shear flow exposure of pVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of multimeric VWF. We found that shear-activated pVWF multimers (spVWF) are more resistant to mechanical unfolding than non-sheared pVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of pVWF multimers.

  20. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae.

    PubMed

    Goossens, Katty; Willaert, Ronnie

    2010-11-01

    Cell-cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate interaction but is not yet fully understood, although the first model dates back to the 1950s. This review will update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technologies to measure the forces involved in single carbohydrate-lectin interactions, are discussed. The Flo1 protein has been extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, with a strong emphasis towards its structure.

  1. Expression of mutant amyloid precursor proteins decreases adhesion and delays differentiation of Hep-1 cells.

    PubMed

    Kusiak, J W; Lee, L L; Zhao, B

    2001-03-30

    The amyloid precursor protein (APP) is a type I integral membrane protein and is processed to generate several intra-cellular and secreted fragments. The physiological role of APP and its processed fragments is unclear. Several mutations have been discovered in APP, which are causative of early-onset, familial, neurological disease, including Alzheimer's disease (FAD). These mutations alter the processing of APP and lead to excess production and extra-cellular deposition of A-beta peptide (Abeta). We have examined the role of APP in a cell culture model of endothelial cell function. The endothelial cell line, Hep-1, was stably transfected with wild-type (wt) and FAD mutant forms of APP (mAPP). Secretion of sAPPalpha was reduced in cell lines over-expressing mAPP when these cells were grown on several different substrates. Levels of secreted Abeta were increased as measured by ELISA in the mutant cell lines. Cell adhesion to laminin-, fibronectin-, collagen I-, and collagen IV-coated culture flasks was reduced in all mAPP-expressing cell lines, while in lines over-expressing wt-APP, adhesiveness was slightly increased. Cell lines over-expressing mAPP differentiated more slowly into capillary network-like structures on Matrigel than those expressing wt-APP. No differences were detected among all cell lines in a migration/invasion assay. The results suggest that APP may have a role in cell adhesiveness and maturation of endothelial cells into capillary-like networks. The reduction in adhesion and differentiation in mutant cell lines may be due to reduced amounts of sAPPalpha released into the culture media or toxic effects of increased extracellular Abeta.

  2. Highly purified mussel adhesive protein to secure biosafety for in vivo applications

    PubMed Central

    2014-01-01

    Background Unique adhesive and biocompatibility properties of mussel adhesive proteins (MAPs) are known for their great potential in many tissue engineering and biomedical applications. Previously, it was successfully demonstrated that redesigned hybrid type MAP, fp-151, mass-produced in Gram-negative bacterium Escherichia coli, could be utilized as a promising adhesive biomaterial. However, purification of recombinant fp-151 has been unsatisfactory due to its adhesive nature and polarity which make separation of contaminants (especially, lipopolysaccharide, a toxic Gram-negative cell membrane component) very difficult. Results In the present work, we devised a high resolution purification approach to secure safety standards of recombinant fp-151 for the successful use in in vivo applications. Undesirable impurities were remarkably eliminated as going through sequential steps including treatment with multivalent ion and chelating agent for cell membrane washing, mechanical cell disruption, non-ionic surfactant treatment for isolated inclusion body washing, acid extraction of washed inclusion body, and ion exchange chromatography purification of acid extracted sample. Through various analyses, such as high performance liquid chromatographic purity assay, limulus amoebocyte lysate endotoxin assay, and in vitro mouse macrophage cell tests on inflammation, viability, cytotoxicity, and apoptosis, we confirmed the biological safety of bacterial-derived purified recombinant fp-151. Conclusions Through this purification design, recombinant fp-151 achieved 99.90% protein purity and 99.91% endotoxin reduction that nearly no inflammation response was observed in in vitro experiments. Thus, the highly purified recombinant MAP would be successfully used as a safety-secured in vivo bioadhesive for tissue engineering and biomedical applications. PMID:24725543

  3. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    PubMed

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion. PMID:27505711

  4. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    PubMed

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.

  5. Phosphatidylinositol 4-phosphate 5-kinase α facilitates Toll-like receptor 4-mediated microglial inflammation through regulation of the Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) location.

    PubMed

    Nguyen, Tu Thi Ngoc; Kim, Yong Min; Kim, T Doohun; Le, Oanh Thi Tu; Kim, Jae Jin; Kang, Ho Chul; Hasegawa, Hiroshi; Kanaho, Yasunori; Jou, Ilo; Lee, Sang Yoon

    2013-02-22

    Phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), generated by PI 4-phosphate 5-kinase (PIP5K), regulates many critical cellular events. PIP(2) is also known to mediate plasma membrane localization of the Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), required for the MyD88-dependent Toll-like receptor (TLR) 4 signaling pathway. Microglia are the primary immune competent cells in brain tissue, and TLR4 is important for microglial activation. However, a functional role for PIP5K and PIP(2) in TLR4-dependent microglial activation remains unclear. Here, we knocked down PIP5Kα, a PIP5K isoform, in a BV2 microglial cell line using stable expression of lentiviral shRNA constructs or siRNA transfection. PIP5Kα knockdown significantly suppressed induction of inflammatory mediators, including IL-6, IL-1β, and nitric oxide, by lipopolysaccharide. PIP5Kα knockdown also attenuated signaling events downstream of TLR4 activation, including p38 MAPK and JNK phosphorylation, NF-κB p65 nuclear translocation, and IκB-α degradation. Complementation of the PIP5Kα knockdown cells with wild type but not kinase-dead PIP5Kα effectively restored the LPS-mediated inflammatory response. We found that PIP5Kα and TIRAP colocalized at the cell surface and interacted with each other, whereas kinase-dead PIP5Kα rendered TIRAP soluble. Furthermore, in LPS-stimulated control cells, plasma membrane PIP(2) increased and subsequently declined, and TIRAP underwent bi-directional translocation between the membrane and cytosol, which temporally correlated with the changes in PIP(2). In contrast, PIP5Kα knockdown that reduced PIP(2) levels disrupted TIRAP membrane targeting by LPS. Together, our results suggest that PIP5Kα promotes TLR4-associated microglial inflammation by mediating PIP(2)-dependent recruitment of TIRAP to the plasma membrane.

  6. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF) Family of Adaptor Proteins with the Raft-and the Non-Raft Brush Border Membrane Fractions of NHE3

    PubMed Central

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E.; Donowitz, Mark; Yun, C. Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2014-01-01

    Background/Aims Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Methods Detergent resistant membranes (“lipid rafts”) were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3− mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. PMID:24297041

  7. Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus.

    PubMed

    Nicklisch, Sascha C T; Spahn, Jamie E; Zhou, Hongjun; Gruian, Cristina M; Waite, J Herbert

    2016-04-01

    Adhesive mussel foot proteins (Mfps) rely in part on DOPA (3,4-dihydroxyphenyl-l-alanine) side chains to mediate attachment to mineral surfaces underwater. Oxidation of DOPA to Dopaquinone (Q) effectively abolishes the adsorption of Mfps to these surfaces. The thiol-rich mussel foot protein-6 (Mfp-6) rescues adhesion compromised by adventitious DOPA oxidation by reducing Q back to DOPA. The redox chemistry and kinetics of foot-extracted Mfp-6 were investigated by using a nonspecific chromogenic probe to equilibrate with the redox pool. Foot-extracted Mfp-6 has a reducing capacity of ~17 e(-) per protein; half of this comes from the cysteine residues, whereas the other half comes from other constituents, probably a cohort of four or five nonadhesive, redox-active DOPA residues in Mfp-6 with an anodic peak potential ~500 mV lower than that for oxidation of cysteine to cystine. At higher pH, DOPA redox reversibility is lost possibly due to Q scavenging by Cys thiolates. Analysis by one- and two-dimensional proton nuclear magnetic resonance identified a pronounced β-sheet structure with a hydrophobic core in foot-extracted Mfp-6 protein. The structure endows redox-active side chains in Mfp-6, i.e., cysteine and DOPA, with significant reducing power over a broad pH range, and this power is measurably diminished in recombinant Mfp-6. PMID:26998552

  8. Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts.

    PubMed

    Neriya, Yutaro; Maejima, Kensaku; Nijo, Takamichi; Tomomitsu, Tatsuya; Yusa, Akira; Himeno, Misako; Netsu, Osamu; Hamamoto, Hiroshi; Oshima, Kenro; Namba, Shigetou

    2014-12-01

    Adhesins are microbial surface proteins that mediate the adherence of microbial pathogens to host cell surfaces. In Mollicutes, several adhesins have been reported in mycoplasmas and spiroplasmas. Adhesins P40 of Mycoplasma agalactiae and P89 of Spiroplasma citri contain a conserved amino acid sequence known as the Mollicutes adhesin motif (MAM), whose function in the host cell adhesion remains unclear. Here, we show that phytoplasmas, which are plant-pathogenic mollicutes transmitted by insect vectors, possess an adhesion-containing MAM that was identified in a putative membrane protein, PAM289 (P38), of the 'Candidatus Phytoplasma asteris,' OY strain. P38 homologs and their MAMs were highly conserved in related phytoplasma strains. While P38 protein was expressed in OY-infected insect and plant hosts, binding assays showed that P38 interacts with insect extract, and weakly with plant extract. Interestingly, the interaction of P38 with the insect extract depended on MAM. These results suggest that P38 is a phytoplasma adhesin that interacts with the hosts. In addition, the MAM of adhesins is important for the interaction between P38 protein and hosts.

  9. Glutamate Receptor Interacting Protein 1 Mediates Platelet Adhesion and Thrombus Formation.

    PubMed

    Modjeski, Kristina L; Ture, Sara K; Field, David J; Cameron, Scott J; Morrell, Craig N

    2016-01-01

    Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major causes of morbidity and mortality worldwide. Because platelets are necessary for hemostasis and thrombosis, platelet directed therapies must balance inhibiting platelet function with bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein that localizes and organizes interacting proteins in other cells, such as neurons. We have investigated the role of GRIP1 in platelet function to determine its role as a molecular scaffold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimulation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet activation. However, in vivo platelet rolling velocity after endothelial stimulation was significantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots confirmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3. Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are necessary for normal platelet adhesion to a stimulated endothelium. PMID:27631377

  10. Glutamate Receptor Interacting Protein 1 Mediates Platelet Adhesion and Thrombus Formation

    PubMed Central

    Modjeski, Kristina L.; Ture, Sara K.; Field, David J.; Cameron, Scott J.; Morrell, Craig N.

    2016-01-01

    Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major causes of morbidity and mortality worldwide. Because platelets are necessary for hemostasis and thrombosis, platelet directed therapies must balance inhibiting platelet function with bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein that localizes and organizes interacting proteins in other cells, such as neurons. We have investigated the role of GRIP1 in platelet function to determine its role as a molecular scaffold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimulation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet activation. However, in vivo platelet rolling velocity after endothelial stimulation was significantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots confirmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3. Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are necessary for normal platelet adhesion to a stimulated endothelium. PMID:27631377

  11. Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus.

    PubMed

    Nicklisch, Sascha C T; Spahn, Jamie E; Zhou, Hongjun; Gruian, Cristina M; Waite, J Herbert

    2016-04-01

    Adhesive mussel foot proteins (Mfps) rely in part on DOPA (3,4-dihydroxyphenyl-l-alanine) side chains to mediate attachment to mineral surfaces underwater. Oxidation of DOPA to Dopaquinone (Q) effectively abolishes the adsorption of Mfps to these surfaces. The thiol-rich mussel foot protein-6 (Mfp-6) rescues adhesion compromised by adventitious DOPA oxidation by reducing Q back to DOPA. The redox chemistry and kinetics of foot-extracted Mfp-6 were investigated by using a nonspecific chromogenic probe to equilibrate with the redox pool. Foot-extracted Mfp-6 has a reducing capacity of ~17 e(-) per protein; half of this comes from the cysteine residues, whereas the other half comes from other constituents, probably a cohort of four or five nonadhesive, redox-active DOPA residues in Mfp-6 with an anodic peak potential ~500 mV lower than that for oxidation of cysteine to cystine. At higher pH, DOPA redox reversibility is lost possibly due to Q scavenging by Cys thiolates. Analysis by one- and two-dimensional proton nuclear magnetic resonance identified a pronounced β-sheet structure with a hydrophobic core in foot-extracted Mfp-6 protein. The structure endows redox-active side chains in Mfp-6, i.e., cysteine and DOPA, with significant reducing power over a broad pH range, and this power is measurably diminished in recombinant Mfp-6.

  12. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control. PMID:26254104

  13. Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression

    PubMed Central

    Koetsier, Jennifer L.; Amargo, Evangeline V.; Todorović, Viktor; Green, Kathleen J.; Godsel, Lisa M.

    2014-01-01

    Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell–cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ~30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ~2× larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, β4 and β1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing β1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of β1 integrin and RhoA in integrating cell–cell and cell–substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis. PMID:23884246

  14. Small heat shock proteins in cellular adhesion and migration: evidence from Plasmodium genetics.

    PubMed

    Montagna, Georgina N; Matuschewski, Kai; Buscaglia, Carlos A

    2012-01-01

    Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.

  15. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  16. Host and Tissue Specificity of Trichomonas vaginalis Is Not Mediated by Its Known Adhesion Proteins

    PubMed Central

    Addis, Maria Filippa; Rappelli, Paola; Fiori, Pier Luigi

    2000-01-01

    Adhesion of Trichomonas vaginalis is believed to be dependent on four adhesion proteins, which are thought to bind to vaginal epithelial cells in a specific manner with a ligand-receptor type of interaction. However, the specific receptors on the host cell have not yet been identified. In this work, the ability of the T. vaginalis adhesins to bind to cells of different histologic derivations and from different species has been studied. HeLa, CHO, and Vero cell lines; erythrocytes from different species; and a prokaryote without a cell wall, Mycoplasma hominis, were employed in order to investigate the cell specificity of the T. vaginalis adhesins. We observed that the T. vaginalis adhesins are able to bind to the different cell types to the same extent, suggesting that the host and tissue specificity of T. vaginalis adhesion should not be due to specificity of the parasite adhesins. Our results suggest that the data published to date on the subject are probably artifactual and that the experiments reported in the literature are not appropriate for identification of protozoan adhesins. PMID:10858260

  17. Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode

    PubMed Central

    Fuentes, Daniela E.; Bae, Chilman; Butler, Peter J.

    2012-01-01

    Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein (RFP) – tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly. PMID:22247742

  18. A Multidomain Adhesion Protein Family Expressed in Plasmodium falciparum Is Essential for Transmission to the Mosquito

    PubMed Central

    Pradel, Gabriele; Hayton, Karen; Aravind, L.; Iyer, Lakshminarayan M.; Abrahamsen, Mitchell S.; Bonawitz, Annemarie; Mejia, Cesar; Templeton, Thomas J.

    2004-01-01

    The recent sequencing of several apicomplexan genomes has provided the opportunity to characterize novel antigens essential for the parasite life cycle that might lead to the development of new diagnostic and therapeutic markers. Here we have screened the Plasmodium falciparum genome sequence for genes encoding extracellular multidomain putative adhesive proteins. Three of these identified genes, named PfCCp1, PfCCp2, and PfCCp3, have multiple adhesive modules including a common Limulus coagulation factor C domain also found in two additional Plasmodium genes. Orthologues were identified in the Cryptosporidium parvum genome sequence, indicating an evolutionary conserved function. Transcript and protein expression analysis shows sexual stage–specific expression of PfCCp1, PfCCp2, and PfCCp3, and cellular localization studies revealed plasma membrane–associated expression in mature gametocytes. During gametogenesis, PfCCps are released and localize surrounding complexes of newly emerged microgametes and macrogametes. PfCCp expression markedly decreased after formation of zygotes. To begin to address PfCCp function, the PfCCp2 and PfCCp3 gene loci were disrupted by homologous recombination, resulting in parasites capable of forming oocyst sporozoites but blocked in the salivary gland transition. Our results describe members of a conserved apicomplexan protein family expressed in sexual stage Plasmodium parasites that may represent candidates for subunits of a transmission-blocking vaccine. PMID:15184503

  19. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. PMID:26719340

  20. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.

  1. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    PubMed

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.

  2. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    PubMed

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts. PMID:26801522

  3. Adaptor assembly for coupling turbine blades to rotor disks

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  4. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    PubMed

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  5. Membrane and acto-myosin tension promote clustering of adhesion proteins

    PubMed Central

    Delanoë-Ayari, H.; Al Kurdi, R.; Vallade, M.; Gulino-Debrac, D.; Riveline, D.

    2004-01-01

    Physicists have studied the aggregation of adhesive proteins, giving a central role to the elastic properties of membranes, whereas cell biologists have put the emphasis on the cytoskeleton. However, there is a dramatic lack of experimental studies probing both contributions on cellular systems. Here, we tested both mechanisms on living cells. We compared, for the same cell line, the growth of cadherin-GFP patterns on recombinant cadherin-coated surfaces, with the growth of vinculin-GFP patterns on extracellular matrix protein-coated surfaces by using evanescent wave microscopy. In our setup, cadherins are not linked to actin, whereas vinculins are. This property allows us to compare formation of clusters with proteins linked or not to the cytoskeleton and thus study the role of membrane versus cytoskeleton in protein aggregation. Strikingly, the motifs we obtained on both surfaces share common features: they are both elongated and located at the cell edges. We showed that a local force application can impose this symmetry breaking in both cases. However, the origin of the force is different as demonstrated by drug treatment (butanedione monoxime) and hypotonic swelling. Cadherins aggregate when membrane tension is increased, whereas vinculins (cytoplasmic proteins of focal contacts) aggregate when acto-myosin stress fibers are pulling. We propose a mechanism by which membrane tension is localized at cell edges, imposing flattening of membrane and enabling aggregation of cadherins by diffusion. In contrast, cytoplasmic proteins of focal contacts aggregate by opening cryptic sites in focal contacts under acto-myosin contractility. PMID:14982992

  6. Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite.

    PubMed

    Shinto, Hiroyuki; Hirata, Takuya; Fukasawa, Tomonori; Fujii, Syuji; Maeda, Hayata; Okada, Masahiro; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2013-08-01

    We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed.

  7. Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite.

    PubMed

    Shinto, Hiroyuki; Hirata, Takuya; Fukasawa, Tomonori; Fujii, Syuji; Maeda, Hayata; Okada, Masahiro; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2013-08-01

    We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed. PMID:23524077

  8. Spontaneous unraveling of hagfish slime thread skeins is mediated by a seawater-soluble protein adhesive.

    PubMed

    Bernards, Mark A; Oke, Isdin; Heyland, Andreas; Fudge, Douglas S

    2014-04-15

    Hagfishes are known for their ability to rapidly produce vast quantities of slime when provoked. The slime is formed via the interaction between seawater and two components released by the slime glands: mucin vesicles from gland mucous cells, which swell and rupture in seawater to form a network of mucus strands, and intermediate filament-rich threads, which are produced within gland thread cells as tightly coiled bundles called skeins. A previous study showed that the unraveling of skeins from Atlantic hagfish (Myxine glutinosa) requires both the presence of mucins and hydrodynamic mixing. In contrast, skeins from Pacific hagfish (Eptatretus stoutii) unravel in the absence of both mucins and mixing. We tested the hypothesis that spontaneous unraveling of E. stoutii skeins is triggered by the dissolution of a seawater-soluble protein adhesive and the release of stored strain energy within the coiled thread. Here we show that, as predicted by this hypothesis, unraveling can be initiated by a protease under conditions in which unraveling does not normally occur. We also demonstrate, using high resolution scanning electron microscopy, that the treatment of skeins with solutions that cause unraveling also leads to the disappearance of surface and inter-thread features that remain when skeins are washed with stabilizing solutions. Our study provides a mechanism for the deployment of thread skeins in Pacific hagfish slime, and raises the possibility of producing novel biomimetic protein adhesives that are salt, temperature and kosmotrope sensitive.

  9. Protein adsorption and cell adhesion on polyurethane/Pluronic surface with lotus leaf-like topography.

    PubMed

    Zheng, Jun; Song, Wei; Huang, He; Chen, Hong

    2010-06-01

    Lotus leaf-like polyurethane/Pluronic F-127 surface was fabricated via replica molding using a natural lotus leaf as the template. Water contact angle measurements showed that both the hydrophobicity of the unmodified polyurethane (PU) surface and the hydrophilicity of the PU/Pluronic surface were enhanced by the construction of lotus leaf-like topography. Protein adsorption on the PU/Pluronic surface without topographic modification was significantly lower than on the PU surface. Adsorption was further reduced when lotus leaf-like topography was constructed on the PU/Pluronic surface. Cell culture experiments with L929 cells showed that adhesion on the PU/Pluronic surface with lotus leaf-like topography was low and adherent cells were spherical and of low viability. The PU/Pluronic surface with lotus leaf-like topography thus appears to be resistant to nonspecific protein adsorption and to cell adhesion, and these effects derive from the both chemical composition and topography. The results suggest a new strategy based on surface topography for the design of antifouling materials.

  10. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    PubMed

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives. PMID:27217558

  11. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy

    NASA Astrophysics Data System (ADS)

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  12. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    PubMed

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  13. Characterization and binding analysis of a microneme adhesive repeat domain-containing protein from Toxoplasma gondii.

    PubMed

    Gong, Haiyan; Kobayashi, Kyousuke; Sugi, Tatsuki; Takemae, Hitoshi; Ishiwa, Akiko; Recuenco, Frances C; Murakoshi, Fumi; Xuan, Xuenan; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2014-04-01

    The intracellular parasite Toxoplasma gondii invades almost all nucleated cells, and has infected approximately 34% of the world's population to date. In order to develop effective vaccines against T. gondii infection, understanding of the role of the molecules that are involved in the invasion process is important. For this purpose, we characterized T. gondii proteins that contain microneme adhesive repeats (MARs), which are common in moving junction proteins. T. gondii MAR domain-containing protein 4a (TgMCP4a), which contains repeats of 17-22 amino acid segments at the N-terminus and three putative MAR domains at the C-terminus, is localized near the rhoptry of extracellular parasites. Following infection, TgMCP4a was detected in the parasitophorous vacuole. The recombinant Fc-TgMCP4a N-terminus protein (rTgMCP4a-1/Fc) showed binding activity to the surface proteins of Vero, 293T, and CHO cells. The recombinant GST-TgMCP4a N-terminus protein (rTgMCP4a-1/GST), which exhibited binding activity, was used to pull down the interacting factors from 293T cell lysate, and subsequent mass spectrometry analysis revealed that three types of heat shock proteins (HSPs) interacted with TgMCP4a. Transfection of a FLAG fusion protein of TgMCP4a-1 (rTgMCP4a-1/FLAG) into 293T cell and the following immunoprecipitation with anti-FLAG antibody confirmed the interactions of HSC70 with TgMCP4a. The addition of rTgMCP4a-1/GST into the culture medium significantly affected the growth of the parasite. This study hints that T. gondii may employ HSP proteins of host cell to facilitate their growth.

  14. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  15. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  16. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  17. The exomer cargo adaptor structure reveals a novel GTPase-binding domain

    PubMed Central

    Paczkowski, Jon E; Richardson, Brian C; Strassner, Amanda M; Fromme, J Christopher

    2012-01-01

    Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3–BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes. PMID:23000721

  18. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  19. Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

    PubMed Central

    Abazeed, Mohamed E.

    2008-01-01

    Golgi-localized, γ-Ear–containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN–PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the β subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Δ membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Δ mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  20. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion.

    PubMed

    Psarra, Evmorfia; König, Ulla; Ueda, Yuichiro; Bellmann, Cornelia; Janke, Andreas; Bittrich, Eva; Eichhorn, Klaus-J; Uhlmann, Petra

    2015-06-17

    Controlling the reversibility, quantity, and extent of biomolecule interaction at interfaces has a significant relevance for biomedical and biotechnological applications, because protein adsorption is always the first step when a solid surface gets in contact with a biological fluid. Polymer brushes, composed of end-tethered linear polymers with sufficient grafting density, are very promising to control and alter interactions with biological systems because of their unique structure and distinct collaborative response to environmental changes. We studied protein adsorption and cell adhesion at polymer brush substrates which consisted of poly(N-isopropylacrylamide) (PNIPAAm), having a lower critical solution temperature (LCST), to control bioadsorptive processes by changing the environmental temperature. Preparing the PNIPAAm brushes by the "grafting-to"-method two differently synthesized PNIPAAm polymers were used, at which one possessed an additional hydrophobic terminal headgroup. It is known that hydrophobic moieties can influence protein adsorption significantly. The films were comprehensively analyzed by in situ spectroscopic ellipsometry, contact angle measurements, streaming potential, and atomic force microscopy. Our study was mainly focused on the investigation of the fibrinogen (FGN) adsorption responsiveness both on homo polymer PNIPAAm brushes with and without the hydrophobic terminal functionalization, and further on binary brushes made of the polyelectrolyte poly(acrylic acid) (PAA) and one of the prior described two PNIPAAm species. The results show that the terminal hydrophobic modification of PNIPAAm has a considerable impact on wettability, LCST, and morphology of the homo and the binary brush systems, which consequently led to an alteration of FGN adsorption. By using binary PNIPAAm-PAA brushes with different composition it was possible to induce stimuli dependent FGN adsorption with a considerable amplified switching effect by introducing a

  1. Unraveling the Role of Surface Mucus-Binding Protein and Pili in Muco-Adhesion of Lactococcus lactis

    PubMed Central

    Duviau, Marie-Pierre; Meyrand, Mickael; Guérardel, Yann; Castelain, Mickaël; Loubière, Pascal; Chapot-Chartier, Marie-Pierre; Dague, Etienne; Mercier-Bonin, Muriel

    2013-01-01

    Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100−200 nm) and long distances (up to 600−800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants. PMID:24260308

  2. Blockade of Vascular Adhesion Protein-1 Inhibits Lymphocyte Infiltration in Rat Liver Allograft Rejection

    PubMed Central

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-01-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174–5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 ± 1.0 and 2.4 ± 1.0 corrected increment units, respectively) compared to control (6.6 ± 1.0) (P < 0.05). In histology, the intensity of portal inflammation was significantly decreased (P < 0.05). The amount of T cells expressing activation markers diminished. This is the first demonstration in any prolonged in vivo model that VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection. PMID:15579442

  3. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques

    PubMed Central

    Silvola, Johanna M. U.; Virtanen, Helena; Siitonen, Riikka; Hellberg, Sanna; Liljenbäck, Heidi; Metsälä, Olli; Ståhle, Mia; Saanijoki, Tiina; Käkelä, Meeri; Hakovirta, Harri; Ylä-Herttuala, Seppo; Saukko, Pekka; Jauhiainen, Matti; Veres, Tibor Z.; Jalkanen, Sirpa; Knuuti, Juhani; Saraste, Antti; Roivainen, Anne

    2016-01-01

    Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR−/−ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis. PMID:27731409

  4. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis

    PubMed Central

    Weston, Chris J.; Shepherd, Emma L.; Claridge, Lee C.; Rantakari, Pia; Curbishley, Stuart M.; Tomlinson, Jeremy W.; Hubscher, Stefan G.; Reynolds, Gary M.; Aalto, Kristiina; Anstee, Quentin M.; Jalkanen, Sirpa; Salmi, Marko; Smith, David J.; Day, Christopher P.; Adams, David H.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases. PMID:25562318

  5. Anterior Gradient Protein-2 Is a Regulator of Cellular Adhesion in Prostate Cancer

    PubMed Central

    Chanda, Diptiman; Lee, Joo Hyoung; Sawant, Anandi; Hensel, Jonathan A.; Isayeva, Tatyana; Reilly, Stephanie D.; Siegal, Gene P.; Smith, Claire; Grizzle, William; Singh, Raj; Ponnazhagan, Selvarangan

    2014-01-01

    Anterior Gradient Protein (AGR-2) is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s) has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL) induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis. PMID:24587138

  6. Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration

    PubMed Central

    Kostyak, John C.; Naik, Meghna U.

    2012-01-01

    Megakaryocytes are large, polyploid cells that produce platelets. We have previously reported that calcium- and integrin-binding protein 1 (CIB1) regulates endomitosis in Dami cells. To further characterize the role of CIB1 in megakaryopoiesis, we used a Cib1−/− mouse model. Cib1−/− mice have more platelets and BM megakaryocytes than wild-type (WT) controls (P < .05). Furthermore, subsequent analysis of megakaryocyte-CFU production revealed an increase with Cib1 deletion compared with WT (P < .05). In addition, BM from Cib1−/− mice, cultured with thrombopoietin (TPO) for 24 hours, produced more highly polyploid megakaryocytes than WT BM (P < .05). Subsequent analysis of TPO signaling revealed enhanced Akt and ERK1/2 phosphorylation, whereas FAKY925 phosphorylation was reduced in Cib1−/− megakaryocytes treated with TPO. Conversely, platelet recovery in Cib1−/− mice after platelet depletion was attenuated compared with WT (P < .05). This could be the result of impaired adhesion and migration, as adhesion to fibrinogen and fibronectin and migration toward an SDF-1α gradient were reduced in Cib1−/− megakaryocytes compared with WT (P < .05). In addition, Cib1−/− megakaryocytes formed fewer proplatelets compared with WT (P < .05), when plated on fibrinogen. These data suggest that CIB1 plays a dual role in megakaryopoiesis, initially by negatively regulating TPO signaling and later by augmenting proplatelet production. PMID:22128142

  7. Evaluation of Serum Vascular Adhesion Protein-1 as a Potential Biomarker in Thyroid Cancer

    PubMed Central

    Zhao, Pengxin; Zhang, Kaili

    2016-01-01

    Vascular adhesion protein-1 (VAP-1) is a glycoprotein that mediates tissue-selective lymphocyte adhesion. The prognostic value of VAP-1 has been determined in gastric cancer. The aim of this study was to evaluate the changes and the predictive value of serum VAP-1 in patients with thyroid cancer. A total of 126 patients with thyroid nodules and 53 healthy controls participated in this study. The patients were further divided into subgroup 1 (69 cases with benign thyroid nodules) and subgroup 2 (57 cases with thyroid cancer). Serum VAP-1 was measured by time-resolved immunofluorometric assay. Diagnostic value of presurgical VAP-1 for thyroid cancer was conducted by receiver operating characteristic (ROC) curves. Serum levels of VAP-1 were significantly lower in thyroid cancer group than in healthy control and benign thyroid nodule groups. VAP-1 concentrations negatively correlated with serum thyroglobulin (Tg) levels in thyroid cancer patients (r = −0.81; p < 0.001). The optimum cut-off value of VAP-1 was 456.6 ng/mL with a 77.4% specificity and 66.7% sensitivity for thyroid cancer diagnosis. Serum VAP-1 decreased in thyroid cancer patients and VAP-1 could be a potential useful adjunct biomarker in the diagnosis of thyroid cancer. PMID:27446209

  8. Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement

    PubMed Central

    Da Sie, Yong; Li, Yi-Cheng; Chang, Nan-Shan; Campagnola, Paul J.; Chen, Shean-Jen

    2015-01-01

    In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment. A human breast cancer cell line, MDA-MB-231, was used to investigate the behavior of cell migration and adhesion on the fabricated human FN and BSA protein structures. Experimental results indicate that many cells are not able to attach or climb on a 3D structure’s inclined plane without FN support; hence, the influence of cell growth in a 3D context with FN should being taken into consideration. This 3D multi-protein fabrication technique holds potential for cell studies in designed complex 3D ECM scaffolds. PMID:25780738

  9. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    NASA Astrophysics Data System (ADS)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  10. Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesions in chick fibroblasts.

    PubMed

    Couchman, J R; Badley, R A; Rees, D A

    1983-12-01

    The roles of the microfilament-associated proteins vinculin, alpha-actinin, myosin and filamin have been studied by immunofluorescence and double fluorescence in conjunction with interference reflection microscopy (IRM), during the development of focal contacts and focal adhesions in a chick fibroblast system which initially has no such adhesion specializations but then develops them sequentially over a 48 h period. Without exception, all focal contacts and focal adhesions contain both vinculin and alpha-actinin at every stage that we can detect by IRM or by double staining to reveal the associated microfilament bundles. Indeed the appearance of small bodies containing alpha-actinin and vinculin is shown to precede focal contact formation in our model system and such structures (not visible by IRM) are proposed to be the precursors of focal contacts and adhesions. Myosin and filamin are distributed generally with some reticular patterning in the early motile cells which lack the focal specializations, but as focal contacts and adhesions form these proteins become progressively recruited into the associated microfilament bundles. Only then do we see the marked depletion that has been reported earlier of diffusely distributed myosin and filamin in the leading lamella. Although this is not initially associated with any change in the motile status of the cells, the recruitment of these microfilament-associated proteins into stress fibres is proposed to occur in preparation for anchorage and bracing of cells to the substratum when they later become stationary. PMID:6421873

  11. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens.

    PubMed

    Hennebert, Elise; Wattiez, Ruddy; Waite, J Herbert; Flammang, Patrick

    2012-01-01

    Sea stars are able to make firm but temporary attachments to various substrata by secretions released by their tube feet. After tube foot detachment, the adhesive secretions remain on the substratum as a footprint. Proteins presumably play a key role in sea star adhesion, as evidenced by the removal of footprints from surfaces after a treatment with trypsin. However, until now, characterisation was hampered by their high insolubility. In this study, a non-hydrolytic method was used to render most of the proteins constituting the adhesive footprints soluble. After analysis by SDS-PAGE, the proteins separated into about 25 bands, which ranged from 25 to 450 kDa in apparent molecular weight. Using mass spectrometry and a homology-database search, it was shown that several of the proteins are known intracellular proteins, presumably resulting from contamination of footprint material with tube foot epidermal cells. However, 11 protein bands, comprising the most abundant proteins, were not identified and might correspond to novel adhesive proteins. They were named 'Sea star footprint proteins' (Sfps). Tandem mass spectrometry analysis of the protein bands yielded 43 de novo-generated peptide sequences. Most of them were shared by several, if not all, Sfps. Polyclonal antibodies were raised against one of the peptides (HEASGEYYR from Sfp-115) and were used in immunoblotting. They specifically labelled Sfp-115 and other bands with lower apparent molecular weights. The different results suggest that all Sfps might belong to a single family of related proteins sharing similar motifs or, alternatively, they are the products of polymerization and/or degradation processes.

  12. The adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH

    PubMed Central

    Yu, Jing; Wei, Wei; Menyo, Matthew S.; Masic, Admir; Waite, J. Herbert; Israelachvili, Jacob N.

    2013-01-01

    The underwater adhesion of marine mussels relies on mussel foot proteins (mfps) rich in the catecholic amino acid 3, 4-dihydroxyphenylalanine (Dopa). As a side-chain, Dopa is capable of strong bidentate interactions with a variety of surfaces, including many minerals and metal oxides. Titanium is among the most widely used medical implant material and quickly forms a TiO2 passivation layer under physiological conditions. Understanding the binding mechanism of Dopa to TiO2 surfaces is therefore of considerable theoretical and practical interest. Using a surface forces apparatus, we explored the force-distance profiles and adhesion energies of mussel foot protein 3 (mfp-3) to TiO2 surfaces at three different pHs (pH3, 5.5 and 7.5). At pH3, mfp-3 showed the strongest adhesion force on TiO2, with an adhesion energy of ~ −7.0 mJ/m2. Increasing the pH gives rise to two opposing effects: (1) increased oxidation of Dopa, thus decreasing availability for the Dopa-mediated adhesion, and (2) increased bidentate Dopa-Ti coordination, leading to the further stabilization of the Dopa group and thus an increasing of adhesion force. Both effects were reflected in the resonance-enhanced Raman spectra obtained at the three deposition pHs. The two competing effects give rise to a higher adhesion force of mfp-3 on TiO2 surface at pH 7.5 than at pH 5.5. Our results suggest that Dopa-containing proteins and synthetic polymers have great potential as coating materials for medical implant materials, particularly if redox activity can be controlled. PMID:23452271

  13. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode.

    PubMed

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A

    2013-12-27

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific, and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity, and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Although they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors, and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors.

  14. Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis

    PubMed Central

    Nair, Manoj K. M.; De Masi, Leon; Yue, Min; Galván, Estela M.; Chen, Huaiqing; Wang, Fang

    2015-01-01

    Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

  15. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    ERIC Educational Resources Information Center

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  16. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  17. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  18. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  19. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  20. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  1. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  2. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  3. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  4. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  5. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  6. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    NASA Astrophysics Data System (ADS)

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1–0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  7. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    NASA Astrophysics Data System (ADS)

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1-0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  8. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    PubMed

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. PMID:21216704

  9. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist

    PubMed Central

    Stoveken, Hannah M.; Hajduczok, Alexander G.; Xu, Lei; Tall, Gregory G.

    2015-01-01

    The large class of adhesion G protein-coupled receptors (aGPCRs) bind extracellular matrix or neighboring cell-surface ligands to regulate organ and tissue development through an unknown activation mechanism. We examined aGPCR activation using two prototypical aGPCRs, GPR56 and GPR110. Active dissociation of the noncovalently bound GPR56 or GPR110 extracellular domains (ECDs) from the respective seven-transmembrane (7TM) domains relieved an inhibitory influence and permitted both receptors to activate defined G protein subtypes. After ECD displacement, the newly revealed short N-terminal stalk regions of the 7TM domains were found to be essential for G protein activation. Synthetic peptides comprising these stalks potently activated GPR56 or GPR110 in vitro or in cells, demonstrating that the stalks comprise a tethered agonist that was encrypted within the ECD. Establishment of an aGPCR activation mechanism provides a rational platform for the development of aGPCR synthetic modulators that could find clinical utility toward aGPCR-directed disease. PMID:25918380

  10. The Terminal A Domain of the Fibrillar Accumulation-Associated Protein (Aap) of Staphylococcus epidermidis Mediates Adhesion to Human Corneocytes▿

    PubMed Central

    Macintosh, Robin L.; Brittan, Jane L.; Bhattacharya, Ritwika; Jenkinson, Howard F.; Derrick, Jeremy; Upton, Mathew; Handley, Pauline S.

    2009-01-01

    The opportunistic pathogen Staphylococcus epidermidis colonizes indwelling medical devices by biofilm formation but is primarily a skin resident. In many S. epidermidis strains biofilm formation is mediated by a cell wall-anchored protein, the accumulation-associated protein (Aap). Here, we investigate the role of Aap in skin adhesion. Aap is an LPXTG protein with a domain architecture including a terminal A domain and a B-repeat region. S. epidermidis NCTC 11047 expresses Aap as localized, lateral tufts of fibrils on one subpopulation of cells (Fib+), whereas a second subpopulation does not express these fibrils of Aap (Fib−). Flow cytometry showed that 72% of NCTC 11047 cells expressed Aap and that 28% of cells did not. Aap is involved in the adhesion of Fib+ cells to squamous epithelial cells from the hand (corneocytes), as the recombinant A-domain protein partially blocked binding to corneocytes. To confirm the role of the Aap A domain in corneocyte attachment, Aap was expressed on the surface of Lactococcus lactis MG1363 as sparsely distributed, peritrichous fibrils. The expression of Aap increased corneocyte adhesion 20-fold compared to L. lactis carrying Aap without an A domain. S. epidermidis isolates from catheters, artificial joints, skin, and the nose also used the A domain of Aap to adhere to corneocytes, emphasizing the role of Aap in skin adhesion. In addition, L. lactis expressing Aap with different numbers of B repeats revealed a positive correlation between the number of B repeats and adhesion to corneocytes, suggesting an additional function for the B region in enhancing A-domain-dependent attachment to skin. Therefore, in addition to its established role in biofilm formation, Aap can also promote adhesion to corneocytes and is likely to be an important adhesin in S. epidermidis skin colonization. PMID:19749046

  11. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1

    PubMed Central

    Lim, Daina; Lu, Yuning; Rudd, Christopher E.

    2016-01-01

    While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation. PMID:26905930

  12. A protein interaction map for cell-cell adhesion regulators identifies DUSP23 as a novel phosphatase for β-catenin

    PubMed Central

    Gallegos, Lisa Leon; Ng, Mei Rosa; Sowa, Mathew E.; Selfors, Laura M.; White, Anne; Zervantonakis, Ioannis K.; Singh, Pragya; Dhakal, Sabin; Harper, J. Wade; Brugge, Joan S.

    2016-01-01

    Cell-cell adhesion is central to morphogenesis and maintenance of epithelial cell state. We previously identified 27 candidate cell-cell adhesion regulatory proteins (CCARPs) whose down-regulation disrupts epithelial cell-cell adhesion during collective migration. Using a protein interaction mapping strategy, we found that 18 CCARPs link to core components of adherens junctions or desmosomes. We further mapped linkages between the CCARPs and other known cell-cell adhesion proteins, including hits from recent screens uncovering novel components of E-cadherin adhesions. Mechanistic studies of one novel CCARP which links to multiple cell-cell adhesion proteins, the phosphatase DUSP23, revealed that it promotes dephosphorylation of β-catenin at Tyr 142 and enhances the interaction between α- and β-catenin. DUSP23 knockdown specifically diminished adhesion to E-cadherin without altering adhesion to fibronectin matrix proteins. Furthermore, DUSP23 knockdown produced “zipper-like” cell-cell adhesions, caused defects in transmission of polarization cues, and reduced coordination during collective migration. Thus, this study identifies multiple novel connections between proteins that regulate cell-cell interactions and provides evidence for a previously unrecognized role for DUSP23 in regulating E-cadherin adherens junctions through promoting the dephosphorylation of β-catenin. PMID:27255161

  13. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  14. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  15. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    PubMed Central

    Willer, Emerson da Motta; Lima, Renato de Lourenço; Giugliano, Loreny Gimenes

    2004-01-01

    Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants. PMID:15115555

  16. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride

    NASA Astrophysics Data System (ADS)

    Bain, Lauren E.; Hoffmann, Marc P.; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-01-01

    , particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the `activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization. Electronic supplementary information (ESI) available: Additional figures demonstrating the adhesion force magnitude (Fig. S1) and lateral steppe surface topography (Fig. S2). See DOI: 10.1039/c4nr06353h

  17. Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation.

    PubMed

    Mukherjee, Sampriti; Bree, Anna C; Liu, Jing; Patrick, Joyce E; Chien, Peter; Kearns, Daniel B

    2015-01-01

    The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.

  18. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins.

    PubMed

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine

    2012-03-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.

  19. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins

    PubMed Central

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.

    2012-01-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499

  20. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion

    PubMed Central

    Caine, Jennifer A.; Coburn, Jenifer

    2016-01-01

    Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick–mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.

  1. Induction of the neural cell adhesion molecule and neuronal aggregation by osteogenic protein 1.

    PubMed Central

    Perides, G; Safran, R M; Rueger, D C; Charness, M E

    1992-01-01

    The neural cell adhesion molecule (N-CAM) plays a fundamental role in nervous system development and regeneration, yet the regulation of the expression of N-CAM in different brain regions has remained poorly understood. Osteogenic protein 1 (OP-1) is a member of the transforming growth factor beta superfamily that is expressed in the nervous system. Treatment of the neuroblastoma-glioma hybrid cell line NG108-15 for 1-4 days with recombinant human OP-1 (hOP-1) induced alterations in cell shape, formation of epithelioid sheets, and aggregation of cells into multilayered clusters. Immunofluorescence studies and Western blots demonstrated a striking differential induction of the three N-CAM isoforms in hOP-1-treated cells. hOP-1 caused a 6-fold up-regulation of the 140-kDa N-CAM, the isoform showing the highest constitutive expression, and a 29-fold up-regulation of the 180-kDa isoform. The 120-kDa isoform was not detected in control NG108-15 cells but was readily identified in hOP-1-treated cells. Incubation of NG108-15 cells with an antisense N-CAM oligonucleotide reduced the induction of N-CAM by hOP-1 and decreased the formation of multilayered cell aggregates. Anti-N-CAM monoclonal antibodies also diminished the formation of multilayered cell aggregates by hOP-1 and decreased cell-cell adhesion when hOP-1-treated NG108-15 cells were dispersed and replated. Thus, hOP-1 produces morphologic changes in NG108-15 cells, at least in part, by inducing N-CAM. These observations suggest that OP-1 or a homologue may participate in the regulation of N-CAM during nervous system development and regeneration. Images PMID:1438217

  2. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas.

    PubMed

    Kostoro, Joanna; Chang, Shu-Jyuan; Clark Lai, Yen-Chang; Wu, Chun-Chieh; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-06-01

    Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p < 0.0001). In the subgroup analysis, upregulated VAP-1 expression was frequently found in older age patients (≥50 years). The VAP-1 expression was found to be significantly correlated with the overall survival (p = 0.0002). There was a statistical correlation between VAP-1(high) tumors in diffuse astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p < 0.0001). Multivariate Cox analysis indicated VAP-1 was an independent predictive marker for poorer prognosis (p = 0.0036). Therefore, VAP-1 could be a promising prognostic biomarker in astrocytoma.

  3. Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    PubMed Central

    Koper, Andre; Schenck, Annette; Prokop, Andreas

    2012-01-01

    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need

  4. Platelet adhesion signalling and the regulation of thrombus formation.

    PubMed

    Gibbins, Jonathan M

    2004-07-15

    Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis. PMID:15252124

  5. Scanning-force techniques to monitor time-dependent changes in topography and adhesion force of proteins on surfaces.

    PubMed

    Mondon, M; Berger, S; Ziegler, C

    2003-04-01

    Scanning-force microscopy (SFM) investigations were conducted to probe the influences of the interactions of proteins with surfaces relevant in medicine. These interactions are an important feature in the area of biofilm formation. The adsorption of proteins leads to changes in topography, which was monitored for the build up of protein layers of hen egg-white lysozyme and bovine serum albumin (BSA) on mica in real time in phosphate-buffered aqueous solution over a time period of 10 min. Phase imaging was additionally applied to compare material contrasts and to evaluate this method for further application in this field. The adhesion forces that develop on a time scale below 20 s between a protein-modified SFM tip and titanium surfaces (TiO(2), TiAl6V4 and TiAl6Nb7) were investigated. The influences of the parameters loading force and interaction time between the protein and the surface were monitored as well as the influence of protein structure. The interaction time dependency of the adhesion force could be described with a kinetic model of two consecutive first-order reactions. For the maximal adhesion force a correlation to the ratio of the amino acids cysteine, proline and glycine has been proposed.

  6. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation

    SciTech Connect

    Reider, Amanda; Barker, Sarah L.; Mishra, Sanjay K.; Im, Young Jun; Maldonado-Báez, Lymarie; Hurley, James H.; Traub, Linton M.; Wendland, Beverly

    2010-10-28

    Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding {mu} homology domains ({mu}HDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The {mu}HD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.

  7. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption.

    PubMed

    Chien, Hsiu-Wen; Tsai, Chih-Chi; Tsai, Wei-Bor; Wang, Meng-Jiy; Kuo, Wei-Hsuan; Wei, Ta-Chin; Huang, Sheng-Tung

    2013-07-01

    Non-fouling surfaces that resist non-specific protein adsorption and cell adhesion are desired for many biomedical applications such as blood-contact devices and biosensors. Therefore, surface conjugation of anti-fouling molecules has been the focus of many studies. In this study, layer-by-layer polyelectrolyte deposition was applied to create an amine-rich platform for conjugation of zwitterionic polymers. A tri-layer polyelectrolyte (TLP) coating representing poly(ethylene imine) (PEI), poly(acrylic acid)-g-azide and PEI was deposited on various polymeric substrates via layer-by-layer deposition and then crosslinked via UV irradiation. Carboxyl-terminated poly(sulfobetaine methacrylate) p(SBMA) or poly(carboxybetaine methacrylate) p(CBMA) was then conjugated onto TLP coated substrates via a carbodiimide reaction. Our results demonstrate that the zwitterionic polymers could be easily conjugated over a wide pH range except under alkaline conditions, and almost completely block protein adsorption and the attachment of L929 cells and platelets. Therefore, this method has outstanding potential in biomedical applications that require low-fouling surfaces. PMID:23500725

  8. Interfacial tension of complex coacervated mussel adhesive protein according to the Hofmeister series.

    PubMed

    Lim, Seonghye; Moon, Dustin; Kim, Hyo Jeong; Seo, Jeong Hyun; Kang, In Seok; Cha, Hyung Joon

    2014-02-01

    Complex coacervation is a liquid-liquid phase separation in a colloidal system of two oppositely charged polyelectrolytes or colloids. The interfacial tension of the coacervate phase is the key parameter for micelle formation and interactions with the encapsulating material. However, the relationship between interfacial tensions and various salt solutions is poorly understood in complex coacervation. In the present work, the complex coacervate dynamics of recombinant mussel adhesive protein (MAP) with hyaluronic acid (HA) were determined in the presence of Hofmeister series salt ions. Using measurements of absorbance, hydrodynamic diameter, capillary force, and receding contact angle in the bulk phase, the interfacial tensions of complex coacervated MAP/HA were determined to be 0.236, 0.256, and 0.287 mN/m in 250 mM NaHCOO, NaCl, and NaNO3 solutions, respectively. The sequences of interfacial tensions and contact angles of the complex coacervates in the presence of three sodium salts with different anions were found to follow the Hofmeister ordering. The tendency of interfacial tension between the coacervate and dilute phases in the presence of different types of Hofmeister salt ions could provide a better understanding of Hofmeister effects on complex coacervated materials based on the protein-polysaccharide system. This information can also be utilized for microencapsulation and adsorption by controlling intramolecular interactions. In addition, the injection molding dynamics of mussel byssus formation was potentially explained based on the measured interfacial tension of coacervated MAP. PMID:24490867

  9. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    PubMed

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P < 0.05). Collectively, our findings demonstrate that CNTN1 promotes prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.

  10. Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival.

    PubMed

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-05-01

    The cell adhesion molecule L1 is a Lewis(x)-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewis(x)-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg(687) yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  11. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog

    PubMed Central

    Zhang, Qing; Zmasek, Christian M.; Cai, Xiaohui; Godzik, Adam

    2011-01-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein–protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves. PMID:21110998

  12. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  13. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    PubMed

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.

  14. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    PubMed Central

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  15. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

    2004-07-01

    Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or

  16. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen.

  17. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule.

    PubMed

    Yoshida, Tomoyuki; Shiroshima, Tomoko; Lee, Sung-Jin; Yasumura, Misato; Uemura, Takeshi; Chen, Xigui; Iwakura, Yoichiro; Mishina, Masayoshi

    2012-02-22

    Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.

  18. Lymphocyte binding to vascular endothelium in inflamed skin revisited: a central role for vascular adhesion protein-1 (VAP-1).

    PubMed

    Arvilommi, A M; Salmi, M; Kalimo, K; Jalkanen, S

    1996-04-01

    The binding of leukocytes to vascular endothelium and their migration into tissues is mediated by adhesion molecules on the endothelial cells and leukocytes. Vascular adhesion protein-1 (VAP-1) is a 170-180/90-kDa endothelial molecule expressed most prominently in high endothelial venules in peripheral lymph node (PLN) type lymphatic tissues. VAP-1 mediates lymphocyte binding to PLN, tonsil and synovium. The expression of VAP-1 is induced in inflammatory diseases such as arthritis and gut inflammation. We examined the expression, structure and function of VAP-1 in normal and inflamed skin and compared it to those of other adhesion molecules implicated in skin homing. In psoriasis lichen ruber planus, pemphigoid and allergic lesions, VAP-1 was markedly upregulated. The expression of VAP-1 was also increased in biopsies of healthy skin of the patients. The VAP-1 molecule induced in skin is decorated with abundant sialic acids. VAP-1 inflamed skin is functional, since inhibition with anti-VAP-1 monoclonal antibodies caused a 60% reduction in lymphocytes adhesion to vascular endothelium. Antibodies against E-selectin, which has been regarded as the major vascular addressin directing cutaneous lymphocyte traffic, and, surprisingly, against peripheral lymph node addressin (PNAd), caused inhibitions of 30% and 60%, respectively, in the frozen section adhesion assay. These findings suggest important roles also for VAP-1 and PNAd in lymphocyte homing into inflamed skin. PMID:8625974

  19. Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration.

    PubMed

    Rabiej, Verena K; Pflanzner, Thorsten; Wagner, Timo; Goetze, Kristina; Storck, Steffen E; Eble, Johannes A; Weggen, Sascha; Mueller-Klieser, Wolfgang; Pietrzik, Claus U

    2016-01-01

    The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration.

  20. Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study.

    PubMed

    Ovchinnikova, Ekaterina S; van der Mei, Henny C; Krom, Bastiaan P; Busscher, Henk J

    2013-10-01

    Staphylococcus aureus and Candida albicans are the second and third most commonly isolated microorganisms in hospital-related-infections, that are often multi-species in nature causing high morbidity and mortality. Here, adhesion forces between a S. aureus strain and abiotic (tissue-culture-polystyrene, TCPS) or partly biotic (TCPS with adhering hyphae of C. albicans) surfaces were investigated in presence of fetal-bovine-serum or individual serum proteins and related with staphylococcal adhesion. Atomic-force-microscopy was used to measure adhesion forces between S. aureus and the abiotic and biotic surfaces. Adsorption of individual serum proteins like albumin and apo-transferrin to abiotic TCPS surfaces during 60min, impeded development of strong adhesion forces as compared to fibronectin, while 60min adsorption of proteins from fetal-bovine-serum yielded a decrease in adhesion force from -5.7nN in phosphate-buffered-saline to -0.6nN. Adsorption of albumin and apo-transferrin also decreased staphylococcal adhesion forces to hyphae as compared with fibronectin. During 60min exposure to fetal-bovine-serum however, initial (5min protein adsorption) staphylococcal adhesion forces were low (-1.6nN), but strong adhesion forces of around -5.5nN were restored within 60min. This suggests for the first time that in whole fetal-bovine-serum exchange of non-adhesive proteins by fibronectin occurs on biotic C. albicans hyphal surfaces. No evidence was found for such protein exchange on abiotic TCPS surfaces. Staphylococcal adhesion of abiotic and biotic surfaces varied in line with the adhesion forces and was low on TCPS in presence of fetal-bovine-serum. On partly biotic TCPS, staphylococci aggregated in presence of fetal-bovine-serum around adhering C. albicans hyphae.

  1. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins

    PubMed Central

    Lopez-Sanchez, Inmaculada; Kalogriopoulos, Nicholas; Lo, I-Chung; Kabir, Firooz; Midde, Krishna K.; Wang, Honghui; Ghosh, Pradipta

    2015-01-01

    GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell–ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression. PMID:26446841

  2. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins.

    PubMed

    Lopez-Sanchez, Inmaculada; Kalogriopoulos, Nicholas; Lo, I-Chung; Kabir, Firooz; Midde, Krishna K; Wang, Honghui; Ghosh, Pradipta

    2015-12-01

    GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell-ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression.

  3. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.

    PubMed

    Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

    2015-02-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.

  4. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.

    PubMed

    Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

    2015-02-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis. PMID:25500214

  5. Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus.

    PubMed

    Inoue, K; Waite, J H; Matsuoka, M; Odo, S; Harayama, S

    1995-12-01

    Variation in the adhesive protein gene sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus collected in Delaware, Kamaishi (Japan), and Alaska, respectively, was analyzed by the polymerase chain reaction (PCR) using two sets of oligonucleotide primers. The first set, Me 13 and Me 14, was designed to amplify the repetitive region. The length of the amplified fragments was highly variable, even among samples of the same species. Another set, Me 15 and Me 16, was designed to amplify a part of the nonrepetitive region. The length of the amplified fragments was uniform in each species and differed interspecifically; 180, 168, and 126 bp for M. edulis, M. trossulus, and M. galloprovincialis, respectively. The amplified sequence of M. trossulus resembled that of M. edulis. Mussels from other sites were also examined by PCR using Me 15 and Me 16. Wild mussels from Tromsö (Norway) and cultured mussels from Brittany (France) were identified as M. edulis. Cultured mussels from the Mediterranean coast of France and wild mussels from Shimizu (Japan) were identified as M. galloprovincialis. Some wild mussels from Hiura (Japan) were identified as a hybrid between M. galloprovincialis and M. trossulus. Thus, the length of this part (variable region) of the sequence is proposed as a diagnostic marker for these three morphologically similar species and their hybrids.

  6. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury.

    PubMed

    Lutz, David; Kataria, Hardeep; Kleene, Ralf; Loers, Gabriele; Chaudhary, Harshita; Guseva, Daria; Wu, Bin; Jakovcevski, Igor; Schachner, Melitta

    2016-07-01

    Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma.

  7. Adhesive properties of Clostridium perfringens to extracellular matrix proteins collagens and fibronectin.

    PubMed

    Hitsumoto, Yasuo; Morita, Naomi; Yamazoe, Ryosuke; Tagomori, Mika; Yamasaki, Tsutomu; Katayama, Seiichi

    2014-02-01

    The adhesive properties of Clostridium perfringens to collagens, gelatin, fibronectin (Fn), Fn-prebound collagens, and Fn-prebound gelatin were investigated. C. perfringens could bind to Fn-prebound collagen type II, type III, and gelatin, but not to gelatin or collagens except for collagen type I directly. Recombinant Fn-binding proteins of C. perfringens, rFbpA and rFbpB, were used to examine Fn-mediated bacterial adherence to collagen type I. In the presence of rFbps, C. perfringens adherence to Fn-prebound collagen type I was inhibited in a dose-dependent manner. Fn was not released from the coated collagen type I by the presence of rFbps, and rFbps did not bind to collagen type I. Thus, the inhibition of C. perfringens binding to Fn-prebound collagen type I by rFbps could not be explained by the removal of Fn from collagen or by the competitive binding of rFbps to collagen. Instead, both rFbps were found to bind to C. perfringens. These results suggest the possibility that rFbps may bind to the putative Fn receptor expressed on C. perfringens and competitively inhibit Fn binding to C. perfringens.

  8. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  9. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury.

    PubMed

    Lutz, David; Kataria, Hardeep; Kleene, Ralf; Loers, Gabriele; Chaudhary, Harshita; Guseva, Daria; Wu, Bin; Jakovcevski, Igor; Schachner, Melitta

    2016-07-01

    Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma. PMID:26081148

  10. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  11. Maximizing Fibroblast Adhesion on Protein-Coated Surfaces Using Microfluidic Cell Printing

    PubMed Central

    Davidoff, S.N.; Au, D.; Gale, B.K.; Brooks, B.D.; Brooks, A.E.

    2015-01-01

    translation of in vitro cell based assays to in vivo cellular response is imprecise at best. The advent of three-dimensional cell cultures in addition to bioreactor type microfluidics has improved the situation. However, these technical advances cannot be easily combined due to practical limitations. Development of a vertical microfluidic cell printer overcomes this obstacle, providing the ability to more closely recapitulate complex cellular environments and responses. As a proof of concept, we investigated the adhesion of fibroblasts under flow on protein-coated surfaces using a novel vertical microfluidic print head to isolate and manipulate both mechanical and biological factors as a model of fibroblast behavior during the foreign body response following implant insertion. A low flow rate with larger microfluidic channels onto a serum-coated surface has been determined to allow the highest density of viable fibroblasts to attach to the surface. While these insights into fibroblast surface attachment may lead to better material designs, the methods developed herein will certainly be useful as a biomaterials testing platform. PMID:26989480

  12. Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: effect of graft molecular weight.

    PubMed

    Zhao, Tieliang; Chen, Hong; Zheng, Jun; Yu, Qian; Wu, Zhaoqiang; Yuan, Lin

    2011-06-15

    In this work, the effect of molecular weight (MW) of surface grafted poly(N-isopropylacrylamide) (PNIPAAm) on protein adsorption and cell adhesion was investigated systematically. PNIPAAm-grafted polyurethane (PU) surfaces of varying graft MW were prepared via conventional radical polymerization. The MW was controlled by adjusting the monomer concentration. Fibrinogen (Fg) and human serum albumin (HSA) were selected as model proteins and their adsorption from phosphate-buffered saline (PBS, pH 7.4) and blood plasma at 37°C was measured using a radiolabeling method and immunoblot analysis respectively. It was found that in both media, as the MW increased, the adsorption of these two proteins decreased gradually reaching a plateau value at MW above 7.9×10(4). Compared to the unmodified PU, the surface grafted with PNIPAAm of MW 14.6×10(4) reduced the adsorption of Fg and HSA in PBS by 91% and 86%, respectively. Moreover, the surfaces with higher MW PNIPAAm showed minimal adhesion of L929 cells presumably due to the absence of cell-adhesive proteins on the surfaces. PMID:21093225

  13. Staphylococcus aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic Bonds

    PubMed Central

    Herman-Bausier, Philippe; El-Kirat-Chatel, Sofiane; Foster, Timothy J.

    2015-01-01

    ABSTRACT Staphylococcus aureus is an important opportunistic pathogen which is a leading cause of biofilm-associated infections on indwelling medical devices. The cell surface-located fibronectin-binding protein A (FnBPA) plays an important role in the accumulation phase of biofilm formation by methicillin-resistant S. aureus (MRSA), but the underlying molecular interactions are not yet established. Here, we use single-cell and single-molecule atomic force microscopy to unravel the mechanism by which FnBPA mediates intercellular adhesion. We show that FnBPA is responsible for specific cell-cell interactions that involve the FnBPA A domain and cause microscale cell aggregation. We demonstrate that the strength of FnBPA-mediated adhesion originates from multiple low-affinity homophilic interactions between FnBPA A domains on neighboring cells. Low-affinity binding by means of FnBPA may be important for biofilm dynamics. These results provide a molecular basis for the ability of FnBPA to promote cell accumulation during S. aureus biofilm formation. We speculate that homophilic interactions may represent a generic strategy among staphylococcal cell surface proteins for guiding intercellular adhesion. As biofilm formation by MRSA strains depends on proteins rather than polysaccharides, our approach offers exciting prospects for the design of drugs or vaccines to inhibit protein-dependent intercellular interactions in MRSA biofilms. PMID:26015495

  14. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  15. Insights into the Utility of the Focal Adhesion Scaffolding Proteins in the Anaerobic Fungus Orpinomyces sp. C1A

    PubMed Central

    Calkins, Shelby; Youssef, Noha H.

    2016-01-01

    Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all metazoan cells and function as stable sites of tight adhesion between the extracellular matrix (ECM) and the cell’s cytoskeleton. FAs consist of anchor membrane protein (integrins), scaffolding proteins (e.g. α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP complex (e.g. integrin-linked kinase, α-parvin, and PINCH), and signaling kinases (e.g. focal adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion machineries are present in genomes of all multicellular Metazoa; incomplete machineries were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal fungal lineages, and amoebozoan representatives. Since a complete FA machinery is required for functioning, the putative role, if any, of these incomplete FA machineries is currently unclear. We sought to examine the expression patterns of FA-associated genes in the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth conditions and at different developmental stages. Strain C1A lacks clear homologues of integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding proteins, and the IPP complex proteins. We developed a protocol for synchronizing growth of C1A cultures, allowing for the collection and mRNA extraction from flagellated spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of strain C1A. We demonstrate that the genes encoding the FA scaffolding proteins α-actinin, talin, paxillin, and vinculin are indeed transcribed under all growth conditions, and at all developmental stages of growth. Further, analysis of the observed transcriptional patterns suggests the putative involvement of these components in alternative non-adhesion-specific functions, such as hyphal tip growth during germination and flagellar assembly during zoosporogenesis. Based on these results

  16. Organ-selective regulation of vascular adhesion protein-1 expression in man.

    PubMed

    Arvilommi, A M; Salmi, M; Jalkanen, S

    1997-07-01

    Vascular adhesion protein-1 (VAP-1) is an endothelial molecule which mediates lymphocyte binding to endothelium in peripheral lymph nodes and at certain sites of inflammation. The expression of VAP-1 in vivo is strongly up-regulated in inflamed tissues, such as gut and skin. The purpose of this work was to examine the factors responsible for this induction of VAP-1. Since the expression of VAP-1 could not be induced in cultured endothelial cells with a large panel of mediators, we used an organ culture technique for the investigation of the regulation of VAP-1 expression in a more physiological micromilieu. Indeed, we found that the expression of endothelial VAP-1 could be up-regulated in human tonsillar tissue with interleukin (IL)-1, IL-4, tumor necrosis factor (TNF-alpha), interferon (IFN)-gamma and lipopolysaccharide, whereas histamine, thrombin, dibutyryl cAMP, N-formyl-Met-Leu-Phe (fMLP) and phorbol 12-myristate 13-acetate (PMA) had no effect. The induced VAP-1 protein was similar in molecular weight to the non-induced VAP-1, suggesting that VAP-1 synthesized de novo carries appropriate carbohydrate moieties. In contrast to tonsil organ culture, similar inductions performed with human appendix showed no up-regulation of VAP-1 expression, indicating that the regulation of VAP-1 expression exhibits organ-selective characteristics. Furthermore, in these tissues the smooth muscle cells, which constitutively express VAP-1, could not be stimulated to alter their level of expression of this molecule. In conclusion, the expression of VAP-1 can be markedly up-regulated with several mediators in tonsil but not in appendix organ culture, whereas cultured endothelial cells cannot be induced to express VAP-1. These results indicate that the expression of VAP-1 is regulated in a tissue- and cell type-selective manner, and a correct micromilieu is required for the up-regulation to occur. PMID:9247594

  17. Anti-neutrophil cytoplasmic antibody-enriched IgG induces adhesion of human T lymphocytes to extracellular matrix proteins.

    PubMed

    Tomer, Y; Lider, O; Gilburd, B; Hershkoviz, R; Meroni, P L; Wiik, A; Shoenfeld, Y

    1997-06-01

    Recent studies have shown that anti-neutrophil cytoplasmic antibodies (ANCA) can activate neutrophils to adhere to endothelium, degranulate, and cause endothelial cell injury. These data have lead to the hypothesis that the T cell inflammatory response causing the vasculitis in Wegener's granulomatosis (WG) is secondary to stimulation of neutrophils by ANCA. So far there is no evidence for a direct effect of ANCA on lymphocytes. The present study was designed to examine whether lymphocytes can be directly stimulated by ANCA to adhere to endothelial extracellular matrix (ECM) proteins. Human and mouse ANCA-enriched IgG were tested for their ability to increase adhesion of human T lymphocytes to fibronectin, laminin, and intact ECM. Incubation of human T lymphocytes with human ANCA-enriched IgG increased adhesion of the lymphocytes in a dose-dependent manner to fibronectin, laminin, and intact ECM (the percentage adhesion to intact ECM was 55.7 +/- 3.1 and 45.0 +/- 1.0% for lymphocytes incubated with human IgG containing ANCA or control human IgG, respectively; P = 0.0045). The same induction of adhesion to fibronectin, laminin, and intact ECM was observed when the cells were incubated with the F(ab)2 fragment of ANCA-enriched IgG. Similarly, ANCA-enriched IgG produced in mice increased the adhesion of lymphocytes to fibronectin (the percentage adhesion to fibronectin was 29.7 +/- 4.3 and 16.6 +/- 1.9% for lymphocytes incubated with mouse IgG-ANCA or control mouse IgG, respectively; P = 0.0008). These results may suggest that ANCA can directly stimulate lymphocytes to adhere to endothelial ECM and to induce the vasculitic lesions of WG. It remains to be shown by which mechanisms ANCA stimulate lymphocytes to adhere to ECM. PMID:9175913

  18. Metastasis-promoting anterior gradient 2 protein has a dimeric thioredoxin fold structure and a role in cell adhesion.

    PubMed

    Patel, Pryank; Clarke, Christopher; Barraclough, Dong Liu; Jowitt, Thomas Adam; Rudland, Philip Spencer; Barraclough, Roger; Lian, Lu-Yun

    2013-03-11

    Anterior gradient 2 (AGR2) is a normal endoplasmic reticulum protein that has two important abnormal functions, amphibian limb regeneration and human cancer metastasis promotion. These normal intracellular and abnormal extracellular roles can be attributed to the multidomain structure of AGR2. The NMR structure shows that AGR2 consists of an unstructured N-terminal region followed by a thioredoxin fold. The protein exists in monomer-dimer equilibrium with a K(d) of 8.83μM, and intermolecular salt bridges involving E60 and K64 within the folded domain serve to stabilize the dimer. The unstructured region is primarily responsible for the ability of AGR2 to promote cell adhesion, while dimerization is less important for this activity. The structural data of AGR2 show a separation between potential catalytic redox activity and adhesion function within the context of metastasis and development. PMID:23274113

  19. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  20. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  1. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate

    PubMed Central

    Fonar, Yuri; Gutkovich, Yoni E.; Root, Heather; Malyarova, Anastasia; Aamar, Emil; Golubovskaya, Vita M.; Elias, Sarah; Elkouby, Yaniv M.; Frank, Dale

    2011-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior–posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK–Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells. PMID:21551070

  2. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    PubMed Central

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  3. The p95-100 kDa ligand of the T cell-specific adaptor (TSAd) protein Src-homology-2 (SH2) domain implicated in TSAd nuclear import is p97 Valosin-containing protein (VCP).

    PubMed

    Marti, Francesc; King, Philip D

    2005-03-15

    T cell-specific adapter protein (TSAd) is required for normal T cell antigen receptor (TCR)-induced transcription of cytokine genes in T cells. How TSAd controls cytokine transcription is unknown. Previously, we have shown that TSAd is actively transported to the nucleus of T cells suggesting that this adapter may in part function within this cellular compartment. Nuclear translocation of TSAd is dependent upon an intact Src-homology-2 (SH2) domain and a p95-100 kDa ligand of the SH2 domain has been implicated in nuclear import. Here, using microchemical techniques, we identify p95-100 as p97 Valosin-containing protein (VCP) whose homolog in yeast is the cell division control protein, CDC48. Physical interaction between TSAd and VCP can be demonstrated between endogenous proteins in T cells. Interaction is direct and is dependent upon phosphorylation of tyrosine residue 805 of VCP that has been previously recognized as a major target of tyrosine kinase(s) involved in TCR signaling. Significantly, with the use of CDC48 mutant yeast, we demonstrate that VCP/CDC48 is required for transport of TSAd into the eukaryotic nucleus. These findings provide important insights into the mechanism of TSAd nuclear import and the role of TSAd in T cell signal transduction.

  4. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs.

    PubMed

    Mölleken, Katja; Schmidt, Eleni; Hegemann, Johannes H

    2010-11-01

    Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.

  5. Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells.

    PubMed

    Wimmer-Kleikamp, Sabine H; Nievergall, Eva; Gegenbauer, Kristina; Adikari, Samantha; Mansour, Mariam; Yeadon, Trina; Boyd, Andrew W; Patani, Neill R; Lackmann, Martin

    2008-08-01

    Signaling by Eph receptors and cell-surface ephrin ligands modulates adhesive cell properties and thereby coordinates cell movement and positioning in normal and oncogenic development. While cell contact-dependent Eph activation frequently leads to cell-cell repulsion, also the diametrically opposite response, cell-cell adhesion, is a probable outcome. However, the molecular principles regulating such disparate functions have remained controversial. We have examined cell-biologic mechanisms underlying this switch by analyzing ephrin-A5-induced cell-morphologic changes of EphA3-positive LK63 pre-B acute lymphoblastic leukemia cells. Their exposure to ephrin-A5 surfaces leads to a rapid conversion from a suspended/nonpolarized to an adherent/polarized cell type, a transition that relies on EphA3 functions operating in the absence of Eph-kinase signaling. Cell morphology change and adhesion of LK63 cells are effectively attenuated by endogenous protein tyrosine phosphatase (PTP) activity, whereby PTP inhibition and productive EphA3-phosphotyrosine signaling reverse the phenotype to nonadherent cells with a condensed cytoskeleton. Our findings suggest that Eph-associated PTP activities not only control receptor phosphorylation levels, but as a result switch the response to ephrin contact from repulsion to adhesion, which may play a role in the pathology of hematopoietic tumors. PMID:18385452

  6. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  7. Pregnancy-associated plasma protein A up-regulated by progesterone promotes adhesion and proliferation of trophoblastic cells.

    PubMed

    Wang, Jiao; Liu, Shuai; Qin, Hua-Min; Zhao, Yue; Wang, Xiao-Qi; Yan, Qiu

    2014-01-01

    Embryo implantation and development is a complex biological process for the establishment of the successful pregnancy. Progesterone is a critical factor in the regulation of embryo adhesion to uterine endometrium and proliferation. Although it has been reported that pregnancy-associated plasma protein A (PAPPA) is increased in pregnant women, the relationship between progesterone and PAPPA, and the effects of PAPPA on embryo adhesion and proliferation are still not clear. The present results showed that the serum level of progesterone and PAPPA was closely correlated by ELISA assay (p<0.01). PAPPA was detected in the villi of early embryo by RT-PCR, Western blot, immunohistochemistry and immunofluorescent staining. Moreover, PAPPA was significantly up-regulated by progesterone in trophoblastic (JAR) cells by Real-time PCR and ELISA assay (p<0.01); while the expression was decreased by the progesterone receptor inhibitor RU486. The down-regulation of PAPPA by siRNA transfection or up-regulation of PAPPA by progesterone treatment significantly decreased or increased the adhesion rate of trophoblastic cells to human uterine epithelial cell lines (RL95-2 and HEC-1A), respectively (p<0.01), as well as the proliferation of trophoblastic cells. In conclusion, PAPPA is up-regulated by progesterone, which promotes the adhesion and proliferation potential of trophoblastic cells. PMID:24817938

  8. Localization of Vascular Adhesion Protein-1 (VAP-1) in the Human Eye

    PubMed Central

    Almulki, Lama; Noda, Kousuke; Nakao, Shintaro; Hisatomi, Toshio; Thomas, Kennard L.; Hafezi-Moghadam, Ali

    2009-01-01

    Recently we showed a critical role for Vascular Adhesion Protein-1 (VAP-1) in rodents during acute ocular inflammation, angiogenesis, and diabetic retinal leukostasis. However, the expression of VAP-1 in the human eye is unknown. VAP-1 localization was investigated by immunohistochemistry. Five μm thick sections were generated from human ocular tissues embedded in paraffin. Sections were incubated overnight with primary mAbs against VAP-1 (5μg/ml), smooth muscle actin (1μg/ml), CD31 or isotype-matched IgG at 4°C. Subsequently, a secondary mAb was used for 30min at room temperature, followed by Dako Envision + HRP (AEC) System for signal detection. The stained sections were examined using light microscopy and the signal intensity was quantified by two masked evaluators and graded into 4 discrete categories. In all examined ocular tissues, VAP-1 staining was confined to the vasculature. VAP-1 labeling showed the highest intensity in both arteries and veins of neuronal tissues; retina, and optic nerve, and the lowest intensity in the iris vasculature (p<0.05). Scleral and choroidal vessels showed moderate staining for VAP-1. VAP-1 intensity was significantly higher in the arteries compared to veins (p<0.05). Furthermore, VAP-1 staining in arteries co-localized with both CD31 and smooth muscle actin (sm-actin) staining, suggesting expression of VAP-1 in endothelial cells, smooth muscle cells or potentially pericytes. In conclusion, Immunohistochemistry reveals constitutive expression of VAP-1 in human ocular tissues. VAP-1 expression is exclusive to the vasculature with arteries showing significantly higher expression than veins. Furthermore, VAP-1 expression in the ocular vasculature is heterogeneous, with the vessels of the optic nerve and the retina showing highest expressions. These results characterize VAP-1 expression in human ocular tissues. PMID:19761765

  9. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    PubMed

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.

  10. Amalgam, an axon guidance Drosophila adhesion protein belonging to the immunoglobulin superfamily: over-expression, purification and biophysical characterization.

    PubMed

    Zeev-Ben-Mordehai, Tzviya; Paz, Aviv; Peleg, Yoav; Toker, Lilly; Wolf, Sharon G; Rydberg, Edwin H; Sussman, Joel L; Silman, Israel

    2009-02-01

    Amalgam, a multi-domain member of the immunoglobulin superfamily, possesses homophilic and heterophilic cell adhesion properties. It is required for axon guidance during Drosophila development in which it interacts with the extracellular domain of the transmembrane protein, neurotactin, to promote adhesion. Amalgam was heterologously expressed in Pichia pastoris, and the secreted protein product, bearing an NH(2)-terminal His(6)Tag, was purified from the growth medium by metal affinity chromatography. Size exclusion chromatography separated the purified protein into two fractions: a major, multimeric fraction and a minor, dimeric one. Two protocols to reduce the percentage of multimers were tested. In one, protein induction was performed in the presence of the zwitterionic detergent CHAPS, yielding primarily the dimeric form of amalgam. In a second protocol, agitation was gradually reduced during the course of the induction and antifoam was added daily to reduce the air/liquid interfacial foam area. This latter protocol lowered the percentage of multimer 2-fold, compared to constant agitation. Circular dichroism measurements showed that the dimeric fraction had a high beta-sheet content, as expected for a protein with an immunoglobulin fold. Dynamic light scattering and sedimentation velocity measurements showed that the multimeric fraction displays a monodisperse distribution, with R(H)=16 nm. When co-expressed together with amalgam the ectodomain of neurotactin copurified with it. Furthermore, both purified fractions of amalgam were shown to interact with Torpedo californica acetylcholinesterase, a structural homolog of neurotactin.

  11. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function

    PubMed Central

    1984-01-01

    Fibronectin and certain polypeptide regions of this adhesive glycoprotein mediate cell attachment and spreading on various substrates. We explored the theoretical prediction that this adhesive protein could become a competitive inhibitor of fibronectin-mediated processes if present in solution at appropriately high concentrations. Fibronectin function was inhibited by purified plasma fibronectin at 5- 10 mg/ml, by a 75,000-dalton cell-interaction fragment of the protein at 0.5-1 mg/ml, and even by two synthetic peptides containing a conserved, hydrophilic amino acid sequence at 0.1-0.5 mg/ml. Inhibition of fibronectin-dependent cell spreading was dose dependent, noncytotoxic, and reversible. It was competitive in nature, since increased quantities of substrate-adsorbed fibronectin or longer incubation periods decreased the inhibition. A peptide inhibitory for fibronectin-mediated cell spreading also inhibited fibronectin-mediated attachment of cells to type I collagen, but it did not affect concanavalin A-mediated spreading. These results demonstrate the potential of a cell adhesion molecule and its biologically active peptide fragments to act as competitive inhibitors, and they suggest that fibronectin may act by binding to a saturable cell surface receptor. PMID:6736130

  12. Regulation of phosphorylation level and distribution of PTP36, a putative protein tyrosine phosphatase, by cell-substrate adhesion.

    PubMed

    Ogata, M; Takada, T; Mori, Y; Uchida, Y; Miki, T; Okuyama, A; Kosugi, A; Sawada, M; Oh-hora, M; Hamaoka, T

    1999-07-16

    Recently we have cloned a putative protein tyrosine phosphatase, PTP36/PTPD2/pez, which possesses a domain homologous to the N-terminal half of band 4.1 protein. In mouse fibroblasts adhered to substrates, PTP36 was phosphorylated on serine residues. PTP36 was found to make complexes with serine/threonine kinase(s), which phosphorylated PTP36 in vitro. PTP36 was dephosphorylated rapidly when the cell-substrate adhesion was disrupted and it was phosphorylated again along with the reattachment of the cells to fibronectin. Rephosphorylation of PTP36 seemed to depend on actin polymerization since it was inhibited by cytochalasin D. The cell detachment also induced the translocation of PTP36 into the membrane-associated cytoskeletal fraction. Staurosporine and ML-9, which inhibited the phosphorylation of PTP36 in vivo, induced the translocation of PTP36 too. On the contrary, when the dephosphorylation of PTP36 was inhibited by okadaic acid, no translocation of PTP36 was induced by the cell detachment. These results demonstrate that the cell-substrate adhesion and cell spreading regulates the intracellular localization of PTP36 most likely through its phosphorylation and therefore, PTP36 may play important roles in the signal transduction pathway of cell-adhesion. PMID:10400706

  13. Poly(ethylene glycol) grafting to poly(ether imide) membranes: influence on protein adsorption and thrombocyte adhesion.

    PubMed

    Neffe, Axel T; von Ruesten-Lange, Maik; Braune, Steffen; Luetzow, Karola; Roch, Toralf; Richau, Klaus; Jung, Friedrich; Lendlein, Andreas

    2013-12-01

    The chain length and end groups of linear PEG grafted on smooth surfaces is known to influence protein adsorption and thrombocyte adhesion. Here, it is explored whether established structure function relationships can be transferred to application relevant, rough surfaces. Functionalization of poly(ether imide) (PEI) membranes by grafting with monoamino PEG of different chain lengths (Mn  =1 kDa or 10 kDa) and end groups (methoxy or hydroxyl) is proven by spectroscopy, changes of surface hydrophilicity, and surface shielding effects. The surface functionalization does lead to reduction of adsorption of BSA, but not of fibrinogen. The thrombocyte adhesion is increased compared to untreated PEI surfaces. Conclusively, rough instead of smooth polymer or gold surfaces should be investigated as relevant models. PMID:24167100

  14. Mechanism of adhesion between protein-based hydrogels and plasma treated polypropylene backing

    NASA Astrophysics Data System (ADS)

    Snyders, Rony; Zabeida, Oleg; Roberges, Christophe; Shingel, Kirill I.; Faure, Marie-Pierre; Martinu, Ludvik; Klemberg-Sapieha, Jolanta E.

    2007-01-01

    We studied the mechanism of adhesion between N 2 plasma treated polypropylene (PP/N 2) backing and a hybrid hydrogel (HG) produced by chemical crosslinking between poly(ethylene glycol) and soy albumin. The work of adhesion, measured by peel testing, was found to be 25 times higher for PP/N 2 compared to untreated PP (≈5.0 J/m 2 versus ≈0.2 J/m 2). In order to understand the adhesion mechanism, we performed a detailed analysis of the surface chemical composition of PP and PP/N 2 using X-ray photoelectron spectroscopy (XPS), chemical derivatization and attenuated total reflectance infra-red (ATR-IR) measurements. The results confirm incorporation of different nitrogen- (amine, amide,…) and oxygen- (hydroxyl, carboxyl,…) containing chemical groups on the PP/N 2 surface. The derivatized functions were primary amine, hydroxyl, carboxyl and carbonyl groups. Chemical derivatization reactions validated the XPS results (except for carbonyl groups), and they clearly underlined the essential role of primary amine groups in the adhesion process. In fact, after derivatization of the amine functions, the work of adhesion was found to be 0.41 ± 0.12 J/m 2. Participation of amine groups in the formation of covalent bonds at the interface between PP/N 2 and HG was directly confirmed by ATR-IR measurements.

  15. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    PubMed Central

    2012-01-01

    Background In nature, mussel adhesive proteins (MAPs) show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa) and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate the use of functional MAPs in

  16. N-Ethylmaleimide-sensitive Factor Attachment Protein α (αSNAP) Regulates Matrix Adhesion and Integrin Processing in Human Epithelial Cells*

    PubMed Central

    Naydenov, Nayden G.; Feygin, Alex; Wang, Lifu; Ivanov, Andrei I.

    2014-01-01

    Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of β1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates β1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells. PMID:24311785

  17. The Mitochondrial Fission Adaptors Caf4 and Mdv1 Are Not Functionally Equivalent

    PubMed Central

    Guo, Qian; Koirala, Sajjan; Perkins, Edward M.; McCaffery, J. Michael; Shaw, Janet M.

    2012-01-01

    Mitochondrial fission in eukaryotes is mediated by protein complexes that encircle and divide mitochondrial tubules. In budding yeast, fission requires the membrane-anchored protein Fis1 and the dynamin-related GTPase Dnm1. Dnm1 is recruited to mitochondria via interactions with the adaptor proteins Caf4 and Mdv1, which bind directly to Fis1. Unlike Mdv1, a function for Caf4 in mitochondrial membrane scission has not been established. In this study, we demonstrate that Caf4 is a bona fide fission adaptor that assembles at sites of mitochondrial division. We also show that fission complexes may contain Caf4 alone or both Caf4 and Mdv1 without compromising fission function. Although there is a correspondence between Caf4 and Mdv1 expression levels and their contribution to fission, the two adaptor proteins are not equivalent. Rather, our functional and phylogenetic analyses indicate that Caf4 mitochondrial fission activity has diverged from that of Mdv1. PMID:23300936

  18. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry.

  19. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. PMID:26709174

  20. Circulating renalase, catecholamines, and vascular adhesion protein 1 in hypertensive patients.

    PubMed

    Maciorkowska, Dominika; Zbroch, Edyta; Malyszko, Jolanta

    2015-11-01

    The aim of the study was to estimate and correlate circulating levels of renalase, vascular adhesion protein-1 (VAP-1), catecholamines in patients with primary hypertension. The renalase, VAP-1, and catecholamines concentration was estimated in 121 hypertensive patients. The correlation between renalase, VAP-1 levels and catecholamine concentration in blood, blood pressure control, pharmacological therapy, and medical history were taken in to consideration. The median office blood pressure was 145.5/86 mm Hg and was significantly higher than the median home blood pressure measurement value, which was 135/80 mm Hg, P < .05. Circulating renalase and VAP-1 (Me 9.57 μg/mL and Me = 326.7 ng/mL) levels were significantly higher in patients with hypertension comparing to healthy individuals (3.83 μg/mL and 248.37 ng/mL, P < .05). The correlation between renalase and noradrenalin concentration in blood was observed (r = 0.549; P < .05), also the correlation between VAP-1 and noradrenaline was noticed (r = 0.21, P = .029). Renalase level was higher in patients with coronary artery disease and correlated with decreased ejection fraction. VAP-1 concentration correlated also with left ventricular ejection fraction (r = -0.23, P = .013). Hypertensive patients with diabetes mellitus had almost statistically significant higher VAP-1 concentration compared with hypertensive patients without diabetes mellitus (Me = 403.22 ng/mL vs. Me = 326,68 ng/mL, P = .064). In multiple regression analysis, renalase was predicted by plasma dopamine and norepinephrine as also diastolic office blood pressure and left ventricle ejection fraction. Circulating renalase and VAP-1 levels are elevated in patients with poor blood pressure control. Its correlation with noradrenalin concentration need further studies to find out the role of renalase as also VAP-1 in pathogenesis and treatment of hypertension.

  1. Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts

    PubMed Central

    Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M.; Önel, Susanne-Filiz

    2013-01-01

    Summary The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell–cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar– or Vrp1–WASp-dependent Arp2/3 activation. PMID:22992459

  2. Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts.

    PubMed

    Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz

    2013-01-01

    The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.

  3. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  4. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  5. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  6. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    PubMed Central

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  7. In-situ coupling between kinase activities and protein dynamics within single focal adhesions.

    PubMed

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  8. Mechanism for Adhesion G Protein-Coupled Receptor GPR56-Mediated RhoA Activation Induced By Collagen III Stimulation

    PubMed Central

    Luo, Rong; Jeong, Sung-Jin; Yang, Annie; Wen, Miaoyun; Saslowsky, David E.; Lencer, Wayne I.; Araç, Demet; Piao, Xianhua

    2014-01-01

    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Despite the importance of GPR56 in brain development, where mutations cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), the signaling mechanism(s) remain largely unknown. Like many other adhesion GPCRs, GPR56 is cleaved via a GPCR autoproteolysis-inducing (GAIN) domain into N- and C-terminal fragments (GPR56N and GPR56C); however, the biological significance of this cleavage is elusive. Taking advantage of the recent identification of a GPR56 ligand and the presence of BFPP-associated mutations, we investigated the molecular mechanism of GPR56 signaling. We demonstrate that ligand binding releases GPR56N from the membrane-bound GPR56C and triggers the association of GPR56C with lipid rafts and RhoA activation. Furthermore, one of the BFPP-associated mutations, L640R, does not affect collagen III-induced lipid raft association of GPR56. Instead, it specifically abolishes collagen III-mediated RhoA activation. Together, these findings reveal a novel signaling mechanism that may apply to other members of the adhesion GPCR family. PMID:24949629

  9. Influence of blood proteins in the in vitro adhesion of Staphylococcus epidermidis to teflon, polycarbonate, polyethylene and bovine pericardium.

    PubMed

    Carballo, J; Ferreirós, C M; Criado, M T

    1991-12-01

    The influence of human plasma proteins (fibrinogen, albumin and fibronectin) on the adherence of Staphylococcus epidermis to teflon, polyethylene, polycarbonate and bovine pericardium was studied in an in vitro quantitative assay by scintillation counting. Bacterial adhesion was generally reduced by the presence of protein during the adherence assay except in the case of bovine pericardium, in which adherence remained almost unaffected. The effect of these plasma proteins on bacterial surface properties resulted in strong increases of surface charge as measured by ion-exchange chromatography and with no effect on hydrophobicity, estimated as contact angles. Adherence was not found to be correlated with these two properties, suggesting that bacteria-surface interactions must not be simplified to the influence of interfacial forces. PMID:1812542

  10. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein).

    PubMed

    Reinhard, M; Jouvenal, K; Tripier, D; Walter, U

    1995-08-15

    VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.

  11. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein).

    PubMed Central

    Reinhard, M; Jouvenal, K; Tripier, D; Walter, U

    1995-01-01

    VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 PMID:7644520

  12. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbt