Science.gov

Sample records for adhesion cell cycle

  1. 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly

    PubMed Central

    Cadwalader, Erin L.; Condic, Maureen L.; Yost, H. Joseph

    2012-01-01

    O-sulfotransferases modify heparan sulfate proteoglycans (HSPGs) by catalyzing the transfer of a sulfate to a specific position on heparan sulfate glycosaminoglycan (GAG) chains. Although the roles of specific HSPG modifications have been described in cell culture and invertebrates, little is known about their functions or abilities to modulate specific cell signaling pathways in vertebrate development. Here, we report that 2-O-sulfotransferase (2-OST) is an essential component of canonical Wnt signaling in zebrafish development. 2-OST-defecient embryos have reduced GAG chain sulfation and are refractory to exogenous Wnt8 overexpression. Embryos in which maternally encoded 2-OST is knocked down have normal activation of several zygotic mesoderm, endoderm and ectoderm patterning genes, but have decreased deep cell adhesion and fail to initiate epiboly, which can be rescued by re-expression of 2-OST protein. Reduced cell adhesion and altered cell cycle regulation in 2-OST-deficient embryos are associated with decreased β-catenin and E-cadherin protein levels at cell junctions, and these defects can be rescued by reactivation of the intracellular Wnt pathway, utilizing stabilized β-catenin or dominant-negative Gsk3, but not by overexpression of Wnt8 ligand. Together, these results indicate that 2-OST functions within the Wnt pathway, downstream of Wnt ligand signaling and upstream of Gsk3β and β-catenin intracellular localization and function. PMID:22357927

  2. Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion

    PubMed Central

    Lin, Yihan; Crosson, Sean; Scherer, Norbert F

    2010-01-01

    Sensor histidine kinases underlie the regulation of a range of physiological processes in bacterial cells, from chemotaxis to cell division. In the gram-negative bacterium Caulobacter crescentus, the membrane-bound histidine kinase, DivJ, is a polar-localized regulator of cell cycle progression and development. We show that DivJ localizes to the cell pole through a dynamic diffusion and capture mechanism rather than by active localization. Analysis of single C. crescentus cells in microfluidic culture demonstrates that controlled expression of divJ permits facile tuning of both the mean and noise of the cell division period. Simulations of the cell cycle that use a simplified protein interaction network capture previously measured oscillatory protein profiles, and recapitulate the experimental observation that deletion of divJ increases the cell cycle period and noise. We further demonstrate that surface adhesion and swarming motility of C. crescentus in semi-solid media can also be tuned by divJ expression. We propose a model in which pleiotropic control of polar cell development by the DivJ–DivK–PleC signaling pathway underlies divJ-dependent tuning of cell swarming and adhesion behaviors. PMID:21179017

  3. Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts.

    PubMed

    Nagel, Marie-Danielle; Verhoef, René; Schols, Henk; Morra, Marco; Knox, J Paul; Ceccone, Giacomo; Della Volpe, Claudio; Vigneron, Pascale; Bussy, Cyrill; Gallet, Marlène; Velzenberger, Elodie; Vayssade, Muriel; Cascardo, Giovanna; Cassinelli, Clara; Haeger, Ash; Gilliland, Douglas; Liakos, Ioannis; Rodriguez-Valverde, Miguel; Siboni, Stefano

    2008-01-01

    Improved biocompatibility and performance of biomedical devices can be achieved through the incorporation of bioactive molecules on device surfaces. Five structurally distinct pectic polysaccharides (modified hairy regions (MHRs)) were obtained by enzymatic liquefaction of apple (MHR-B, MHR-A and MHR-alpha), carrot (MHR-C) and potato (MHR-P) cells. Polystyrene (PS) Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of the MHRs. Results clearly demonstrate that MHR-B induces cell adhesion, proliferation and survival, in contrast to the other MHRs. Moreover, MHR-alpha causes cells to aggregate, decrease proliferation and enter into apoptosis. Cells cultured in standard conditions with 1% soluble MHR-B or MHR-alpha show the opposite behaviour to the one observed on MHR-B and -alpha-grafted PS. Fibronectin was similarly adsorbed onto MHR-B and tissue culture polystyrene (TCPS) control, but poorly on MHR-alpha. The Fn cell binding site (RGD sequence) was more accessible on MHR-B than on TCPS control, but poorly on MHR-alpha. The disintegrin echistatin inhibited fibroblast adhesion and spreading on MHR-B-grafted PS, which suggests that MHRs control fibroblast behaviour via serum-adhesive proteins. This study provides a basis for the design of intelligently-tailored biomaterial coatings able to induce specific cell functions.

  4. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  5. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  6. Cell Cycle Control and Adhesion Molecule Expression in Cells of the Immune System are Sensitive to Altered Gravity

    NASA Astrophysics Data System (ADS)

    Ullrich, O.; Paulsen, K.; Thiel, C.; Herrmann, K.; Sang, C.; Han, G.; Hemmersbach, R.; von der Wiesche, M.; Kroll, H.; Zhuang, F.; Grote, K. H.; Cogoli, A.; Zipp, F.; Engelmann, F.

    2008-06-01

    Life on earth developed in the presence and under the constant influence of gravity. Thus, it is a fundamental biological question, whether gravity is required for cellular functions and signal transduction in mammalian cells. Since the first Spacelab-Mission 20 years ago, it is known that activation and function of T lymphocytes is severely suppressed in microgravity, but the underlying molecular mechanisms are not elucidated. Experiments have been performed using ground-based facilities such as fast-rotating clinostat and hyper-g-centrifuges, and real microgravity provided by parabolic flights. We found that 1.) cells of the immune system responded cell type specifically to altered gravity, 2.) microgravity induced a multitude of initial alterations in signal transduction, whereas 3.) hypergravity of 1.8g did not induce any changes of the pathways tested, and that 4.) most of the initially altered pathways in microgravity adapted to "normal" levels within 15min. However, some pathways remained altered and could explain cell cycle arrest of T lymphocytes as observed in several long-term space experiments.

  7. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas

    PubMed Central

    Lwin, Tint; Hazlehurst, Lori A.; Dessureault, Sophie; Lai, Raymond; Bai, Wenlong; Sotomayor, Eduardo; Moscinski, Lynn C.; Dalton, William S.

    2007-01-01

    Mounting evidence suggests that dynamic interactions between a tumor and its microenvironment play a critical role in tumor development, cell-cycle progression, and response to therapy. In this study, we used mantle cell lymphoma (MCL) as a model to characterize the mechanisms by which stroma regulate cell-cycle progression. We demonstrated that adhesion of MCL and other non-Hodgkin lymphoma (NHL) cells to bone marrow stromal cells resulted in a reversible G1 arrest associated with elevated p27Kip1 and p21 (WAF1) proteins. The adhesion-mediated p27Kip1 and p21 increases were posttranslationally regulated via the down-regulation of Skp2, a subunit of SCFSkp2 ubiquitin ligase. Overexpression of Skp2 in MCL decreased p27Kip1, whereas inhibition of Skp2 by siRNA increased p27Kip1 and p21 levels. Furthermore, we found cell adhesion up-regulated Cdh1 (an activating subunit of anaphase-promoting complex [APC] ubiquitin ligase), and reduction of Cdh1 by siRNA induced Skp2 accumulation and hence p27Kip1 degradation, thus implicating Cdh1 as an upstream effector of the Skp2/p27Kip1 signaling pathway. Overall, this report, for the first time, demonstrates that cell-cell contact controls the tumor cell cycle via ubiquitin-proteasome proteolytic pathways in MCL and other NHLs. The understanding of this novel molecular pathway may prove valuable in designing new therapeutic approaches for modifying tumor cell growth and response to therapy. PMID:17502456

  8. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion.

    PubMed

    Gupta, Abhilasha; Nitoiu, Daniela; Brennan-Crispi, Donna; Addya, Sankar; Riobo, Natalia A; Kelsell, David P; Mahoney, Mỹ G

    2015-01-01

    Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.

  9. Cell Cycle- and Cancer-Associated Gene Networks Activated by Dsg2: Evidence of Cystatin A Deregulation and a Potential Role in Cell-Cell Adhesion

    PubMed Central

    Gupta, Abhilasha; Nitoiu, Daniela; Brennan-Crispi, Donna; Addya, Sankar; Riobo, Natalia A.; Kelsell, David P.; Mahoney, Mỹ G.

    2015-01-01

    Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome. PMID:25785582

  10. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  11. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  12. A comparative study of the cell cycle status and primitive cell adhesion molecule profile of human CD34+ cells cultured in stroma-free versus porcine microvascular endothelial cell cultures.

    PubMed

    Chute, J P; Saini, A A; Kampen, R L; Wells, M R; Davis, T A

    1999-02-01

    Porcine microvascular endothelial cells (PMVECs) plus cytokines support a rapid proliferation and expansion of human CD34+CD38- cells that are capable of multilineage engraftment within the bone marrow of a secondary host. CD34+CD38- cells contain the self-renewing, long-term culture-initiating cells (LTC-IC) that are ideal targets for retroviral gene transfer experiments. Previous experiments attempting retroviral infection of CD34+CD38- cells have failed partly because these cells do not enter cell cycle in response to cytokine combinations. In this study, we determined the cell cycle status and the cell adhesion molecule profile on purified CD34+ cells and the CD34+CD38- subset before and after ex vivo expansion on PMVECs. Purified human CD34+ cells were cocultured with PMVECs for 7 days in the presence of optimal concentrations of granulocyte/macrophage-colony-stimulating factor (GM-CSF) + interleukin (IL)-3 + IL-6 + stem cell factor (SCF) + Flt-3 ligand. The total CD34+ population and the CD34+CD38- subset increased 8.4- and 67-fold, respectively, with absolute increases in the number of colony-forming unit-granulocyte macrophage (CFU-GM) (28.2-fold), CFU-Mix (8.7 fold), and burst-forming unit-erythroid (BFU-E) (4.0-fold) progenitor cells. After 7 days of coculture with PMVECs, 44% of the CD34+CD38+ subset were found to be in G1, and 51% were in G2/S/M phase of the cell cycle. More remarkably, 53% of the CD34+CD38- subset were in G1, and 17% were in G2/S/M phase after 7 days of PMVEC coculture. In contrast, only 22% of the CD34+CD38- subset remaining after 7 days of stroma-free culture were in G1, and 6% were in G2/S/M phase. Despite the high level of cellular activation and proliferation induced by PMVEC coculture, the surface expression of adhesion molecules CD11a (LFA-1), CD11b, CD15s (sialyl-Lewis x), CD43, and CD44 (HCAM) on the total CD34+ population was maintained, and the surface expression of CD49d (VLA-4), CD54 (ICAM), CD58, and CD62L (L selectin

  13. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  14. Cell adhesion: integrating cytoskeletal dynamics and cellular tension

    PubMed Central

    Parsons, J. Thomas; Horwitz, Alan Rick; Schwartz, Martin A.

    2010-01-01

    Cell migration affects all morphogenetic processes and contributes to numerous diseases, including cancer and cardiovascular disease. For most cells in most environments, movement begins with protrusion of the cell membrane followed by the formation of new adhesions at the cell front that link the actin cytoskeleton to the substratum, generation of traction forces that move the cell forwards and disassembly of adhesions at the cell rear. Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics. PMID:20729930

  15. Mechanics of Nascent Cell Adhesions

    NASA Astrophysics Data System (ADS)

    Mejean, Cecile O.; Schaefer, Andrew W.; Forscher, Paul; Dufresne, Eric R.

    2009-03-01

    Cells have the ability to sense and respond to mechanical and biochemical cues from their environment. In neurons, the binding and restraint of transmembrane cell adhesion molecules (CAMs) can trigger acute periods of axon growth. Preceding growth, the cell must create a stiff mechanical linkage between the CAM and the cytoskeleton. Using holographic optical tweezers, we manipulate CAM-coated beads on the membrane of the cell. We investigate the dynamics of the mechanical properties of this linkage as a function of time, applied force, and CAM density. We find that CAM-coated beads exhibit stochastic intermittent binding to the cytoskeleton. In time, we observed that the adhesions stiffen and their mechanical properties depend on the applied force. Treatment of cells with small molecules that alter cytoskeletal dynamics are used to probe the roles of actin filament assembly and myosin motor activity in adhesion formation.

  16. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  17. Cell-Cell Adhesion and Breast Cancer.

    DTIC Science & Technology

    1998-01-01

    Staging of breast cancer. In: K.I. Bland and E.M. Copeland (eds.), The breast: Comprehensive management of benign and malignant diseases , pp. 313-330... desmosomes . The physical strength of adhesion between two cells is likely to be dependent upon a number of factors, including the number of adhesion

  18. Sodium phenylacetate (NaPa) induces modifications of the proliferation, the adhesion and the cell cycle of tumoral epithelial breast cells.

    PubMed

    Thibout, D; Kraemer, M; Di Benedetto, M; Saffar, L; Gattegno, L; Derbin, C; Crépin, M

    1999-01-01

    Sodium phenylacetate (NaPa), a physiological product of phenylalanine metabolism, present in micromolar concentrations in human plasma, has been shown to induce in vivo and in vitro cytostatic antiproliferative effects at millimolar concentrations. Cadherin molecules are powerful invasion suppressor molecules and the reduction of E-cadherin expression plays an important role in the invasion and metastasis of human breast cancer. In this study, we demonstrated, on one hand, that NaPa stimulated aggregation by increasing the expression of E-cadherin at the surface of breast cancer MCF-7ras cells transformed by Ha-ras oncogene and inhibited its expression in MCF-7 cells. We demonstrated that NaPa increased the formation of MCF-7ras cell aggregates and did not alter the formation of MCF-7 cell aggregates. By Northern blot, we demonstrated that the E-cadherin expression was not regulated at the transcriptional level. On the other hand, we analyzed the cell cycle of these 2 cell lines after NaPa treatment and showed that NaPa induced arrest at the G1/S phase in both MCF-7 and MCF-7ras cells. bFGF increased the growth of MCF-7 cells, but inhibited MCF-7ras cell proliferation. NaPa treatment suppressed the stimulation of MCF-7 cell proliferation and increased MCF-7ras cell growth inhibition. We have demonstrated a new target of NaPa action in blocking the cell cycle of tumor cells in G0/G1. We suggest that the anti-proliferative effect of NaPa associated to the restoration of the cadherin function in human mammary carcinoma cells indicates that NaPa could be a novel therapeutic agent in breast cancer.

  19. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  20. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  1. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  2. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  3. The microbial cell cycle

    SciTech Connect

    Nurse, P.; Streiblova, E.

    1984-01-01

    This book concentrates on the major problems of cell cycle control in microorganisms. A wide variety of microorganisms, ranging from bacteria and yeasts to hyphal fungi, algae, and ciliates are analyzed, with emphasis on the basic similarities among the organisms. Different ways of looking at cell cycle control which emphasize aspects of the problem such as circadian rhythms, limit cycle oscillators, and cell size models, are considered. New approaches such as the study of cell cycle mutants, and cloning of cell cycle control genes are also presented.

  4. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  5. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  6. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin

    PubMed Central

    Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.

    2015-01-01

    ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809

  7. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  8. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins.

    PubMed

    Yuan, Dongdong; Sun, Guoliang; Zhang, Rui; Luo, Chenfang; Ge, Mian; Luo, Gangjian; Hei, Ziqing

    2015-11-01

    Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.

  9. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  10. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  11. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  12. Life cycle assessment of Japanese high-temperature conductive adhesives.

    PubMed

    Andrae, Anders S G; Itsubo, Norihiro; Yamaguchi, Hiroshi; Inaba, Atsushi

    2008-04-15

    The electrically conductive adhesives (ECA) are on the verge of a breakthrough as reliable interconnection materials for electronic components. As the ban of lead (Pb) in the electronics industry becomes a reality, the ECA's could be attractive overall alternatives to high melting point (HMP) Pb-based solder pastes. Environmental life cycle assessment (LCA) was used to estimate trade-offs between the energy use and the potential toxicity of two future types of ECA's and one HMP Pb-based. The probability is around 90% that the overall CO2 emissions from an ECA based on a tin-bismuth alloy are lower than for a silver-epoxy based ECA, whereas the probability is about 80% that the cumulative energy demand would be lower. It is more uncertain whether the tin-bismuth ECA would contribute to less CO2, or consume less energy, than a HMP Pb-based solder paste. Moreover, for the impact categories contributing to the life-cycle impact assessment method based on end point modeling (LIME) damage category of human health, the tin-bismuth ECA shows a 25 times lower score, and a silver-epoxy based ECA shows an 11 times lower score than the HMP Pb-based solder paste. In order to save resources and decrease CO2 emissions it is recommended to increase the collection and recycling of printed board assemblies using silver-epoxy based ECA.

  13. Multi-scale models for cell adhesion

    NASA Astrophysics Data System (ADS)

    Wu, Yinghao; Chen, Jiawen; Xie, Zhong-Ru

    2014-03-01

    The interactions of membrane receptors during cell adhesion play pivotal roles in tissue morphogenesis during development. Our lab focuses on developing multi-scale models to decompose the mechanical and chemical complexity in cell adhesion. Recent experimental evidences show that clustering is a generic process for cell adhesive receptors. However, the physical basis of such receptor clustering is not understood. We introduced the effect of molecular flexibility to evaluate the dynamics of receptors. By delivering new theory to quantify the changes of binding free energy in different cellular environments, we revealed that restriction of molecular flexibility upon binding of membrane receptors from apposing cell surfaces (trans) causes large entropy loss, which dramatically increases their lateral interactions (cis). This provides a new molecular mechanism to initialize receptor clustering on the cell-cell interface. By using the subcellular simulations, we further found that clustering is a cooperative process requiring both trans and cis interactions. The detailed binding constants during these processes are calculated and compared with experimental data from our collaborator's lab.

  14. Cell cycle effects of drugs

    SciTech Connect

    Dethlefsen, L.A.

    1986-01-01

    This book contains 11 chapters. Some of the chapter titles are: Cell Growth and Division Cycle; Cell Cycle Effects of Alkylating Agents; Biological Effects of Folic Acid Antagonists with Antineoplastic Activity; and Bleomycin-Mode of Action with Particular Reference to the Cell Cycle.

  15. Force nanoscopy of cell mechanics and cell adhesion

    NASA Astrophysics Data System (ADS)

    Dufrêne, Yves F.; Pelling, Andrew E.

    2013-05-01

    Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.

  16. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  17. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    PubMed

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-02-25

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  18. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  19. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns.

    PubMed

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  20. How do prokaryotic cells cycle?

    PubMed

    Margolin, William; Bernander, Rolf

    2004-09-21

    This issue of Current Biology features five reviews covering various key aspects of the eukaryotic cell cycle. The topics include initiation of chromosome replication, assembly of the mitotic spindle, cytokinesis, the regulation of cell-cycle progression, and cell-cycle modeling, focusing mainly on budding yeast, fission yeast and animal cell model systems. The reviews underscore common themes as well as key differences in the way these processes are carried out and regulated among the different model organisms. Consequently, an important question is how cell-cycle mechanisms and controls have evolved, particularly in the broader perspective of the three domains of life.

  1. Cell substratum adhesion during early development of Dictyostelium discoideum.

    PubMed

    Tarantola, Marco; Bae, Albert; Fuller, Danny; Bodenschatz, Eberhard; Rappel, Wouter-Jan; Loomis, William F

    2014-01-01

    Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.

  2. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  3. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    NASA Astrophysics Data System (ADS)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  4. Molecular markers of cell adhesion in ameloblastomas. An update

    PubMed Central

    González-González, Rogelio; Molina-Frechero, Nelly; Damian-Matsumura, Pablo

    2014-01-01

    Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets. Key words:Ameloblastoma, cellular adhesion, molecular markers, cell-cell adhesion, extracellular matrix-cell adhesion. PMID:23986011

  5. Cell Adhesion in Epidermal Development and Barrier Formation

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2015-01-01

    Cell–cell adhesions are necessary for structural integrity and barrier formation of the epidermis. Here, we discuss insights from genetic and cell biological studies into the roles of individual cell–cell junctions and their composite proteins in regulating epidermal development and function. In addition to individual adhesive functions, we will discuss emerging ideas on mechanosensation/transduction of junctions in the epidermis, noncanonical roles for adhesion proteins, and crosstalk/interdependencies between the junctional systems. These studies have revealed that cell adhesion proteins are connected to many aspects of tissue physiology including growth control, differentiation, and inflammation. PMID:25733147

  6. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    PubMed

    Cremaschi, Paolo; Oliverio, Matteo; Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  7. Cell adhesion molecules: detection with univalent second antibody

    PubMed Central

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens. PMID:6970200

  8. The Abbreviated Pluripotent Cell Cycle

    PubMed Central

    Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K.; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary

    2013-01-01

    Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. PMID:22552993

  9. The abbreviated pluripotent cell cycle.

    PubMed

    Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary

    2013-01-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.

  10. Effect of channel geometry on cell adhesion in microfluidic devices.

    PubMed

    Green, James V; Kniazeva, Tatiana; Abedi, Mehdi; Sokhey, Darshan S; Taslim, Mohammad E; Murthy, Shashi K

    2009-03-07

    Microfluidic channels coated with ligands are a versatile platform for the separation or enrichment of cells from small sample volumes. This adhesion-based mode of separation is mediated by ligand-receptor bonds between the cells and channel surface and also by fluid shear stress. This paper demonstrates how aspects of microchannel geometry can play an additional role in controlling cell adhesion. With a combination of computational fluid dynamics modeling and cell adhesion experiments, channels with sharp turns are shown to have regions with near-zero velocity at the turn regions where large numbers of cells adhere or become collected. The lack of uniform adhesion in the turn regions compared to other regions of these channels, together with the large variability in observed cell adhesion indicates that channels with sharp turns are not optimal for cell-capture applications where predictable cell adhesion is desired. Channels with curved turns, on the other hand are shown to provide more uniform and predictable cell adhesion provided the gap between parallel arms of the channels is sufficiently wide. The magnitude of cell adhesion in these curved channels is comparable to that in straight channels with no turns.

  11. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    PubMed Central

    Mintz, K P; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found to be time dependent and increased linearly with increasing numbers of bacteria added. Variation in the level of adhesion was noted among strains of A. actinomycetemcomitans. Adhesion was not significantly altered by changes in pH (from pH 5 to 9) but was sensitive to sodium chloride concentrations greater than 0.15 M. Pooled human saliva was inhibitory for adhesion when bacteria were pretreated with saliva before being added to the cells. Pretreatment of the KB cells with saliva did not inhibit adhesion. Protease treatment of A. actinomycetemcomitans reduced adhesion of the bacteria to KB cells. The data are consistent with the hypothesis that a protein(s) is required for bacterial adhesion and that host components may play a role in modulating adhesion to epithelial cells. Images PMID:8063383

  12. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif*

    PubMed Central

    Jacob, Reeba S.; George, Edna; Singh, Pradeep K.; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K.

    2016-01-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  13. Patterned Poly(dopamine) Films for Enhanced Cell Adhesion.

    PubMed

    Chen, Xi; Cortez-Jugo, Christina; Choi, Gwan H; Björnmalm, Mattias; Dai, Yunlu; Yoo, Pil J; Caruso, Frank

    2017-01-18

    Engineered materials that promote cell adhesion and cell growth are important in tissue engineering and regenerative medicine. In this work, we produced poly(dopamine) (PDA) films with engineered patterns for improved cell adhesion. The patterned films were synthesized via the polymerization of dopamine at the air-water interface of a floating bed of spherical particles. Subsequent dissolution of the particles yielded free-standing PDA films with tunable geometrical patterns. Our results show that these patterned PDA films significantly enhance the adhesion of both cancer cells and stem cells, thus showing promise as substrates for cell attachment for various biomedical applications.

  14. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    PubMed

    Liu, Pengfei; Cai, Jinglei; Dong, Delu; Chen, Yaoyu; Liu, Xiaobo; Wang, Yi; Zhou, Yulai

    2015-01-01

    As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  15. Short Peptides Enhance Single Cell Adhesion and Viability on Microarrays

    PubMed Central

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani, Fareid; Zhang, Miqin

    2011-01-01

    Single cell patterning holds important implications for biology, biochemistry, biotechnology, medicine, and bioinformatics. The challenge for single cell patterning is to produce small islands hosting only single cells and retaining their viability for a prolonged period of time. This study demonstrated a surface engineering approach that uses a covalently-bound short peptide as a mediator to pattern cells with improved single cell adhesion and prolonged cellular viability on gold patterned SiO2 substrates. The underlying hypothesis is that cell adhesion is regulated by the type, availability and stability of effective cell adhesion peptides, and thus covalently bound short peptides would promote cell spreading and thus, single cell adhesion and viability. The effectiveness of this approach and the underlying mechanism for the increased probability of single cell adhesion and prolonged cell viability by short peptides were studied by comparing cellular behavior of human umbilical cord vein endothelial cells on three model surfaces whose gold electrodes were immobilized with fibronectin, physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently-bound Lys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and binding properties were characterized by reflectance Fourier transform infrared spectroscopy. Both short peptides were superior to fibronectin in producing adhesion of only single cells, while the covalently bound peptide also reduced apoptosis and necrosis of adhered cells. Controlling cell spreading by peptide binding domains to regulate apoptosis and viability represents a fundamental mechanism in cell-materials interaction and provides an effective strategy in engineering arrays of single cells. PMID:17371055

  16. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells.

    PubMed

    Blackstone, B N; Li, R; Ackerman, W E; Ghadiali, S N; Powell, H M; Kniss, D A

    2015-04-15

    Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAK(Y397)) and paxillin (PAX(Y118)), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231(LVC) cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells.

  17. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  18. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  19. Protein conformation as a regulator of cell-matrix adhesion.

    PubMed

    Hytönen, Vesa P; Wehrle-Haller, Bernhard

    2014-04-14

    The dynamic regulation of cell-matrix adhesion is essential for tissue homeostasis and architecture, and thus numerous pathologies are linked to altered cell-extracellular matrix (ECM) interaction and ECM scaffold. The molecular machinery involved in cell-matrix adhesion is complex and involves both sensory and matrix-remodelling functions. In this review, we focus on how protein conformation controls the organization and dynamics of cell-matrix adhesion. The conformational changes in various adhesion machinery components are described, including examples from ECM as well as cytoplasmic proteins. The discussed mechanisms involved in the regulation of protein conformation include mechanical stress, post-translational modifications and allosteric ligand-binding. We emphasize the potential role of intrinsically disordered protein regions in these processes and discuss the role of protein networks and co-operative protein interactions in the formation and consolidation of cell-matrix adhesion and extracellular scaffolds.

  20. Ultraweak sugar-sugar interactions for transient cell adhesion.

    PubMed Central

    Pincet, F; Le Bouar, T; Zhang, Y; Esnault, J; Mallet, J M; Perez, E; Sinaÿ, P

    2001-01-01

    Carbohydrate-carbohydrate interactions are rarely considered in biologically relevant situations such as cell recognition and adhesion. One Ca(2+)-mediated homotypic interaction between two Lewis(x) determinants (Le(x)) has been proposed to drive cell adhesion in murine embryogenesis. Here, we confirm the existence of this specific interaction by reporting the first direct quantitative measurements in an environment akin to that provided by membranes. The adhesion between giant vesicles functionalized with Le(x) was obtained by micropipette aspiration and contact angle measurements. This interaction is below the thermal energy, and cell-cell adhesion will require a large number of molecules, as illustrated by the Le(x) concentration peak observed at the cell membranes during the morula stage of the embryo. This adhesion is ultralow and therefore difficult to measure. Such small interactions explain why the concept of specific interactions between carbohydrates is often neglected. PMID:11222296

  1. Effects of curvature and cell-cell interaction on cell adhesion in microvessels.

    PubMed

    Yan, W W; Liu, Y; Fu, B M

    2010-10-01

    It has been found that both circulating blood cells and tumor cells are more easily adherent to curved microvessels than straight ones. This motivated us to investigate numerically the effect of the curvature of the curved vessel on cell adhesion. In this study, the fluid dynamics was carried out by the lattice Boltzmann method (LBM), and the cell dynamics was governed by the Newton's law of translation and rotation. The adhesive dynamics model involved the effect of receptor-ligand bonds between circulating cells and endothelial cells (ECs). It is found that the curved vessel would increase the simultaneous bond number, and the probability of cell adhesion is increased consequently. The interaction between traveling cells would also affect the cell adhesion significantly. For two-cell case, the simultaneous bond number of the rear cell is increased significantly, and the curvature of microvessel further enhances the probability of cell adhesion.

  2. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    PubMed Central

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  3. The cell cycle and pluripotency.

    PubMed

    Hindley, Christopher; Philpott, Anna

    2013-04-15

    PSCs (pluripotent stem cells) possess two key properties that have made them the focus of global research efforts in regenerative medicine: they have unlimited expansion potential under conditions which favour their preservation as PSCs and they have the ability to generate all somatic cell types upon differentiation (pluripotency). Conditions have been defined in vitro in which pluripotency is maintained, or else differentiation is favoured and is directed towards specific somatic cell types. However, an unanswered question is whether or not the core cell cycle machinery directly regulates the pluripotency and differentiation properties of PSCs. If so, then manipulation of the cell cycle may represent an additional tool by which in vitro maintenance or differentiation of PSCs may be controlled in regenerative medicine. The present review aims to summarize our current understanding of links between the core cell cycle machinery and the maintenance of pluripotency in ESCs (embryonic stem cells) and iPSCs (induced PSCs).

  4. Cell adhesion to plasma-coated PVC.

    PubMed

    Rangel, Elidiane C; de Souza, Eduardo S; de Moraes, Francine S; Duek, Eliana A R; Lucchesi, Carolina; Schreiner, Wido H; Durrant, Steven F; Cruz, Nilson C

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, P(Ar), was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with P(Ar) between 28.9 and 55.3%. Surface free energy increased with increasing P(Ar), except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  5. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  6. Cell Cycle Regulation by Checkpoints

    PubMed Central

    Barnum, Kevin J.; O’Connell, Matthew J.

    2016-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate. PMID:24906307

  7. Cell cycle regulation by checkpoints.

    PubMed

    Barnum, Kevin J; O'Connell, Matthew J

    2014-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.

  8. [Integrins and cell cycle control by the environment].

    PubMed

    Bernard, A; Bernard, G

    2000-04-01

    Integrins insure cell adhesion to extra-cellular matrix components; they are thus involved in tissue architecture. They also can insure intercellular adhesions by binding to surface molecules from the immunoglobulin superfamily. Integrins binding to their ligands induce cytoskeleton reorganisation and, consequently, they gather into focal adhesion contacts. This greatly strenghthens mechanical forces. Nevertheless, integrins can also participate in cell locomotion and, moreover, tranduce within cells signals that can extensively influence cell metabolism, cell cycle and apoptosis. Doing so, they can interact with signals from other cellular receptors, such as soluble growth factors. They are therefore key molecules to integrate intrinsic and extrinsic events of the cellular behavior. They profoundly influence oncogenesis and the metastatic process.

  9. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells.

    PubMed

    Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2006-04-01

    Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion

  10. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  11. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.

    PubMed

    Hersel, Ulrich; Dahmen, Claudia; Kessler, Horst

    2003-11-01

    Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) have been found to promote cell adhesion in 1984 (Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309 (1984) 30), numerous materials have been RGD functionalized for academic studies or medical applications. This review gives an overview of RGD modified polymers, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on polymers. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

  12. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub

  13. Single cell adhesion assay using computer controlled micropipette.

    PubMed

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of

  14. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  15. B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule.

    PubMed

    Kim, Won-Tae; Seo Choi, Hong; Min Lee, Hyun; Jang, Young-Joo; Ryu, Chun Jeih

    2014-10-01

    B-Cell receptor-associated protein 31 (BAP31) regulates the export of secreted membrane proteins from the endoplasmic reticulum (ER) to the downstream secretory pathway. Previously, we generated a monoclonal antibody 297-D4 against the surface molecule on undifferentiated human embryonic stem cells (hESCs). Here, we found that 297-D4 antigen was localized to pluripotent hESCs and downregulated during early differentiation of hESCs and identified that the antigen target of 297-D4 was BAP31 on the hESC-surface. To investigate the functional role of BAP31 in hESCs, BAP31 expression was knocked down by small interfering RNA. BAP31 depletion impaired hESC self-renewal and pluripotency and drove hESC differentiation into multicell lineages. BAP31 depletion hindered hESC proliferation by arresting cell cycle at G0/G1 phase and inducing caspase-independent cell death. Interestingly, BAP31 depletion reduced hESC adhesion to extracellular matrix (ECM). Analysis of cell surface molecules showed decreased expression of epithelial cell adhesion molecule (EpCAM) in BAP31-depleted hESCs, while ectopic expression of BAP31 elevated the expression of EpCAM. EpCAM depletion also reduced hESC adhesion to ECM, arrested cell cycle at G0/G1 phase and induced cell death, producing similar effects to those of BAP31 depletion. BAP31 and EpCAM were physically associated and colocalized at the ER and cell surface. Both BAP31 and EpCAM depletion decreased cyclin D1 and E expression and suppressed PI3K/Akt signaling, suggesting that BAP31 regulates hESC stemness and survival via control of EpCAM expression. These findings provide, for the first time, mechanistic insights into how BAP31 regulates hESC stemness and survival via control of EpCAM expression.

  16. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    PubMed

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.

  17. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  18. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment.

  19. The structure of cell-matrix adhesions: the new frontier.

    PubMed

    Hanein, Dorit; Horwitz, Alan Rick

    2012-02-01

    Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force.

  20. What cycles the cell? -Robust autonomous cell cycle models.

    PubMed

    Lavi, Orit; Louzoun, Yoram

    2009-12-01

    The cell cycle is one of the best studied cellular mechanisms at the experimental and theoretical levels. Although most of the important biochemical components and reactions of the cell cycle are probably known, the precise way the cell cycle dynamics are driven is still under debate. This phenomenon is not atypical to many other biological systems where the knowledge of the molecular building blocks and the interactions between them does not lead to a coherent picture of the appropriate dynamics. We here propose a methodology to develop plausible models for the driving mechanisms of embryonic and cancerous cell cycles. We first define a key property of the system (a cyclic behaviour in the case of the embryonic cell cycle) and set mathematical constraints on the types of two variable simplified systems robustly reproducing such a cyclic behaviour. We then expand these robust systems to three variables and reiterate the procedure. At each step, we further limit the type of expanded systems to fit the known microbiology until a detailed description of the system is obtained. This methodology produces mathematical descriptions of the required biological systems that are more robust to changes in the precise function and rate constants. This methodology can be extended to practically any type of subcellular mechanism.

  1. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  2. Shark cartilage extract interferes with cell adhesion and induces reorganization of focal adhesions in cultured endothelial cells.

    PubMed

    Chen, J S; Chang, C M; Wu, J C; Wang, S M

    2000-06-06

    In this study, we examined the effects of shark cartilage extract on the attachment and spreading properties and the focal adhesion structure of cultured bovine pulmonary artery endothelial cells. Treatment with cartilage extract resulted in cell detachment from the substratum. Immunofluorescence staining of those treated cells that remained attached showed that, instead of being present in both central and peripheral focal adhesions as in control cells, both integrin alpha(v)beta(3) and vinculin were found only in peripheral focal adhesion and thinner actin filament bundles were seen. In addition to causing cell detachment, cartilage extract partially inhibited the initial adherence of the cells to the substratum in a dose-dependent manner. Integrin alpha(v)beta(3) and vinculin staining of these cells also showed a peripheral focal adhesion distribution pattern. Vitronectin induced cell spreading in the absence of serum, but was blocked by simultaneous incubation with cartilage extract, which was shown to inhibit both integrin alpha(v)beta(3) and vinculin recruitment to focal adhesion and the formation of stress fibers. Dot binding assays showed that these inhibitory effects on cell attachment and spreading were not due to direct binding of cartilage extract components to integrin alpha(v)beta(3) or vitronectin. Shark cartilage chondroitin sulfate had no inhibitory effect on either cell attachment or spreading of endothelial cells. These results show that the inhibitory effects of cartilage extract on cell attachment and spreading are mediated by modification of the organization of focal adhesion proteins.

  3. FGFR4 Downregulation of Cell Adhesion in Prostate Cancer

    DTIC Science & Technology

    2007-03-01

    AD_________________ Award Number: W81XWH-06-1-0385 TITLE: FGFR4 Downregulation of Cell Adhesion...2007 2. REPORT TYPE Annual 3. DATES COVERED 1 Mar 2006 – 28 Feb 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FGFR4 Downregulation of Cell...our project to examine the role of FGFR4 G388R in altering cell adhesion in prostate cancer. This includes acquiring expertise in the passage and

  4. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer.

  5. Transcriptionally Regulated Cell Adhesion Network Dictates Distal Tip Cell Directionality

    PubMed Central

    Wong, Ming-Ching; Kennedy, William P.; Schwarzbauer, Jean E.

    2015-01-01

    Background The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. Results Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. Conclusions Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion. PMID:24811939

  6. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  7. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  8. Dissecting cell adhesion architecture using advanced imaging techniques

    PubMed Central

    Morton, Penny E

    2011-01-01

    Cell adhesion to extracellular matrix proteins or to other cells is essential for the control of embryonic development, tissue integrity, immune function and wound healing. Adhesions are tightly spatially regulated structures containing over one hundred different proteins that coordinate both dynamics and signaling events at these sites. Extensive biochemical and morphological analysis of adhesion types over the past three decades has greatly improved understanding of individual protein contributions to adhesion signaling and, in some cases, dynamics. However, it is becoming increasingly clear that these diverse macromolecular complexes contain a variety of protein sub-networks, as well as distinct sub-domains that likely play important roles in regulating adhesion behavior. Until recently, resolving these structures, which are often less than a micron in size, was hampered by the limitations of conventional light microscopy. However, recent advances in optical techniques and imaging methods have revealed exciting insight into the intricate control of adhesion structure and assembly. Here we provide an overview of the recent data arising from such studies of cell:matrix and cell:cell contact and an overview of the imaging strategies that have been applied to study the intricacies and hierarchy of proteins within adhesions. PMID:21785274

  9. The effects of cell adhesion on the growth and protein productivity of animal cells.

    PubMed

    Nishijima, K; Fujiki, T; Kojima, H; Iijima, S

    2000-07-01

    We investigated the effect of cell adhesion on cellgrowth and productivity of recombinant protein inChinese hamster ovary (CHO) cells. Cells cultured innormal tissue culture dishes attached to the dishsurfaces and grew as a monolayer, while cells culturedin non-treated dishes proliferated in suspension assingle cells without adhering to the dish surfaces. On an agarose-coated dish surface, cell aggregatesformed without attaching to the dish. Growth rates inboth suspension cultures were slightly lower thanthose in monolayer culture. Cell cycle analysisindicated that the duration of the G(1) phase insuspension cultures was longer than that in monolayerculture, suggesting that attachment to the substratummainly affected the transition from the G(1) to theS phase. Consistent with this, CDK inhibitor p27,that inhibits the G(1)S transition, was induced inthe cells cultured in suspension.To assess the productivity of recombinant proteins,CHO cells were transfected with a plasmid containingmurine interferon gamma (mIFN-gamma) under thecontrol of the cytomegalovirus promoter. Insuspension culture, mIFN-gamma productivity wasslightly lower than that in the monolayer culture. When protein kinase C was activated by phorbol ester,mIFN-gamma production was enhanced in both themonolayer and suspension cultures. However, theproductivity in the suspension culture was lower thanthat in the adherent culture even in the presence ofhigh concentrations of phorbol ester. These resultssuggested that cell adhesion to the substratum affectsvarious features of CHO cells.

  10. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  11. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling.

    PubMed

    Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mario Alexandre Coelho; Borges, Gilberto Antonio; Platt, Jeffrey A; Puppin-Rontani, Regina Maria

    2014-01-01

    To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents.

  12. Minimal synthetic cells to study integrin-mediated adhesion.

    PubMed

    Frohnmayer, Johannes P; Brüggemann, Dorothea; Eberhard, Christian; Neubauer, Stefanie; Mollenhauer, Christine; Boehm, Heike; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P

    2015-10-12

    To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIb β3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIb β3 .

  13. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed Central

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-01-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili. PMID:357285

  14. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-08-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili.

  15. Dystrophin Dp71 in PC12 cell adhesion

    PubMed Central

    Enríquez-Aragón, Jose Arturo; Cerna-Cortés, Joel; Bermúdez de León, Mario; García-Sierra, Francisco; González, Everardo; Mornet, Dominique; Cisneros, Bulmaro

    2005-01-01

    Previously, we reported that PC12 cells with decreased Dp71 expression (antisense-Dp71 cells) display deficient nerve-growth-factor-induced neurite outgrowth. In this study, we show that disturbed neurite outgrowth of antisense-Dp71 cells is accompanied by decreased adhesion activity on laminin, collagen and fibronectin. In wild-type cells, the immunostaining of Dp71 and _1-integrin overlaps in the basal area contacting the substrate, but staining of both proteins decrease in the antisense-Dp71 cells. Morphology of antisense-Dp71 cells at the electron microscopic level is characterized by the lack of filopodia, cellular projections involved in adhesion. Our findings suggest that Dp71 is required for the efficient PC12 cell attachment to b1-integrin-dependent substrata and that decreased adhesion activity of the anti-sense-Dp71 cells could determine their deficiency to extend neurites. PMID:15706226

  16. Modulation of cell adhesion complexes by surface protein patterns.

    PubMed

    Pesen, Devrim; Haviland, David B

    2009-03-01

    Cell adhesion is an important process in several biological phenomena. To investigate the formation and organization of focal adhesions, we developed a patterning approach based on electron beam lithography. Nanodots (radius <1230 nm) and nanorings (inner radius <320 nm) of fibronectin (FN) were patterned on a K-Casein background. Intracellular vinculin immunofluorescence mirrored the FN nanopatterns. Atomic force microscopy showed that FN nanodots and nanorings organize the immediate cytoskeleton into straight fibrils and diverging fibril bundles, respectively. Our results suggest that a minimum of approximately 40 FN molecules is required for a cell to form a focal adhesion.

  17. Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion.

    PubMed

    Meredith, David O; Eschbach, Lukas; Riehle, Mathis O; Curtis, Adam S G; Richards, Robert G

    2007-11-01

    Stainless Steel (SS), titanium (cpTi), and Ti-6Al-7Nb (TAN) are frequently used metals in fracture fixation, which contact not only bone, but also soft tissue. In previous soft tissue cytocompatibility studies, TAN was demonstrated to inhibit cell growth in its "standard" micro-roughened state. To elucidate a possible mechanism for this inhibition, cell area, shape, adhesion, and cytoskeletal integrity was studied. Only minor changes in spreading were observed for cells on electropolished SS, cpTi, and TAN. Cells on "standard" cpTi were similarly spread in comparison with electropolished cpTi and TAN, although the topography influenced the cell periphery and also resulted in lower numbers and shorter length of focal adhesions. On "standard" microrough TAN, cell spreading was significantly lower than all other surfaces, and cell morphology differed by being more elongated. In addition, focal adhesion numbers and mean length were significantly lower on standard TAN than on all other surfaces, with 80% of the measured adhesions below a 2-microm threshold. Focal adhesion site location and maturation and microtubule integrity were compromised by the presence of protruding beta-phase microspikes found solely on the surface of standard TAN. This led us to propose that the impairment of focal adhesion numbers, maturation (length), and cell spreading to a possibly sufficient threshold observed on standard TAN blocks cell cycle progress and eventually cell growth on the surface. We believe, as demonstrated with standard cpTi and TAN, that a difference in surface morphology is influential for controlling cell behavior on implant surfaces.

  18. Charge displacement by adhesion and spreading of a cell.

    PubMed

    Svetlicić, V; Ivosević, N; Kovac, S; Zutić, V

    2001-01-01

    The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell-electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to -8.2 microC/cm2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3-0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.

  19. Single-cell force spectroscopy of pili-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  20. Mast cell mediators and peritoneal adhesion formation in the rat.

    PubMed

    Langer, J C; Liebman, S M; Monk, P K; Pelletier, G J

    1995-09-01

    We have previously shown that mast cell stabilization attenuates peritoneal adhesion formation in the rat. The present study investigated the mechanism of this protection. Adhesions were created in weanling rats using cecal scraping and application of 95% ethanol. Rats received specific blockers for the mast cell products histamine, serotonin (5HT), leukotriene D4, and platelet activating factor intraperitoneally 30 min before laparotomy and at the time of abdominal closure. Control animals received saline. Adhesions were assessed blindly 1 week later using a standardized scale. Adhesion formation was not affected by histamine blockade using combined mepyramine and ranitidine, 5-HT1 blockade using methysergide, 5-HT3 blockade using ondansetron, leukotriene D4 blockade using MK-571, or platelet activating factor blockade using WEB-2086. However, blockade of the 5-HT2 receptor using ketanserin resulted in significant dose-dependent attenuation of adhesions compared to saline. These data suggest that mast cells mediate peritoneal adhesion formation in the rat through release of serotonin acting on 5HT2 receptors. Further understanding of this process may lead to new strategies for the prevention of postoperative adhesions.

  1. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    PubMed Central

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Le Gac, Séverine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m2). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 109 cells/m2, above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied. PMID:25564849

  2. The right motifs for plant cell adhesion: what makes an adhesive site?

    PubMed

    Langhans, Markus; Weber, Wadim; Babel, Laura; Grunewald, Miriam; Meckel, Tobias

    2017-01-01

    Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities. In particular, the proteins involved in the adhesion of the cell to the extracellular matrix share many functional properties. At the sequence level, however, a surprising lack of homology is found between adhesion-related proteins of plants and animals. Both protein machineries only reveal similarities between small subdomains and motifs, which further underlines their functional relationship. In this review, we provide an overview on the similarities between motifs in proteins known to be located at the plant cell wall-plasma membrane-cytoskeleton interface to proteins of the animal adhesome. We also show that by comparing the proteome of both adhesion machineries at the level of motifs, we are also able to identify potentially new candidate proteins that functionally contribute to the adhesion of the plant plasma membrane to the cell wall.

  3. Mitochondrial dynamics during cell cycling.

    PubMed

    Horbay, Rostyslav; Bilyy, Rostyslav

    2016-12-01

    Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.

  4. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin.

    PubMed

    Tachibana, Kouichi; Haghparast, Seyed Mohammad Ali; Miyake, Jun

    2015-01-01

    Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases. Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate. These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.

  5. Multi-step adhesive cementation versus one-step adhesive cementation: push-out bond strength between fiber post and root dentin before and after mechanical cycling.

    PubMed

    Amaral, Marina; Rippe, Marilia Pivetta; Bergoli, Cesar Dalmolin; Monaco, Carlo; Valandro, Luiz Felipe

    2011-01-01

    This study evaluated the effects of mechanical cycling on resin push-out bond strength to root dentin, using two strategies for fiber post cementation. Forty bovine roots were embedded in acrylic resin after root canal preparation using a custom drill of the fiber post system. The fiber posts were cemented into root canals using two different strategies (N = 20): a conventional adhesive approach using a three-step etch-and-rinse adhesive system combined with a conventional resin cement (ScotchBond Multi Purpose Plus + RelyX ARC ), or a simplified adhesive approach using a self-adhesive resin cement (RelyX U100). The core was built up with composite resin and half of the specimens from each cementation strategy were submitted to mechanical cycling (45 degree angle; 37 degrees C; 88 N; 4 Hz; 700,000 cycles). Each specimen was cross-sectioned and the disk specimens were pushed-out. The means from every group (n = 10) were statistically analyzed using a two-way ANOVA and a Tukey test (P = 0.05). The cementation strategy affected the push-out results (P < 0.001), while mechanical cycling did not (P = 0.3716). The simplified approach (a self-adhesive resin cement) had better bond performance despite the conditioning. The self-adhesive resin cement appears to be a good option for post cementation. Further trials are needed to confirm these results.

  6. Adhesion and migration of cells responding to microtopography.

    PubMed

    Estévez, Maruxa; Martínez, Elena; Yarwood, Stephen J; Dalby, Matthew J; Samitier, Josep

    2015-05-01

    It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 µm(2) posts and compare their response to that of FAK(-/-) fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon.

  7. Cell adhesion in zebrafish embryos is modulated by March 8.

    PubMed

    Kim, Mi Ha; Rebbert, Martha L; Ro, Hyunju; Won, Minho; Dawid, Igor B

    2014-01-01

    March 8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March 8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March 8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March 8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March 8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March 8. On the basis of these observations we suggest that March 8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.

  8. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  9. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  10. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Isabel; Mas-Moruno, Carlos; Grau, Anna; Serra-Picamal, Xavier; Trepat, Xavier; Albericio, Fernando; Joner, Michael; Gil, Francisco Javier; Ginebra, Maria Pau; Manero, Jose María; Pegueroles, Marta

    2017-01-01

    Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  11. Cell cycle regulation and regeneration.

    PubMed

    Heber-Katz, Ellen; Zhang, Yong; Bedelbaeva, Khamila; Song, Fengyu; Chen, Xiaoping; Stocum, David L

    2013-01-01

    Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

  12. Cell-cell and cell-ECM adhesions cooperate to organize actomyosin networks and maintain force transmission during Dorsal Closure.

    PubMed

    Goodwin, Katharine; Lostchuck, Emily E; Cramb, Kaitlyn M L; Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo; Tanentzapf, Guy

    2017-03-22

    Tissue morphogenesis relies on the coordinated action of actin networks, cell-cell adhesions, and cell-ECM adhesions. Such coordination can be achieved through crosstalk between cell-cell and cell-ECM adhesions. Drosophila Dorsal Closure (DC), a morphogenetic process wherein an extra-embryonic tissue called the amnioserosa contracts and ingresses to close a discontinuity in the dorsal epidermis of the embryo, requires both cell-cell and cell-ECM adhesions. However, whether the function of these two types of adhesion is coordinated during DC is not known. Here, we analyzed possible interdependence between cell-cell and cell-ECM adhesions during DC, and its effect on the actomyosin network. We find that loss of cell-ECM adhesion results in aberrant distributions of cadherin-mediated adhesions and actin networks in the amnioserosa; and subsequent disruption of myosin recruitment and dynamics. Moreover, loss of cell-cell adhesion caused an upregulation of cell-ECM adhesion, leading to reduced cell deformation and force transmission across amnioserosa cells. Our results show how interdependence between cell-cell and cell-ECM adhesions is important in regulating cell behaviours, force generation and force transmission critical for tissue morphogenesis.

  13. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  14. Thinking outside the cell: how cadherins drive adhesion

    PubMed Central

    Brasch, Julia; Harrison, Oliver J.; Honig, Barry; Shapiro, Lawrence

    2012-01-01

    Cadherins embody a superfamily of cell-surface glycoproteins whose ectodomains contain multiple repeats of β-sandwich EC (extracellular cadherin) domains that adopt a similar fold to immunoglobulin domains. The best characterized cadherins are the vertebrate “classical” cadherins, which mediate adhesion via trans homodimerization between their membrane-distal EC1 domains that extend from apposed cells, and assemble intercellular adherens junctions through cis clustering. To form mature trans adhesive dimers, cadherin domains from apposed cells dimerize in a “strand-swapped” conformation. This occurs in a two-step binding process involving a fast-binding intermediate called the “X-dimer”. Trans dimers are less flexible than cadherin monomers, a factor which drives junction assembly following cell-cell contact by reducing the entropic cost associated with the formation of lateral cis oligomers. Cadherins outside of the classical subfamily appear to have evolved distinct adhesive mechanisms which are just now beginning to be understood. PMID:22555008

  15. Thinking outside the cell: how cadherins drive adhesion.

    PubMed

    Brasch, Julia; Harrison, Oliver J; Honig, Barry; Shapiro, Lawrence

    2012-06-01

    Cadherins are a superfamily of cell surface glycoproteins whose ectodomains contain multiple repeats of β-sandwich extracellular cadherin (EC) domains that adopt a similar fold to immunoglobulin domains. The best characterized cadherins are the vertebrate 'classical' cadherins, which mediate adhesion via trans homodimerization between their membrane-distal EC1 domains that extend from apposed cells, and assemble intercellular adherens junctions through cis clustering. To form mature trans adhesive dimers, cadherin domains from apposed cells dimerize in a 'strand-swapped' conformation. This occurs in a two-step binding process involving a fast-binding intermediate called the 'X-dimer'. Trans dimers are less flexible than cadherin monomers, a factor that drives junction assembly following cell-cell contact by reducing the entropic cost associated with the formation of lateral cis oligomers. Cadherins outside the classical subfamily appear to have evolved distinct adhesive mechanisms that are only now beginning to be understood.

  16. Rocking adhesion assay system to study adhesion and transendothelial migration of cancer cells.

    PubMed

    Bapu, Deepashree; Khadim, Munira; Brooks, Susan A

    2014-01-01

    Adhesion of metastatic cancer cells to the vascular endothelium of the target organs and their subsequent transendothelial migration is one of the critical, yet poorly understood, steps of the metastatic cascade. Conventionally, the mechanisms of this complex process have been studied using static adhesion systems or flow assay systems. Static assay systems are easy to set up and perform but do not mimic the physiological conditions of blood flow. Flow assays closely mimic physiological conditions of flow but are time consuming and require specialist equipment. In this chapter we describe the rocking adhesion system which incorporates the key advantages of both the static and flow assay systems and not only is easy to set up and perform but also mimics conditions of blood flow.

  17. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  18. Virus manipulation of cell cycle.

    PubMed

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  19. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    PubMed

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  20. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  1. Endoplasmic Reticulum Calcium, Stress and Cell-to-Cell Adhesion

    PubMed Central

    Mauro, Theodora

    2014-01-01

    Darier's Disease (DD) is caused by mutations in the endoplasmic reticulum (ER) Ca2+ ATPase ATP2A2 (protein SERCA2). Current treatment modalities are ineffective for many patients. This report shows that impaired SERCA2 function, both in DD keratinocytes and in normal keratinocytes treated with the SERCA2-inhibitor thapsigargin, depletes ER Ca2+ stores, leading to constitutive ER stress and increased sensitivity to ER stressors. ER stress, in turn, leads to abnormal cell-to-cell adhesion via impaired redistribution of desmoplakin, desmoglein 3, desmocollin 3 and E-cadherin to the plasma membrane. This report illustrates how ER Ca2+ depletion and the resulting ER stress are central to the pathogenesis of the disease. Additionally, the authors introduce a possible new therapeutic agent, Miglustat. PMID:24924761

  2. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  3. Hybrid inverse opals for regulating cell adhesion and orientation

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-08-01

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  4. Hybrid inverse opals for regulating cell adhesion and orientation.

    PubMed

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  5. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  6. Graphical analysis of mammalian cell adhesion in vitro.

    PubMed

    Huang, Qiaoling; Antensteiner, Martin; Liu, Xiang Yang; Lin, Changjian; Vogler, Erwin A

    2016-12-01

    Short-term (<2h) cell adhesion kinetics of 3 different mammalian cell types: MDCK (epithelioid), MC3T3-E1 (osteoblastic), and MDA-MB-231 (cancerous) on 7 different substratum surface chemistries spanning the experimentally-observable range of water wettability (surface energy) are graphically analyzed to qualitatively elucidate commonalities and differences among cell/surface/suspending media combinations. We find that short-term mammalian cell attachment/adhesion in vitro correlates with substratum surface energy as measured by water adhesion tension, τ≡γlvcosθ, where γlv is water liquid-vapor interfacial energy (72.8   mJ/m(2)) and cosθ is the cosine of the advancing contact angle subtended by a water droplet on the substratum surface. No definitive functional relationships among cell-adhesion kinetic parameters and τ were observed as in previous work, but previously-observed general trends were reproduced, especially including a sharp transition in the magnitude of kinetic parameters from relatively low-to-high near τ=0mJ/m(2), although the exact adhesion tension at which this transition occurs is difficult to accurately estimate from the current data set. We note, however, that the transition is within the hydrophobic range based on the τ=30mJ/m(2) surface-energetic dividing line that has been proposed to differentiate "hydrophobic" surfaces from "hydrophilic". Thus, a rather sharp hydrophobic/hydrophilic contrast is observed for cell adhesion for disparate cell/surface combinations.

  7. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  8. Lymphocyte adhesion-dependent calcium signaling in human endothelial cells

    PubMed Central

    1995-01-01

    Vascular endothelial cells (ECs) can undergo dramatic phenotypic and functional alterations in response to humoral and cellular stimuli. These changes promote endothelial participation in the inflammatory response through active recruitment of immune effector cells, increased vascular permeability, and alteration in vascular tone. In an attempt to define early events in lymphocyte-mediated EC signaling, we investigated cytosolic-free calcium (Ca2+) changes in single, Fluo-3- labeled human umbilical vein ECs (HUVECs), using an ACAS interactive laser cytometer. Of all lymphocyte subsets tested, allogeneic CD3-, CD56+ natural killer (NK) cells uniquely elicited oscillatory EC Ca2+ signals in cytokine (interleukin [IL]-1- or tumor necrosis factor [TNF])-treated ECs. The induction of these signals required avid intercellular adhesion, consisted of both Ca2+ mobilization and extracellular influx, and was associated with EC inositol phosphate (IP) generation. Simultaneous recording of NK and EC Ca2+ signals using two-color fluorescence detection revealed that, upon adhesion, NK cells flux prior to EC. Lymphocyte Ca2+ buffering with 1,2-bis-5-methyl-amino- phenoxylethane-N,N,N'-tetra-acetoxymethyl acetate (MAPTAM) demonstrated that lymphocyte fluxes are, in fact, prerequisites for the adhesion- dependent EC signals. mAb studies indicate that the beta 2 integrin- intercellular adhesion molecule (ICAM)-1 adhesion pathway is critically involved. However, ICAM-1 antisense oligonucleotide inhibition of IL-1- mediated ICAM-1 hyperinduction had no effect on EC Ca2+ signaling in lymphocyte-EC conjugates, indicating that additional cytokine-induced EC alteration is required. These experiments combine features of lymphocyte-endothelial interactions, intercellular adhesion, EC cytokine activation and transmembrane signaling. The results implicate the IP/Ca2+ second messenger pathway in EC outside-in signaling induced by cytotoxic lymphocytes, and suggest that these signals may play a

  9. Adhesion of platelets to artificial surfaces: effect of red cells.

    PubMed

    Brash, J L; Brophy, J M; Feuerstein, I A

    1976-05-01

    Adhesion of platelets to several polymer- and protein-coated glass surfaces has been studied in vitro. The apparatus consists of a cylindrical probe rotating in a test tube containing the platelet medium and allows close control of fluid shear and mass transport. Suspensions of washed pig platelets constitute the basic platelet medium, and can be modified by adding back red cells and plasma proteins. Adhesion is measured via 51Cr-labeling of platelets. In the absence of red cells, identical low levels of adhesion were seen on all surfaces and saturation was reached within 2 min. In the presence of red cells, adhesion was greater. Saturation on all surfaces except fibrinogen and collagen again occurred within 2 min. The adhesion levels on polymer surfaces and glass were indistinguishable, while those on albumin were lower and those on fibrinogen were higher. Collagen was the most reactive surface. It did not equilibrate within 15 min., and kinetic data indicated a platelet diffusivity strongly dependent on hematocrit. These effects were attributed to rotational and translational motion of the red cells causing increased diffusion and surface-platelet collision energy.

  10. Flexible nanopillars to regulate cell adhesion and movement

    NASA Astrophysics Data System (ADS)

    Chien, Fan-Ching; Dai, Yang-Hong; Kuo, Chiung Wen; Chen, Peilin

    2016-11-01

    Flexible polymer nanopillar substrates were used to systematically demonstrate cell alignment and migration guided by the directional formation of focal adhesions. The polymer nanopillar substrates were constructed to various height specifications to provide an extensive variation of flexibility; a rectangular arrangement created spatial confinement between adjacent nanopillars, providing less spacing in the horizontal and vertical directions. Three polymer nanopillar substrates with the diameter of 400 nm and the heights of 400, 800, and 1200 nm were fabricated. Super-resolution localization imaging and protein pair-distance analysis of vinculin proteins revealed that Chinese hamster ovary (CHO) cells formed mature focal adhesions on 1200 nm high nanopillar substrates by bending adjacent nanopillars to link dot-like adhesions. The spacing confinement of the adjacent nanopillars enhanced the orthogonal directionality of the formation tendency of the mature focal adhesions. The directional formation of the mature focal adhesions also facilitated the organization of actin filaments in the horizontal and vertical directions. Moreover, 78% of the CHO cells were aligned in these two directions, in conformity with the flexibility and nanotopographical cues of the nanopillars. Biased cell migration was observed on the 1200 nm high nanopillar substrates.

  11. Spatially controlled cell adhesion on three-dimensional substrates.

    PubMed

    Richter, Christine; Reinhardt, Martina; Giselbrecht, Stefan; Leisen, Daniel; Trouillet, Vanessa; Truckenmüller, Roman; Blau, Axel; Ziegler, Christiane; Welle, Alexander

    2010-10-01

    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and micro-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of micro-patterned scaffolds based on the "Substrate Modification and Replication by Thermoforming" (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60 degrees C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 microm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures.

  12. Spatially controlled cell adhesion on three-dimensional substrates

    PubMed Central

    Richter, Christine; Reinhardt, Martina; Giselbrecht, Stefan; Leisen, Daniel; Trouillet, Vanessa; Truckenmüller, Roman; Blau, Axel; Ziegler, Christiane

    2010-01-01

    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and µ-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of µ-patterned scaffolds based on the “Substrate Modification and Replication by Thermoforming” (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60°C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 µm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures. PMID:20480241

  13. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    SciTech Connect

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C. . E-mail: fcsu@mail.ncku.edu.tw

    2005-04-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level ({approx}600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.

  14. Molecular markers of cell adhesion in ameloblastomas. An update.

    PubMed

    González-González, Rogelio; Molina-Frechero, Nelly; Damian-Matsumura, Pablo; Bologna-Molina, Ronell

    2014-01-01

    Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets.

  15. Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti- adhesive

    PubMed Central

    1991-01-01

    Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dependent on substratum- bound ECM molecules, being specifically stimulated and guided by laminin (or the laminin-related molecule merosin) in preference to fibronectin, type I collagen, or type IV collagen. Motility of OE neuronal cells, examined by time-lapse video microscopy, was high on laminin-containing substrata, but negligible on fibronectin substrata. Quantitative assays of adhesion of OE neuronal cells to substrata treated with different ECM molecules demonstrated no correlation, either positive or negative, between the migratory preferences of cells and the strength of cell-substratum adhesion. Moreover, measurements of cell adhesion to substrata containing combinations of ECM proteins revealed that laminin and merosin are anti-adhesive for OE neuronal cells, i.e., cause these cells to adhere poorly to substrata that would otherwise be strongly adhesive. The evidence suggests that the anti- adhesive effect of laminin is not the result of interactions between laminin and other ECM molecules, but rather an effect of laminin on cells, which alters the way in which cells adhere. Consistent with this view, laminin was found to interfere strongly with the formation of focal contacts by OE neuronal cells. PMID:1918163

  16. Adhesion between peptides/antibodies and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  17. Thermodynamics of short-term cell adhesion in vitro.

    PubMed Central

    Vogler, E A

    1988-01-01

    A thermodynamic theory of short-term (less than 2 hr) in vitro cell adhesion has been developed which allows calculation of reversible work of adhesion and estimation of a term proportional to cell-substrate contact area. The theory provides a means of determining a parameter related to membrane wetting tension for microscopic cells that does not require special manipulations which might desiccate or denature delicate cell membranes. Semiquantitative agreement between predicted and experimentally-measured cell adhesion obtained for three different cell types (MDCK, RBL-1, and HCT-15) in two different liquid phase compositions of surfactants (Tween-80 and fetal bovine serum) supports concepts and approximations utilized in development of theory. Cell-substrate contact areas were largest for wettable surfaces treated with ionizing corona or plasma discharges and smallest for hydrophobic materials for each cell type studied. Contact area for the continuous dog-kidney cell line MDCK was larger than that of either the leukemic blood cell RBL-1 or the anaplastic human colon cell HCT-15. PMID:3390519

  18. ZF21 protein regulates cell adhesion and motility.

    PubMed

    Nagano, Makoto; Hoshino, Daisuke; Sakamoto, Takeharu; Kawasaki, Noritaka; Koshikawa, Naohiko; Seiki, Motoharu

    2010-07-02

    Cell migration on an extracellular matrix (ECM) requires continuous formation and turnover of focal adhesions (FAs) along the direction of cell movement. However, our knowledge of the components of FAs and the mechanism of their regulation remains limited. Here, we identify ZF21, a member of a protein family characterized by the presence of a phosphatidylinositol 3-phosphate-binding FYVE domain, to be a new regulator of FAs and cell movement. Knockdown of ZF21 expression in cells increased the number of FAs and suppressed cell migration. Knockdown of ZF21 expression also led to a significant delay in FA disassembly following induction of synchronous disassembly of FAs by nocodazole treatment. ZF21 bound to focal adhesion kinase, localized to FAs, and was necessary for dephosphorylation of FAK at Tyr(397), which is important for disassembly of FAs. Thus, ZF21 represents a new component of FAs, mediates disassembly of FAs, and thereby regulates cell motility.

  19. How to let go: pectin and plant cell adhesion.

    PubMed

    Daher, Firas Bou; Braybrook, Siobhan A

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.

  20. Numerical analysis of cell adhesion in capillary flow

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger; Ishikawa, Takuji

    2016-11-01

    Numerical simulation of cell adhesion was performed for capillaries whose diameter is comparable to or smaller than that of the cell. Despite a lot of works about leukocyte and tumor cell rolling, cell motion in capillaries has remained unclear. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram is obtained for various values of capillary diameter and receptor density. According to our numerical results, bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between PSGL-1 and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. This research was supported by JSPS KAKENHI Grant Numbers 25000008, 26107703, 14J03967. We also acknowledge support from the Tohoku University Division for International Advanced Research and Education Organization.

  1. Interferon-alpha and dexamethasone inhibit adhesion of T cells to endothelial cells and synovial cells

    PubMed Central

    Eguchi, K.; Kawakami, A.; Nakashima, M.; Ida, H.; Sakito, S.; Matsuoka, N.; Terada, K.; Sakai, M.; Kawabe, Y.; Fukuda, T.; Ishimaru, T.; Kurouji, K.; Fujita, N.; Aoyagi, T.; Maeda, K.; Nagataki, S.

    1992-01-01

    We investigated whether interferon-gamma (IFN-γ), interferon-alpha (IFN-α) and glucocorticoids affected the adhesion of T cells to human umbilical endothelial cells or human synovial cells. About 30% of peripheral blood T cells could bind to unstimulated endothelial cells, but only a few T cells could bind to unstimulated synovial cells. When both endothelial cells and synovial cells were cultured with recombinant IFN-γ (rIFN-γ), the percentage of T cell binding to both types of cells increased in a dose-dependent manner. rIFN-α and dexamethasone blocked the T cell binding to unstimulated endothelial cells. Furthermore, rIFN-α and dexamethasone suppressed T cell binding to both endothelial cells and synovial cells stimulated by IFN-γ, and also inhibited intercellular adhesion molecule-1 (ICAM-1) expression on both endothelial cells and synovial cells stimulated by IFN-γ. These results suggest that IFN-α and glucocorticoids may inhibit T cell binding to endothelial cells or synovial cells by modulating adhesion molecule expression on these cells. PMID:1606729

  2. Multiparticle adhesive dynamics. Interactions between stably rolling cells.

    PubMed Central

    King, M R; Hammer, D A

    2001-01-01

    A novel numerical simulation of adhesive particles (cells) reversibly interacting with an adhesive surface under flow is presented. Particle--particle and particle--wall hydrodynamic interactions in low Reynolds number Couette flow are calculated using a boundary element method that solves an integral representation of the Stokes equation. Molecular bonds between surfaces are modeled as linear springs and stochastically formed and broken according to postulated descriptions of force-dependent kinetics. The resulting simulation, Multiparticle Adhesive Dynamics, is applied to the problem of selectin-mediated rolling of hard spheres coated with leukocyte adhesion molecules (cell-free system). Simulation results are compared to flow chamber experiments performed with carbohydrate-coated spherical beads rolling on P-selectin. Good agreement is found between theory and experiment, with the main observation being a decrease in rolling velocity with increasing concentration of rolling cells or increasing proximity between rolling cells. Pause times are found to increase and deviation motion is found to decrease as pairs of rolling cells become closer together or align with the flow. PMID:11463626

  3. Computer simulations of cell sorting due to differential adhesion.

    PubMed

    Zhang, Ying; Thomas, Gilberto L; Swat, Maciej; Shirinifard, Abbas; Glazier, James A

    2011-01-01

    The actions of cell adhesion molecules, in particular, cadherins during embryonic development and morphogenesis more generally, regulate many aspects of cellular interactions, regulation and signaling. Often, a gradient of cadherin expression levels drives collective and relative cell motions generating macroscopic cell sorting. Computer simulations of cell sorting have focused on the interactions of cells with only a few discrete adhesion levels between cells, ignoring biologically observed continuous variations in expression levels and possible nonlinearities in molecular binding. In this paper, we present three models relating the surface density of cadherins to the net intercellular adhesion and interfacial tension for both discrete and continuous levels of cadherin expression. We then use then the Glazier-Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the number of cadherins per cell and in the choice of binding model affect cell sorting. We find that an aggregate with a continuous variation in the level of a single type of cadherin molecule sorts more slowly than one with two levels. The rate of sorting increases strongly with the interfacial tension, which depends both on the maximum difference in number of cadherins per cell and on the binding model. Our approach helps connect signaling at the molecular level to tissue-level morphogenesis.

  4. Endothelial cell migration on surfaces modified with immobilized adhesive peptides.

    PubMed

    Kouvroukoglou, S; Dee, K C; Bizios, R; McIntire, L V; Zygourakis, K

    2000-09-01

    Endothelial cell (EC) migration has been studied on aminophase surfaces with covalently bound RGDS and YIGSRG cell adhesion peptides. The fluorescent marker dansyl chloride was used to quantify the spatial distribution of the peptides on the modified surfaces. Peptides appeared to be distributed in uniformly dispersed large clusters separated by areas of lower peptide concentrations. We employed digital time-lapse video microscopy and image analysis to monitor EC migration on the modified surfaces and to reconstruct the cell trajectories. The persistent random walk model was then applied to analyze the cell displacement data and compute the mean root square speed, the persistence time, and the random motility coefficient of EC. We also calculated the time-averaged speed of cell locomotion. No differences in the speed of cell locomotion on the various substrates were noted. Immobilization of the cell adhesion peptides (RGDS and YIGSRG), however, significantly increased the persistence of cell movement and, thus, the random motility coefficient. These results suggest that immobilization of cell adhesion peptides on the surface of implantable biomaterials may lead to enhanced endothelization rates.

  5. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces.

    PubMed Central

    Davies, P F; Robotewskyj, A; Griem, M L

    1994-01-01

    Focal adhesion sites were observed in cultured endothelial cells by tandem scanning confocal microscopy and digitized image analysis, techniques that provide real-time images of adhesion site area and topography in living cells. Image subtraction demonstrated that in the presence of unidirectional steady laminar flow (shear stress [tau] = 10 dyn/cm2) a substantial fraction of focal adhesion sites remodeled in the direction of flow. In contrast, focal adhesions of control (no flow) cells remodeled without preferred direction. In confluent monolayers subjected to shear stresses of 10 dyn/cm2, cells began to realign in the direction of flow after 7-9 h. This was accompanied by redistribution of intracellular stress fibers, alignment of individual focal adhesion sites, and the coalescence of smaller sites resulting in fewer, but larger, focal adhesions per cell. Cell adhesion, repeatedly calculated in the same cells as a function of the areas of focal contact and the separation distances between membrane and substratum, varied by < 10% during both short (30 min), or prolonged (< or = 24 h), periods of exposure to flow. Consistent with these measurements, the gains and losses of focal adhesion area as each site remodeled were approximately equivalent. When the glass substratum was coated with gelatin, rates of remodeling were inhibited by 47% during flow (tau = 10 dyn/cm2). These studies: (a) reveal the dynamic nature of focal adhesion; (b) demonstrate that these sites at the ablumenal endothelial membrane are both acutely and chronically responsive to frictional shear stress forces applied to the opposite (lumenal) cell surface; and (c) suggest that components of the focal adhesion complex may be mechanically responsive elements coupled to the cytoskeleton. Images PMID:8182135

  6. The MRL proteins: adapting cell adhesion, migration and growth.

    PubMed

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  7. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  8. Potentialities of ultrasounds for the nondestructive evaluation of cell adhesion.

    PubMed

    Myrdycz, A; Lefebvre, F; Ouaftouh, M; Monchau, F; Callens, D; Hildebrand, H F

    1999-08-01

    The aim of this paper is to present the potentialities of ultrasounds to investigate the mechanical properties of a cell/substrate interface. The adhesion process plays a major role in the development of osteoblastic cells on various substrates used in orthopedic applications such as metals, bioceramics, etc. Particularly, cell adherence appears to be a critical factor in the colonization process. High-frequency and low-power ultrasounds seem to be an appropriate tool for a nondestructive evaluation of interface properties. First, we present the results obtained with bulk longitudinal and shear waves under an arbitrary incidence over an aluminum-adhesive interface. This study was performed for an industrial application of bonding. The results clearly show the sensitivity of shear waves for the evaluation of the adhesion quality owing to the shear solicitations at the interface they induce. A model of ultrasound interactions with a boundary subject to varying degrees of adhesion has been developed and compared to the experiments. Second, we investigated osteoblastic cell cultures with a high-frequency acoustic microscope working at 50 MHz. The images obtained in the shear mode reveal a better contrast than those obtained in the longitudinal mode. For the time being, these results are qualitative, and theoretical models have to be developed according to the point of view of biologists.

  9. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  10. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    SciTech Connect

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  11. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGES

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  12. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    PubMed Central

    JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW

    2015-01-01

    Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067

  13. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-01

    Neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  14. The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms

    PubMed Central

    Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James

    2014-01-01

    SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433

  15. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  16. On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells.

    PubMed

    Anselme, K; Bigerelle, M

    2014-01-01

    Surface characteristics of materials, whether their topography, chemistry, or surface energy, play an essential part in osteoblast adhesion on biomaterials. Thus, the quality of cell adhesion will influence the cell's capacity to proliferate and differentiate in contact with a biomaterial. We have developed for more than ten years numerous studies on the influence of topography and chemistry of metallic substrates on the response of primary human bone cells. The originality of our approach is that contrary to most of other authors, we quantified the adhesion of primary human bone cells on metallic substrates with perfectly characterized surface topography after some hours but also over 21 days. Moreover, we have developed original statistical approaches for characterizing the relation between surface roughness and cell-adhesion parameters. In this article, we will illustrate different studies we did these last ten years concerning the development of a new adhesion parameter, the adhesion power; the correlation between short-term adhesion, long-term adhesion, and proliferation; the influence of roughness organization on cell adhesion and the development of the order parameter; our modeling approach of cell adhesion on surface topography; the relative influence of surface chemistry and topography on cell adhesion and contact angle; the relation between surface features dimensions and cell adhesion. Further, some considerations will be given on the methods for scanning surface topography for cell-adhesion studies. Finally, perspectives will be given to elucidate these intracellular mechanotransduction mechanisms induced by the deformation of cells on model sinusoidal peaks-or-valleys surfaces.

  17. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  18. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  19. Topographic cell instructive patterns to control cell adhesion, polarization and migration

    PubMed Central

    Ventre, Maurizio; Natale, Carlo Fortunato; Rianna, Carmela; Netti, Paolo Antonio

    2014-01-01

    Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry. PMID:25253035

  20. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  1. The role of adhesion energy in controlling cell–cell contacts

    PubMed Central

    Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2011-01-01

    Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell–cell adhesion—the energy of adhesion at the cell–cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo. PMID:21807491

  2. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  3. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  4. Diversity of cell-mediated adhesions in breast cancer spheroids.

    PubMed

    Ivascu, Andrea; Kubbies, Manfred

    2007-12-01

    Due to their three dimensional (3D) architecture, multicellular tumor spheroids mimic avascular tumor areas comprising the establishment of diffusion gradients, reduced proliferation rates and increased drug resistance. We have shown recently that the spontaneous formation of spheroids is restricted to a limited number of cell lines whereas the majority grow only as aggregates of cells with loose cell-cell contacts when cultured in 3D. However, by the addition of reconstituted basement membrane (rBM, Matrigel), aggregates can be transformed into spheroids with diffusion barriers and development of quiescent therapy-resistant cells. In this report, we investigated adhesion molecules responsible for rBM-driven versus spontaneous spheroid formation in a diverse population of eight breast tumor cell lines relevant for in vitro and in vivo antitumor drug testing. Inhibition of spheroid formation was monitored in the presence of adhesion molecule functional blocking antibodies and after siRNA-mediated down-regulation of E- and N-cadherin and integrin beta1 adhesion receptors. We identified that E-cadherin mediates the spontaneous formation of spheroids in MCF7, BT-474, T-47D and MDA-MB-361 cells, whereas N-cadherin is responsible for tight packing of MDA-MB-435S cells. In contrast, the matrix protein-induced transformation of 3D aggregates into spheroids in MDA-MB-231 and SK-BR-3 cells is mediated primarily by the collagen I/integrin beta1 interaction with no cadherin involvement. A combination of both, homophilic E-cadherin and integrin beta1/collagen I interaction establishes spheroids in MDA-MB-468 cells. These findings indicate that an evolutionary diverse and complex pattern of interacting cell surface proteins exists in breast cancer cells that determines the 3D growth characteristic in vitro, thereby influencing small molecule or antibody permeation in preclinical in vitro and in vivo tumor models.

  5. Laser-based microfabrication for cell adhesion and migration

    NASA Astrophysics Data System (ADS)

    Miller, Jordan S.

    Mammalian cell adhesion and migration impact a multitude of cellular behaviors and tissue remodeling processes. Over the past several decades, investigators have methodically improved in vitro systems as mimics of the extracellular microenvironment to study these biologic phenomena. Experiments have progressed from early studies on bifunctional inorganic surfaces to those with purified adhesive proteins against an organic, non-adhesive background. Recently, subcellular geometric patterns of adhesive proteins have proven useful to restrict and direct focal contact formation, cell survival, lamellopodia extension, and the maturation of "supermature" focal contacts. The vast majority of recent studies have involved the construction of hydrophobic patches with adsorbed fibronectin as the adhesive constraint of choice. However, the extracellular matrix (ECM) in which cells operate is a complex and diverse environment where numerous signals interact with a cell simultaneously; signals that the cell must integrate and that directly impact these processes. Microfabrication methods to approximate the extracellular milieu have significant limitations in their potential to be extended to pattern multiple bioactive ligands with high precision. Current techniques require multi-step processes which lose feature fidelity at every pattern transfer step, while simultaneously increasing logistical complexity and the chance of technical missteps. We have developed a family of complementary techniques using the raster-scanning laser of a confocal microscope to address a number of current challenges in improving microfabrication. For our work with thin films of self-assembled organic monolayers, we systematically removed the multi-step processing requirements of conventional photolithographic microfabrication and characterized and verified the technical advantages of our new patterning techniques. For 3D work, we developed and demonstrated micron-scale biochemical and mechanical

  6. Adhesion receptors as therapeutic targets for circulating tumor cells

    PubMed Central

    Li, Jiahe; King, Michael R.

    2012-01-01

    Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic “seeds,” circulating tumor cells (CTCs) are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation. PMID:22837985

  7. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  8. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease

    PubMed Central

    ALAPAN, YUNUS; KIM, CEONNE; ADHIKARI, ANIMA; GRAY, KAYLA E.; GURKAN-CAVUSOGLU, EVREN; LITTLE, JANE A.; GURKAN, UMUT A.

    2016-01-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  9. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  10. Cytofluorometric assessment of cell cycle progression.

    PubMed

    Vitale, Ilio; Jemaà, Mohamed; Galluzzi, Lorenzo; Metivier, Didier; Castedo, Maria; Kroemer, Guido

    2013-01-01

    One of the most prominent features of cellular senescence, a stress response that prevents the propagation of cells that have accumulated potentially oncogenic alterations, is a permanent loss of proliferative potential. Thus, at odds with quiescent cells, which resume proliferation when stimulated to do so, senescent cells cannot proceed through the cell cycle even in the presence of mitogenic factors. Here, we describe a set of cytofluorometric techniques for studying how chemical and/or physical stimuli alter the cell cycle in vitro, in both qualitative and quantitative terms. Taken together, these methods allow for the identification of bona fide cytostatic effects as well as for a refined characterization of cell cycle distributions, providing information on proliferation, DNA content as well as on the presence of cell cycle phase-specific markers. At the end of the chapter, a set of guidelines is offered to assist researchers that approach the study of the cell cycle with the interpretation of results.

  11. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion.

    PubMed

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.

  12. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  13. Src family kinase activity regulates adhesion, spreading and migration of pancreatic endocrine tumour cells.

    PubMed

    Di Florio, Alessia; Capurso, Gabriele; Milione, Massimo; Panzuto, Francesco; Geremia, Raffaele; Delle Fave, Gianfranco; Sette, Claudio

    2007-03-01

    Pancreatic endocrine tumours (PETs) are rare and 'indolent' neoplasms that usually develop metastatic lesions and exhibit poor response to standard medical treatments. Few studies have investigated pathways responsible for PET cell growth and invasion and no alternative therapeutic strategies have been proposed. In a recent microarray analysis for genes up-regulated in PETs, we have described the up-regulation of soluble Src family tyrosine kinases in this neoplasia, which may represent potentially promising candidates for therapy. Herein, we have investigated the expression and function of Src family kinases in PETS and PET cell lines. Western blot analysis indicated that Src is highly abundant in the PET cell lines CM and QGP-1. Immunohistochemistry and Western blot analyses showed that Src is up-regulated also in human PET lesions. Pharmacological inhibition of Src family kinases by the specific inhibitor PP2 strongly interfered with adhesion, spreading and migration of PET cell lines. Accordingly, the actin cytoskeleton was profoundly altered after inhibition of Src kinases, whereas even prolonged incubation with PP2 exerted no effect on cell cycle progression and/or apoptosis of PET cells. A transient increase in tyrosine phosphorylation of a subset of proteins was observed in QGP-1 cells adhering to the plate, with a peak at 75 min after seeding, when approximately 80% of cells were attached. Inhibition of Src kinases caused a dramatic reduction in the phosphorylation of proteins with different molecular weight that were isolated from the cell extracts by anti-phosphotyrosine immunoprecipitation or pull-down with the SH2 domain of Src. Among them, the docking protein p130Cas interacted with Src and is a major substrate of the Src kinases in QGP-1 cells undergoing adhesion. Our results suggest that Src kinases play a specific role during adhesion, spreading and migration of PET cells and may indicate therapeutical approaches directed to limiting the metastatic

  14. Knockdown of fucosyltransferase III disrupts the adhesion of circulating cancer cells to E-selectin without affecting hematopoietic cell adhesion.

    PubMed

    Yin, Xiaoyan; Rana, Kuldeepsinh; Ponmudi, Varun; King, Michael R

    2010-11-02

    Adhesive interactions between selectins and their ligands play an essential role during cancer extravasation. Fucosylation of these proteins by fucosyltransferases, or FUTs, is critical for their functions. Using quantitative RT-PCR, we demonstrated that FUT4 and FUT7 are the predominant FUTs expressed in hematopoietic cell line, while FUT3 is heavily expressed by multiple cancer cell lines including the prostate cancer cell line MDA PCa2b. Knockdown of FUT3 expression in MDA PCa2b cells by small interference RNA (siRNA) significantly reduced FUT3 expression. Cell-surface sialyl Lewis antigens were largely abolished. Cell adhesion and cell rolling on the blood vessel wall were simulated by perfusing cancer cells through microtubes coated with recombinant human E-selectin. At physiological levels of wall shear stress, the number of flowing cancer cells recruited to the microtube surface was dramatically reduced by FUT3 knockdown. Higher rolling velocity was also observed, which is consistent with reduced E-selectin binding activity. Interestingly, FUT3 siRNA treatment also significantly reduced the cell growth rate. Combined with the novel siRNA delivery platform recently developed in our laboratory, FUT3 siRNA could be a promising conjunctive therapy aiming at reducing the metastatic virulence of circulating epithelial cancer cells.

  15. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  16. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation.

    PubMed

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

  17. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  18. Mechanical Properties of Anisotropic Conductive Adhesive Film Under Hygrothermal Aging and Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Gao, Li-Lan; Chen, Xu; Gao, Hong

    2012-07-01

    Mechanical properties of anisotropic conductive adhesive film (ACF) were investigated experimentally under various environmental conditions. The temperature sweep test was conducted to investigate the effects of temperature on dynamical mechanical properties of the ACF. The ACF exhibited transitions to the glass state, viscoelastic state, and rubber state with increasing temperature, and its glass-transition temperature ( T g) was determined to be 149°C. The creep-recovery behaviors of the ACF were investigated, and it was found that the initial strains, instantaneous strains, and creep or recovery rates increased with increasing temperature. No obvious creep phenomenon was observed at low temperatures (≤0°C). The creep strain and creep rates at any time decreased with increasing hygrothermal aging time. The uniaxial tensile behaviors of the ACF were also investigated under hygrothermal aging and thermal cycling. The results show that the Young's modulus and tensile strength of the ACF decrease with increasing hygrothermal aging time; however, they increase at first and then decrease with increasing thermal cycling time. T g decreases slightly for the ACF after hygrothermal aging; however, it increases after thermal cycling.

  19. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts

    PubMed Central

    Sancho, Ana; Vandersmissen, Ine; Craps, Sander; Luttun, Aernout; Groll, Jürgen

    2017-01-01

    Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis. PMID:28393890

  20. Adhesion and internalization differences of COM nanocrystals on Vero cells before and after cell damage.

    PubMed

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Ouyang, Jian-Ming

    2016-02-01

    The adhesion and internalization between African green monkey kidney epithelial (Vero) cells (before and after oxidative damage by hydrogen peroxide) and calcium oxalate monohydrate (COM) nanocrystals (97±35nm) were investigated so as to discuss the molecular and cellular mechanism of kidney stone formation. Scanning electron microscope (SEM) was used to observe the Vero-COM nanocrystal adhesion; the nanocrystal-cell adhesion was evaluated by measuring the content of malonaldehyde (MDA), the activity of superoxide dismutase (SOD), the expression level of cell surface osteopontin (OPN) and the change of Zeta potential. Confocal microscopy and flow cytometry were used for the observation and quantitative analysis of crystal internalization. In the process of adhesion, the cell viability and the SOD activity declined, the MDA content, Zeta potential, and the OPN expression level increased. The adhesive capacity of injured Vero was obviously stronger than normal cells; in addition the injured cells promoted the aggregation of COM nanocrystals. The capacity of normal cells to internalize crystals was obviously stronger than that of injured cells. Cell injury increased adhesive sites on cell surface, thereby facilitating the aggregation of COM nanocrystals and their attachment, which results in enhanced risk of calcium oxalate stone formation.

  1. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    PubMed

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs.

  2. Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning.

    PubMed

    Puttaswamy, Srinivasu Valagerahally; Sivashankar, Shilpa; Chen, Rong-Jhe; Chin, Chung-Kuang; Chang, Hwan-You; Liu, Cheng Hsien

    2010-10-01

    Negative dielectrophoretic (n-DEP) cell manipulation is an efficient way to pattern human liver cells on micro-electrode arrays. Maintaining cell viability is an important objective for this approach. This study investigates the effect of low conductivity medium and the optimally designed microchip on cell viability and cell adhesion. To explore the influence of conductivity on cell viability and cell adhesion, we have used earlier reported dielectrophoresis (DEP) buffer with a conductivity of 10.2 mS/m and three formulated media with conductivity of 9.02 (M1), 8.14 (M2), 9.55 (M3) mS/m. The earlier reported isotonic sucrose/dextrose buffer (DEP buffer) used for DEP manipulation has the drawback of poor cell adhesion and cell viability. A microchip prototype with well-defined positioning of titanium electrode arrays was designed and fabricated on a glass substrate. The gap between the radial electrodes was accurately determined to achieve good cell patterning performance. Parameters such as dimension of positioning electrode, amplitude, and frequency of voltage signal were investigated to optimize the performance of the microchip.

  3. Cell cycle control and seed development.

    PubMed

    Dante, Ricardo A; Larkins, Brian A; Sabelli, Paolo A

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.

  4. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  5. Self assembling bioactive materials for cell adhesion in tissue repair

    NASA Astrophysics Data System (ADS)

    Hwang, Julia J.

    This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation

  6. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons

    PubMed Central

    Földy, Csaba; Darmanis, Spyros; Aoto, Jason; Malenka, Robert C.; Quake, Stephen R.; Südhof, Thomas C.

    2016-01-01

    In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity. PMID:27531958

  7. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism.

    PubMed

    Kang, J; Park, H M; Kim, Y W; Kim, Y H; Varghese, S; Seok, H K; Kim, Y G; Kim, S H

    2014-11-25

    Control of cell-matrix adhesion has become an important issue in the regulation of stem cell function. In this study, a maltose-binding protein (MBP)-linked basic fibroblast growth factor (FGF2)-immobilised polystyrene surface (PS-MBP-FGF2) was applied as an artificial matrix to regulate integrin-mediated signalling. We sought to characterise human mesenchymal-stem cell (hMSC) behaviour in response to two different mechanisms of cell adhesion; (i) FGF2-heparan sulphate proteoglycan (HSPG)-mediated adhesion vs. (ii) fibronectin (FN)-integrin-mediated adhesion. Heparin inhibited hMSC adhesion to PS-MBP-FGF2 but not to FN-coated surface. The phosphorylation of focal adhesion kinase, cytoskeletal re-organisation, and cell proliferation were restricted in hMSCs adhering to PS-MBP-FGF2 compared to FN-coated surface. Expression of MSC markers, such as CD105, CD90 and CD166, decreased in hMSCs expanded on PS-MBP-FGF2 compared to expression in cells expanded on FN-coated surface. hMSCs that were expanded on FN-coated surface differentiated into osteogenic and adipogenic cells more readily than those that were expanded on PS-MBP-FGF2. Furthermore, we characterised the N-linked glycan structures of hMSCs depending on the cell adhesion mechanism using mass spectrometry (MS)-based quantitative techniques. MS analysis revealed that 2,3-sialylated glycans, a potential marker of stem cell function, were more abundant on hMSCs expanded on FN-coated surface than on those expanded on PS-MBP-FGF2. Thus, the differentiation potential of hMSCs is controlled by the type of adhesion substrate that might provide an idea for the design of biomaterials to control stem cell fate. Elucidation of the glycan structure on the cell membrane may help characterise hMSC function.

  8. A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates.

    PubMed

    Canale, Claudio; Petrelli, Alessia; Salerno, Marco; Diaspro, Alberto; Dante, Silvia

    2013-10-15

    Cell adhesion is fundamental for the organization of cells in multicellular organisms since it has a key role in several physiological functions that drive tissue formation and development. A better knowledge of the affections that influence the adhesion capability of cells in several pathologies, such as cancer diseases or multiple sclerosis could enable the development of new therapeutical strategies. Whereas the optimal control of cell adhesion and growth on new technological materials is a primary issue in modern tissue engineering, few techniques are able to provide quantitative and reliable results on cell adhesion. We present a method that enables the investigation of cell adhesion at the single cell level and provides the capability to test the adhesion of a single cell on multifunctional substrates. To reach this goal we applied single cell force spectroscopy (SCFS) on custom designed patterns of molecules prepared on a rigid substrate by using a cantilever based molecule deposition tool, and we tested the adhesion of Chinese Hamster Ovary cells and Human Embrionic Kidney cells on two polyelectrolytes that are widely used as adhesive factors for cells growth: Polyethylenimine and Poly-D-Lysine. Our results confirm the common hypothesis on the mechanism of adhesion promotion by protonated molecules. Optimizations of the experimental settings of SFCS experiment are introduced here. The presented technique offers the unique opportunity to be extended to the study of cell adhesion on an unlimited number molecular species.

  9. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.

    PubMed

    Lin, Shaoqiang; Kemmner, Wolfgang; Grigull, Sabine; Schlag, Peter M

    2002-05-15

    Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.

  10. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies.

  11. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  12. Live-cell migration and adhesion turnover assays.

    PubMed

    Lacoste, J; Young, K; Brown, Claire M

    2013-01-01

    Fluorescence microscopy has revolutionized the way live-cell imaging is achieved. At the same time, it is also potentially harmful to a living specimen. Therefore, the specimen must be monitored for viability and health before, during, and after imaging sessions. Methods for monitoring cell viability and health will be discussed in this chapter. Another key to successful live-cell imaging is to minimize light exposure as much as possible. A summary of strategies for minimizing light exposure including maximizing the light throughput of the microscope and the sensitivity of light detection is presented. Various fluorescence microscopy techniques are presented with a focus on how the light is delivered to the sample (i.e., light density) and pros and cons for use with living specimens. The reader is also directed to other publications that go into these topics in more detail. Methods are described on how to prepare samples for single cell migration assays, how to measure cell migration rates (e.g., bright-field, semi-automated, and automated), and how to measure focal adhesion turnover rates. Details of how to correct images for background intensity and field-illumination uniformity artifacts for quantitative imaging are also described. Overall, this chapter will be helpful to scientists who are interested in imaging live specimens using fluorescence microscopy techniques. It will be of particular interest to anyone wanting to perform quantitative fluorescence imaging, and wanting to measure cell migration rates, and focal adhesion dynamics.

  13. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  14. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells.

    PubMed

    Iwasa, Masaki; Miura, Yasuo; Fujishiro, Aya; Fujii, Sumie; Sugino, Noriko; Yoshioka, Satoshi; Yokota, Asumi; Hishita, Terutoshi; Hirai, Hideyo; Andoh, Akira; Ichinohe, Tatsuo; Maekawa, Taira

    2017-01-02

    The poor prognosis of adults with B cell precursor acute lymphoblastic leukemia (BCP-ALL) is attributed to leukemia cells that are protected by the bone marrow (BM) microenvironment. In the present study, we explored the pharmacological targeting of mesenchymal stromal/stem cells in BM (BM-MSCs) to eliminate chemoresistant BCP-ALL cells. Human BCP-ALL cells (NALM-6 cells) that adhered to human BM-MSCs (NALM-6/Ad) were highly resistant to multiple anti-cancer drugs, and exhibited pro-survival characteristics, such as an enhanced Akt/Bcl-2 pathway and increased populations in the G0 and G2/S/M cell cycle stages. Bortezomib, a proteasome inhibitor, interfered with adhesion between BM-MSCs and NALM-6 cells and up-regulated the matricellular protein SPARC (secreted protein acidic and rich in cysteine) in BM-MSCs, thereby reducing the NALM-6/Ad population. Inhibition of SPARC expression in BM-MSCs using a small interfering RNA enhanced adhesion of NALM-6 cells. Conversely, recombinant SPARC protein interfered with adhesion of NALM-6 cells. These results suggest that SPARC disrupts adhesion between BM-MSCs and NALM-6 cells. Co-treatment with bortezomib and doxorubicin prolonged the survival of BCP-ALL xenograft mice, with a significant reduction of leukemia cells in BM. Our findings demonstrate that bortezomib contributes to the elimination of BCP-ALL cells through disruption of their adhesion to BM-MSCs, and offer a novel therapeutic strategy for BCP-ALL through targeting of BM-MSCs.

  15. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  16. Thermodynamics of cell adhesion. II. Freely mobile repellers.

    PubMed Central

    Torney, D C; Dembo, M; Bell, G I

    1986-01-01

    The equilibrium adhesion of a cell or vesicle to a substrate is analyzed in a theoretical model in which two types of mobile molecules in the cell membrane are of interest: receptors that can form bonds with fixed ligands in the substrate and repellers that repel the substrate. If the repulsion between the repeller molecule and substrate is greater than kT, there is substantial redistribution of the repellers from the contact area. Coexisting equilibrium states are observed having comparable free energies (a) with unstretched bonds and repeller redistribution and (b) with stretched bonds and partial redistribution. PMID:3955182

  17. Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion.

    PubMed

    Sun, Yi-xin; Ren, Ke-feng; Wang, Jin-lei; Chang, Guo-xun; Ji, Jian

    2013-06-12

    Stimuli-responsive thin films attract considerable attention in different fields. Herein, an electrochemical redox multilayers with tunable stiffness is constructed through the layer-by-layer self-assembly method. The redox ferrocene modified poly(ethylenimine) play an essential role to induce multilayers' swelling/shrinking under an electrochemical stimulus, resulting reversible change of elastic modulus of the multilayers. The adhesion of fibroblast cells can be thus controlled from well spreading to round shape. Such soft multilayers with electrochemically controlled stiffness could have potentials for cell-based applications.

  18. The peri-cell-cycle in Arabidopsis.

    PubMed

    Beeckman, T; Burssens, S; Inzé, D

    2001-03-01

    The root systems of plants proliferate via de novo formed meristems originating from differentiated pericycle cells. The identity of putative signals responsible for triggering some of the pericycle cells to re-enter the cell cycle remains unknown. Here, the cell cycle regulation in the pericycle of seedling roots of Arabidopsis thaliana (L.) HEYNH: is studied shortly after germination using various strategies. Based on the detailed analysis of the promoter-beta-glucuronidase activity of four key cell cycle regulatory genes, combined with cell length measurements, microdensitometry of DNA content, and experiments with a cell cycle-blocking agent, a model is proposed for cell cycle regulation in the pericycle at the onset of lateral root initiation. The results clearly show that before the first lateral root is initiated, the pericycle consists of dissimilar cell files in respect of their cell division history. Depending on the distance behind the root tip and on position in relation to the vascular tissue, particular pericycle cells remain in the G(2) phase of the cell cycle and are apparently more susceptible to lateral root initiation than others.

  19. PrP-dependent cell adhesion in N2a neuroblastoma cells.

    PubMed

    Mangé, Alain; Milhavet, Ollivier; Umlauf, David; Harris, David; Lehmann, Sylvain

    2002-03-13

    The cellular isoform of prion protein (PrP(C)) is a ubiquitous glycoprotein expressed by most tissues and with a biological function yet to be determined. Here, we have used a neuroblastoma cell model to investigate the involvement of PrP in cell adhesion. Incubation of single cell suspension induced cell-cell adhesion and formation of cell aggregates. Interestingly, cells overexpressing PrP exhibit increased cation-independent aggregation. Aggregation was reduced after phosphatidylinositol-specific phospholipase C release of the protein and by pre-incubation of cells with an antibody raised against the N-terminal part of PrP(C). Our paradigm allows the study of the function of PrP as an intercellular adhesion molecule and a cell surface ligand or receptor.

  20. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  1. Regulation of epithelial cell organization by tuning cell-substrate adhesion.

    PubMed

    Ravasio, Andrea; Le, Anh Phuong; Saw, Thuan Beng; Tarle, Victoria; Ong, Hui Ting; Bertocchi, Cristina; Mège, René-Marc; Lim, Chwee Teck; Gov, Nir S; Ladoux, Benoit

    2015-10-01

    Collective migration of cells is of fundamental importance for a number of biological functions such as tissue development and regeneration, wound healing and cancer metastasis. The movement of cell groups consisting of multiple cells connected by cell-cell junctions depends on both extracellular and intercellular contacts. Epithelial cell assemblies are thus regulated by a cross-talk between cell-substrate and cell-cell interactions. Here, we investigated the onset of collective migration in groups of cells as they expand from a few cells into large colonies as a function of extracellular matrix (ECM) protein coating. By varying the amount of ECM presented to the cells, we observe that the mode of colony expansion, as well as their overall geometry, is strongly dependent on substrate adhesiveness. On high ECM protein coated surfaces, cells at the edges of the colonies are well spread exhibiting large outward-pointing protrusive activity, whereas cellular colonies display more circular and convex shapes on less adhesive surfaces. Actin structures at the edge of the colonies also show different organizations with the formation of lamellipodial structures on highly adhesive surfaces and a pluricellular actin cable on less adhesive ones. The analysis of traction forces and cell velocities within the cellular assemblies confirm these results. By increasing ECM protein density, cells exert higher traction forces together with a higher outward motility at the edges. Furthermore, tuning cell-cell adhesion of epithelial cells modified the mode of expansion of the colonies. Finally, we used a recently developed computational model to recapitulate the emergent experimental behaviors of expanding cell colonies and extract that the main effect of the different cell-substrate interactions is on the ability of edge cells to form outward lamellipodia-driven motility. Overall, our data suggest that switching behaviors of epithelial cell assemblies result in a tug-of-war between

  2. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    PubMed

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-20

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  3. Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules.

    PubMed

    Stanford, C M; Solursh, M; Keller, J C

    1999-12-05

    The purpose of this study was to characterize the role of cell surface adhesive macromolecules through enzyme modulation and metabolic recovery prior to and during a kinetic cell adhesion assay. Primary rat calvarial osteoblast-like cells were derived from Sprague-Dawley calvarial plates. Cell adhesion kinetics was evaluated with the definition of first-order adhesion kinetics. Osteoblasts were incubated in an adhesion buffer for 1 h prior to a cell attachment assay using various enzymes to remove cell surface glycosaminoglycans (GAGs). A subtractive adhesion analysis was performed by plating cells at 5 x 10(4)/well for variable periods through 2 h. The medium was collected, the well surface washed and pooled, and the number of cells enumerated with a Coulter Counter. Cell adhesion demonstrated first-order logarithmic adhesion kinetics in the first 60 min. Scatchard analysis demonstrated a linear relationship. Preexposure of cells to various enzyme combinations demonstrated that 50% of the equilibrium adhesion was dependent on chondroitin sulfate or dermatan sulfate surface macromolecules. These results were confirmed with pretreatment with a metabolic inhibitor of GAG synthesis (beta-D-xyloside). These results suggest an important role for cell associated chondroitin sulfate and dermatan sulfate in cell adhesion in addition to Arg-Gly-Asp or integrin mediated adhesion events.

  4. Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry.

    PubMed

    Kim, Se-Hwa; Chegal, Won; Doh, Junsang; Cho, Hyun Mo; Moon, Dae Won

    2011-04-06

    The interaction of cells with extracellular matrix, termed cell-matrix adhesions, importantly governs multiple cellular phenomena. Knowledge of the functional dynamics of cell-matrix adhesion could provide critical clues for understanding biological phenomena. We developed surface plasmon resonance imaging ellipsometry (SPRIE) to provide high contrast images of the cell-matrix interface in unlabeled living cells. To improve the contrast and sensitivity, the null-type imaging ellipsometry technique was integrated with an attenuated total reflection coupler. We verified that the imaged area of SPRIE was indeed a cell-matrix adhesion area by confocal microscopy imaging. Using SPRIE, we demonstrated that three different cell types exhibit distinct features of adhesion. SPRIE was applied to diverse biological systems, including during cell division, cell migration, and cell-cell communication. We imaged the cell-matrix anchorage of mitotic cells, providing the first label-free imaging of this interaction to our knowledge. We found that cell-cell communication can alter cell-matrix adhesion, possibly providing direct experimental evidence for cell-cell communication-mediated changes in cell adhesion. We also investigated shear-stress-induced adhesion dynamics in real time. Based on these data, we expect that SPRIE will be a useful methodology for studying the role of cell-matrix adhesion in important biological phenomena.

  5. Disruption of cell adhesion by an antibody targeting the cell-adhesive intermediate (X-dimer) of human P-cadherin

    PubMed Central

    Kudo, Shota; Caaveiro, Jose M. M.; Nagatoishi, Satoru; Miyafusa, Takamitsu; Matsuura, Tadashi; Sudou, Yukio; Tsumoto, Kouhei

    2017-01-01

    Human P-cadherin is a cell adhesion protein of the family of classical cadherins, the overexpression of which is correlated with poor prognosis in various types of cancer. Antibodies inhibiting cell-cell adhesion mediated by P-cadherin show clear therapeutic effect, although the mechanistic basis explaining their effectiveness is still unclear. Based on structural, physicochemical, and functional analyses, we have elucidated the molecular mechanism of disruption of cell adhesion by antibodies targeting human P-cadherin. Herein we have studied three different antibodies, TSP5, TSP7, and TSP11, each recognizing a different epitope on the surface of the cell-adhesive domain (EC1). Although all these three antibodies recognized human P-cadherin with high affinity, only TSP7 disrupted cell adhesion. Notably, we demonstrated that TSP7 abolishes cell adhesion by disabling the so-called X-dimer (a kinetic adhesive intermediate), in addition to disrupting the strand-swap dimer (the final thermodynamic state). The inhibition of the X-dimer was crucial for the overall inhibitory effect, raising the therapeutic value of a kinetic intermediary not only for preventing, but also for reversing, cell adhesion mediated by a member of the classical cadherin family. These findings should help to design more innovative and effective therapeutic solutions targeting human P-cadherin. PMID:28045038

  6. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  7. A discrete approach for modeling cell-matrix adhesions

    NASA Astrophysics Data System (ADS)

    Escribano, J.; Sánchez, M. T.; García-Aznar, J. M.

    2014-06-01

    During recent years the interaction between the extracellular matrix and the cytoskeleton of the cell has been object of numerous studies due to its importance in cell migration processes. These interactions are performed through protein clutches, known as focal adhesions. For migratory cells these focal adhesions along with force generating processes in the cytoskeleton are responsible for the formation of protrusion structures like lamellipodia or filopodia. Much is known about these structures: the different proteins that conform them, the players involved in their formation or their role in cell migration. Concretely, growth-cone filopodia structures have attracted significant attention because of their role as cell sensors of their surrounding environment and its complex behavior. On this matter, a vast myriad of mathematical models has been presented to explain its mechanical behavior. In this work, we aim to study the mechanical behavior of these structures through a discrete approach. This numerical model provides an individual analysis of the proteins involved including spatial distribution, interaction between them, and study of different phenomena, such as clutches unbinding or protein unfolding.

  8. Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-01-01

    °Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.

  9. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    NASA Astrophysics Data System (ADS)

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  10. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    PubMed Central

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; del Río Hernández, Armando

    2016-01-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour. PMID:27686622

  11. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment.

    PubMed

    Attwood, Simon J; Cortes, Ernesto; Haining, Alexander William M; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-30

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  12. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  13. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy

    PubMed Central

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S.; Corey, Eva; Snyder, Linda A.; Vessella, Robert L.; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis. PMID:26090669

  14. Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response

    PubMed Central

    1989-01-01

    Cell-substratum adhesion strengths have been quantified using fibroblasts and glioma cells binding to two extracellular matrix proteins, fibronectin and tenascin. A centrifugal force-based adhesion assay was used for the adhesive strength measurements, and the corresponding morphology of the adhesions was visualized by interference reflection microscopy. The initial adhesions as measured at 4 degrees C were on the order of 10(-5)dynes/cell and did not involve the cytoskeleton. Adhesion to fibronectin after 15 min at 37 degrees C were more than an order of magnitude stronger; the strengthening response required cytoskeletal involvement. By contrast to the marked strengthening of adhesion to FN, adhesion to TN was unchanged or weakened after 15 min at 37 degrees C. The absolute strength of adhesion achieved varied according to protein and cell type. When a mixed substratum of fibronectin and tenascin was tested, the presence of tenascin was found to reduce the level of the strengthening of cell adhesion normally observed at 37 degrees C on a substratum of fibronectin alone. Parallel analysis of corresponding interference reflection micrographs showed that differences in the area of cell surface within 10-15 nm of the substratum correlated closely with each of the changes in adhesion observed: after incubation for 15 min on fibronectin at 37 degrees C, glioma cells increased their surface area within close contact to the substrate by integral to 125- fold. Cells on tenascin did not increase their surface area of contact. The increased surface area of contact and the inhibitory activity of cytochalasin b suggest that the adhesive "strengthening" in the 15 min after initial binding brings additional adhesion molecules into the adhesive site and couples the actin cytoskeleton to the adhesion complex. PMID:2477381

  15. Adhesion-Dependent Wave Generation in Crawling Cells.

    PubMed

    Barnhart, Erin L; Allard, Jun; Lou, Sunny S; Theriot, Julie A; Mogilner, Alex

    2017-01-09

    Dynamic actin networks are excitable. In migrating cells, feedback loops can amplify stochastic fluctuations in actin dynamics, often resulting in traveling waves of protrusion. The precise contributions of various molecular and mechanical interactions to wave generation have been difficult to disentangle, in part due to complex cellular morphodynamics. Here we used a relatively simple cell type-the fish epithelial keratocyte-to define a set of mechanochemical feedback loops underlying actin network excitability and wave generation. Although keratocytes are normally characterized by the persistent protrusion of a broad leading edge, increasing cell-substrate adhesion strength results in waving protrusion of a short leading edge. We show that protrusion waves are due to fluctuations in actin polymerization rates and that overexpression of VASP, an actin anti-capping protein that promotes actin polymerization, switches highly adherent keratocytes from waving to persistent protrusion. Moreover, VASP localizes both to adhesion complexes and to the leading edge. Based on these results, we developed a mathematical model for protrusion waves in which local depletion of VASP from the leading edge by adhesions-along with lateral propagation of protrusion due to the branched architecture of the actin network and negative mechanical feedback from the cell membrane-results in regular protrusion waves. Consistent with our model simulations, we show that VASP localization at the leading edge oscillates, with VASP leading-edge enrichment greatest just prior to protrusion initiation. We propose that the mechanochemical feedbacks underlying wave generation in keratocytes may constitute a general module for establishing excitable actin dynamics in other cellular contexts.

  16. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  17. Increase of β2-integrin on adhesion of THP-1 cells to collagen vitrigel membrane.

    PubMed

    Uchino, Tadashi; Kuroda, Yukie; Ishida, Seiichi; Yamashita, Kunihiko; Miyazaki, Hiroshi; Oshikata, Ayumi; Shimizu, Kumiko; Kojima, Hajime; Takezawa, Toshiaki; Akiyama, Takumi; Ikarashi, Yoshiaki

    2016-07-04

    When human monocyte-derived leukemia (THP-1) cells, which are floating cells, are stimulated with lipid peroxides, or Streptococcus suis, these cells adhere to a plastic plate or endothelial cells. However, it is unclear whether or not non-stimulated THP-1 cells adhere to collagen vitrigel membrane (CVM). In this study, firstly, we investigated the rate of adhesion of THP-1 cells to CVM. When THP-1 cells were not stimulated, the rate of adhesion to CVM was high. Then, to identify adhesion molecules involved in adhesion of THP-1 cells to CVM, expressions of various cell adhesion molecules on the surface of THP-1 cells adhering to CVM were measured. β-actin, β-catenin, and β1-integrin expressions did not change in non-stimulated THP-1 cells cultured on CVM compared with those in cells cultured in a flask, but β2-integrin expression markedly increased.

  18. Selective cell adhesion on femtosecond laser-microstructured polydimethylsiloxane.

    PubMed

    Alshehri, A M; Hadjiantoniou, S; Hickey, R J; Al-Rekabi, Z; Harden, J L; Pelling, A E; Bhardwaj, V R

    2016-02-19

    We show that femtosecond laser irradiation of polydimethylsiloxane (PDMS) enables selective and patterned cell growth by altering the wetting properties of the surface associated with chemical and/or topographical changes. In the low pulse energy regime, the surface becomes less hydrophobic and exhibits a low water contact angle compared to the pristine material. X-ray photoelectron spectroscopy (XPS) also reveals an increased oxygen content in the irradiated regions, to which the C2C12 cells and rabbit anti-mouse protein were found to attach preferentially. In the high pulse energy regime, the laser-modified regions exhibit superhydrophobicity and were found to inhibit cell adhesion, whereas cells were found to attach to the surrounding regions due to the presence of nanoscale debris generated by the ablation process.

  19. Electric impedance sensing during the inhibition of cell-cell adhesion.

    PubMed

    Wiertz, R F; Rutten, W C; Marani, E

    2008-01-01

    Electric cell impedance sensing (ECIS) was used to monitor the change of in vitro neuron-neuron adhesion in response to the blocking of N-Cam, N-Cadherin and L1. ECIS is a method in which cell morphology and cell mobility can be indirectly measured by changes in intercellular resistance. Antibodies and soluble extracellular domains of the cell adhesion molecules N-Cam, N-Cadherin and L1 were used as blockers of these adhesion molecules on the cell surface. In a 96 hour aggregation assay on a low adhesive substrate, the effect of mentioned blockers on the aggregation was investigated. The N-Cadherin antibody showed effective in aggregation inhibition at concentrations of 3 and 10 micrograms/ml. Up to 96 hours no aggregation occurred. A similar effect was achieved by the N-Cadherin protein, although less distinct. Blocking of N-CAM and L1 revealed no inhibition of aggregation. Results from impedance measurements correspond to those of the aggregation assays. The neuron-neuron adhesion in monolayers was inhibited by blocking of cell adhesion molecules and monitored by ECIS. Impedances of neuron covered electrodes were significantly lower in the presence of N-Cadherin antibody and protein at concentrations of 1, 3 and 10 micrograms/ml, indicating a less profound binding between adjacent neuron.The results from both the aggregation assays and the impedance measurements demonstrate the applicability of CAM blocking for the regulation of culture topography.

  20. Nucleosome architecture throughout the cell cycle.

    PubMed

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  1. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  2. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker

    SciTech Connect

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Highlights: {yields} A nano-picker is developed for single cell adhesion force measurement. {yields} The adhesion of picker-cell has no influence to the cell-cell measurement result. {yields} Cell-cell adhesion force has a rise at the first few minutes and then becomes constant. -- Abstract: Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  3. Inhibition of neuronal cell-cell adhesion measured by the microscopic aggregation assay and impedance sensing

    NASA Astrophysics Data System (ADS)

    Wiertz, R. W. F.; Marani, E.; Rutten, W. L. C.

    2010-10-01

    Microscopic aggregation assay and impedance sensing (IS) were used to monitor a change in in vitro neuron-neuron adhesion in response to blocking of cell adhesion molecules. By blocking neuron-neuron adhesion, migration and aggregation of neuronal cells can be inhibited. This leads to better control of spatial arrangement of cells in culture. In the literature N-CAM, L1 and N-cadherin proteins are pointed out as main regulators of neuronal adhesion. In this study, these three main cell adhesion molecules were used to inhibit neuron-to-neuron adhesion and aggregation. Both soluble extracellular domains and antigen antibodies were added to these adhesion molecules. They were investigated for their blocking ability in neuronal cultures. First, in a 96 h aggregation assay on a low-adhesive substrate, the effect of inhibition of the three proteins on aggregation of cortical neurons was investigated optically. Both L1 antibody and L1 protein had no effect on the degree of aggregation. An N-cadherin antibody however was shown to be effective in aggregation inhibition at concentrations of 1 and 3 µg ml-1. Up to 96 h no aggregation occurred. A similar effect was achieved by the N-cadherin protein, although less distinct. N-CAM blocking revealed no inhibition of aggregation. Second, results from IS corresponded to those of the aggregation assays. In these experiments neuron-neuron adhesion was also inhibited by blocking N-CAM L1 and N-cadherin. Cortical neurons were cultured in small wells containing circular 100 µm diameter gold electrodes, so small changes in cell-cell interactions in monolayers of neurons could be monitored by IS. Impedances of neuron-covered electrodes were significantly lower in the presence of the N-cadherin antibody and protein at concentrations of 1, 3 and 10 µg ml-1, indicating a less profound binding between adjacent neurons. Results from the aggregation assays and impedance measurements demonstrate the applicability of blocking cell adhesion

  4. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  5. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  6. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    SciTech Connect

    Jiang, Feng; Zhao, Hongxi; Wang, Li; Guo, Xinyu; Wang, Xiaohong; Yin, Guowu; Hu, Yunsheng; Li, Yi; Yao, Yuanqing

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  7. Triggering cell adhesion, migration or shape change with a dynamic surface coating.

    PubMed

    van Dongen, Stijn F M; Maiuri, Paolo; Marie, Emmanuelle; Tribet, Christophe; Piel, Matthieu

    2013-03-25

    There's an APP for that: cell-repellent APP (azido-[polylysine-g-PEG]) is used to create substrates for spatially controlled dynamic cell adhesion. The simple addition of a functional peptide to the culture medium rapidly triggers cell adhesion. This highly accessible yet powerful technique allows diverse applications, demonstrated through tissue motility assays, patterned coculturing and triggered cell shape change.

  8. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity

    PubMed Central

    Théry, Manuel; Racine, Victor; Piel, Matthieu; Pépin, Anne; Dimitrov, Ariane; Chen, Yong; Sibarita, Jean-Baptiste; Bornens, Michel

    2006-01-01

    Control of the establishment of cell polarity is an essential function in tissue morphogenesis and renewal that depends on spatial cues provided by the extracellular environment. The molecular role of cell–cell or cell–extracellular matrix (ECM) contacts on the establishment of cell polarity has been well characterized. It has been hypothesized that the geometry of the cell adhesive microenvironment was directing cell surface polarization and internal organization. To define how the extracellular environment affects cell polarity, we analyzed the organization of individual cells plated on defined micropatterned substrates imposing cells to spread on various combinations of adhesive and nonadhesive areas. The reproducible normalization effect on overall cell compartmentalization enabled quantification of the spatial organization of the actin network and associated proteins, the spatial distribution of microtubules, and the positioning of nucleus, centrosome, and Golgi apparatus. By using specific micropatterns and statistical analysis of cell compartment positions, we demonstrated that ECM geometry determines the orientation of cell polarity axes. The nucleus–centrosome orientations were reproducibly directed toward cell adhesive edges. The anisotropy of the cell cortex in response to the adhesive conditions did not affect the centrosome positioning at the cell centroid. Based on the quantification of microtubule plus end distribution we propose a working model that accounts for that observation. We conclude that, in addition to molecular composition and mechanical properties, ECM geometry plays a key role in developmental processes. PMID:17179050

  9. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  10. Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules.

    PubMed Central

    Modur, V; Feldhaus, M J; Weyrich, A S; Jicha, D L; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1997-01-01

    Oncostatin M is a member of the IL-6 family of cytokines that is primarily known for its effects on cell growth. Endothelial cells have an abundance of receptors for oncostatin M, and may be its primary target. We determined if oncostatin M induces a key endothelial cell function, initiation of the inflammatory response. We found that subcutaneous injection of oncostatin M in mice caused an acute inflammatory reaction. Oncostatin M in vitro stimulated: (a) polymorphonuclear leukocyte (PMN) transmigration through confluent monolayers of primary human endothelial cells; (b) biphasic PMN adhesion through rapid P-selectin expression, and delayed adhesion mediated by E-selectin synthesis; (c) intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 accumulation; and (d) the expression of PMN activators IL-6, epithelial neutrophil activating peptide-78, growth-related cytokine alpha and growth-related cytokine beta without concomitant IL-8 synthesis. The nature of the response to oncostatin M varied with concentration, suggesting high and low affinity oncostatin M receptors independently stimulated specific responses. Immunohistochemistry showed that macrophage-like cells infiltrating human aortic aneurysms expressed oncostatin M, so it is present during a chronic inflammatory reaction. Therefore, oncostatin M, but not other IL-6 family members, fulfills Koch's postulates as an inflammatory mediator. Since its effects on endothelial cells differ significantly from established mediators like TNFalpha, it may uniquely contribute to the inflammatory cycle. PMID:9202068

  11. Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator.

    PubMed

    Hong, Soonjin; Ergezen, Ertan; Lec, Ryszard; Barbee, Kenneth A

    2006-12-01

    The cell adhesion process and the molecular interactions that determine its kinetics were investigated using a thickness shear mode (TSM) sensor. The goal of this study was to correlate sensor readings with the progression of cell adhesion. In particular, the specific effects of receptor-mediated adhesion, the glycocalyx, and surface charge on initial cell-surface attachment and steady-state adhesion of endothelial cells were investigated. We found a strong correlation between resistance changes (DeltaR) and the development of cell adhesion strength by comparing the sensor readings with independently assessed cell adhesion. The result showed that integrin binding determines the kinetics of initial cell attachment while heparan sulfate proteoglycan (HSPG) modulates steady-state adhesion strength. Coating the sensor surface with the positively charged poly-d-lysine (PDL) enhanced the initial interaction with substratum. These data confirm our current understanding of the contribution of these three phenomena to the adhesion process. The real-time monitoring capability of this technique with high temporal resolution provides more detailed information on the kinetics of the different stages of the adhesion process. This technique has the potential to facilitate the evaluation of biomaterials and surface treatments used for implants and tissue-engineering scaffolds for their bioactive effects on the cell adhesion process.

  12. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    PubMed Central

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-01-01

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin. PMID:26690142

  13. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  14. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    PubMed

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients.

  15. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  16. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  17. Migration of breast cancer cells: Understanding the roles of volume exclusion and cell-to-cell adhesion

    NASA Astrophysics Data System (ADS)

    Simpson, Matthew J.; Towne, Chris; McElwain, D. L. Sean; Upton, Zee

    2010-10-01

    We study MCF-7 breast cancer cell movement in a transwell apparatus. Various experimental conditions lead to a variety of monotone and nonmonotone responses which are difficult to interpret. We anticipate that the experimental results could be caused by cell-to-cell adhesion or volume exclusion. Without any modeling, it is impossible to understand the relative roles played by these two mechanisms. A lattice-based exclusion process random-walk model incorporating agent-to-agent adhesion is applied to the experimental system. Our combined experimental and modeling approach shows that a low value of cell-to-cell adhesion strength provides the best explanation of the experimental data suggesting that volume exclusion plays a more important role than cell-to-cell adhesion. This combined experimental and modeling study gives insight into the cell-level details and design of transwell assays.

  18. Contributions of the Integrin β1 Tail to Cell Adhesive Forces

    PubMed Central

    Elloumi-Hannachi, Imen; García, José R.; Shekeran, Asha; García, Andrés J.

    2014-01-01

    Integrin receptors connect the extracellular matrix to the cell cytoskeleton to provide essential forces and signals. To examine the contributions of the β1 integrin cytoplasmic tail to adhesive forces, we generated cell lines expressing wild-type and tail mutant β1 integrins in β1-null fibroblasts. Deletion of β1 significantly reduced cell spreading, focal adhesion assembly, and adhesive forces, and expression of hβ1 integrin in these cells restored adhesive functions. Cells expressing a truncated tail mutant had impaired spreading, fewer and smaller focal adhesions, reduced integrin binding to fibronectin, and lower adhesion strength and traction forces compared to hβ1-expressing cells. All these metrics were equivalent to those for β1-null cells, demonstrating that the β1 tail is essential to these adhesive functions. Expression of the constitutively-active D759A hβ1 mutant restored many of these adhesive functions in β1-null cells, although with important differences when compared to wild-type β1. Even though there were no differences in integrin-fibronectin binding and adhesion strength between hβ1- and hβ1-D759A-expressing cells, hβ1-D759A-expressing cells assembled more but smaller adhesions than hβ1-expressing cells. Importantly, hβ1-D759A-expressing cells generated lower traction forces compared to hβ1-expressing cells. These differences between hβ1- and hβ1-D759A-expressing cells suggest that regulation of integrin activation is important for fine-tuning cell spreading, focal adhesion assembly, and traction force generation. PMID:25460334

  19. Role of cell-cell adhesion complexes in embryonic stem cell biology.

    PubMed

    Pieters, Tim; van Roy, Frans

    2014-06-15

    Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. β-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of β-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.

  20. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  1. Pharmacology of Cell Adhesion Molecules of the Nervous System

    PubMed Central

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders. PMID:19305742

  2. Cell adhesion in plants is under the control of putative O-fucosyltransferases.

    PubMed

    Verger, Stéphane; Chabout, Salem; Gineau, Emilie; Mouille, Grégory

    2016-07-15

    Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development.

  3. Cell adhesion in plants is under the control of putative O-fucosyltransferases

    PubMed Central

    Verger, Stéphane; Chabout, Salem; Gineau, Emilie

    2016-01-01

    Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development. PMID:27317803

  4. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  5. Using immuno-scanning electron microscopy for the observation of focal adhesion-substratum interactions at the nano- and microscale in S-phase cells.

    PubMed

    Biggs, Manus J P; Richards, R Geoff; Dalby, Matthew J

    2011-01-01

    It is becoming clear that the nano/microtopography of a biomaterial in vivo is of first importance in influencing focal adhesion formation and subsequent cellular behaviour. When considering next-generation biomaterials, where the material's ability to elicit a regulated cell response will be key to device success, focal adhesion analysis is an useful indicator of cytocompatibility and can be used to determine functionality. Here, a methodology is described to allow simultaneous high-resolution imaging of focal adhesion sites and the material topography using field emission scanning electron microscopy. Furthermore, through the use of BrdU pulse labelling and immunogold detection, S-phase cells can be selected from a near-synchronised population of cells to remove artefacts due to cell cycle phase. This is a key factor in adhesion quantification as there is natural variation in focal adhesion density as cells progress through the cell cycle, which can skew the quantitative analysis of focal adhesion formation on fabricated biomaterials.

  6. An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    PubMed Central

    Barnhart, Erin L.; Lee, Kun-Chun; Keren, Kinneret; Mogilner, Alex; Theriot, Julie A.

    2011-01-01

    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. PMID:21559321

  7. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  8. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials.

  9. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components

    PubMed Central

    1995-01-01

    Episialin (MUC1) is a transmembrane molecule with a large mucin-like extracellular domain protruding high above the cell surface. The molecule is located at the apical side of most glandular epithelial cells, whereas in carcinoma cells it is often present at the entire surface and it is frequently expressed in abnormally large quantities. We have previously shown that overexpression of episialin reduces cell- cell interactions. Here we show that the integrin-mediated adhesion to extracellular matrix of transfectants of a melanoma cell line (A375), a transformed epithelial cell line (MDCK-ras-e) and a human breast epithelial cell line (HBL-100) is reduced by high levels of episialin. This reduction can be reversed by inducing high avidity of the beta 1 integrins by mAb TS2/16 (at least for beta 1-mediated adhesion). The adhesion can also be restored by redistribution of episialin on the cell surface by monoclonal antibodies into patches or caps. Similarly, capping of episialin on ZR-75-1 breast carcinoma cells, growing in suspension, caused adherence and spreading of these cells. We propose that there is a delicate balance between adhesion and anti-adhesion forces in episialin expressing cells, which can be shifted towards adhesion by strengthening the integrin-mediated adhesion, or towards anti-adhesion by increasing the level of expression of episialin. PMID:7698991

  10. Microfilament-coordinated adhesion dynamics drives single cell migration and shapes whole tissues

    PubMed Central

    Aguilar-Cuenca, Rocio; Llorente-Gonzalez, Clara; Vicente, Carlos; Vicente-Manzanares, Miguel

    2017-01-01

    Cell adhesion to the substratum and/or other cells is a crucial step of cell migration. While essential in the case of solitary migrating cells (for example, immune cells), it becomes particularly important in collective cell migration, in which cells maintain contact with their neighbors while moving directionally. Adhesive coordination is paramount in physiological contexts (for example, during organogenesis) but also in pathology (for example, tumor metastasis). In this review, we address the need for a coordinated regulation of cell-cell and cell-matrix adhesions during collective cell migration. We emphasize the role of the actin cytoskeleton as an intracellular integrator of cadherin- and integrin-based adhesions and the emerging role of mechanics in the maintenance, reinforcement, and turnover of adhesive contacts. Recent advances in understanding the mechanical regulation of several components of cadherin and integrin adhesions allow us to revisit the adhesive clutch hypothesis that controls the degree of adhesive engagement during protrusion. Finally, we provide a brief overview of the major impact of these discoveries when using more physiological three-dimensional models of single and collective cell migration. PMID:28299195

  11. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  12. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions

    PubMed Central

    1996-01-01

    Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE

  13. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells.

    PubMed

    Wang, Dan; Gao, Chun-Qi; Chen, Rong-Qiang; Jin, Cheng-Long; Li, Hai-Chang; Yan, Hui-Chao; Wang, Xiu-Qi

    2016-05-24

    The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 μmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration.

  14. Physics of Cell Adhesion Failure and Human Diseases

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    Emergent phenomena in living systems, including your ability to read these lines, do not obviously follow as a consequence of the fundamental laws of physics. Understanding the physics of living systems clearly falls outside the conventional boundaries of scientific disciplines and requires a collaborative, multidisciplinary approach. Here I will discuss how theoretical and computational techniques from statistical physics can be used to make progress in explaining the physical mechanisms that underlie complex biological phenomena, including major diseases. In the specific cases of macular degeneration and cancer that we have studied recently, we find that the breakdown of the mechanical stability in the local tissue structure caused by weakening of the cell-cell adhesion plays a key role in the initiation and progression of the disease. This finding can help in the development of new therapies that would prevent or halt the initiation and progression of these diseases.

  15. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin.

    PubMed

    Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George

    2014-12-18

    Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding.

  16. Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells

    PubMed Central

    Arita, Tomohiro; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Ogino, Shinpei; Fujita, Yuji; Hiramoto, Hidekazu; Hamada, Junichi; Shoda, Katsutoshi; Kosuga, Toshiyuki; Fujiwara, Hitoshi; Okamoto, Kazuma; Otsuji, Eigo

    2016-01-01

    Background Peritoneal metastasis consists of a highly complex series of steps, and the details of the underlying molecular mechanism remain largely unclear. In this study, the effects of tumor-derived exosomes (TEX) on the progression of gastric cancers were investigated in peritoneal metastasis. Results TEX were internalized in both mesothelial and gastric cancer cells in a cellular origin non-specific manner. Internalization of TEX into mesothelial cells promoted significant adhesion between mesothelial and gastric cancer cells, and TEX internalization into gastric cancer cells significantly promoted migratory ability, while internalization of mesothelial cell-derived exosomes did not. Expression of adhesion-related molecules, such as fibronectin 1 (FN1) and laminin gamma 1 (LAMC1), were increased in mesothelial cells after internalization of TEX from gastric cancer cell line and malignant pleural effusion. Methods TEX were extracted from cell-conditioned medium by ultracentrifugation. The effects of TEX on the malignant potential of gastric cancer were investigated in adhesion, invasion, and proliferation assays. PCR array as well as western blotting were performed to determine the underlying molecular mechanisms. The molecular changes in mesothelial cell after internalization of TEX derived from malignant pleural effusion were also confirmed. Conclusions TEX may play a critical role in the development of peritoneal metastasis of gastric cancer, which may be partially due to inducing increased expression of adhesion molecules in mesothelial cells. PMID:27487135

  17. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  18. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

    PubMed

    Yan, W W; Cai, B; Liu, Y; Fu, B M

    2012-05-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.

  19. Effects of simulated microgravity on cell cycle in human endothelial cells

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Alisa A.; Ignashkova, Tatiana I.; Bochenkova, Anna V.; Moskovtsev, Aleksey A.; Baranov, Victor M.; Kubatiev, Aslan A.

    2014-06-01

    The aim of the current study is to investigate effects of simulated microgravity on the cell cycle of endothelial cells. We analyze changes in the cell cycle after exposure of endothelial-like EA.hy 926 cells to simulated microgravity using a Desktop random positioning machine (RPM). Cell cycle profiles determined by flow cytometry show, that the percentage of the cells in the G0/G1 phase after 24 and 96 h of RPM-simulated microgravity is significantly increased as compared to the control group. However, no significant difference is observed after 120 h of RPM-simulated microgravity. In regard to S phase, the percentage of cells is significantly decreased after 24 and 96 h of RPM, respectively; whereas 120 h later, the number of S-phase cells is comparable to the control group. Thus, we show that simulated microgravity inhibits cell cycle progression of human EA.hy 926 cells from the G0/G1 phase to the S phase. We observe an effect of a hibernation-like state, when the growth of the cells in the RPM group slows down, but does not stop. Our results further show that simulated microgravity can affect adhesion of endothelial cells, and alpha-tubulin expression, as most cells begin to detach from the surface of OptiCell unit after 24 h, form aggregates after 48 h, and exhibit accumulation of alpha-tubulin around the nucleus after 48 h of exposure to simulated microgravity conditions. Our results demonstrate a chance in the cell cycle in a low gravitational field.

  20. Investigation of Cell-Substrate Adhesion Properties of Living Chondrocyte by Measuring Adhesive Shear Force and Detachment Using AFM and Inverse FEA

    PubMed Central

    Nguyen, Trung Dung; Gu, YuanTong

    2016-01-01

    It is well-known that cell adhesion is important in many biological processes such as cell migration and proliferation. A better understanding of the cell adhesion process will shed insight into these cellular biological responses as well as cell adhesion-related diseases treatment. However, there is little research which has attempted to investigate the process of cell adhesion and its mechanism. Thus, this paper aims to study the time-dependent adhesion properties of single living chondrocytes using an advanced coupled experimental-numerical approach. Atomic Force Microscopy (AFM) tips will be used to apply lateral forces to detach chondrocytes that are seeded for three different periods. An advanced Finite Element Analysis (FEA) model combining porohyperelastic (PHE) constitutive model and cohesive zone formulation is developed to explore the mechanism of adhesion. The results revealed that the cells can resist normal traction better than tangential traction in the beginning of adhesion. This is when the cell adhesion molecules establish early attachment to the substrates. After that when the cells are spreading, stress fiber bundles generate tangential traction on the substrate to form strong adhesion. Both simulation and experimental results agree well with each other, providing a powerful tool to study the cellular adhesion process. PMID:27892536

  1. Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-12-01

    We used a coculture model to evaluate the inflammatory potential of ammonia gas plasma modified PET and PTFE by flow cytometry and immunohistochemistry. In these studies, human endothelial cells from umbilical cord (HUVEC) and promonocytic U937 cells were used. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. U937 adhesion to endothelium on each surface was evaluated at day 1 and day 7. To further investigate the role of leukocyte-endothelial cell adhesion molecules (CAMs) in cell-to-cell interaction on material surfaces, the expression of the leukocyte-endothelial CAMs: ICAM-1, VCAM-1, PECAM-1, and E-selectin on HUVECs were evaluated after U937 cell adhesion. The results demonstrated that plasma treated PET (T-PET) and treated PTFE (T-PTFE) did not increase U937 cell adhesion compared to the negative control. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7, which is consistent with our prior observation that T-PET and T-PTFE did not cause HUVECs to increase the expression of adhesion molecules. After U937 cell adhesion, the expression of ICAM-1 and VCAM-1 of HUVECs were not different on T-PET and T-PTFE compared with the negative control. However, the expression of E-selectin was reduced on day 1, but not on day 7. The effects of plasma treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, the cell number increased significantly on the surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion and expression of

  2. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    SciTech Connect

    Shen, Colette J.; Raghavan, Srivatsan; Xu, Zhe; Baranski, Jan D.; Yu, Xiang; Wozniak, Michele A.; Miller, Jordan S.; Gupta, Mudit; Buckbinder, Leonard; Chen, Christopher S.

    2011-08-01

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  3. Glycosylation inhibitors efficiently inhibit P-selectin-mediated cell adhesion to endothelial cells.

    PubMed

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD.

  4. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells

    PubMed Central

    Teckchandani, Anjali; Cooper, Jonathan A

    2016-01-01

    Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI: http://dx.doi.org/10.7554/eLife.17440.001 PMID:27656905

  5. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  6. A simplified model for dynamics of cell rolling and cell-surface adhesion

    SciTech Connect

    Cimrák, Ivan

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  7. Directed actin polymerization is the driving force for epithelial cell-cell adhesion.

    PubMed

    Vasioukhin, V; Bauer, C; Yin, M; Fuchs, E

    2000-01-21

    We have found that epithelial cells engage in a process of cadherin-mediated intercellular adhesion that utilizes calcium and actin polymerization in unexpected ways. Calcium stimulates filopodia, which penetrate and embed into neighboring cells. E-cadherin complexes cluster at filopodia tips, generating a two-rowed zipper of embedded puncta. Opposing cell surfaces are clamped by desmosomes, while vinculin, zyxin, VASP, and Mena are recruited to adhesion zippers by a mechanism that requires alpha-catenin. Actin reorganizes and polymerizes to merge puncta into a single row and seal cell borders. In keratinocytes either null for alpha-catenin or blocked in VASP/Mena function, filopodia embed, but actin reorganization/polymerization is prevented, and membranes cannot seal. Taken together, a dynamic mechanism for intercellular adhesion is unveiled involving calcium-activated filopodia penetration and VASP/Mena-dependent actin reorganization/polymerization.

  8. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    PubMed

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  9. Electrochemically Tunable Cell Adsorption on a Transparent and Adhesion-Switchable Superhydrophobic Polythiophene Film.

    PubMed

    Xu, Lianyi; Chen, Shuangshuang; Lu, Xuemin; Lu, Qinghua

    2015-06-01

    A superhydrophobic polythiophene film (SSPTH) is prepared by double-layer electrodeposition on an indium tin oxide (ITO) glass electrode. This film shows not only electroresponsive superhydrophobic features, but also high transparency compared with the usual polythiophene film. The water-droplet adhesion on the SSPTH film can be switched between sliding and pinned states under the applied potential. More intresetingly, the change in water-droplet adhesion results in a change in cell adsorption on the SSPTH film. The low-adhesion (dedoped) SSPTH films can prevent Hela cell adhesion, whereas high-adhesion (doped) SSPTH films can promote Hela cell adsorption. This controllable cell adhesion on a SSPTH film may be developed as a smart biointerface material.

  10. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  11. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    PubMed

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions.

  12. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  13. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  14. Overexpression of Selenoprotein SelK in BGC-823 Cells Inhibits Cell Adhesion and Migration.

    PubMed

    Ben, S B; Peng, B; Wang, G C; Li, C; Gu, H F; Jiang, H; Meng, X L; Lee, B J; Chen, C L

    2015-10-01

    Effects of human selenoprotein SelK on the adhesion and migration ability of human gastric cancer BGC-823 cells using Matrigel adhesion and transwell migration assays, respectively, were investigated in this study. The Matrigel adhesion ability of BGC-823 cells that overexpressed SelK declined extremely significantly (p < 0.01) compared with that of the cells not expressing the protein. The migration ability of BGC-823 cells that overexpressed SelK also declined extremely significantly (p < 0.01). On the other hand, the Matrigel adhesion ability and migration ability of the cells that overexpressed C-terminally truncated SelK did not decline significantly. The Matrigel adhesion ability and migration ability of human embryonic kidney HEK-293 cells that overexpressed SelK did not show significant change (p > 0.05) with the cells that overexpressed the C-terminally truncated protein. In addition to the effect on Matrigel adhesion and migration, the overexpression of SelK also caused a loss in cell viability (as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) colorimetric assay) and induced apoptosis as shown by confocal microscopy and flow cytometry. The cytosolic free Ca2+ level of these cells was significantly increased as detected by flow cytometry. But the overexpression of SelK in HEK-293 cells caused neither significant loss in cell viability nor apoptosis induction. Only the elevation of cytosolic free Ca2+ level in these cells was significant. Taken together, the results suggest that the overexpression of SelK can inhibit human cancer cell Matrigel adhesion and migration and cause both the loss in cell viability and induction of apoptosis. The release of intracellular Ca2+ from the endoplasmic reticulum might be a mechanism whereby the protein exerted its impact. Furthermore, only the full-length protein, but not C-terminally truncated form, was capable of producing such impact. The embryonic cells were not influenced by the

  15. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  16. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells.

    PubMed

    Yamada, Tomohiro; Kuramitsu, Kaori; Rikitsu, Etsuko; Kurita, Souichi; Ikeda, Wataru; Takai, Yoshimi

    2013-11-01

    Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.

  17. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    PubMed Central

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2. PMID:27588115

  18. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer.

    PubMed

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-09-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2.

  19. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells

    PubMed Central

    1986-01-01

    The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion- promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp- ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis- promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on

  20. Biotin-Avidin Based Universal Cell-Matrix Interaction for Promoting Three-Dimensional Cell Adhesion.

    PubMed

    Dou, Xiao-Qiu; Zhang, Jia; Feng, Chuanliang

    2015-09-23

    To promote cell adhesion in three-dimensional (3D) extracellular matrix (ECM) is crucial for avoiding cell anoikis, which is one of the most important issues for fundamental cell biology. Herein, a biotin-avidin based universal cell-matrix interaction for different types of cells is developed in order to achieve the promoted adhesion in 3D ECM. For the purpose, biotinylated nanofibrous hydrogels are constructed by coassembling 1,4-benzyldicarboxamide (C2) based non-biotinylated and biotinylated supramolecular gelators. The used cells are modified by avidin (AV-cells) through biotinylating cells and then interacting with avidin. After in situ encapsulating AV-cells in the hydrogels, the adhered amount can be increased by tens of percent even with adding several percentages of the biotinylated C2 gelators in the coassembly due to the specific biotin-avidin interaction. Reverse transcription polymerase chain reaction (RT-PCR) confirms that AV-cells can proliferate without varying gene expression and denaturation. Compared with the interaction between RGD and cells, this avidin-biotin interaction should be much more universal and it is feasible to be employed to promote cell adhesion for most types of cells in 3D matrix.

  1. Rho-associated protein kinase inhibitor, Y-27632, significantly enhances cell adhesion and induces a delay in G1 to S phase transition in rabbit corneal endothelial cells.

    PubMed

    Diao, Yu-Mei; Hong, Jing

    2015-08-01

    Human corneal endothelial cells are a non-proliferative cell type. As a result of the increase in corneal endothelium disease, increasing numbers of studies have been conducted in order to promote corneal endothelial cell proliferation. The aim of the present study was to investigate the proliferative effects of Rho-associated protein kinase inhibitor, Y-27632, on rabbit corneal endothelial cells (rCECs). Y-27632 (1, 10 or 30 μM) was added at two different time points to two groups of rCECs. The first group received Y-27632 when rCECs were initially plated, and the second following 72 h of cell growth. Cell morphology and cell adhesion ratios were subsequently observed using light microscopy. A cell counting kit was used to measure the number of viable cells that adhered to culture plates. Cell cycle transitions and levels of Annexin V-positive apoptotic cells were detected using flow cytometry. Cells treated with 1 μM Y-27632 and 10 μM Y-27632 retained their cell shape. At a concentration of 30 μM Y-27632, the cell shape became irregular. Cell adhesion ratios, in 1 μM Y-27632 (36.84%), 10 μM Y-27632 (84.21%) and 30 μM Y-27632 (84.21%) were higher than the adhesion ratio in the control group (P<0.01). The optical densities of rCECs treated with 10 μM or 30 μM Y-27632 following 72 h of cell growth was less than that of the control cells (P<0.01), but higher than that of cells which received Y-27632 at the time of plating (P<0.01). Flow cytometry results also demonstrated that there was a delay in G1 to S phase cell cycle progression in rCECs following administration of 10 μM Y-27632 (P<0.01). Cell apoptosis was inhibited when 10 μM Y-27632 was added, at the time of cell plating, as well as when added following 72 h of cell growth (P<0.01). At a concentration of 10 μM Y-27632, there was an improvement in cell adhesion and an inhibition of the cell cycle in rabbit corneal endothelial cells. In conclusion, Y-27632 has different effects on rCECs when

  2. Monocytes initiate a cycle of leukocyte recruitment when cocultured with endothelial cells.

    PubMed

    Tsouknos, Andreas; Nash, Gerard B; Rainger, G Ed

    2003-09-01

    During the development of atherosclerotic plaque, monocytes and T-lymphocytes are recruited to the arterial intima by endothelial cells (EC) lining the vessel. This process is associated with chronic arterial inflammation and requires the activation-dependent expression of adhesion receptors and chemokines on EC. Here we show that monocytes can activate cocultured EC so that they support the adhesion, activation and transmigration of a secondary bolus of flowing peripheral blood monocytes or lymphocytes. The number of adherent leukocytes and their behaviour was comparable to that seen on EC activated with tumour necrosis factor-alpha (TNF-alpha). Depending upon the duration of endothelial cell/monocyte coculture different patterns of adhesion receptors were utilised by leukocytes. After 4 h coculture, antibodies against E-selectin, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) reduced mononuclear leukocyte adhesion. After 24 h coculture, antibodies against E-selectin and VCAM-1 but not P-selectin were effective. Immunofluorescence analysis confirmed that monocyte coculture induced endothelial expression of E-selectin and VCAM-1, while P-selectin was at the limit of detection. We conclude that EC stimulated by monocytes can support the adhesion of flowing mononuclear leukocytes. We hypothesise that this mode of EC activation and leukocyte recruitment could initiate a self-perpetuating cycle of inflammation that could be relevant to atherogenesis and other chronic inflammatory disease states.

  3. Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells.

    PubMed

    Zaoui, Kossay; Honoré, Stéphane; Isnardon, Daniel; Braguer, Diane; Badache, Ali

    2008-11-03

    Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as alpha-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo-RhoA-mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.

  4. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  5. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  6. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    PubMed Central

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis. PMID:26507779

  7. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells

    SciTech Connect

    Aanei, Carmen Mariana; Eloae, Florin Zugun; Flandrin-Gresta, Pascale; Tavernier, Emmanuelle; Carasevici, Eugen; Guyotat, Denis; Campos, Lydia

    2011-11-01

    Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

  8. Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption

    PubMed Central

    Sumigray, Kaelyn; Zhou, Kang; Lechler, Terry

    2014-01-01

    Desmosomes are perturbed in a number of disease states – including genetic disorders, autoimmune and bacterial diseases. Here, we report unexpected changes in other cell-cell adhesion structures upon loss of desmosome function. We found that perturbation of desmosomes by either loss of the core desmosomal protein desmoplakin or treatment with pathogenic anti-desmoglein 3 (Dsg3) antibodies resulted in changes in adherens junctions consistent with increased tension. The total amount of myosin IIA was increased in desmoplakin-null epidermis, and myosin IIA became highly localized to cell contacts in both desmoplakin-null and anti-Dsg3-treated mouse keratinocytes. Inhibition of myosin II activity reversed the changes to adherens junctions seen upon desmosome disruption. The increased cortical myosin IIA promoted epithelial sheet fragility, as myosin IIA-null cells were less susceptible to disruption by anti-Dsg3 antibodies. In addition to the changes in adherens junctions, we found a significant increase in the expression of a number of claudin genes, which encode for transmembrane components of the tight junction that provide barrier function. These data demonstrate that desmosome disruption results in extensive transcriptional and posttranslational changes that alter the activity of other cell adhesion structures. PMID:25006807

  9. Cell-cell adhesions and cell contractility are upregulated upon desmosome disruption.

    PubMed

    Sumigray, Kaelyn; Zhou, Kang; Lechler, Terry

    2014-01-01

    Desmosomes are perturbed in a number of disease states - including genetic disorders, autoimmune and bacterial diseases. Here, we report unexpected changes in other cell-cell adhesion structures upon loss of desmosome function. We found that perturbation of desmosomes by either loss of the core desmosomal protein desmoplakin or treatment with pathogenic anti-desmoglein 3 (Dsg3) antibodies resulted in changes in adherens junctions consistent with increased tension. The total amount of myosin IIA was increased in desmoplakin-null epidermis, and myosin IIA became highly localized to cell contacts in both desmoplakin-null and anti-Dsg3-treated mouse keratinocytes. Inhibition of myosin II activity reversed the changes to adherens junctions seen upon desmosome disruption. The increased cortical myosin IIA promoted epithelial sheet fragility, as myosin IIA-null cells were less susceptible to disruption by anti-Dsg3 antibodies. In addition to the changes in adherens junctions, we found a significant increase in the expression of a number of claudin genes, which encode for transmembrane components of the tight junction that provide barrier function. These data demonstrate that desmosome disruption results in extensive transcriptional and posttranslational changes that alter the activity of other cell adhesion structures.

  10. Histatin-1, a histidine-rich peptide in human saliva, promotes cell-substrate and cell-cell adhesion.

    PubMed

    van Dijk, Irene A; Nazmi, Kamran; Bolscher, Jan G M; Veerman, Enno C I; Stap, Jan

    2015-08-01

    Histatins (Hsts) are histidine-rich peptides exclusively present in the saliva of higher primates. In this study, we explored the effects of Hsts on cell-substrate and cell-cell adhesion. Histatin (Hst)-1 caused a significant (>2-fold) increase (EC50 = 1 µM) in the ability of human adherent cells to attach and spread, even in conditions that impaired cell spreading. Other tested Hsts did not stimulate cell spreading, indicating a specific effect of Hst1. The effect of Hst1 on cell-cell adhesion was investigated by using transepithelial resistance (TER) measurements in the human cell line Caco-2, a widely used model for the epithelial layer. We found that 10 µM Hst1 caused a 20% increase in TER compared to the negative control, indicating a function for Hst1 in intercellular cell adhesion and epithelial integrity. A role for Hst1 in both cell-substrate and cell-cell adhesion is highly conceivable, because these 2 modes of adhesion are closely related via shared components and connected signaling pathways.

  11. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Park, Ji Hoon; Kim, Sung Eun; Kim, Jin Su; Oh, Jin-Woo; Han, Dong-Wook

    2015-05-29

    In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds.

  12. High-Throughput, Label-Free Isolation of Cancer Stem Cells on the Basis of Cell Adhesion Capacity.

    PubMed

    Zhang, Yuanqing; Wu, Minhao; Han, Xin; Wang, Ping; Qin, Lidong

    2015-09-07

    Herein we report a microfluidics method that enriches cancer stem cells (CSCs) or tumor-initiating cells on the basis of cell adhesion properties. In our on-chip enrichment system, cancer cells were driven by hydrodynamic forces to flow through microchannels coated with basement membrane extract. Highly adhesive cells were captured by the functionalized microchannels, and less adhesive cells were collected from the outlets. Two heterogeneous breast cancer cell lines (SUM-149 and SUM-159) were successfully separated into enriched subpopulations according to their adhesive capacity, and the enrichment of the cancer stem cells was confirmed by flow cytometry biomarker analysis and tumor-formation assays. Our findings show that the less adhesive phenotype is associated with a higher percentage of CSCs, higher cancer-cell motility, and higher resistance to chemotherapeutic drugs.

  13. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  14. Microtubule-destabilizing agents induce focal adhesion structure disorganization and anoikis in cancer cells.

    PubMed

    Deschesnes, Réna G; Patenaude, Alexandre; Rousseau, Jean L C; Fortin, Jessica S; Ricard, Christine; Côté, Marie-France; Huot, Jacques; C-Gaudreault, René; Petitclerc, Eric

    2007-02-01

    Microtubule disruption provokes cytoskeleton and cell adhesion changes whose importance for apoptosis induction remains unclear. The present study focuses on the functional and the molecular adhesion kinetics that are induced by microtubule disruption-mediated apoptosis. We showed that antimicrotubules induce a biphasic sequence of adhesion response that precedes the onset of apoptosis and focal adhesion kinase hydrolysis. Antimicrotubules first induced an increase of the cellular adhesion paralleled by the raise of focal adhesion sites and actin contractility, which was followed by a sharp decrease of cell adhesion and disorganization of focal adhesion and actin stress fibers. The latter sequence of events ends by cell rounding, detachment from the extracellular matrix, and cell death. Microtubule-disrupting agents induced a sustained paxillin phosphorylation, before the activation of apoptosis, that requires the prior activation of extracellular signal-regulated kinase and p38 but not c-Jun NH(2)-terminal kinase. Interestingly, integrin-linked kinase overexpression rescued the antimicrotubule-mediated loss of cell viability. Altogether, these results propound that antimicrotubule agents induce anoikis through the loss of focal adhesion structure integrity.

  15. Poloxamer 188 reduces normal and phosphatidylserine-exposing erythrocyte adhesion to endothelial cells in dextran solutions.

    PubMed

    Koo, Stephanie; Yang, Yang; Neu, Björn

    2013-12-01

    Abnormal red blood cell (RBC) adhesion to endothelial cells (ECs) has been correlated with vascular complications in diseases such as sickle cell anemia and diabetes. Poloxamer 188 (P188) has been clinically tested to treat vaso-occlusion. However, the underlying mechanism(s) have not been clarified, making a methodical application difficult. In this study, we investigate how and to what extent P188 reduces RBC adhesion to ECs in plasma-like solutions. RBC adhesion to ECs is studied in solutions containing dextran, which is known to induce adhesion via macromolecular depletion interaction. It is demonstrated that P188 itself does not induce adhesion of normal RBCs to ECs but significantly reduces the adhesion in solutions containing high molecular mass-dextran. In addition, it is shown that P188 can reduce the adhesion of RBCs with enhanced exposure of phosphatidylserine (PS). Measurements of the electrophoretic mobility indicate that P188 increases the local viscosity inside the electric double layer of RBCs. Based on these results this study suggests that P188 reduces macromolecular depletion interaction, via penetrating into the depletion layer. Taking into consideration that dextran mimics the effects of pro-adhesive non-adsorbing plasma proteins and macromolecules, our study therefore suggests a mechanism for the adhesion reducing effect of P188 and should thus be of potential value for a detailed understanding of how cell-cell interactions in pathological conditions can be reduced.

  16. Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping

    PubMed Central

    Chirasatitsin, Somyot; Engler, Adam J

    2010-01-01

    The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites. PMID:21152375

  17. Cell-cell adhesion interface: rise of the lateral membrane

    PubMed Central

    Tang, Vivian

    2017-01-01

    The lateral membrane plays an important role in the mechanical stability of epithelial cell sheet in steady state. In addition, the lateral membrane is continuously remodeled during dynamic processes such as cell extrusion, cytokinesis, and intercellular cell movement. In wound healing, the lateral membrane must be built from flat and spread cells that had crawled into the area of the wound. Thus, forming the lateral membrane is a phenomenon that occurs not only in development but also during homeostatic maintenance and regeneration of differentiated epithelial tissues. PMID:28357057

  18. Simple and Biocompatible Ion Beam Micropatterning of a Cell-Repellent Polymer on Cell-Adhesive Surfaces to Manipulate Cell Adhesion.

    PubMed

    Hwang, In-Tae; Jung, Chan-Hee; Jung, Chang-Hee; Choi, Jae-Hak; Shin, Kwanwoo; Yoo, Young-Do

    2016-02-01

    In this paper, the simple and biocompatible micropatterning of cell-repellent poly(N-isopropylacrylamide) (PNIPAAm) on a cell-adhesive substrate by ion beam micropatterning to control cell adhesion is described. Cell-repellent PNIPAAm films spin-coated on cell-adhesive tissue culture polystyrene (TCPS) substrates were selectively irradiated by energetic proton ions at various fluences through a pattern mask, and subsequently developed to create the micropatterns of PNIPAAm. Well-defined negative-type PNIPAAm micropatterns were successfully created on the TCPS substrates at fluences higher than 5 x 10¹⁴ ions/cm², and their chemical properties were dependent on the fluence. Moreover, based on the results of the protein adsorption and in-vitro cell culture tests, 200 µm well-defined micropatterns of mammalian cells were clearly formed on the PNIPAAm-micropatterned TCPS substrates though the preferential adsorption and growth of cells on the TCPS regions due to the strong cell-repellency of PNIPAAm.

  19. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.

    PubMed

    Di Genova, Bruno M; da Silva, Richard C; da Cunha, Júlia P C; Gargantini, Pablo R; Mortara, Renato A; Tonelli, Renata R

    2016-11-19

    The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.

  20. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells.

    PubMed

    Cochran, David B; Gray, Lindsay N; Anderson, Kimberly W; Dziubla, Thomas D

    2016-10-01

    Cancer and the inflammatory system share a complex intertwined relationship. For instance, in response to an injury or stress, vascular endothelial cells will express cell adhesion molecules as a means of recruiting leukocytes. However, circulating tumor cells (CTCs) have been shown to highjack this expression for the adhesion and invasion during the metastatic cascade. As such, the initiation of endothelial cell inflammation, either by surgical procedures (cancer resection) or chemotherapy can inadvertently increase the metastatic potential of CTCs. Yet, systemic delivery of anti-inflammatories, which weaken the entire immune system, may not be preferred in some treatment settings. In this work, we demonstrate that a long-term releasing flavone-based polymer and subsequent nanoparticle delivery system can inhibit tumor cell adhesion, through the suppression of endothelial cell adhesion molecule expression. The degradation of a this anti-inflammatory polymer provides longer term, localized release profile of active therapeutic drug in nanoparticle form as compared with that of the free drug, permitting more targeted anti-metastatic therapies. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1438-1447, 2016.

  1. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    PubMed

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  2. Cell Cycle Regulators and Cell Death in Immunity

    PubMed Central

    Zebell, Sophia G.; Dong, Xinnian

    2015-01-01

    Summary Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell-cycle. PMID:26468745

  3. Quantitative comparison of cancer and normal cell adhesion using organosilane monolayer templates: an experimental study on the anti-adhesion effect of green-tea catechins.

    PubMed

    Sakamoto, Rumi; Kakinuma, Eisuke; Masuda, Kentaro; Takeuchi, Yuko; Ito, Kosaku; Iketaki, Kentaro; Matsuzaki, Takahisa; Nakabayashi, Seiichiro; Yoshikawa, Hiroshi Y; Yamamoto, Hideaki; Sato, Yuko; Tanii, Takashi

    2016-09-01

    The main constituent of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG), is known to have cancer-specific chemopreventive effects. In the present work, we investigated how EGCG suppresses cell adhesion by comparing the adhesion of human pancreatic cancer cells (AsPC-1 and BxPC-3) and their counterpart, normal human embryonic pancreas-derived cells (1C3D3), in catechin-containing media using organosilane monolayer templates (OMTs). The purpose of this work is (1) to evaluate the quantitativeness in the measurement of cell adhesion with the OMT and (2) to show how green-tea catechins suppress cell adhesion in a cancer-specific manner. For the first purpose, the adhesion of cancer and normal cells was compared using the OMT. The cell adhesion in different type of catechins such as EGCG, (-)-Epicatechin-3-O-gallate (ECG) and (-)-Epicatechin (EC) was also evaluated. The measurements revealed that the anti-adhesion effect of green-tea catechins is cancer-specific, and the order is EGCG≫ECG>EC. The results agree well with the data reported to date, showing the quantitativeness of the new method. For the second purpose, the contact area of cells on the OMT was measured by reflection interference contrast microscopy. The cell-OMT contact area of cancer cells decreases with increasing EGCG concentration, whereas that of normal cells remains constant. The results reveal a twofold action of EGCG on cancer cell adhesion-suppressing cell attachment to a candidate adhesion site and decreasing the contact area of the cells-and validates the use of OMT as a tool for screening cancer cell adhesion.

  4. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  5. Overexpression of S-adenosylhomocysteine hydrolase (SAHH) in esophageal squamous cell carcinoma (ESCC) cell lines: effects on apoptosis, migration and adhesion of cells.

    PubMed

    Li, Qinghua; Mao, Lihong; Wang, Ruili; Zhu, Liqiang; Xue, Lexun

    2014-01-01

    S-adenosylhomocysteine hydrolase (SAHH) is the sole enzyme that catalyses the hydrolysis of S-adenosylhomocysteine (SAH) in methylation reaction. Previous studies have shown that its inhibition or deficiency leads to several human disorders such as severe coagulopathy, hepatopathy and myopathy. However, the effects of SAHH on esophageal squamous cell carcinoma (ESCC) cells have not been explored so far. To determine whether SAHH is involved in carcinogenesis of the esophagus, we investigated the expression of SAHH in ESCC and normal esophageal epithelial cells and found that SAHH was downregulated in ESCC cells compared with normal esophageal epithelial cells (P < 0.05). The overexpressed SAHH in ESCC cells promoted cell apoptosis, inhibited cell migration and adhesion, but did not affect the cell proliferation and cell cycle. Furthermore, an interaction of SAHH with receptor of activated C kinase 1 (RACK1) protein was detected by coimmunoprecipitation and an increased RACK1, which is caused by overexpression of SAHH, was verified by Western blotting. The findings mentioned above demonstrate that SAHH can promote apoptosis, inhibit migration and adhesion of ESCC cells suggesting that it may be involved in carcinogenesis of the esophagus.

  6. Nanostructured conducting polymers for stiffness controlled cell adhesion

    NASA Astrophysics Data System (ADS)

    Moyen, Eric; Hama, Adel; Ismailova, Esma; Assaud, Loic; Malliaras, George; Hanbücken, Margrit; Owens, Roisin M.

    2016-02-01

    We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm2 ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).

  7. Regulation of cell-matrix adhesion by OLA1, the Obg-like ATPase 1

    PubMed Central

    Jeyabal, Prince VS; Rubio, Valentina; Chen, Huarong; Zhang, Jiawei; Shi, Zheng-Zheng

    2014-01-01

    Attachment of cells to the extracellular matrix induces clustering of membrane receptor integrins which in turn triggers the formation of focal adhesions (FAs). The adaptor/scaffold proteins in FAs provide linkage to actin cytoskeleton, whereas focal adhesion kinase (FAK) and other FA-associated kinases and phosphatases transduce integrin-mediated signaling cascades, promoting actin polymerization and progression of cell spreading. In this study, we explored the role of OLA1, a newly identified member of Obg-like ATPases, in regulating cell adhesion processes. We showed that in multiple human cell lines RNAi-mediated downregulation of OLA1 significantly accelerated cell adhesion and spreading, and conversely overexpression of OLA1 by gene transfection resulted in delayed cell adhesion and spreading. We further found that OLA1-deficient cells had elevated levels of FAK protein and decreased Ser3 phosphorylation of cofilin, an actin-binding protein and key regulator of actin filament dynamics, while OLA1-overexpressing cells exhibited the opposite molecular alterations in FAK and cofilin. These findings suggest that OLA1 plays an important negative role in cell adhesion and spreading, in part through the regulation of FAK expression and cofilin phosphorylation, and manipulation of OLA1 may lead to significant changes in cell adhesion and the associated phenotypes. PMID:24486488

  8. [Musculoskeletal rehabilitation and bone. A novel approach to mechanotransduction using cell-adhesion-patterned cells].

    PubMed

    Katanosaka, Yuki; Naruse, Keiji

    2010-04-01

    Human vascular endothelial cells form the interface between the bloodstream and vessel walls and are continuously subjected to mechanical stimulation. When endothelial cells are stretched cyclically, along one axis, they align perpendicular to the axis of stretch. We previously reported that applying a cyclic, uni-axial strain to cells induced tyrosine phosphorylation of focal adhesion kinase and stimulated mitogen-activated protein kinase. However, it is difficult to quantify and analyze the spatial distribution of tyrosine phosphorylation in these cells, as they form focal adhesions randomly. Recently, we developed a system to overcome this problem by preparing individual, uniform, patterned cells that could be stretched cyclically and uni-axially. In this system we were able to statistically analyze cellular responses in these patterned cells, when subjected to a cyclic, uni-axial strain, using fluorescent microscopy.

  9. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE).

    PubMed

    Ainslie, Kristy M; Bachelder, Eric M; Borkar, Sachin; Zahr, Alisar S; Sen, Ayusman; Badding, John V; Pishko, Michael V

    2007-01-16

    Here, we described the in vitro biocompatibility of a novel nanostructured surface composed of PTFE as a potential polymer for the prevention of adverse host reactions to implanted devices. The foreign body response is characterized at the tissue-material interface by several layers of macrophages and large multinucleated cells known as foreign body giant cells (FBGC), and a fibrous capsule. The nanofibers of nanofibrous PTFE (nPTFE) range in size from 20 to 30 nm in width and 3-4 mm in length. Glass surfaces coated with nPTFE (produced by jet-blowing of PTFE 601A) were tested under in vitro conditions to characterize the amount of protein adsorption, cell adhesion, and cell viability. We have shown that nPTFE adsorbs 495 +/- 100 ng of bovine serum albumin (BSA) per cm2. This level was considerably higher than planar PTFE, most likely due to the increase in hydrophobicity and available surface area, both a result of the nanoarchitecture. Endothelial cells and macrophages were used to determine the degree of cell adsorption on the surface of the nanostructured polymer. Both cell types were significantly more round and occupied less area on nPTFE as compared to tissue culture polystyrene (TCPS). Furthermore, a larger majority of the cells on the nPTFE were dead compared to TCPS, at dead-to-live ratios of 778 +/- 271 to 1 and 23 +/- 5.6 to 1, respectively. Since there was a high amount of cell death (due to either apoptosis or necrosis), and the foreign body response is a form of chronic inflammation, an 18 cytokine Luminex panel was performed on the supernatant from macrophages adherent on nPTFE and TCPS. As a positive control for inflammation, lipopolysaccharide (LPS) was added to macrophages on TCPS to estimate the maximum inflammation response of the macrophages. From the data presented with respect to IL-1, TNF-alpha, IFN-gamma, and IL-5, we concluded that nPTFE is nonimmunogenic and should not yield a huge inflammatory response in vivo, and cell death observed

  10. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  11. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  12. Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina.

    PubMed

    Milkevych, V; Donose, B C; Juste-Poinapen, N; Batstone, D J

    2015-02-01

    The mechanical and adhesive properties as well as the turgor pressure of microbes play an important role in cell growth and aggregation. By applying AFM together with finite element modelling, one can determine the cell wall structural homogeneity, mechanical and cell-to-cell adhesive properties for aggregated Methanosarcina barkeri cells. This also allows a novel approach to determine in-aggregate turgor pressure determination. Analyzing the AFM force-indentation response of the aggregates under loads less than 10 nN, our study reveals structural inhomogeneity of the polymeric part of the cell wall material and suggests that the cell wall consists of two layers of methanochondroitin (external: with a thickness of 3 ± 1 nm and internal: with a thickness of 169 ± 30 nm). On average, the hyperelastic finite element model showed that the internal layer is more rigid (μ = 14 ± 4 MPa) than the external layer (μ = 2.8 ± 0.9 MPa). To determine the turgor pressure and adhesiveness of the cells, a specific mode of indentation (under a load of 45 nN), aimed towards the centre of the individual aggregate, was performed. By modelling the AFM induced decohesion of the aggregate, the turgor pressure and the cell-to-cell adhesive interface properties could be determined. On average, the turgor pressure is estimated to be 59 ± 22 kPa, the interface strength is 78 ± 12 kPa and the polymer network extensibility is 2.8 ± 0.9 nm. We predict that internal cell wall comprised highly compressed methanochondroitin chains and we are able to identify a conceptual model for stress dependent inner cell wall growth.

  13. Control of cell cycle and cell growth by molecular chaperones.

    PubMed

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  14. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells

    PubMed Central

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-01-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in

  15. β1 integrin adhesion enhances IL-6 mediated STAT3 signaling in Myeloma cells: Implications for Microenvironment Influence on Tumor Survival and Proliferation

    PubMed Central

    Shain, Kenneth H.; Yarde, Danielle N.; Meads, Mark B.; Huang, Mei; Jove, Richard; Hazlehurst, Lori A.; Dalton, William S.

    2009-01-01

    The bone marrow microenvironmental components interleukin (IL)-6 and fibronectin (FN) individually influence the proliferation and survival of Multiple Myeloma (MM) cells; however, in vivo these effectors most likely work together. We examined signaling events, cell cycle progression, and levels of drug response in MM cells either adhered to FN via β1 integrins, stimulated with IL-6, or treated with the two combined. While G1/S cell cycle arrest associated with FN adhesion was overcome when IL-6 as added, the cell adhesion mediated drug resistance (CAM-DR) was maintained in the presence of IL-6. Concomitant exposure of MM cells to IL-6 and FN adhesion revealed a dramatic increase in STAT3 phosphorylation, nuclear translocation and DNA-binding, as compared to either IL-6 or FN adhesion alone in four MM cell lines. Importantly, this increase in STAT3 activation correlated with a novel association between STAT3 and gp130 in cells adhered to FN prior to stimulation with IL-6, relative to non-adherent cells. Taken together, these results suggest a mechanism by which collaborative signaling by β1 integrin and gp130 confers an increased survival advantage to MM cells. PMID:19155309

  16. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells.

    PubMed Central

    Runnels, P L; Moon, H W; Schneider, R A

    1980-01-01

    When isolated intestinal epithelial cells from neonatal and older pigs, calves, and mice were tested for adhesion by K99+ enterotoxigenic Escherichia coli, cells from older animals were resistant to adhesion. PMID:6103878

  17. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    PubMed

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  18. Center or periphery? Modeling the effects of focal adhesion placement during cell spreading

    PubMed Central

    Rammohan, Aravind R.

    2017-01-01

    Focal adhesions are often observed at the cell’s periphery. We provide an explanation for this observation using a system-level mathematical model of a cell interacting with a two-dimensional substrate. The model describes the biological cell as a hypoelastic continuum material whose behavior is coupled to a deformable, linear elastic substrate via focal adhesions that are represented by collections of linear elastic attachments between the cell and the substrate. The evolution of the focal adhesions is coupled to local intracellular stresses which arise from mechanical cell-substrate interactions. Using this model we show that the cell has at least three mechanisms through which it can control its intracellular stresses: focal adhesion position, size, and attachment strength. We also propose that one reason why focal adhesions are typically located on the cell periphery instead of its center is because peripheral focal adhesions allow the cell to be more sensitive to changes in the microenvironment. This increased sensitivity is caused by the fact that peripherally located focal adhesions allow the cells to modulate its intracellular properties over a much larger portion of the cell area. PMID:28158263

  19. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow

    PubMed Central

    Spencer, Adrianne; Baker, Aaron B.

    2016-01-01

    The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis. PMID:26816215

  20. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow.

    PubMed

    Spencer, Adrianne; Baker, Aaron B

    2016-01-27

    The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis.

  1. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration.

  2. Integrative systems and synthetic biology of cell-matrix adhesion sites

    PubMed Central

    Zamir, Eli

    2016-01-01

    ABSTRACT The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them. PMID:26853318

  3. WNK1 kinase balances T cell adhesion versus migration in vivo

    PubMed Central

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazao, Tiago F.; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V.; Tybulewicz, Victor L. J.

    2016-01-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and play critical roles in the normal physiological function of T lymphocytes. Using an RNA interference screen we have identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We demonstrate that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via OXSR1 and STK39 kinases and the SLC12A2 ion co-transporter. WNK1-deficient T cells home less efficiently to lymphoid organs, and migrate more slowly through them. Our results reveal that a pathway hitherto known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration. PMID:27400149

  4. FLRT Structure: Balancing Repulsion and Cell Adhesion in Cortical and Vascular Development

    PubMed Central

    Seiradake, Elena; del Toro, Daniel; Nagel, Daniel; Cop, Florian; Härtl, Ricarda; Ruff, Tobias; Seyit-Bremer, Gönül; Harlos, Karl; Border, Ellen Clare; Acker-Palmer, Amparo; Jones, E. Yvonne; Klein, Rüdiger

    2014-01-01

    Summary FLRTs are broadly expressed proteins with the unique property of acting as homophilic cell adhesion molecules and as heterophilic repulsive ligands of Unc5/Netrin receptors. How these functions direct cell behavior and the molecular mechanisms involved remain largely unclear. Here we use X-ray crystallography to reveal the distinct structural bases for FLRT-mediated cell adhesion and repulsion in neurons. We apply this knowledge to elucidate FLRT functions during cortical development. We show that FLRTs regulate both the radial migration of pyramidal neurons, as well as their tangential spread. Mechanistically, radial migration is controlled by repulsive FLRT2-Unc5D interactions, while spatial organization in the tangential axis involves adhesive FLRT-FLRT interactions. Further, we show that the fundamental mechanisms of FLRT adhesion and repulsion are conserved between neurons and vascular endothelial cells. Our results reveal FLRTs as powerful guidance factors with structurally encoded repulsive and adhesive surfaces. PMID:25374360

  5. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  6. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  7. Contribution of stress wave and cavitation bubble in evaluation of cell-cell adhesion by femtosecond laser-induced impulse

    NASA Astrophysics Data System (ADS)

    Iino, Takanori; Li, Po-Lin; Wang, Wen-Zhe; Deng, Jia-Huei; Lu, Yun-Chang; Kao, Fu-Jen; Hosokawa, Yoichiroh

    2014-10-01

    When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell-cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell-cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell-cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.

  8. Cell cycle regulation of glucocorticoid receptor function.

    PubMed Central

    Hsu, S C; Qi, M; DeFranco, D B

    1992-01-01

    Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR. Images PMID:1505524

  9. Control points within the cell cycle

    SciTech Connect

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  10. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    PubMed

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi

    2014-06-01

    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.

  11. Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Ji, Bao-Hua; Huo, Bo

    2013-08-01

    Cell adhesion and migration are basic physiological processes in living organisms. Cells can actively probe their mechanical micro-environment and respond to the external stimuli through cell adhesion. Cells need to move to the targeting place to perform function via cell migration. For adherent cells, cell migration is mediated by cell-matrix adhesion and cell-cell adhesion. Experimental approaches, especially at early stage of investigation, are indispensable to studies of cell mechanics when even qualitative behaviors of cell as well as fundamental factors in cell behaviors are unclear. Currently, there is increasingly accumulation of experimental data of measurement, thus a quantitative formulation of cell behaviors and the relationship among these fundamental factors are highly needed. This quantitative understanding should be crucial to tissue engineering and biomedical engineering when people want to accurately regulate or control cell behaviors from single cell level to tissue level. In this review, we will elaborate recent advances in the experimental and theoretical studies on cell adhesion and migration, with particular focuses laid on recent advances in experimental techniques and theoretical modeling, through which challenging problems in the cell mechanics are suggested.

  12. Mitochondrial dynamics and the cell cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  13. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells

    PubMed Central

    1991-01-01

    The ability of carcinomas to invade and to metastasize largely depends on the degree of epithelial differentiation within the tumors, i.e., poorly differentiated being more invasive than well-differentiated carcinomas. Here we confirmed this correlation by examining various human cell lines derived from bladder, breast, lung, and pancreas carcinomas. We found that carcinoma cell lines with an epithelioid phenotype were noninvasive and expressed the epithelium-specific cell- cell adhesion molecule E-cadherin (also known as Arc-1, uvomorulin, and cell-CAM 120/80), as visualized by immunofluorescence microscopy and by Western and Northern blotting, whereas carcinoma cell lines with a fibroblastoid phenotype were invasive and had lost E-cadherin expression. Invasiveness of these latter cells could be prevented by transfection with E-cadherin cDNA and was again induced by treatment of the transfected cells with anti-E-cadherin mAbs. These findings indicate that the selective loss of E-cadherin expression can generate dedifferentiation and invasiveness of human carcinoma cells, and they suggest further that E-cadherin acts as an invasion suppressor. PMID:2007622

  14. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  15. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  16. Cell-substrate adhesion during Trypanosoma cruzi differentiation

    PubMed Central

    1988-01-01

    The transformation of Trypanosoma cruzi epimastigotes to the mammal infective metacyclic trypomastigotes (metacyclogenesis) can be performed in vitro under chemically defined conditions. Under these conditions, differentiating epimastigotes adhere to a surface before their transformation into metacyclic trypomastigotes. Scanning and transmission electron microscopy of adhered and non-adhered parasites during the metacyclogenesis process show that only epimastigotes and few transition forms are found in the first population, whereas metacyclic trypomastigotes are exclusively found in the cell culture supernatant. PAGE analysis of the [35S]methionine metabolic labeling products of adhered and non-adhered parasites shows that although most of the polypeptides are conserved, adhered parasites express specifically four polypeptides in the range of 45-50 kD with an isoelectric point of 4.8. These proteins might be involved in the adhesion process and are recognized by an antiserum against total adhered parasite proteins. This antiserum also recognized a group of 45- 50 kD in the iodine-radiolabeled surface proteins of differentiating cells, providing direct evidence that these components are indeed surface antigens. The results suggest that epimastigotes must adhere to a substrate before their transformation to metacyclic trypomastigotes, being released to the medium as the metacyclogenesis process is accomplished. This could correspond to the process naturally occurring within the triatomine invertebrate host. PMID:3283152

  17. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    PubMed

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics.

  18. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene.

    PubMed

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F

    2011-06-01

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  19. A role for cell adhesion in beryllium-mediated lung disease

    SciTech Connect

    Hong-geller, Elizabeth

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  20. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  1. Adhesion in Mammary Development: Novel Roles for E-Cadherin in Individual and Collective Cell Migration

    PubMed Central

    Shamir, Eliah R.; Ewald, Andrew J.

    2015-01-01

    Epithelial tissues are essential for barrier function, secretion, and regulation of fluid transport. Their function requires cell polarity and cell–cell adhesion, mediated through intercellular junctions. Conversely, disruption of adhesion and polarity is thought to drive cancer progression. The mammary gland is an important model for cell adhesion due to its postnatal hormonally regulated development; ducts undergo branching morphogenesis in response to steroid hormones during puberty. These hormonal signals induce a transition from simple to stratified architecture, initiated by asymmetric luminal cell divisions. Ductal elongation is accomplished by this multilayered, low-polarity epithelium, and polarity is reestablished as elongation ceases. The requirement for cell adhesion has been tested in 3D culture and in vivo, using gene deletion, knockdown, and misexpression in both developmental and homeostatic contexts. Attention has focused on E-cadherin, the major classical cadherin in luminal epithelial cells. Classic studies revealed a requirement for E-cadherin during lactation, and E-cadherin loss is widely posited to promote metastasis. However, recent findings demonstrated a broader requirement for E-cadherin during branching morphogenesis and homeostasis and also, surprisingly, in epithelial dissemination. These studies suggest that longstanding models of the role of adhesion in epithelial biology need to be revisited. Advances in inducible gene expression and knockdown, CRISPR/Cas9 technology, and fluorescent labeling of genetically modified cells offer the opportunity to test the roles of diverse adhesion systems and to develop a mechanistic understanding of how cell adhesion regulates development and cancer. PMID:25733146

  2. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury.

    PubMed

    Arafa, Emad; Bondzie, Philip A; Rezazadeh, Kobra; Meyer, Rosana D; Hartsough, Edward; Henderson, Joel M; Schwartz, John H; Chitalia, Vipul; Rahimi, Nader

    2015-10-01

    Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.

  3. The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.

    PubMed

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-08-01

    Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver.

  4. Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information.

    PubMed Central

    Noll, H; Matranga, V; Cervello, M; Humphreys, T; Kuwasaki, B; Adelson, D

    1985-01-01

    Cell adhesion in the sea urchin blastula is mediated by a 22S genus-specific glycoprotein complex consisting initially of six 160-kDa subunits that are processed proteolytically as development proceeds. Noncytolytic removal of the 22S particle from the surface with either 2.5% butanol or trypsin renders dissociated cells reaggregation incompetent, and addition restores reaggregation and development. Polyclonal antibodies against the 22S complex prevent reaggregation in a genus-specific manner while monoclonal antibodies stain cell surface structures in a pattern consistent with a code that specifies the position of a cell in the embryo by a unique combination of subunits in its cell adhesion particles. The existence of similar particles in Drosophila and amphibian embryos suggests that these glycoprotein complexes are a general class of organelles, the toposomes, that in the embryo mediate cell adhesion and express positional information. Images PMID:3865216

  5. Tumor suppressor Lzap regulates cell cycle progression, doming and zebrafish epiboly

    PubMed Central

    Liu, Dan; Wang, Wen-Der; Melville, David B.; Cha, Yong I.; Yin, Zhirong; Issaeva, Natalia; Knapik, Ela W.; Yarbrough, Wendell G.

    2012-01-01

    Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly – the earliest morphogenetic movement in animal development – which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation. PMID:21523853

  6. Inhibition of cell adhesion by xARVCF indicates a regulatory function at the plasma membrane.

    PubMed

    Reintsch, Wolfgang E; Mandato, Craig A; McCrea, Pierre D; Fagotto, François

    2008-09-01

    The cytoplasmic tail of cadherins is thought to regulate the strength and dynamics of cell-cell adhesion. Part of its regulatory activity has been attributed to a membrane-proximal region, the juxtamembrane domain (JMD), and its interaction with members of the p120 catenin subfamily. We show that titration of xARVCF, a member of this family, to the plasma membrane disrupts adhesion in the early embryo. Adhesion can be restored by coexpression of constitutively active Rac, suggesting that intracellular signaling is the primary cause in the loss of adhesion phenotype. Our observations suggest that the recruitment of p120 type catenins to the plasma membrane by the cadherin cytoplasmic tail may create protein complexes, which actively modulate the adhesion "status" of embryonic cells.

  7. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  8. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  9. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  10. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  11. Spatial distribution of cell-cell and cell-ECM adhesions regulates force balance while main-taining E-cadherin molecular tension in cell pairs.

    PubMed

    Sim, Joo Yong; Moeller, Jens; Hart, Kevin C; Ramallo, Diego; Vogel, Viola; Dunn, Alex R; Nelson, W James; Pruitt, Beth L

    2015-07-01

    Mechanical linkage between cell-cell and cell-extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell-cell and cell-ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell-cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell-cell and cell-ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell-cell pairs resulted in shorter junction lengths and constant cell-cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell-cell forces and was evenly distributed along cell-cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area.

  12. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  13. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions.

    PubMed Central

    Sasseville, V. G.; Newman, W.; Brodie, S. J.; Hesterberg, P.; Pauley, D.; Ringler, D. J.

    1994-01-01

    Because the mechanisms associated with recruitment of monocytes to brain in AIDS encephalitis are unknown, we used tissues from rhesus monkeys infected with simian immunodeficiency virus (SIV) to examine the relative contributions of various adhesion pathways in mediating monocyte adhesion to endothelium from encephalitic brain. Using a modified Stamper and Woodruff tissue adhesion assay, we found that the human monocytic cell lines, THP-1 and U937, and the B cell line, Ramos, preferentially bound to brain vessels from monkeys with AIDS encephalitis. Using a combined tissue adhesion/immunohistochemistry approach, these cells only bound to vessels expressing vascular cell adhesion molecule-1 (VCAM-1). Furthermore, pretreatment of tissues with antibodies to VCAM-1 or cell lines with antibodies to VLA-4 (CD49d) inhibited adhesion by more than 70%. Intercellular adhesion molecule-1 (ICAM-1)/beta 2 integrin interactions were not significant in mediating cell adhesion to the vasculature in encephalitic simian brain using a cell line (JY) capable of binding rhesus monkey ICAM-1. In addition, selectin-mediated interactions did not significantly contribute to cell binding to encephalitic brain as there was no immunohistochemical expression of E-selectin and P-selectin in either normal or encephalitic brain, nor was there a demonstrable adhesive effect from L-selectin using L-selectin-transfected 300.19 cells on simian encephalitic brain. These results demonstrate that using the tissue adhesion assay, THP-1, U937, and Ramos cells bind to vessels in brain from animals with AIDS encephalitis using VCAM-1/alpha 4 beta 1 integrin interactions and suggest that VCAM-1 and VLA-4 may be integral for monocyte recruitment to the central nervous system during the development of AIDS encephalitis. Images Figure 1 PMID:7507300

  14. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  15. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  16. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  17. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    PubMed

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion.

  18. Study of the adhesion of Bifidobacterium bifidum MIMBb75 to human intestinal cell lines.

    PubMed

    Guglielmetti, Simone; Tamagnini, Isabella; Minuzzo, Mario; Arioli, Stefania; Parini, Carlo; Comelli, Elena; Mora, Diego

    2009-08-01

    The aim of this study was to investigate the adhesive phenotype of the human intestinal isolate Bifidobacterium bifidum MIMBb75 to human colon carcinoma cell lines. We have previously shown that the adhesion of this strain to Caco-2 cells is mediated by an abundant surface lipoprotein named BopA. In this study, we found that this strain adheres to Caco-2 and HT-29 cells, and that its adhesion strongly depends on the environmental conditions, including the presence of sugars and bile salts and the pH. Considerably more adhesion to a Caco-2 monolayer occurred in the presence of fucose and mannose and less when MIMBb75 grew in Oxgall bile salts compared to standard environmental conditions. In particular, growth in Oxgall bile salts reduced the adhesion ability of MIMBb75 and modified the SDS-PAGE profile of the cell wall associated proteins of the strain. The pH markedly affected both adhesion to Caco-2 and bacterial autoaggregation. Finally, experiments with sodium metaperiodate suggested that not only proteinaceous determinants are involved in the adhesion process of B. bifidum. In conclusion, it seems that the colonization strategy of this bacterium can be influenced by factors varying along the gastrointestinal tract, such as the presence of specific sugars and bile salts and the pH, possibly limiting the adhesion of B. bifidum to only restricted distal sites of the gut.

  19. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  20. Cell-alignment patterns in the collective migration of cells with polarized adhesion

    NASA Astrophysics Data System (ADS)

    Matsushita, Katsuyoshi

    2017-03-01

    Dictyostelium discoideum (Dd) utilizes inhomogeneities in the distribution of cell-cell adhesion molecules on cell membranes for collective cell migration. A simple example of an inhomogeneity is a front-side (leading-edge) polarization in the distribution at the early streaming stage. Experiments have shown that the polarized cell-cell adhesion induces side-by-side contact between cells [Beug et al., Nature (London) 274, 445 (1978), 10.1038/274445a0]. This result is counterintuitive, as one would expect cells to align front to front in contact with each other on the basis of front-side polarization. In this work, we theoretically examine whether front-side polarization induces side-by-side contact in collective cell migration. We construct a model for expressing cells with this polarization based on the two-dimensional cellular Potts model. By a numerical simulation with this model, we find cell-cell alignment wherein cells form lateral arrays with side-by-side contacts as observed in the experiments.

  1. L1 CELL ADHESION MOLECULE IS NEUROPROTECTIVE OF ALCOHOL INDUCED CELL DEATH

    PubMed Central

    Gubitosi-Klug, Rose; Larimer, Corena G.; Bearer, Cynthia F.

    2009-01-01

    L1 cell adhesion molecule (L1), a protein critical for appropriate development of the central nervous system, is a target for ethanol teratogenicity. Ethanol inhibits both L1 mediated cell adhesion as well as L1 mediated neurite outgrowth. L1 has been shown to increase cell survival in cerebellar granule cells while ethanol has been shown to increase cell death. We sought to determine if L1 protected cells from ethanol induced cell death. Cerebellar granule cells from postnatal day 6 rat pups were cultured on either poly L-lysine with or without an L1 substratum. Alcohol was added at 2 hours post plating and cell survival was measured at various times. L1 substratum significantly increased cell survival at 72 and 120 hours. Ethanol significantly reduced cell survival at 48 hours, with no effect at 72 or 120 hours, both in the presence and absence of L1. At 48 hours, L1 significantly increased cell survival in the presence of ethanol. We conclude that ethanol interferes with processes other than L1-L1 interactions in causing cell death, and that ethanol effects would be more severe in the absence of L1. PMID:17267039

  2. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  3. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  4. A phenomenological cohesive model for the macroscopic simulation of cell-matrix adhesions.

    PubMed

    Cóndor, M; García-Aznar, J M

    2017-02-17

    Cell adhesion is crucial for cells to not only physically interact with each other but also sense their microenvironment and respond accordingly. In fact, adherent cells can generate physical forces that are transmitted to the surrounding matrix, regulating the formation of cell-matrix adhesions. The main purpose of this work is to develop a computational model to simulate the dynamics of cell-matrix adhesions through a cohesive formulation within the framework of the finite element method and based on the principles of continuum damage mechanics. This model enables the simulation of the mechanical adhesion between cell and extracellular matrix (ECM) as regulated by local multidirectional forces and thus predicts the onset and growth of the adhesion. In addition, this numerical approach allows the simulation of the cell as a whole, as it models the complete mechanical interaction between cell and ECM. As a result, we can investigate and quantify how different mechanical conditions in the cell (e.g., contractile forces, actin cytoskeletal properties) or in the ECM (e.g., stiffness, external forces) can regulate the dynamics of cell-matrix adhesions.

  5. Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma

    PubMed Central

    Faura Tellez, Grissel; Willemse, Brigitte W. M.; Brouwer, Uilke; Nijboer-Brinksma, Susan; Vandepoele, Karl; Noordhoek, Jacobien A.; Heijink, Irene; de Vries, Maaike; Smithers, Natalie P.; Postma, Dirkje S.; Timens, Wim; Wiffen, Laura; van Roy, Frans; Holloway, John W.; Lackie, Peter M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2016-01-01

    Background The asthma gene PCDH1 encodes Protocadherin-1, a putative adhesion molecule of unknown function expressed in the airway epithelium. Here, we characterize the localization, differential expression, homotypic adhesion specificity and function of PCDH1 in airway epithelial cells in asthma. Methods We performed confocal fluorescence microscopy to determine subcellular localization of PCDH1 in 16HBE cells and primary bronchial epithelial cells (PBECs) grown at air-liquid interface. Next, to compare PCDH1 expression and localization in asthma and controls we performed qRT-PCR and fluorescence microscopy in PBECs and immunohistochemistry on airway wall biopsies. We examined homotypic adhesion specificity of HEK293T clones overexpressing fluorescently tagged-PCDH1 isoforms. Finally, to evaluate the role for PCDH1 in epithelial barrier formation and repair, we performed siRNA knockdown-studies and measured epithelial resistance. Results PCDH1 localized to the cell membrane at cell-cell contact sites, baso-lateral to adherens junctions, with increasing expression during epithelial differentiation. No differences in gene expression or localization of PCDH1 isoforms expressing the extracellular domain were observed in either PBECs or airway wall biopsies between asthma patients and controls. Overexpression of PCDH1 mediated homotypic interaction, whereas downregulation of PCDH1 reduced epithelial barrier formation, and impaired repair after wounding. Conclusions In conclusion, PCDH1 is localized to the cell membrane of bronchial epithelial cells baso-lateral to the adherens junction. Expression of PCDH1 is not reduced nor delocalized in asthma even though PCDH1 contributes to homotypic adhesion, epithelial barrier formation and repair. PMID:27701444

  6. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    PubMed

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.

  7. Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans

    PubMed Central

    Levy-Adam, Flonia; Feld, Sari; Suss-Toby, Edith; Vlodavsky, Israel; Ilan, Neta

    2008-01-01

    Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys158-Asp171, termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity. PMID:18545691

  8. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  9. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    PubMed

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  10. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  11. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration.

    PubMed

    Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M; Alford, Patrick W; Kim, Deok-Ho; Provenzano, Paolo P

    2017-04-12

    Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously 'sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell-substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell-substratum and cell-cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level.

  12. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  13. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  14. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    NASA Astrophysics Data System (ADS)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  15. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  16. An ICAM-1 like cell adhesion molecule is responsible for CD34 positive haemopoietic stem cells adhesion to bone-marrow stroma.

    PubMed

    Rao, S G; Chitnis, V S; Deora, A; Tanavde, V; Desai, S S

    1996-04-01

    The microenvironment in the haematopoietic organs plays an important role in regulating and sustaining differentiation and self-renewal of haematopoietic stem cells. Although crucial for stem cell maintenance and homing, the stromal cell-stem cell interactions are poorly understood. Here we show that an ICAM-like molecule is responsible for stem cell adhesion to stromal cells in vitro. The molecule was characterized by a monoclonal antibody 3E10. Immunoblotting results indicated that the molecule had an electrophoretic mobility equal to that of intercellular cell adhesion molecule-1 (ICAM-1). Binding inhibition assays, however, showed that inhibition of binding of enriched CD34 cells by 3E10 was more prominent in comparison with that of ICAM-1.

  17. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  18. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Astrophysics Data System (ADS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-08-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to CEA, an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  19. 4D chromatin dynamics in cycling cells

    PubMed Central

    Strickfaden, Hilmar; Zunhammer, Andreas; van Koningsbruggen, Silvana; Köhler, Daniela

    2010-01-01

    This live cell study of chromatin dynamics in four dimensions (space and time) in cycling human cells provides direct evidence for three hypotheses first proposed by Theodor Boveri in seminal studies of fixed blastomeres from Parascaris equorum embryos: (I) Chromosome territory (CT) arrangements are stably maintained during interphase. (II) Chromosome proximity patterns change profoundly during prometaphase. (III) Similar CT proximity patterns in pairs of daughter nuclei reflect symmetrical chromosomal movements during anaphase and telophase, but differ substantially from the arrangement in mother cell nucleus. Hypothesis I could be confirmed for the majority of interphase cells. A minority, however, showed complex, rotational movements of CT assemblies with large-scale changes of CT proximity patterns, while radial nuclear arrangements were maintained. A new model of chromatin dynamics is proposed. It suggests that long-range DNA-DNA interactions in cell nuclei may depend on a combination of rotational CT movements and locally constrained chromatin movements. PMID:21327076

  20. Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell-cell contacts through organization of actomyosin.

    PubMed

    Plestant, Charlotte; Strale, Pierre-Olivier; Seddiki, Rima; Nguyen, Emmanuelle; Ladoux, Benoit; Mège, René-Marc

    2014-04-15

    Adhesive interactions of cadherins induce crosstalk between adhesion complexes and the actin cytoskeleton, allowing strengthening of adhesions and cytoskeletal organization. The underlying mechanisms are not completely understood, and microtubules (MTs) might be involved, as for integrin-mediated cell-extracellular-matrix adhesions. Therefore, we investigated the relationship between N-cadherin and MTs by analyzing the influence of N-cadherin engagement on MT distribution and dynamics. MTs progressed less, with a lower elongation rate, towards cadherin adhesions than towards focal adhesions. Increased actin treadmilling and the presence of an actomyosin contractile belt, suggested that actin relays inhibitory signals from cadherin adhesions to MTs. The reduced rate of MT elongation, associated with reduced recruitment of end-binding (EB) proteins to plus ends, was alleviated by expression of truncated N-cadherin, but was only moderately affected when actomyosin was disrupted. By contrast, destabilizing actomyosin fibers allowed MTs to enter the adhesion area, suggesting that tangential actin bundles impede MT growth independently of MT dynamics. Blocking MT penetration into the adhesion area strengthened cadherin adhesions. Taken together, these results establish a crosstalk between N-cadherin, F-actin and MTs. The opposing effects of cadherin and integrin engagement on actin organization and MT distribution might induce bias of the MT network during cell polarization.

  1. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  2. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  3. Filopodia in cell adhesion, 3D migration and cancer cell invasion.

    PubMed

    Jacquemet, Guillaume; Hamidi, Hellyeh; Ivaska, Johanna

    2015-10-01

    This review discusses recent advances in our understanding of the role filopodia and filopodia-like structures in cell adhesion and three dimensional (3D) cell migration both in vitro and in vivo. In particular, we focus on recent advances demonstrating that filopodia are involved in substrate tethering and environment sensing in vivo. We further discuss the emerging role of filopodia and filopodial proteins in tumor dissemination as mounting in vitro, in vivo and clinical evidence suggest that filopodia drive cancer cell invasion and highlight filopodia proteins as attractive therapeutic targets. Finally, we outline outstanding questions that remain to be addressed to elucidate the role of filopodia during 3D cell migration.

  4. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  5. A thermodynamic cycle for the solar cell

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Jenkins, Alejandro

    2017-03-01

    A solar cell is a heat engine, but textbook treatments are not wholly satisfactory from a thermodynamic standpoint, since they present solar cells as directly converting the energy of light into electricity, and the current in the circuit as maintained by an electrostatic potential. We propose a thermodynamic cycle in which the gas of electrons in the p phase serves as the working substance. The interface between the p and n phases acts as a self-oscillating piston that modulates the absorption of heat from the photons so that it may perform a net positive work during a complete cycle of its motion, in accordance with the laws of thermodynamics. We draw a simple hydrodynamical analogy between this model and the ;putt-putt; engine of toy boats, in which the interface between the water's liquid and gas phases serves as the piston. We point out some testable consequences of this model.

  6. A metabolic thermodynamic theory of cell cycle

    NASA Astrophysics Data System (ADS)

    Kummer, A.; Ocone, R.

    2003-08-01

    Due to its intrinsic complexity, a complete mathematical description of the cell cycle appears a difficult task. Nevertheless, a preliminary analysis, based on molecular biology, can help in clarifying what are the reliable tools for a quantitative approach. In a previous paper [Physica A 321 (3-4) (2003) 587], the steps to be followed to formulate a metabolic statistical thermodynamics have been established. Here we present a simple mathematical model for the interaction of CyclinB and Cdh1 [The Cell Cycle. An Introduction, Oxford University Press, New York, 1993], with the aim of analysing the properties of the system from a thermodynamic viewpoint. The model is shown to define the Gibbs phase integral of the system and the general Gibbs energy function is obtained. This, together with the analogue of the temperature, defines the working tools indispensable for the formulation of a metabolic statistical thermodynamic-like theory.

  7. Cationized bovine serum albumin with pendant RGD groups forms efficient biocoatings for cell adhesion.

    PubMed

    Ng, Jeck Fei; Weil, Tanja; Jaenicke, Stephan

    2011-11-01

    Cationized bovine serum albumin (cBSA-147) has been modified by attaching the cyclic pentapeptide cRGDfK to its surface through linkers of different length. Coatings of these bioconjugates on glass surfaces were studied for their ability to stimulate cell adhesion. These chemically modified albumins combine a high number of positive charges which facilitate the initial cell adhesion to the surface with multiple Arg-Gly-Asp groups which enable focal adhesion of fibroblast cells by specific interactions with cell-surface receptors. The biocoatings are easily prepared within a few minutes by simple incubation from a dilute solution of the modified albumin. This constitutes a convenient approach for preparing surfaces for cell adhesion. Excellent focal adhesion of NIH 3T3 fibroblast cells on the biocoatings was observed. About 75% of the seeded cells attached to the cRGDfK-cBSA-147 coated surfaces, and 97% of them underwent focal adhesion. Adhering cells were able to grow and proliferate on the coated surfaces, confirming the outstanding biocompatibility of these biocoatings.

  8. Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent prognostic factors in breast cancer

    PubMed Central

    Wong, Jocelyn P.; Natrajan, Rachael C.; Yuan, Yinyin; Tan, Aik-Choon; Huang, Paul H.

    2016-01-01

    Tumour cell-extracellular matrix (ECM) interactions are fundamental for discrete steps in breast cancer progression. In particular, cancer cell adhesion to ECM proteins present in the microenvironment is critical for accelerating tumour growth and facilitating metastatic spread. To assess the utility of tumour cell-ECM adhesion as a means for discovering prognostic factors in breast cancer survival, here we perform a systematic phenotypic screen and characterise the adhesion properties of a panel of human HER2 amplified breast cancer cell lines across six ECM proteins commonly deregulated in breast cancer. We determine a gene expression signature that defines a subset of cell lines displaying impaired adhesion to laminin. Cells with impaired laminin adhesion showed an enrichment in genes associated with cell motility and molecular pathways linked to cytokine signalling and inflammation. Evaluation of this gene set in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort of 1,964 patients identifies the F12 and STC2 genes as independent prognostic factors for overall survival in breast cancer. Our study demonstrates the potential of in vitro cell adhesion screens as a novel approach for identifying prognostic factors for disease outcome. PMID:27556857

  9. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    PubMed

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors.

  10. Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate.

    PubMed

    Silva, Joana M; García, José R; Reis, Rui L; García, Andrés J; Mano, João F

    2017-03-15

    Understanding the mechanisms controlling cell-multilayer film interactions is crucial to the successful engineering of these coatings for biotechnological and biomedical applications. Herein, we present a strategy to tune the cell adhesive properties of multilayers based on marine polysaccharides with and without cross-linking and/or coating with extracellular matrix proteins. Chemical cross-linking of multilayers improved mechanical properties of the coatings but also elicited changes in surface chemistry that alter the adhesion of human umbilical vein endothelial cells. We evaluated a strategy to decouple the mechanical and chemical properties of these films, enabling the transition from cell-adhesive to cell-resistant multilayers. Addition of chitosan/alginate multilayers on top of cross-linked films decreased endothelial cell adhesion, spreading, and proliferation to similar levels as uncross-linked films. Our findings highlight the key role of surface chemistry in cell-multilayer film interactions, and these engineered nanocoatings represent a tunable model of cell adhesive and non-adhesive multilayered films.

  11. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker.

    PubMed

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  12. The self-renewal of mouse embryonic stem cells is regulated by cell-substratum adhesion and cell spreading.

    PubMed

    Murray, Patricia; Prewitz, Marina; Hopp, Isabel; Wells, Nicola; Zhang, Haifei; Cooper, Andrew; Parry, Kristina L; Short, Robert; Antoine, Daniel J; Edgar, David

    2013-11-01

    Mouse embryonic stem cells (mESCs) undergo self-renewal in the presence of the cytokine, leukaemia inhibitory factor (LIF). Following LIF withdrawal, mESCs differentiate, and this is accompanied by an increase in cell-substratum adhesion and cell spreading. The purpose of this study was to investigate the relationship between cell spreading and mESC differentiation. Using E14 and R1 mESC lines, we have restricted cell spreading in the absence of LIF by either culturing mESCs on chemically defined, weakly adhesive biomaterial substrates, or by manipulating the cytoskeleton. We demonstrate that by restricting the degree of spreading by either method, mESCs can be maintained in an undifferentiated and pluripotent state. Under these conditions, self-renewal occurs without the need for LIF and is independent of nuclear translocation of tyrosine-phosphorylated STAT3 or β-catenin, which have previously been implicated in self-renewal. We also demonstrate that the effect of restricted cell spreading on mESC self-renewal is not mediated by increased intercellular adhesion, as evidenced by the observations that inhibition of mESC adhesion using a function blocking anti E-cadherin antibody or siRNA do not promote differentiation. These results show that mESC spreading and differentiation are regulated both by LIF and by cell-substratum adhesion, consistent with the hypothesis that cell spreading is the common intermediate step in the regulation of mESC differentiation by either LIF or cell-substratum adhesion.

  13. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  14. Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties.

    PubMed

    Gambero, Sheley; Canalli, Andreia A; Traina, Fabiola; Albuquerque, Dulcinéia M; Saad, Sara T O; Costa, Fernando F; Conran, Nicola

    2007-02-01

    Propagation of the vaso-occlusive process in sickle cell anaemia (SCA) is a complex process involving the adhesion of steady-state SCA patients red cells and reticulocytes to the vascular endothelium. The effect of hydroxyurea therapy (HUT) on the adhesive properties of sickle cells and the expression of adhesion molecule genes by erythroid cells of SCA individuals is not yet fully understood. The expressions of the CD36 gene and the VLA-4-integrin subunit genes, CD49d (alpha-subunit) and CD29 (beta-subunit), were compared in the reticulocytes of steady-state SCA patients and patients on HUT using real-time PCR. Basal adhesion of red cells from these subjects was also compared using static adhesion assays, as was surface protein expression, using flow cytometry. Basal sickle red cell adhesion to fibronectin was significantly greater than that of normal cells (P < 0.01); in contrast, HUT was associated with significantly lower levels (P < 0.01) of red cell adhesion that were similar to those of control cells; this decrease could not be justified solely by altered reticulocyte numbers in this population. Accordingly, flow cytometry demonstrated that reticulocytes from patients on HUT had significantly lower CD36 and CD49d surface expressions (P < 0.01) and, importantly, significantly lower expressions of the CD36, CD49d and CD29 genes (P < 0.05) than reticulocytes of SCA patients not on HUT. Taken together, data support the hypothesis that HUT reduces the adhesive properties of sickle cells and that this decrease appears to be mediated, at least in part, by a decrease in the gene and, consequently, surface protein expression of adhesion molecules such as VLA-4 and CD36.

  15. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  16. Ionizing radiation damage to cells: effects of cell cycle redistribution.

    PubMed

    Chen, P L; Brenner, D J; Sachs, R K

    1995-04-01

    If a population of cycling cells is exposed to a fixed dose of ionizing radiation delivered over time T, it is sometimes observed that increasing T increases the amount of cell killing. This is essentially because at first the radiation preferentially kills cells in a sensitive portion of the cycle and the surviving, more resistant cells then have time to reach more sensitive stages. We refer to this effect as population resensitization, caused by redistribution within the cell cycle. We investigate the effect theoretically by employing the McKendrick-von Foerster equation for age-structured proliferating cell populations, generalized by introducing a radiation damage term. Within our formalism, we show that population resensitization occurs whenever: (a) prior to irradiation the cell population has the stable age-distribution approached asymptotically by an unirradiated population, and (b) T is sufficiently small. Examples and other cases are outlined. The methods of Volterra integral equations, renewal theory, and positive semigroup theory are applied. The effect of varying T is evaluated by considering the ultimate amplitude of the stable age-distribution population at times much greater than both the irradiation duration and the average cell-cycle time. The main biological limitations of the formalism are the following: considering only radiation damage which is not subject to enzymatic repair or quadratic misrepair, using an overly naive method of ensuring loss of cell cycle synchrony, neglecting nonlinear effects such as density inhibition of growth, and neglecting radiatively induced perturbations of the cell cycle. Possible methods for removing these limitations are briefly discussed.

  17. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding.

  18. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.

    PubMed

    Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Divitini, G; Ducati, C; Lenardi, C; Piazzoni, C; Merlini, M; Podestà, A; Milani, P

    2012-11-30

    Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.

  19. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  20. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells

    PubMed Central

    Cuvelier, Susan L.; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D.

    2005-01-01

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4–stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule–1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechanosensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking. PMID:16172263

  1. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells.

    PubMed

    Cuvelier, Susan L; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D

    2005-09-19

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule-1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechano-sensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking.

  2. PAF mediates neutrophil adhesion to thrombin or TNF-stimulated endothelial cells under shear stress.

    PubMed

    Macconi, D; Foppolo, M; Paris, S; Noris, M; Aiello, S; Remuzzi, G; Remuzzi, A

    1995-07-01

    Platelet-activating factor (PAF) is known to modulate polymorphonuclear leukocyte (PMN) adhesion to endothelial cells cultured under static conditions and activated by thrombin. In contrast, there are no data on the role of PAF in PMN adhesion to cells exposed to flow conditions and activated by stimuli other than thrombin. Here we used the PAF receptor antagonist L-659,989 to evaluate PMN adhesion to human umbilical vein endothelial cells (HUVEC) in basal conditions or upon challenge with thrombin or tumor necrosis factor-alpha (TNF-alpha). Experiments were performed under dynamic flow using a parallel-plate flow chamber and a computer-based image analysis system. Rolling and adhesion of PMNs to endothelial cells significantly increased upon stimulation with thrombin. Thrombin-stimulated HUVEC also synthesized higher amounts of PAF than untreated cells. Pretreatment of PMNs with L-659,989 significantly reduced their rolling and adhesion to thrombin-activated HUVEC. Stimulation of HUVEC with TNF-alpha significantly increased the number of rolling and adherent PMNs as compared with untreated cells. Adhesion of PMNs to and migration across TNF-alpha-stimulated HUVEC were reduced by L-659,989, whereas cell rolling was unchanged. We conclude that PAF mediates leukocyte interaction under flow conditions with HUVEC activated by inflammatory stimuli.

  3. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  4. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-11-09

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  5. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells.

    PubMed

    Ezratty, Ellen J; Bertaux, Claire; Marcantonio, Eugene E; Gundersen, Gregg G

    2009-11-30

    Focal adhesion disassembly is regulated by microtubules (MTs) through an unknown mechanism that involves dynamin. To test whether endocytosis may be involved, we interfered with the function of clathrin or its adaptors autosomal recessive hypercholesteremia (ARH) and Dab2 (Disabled-2) and found that both treatments prevented MT-induced focal adhesion disassembly. Surface labeling experiments showed that integrin was endocytosed in an extracellular matrix-, clathrin-, and ARH- and Dab2-dependent manner before entering Rab5 endosomes. Clathrin colocalized with a subset of focal adhesions in an ARH- and Dab2-dependent fashion. Direct imaging showed that clathrin rapidly accumulated on focal adhesions during MT-stimulated disassembly and departed from focal adhesions with integrin upon their disassembly. In migrating cells, depletion of clathrin or Dab2 and ARH inhibited focal adhesion disassembly and decreased the rate of migration. These results show that focal adhesion disassembly occurs through a targeted mechanism involving MTs, clathrin, and specific clathrin adaptors and that direct endocytosis of integrins from focal adhesions mediates their disassembly in migrating cells.

  6. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  7. Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.

    PubMed

    Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R

    2005-05-01

    Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.

  8. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  9. Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis

    DTIC Science & Technology

    2002-06-01

    AD Award Number: DAMD17-01-1-0507 TITLE: Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis PRINCIPAL...1 Jun 01 - 31 May 02) 4. TITLE AND SUBTITLE Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis 6. AUTHOR(S...information) Progesterone receptors (PR) and estrogen receptors (ER) are important prognostic indicators in breast cancer. We believe that PR, in addition to

  10. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants.

  11. Nylon-3 Co-Polymers that Generate Cell-Adhesive Surfaces Identified by Library Screening

    PubMed Central

    Lee, Myung-Ryul; Stahl, Shannon S.; Gellman, Samuel H.; Masters, Kristyn S.

    2010-01-01

    Polymers in the nylon-3 family contain subunits derived from β-amino acids, which are linked to one another via amide bonds. Thus, the nylon-3 backbone is homologous to the α-amino acid-based backbone of proteins. This molecular-level homology suggests that nylon-3 materials might be intrinsically protein-mimetic. The experiments described here explore this prospect in the context of cell adhesion, with tissue engineering as a long-range goal. We have evaluated a small library of sequence-random nylon-3 copolymers for the ability to render surfaces attractive to NIH 3T3 fibroblast adhesion and spreading. Library screening was accomplished in a high-throughput, parallel mode via attachment of the copolymers in a two-dimensional array to a modified glass surface. Significant variations in fibroblast adhesion and spreading were observed as a function of nylon-3 subunit identity and proportion. Several of the nylon-3 copolymers supported cell adhesion and morphology that was comparable, or even superior, to that achieved on positive control substrates such as tissue culture polystyrene and collagen-coated glass. Moreover, studies conducted under serum-free conditions demonstrated that specific nylon-3 derivatives supported cell adhesion independently of serum protein adsorption. Although cell adhesion was diminished in the absence of serum, particular copolymers demonstrated an ability to support substantially greater cell adhesion than any of the other conditions, including the positive controls. The nylon-3 copolymers that were most effective at promoting adhesion to a modified glass surface proved also to be effective at promoting adhesion when attached to a PEG-based hydrogel, demonstrating the potential for these copolymers to be used in tissue engineering applications. PMID:19886604

  12. Nylon-3 copolymers that generate cell-adhesive surfaces identified by library screening.

    PubMed

    Lee, Myung-Ryul; Stahl, Shannon S; Gellman, Samuel H; Masters, Kristyn S

    2009-11-25

    Polymers in the nylon-3 family contain subunits derived from beta-amino acids, which are linked to one another via amide bonds. Thus, the nylon-3 backbone is homologous to the alpha-amino acid-based backbone of proteins. This molecular-level homology suggests that nylon-3 materials might be intrinsically protein-mimetic. The experiments described here explore this prospect in the context of cell adhesion, with tissue engineering as a long-range goal. We have evaluated a small library of sequence-random nylon-3 copolymers for the ability to render surfaces attractive to NIH 3T3 fibroblast adhesion and spreading. Library screening was accomplished in a high-throughput, parallel mode via attachment of the copolymers in a two-dimensional array to a modified glass surface. Significant variations in fibroblast adhesion and spreading were observed as a function of nylon-3 subunit identity and proportion. Several of the nylon-3 copolymers supported cell adhesion and morphology that was comparable, or even superior, to that achieved on positive control substrates such as tissue culture polystyrene and collagen-coated glass. Moreover, studies conducted under serum-free conditions demonstrated that specific nylon-3 derivatives supported cell adhesion independently of serum protein adsorption. Although cell adhesion was diminished in the absence of serum, particular copolymers demonstrated an ability to support substantially greater cell adhesion than any of the other conditions, including the positive controls. The nylon-3 copolymers that were most effective at promoting adhesion to a modified glass surface proved also to be effective at promoting adhesion when attached to a PEG-based hydrogel, demonstrating the potential for these copolymers to be used in tissue engineering applications.

  13. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  14. Non-muscle myosin II heavy chain has a cryptic cell-adhesion domain.

    PubMed Central

    Grinnell, F; Ho, C H

    1995-01-01

    We have discovered a cryptic cell-adhesion domain in non-muscle myosin II heavy chain. A 205 kDa cell-adhesion-promoting polypeptide (p205) was extracted from BHK cells by Nonidet P-40 or Dounce homogenization. Adhesion to p205 was specifically inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro, indicating a role for the Arg-Gly-Asp cell-adhesion motif. Purified p205 was identified as non-muscle myosin II heavy chain, based on sequence analysis and on the cross-reactivity of p205 with anti-(bovine trachea myosin) antibodies. Further experiments showed that the heavy chain of purified myosin II has cell-adhesion-promoting activity in a cell-blotting assay, and cross-reacted with anti-p205 antibodies. Finally, the adhesion domain was located in the tail portion of myosin II heavy chain, where an Arg-Gly-Asp-containing sequence can be found. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626021

  15. Physical Model for Self-Organization of Actin Cytoskeleton and Adhesion Complexes at the Cell Front

    PubMed Central

    Shemesh, Tom; Bershadsky, Alexander D.; Kozlov, Michael M.

    2012-01-01

    Cell motion is driven by interplay between the actin cytoskeleton and the cell adhesions in the front part of the cell. The actin network segregates into lamellipodium and lamellum, whereas the adhesion complexes are characteristically distributed underneath the actin system. Here, we suggest a computational model for this characteristic organization of the actin-adhesion system. The model is based on the ability of the adhesion complexes to sense mechanical forces, the stick-slip character of the interaction between the adhesions and the moving actin network, and a hypothetical propensity of the actin network to disintegrate upon sufficiently strong stretching stresses. We identify numerically three possible types of system organization, all observed in living cells: two states in which the actin network exhibits segregation into lamellipodium and lamellum, whereas the cell edge either remains stationary or moves, and a state where the actin network does not undergo segregation. The model recovers the asynchronous fluctuations and outward bulging of the cell edge, and the dependence of the edge protrusion velocity on the rate of the nascent adhesion generation, the membrane tension, and the substrate rigidity. PMID:22768930

  16. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow

    PubMed Central

    McDonald, Karli K.; Cooper, Scott; Danielzak, Lisa; Leask, Richard L.

    2016-01-01

    Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours). We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05) and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis. PMID:27907146

  17. Heterogeneous Red Blood Cell Adhesion and Deformability in Sickle Cell Disease

    NASA Astrophysics Data System (ADS)

    Alapan, Yunus; Little, Jane A.; Gurkan, Umut A.

    2014-11-01

    We present a microfluidic approach that allows simultaneous interrogation of RBC properties in physiological flow conditions at a single cell level. With this method, we studied healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs using whole blood samples from twelve subjects. We report that HbS-containing RBCs are heterogeneous in terms of adhesion and deformability in flow.

  18. Proliferation and cell cycle dynamics in the developing stellate ganglion.

    PubMed

    Gonsalvez, David G; Cane, Kylie N; Landman, Kerry A; Enomoto, Hideki; Young, Heather M; Anderson, Colin R

    2013-04-03

    Cell proliferation during nervous system development is poorly understood outside the mouse neocortex. We measured cell cycle dynamics in the embryonic mouse sympathetic stellate ganglion, where neuroblasts continue to proliferate following neuronal differentiation. At embryonic day (E) 9.5, when neural crest-derived cells were migrating and coalescing into the ganglion primordium, all cells were cycling, cell cycle length was only 10.6 h, and S-phase comprised over 65% of the cell cycle; these values are similar to those previously reported for embryonic stem cells. At E10.5, Sox10(+) cells lengthened their cell cycle to 38 h and reduced the length of S-phase. As cells started to express the neuronal markers Tuj1 and tyrosine hydroxylase (TH) at E10.5, they exited the cell cycle. At E11.5, when >80% of cells in the ganglion were Tuj1(+)/TH(+) neuroblasts, all cells were again cycling. Neuroblast cell cycle length did not change significantly after E11.5, and 98% of Sox10(-)/TH(+) cells had exited the cell cycle by E18.5. The cell cycle length of Sox10(+)/TH(-) cells increased during late embryonic development, and ∼25% were still cycling at E18.5. Loss of Ret increased neuroblast cell cycle length at E16.5 and decreased the number of neuroblasts at E18.5. A mathematical model generated from our data successfully predicted the relative change in proportions of neuroblasts and non-neuroblasts in wild-type mice. Our results show that, like other neurons, sympathetic neuron differentiation is associated with exit from the cell cycle; sympathetic neurons are unusual in that they then re-enter the cell cycle before later permanently exiting.

  19. Cell cycle of globose basal cells in rat olfactory epithelium.

    PubMed

    Huard, J M; Schwob, J E

    1995-05-01

    The olfactory epithelium of adult mammals has the unique property of generating olfactory sensory neurons throughout life. Cells of the basal compartment, which include horizontal and globose basal cells, are responsible for the ongoing process of neurogenesis in this system. We report here that the globose basal cells in olfactory epithelium of rats, as in mice, are the predominant type of proliferating cell, and account for 97.6% of the actively dividing cells in the basal compartment of the normal epithelium. Globose basal cells have not been fully characterized in terms of their proliferative properties, and the dynamic aspects of neurogenesis are not well understood. As a consequence, it is uncertain whether cell kinetic properties are under any regulation that could affect the rate of neurogenesis. To address this gap in our knowledge, we have determined the duration of both the synthesis phase (S-phase) and the full cell cycle of globose basal cells in adult rats. The duration of the S-phase was found to be 9 hr in experiments utilizing sequential injections of either IdU followed by BrdU or 3H-thy followed by BrdU. The duration of the cell cycle was determined by varying the time interval between the injections of 3H-thy and BrdU and tracking the set of cells that exit S shortly after the first injection. With this paradigm, the interval required for these cells to traverse G2, M, G1, and a second S-phase, is equivalent to the duration of one mitotic cycle and equals 17 hr. These observations serve as the foundation to assess whether the cell cycle duration is subject to regulation in response to experimental injury, and whether such regulation is partly responsible for changes in the rate of neurogenesis in such settings.

  20. Latrophilins Function as Heterophilic Cell-adhesion Molecules by Binding to Teneurins

    PubMed Central

    Boucard, Antony A.; Maxeiner, Stephan; Südhof, Thomas C.

    2014-01-01

    Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance. PMID:24273166

  1. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion.

    PubMed

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor; Haferkamp, Axel; Blaheta, Roman A

    2016-04-12

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.

  2. Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2012-01-01

    Maintaining proper cell–cell adhesion in the intestine is essential for tissue homeostasis and barrier function. This adhesion is thought to be mediated by cell adhesion structures, including tight junctions, adherens junctions, and desmosomes, which concentrate in the apical junctional region. While clear roles for adherens and tight junctions have been established in simple epithelia, the function of desmosomes has not been addressed. In stratified epithelia, desmosomes impart mechanical strength to tissues by organizing and anchoring the keratin filament network. In this paper, we report that the desmosomal protein desmoplakin (DP) is not essential for cell adhesion in the intestinal epithelium. Surprisingly, when DP is lacking, keratin filament localization is also unperturbed, although keratin filaments no longer anchor at desmosomes. Unexpectedly, DP is important for proper microvillus structure. Our study highlights the tissue-specific functions of desmosomes and reveals that the canonical functions for these structures are not conserved in simple epithelium. PMID:22238362

  3. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  4. Inhibition of adhesion of uropathogenic Escherichia coli bacteria to uroepithelial cells by extracts from cranberry.

    PubMed

    Ermel, Gwennola; Georgeault, Sylvie; Inisan, Claude; Besnard, Matthieu

    2012-02-01

    Cranberry extract has been reported as a therapeutic agent, mainly in urinary tract infections due to its anti-adhesive capacity. In order to compare the effects of proanthocyanidin (procyanidin) (PAC)-standardized cranberry extracts and commercial PAC A2, we first investigated the presence of genes encoding known adhesins on 13 strains of uropathogenic strains coming from patients with cystisis. After this characterization, the anti-adhesive effects of PAC A2 were assayed on selected uropathogenic Escherichia coli strains before testing cranberry extracts. Before checking inhibitory effect on bacterial adhesion to cells, we showed that neither PAC A2 or three cranberry extracts (A, B, and C) specifically inhibited the growth and did not supply any potential nutrient to E. coli strains, including the unrelated control strain. PAC A2 exhibited an inhibitory effect on the adhesion of two selected uropathogenic strains of E. coli. This work also showed that a preliminary exposure of bacteria to PAC A2 significantly reduced the adhesion. This phenomenon has been also observed with a lesser impact when uroepithelial cells were pretreated with PAC A2. Moreover, the assays were more robust when bacteria were in fast growing conditions (exponential phase): the adhesion to uroepithelial cells was greater. Significant reduction of adhesion to urepithelial cells was observed: around 80% of inhibition of adhesion with the cranberry extracts at equivalent PAC concentration of 50 μg/mL. The effects of the different assayed extracts were not obviously different except for extract B, which inhibited approximately 55% of adhesion at an equivalent PAC concentration of 5 μg/mL.

  5. Dynamic adhesion of umbilical cord blood endothelial progenitor cells under laminar shear stress.

    PubMed

    Angelos, Mathew G; Brown, Melissa A; Satterwhite, Lisa L; Levering, Vrad W; Shaked, Natan T; Truskey, George A

    2010-12-01

    Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α(5)β(1) integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α(5)β(1) with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress.

  6. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  7. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals.

    PubMed

    Lee, Jong-Gyu; Ahn, Ji-Hye; Jin Kim, Tae; Ho Lee, Jae; Choi, Jung-Hye

    2015-07-30

    Missense mutations in the TP53 gene resulting in the accumulation of mutant proteins are extremely common in advanced ovarian cancer, which is characterised by peritoneal metastasis. Attachment of cancer cells to the peritoneal mesothelium is regarded as an initial, key step for the metastatic spread of ovarian cancer. In the present study, we investigated the possible role of a p53 mutant in the mesoth