Science.gov

Sample records for adhesion cell cycle

  1. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  2. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  3. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  4. Cell Cycle Control and Adhesion Molecule Expression in Cells of the Immune System are Sensitive to Altered Gravity

    NASA Astrophysics Data System (ADS)

    Ullrich, O.; Paulsen, K.; Thiel, C.; Herrmann, K.; Sang, C.; Han, G.; Hemmersbach, R.; von der Wiesche, M.; Kroll, H.; Zhuang, F.; Grote, K. H.; Cogoli, A.; Zipp, F.; Engelmann, F.

    2008-06-01

    Life on earth developed in the presence and under the constant influence of gravity. Thus, it is a fundamental biological question, whether gravity is required for cellular functions and signal transduction in mammalian cells. Since the first Spacelab-Mission 20 years ago, it is known that activation and function of T lymphocytes is severely suppressed in microgravity, but the underlying molecular mechanisms are not elucidated. Experiments have been performed using ground-based facilities such as fast-rotating clinostat and hyper-g-centrifuges, and real microgravity provided by parabolic flights. We found that 1.) cells of the immune system responded cell type specifically to altered gravity, 2.) microgravity induced a multitude of initial alterations in signal transduction, whereas 3.) hypergravity of 1.8g did not induce any changes of the pathways tested, and that 4.) most of the initially altered pathways in microgravity adapted to "normal" levels within 15min. However, some pathways remained altered and could explain cell cycle arrest of T lymphocytes as observed in several long-term space experiments.

  5. Control of density-dependent, cell state-specific signal transduction by the cell adhesion molecule CEACAM1, and its influence on cell cycle regulation

    SciTech Connect

    Scheffrahn, Inka; Singer, Bernhard B.; Sigmundsson, Kristmundur; Lucka, Lothar; Oebrink, Bjoern . E-mail: bjorn.obrink@cmb.ki.se

    2005-07-15

    Growth factor receptors, extracellular matrix receptors, and cell-cell adhesion molecules co-operate in regulating the activities of intracellular signaling pathways. Here, we demonstrate that the cell adhesion molecule CEACAM1 co-regulates growth-factor-induced DNA synthesis in NBT-II epithelial cells in a cell-density-dependent manner. CEACAM1 exerted its effects by regulating the activity of the Erk 1/2 MAP kinase pathway and the expression levels of the cyclin-dependent kinase inhibitor p27{sup Kip1}. Interestingly, both inhibitory and stimulatory effects were observed. Confluent cells continuously exposed to fetal calf serum showed little Erk activity and DNA synthesis compared with sparse cells. Under these conditions, anti-CEACAM1 antibodies strongly stimulated Erk activation, decreased p27 expression, and induced DNA synthesis. In serum-starved confluent cells, re-addition of 10% fetal calf serum activated the Erk pathway, decreased p27 expression, and stimulated DNA synthesis to the same levels as in sparse cells. Under these conditions anti-CEACAM1 antibodies de-activated Erk, restored the level of p27, and inhibited DNA synthesis. These data indicate that CEACAM1 mediates contact inhibition of proliferation in cells that are constantly exposed to growth factors, but co-activates growth-factor-induced proliferation in cells that have been starved for growth factors; exposure to extracellular CEACAM1 ligands reverts these responses.

  6. Notch-Mediated Cell Adhesion.

    PubMed

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  7. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  8. Alterations in cell adhesion proteins and cardiomyopathy

    PubMed Central

    Li, Jifen

    2014-01-01

    Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models. PMID:24944760

  9. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  10. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  11. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  12. Quantitation of Endothelial Cell Adhesiveness In Vitro

    PubMed Central

    Lowe, Donna J.; Raj, Kenneth

    2015-01-01

    One of the cardinal processes of inflammation is the infiltration of immune cells from the lumen of the blood vessel to the surrounding tissue. This occurs when endothelial cells, which line blood vessels, become adhesive to circulating immune cells such as monocytes. In vitro measurement of this adhesiveness has until now been done by quantifying the total number of monocytes that adhere to an endothelial layer either as a direct count or by indirect measurement of the fluorescence of adherent monocytes. While such measurements do indicate the average adhesiveness of the endothelial cell population, they are confounded by a number of factors, such as cell number, and do not reveal the proportion of endothelial cells that are actually adhesive. Here we describe and demonstrate a method which allows the enumeration of adhesive cells within a tested population of endothelial monolayer. Endothelial cells are grown on glass coverslips and following desired treatment are challenged with monocytes (that may be fluorescently labeled). After incubation, a rinsing procedure, involving multiple rounds of immersion and draining, the cells are fixed. Adhesive endothelial cells, which are surrounded by monocytes are readily identified and enumerated, giving an adhesion index that reveals the actual proportion of endothelial cells within the population that are adhesive. PMID:26132714

  13. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development. PMID:25448695

  14. Investigating differential cell-matrix adhesion by directly comparative single-cell force spectroscopy.

    PubMed

    Dao, Lu; Gonnermann, Carina; Franz, Clemens M

    2013-11-01

    Tissue-embedded cells are often exposed to a complex mixture of extracellular matrix (ECM) molecules, to which they bind with different cell adhesion receptors and affinities. Differential cell adhesion to ECM components is believed to regulate many aspects of tissue function, such as the sorting of specific cell types into different tissue compartments or ECM niches. In turn, aberrant switches in cell adhesion preferences may contribute to cell misplacement, tissue invasion, and metastasis. Methods to determine differential adhesion profiles of single cells are therefore desirable, but established bulk assays usually only test cell population adhesion to a single type of ECM molecule. We have recently demonstrated that atomic force microscopy-based single-cell force spectroscopy (SCFS), performed on bifunctional, microstructured adhesion substrates, provides a useful tool for accurately quantitating differential matrix adhesion of single Chinese hamster ovary cells to laminin and collagen I. Here, we have extended this approach to include additional ECM substrates, such as bifunctional collagen I/collagen IV surfaces, as well as adhesion-passivated control surfaces. We investigate differential single cell adhesion to these substrates and analyze in detail suitable experimental conditions for comparative SCFS, including optimal cell-substrate contact times and the impact of force cycle repetitions on single cell adhesion force statistics. Insight gained through these experiments may help in adapting this technique to other ECM molecules and cell systems, making directly comparative SCFS a versatile tool for comparing receptor-mediated cell adhesion to different matrix molecules in a wide range of biological contexts. PMID:24089365

  15. Rapid Reversible Photoswitching of Integrin-Mediated Adhesion at the Single-Cell Level.

    PubMed

    Kadem, Laith F; Holz, Michelle; Suana, Kristine Grace; Li, Qian; Lamprecht, Constanze; Herges, Rainer; Selhuber-Unkel, Christine

    2016-03-01

    Rapid and reversible photoswitching of cell adhesion is achieved by c(RGDfK)-azobenzenes embedded in a poly(ethylene glycol) background on surfaces. The light-induced cis-trans-isomerization of the azobenzene enables switching of cell adhesion on the surface. Reversibility of switching over several consecutive switching cycles is demonstrated by single-cell force spectroscopy. PMID:26685922

  16. Micropatterning cell adhesion on polyacrylamide hydrogels.

    PubMed

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  17. Bistability of Cell Adhesion in Shear Flow

    PubMed Central

    Efremov, Artem; Cao, Jianshu

    2011-01-01

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area—bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms. PMID:21889439

  18. The Chlamydomonas Cell Cycle

    PubMed Central

    Cross, Frederick R.; Umen, James G.

    2015-01-01

    The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants, and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that have been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades, and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell divisions, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth with the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole/basal body/flagellar cycle. Here we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell cycle control compared to this model. We next review the cytology and cell biology of the multiple fission cell cycle of Chlamydomonas. Lastly we review recent genetic approaches and insights into Chlamydomonas cell cycle regulation that have been enabled by a new generation of genomics-based tools. PMID:25690512

  19. Characterizing cell adhesion by using micropipette aspiration.

    PubMed

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I; Husson, Julien

    2015-07-21

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  20. Characterizing Cell Adhesion by Using Micropipette Aspiration

    PubMed Central

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I.; Husson, Julien

    2015-01-01

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  1. A Continuum Approach to Modelling Cell-Cell Adhesion

    PubMed Central

    Armstrong, Nicola J.; Painter, Kevin J.; Sherratt, Jonathan A.

    2007-01-01

    Cells adhere to each other through the binding of cell adhesion molecules at the cell surface. This process, known as cell-cell adhesion, is fundamental in many areas of biology, including early embryo development, tissue homeostasis and tumour growth. In this paper we develop a new continuous mathematical model of this phenomenon by considering the movement of cells in response to the adhesive forces generated through binding. We demonstrate that our model predicts the aggregation behaviour of a disassociated adhesive cell population. Further, when the model is extended to represent the interactions between multiple populations, we demonstrate that it is capable of replicating the different types of cell sorting behaviour observed experimentally. The resulting pattern formation is a direct consequence of the relative strengths of self-population and cross-population adhesive bonds in the model. While cell sorting behaviour has been captured previously with discrete approaches, it has not, until now, been observed with a fully continuous model. PMID:16860344

  2. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  3. Physics of cell elasticity, shape and adhesion

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  4. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  5. Collective cell streams in epithelial monolayers depend on cell adhesion

    NASA Astrophysics Data System (ADS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-07-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.

  6. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. PMID:27261363

  7. Cell adhesion in regulation of asymmetric stem cell division

    PubMed Central

    Yamashita, Yukiko M.

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the recent discovery that cell adhesion molecules govern the behavior of stem cells. PMID:20724132

  8. Cell Cycle Regulation in the Developing Lens

    PubMed Central

    Griep, Anne E.

    2007-01-01

    Regulation of cell proliferation is a critical aspect of the development of multicellular organisms. The ocular lens is an excellent model system in which to unravel the mechanisms controlling cell proliferation during development. In recent years, several cell cycle regulators have been shown to be essential for maintaining normal patterns of lens cell proliferation. Additionally, many growth factor signaling pathways and cell adhesion factors have been shown to have the capacity to regulate lens cell proliferation. Given this complexity, understanding the cross talk between these many signaling pathways and how they are coordinated are important directions for the future. PMID:17218126

  9. Optical biosensors for cell adhesion.

    PubMed

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes. PMID:19635032

  10. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  11. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  12. Control cell adhesion with dynamic bilayer films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2012-02-01

    Interfacially-directed assembly of amphiphilic block copolymers was employed to create ultrathin films having the potential to correlate the dynamics of ECM cues with cell adhesion and cytoskeletally-generated forces. The mobility of the polymeric bilayer films were tuned by the incorporation of hydrophobic homopolymer chains, which are thought to reduce interlayer friction. Labeling of the block copolymer chains with an adhesive peptide ligand (RGD) provided a specific means to study integrin-mediated cellular processes and the corresponding mechanotransduction. By seeding anchorage-dependent cells on ``dynamic'' (laterally mobile) and ``static'' films that display the same amount of RGD, we have found that cells recognize the difference in RGD diffusivity and develop distinct responses over time. We intend to examine changes in cell response by controlling the extent of cytoskeletally-generated forces and the assembly dynamics of focal adhesion complexes. Such films provide a unique platform to unveil the biomechanical signals related with ECM dynamics, and may ultimately facilitate a deeper understanding of cellular processes.

  13. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    PubMed

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. PMID:26477544

  14. Adhesion and invasion of bovine endothelial cells by Neospora caninum.

    PubMed

    Hemphill, A; Gottstein, B; Kaufmann, H

    1996-02-01

    Neospora caninum is a recently identified coccidian parasite which was, until 1988, misdiagnosed as Toxoplasma gondii. It causes paralysis and death in dogs and neonatal mortality and abortion in cattle, sheep, goats and horses. The life-cycle of Neospora has not yet been elucidated. The only two stages identified so far are tissue cysts and intracellularly dividing tachyzoites. Very little is known about the biology of this species. We have set up a fluorescence-based adhesion/invasion assay in order to investigate the interaction of N. caninum tachyzoites with bovine aorta endothelial (BAE) cells in vitro. Treatment of both host cells and parasites with metabolic inhibitors determined the metabolic requirements for adhesion and invasion. Chemical and enzymatic modifications of parasite and endothelial cell surfaces were used in order to obtain information on the nature of cell surface components responsible for the interaction between parasite and host. Electron microscopical investigations defined the ultrastructural characteristics of the adhesion and invasion process, and provided information on the intracellular development of the parasites. PMID:8851858

  15. Force nanoscopy of cell mechanics and cell adhesion

    NASA Astrophysics Data System (ADS)

    Dufrêne, Yves F.; Pelling, Andrew E.

    2013-05-01

    Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.

  16. Cell adhesion molecules and in vitro fertilization.

    PubMed

    Simopoulou, Maria; Nikolopoulou, Elena; Dimakakos, Andreas; Charalabopoulos, Konstantinos; Koutsilieris, Michael

    2014-01-01

    This review addresses issues regarding the need in the in vitro fertilization (IVF) field for further predictive markers enhancing the standing embryo selection criteria. It aims to serve as a source of defining information for an audience interested in factors related to the wide range of multiple roles played by cell adhesion molecules (CAMs) in several aspects of IVF ultimately associated with the success of an IVF cycle. We begin by stressing the importance of enriching the standing embryo selection criteria available aiming for the golden standard: "extract as much information as possible focusing on non-invasive techniques" so as to guide us towards selecting the embryo with the highest implantation potential. We briefly describe the latest trends on how to best select the right embryo, moving closer towards elective single embryo transfer. These trends are: frozen embryo transfer for all, preimplantation genetic screening, non-invasive selection criteria, and time-lapse imaging. The main part of this review is dedicated to categorizing and presenting published research studies focused on the involvement of CAMs in IVF and its final outcome. Specifically, we discuss the association of CAMs with conditions and complications that arise from performing assisted reproductive techniques, such as ovarian hyperstimulation syndrome, the state of the endometrium, and tubal pregnancies, as well as the levels of CAMs in biological materials available in the IVF laboratory such as follicular fluid, trophectoderm, ovarian granulosa cells, oocytes, and embryos. To conclude, since CAMs have been successfully employed as a diagnostic tool in several pathologies in routine clinical work, we suggest that their multi-faceted nature could serve as a prognostic marker in assisted reproduction, aiming to enrich the list of non-invasive selection and predictive criteria in the IVF setting. We propose that in light of the well-documented involvement of CAMs in the developmental

  17. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  18. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  19. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  20. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  1. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  2. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    NASA Astrophysics Data System (ADS)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  3. Adhesion in the stem cell niche: biological roles and regulation

    PubMed Central

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated. PMID:23250203

  4. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    PubMed Central

    Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression. PMID:26151554

  5. Synapses: Sites of Cell Recognition, Adhesion, and Functional Specification

    PubMed Central

    Yamada, Soichiro; Nelson, W. James

    2012-01-01

    Synapses are specialized adhesive contacts characteristic of many types of cell-cell interactions involving neurons, immune cells, epithelial cells, and even pathogens and host cells. Cell-cell adhesion is mediated by structurally diverse classes of cell-surface glycoproteins, which form homophilic or heterophilic interactions across the intercellular space. Adhesion proteins bind to a cytoplasmic network of scaffolding proteins, regulators of the actin cytoskeleton, and signal transduction pathways that control the structural and functional organization of synapses. The themes of this review are to compare the organization of synapses in different cell types and to understand how different classes of cell adhesion proteins and cytoplasmic protein networks specify the assembly of functionally distinct synapses in different cell contexts. PMID:17506641

  6. Cell morphology and focal adhesion location alters internal cell stress.

    PubMed

    Mullen, C A; Vaughan, T J; Voisin, M C; Brennan, M A; Layrolle, P; McNamara, L M

    2014-12-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  7. Cell morphology and focal adhesion location alters internal cell stress

    PubMed Central

    Mullen, C. A.; Vaughan, T. J.; Voisin, M. C.; Brennan, M. A.; Layrolle, P.; McNamara, L. M.

    2014-01-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  8. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif.

    PubMed

    Jacob, Reeba S; George, Edna; Singh, Pradeep K; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K

    2016-03-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  9. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  10. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  11. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  12. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  13. Cell adhesion strength from cortical tension - an integration of concepts.

    PubMed

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  14. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  15. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub

  16. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  17. The Arabidopsis Cell Division Cycle

    PubMed Central

    Gutierrez, Crisanto

    2009-01-01

    Plant cells have evolved a complex circuitry to regulate cell division. In many aspects, the plant cell cycle follows a basic strategy similar to other eukaryotes. However, several key issues are unique to plant cells. In this chapter, both the conserved and unique cellular and molecular properties of the plant cell cycle are reviewed. In addition to division of individual cells, the specific characteristic of plant organogenesis and development make that cell proliferation control is of primary importance during development. Therefore, special attention should be given to consider plant cell division control in a developmental context. Proper organogenesis depends on the formation of different cell types. In plants, many of the processes leading to cell differentiation rely on the occurrence of a different cycle, termed the endoreplication cycle, whereby cells undergo repeated full genome duplication events in the absence of mitosis and increase their ploidy. Recent findings are focusing on the relevance of changes in chromatin organization for a correct cell cycle progression and, conversely, in the relevance of a correct functioning of chromatin remodelling complexes to prevent alterations in both the cell cycle and the endocycle. PMID:22303246

  18. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    PubMed

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  19. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  20. Focal adhesion molecules as potential target of lead toxicity in NRK-52E cell line.

    PubMed

    Giuliani, Roberta; Bettoni, Francesca; Leali, Daria; Morandini, Fausta; Apostoli, Pietro; Grigolato, Piergiovanni; Cesana, Bruno Mario; Aleo, Maria Francesca

    2005-11-01

    In this study, we investigated the influence of inorganic lead (Pb(II)), an environmental pollutant having nephrotoxic action, on the focal adhesion (FA) organization of a rat kidney epithelial cell line (NRK-52E). In particular, we evaluated the effects of the metal on the recruitment of paxillin, focal adhesion kinase, vinculin and cytoskeleton proteins at the FAs complexes. We provided evidences that, in proliferating NRK-52E cell cultures, low concentrations of Pb(II) affect the cell adhesive ability and stimulate the disassembly of FAs, thus inhibiting the integrin-activated signalling. These effects appeared to be strictly associated to the Pb-induced arrest of cell cycle at G0/G1 phase also proved in this cell line. PMID:16253243

  1. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment. PMID:26603095

  2. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  3. Transcriptionally Regulated Cell Adhesion Network Dictates Distal Tip Cell Directionality

    PubMed Central

    Wong, Ming-Ching; Kennedy, William P.; Schwarzbauer, Jean E.

    2015-01-01

    Background The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. Results Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. Conclusions Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion. PMID:24811939

  4. BigA is a novel adhesin of Brucella that mediates adhesion to epithelial cells.

    PubMed

    Czibener, Cecilia; Merwaiss, Fernando; Guaimas, Francisco; Del Giudice, Mariela Giselda; Serantes, Diego Armando Rey; Spera, Juan Manuel; Ugalde, Juan Esteban

    2016-04-01

    Adhesion to cells is the initial step in the infectious cycle of basically all pathogenic bacteria, and to do so, microorganisms have evolved surface molecules that target different cellular receptors. Brucella is an intracellular pathogen that infects a wide range of mammals whose virulence is completely dependent on the capacity to replicate in phagocytes. Although much has been done to elucidate how Brucella multiplies in macrophages, we still do not understand how bacteria invade epithelial cells to perform a replicative cycle or what adhesion molecules are involved in the process. We report the identification in Brucella abortus of a novel adhesin that harbours a bacterial immunoglobulin-like domain and demonstrate that this protein is involved in the adhesion to polarized epithelial cells such as the Caco-2 and Madin-Darby canine kidney models targeting the bacteria to the cell-cell interaction membrane. While deletion of the gene significantly reduced adhesion, over-expression dramatically increased it. Addition of the recombinant protein to cells induced cytoskeleton rearrangements and showed that this adhesin targets proteins of the cell-cell interaction membrane in confluent cultures. PMID:26400021

  5. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    PubMed

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  6. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  7. Endothelial cell Ca2+ increases upon tumor cell contact and modulates cell-cell adhesion.

    PubMed Central

    Pili, R; Corda, S; Passaniti, A; Ziegelstein, R C; Heldman, A W; Capogrossi, M C

    1993-01-01

    The signal transduction mechanisms involved in tumor cell adhesion to endothelial cells are still largely undefined. The effect of metastatic murine melanoma cell and human prostate carcinoma cell contact on cytosolic [Ca2+] of bovine artery endothelial cells was examined in indo-1-loaded endothelial cell monolayers. A rapid increase in endothelial cell [Ca2+] occurred on contact with tumor cells, but not on contact with 8-microns inert beads. A similar increase in endothelial cell [Ca2+] was observed with human neutrophils or monocyte-like lymphoma cells, but not with endothelial cells, red blood cells, and melanoma cell-conditioned medium. The increase in endothelial cell [Ca2+] was not inhibited by extracellular Ca2+ removal. In contrast, endothelial cell pretreatment with thapsigargin, which releases endoplasmic reticulum Ca2+ into the cytosol and depletes this Ca2+ store site, abolished the cytosolic [Ca2+] rise upon melanoma cell contact. Endothelial cell pretreatment with the membrane-permeant form of the Ca2+ chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid blocked the increase in cytosolic [Ca2+]. Under static and dynamic flow conditions (0.46 dyn/cm2) bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid pretreatment of bovine pulmonary artery endothelial cell monolayers inhibited melanoma cell adhesion to the endothelial cells. Thus, tumor cell contact with endothelial cells induces a rapid Ca2+ release from endothelial intracellular stores, which has a functional role in enhancing cell-cell adhesion. Images PMID:8254056

  8. Synergistic and hierarchical adhesive and topographic guidance of BHK cells.

    PubMed

    Britland, S; Morgan, H; Wojiak-Stodart, B; Riehle, M; Curtis, A; Wilkinson, C

    1996-11-01

    Guided cell movement is a fundamental process in development and regeneration. We have used microengineered culture substrates to study the interaction between model topographic and adhesive guidance cues in steering BHK cell orientation. Grooves 0.1, 0.5, 1.0, 3.0, and 6.0 microm deep together with pitch-matched aminosilane tracks 5, 12, 25, 50, and 100 microm wide were fabricated on fused silica substrates using photolithographic and dry-etching techniques. The cues were presented to the cells individually, simultaneously in parallel and orthogonally opposed. Cells aligned most strongly to 25-microm-wide adhesive tracks and to 5-microm-wide, 6-microm-deep grooves. Stress fibers and vinculin were found to align with the adhesive tracks and to the grooves and ridges. Cell alignment was profoundly enhanced on all surfaces that presented both cues in parallel. Cells were able to switch alignment from ridges to grooves, and vice versa, depending on the location of superimposed adhesive tracks. Cells aligned preferentially to adhesive tracks superimposed orthogonally over grooves of matched pitch, traversing numerous grooves and ridges. The strength of the cues was more closely matched on narrower 3- and 6-microm-deep gratings with cells showing evidence of alignment to both cues. Confocal fluorescence microscopy revealed two groups of mutually opposed f-actin stress fibers within the same cell, one oriented with the topographic cues and the other with the adhesive cues. However, the adhesive response was consistently dominant. We conclude that cells are able to detect and respond to multiple guidance cues simultaneously. The adhesive and topographic guidance cues modeled here were capable of interacting both synergistically and hierarchically to guide cell orientation. PMID:8912725

  9. Endothelial cell–cell adhesion during zebrafish vascular development

    PubMed Central

    Lagendijk, Anne Karine; Yap, Alpha S; Hogan, Benjamin M

    2014-01-01

    The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell–cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell–cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell–cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell–cell adhesion. PMID:24621476

  10. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    PubMed

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  11. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    PubMed Central

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions. This induction of cell adhesion is likely due to clustering of ALCAM at the cell surface, which is observed after CytD treatment. Single-particle tracking demonstrated that the lateral mobility of ALCAM in the cell membrane is increased 30-fold after CytD treatment. In contrast, both surface distribution and adhesion of a glycosylphosphatidylinositol (GPI)-anchored ALCAM mutant are insensitive to CytD, despite the increase in lateral mobility of GPI-ALCAM upon CytD treatment. This demonstrates that clustering of ALCAM is essential for cell adhesion, whereas enhanced diffusion of ALCAM alone is not sufficient for cluster formation. In addition, upon ligand binding, both free diffusion and the freely dragged distance of wild-type ALCAM, but not of GPI-ALCAM, are reduced over time, suggesting strengthening of the cytoskeleton linkage. From these findings we conclude that activation of ALCAM-mediated adhesion is dynamically regulated through actin cytoskeleton-dependent clustering. PMID:10848629

  12. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  13. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    PubMed

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  14. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  15. Minimal Synthetic Cells to Study Integrin-Mediated Adhesion

    PubMed Central

    Frohnmayer, Johannes P; Brüggemann, Dorothea; Eberhard, Christian; Neubauer, Stefanie; Mollenhauer, Christine; Boehm, Heike; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P

    2015-01-01

    To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIbβ3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIbβ3. PMID:26257266

  16. Cell cycle control in Alphaproteobacteria.

    PubMed

    Collier, Justine

    2016-04-01

    Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions. PMID:26871482

  17. The cell cycle and pluripotency.

    PubMed

    Hindley, Christopher; Philpott, Anna

    2013-04-15

    PSCs (pluripotent stem cells) possess two key properties that have made them the focus of global research efforts in regenerative medicine: they have unlimited expansion potential under conditions which favour their preservation as PSCs and they have the ability to generate all somatic cell types upon differentiation (pluripotency). Conditions have been defined in vitro in which pluripotency is maintained, or else differentiation is favoured and is directed towards specific somatic cell types. However, an unanswered question is whether or not the core cell cycle machinery directly regulates the pluripotency and differentiation properties of PSCs. If so, then manipulation of the cell cycle may represent an additional tool by which in vitro maintenance or differentiation of PSCs may be controlled in regenerative medicine. The present review aims to summarize our current understanding of links between the core cell cycle machinery and the maintenance of pluripotency in ESCs (embryonic stem cells) and iPSCs (induced PSCs). PMID:23535166

  18. Metabolic cycle, cell cycle, and the finishing kick to Start

    PubMed Central

    Futcher, Bruce

    2006-01-01

    Slowly growing budding yeast store carbohydrate, then liquidate it in late G1 phase of the cell cycle, superimposing a metabolic cycle on the cell cycle. This metabolic cycle may separate biochemically incompatible processes. Alternatively it may provide a burst of energy and material for commitment to the cell cycle. Stored carbohydrate could explain the size requirement for cells passing the Start point. PMID:16677426

  19. Cell Cycle Regulation by Checkpoints

    PubMed Central

    Barnum, Kevin J.; O’Connell, Matthew J.

    2016-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate. PMID:24906307

  20. Control of cell adhesion on poly(methyl methacrylate).

    PubMed

    Patel, Shyam; Thakar, Rahul G; Wong, Josh; McLeod, Stephen D; Li, Song

    2006-05-01

    Keratoprostheses have been constructed from a wide variety of transparent materials, including poly(methyl methacrylate) (PMMA). However, the success of keratoprosthesis has been plagued by numerous shortcomings that include the weakening of the implant-host interface due to weak cell adhesion and opaque fibrous membrane formation over the inner surface of the implant due to fibroblast attachment. An effective solution requires a surface modification that would selectively allow enhanced cell attachment at the implant-host interface and reduced cell attachment over the interior surface of the implant. Here, we have developed a novel and simple peptide conjugation scheme to modify PMMA surfaces, which allowed for region-specific control of cell adhesion. This method uses di-amino-PEG, which can be grafted onto PMMA using hydrolysis or aminolysis method. PEG can resist cell adhesion and protein adsorption. The functionalization of grafted di-amino-PEG molecules with RGD peptide not only restored cell adhesion to the surfaces, but also enhanced cell attachment and spreading as compared to untreated PMMA surfaces. Long-term cell migration and micropatterning studies clearly indicated that PEG-PMMA surfaces with and without RGD conjugation can be used to differentiate cell adhesion and control cell attachment spatially on PMMA, which will have potential applications in the modification of keratoprostheses. PMID:16439014

  1. Single-cell force spectroscopy of pili-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  2. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    PubMed Central

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Le Gac, Séverine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m2). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 109 cells/m2, above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied. PMID:25564849

  3. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  4. Myc and cell cycle control.

    PubMed

    Bretones, Gabriel; Delgado, M Dolores; León, Javier

    2015-05-01

    Soon after the discovery of the Myc gene (c-Myc), it became clear that Myc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in many models. Also, the downregulation or inactivation of Myc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role of Myc on cell cycle control. Several parallel mechanisms account for Myc-mediated stimulation of the cell cycle. First, most of the critical positive cell cycle regulators are encoded by genes induced by Myc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology. PMID:24704206

  5. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  6. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin

    PubMed Central

    Tachibana, Kouichi; Haghparast, Seyed Mohammad Ali; Miyake, Jun

    2015-01-01

    Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases. Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate. These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells. PMID:26555866

  7. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation.

    PubMed

    Su, Changlei; Zhang, Bomiao; Liu, Wenzhi; Zheng, Hongqun; Sun, Lingyu; Tong, Jinxue; Wang, Tian; Jiang, Xiaofeng; Liang, Hongyan; Xue, Li; Zhang, Qifan

    2016-08-01

    Slightly increased pressure stimulates tumor cell adhesion and proliferation. In the present study, we aimed to evaluate the effects of high pressure on gene expression and the biological behavior of gastric cancer cells. After incubation for 30 min at 37˚C under ambient and increased pressure, one portion of SGC7901 cells was used for cell proliferation and apoptosis assays, cell cycle analysis, adhesion invasion or migration assays. The other portion of cells was harvested for detection of matrix metalloproteinase-2 (MMP-2), inhibitor of DNA binding-1 (ID1), sonic Hedgehog (SHH) and E-cadherin expression by western blotting or RT-PCR. In addition, we investigated the effects of high pressure on SGC7901 cell ultrastructure by transmission electron microscopy. We found that the adhesion fold under increased pressure of 760 and 1,520 mmHg was 2.39±1.05 (P<0.05) and 2.47±0.85 (P<0.01) as compared with the control, respectively. The invasion fold was 3.42±2.06 (P<0.05) and 5.13±2.49 (P<0.01) as compared with the control, respectively. The migration was 1.65±0.20 (P<0.001) and 2.53±0.50 (P<0.001) as compared with the control, respectively. At increased pressure, MMP-2 and ID1 expression increased significantly, while the expression of SHH decreased significantly. However, we did not find significant change in proliferation, apoptosis, cell cycle or ultrastructure of the SGC7901 cells under high pressure. In conclusion, high pressure promoted the adhesion, invasion and migration of SGC7901 cells. Moreover, the present study suggests that the pressure-augmented invasion and migration may be related to the increase in MMP-2 expression. Moreover, high pressure may suppress SGC7901 cell differentiation, which may result from the change in SHH and ID1 expression. PMID:27278077

  8. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  9. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  10. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling.

    PubMed

    Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mario Alexandre Coelho; Borges, Gilberto Antonio; Platt, Jeffrey A; Puppin-Rontani, Regina Maria

    2014-01-01

    To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents. PMID:25590191

  11. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  12. Quantification of depletion-induced adhesion of red blood cells.

    PubMed

    Steffen, P; Verdier, C; Wagner, C

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow. PMID:23383842

  13. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  14. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and (5)…

  15. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    SciTech Connect

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-10-15

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.

  16. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk

    PubMed Central

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-01-01

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  17. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk.

    PubMed

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-02-26

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  18. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

    PubMed

    Segal, Dagan; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-08-01

    Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface. PMID:27505416

  19. Mechanisms of lymphocyte adhesion to endothelial cells: studies using a LFA-1-deficient cell line.

    PubMed Central

    Haskard, D O; Strobel, S; Thornhill, M; Pitzalis, C; Levinsky, R J

    1989-01-01

    In order to investigate the role of lymphocyte function-associated antigen 1 (LFA-1) in lymphocyte adhesion to endothelial cells (EC), we have studied the adhesion of a LFA-1-deficient lymphoblastoid cell line, ICH-KM, which has < 10% of the cell surface LFA-1 expressed on a normal lymphoblastoid cell line, ICH-BJ. The adhesion of ICH-KM cells to unstimulated EC was 49.9 +/- 8.6% (mean +/- SD) that of ICH-BJ cells. Moreover, phorbol ester-stimulated ICH-KM cells showed a considerably weaker increase in adhesion to unstimulated EC compared with ICH-BJ cells (mean +/- SD increase in percentage adhesion, 3.8 +/- 2.3 compared with 18.5 +/- 8.0; P<0.025). In contrast, there was no significant difference between the enhanced adhesion of ICH-KM cells and ICH-BJ cells to interleukin-1 (IL-1)-stimulated EC. Thus ICH-KM cells showed a 22.7 +/- 11.0 (mean +/- SD) increase in percentage adhesion to IL-1-stimulated EC compared with the 24.8 +/- 8.5 increase in percentage adhesion of ICH-BJ cells. Anti-LFA-1 monoclonal antibodies had no effect on the enhanced adhesion of ICH-KM and ICH-BJ cells to IL-1-stimulated EC but abolished the differences in adhesion between the two cell lines. The study therefore indicates that although a major part of unstimulated and phorbol ester-stimulated lymphocyte-EC adhesion is dependent upon LFA-1, the enhanced adhesion due to stimulation of EC with IL-1 is not dependent upon this molecule. The data therefore supports the existence of cytokine-inducible LFA-1-independent adhesion molecules for lymphocytes on EC. PMID:15493272

  20. Differential Adhesion of Tumor Cells to Capillary Endothelial Cells in vitro

    NASA Astrophysics Data System (ADS)

    Alby, Laverna; Auerbach, Robert

    1984-09-01

    Adhesion studies were carried out to determine the relative ability of glioma cells and ovary-derived teratoma cells to adhere to endothelial cells obtained from mouse brain capillaries (designated MBE cell line) or mouse ovaries (designated MOE cell line). The teratoma cells showed preferential adhesion to MOE cells, whereas the glioma cells showed preferential adhesion to the MBE cell line. In contrast, the glioma and teratoma cells adhered equally to L929 and 3T3 fibroblasts. A testicular teratoma with ovary-seeking properties in vivo also adhered preferentially to MOE cells, while the preference for MBE cells was shared by glioma cells with an endothelioma and a bladder tumor line. The endothelioma, interestingly, showed a marked preferential adhesion to 3T3 cells, thus distinguishing it from the glioma. The experiments demonstrate that capillary endothelial cells derived from different sources are not alike and that differences expressed at the cell surface of these cells can be distinguished by tumor cells.

  1. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  2. Apicobasal polarity controls lymphocyte adhesion to hepatic epithelial cells.

    PubMed

    Reglero-Real, Natalia; Alvarez-Varela, Adrián; Cernuda-Morollón, Eva; Feito, Jorge; Marcos-Ramiro, Beatriz; Fernández-Martín, Laura; Gómez-Lechón, Maria José; Muntané, Jordi; Sandoval, Pilar; Majano, Pedro L; Correas, Isabel; Alonso, Miguel A; Millán, Jaime

    2014-09-25

    Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1) adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α). We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery. PMID:25242329

  3. Osteoblast Adhesion of Breast Cancer Cells with Scanning Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, C.; Mercer, R. R.; Mastro, A. M.

    Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adhere in a different way to the substrate and to each other. To characterize cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days. With mechanical scanning acoustic reflection microscopy, we were able to detect a change in the adhesive condition of the interface between the cell and the substrate, but not with optical microscopy

  4. Cell Cycle Regulation and Melanoma.

    PubMed

    Xu, Wen; McArthur, Grant

    2016-06-01

    Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma. PMID:27106898

  5. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  6. Hybrid inverse opals for regulating cell adhesion and orientation.

    PubMed

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering. PMID:25088946

  7. Hybrid inverse opals for regulating cell adhesion and orientation

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-08-01

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  8. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry. PMID:25239531

  9. Adhesion between peptides/antibodies and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  10. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  11. Temperature and the cell cycle.

    PubMed

    Francis, D; Barlow, P W

    1988-01-01

    During the period between successive divisions, a cell traverses three stages of interphase: G1 (pre-synthetic interphase), S-phase (DNA synthetic interphase) and G2 (post-synthetic interphase). The time taken for all cells in a meristem to divide (the cell doubling time (cdt] decreases in response to an increase in temperature. For example, the cdt in root meristems of Zea mays decreases 21-fold as the temperature is increased from 3 to 25 degrees C. Whether all phases of the cell cycle alter proportionately with temperature has been ascertained by comparing data from the root meristem of five species: Pisum sativum, Helianthus annuus, Tradescantia paludosa, Allium cepa and Triticum aestivum. In three of the five species there is a disproportionate lengthening of the G1 phase at low temperatures. We suggest that arrest in G1 with the associated 2C amount of DNA, confers maximal protection on the genome of a somatic cell to the stress of low temperature. DNA replication has been studied at different temperatures for Helianthus annuus, Secale cereal and Oryza sativa. The rate of DNA replication, per single replication fork, increases when the temperature is raised, while the distance between initiation points (replicon size) remains constant. The temperature at which the cell cycle has a minimum duration is close to 30 degrees C in many species, and it seems that this optimum temperature is always near the upper temperature limit of the cell cycle. The rate of cell division determines the rates of organ and cell growth. Thus, temperature has a major effect on the way in which meristematic cells are deployed in organogenesis. The rate of organogenesis, in turn, determines the response of the plant to the growing season. We predict that species growing in sub-arctic conditions comprise cells with low DNA contents and hence have the potentialities for rapid cell cycles so that maximum advantage can be taken of a short growing season. Data from Triticum aestivum show

  12. RBQ3 participates in multiple myeloma cell proliferation, adhesion and chemoresistance.

    PubMed

    Liu, Hong; Ding, Linlin; Shen, Yaodong; Zhong, Fei; Wang, Qiru; Xu, Xiaohong

    2016-10-01

    Cell adhesion mediated drug resistance (CAM-DR) is a major factor that impedes the effect of chemotherapy in multiple myeloma (MM). RBQ3, which is a RB-binding protein, played a crucial role in cell cycle process. Here, we reported that RBQ3 expression was increased gradually during the proliferation process of myeloma cells. Knocking down of RBQ3 resulted in cell cycle arrest in G1 phase and increased myeloma cells adherent to fibronectin or bone marrow stromal cells (BMSCs). Furthermore, silencing of RBQ3 reduced sensitivity to chemotherapeutic drugs in myeloma cell lines adherent to BMSCs and reduced two apoptotic marker proteins cleaved caspase-3 and cleaved PARP expression. Besides, we also found that RBQ3 participated in MAPK/ERK signal transduction pathway. In summary, these results may shed new insights into the role of RBQ3 in the development of multiple myeloma. PMID:27189701

  13. Microfluidic shear devices for quantitative analysis of cell adhesion.

    PubMed

    Lu, Hang; Koo, Lily Y; Wang, Wechung M; Lauffenburger, Douglas A; Griffith, Linda G; Jensen, Klavs F

    2004-09-15

    We describe the design, construction, and characterization of microfluidic devices for studying cell adhesion and cell mechanics. The method offers multiple advantages over previous approaches, including a wide range of distractive forces, high-throughput performance, simplicity in experimental setup and control, and potential for integration with other microanalytic modules. By manipulating the geometry and surface chemistry of the microdevices, we are able to vary the shear force and the biochemistry during an experiment. The dynamics of cell detachment under different conditions can be captured simultaneously using time-lapse videomicroscopy. We demonstrate assessment of cell adhesion to fibronectin-coated substrates as a function of the shear stress or fibronectin concentration in microchannels. Furthermore, a combined perfusion-shear device is designed to maintain cell viability for long-term culture as well as to introduce exogenous reagents for biochemical studies of cell adhesion regulation. In agreement with established literature, we show that fibroblasts cultured in the combined device reduced their adhesion strength to the substrate in response to epidermal growth factor stimulation. PMID:15362881

  14. Evidence for heterophilic adhesion of embryonic retinal cells and neuroblastoma cells to substratum-adsorbed NCAM.

    PubMed

    Murray, B A; Jensen, J J

    1992-06-01

    The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal perturbing drugs colchicine and cytochalasin D. These results indicated that the tubulin and actin cytoskeletons were not critically required for adhesion to NCAM and make it unlikely that the cell surface ligand for NCAM is an integrin. Adhesion was however temperature dependent, strengthening greatly after a brief incubation at 37 degrees C. CHO cells transfected with NCAM cDNAs did not adhere specifically to substratum-bound NCAM and pretreatment of N2A cells and retinal cells with anti-NCAM antibodies did not inhibit adhesion to substratum-bound NCAM. These results suggest that a heterophilic interaction between substratum-adsorbed NCAM and a non-NCAM ligand on the surface of the probe cells affects adhesion in this system and support the possibility that heterophilic adhesion may be a function of NCAM in vivo. PMID:1607391

  15. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease.

    PubMed Central

    Ruco, L. P.; Pomponi, D.; Pigott, R.; Gearing, A. J.; Baiocchini, A.; Baroni, C. D.

    1992-01-01

    The immunocytochemical expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelial leukocyte adhesion molecule (ELAM-1), endothelial cell adhesion molecule (EndoCAM CD31), and HLA-DR antigens was investigated in sections of 24 reactive lymph nodes and in 15 cases of Hodgkin's disease. ICAM-1 was detected in sinus macrophages, follicular dendritic reticulum cells (FDRCs), interdigitating reticulum cells (IDRCs), epithelioid macrophages, Hodgkin's cells (HCs), and vascular endothelium. ICAM-1 expression was often associated with that of HLA-DR antigens. VCAM-1 was detected in FDRCs, in fibroblast reticulum cells (FRCs), in macrophages, and in rare blood vessels. EndoCAM (CD31) was constitutively expressed in all types of endothelial cells, sinus macrophages, and in epithelioid granulomas. ELAM-1 was selectively expressed by activated endothelial cells of high endothelium venules (HEVs). When expression of the inducible adhesion molecules ICAM-1, VCAM-1 and ELAM-1 was comparatively evaluated in HEVs, it was found that ICAM-1 + HEVs were present in all reactive and HD nodes, whereas ELAM-1 and/or VCAM-1 were expressed only in those pathologic conditions characterized by high levels of interleukin-1/tumor necrosis factor (IL-1/TNF) production, such as granulomatosis and Hodgkin's disease. In Hodgkin's disease, the expression of ELAM-1/VCAM-1 was more pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. Images Figure 1 Figure 2 PMID:1605306

  16. Structural requirements for neural cell adhesion molecule-heparin interaction.

    PubMed Central

    Reyes, A A; Akeson, R; Brezina, L; Cole, G J

    1990-01-01

    Two biological domains have been identified in the amino terminal region of the neural cell adhesion molecule (NCAM): a homophilic-binding domain, responsible for NCAM-NCAM interactions, and a heparin-binding domain (HBD). It is not known whether these two domains exist as distinct structural entities in the NCAM molecule. To approach this question, we have further defined the relationship between NCAM-heparin binding and cell adhesion. A putative HBD consisting of two clusters of basic amino acid residues located close to each other in the linear amino acid sequence of NCAM has previously been identified. Synthetic peptides corresponding to this domain were shown to bind both heparin and retinal cells. Here we report the construction of NCAM cDNAs with targeted mutations in the HBD. Mouse fibroblast cells transfected with the mutant cDNAs express NCAM polypeptides with altered HBD (NCAM-102 and NCAM-104) or deleted HBD (HBD-) at levels similar to those of wild-type NCAM. Mutant NCAM polypeptides purified from transfected cell lines have substantially reduced binding to heparin and fail to promote chick retinal cell attachment. Furthermore, whereas a synthetic peptide that contains both basic amino acid clusters inhibits retinal-cell adhesion to NCAM-coated dishes, synthetic peptides in which either one of the two basic regions is altered to contain only neutral amino acids do not inhibit this adhesion. These results confirm that this region of the NCAM polypeptide does indeed mediate not only the large majority of NCAM's affinity for heparin but also a significant portion of the cell-adhesion-mediating capability of NCAM. Images PMID:2078567

  17. Cell adhesion: The effect of a surprising cohesive force

    NASA Astrophysics Data System (ADS)

    Vasseur, H.

    2009-10-01

    When an experimentalist or a biological mechanism applies an external force onto a cell chemically sticking to its substrate, a reacting “suction” force, due to the slow penetration of the surrounding fluid between the cell and the substrate, opposes to the dissociation. This force can overcome other known adhesive forces when the process is sufficiently violent (typically 105pN ). Its maximal contribution to the total adhesive energy of the cell can then be estimated to 2×10-3J/m2 . The physical origin of this effect is quite simple and it may be compared to that leaning a “suction cup” against a bathroom wall. We address the consequences of this effect on (i) the separation energy, (ii) the motion of the fluid surrounding the cell, and more especially on the pumping of the fluid by moving cells, and (iii) the inhibition of cell motion.

  18. Bacterial adhesion to uroepithelial cells: a morphologic study.

    PubMed

    Marrie, T J; Lam, J; Costerton, J W

    1980-08-01

    Urethral and midstream urine samples from healthy women and from patients with urinary tract infections (UTI) were examined by electron microscopy. Urethral urine samples from healthy subjects contained sparsely and densely colonized uroepithelial cells. The latter had morphologically heterogeneous bacteria adherent to each other and to the epithelial cell by a ruthenium red-positive fibrous matrix, which was present on the surface of all bacteria examined. Urethral urine samples from patients with UTI often had two distinct microcolonies of morphologically similar bacteria adherent to the same uroepithelial cell. Midstream urine samples from these patients contained large microcolonies of morphologically identical bacteria. Urine from patients with catheter-associated infections contained few uroepithelial cells and two distinct varieties of bacterial microcolonies--one of intact homogeneous cells and another of a mixture of damaged and intact bacteria. These in vivo observations indicate that the bacterial surface matrix participates in bacterial adhesion to uroepithelial cells and in bacteria-bacteria adhesion. PMID:6774033

  19. Cytoplasmic Tail Regulates the Intercellular Adhesion Function of the Epithelial Cell Adhesion Molecule

    PubMed Central

    Balzar, Maarten; Bakker, Hellen A. M.; Briaire-de-Bruijn, Inge H.; Fleuren, Gert Jan; Warnaar, Sven O.; Litvinov, Sergey V.

    1998-01-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of α-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with α-actinin. Binding of α-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for α-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via α-actinin. PMID:9671492

  20. Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell adhesion molecule.

    PubMed

    Balzar, M; Bakker, H A; Briaire-de-Bruijn, I H; Fleuren, G J; Warnaar, S O; Litvinov, S V

    1998-08-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of alpha-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with alpha-actinin. Binding of alpha-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for alpha-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via alpha

  1. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  2. Adhesion of Annexin 7 Deficient Erythrocytes to Endothelial Cells

    PubMed Central

    Abed, Majed; Balasaheb, Siraskar; Towhid, Syeda Tasneem; Daniel, Christoph; Amann, Kerstin; Lang, Florian

    2013-01-01

    Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca2+ concentration ([Ca2+]i) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca2+]i by Ca2+ ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7−/−) than in erythrocytes from wild type mice (anxA7+/+). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7−/− and anx7+/+-mice following increase of [Ca2+]i by Ca2+ ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7−/− than in anx7+/+-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7−/− than in anx7+/+-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia. PMID:23437197

  3. Cell heterogeneity during the cell cycle

    SciTech Connect

    Darzynkiewicz, Z.; Crissman, H.; Traganos, F.; Steinkamp, J.

    1982-12-01

    Using flow cytometry, populations of Chinese hamster ovary cells, asynchronous and synchronized in the cycle, were measured with respect to cellular RNA- and protein-content, as well as cell light scatter properties. Heterogeneities of cell populations were expressed as coefficients of variation (c.v.) in percent of the respective mean values. Populations of cells immediately after mitosis have about 15% higher c.v. than mitotic cell populations, regardless of whether RNA, proteins, or light scatter are measured. These data indicate that cytoplasmic constituents are unequally distributed into the daughter cells during cytokinesis and that unequal cytokinesis generates intercellular metabolic variability during the cycle. An additional increase in heterogeneity, although of smaller degree, occurs during G/sub 2/ phase. Populations of S-phase cells are the most uniform, having 20-30% lower c.v. than the postmitotic cells. Cell progression through S does not involve any significant increase in intercellular variability with respect to RNA or protein content. In unperturbed exponentially growing cultures a critical RNA content is required for G/sub 1/ cells prior to their entrance into S. The cell residence times in the equalization compartments are exponentially distributed, which may reflect the randomness generated by the uneven division of metabolic constituents to daughter cells during cytokinesis. The cell heterogeneities were presently estimated at two metabolic levels, transcription (RNA content) and translation (proteins). The most uniform were populations stained for RNA and the highest variability was observed after staining of proteins. This suggests that the regulatory mechanisms equalizing cells in the cell cycle may operate primarily at the level of DNA transcription.

  4. Mutant p53 in cell adhesion and motility.

    PubMed

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  5. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGESBeta

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  6. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-01

    Neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  7. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    SciTech Connect

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  8. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  9. Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts.

    PubMed

    Mazzitelli, Claudia; Monticelli, Francesca; Toledano, Manuel; Ferrari, Marco; Osorio, Raquel

    2012-06-01

    The aim of this study was to assess the push-out bond strengths of self-adhesive resin cements to epoxy resin-based fiber posts after challenging by thermocycling. Thirty-six single-rooted premolars were endodontically treated, and the post-spaces were drilled to receive RelyX Fiber posts #1. Three self-adhesive resin cements (RelyX Unicem, G-Cem, and Breeze) were used for luting fiber posts. The bonded specimens were either stored for 1 month in a moist field (37°C) or submitted to thermocycling (5,000 times) prior to push-out test. The maximum force required to dislodge the post via an apical-coronal direction was recorded (megapascal). The data were statistically analyzed with two-way ANOVA and Tukey tests (p < 0.05). The factors "luting cement" and "thermocycling" significantly influenced bond strengths. The initial push-out values of RelyX Unicem and Breeze were higher than those of G-Cem. After thermocycling, the bond strength of G-Cem increased and no differences were found between groups. RelyX Unicem and Breeze bond strengths were not affected by the thermal challenge. Thermal cycling and cement type differently influence the bond strengths of self-adhesive resin cements. Self-adhesive cements can represent an option for luting fiber posts into root canal. PMID:21670983

  10. The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms

    PubMed Central

    Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James

    2014-01-01

    SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433

  11. Microgel Film Dynamics Modulate Cell Adhesion Behavior

    PubMed Central

    Saxena, Shalini; Spears, Mark W.; Yoshida, Hiroaki; Gaulding, Jeffrey C.; García, Andrés J.; Lyon, L. Andrew

    2014-01-01

    A material’s mechanical properties greatly control cell behavior at the cell-substrate interface. In this work, we demonstrate that microgel multilayers have unique elastic and viscoelastic-like properties that can be modulated to produce morphological changes in fibroblasts cultured on the film. Protein adsorption is also examined and the data are contrasted with the number of cells adhered. The dynamic interaction of cell and substrate is only partially explained by conventional understanding of surface-receptor interactions and substrate elasticity. Viscoelasticity, a mechanical property not often considered, plays a significant role at cellular length and time scales for microgel films. PMID:24634694

  12. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia. PMID:26646071

  13. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  14. Topographic cell instructive patterns to control cell adhesion, polarization and migration

    PubMed Central

    Ventre, Maurizio; Natale, Carlo Fortunato; Rianna, Carmela; Netti, Paolo Antonio

    2014-01-01

    Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry. PMID:25253035

  15. A Review of Cell Adhesion Studies for Biomedical and Biological Applications.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  16. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  17. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death

    PubMed Central

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  18. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death.

    PubMed

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  19. LINKIN, a new transmembrane protein necessary for cell adhesion

    PubMed Central

    Kato, Mihoko; Chou, Tsui-Fen; Yu, Collin Z; DeModena, John; Sternberg, Paul W

    2014-01-01

    In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI: http://dx.doi.org/10.7554/eLife.04449.001 PMID:25437307

  20. Cell-cell signaling and adhesion in phagocytosis and early development of Dictyostelium.

    PubMed

    Bracco, E; Pergolizzi, B; Peracino, B; Ponte, E; Balbo, A; Mai, A; Ceccarelli, A; Bozzaro, S

    2000-01-01

    Cell-cell signaling and adhesion regulate transition from the unicellular to the multicellular stage of development in the cellular slime mold Dictyostelium. Essential gene networks involved in these processes have been identified and their interplay dissected. Heterotrimeric G protein-linked signal transduction plays a key role in regulating expression of genes mediating chemotaxis or cell adhesion, as well as coordinating actin-based cell motility during phagocytosis and chemotaxis. Two classes of cell adhesion molecules, one cadherin-like and the second belonging to the IgG superfamily, contribute to the strength of adhesion in Dictyostelium aggregates. The developmental role of genes involved in motility and adhesion, and their degree of redundancy, have been re-assessed by using novel developmental assay conditions which are closer to development in nature. PMID:11061438

  1. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  2. Functional interplay between the cell cycle and cell phenotypes.

    PubMed

    Chen, Wei-Chiang; Wu, Pei-Hsun; Phillip, Jude M; Khatau, Shyam B; Choi, Jae Min; Dallas, Matthew R; Konstantopoulos, Konstantinos; Sun, Sean X; Lee, Jerry S H; Hodzic, Didier; Wirtz, Denis

    2013-03-01

    Cell cycle distribution of adherent cells is typically assessed using flow cytometry, which precludes the measurements of many cell properties and their cycle phase in the same environment. Here we develop and validate a microscopy system to quantitatively analyze the cell-cycle phase of thousands of adherent cells and their associated cell properties simultaneously. This assay demonstrates that population-averaged cell phenotypes can be written as a linear combination of cell-cycle fractions and phase-dependent phenotypes. By perturbing the cell cycle through inhibition of cell-cycle regulators or changing nuclear morphology by depletion of structural proteins, our results reveal that cell cycle regulators and structural proteins can significantly interfere with each other's prima facie functions. This study introduces a high-throughput method to simultaneously measure the cell cycle and phenotypes at single-cell resolution, which reveals a complex functional interplay between the cell cycle and cell phenotypes. PMID:23319145

  3. Physics of cell adhesion: some lessons from cell-mimetic systems

    PubMed Central

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM–cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin–microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways. PMID:24651316

  4. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  5. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells

    PubMed Central

    Kuo, Jean-Cheng

    2013-01-01

    Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA-related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration-related human diseases. PMID:23551528

  6. Microvascular Transport and Tumor Cell Adhesion in the Microcirculation

    PubMed Central

    Fu, Bingmei M.; Liu, Yang

    2016-01-01

    One critical step in tumor metastasis is tumor cell adhesion to the endothelium forming the microvessel wall. Understanding this step may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to, and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent ECs (interendothelial cleft) is the principal pathway for water and solutes transport through the microvessel wall in health. It is also suggested to be the pathway for high molecular weight plasma proteins, leukocytes and tumor cells across microvessel walls in disease. Thus the first part of the review introduced the mathematical models for water and solutes transport through the interendothelial cleft. These models, combined with the experimental results from in vivo animal studies and electron microscopic observations, are used to evaluate the role of the endothelial surface glycocalyx, the junction strand geometry in the interendothelial cleft, and the surrounding extracellular matrix and tissue cells, as the determinants of microvascular transport. The second part of the review demonstrated how the microvascular permeability, hydrodynamic factors, microvascular geometry and cell adhesion molecules affect tumor cell adhesion in the microcirculation. PMID:22476895

  7. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    PubMed

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  8. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion.

    PubMed

    Benavidez, Tomás E; Wechsler, Marissa E; Farrer, Madeleine M; Bizios, Rena; Garcia, Carlos D

    2016-01-01

    The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607

  9. Robust adhesive precision bonding in automated assembly cells

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-03-01

    Diode lasers are gaining importance, making their way to higher output powers along with improved BPP. The assembly of micro-optics for diode laser systems goes along with the highest requirements regarding assembly precision. Assembly costs for micro-optics are driven by the requirements regarding alignment in a submicron and the corresponding challenges induced by adhesive bonding. For micro-optic assembly tasks a major challenge in adhesive bonding at highest precision level is the fact, that the bonding process is irreversible. Accordingly, the first bonding attempt needs to be successful. Today's UV-curing adhesives inherit shrinkage effects crucial for submicron tolerances of e.g. FACs. The impact of the shrinkage effects can be tackled by a suitable bonding area design, such as minimal adhesive gaps and an adapted shrinkage offset value for the specific assembly parameters. Compensating shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not constant between two different lots and varies even over the storage period even under ideal circumstances as first test results indicate. An up-to-date characterization of the adhesive appears necessary for maximum precision in optics assembly to reach highest output yields, minimal tolerances and ideal beamshaping results. Therefore, a measurement setup to precisely determine the up-to-date level of shrinkage has been setup. The goal is to provide necessary information on current shrinkage to the operator or assembly cell to adjust the compensation offset on a daily basis. Impacts of this information are expected to be an improved beam shaping result and a first-time-right production.

  10. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease.

    PubMed

    Alapan, Yunus; Kim, Ceonne; Adhikari, Anima; Gray, Kayla E; Gurkan-Cavusoglu, Evren; Little, Jane A; Gurkan, Umut A

    2016-07-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  11. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease

    PubMed Central

    ALAPAN, YUNUS; KIM, CEONNE; ADHIKARI, ANIMA; GRAY, KAYLA E.; GURKAN-CAVUSOGLU, EVREN; LITTLE, JANE A.; GURKAN, UMUT A.

    2016-01-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  12. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  13. Mechanics in Mechanosensitivity of Cell Adhesion and its Roles in Cell Migration

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; He, Shijie; Ji, Baohua

    2012-12-01

    Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.

  14. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    PubMed Central

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  15. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    PubMed Central

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  16. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  17. Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior.

    PubMed

    Tsuneki, Masayuki; Madri, Joseph A

    2014-12-01

    Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors. PMID:25266662

  18. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  19. Cell adhesion. Competition between nonspecific repulsion and specific bonding.

    PubMed Central

    Bell, G I; Dembo, M; Bongrand, P

    1984-01-01

    We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples. PMID:6743742

  20. Adhesion of pancreatic beta cells to biopolymer films.

    PubMed

    Williams, S Janette; Wang, Qun; Macgregor, Ronal R; Siahaan, Teruna J; Stehno-Bittel, Lisa; Berkland, Cory

    2009-08-01

    Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 mum) as compared with large islets (>125 mum), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 676-685, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19353639

  1. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  2. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation

    PubMed Central

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

  3. Neuronal cell biocompatibility and adhesion to modified CMOS electrodes.

    PubMed

    Graham, Anthony H D; Bowen, Chris R; Taylor, John; Robbins, Jon

    2009-10-01

    The use of CMOS (Complementary Metal Oxide Semiconductor) integrated circuits to create electrodes for biosensors, implants and drug-discovery has several potential advantages over passive multi-electrode arrays (MEAs). However, unmodified aluminium CMOS electrodes may corrode in a physiological environment. We have investigated a low-cost electrode design based on the modification of CMOS metallisation to produce a nanoporous alumina electrode as an interface to mammalian neuronal cells and corrosion inhibitor. Using NG108-15 mouse neuroblastoma x rat glioma hybrid cells, results show that porous alumina is biocompatible and that the inter-pore distance (pore pitch) of the alumina has no effect on cell vitality. To establish whether porous alumina and a cell membrane can produce a tight junction required for good electrical coupling between electrode and cell, we devised a novel cell detachment centrifugation assay to assess the long-term adhesion of cells. Results show that porous alumina substrates produced with a large pore pitch of 206 nm present a significantly improved surface compared to the unmodified aluminium control and that small pore-pitches of 17 nm and 69 nm present a less favourable surface for cell adhesion. PMID:19459049

  4. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  5. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  6. A practical guide to quantify cell adhesion using single-cell force spectroscopy.

    PubMed

    Friedrichs, Jens; Legate, Kyle R; Schubert, Rajib; Bharadwaj, Mitasha; Werner, Carsten; Müller, Daniel J; Benoit, Martin

    2013-04-01

    Quantitative analysis of cellular interactions with the extracellular environment is necessary to gain an understanding of how cells regulate adhesion in the development and maintenance of multicellular organisms, and how changes in cell adhesion contribute to diseases. We provide a practical guide to quantify the adhesive strength of living animal cells to various substrates using atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS). We describe how to control cell state and attachment to the AFM cantilever, how to functionalize supports for SCFS measurements, how to conduct cell adhesion measurements, and how to analyze and interpret the recorded SCFS data. This guide is intended to assist newcomers in the field to perform AFM-based SCFS measurements. PMID:23396062

  7. Reversing adhesion with light: a general method for functionalized bead release from cells.

    PubMed

    Goulet-Hanssens, Alexis; Magdesian, Margaret H; Lopez-Ayon, G Monserratt; Grutter, Peter; Barrett, Christopher J

    2016-07-19

    Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells. Herein we demonstrate in vitro release of a poly-d-lysine (PDL) layer from anionic polystyrene beads, allowing complete bead release from rat cortical neurons post-adhesion. PMID:27165466

  8. Thermoresponsive copolymer nanofilms for controlling cell adhesion, growth, and detachment.

    PubMed

    Yang, Lei; Pan, Fang; Zhao, Xiubo; Yaseen, Mohammed; Padia, Faheem; Coffey, Paul; Freund, Amy; Yang, Luyuan; Liu, Tianqing; Ma, Xuehu; Lu, Jian R

    2010-11-16

    This study reports the development and use of a novel thermoresponsive polymeric nanofilm for controlling cell adhesion and growth at 37 °C, and then cell detachment for cell recovery by subsequent temperature drop to the ambient temperature, without enzymatic cleavage or mechanical scraping. A copolymer, poly(N-isopropylacrylamide-co-hydroxypropyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (abbreviated PNIPAAm copolymer), was synthesized by free radical polymerization. The thermoresponses of the copolymer in aqueous solution were demonstrated by dynamic light scattering (DLS) through detecting the sensitive changes of copolymer aggregation against temperature. The DLS measurements revealed the lower critical solution temperature (LCST) at approximately 30 °C. The PNIPAAm film stability and robustness was provided through silyl cross-linking within the film and with the hydroxyl groups on the substrate surface. Film thickness, stability, and reversibility with respect to temperature switches were examined by spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle measurements. The results confirmed the high extent of thermosensitivity and structural restoration based on the alterations of film thickness and surface wettability. The effective control of adhesion, growth, and detachment of HeLa and HEK293 cells demonstrated the physical controllability and cellular compatibility of the copolymer nanofilms. These PNIPAAm copolymer nanofilms could open up a convenient interfacial mediation for cell film production and cell expansion by nonenzymatic and nonmechanical cell recovery. PMID:20964301

  9. M protein mediates streptococcal adhesion to HEp-2 cells.

    PubMed

    Wang, J R; Stinson, M W

    1994-02-01

    Streptococcus pyogenes adheres to human epithelial cells in vitro and in vivo. To identify adhesins, cell wall components were extracted from S. pyogenes M6 with alkali or by treatment with mutanolysin and lysozyme. HEp-2 cells were incubated with extracts of S. pyogenes M6 and then analyzed by Western blot (immunoblot) assays, using antibodies to S. pyogenes. Only one streptococcal component (62 kDa) was bound to HEp-2 cells and was identified serologically as M6 protein. Experiments with pepsin-cleaved fragments of M protein indicated that the binding site was located at the N-terminal half of the molecule. M protein was bound selectively to two trypsin-sensitive surface components, 97 and 205 kDa, of HEp-2 cells on nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels. Tritium-labeled lipoteichoic acid bound to different HEp-2 cell components, 34 and 35 kDa, in a parallel experiment, indicating that lipoteichoic acid was not complexed with M protein and does not mediate M-protein binding. The four HEp-2 components were unrelated to fibronectin since they did not react with specific antibodies. An M-protein-deficient (M-) strain of streptococcus (JRS75), grown in chemically defined medium, showed 73% less adhesion activity to HEp-2 monolayers than an M+ strain (JRS4). Streptococcal adhesion was insensitive to competitive inhibition by selected monosaccharides. These results indicate that M protein binds directly to certain HEp-2 cell membrane components and mediates streptococcal adhesion. PMID:8300205

  10. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies. PMID:27280255

  11. Enhanced cell adhesion on silk fibroin via lectin surface modification.

    PubMed

    Teuschl, Andreas H; Neutsch, Lukas; Monforte, Xavier; Rünzler, Dominik; van Griensven, Martijn; Gabor, Franz; Redl, Heinz

    2014-06-01

    Various tissue engineering (TE) approaches are based on silk fibroin (SF) as scaffold material because of its superior mechanical and biological properties compared to other materials. The translation of one-step TE approaches to clinical application has generally failed so far due to the requirement of a prolonged cell seeding step before implantation. Here, we propose that the plant lectin WGA (wheat germ agglutinin), covalently bound to SF, will mediate cell adhesion in a time frame acceptable to be part of a one-step surgical intervention. After the establishment of a modification protocol utilizing carbodiimide chemistry, we examined the attachment of cells, with a special focus on adipose-derived stromal cells (ASC), on WGA-SF compared to pure native SF. After a limited time frame of 20min the attachment of ASCs to WGA-SF showed an increase of about 17-fold, as compared to pure native SF. The lectin-mediated cell adhesion further showed an enhanced resistance to trypsin (as a protease model) and to applied fluid shear stress (mechanical stability). Moreover, we could demonstrate that the adhesion of ASCs on the WGA-SF does not negatively influence proliferation or differentiation potential into the osteogenic lineage. To test for in vitro immune response, the proliferation of peripheral blood mononuclear cells in contact with the WGA-SF was determined, showing no alterations compared to plain SF. All these findings suggest that the WGA modification of SF offers important benefits for translation of SF scaffolds into clinical applications. PMID:24530561

  12. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  13. Involvement of the Tyrosine Kinase Fer in Cell Adhesion

    PubMed Central

    Rosato, Roberto; Veltmaat, Jacqueline M.; Groffen, John; Heisterkamp, Nora

    1998-01-01

    The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cells from the substratum, which eventually led to cell death. Induction of Fer expression coincided with increased complex formation between Fer and the cadherin/src-associated substrate p120cas and elevated tyrosine phosphorylation of p120cas. β-Catenin also exhibited clearly increased phosphotyrosine levels, and Fer and β-catenin were found to be in complex. Significantly, although the levels of α-catenin, β-catenin, and E-cadherin were unaffected by Fer overexpression, decreased amounts of α-catenin and β-catenin were coimmunoprecipitated with E-cadherin, demonstrating a dissolution of adherens junction complexes. A concomitant decrease in levels of phosphotyrosine in the focal adhesion-associated protein p130 was also observed. Together, these results provide a mechanism for explaining the phenotype of cells overexpressing Fer and indicate that the Fer tyrosine kinase has a function in the regulation of cell-cell adhesion. PMID:9742093

  14. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  15. Ion implantation induced nanotopography on titanium and bone cell adhesion

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; de Maeztu, Miguel Ángel

    2014-08-01

    Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40-80 keV), fluence (1-2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted surfaces, without surface chemistry modification, are in the same range and that such modifications, in certain conditions, do have a statistically significant effect on bone tissue forming cell adhesion.

  16. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  17. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    PubMed

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  18. Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating

    SciTech Connect

    Kornu, R.; Kelly, M.A.; Smith, R.L.; Maloney, W.J.

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. 40 refs., 4 figs.

  19. Effect of surface treatment of brackets and mechanical cycling on adhesion to enamel.

    PubMed

    Arrais, Fabiola Rossato; Degrazia, Felipe; Peres, Bernardo Urbanetto; Ferrazzo, Vilmar Antonio; Grehs, Renesio Armindo; Valandro, Luiz Felipe

    2014-01-01

    This in vitro study sought to evaluate how surface conditioning from bracket and mechanical cycling aging affected the bond strength between metallic brackets and bovine enamel, and to determine the adhesive remnant index. Eighty bovine incisors were embedded in acrylic resin using polyvinyl chloride rings and divided into 4 groups based on surface treatment (n = 20). Group 1 (control) received no surface treatment, Group 2 specimens were sandblasted with aluminum oxide particles, Group 3 specimens were sandblasted with silicon oxide and treated with a tribochemichemical silica coupling agent, and Group 4 specimens were primed with a multidomain protein-based agent. Half of the specimens were submitted to shear bond testing, while the others were subjected to mechanical cycling. ANOVA showed that mechanical cycling did not have a significant influence on bond strength (P = 0.9244), while surface conditioning of the brackets did (P = 0.0001). Tukey's test results were similar for mechanical cycling, and indicated that only Group 3 significantly improved the resin bond to the brackets; however, this group also demonstrated the highest percentage of enamel failure. PMID:24784526

  20. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    PubMed Central

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S. K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact. PMID:25165597

  1. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  2. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials.

    PubMed

    Lee, Ted T; García, José R; Paez, Julieta I; Singh, Ankur; Phelps, Edward A; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials. PMID:25502097

  3. Light-triggered in vivo Activation of Adhesive Peptides Regulates Cell Adhesion, Inflammation and Vascularization of Biomaterials

    PubMed Central

    Lee, Ted T.; García, José R.; Paez, Julieta; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; del Campo, Aránzazu; García, Andrés J.

    2014-01-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have been recently realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials. PMID:25502097

  4. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions.

    PubMed

    Takino, Takahisa; Saeki, Hiromi; Miyamori, Hisashi; Kudo, Tomoya; Sato, Hiroshi

    2007-12-15

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells. PMID:18089791

  5. CADM1 Controls Actin Cytoskeleton Assembly and Regulates Extracellular Matrix Adhesion in Human Mast Cells

    PubMed Central

    Moiseeva, Elena P.; Straatman, Kees R.; Leyland, Mark L.; Bradding, Peter

    2014-01-01

    CADM1 is a major receptor for the adhesion of mast cells (MCs) to fibroblasts, human airway smooth muscle cells (HASMCs) and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM). Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion. PMID:24465823

  6. Surface deformation and shear flow in ligand mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*<0.5) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favored in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical value). Continuation of the limit points (i.e., the turning points where the slope of the function g* changes sign within a select range of critical shear SS is supported by the Adelaide University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  7. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  8. Adhesive hierarchy involving the cell adhesion molecules L1, CD24, and alpha 6 integrin in murine neuroblastoma N2A cells.

    PubMed

    Kadmon, G; Imhof, B A; Altevogt, P; Schachner, M

    1995-09-01

    The aggregation rate of resuspended neuroblastoma N2A cells depends on the density of the cells in culture prior to their resuspension: isolated, fast growing cells have a weak tendency to aggregate whereas confluent, slowly growing cells reaggregate very strongly. L1 antibody 557 strongly inhibited the slow aggregation of isolated, fast growing cells but not the reaggregation of confluent cells. CD24 (nectadrin) antibodies did not affect the aggregation of isolated or confluent cells but stimulated the aggregation of subconfluent cells. In all stages aggregation was not inhibited when antibody 557 was used together with CD24 antibodies at 37 degrees C in the presence of divalent cations. EA-1 antibody to alpha 6 integrin chain stimulated the aggregation of subconfluent cells but inhibited the reaggregation of confluent cells. Therefore, L1 appears to be an early recognition molecule mediating weak primary adhesion. CD24 appears to participate in activating secondary adhesion mechanisms during primary adhesion, possibly in cooperation with L1, and alpha 6 integrin seems to serve as a secondary, strong adhesion molecule that in early adhesion phases also mediates the activation of itself or of other adhesion mechanisms. These results indicate that neural cells might employ a strategy of adhesion cascade in establishing stable contacts. PMID:7669058

  9. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    PubMed

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  10. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion.

    PubMed

    Chen, Nan-Peng; Uddin, Borhan; Voit, Renate; Schiebel, Elmar

    2016-01-26

    Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14A(PD)) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14A(PD) cells. hCDC14A(PD) cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14A(PD) cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast. PMID:26747605

  11. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    PubMed

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, José Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  12. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  13. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  14. Cell adhesion molecule control of planar spindle orientation.

    PubMed

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  15. Analysis of the Schizosaccharomyces pombe Cell Cycle.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle. PMID:27587785

  16. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker

    SciTech Connect

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Highlights: {yields} A nano-picker is developed for single cell adhesion force measurement. {yields} The adhesion of picker-cell has no influence to the cell-cell measurement result. {yields} Cell-cell adhesion force has a rise at the first few minutes and then becomes constant. -- Abstract: Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  17. Cell adhesion on a polymerized peptide-amphiphile monolayer.

    PubMed

    Biesalski, Markus A; Knaebel, Alexandra; Tu, Raymond; Tirrell, Matthew

    2006-03-01

    We report the synthesis and characterization of a stable polymerized monolayer of peptide-amphihiles on a planar solid support that promotes mouse fibroblast cell adhesion and spreading. Peptide-amphiphiles consisting of a polymerizable fatty acid attached to a short RGD containing peptide sequence are self-assembled and polymerized at the water-air interface by means of the Langmuir- Blodgett technique. The surface concentration of the peptide-amphiphile is varied by co-spreading the peptide-amphiphile with an analogous non-modified polymerizable amphiphile at the water/air interface, prior to UV light-induced polymerization. The polymerized monolayer is transferred onto a hydrophobized smooth mica surface and the resulting surfaces have been investigated with respect to directing the cell adhesion and spreading of mouse fibroblast cells in a serum-free medium. Fibroblast cells adhere and spread on surfaces exposing the bioactive ligand but do not spread on reference surfaces without peptide. We find a maximum number of adherent cells at rather high peptide surface concentrations of about 10 mol% in the mixed monolayer, equivalent to more than 50 pmol/cm2 peptide on the surface of the film. We attribute this finding to a limited accessibility of the ligands by the integrins. Because of the stability of the polymerized peptide-amphiphile monolayer, these surfaces can be re-seeded multiple times with cells, i.e. adherent cells can be removed from the surface, the surface can be sterilized and cells can be re-attached. PMID:16157369

  18. Mechanical Properties of Anisotropic Conductive Adhesive Film Under Hygrothermal Aging and Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Gao, Li-Lan; Chen, Xu; Gao, Hong

    2012-07-01

    Mechanical properties of anisotropic conductive adhesive film (ACF) were investigated experimentally under various environmental conditions. The temperature sweep test was conducted to investigate the effects of temperature on dynamical mechanical properties of the ACF. The ACF exhibited transitions to the glass state, viscoelastic state, and rubber state with increasing temperature, and its glass-transition temperature ( T g) was determined to be 149°C. The creep-recovery behaviors of the ACF were investigated, and it was found that the initial strains, instantaneous strains, and creep or recovery rates increased with increasing temperature. No obvious creep phenomenon was observed at low temperatures (≤0°C). The creep strain and creep rates at any time decreased with increasing hygrothermal aging time. The uniaxial tensile behaviors of the ACF were also investigated under hygrothermal aging and thermal cycling. The results show that the Young's modulus and tensile strength of the ACF decrease with increasing hygrothermal aging time; however, they increase at first and then decrease with increasing thermal cycling time. T g decreases slightly for the ACF after hygrothermal aging; however, it increases after thermal cycling.

  19. Assaying Cell Cycle Status Using Flow Cytometry.

    PubMed

    Kim, Kang Ho; Sederstrom, Joel M

    2015-01-01

    In this unit, two protocols are described for analyzing cell cycle status using flow cytometry. The first is based on the simultaneous analysis of proliferation-specific marker (Ki-67) and cellular DNA content, which discriminate resting/quiescent cell populations (G0 cell) and quantify cell cycle distribution (G1, S, or G2/M), respectively. The second is based on differential staining of DNA and RNA through co-staining of Hoechst 33342 and Pyronin Y, which is also useful to identify G0 cells from G1 cells. Along with these methods for analyzing cell cycle status, two additional methods for cell proliferation assays with recent updates of newly developed fluorophores, which allow multiplex analysis of cell cycle status, cell proliferation, and a gene of interest using flow cytometry, are outlined. PMID:26131851

  20. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  1. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    SciTech Connect

    Jiang, Feng; Zhao, Hongxi; Wang, Li; Guo, Xinyu; Wang, Xiaohong; Yin, Guowu; Hu, Yunsheng; Li, Yi; Yao, Yuanqing

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  2. Fission Yeast Cell Cycle Synchronization Methods.

    PubMed

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells. PMID:26519320

  3. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties. PMID:27612825

  4. TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain*S

    PubMed Central

    Su, Li-Ting; Agapito, Maria A.; Li, Mingjiang; Simonson, William T. N.; Huttenlocher, Anna; Habas, Raymond; Yue, Lixia; Runnels, Loren W.

    2011-01-01

    m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes. PMID:16436382

  5. Functional nanoparticles translocation into cell and adhesion force curve analysis.

    PubMed

    Lee, Haisung; Veerapandian, Murugan; Kim, Byung Tae; Yun, Kyusik; Seo, Soo-Won

    2012-10-01

    The aim of this research is to investigate the cell translocation of two functional nanoparticles (barium sulfate (BaSO4NPs), europium (III) doped gadolinium oxide nanoparticles (Gd2O3@EuNPs)) into A549 cells by Bio-Atomic Force Microscopy (Bio-AFM). Successful cell translocation of these two nanoparticles are ensured from the measurement of changes in the cell surface roughness and interaction (extension), retraction forces from the vertical deflection of tip towards substrate surfaces through force-distance curve slope analysis. Measurement of typical adhesion forces (i.e., extension and retraction) between the tip-substrate (0.0963 and 1.155 nN), tip-A549 cell substrate (0.1177 and 2.468 nN), tip-Gd2O3@EuNPs/A549 substrate (0.0785 and 0.4276 nN) and tip-BaSO4NPs/A549 substrate (0.518 and 6.838 nN) confirms the successful cell translocation of functional nanoparticles into A549 cells. Further the nanoscale resolution of topographical height and 3D images evinces the surface characteristics of normal A549 cells and nanoparticles translocated A549 cells. PMID:23421137

  6. Gene copy number and cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Ghosh, Bhaswar; Bose, Indrani

    2006-03-01

    The cell cycle is an orderly sequence of events which ultimately lead to the division of a single cell into two daughter cells. In the case of DNA damage by radiation or chemicals, the damage checkpoints in the G1 and G2 phases of the cell cycle are activated. This results in an arrest of the cell cycle so that the DNA damage can be repaired. Once this is done, the cell continues with its usual cycle of activity. We study a mathematical model of the DNA damage checkpoint in the G2 phase which arrests the transition from the G2 to the M (mitotic) phase of the cell cycle. The tumor suppressor protein p53 plays a key role in activating the pathways leading to cell cycle arrest in mammalian systems. If the DNA damage is severe, the p53 proteins activate other pathways which bring about apoptosis, i.e., programmed cell death. Loss of the p53 gene results in the proliferation of cells containing damaged DNA, i.e., in the growth of tumors which may ultimately become cancerous. There is some recent experimental evidence which suggests that the mutation of a single copy of the p53 gene (in the normal cell each gene has two identical copies) is sufficient to trigger the formation of tumors. We study the effect of reducing the gene copy number of the p53 and two other genes on cell cycle arrest and obtain results consistent with experimental observations.

  7. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    PubMed Central

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidates that is involved in the development of pathological lesions; it is an intercellular adhesion molecule that is expressed in various types of cells such as pulmonary cells, neurons, and mast cells. Recent studies have revealed that alterations in the transcriptional or post-transcriptional expressions of CADM1 correlate with the pathogenesis of pulmonary diseases and allergic diseases. In this review, we specifically focus on how CADM1 is involved in the development of pathological lesions in pulmonary emphysema and atopic dermatitis. PMID:26636084

  8. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    PubMed

    Sosa-García, Bernadette; Gunduz, Volkan; Vázquez-Rivera, Viviana; Cress, W Douglas; Wright, Gabriela; Bian, Haikuo; Hinds, Philip W; Santiago-Cardona, Pedro G

    2010-01-01

    The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis. PMID:21085651

  9. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells

    PubMed Central

    Hou, Yanhua; Cai, Kaiyong; Li, Jinghua; Chen, Xiuyong; Lai, Min; Hu, Yan; Luo, Zhong; Ding, Xingwei; Xu, Dawei

    2013-01-01

    Background The purpose of this study was to investigate the influences of nanoscale wear particles derived from titanium/titanium alloy-based implants on integration of bone. Here we report the potential impact of titanium oxide (TiO2) nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells (MSC) from the cellular level to the molecular level in the Wistar rat. Methods A series of TiO2 nanoparticles (14 nm, 108 nm, and 196 nm) were synthesized and characterized by scanning electron microscopy and transmission electron microscopy, respectively. Results The TiO2 nanoparticles had negative effects on cell viability, proliferation, and the cell cycle of MSC in a dose-dependent and size-dependent manner. Confocal laser scanning microscopy was used to investigate the effects of particle internalization on adhesion, spreading, and morphology of MSC. The integrity of the cell membrane, cytoskeleton, and vinculin of MSC were negatively influenced by large TiO2 nanoparticles. Conclusion The Transwell migration assay and a wound healing model suggested that TiO2 nanoparticles had a strong adverse impact on cell migration as particle size increased (P < 0.01). Furthermore, alkaline phosphatase, gene expression of osteocalcin (OC) and osteopontin (OPN), and mineralization measurements indicate that the size of the TiO2 nanoparticles negatively affected osteogenic differentiation of MSC. PMID:24101871

  10. Adhesive bond cryogenic lens cell margin of safety test

    NASA Astrophysics Data System (ADS)

    Stubbs, David M.; Hom, Craig L.; Holmes, Howard C.; Cannon-Morret, Joseph C.; Lindstrom, Obert F.; Irwin, J. Wes; Ryder, Leigh A.; Hix, Troy T.; Bonvallet, Jane A.; Hu, Hsin-Kuei S.; Chapman, Ira V.; Lomax, Curtis; Kvamme, E. Todd; Feller, Gregory S.; Haynes, Mark M.

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which employs four triplet lens cells. The instrument will operate at 35K after experiencing launch loads at approximately 295K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain an exceptional wavefront during operation. Lockheed Martin Space Systems Company (LMSSC) was tasked to design and qualify the bonded cryogenic lens assemblies for room temperature launch, cryogenic operation, and thermal survival (25K) environments. The triplet lens cell designs incorporated coefficient of thermal expansion (CTE) matched bond pad-to-optic interfaces, in concert with flexures to minimize bond line stress and induced optical distortion. A companion finite element study determined the bonded system's sensitivity to bond line thickness, adhesive modulus, and adhesive CTE. The design team used those results to tailor the bond line parameters, minimizing stress transmitted into the optic. The challenge for the Margin of Safety (MOS) team was to design and execute a test that verified all bond pad/adhesive/ optic substrate combinations had the required safety factor to generate confidence in a very low probability optic bond failure during the warm launch and cryogenic survival conditions. Because the survival temperature was specified to be 25K, merely dropping the test temperature to verify margin was not possible. A shear/moment loading device was conceived that simultaneously loaded the test coupons at 25K to verify margin. This paper covers the design/fab/SEM measurement/thermal conditioning of the MOS test articles, the thermal/structural analysis, the test apparatus, and the test execution/results.

  11. A Discrete-Element Approach for Blood Cell Adhesion

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer; Marshall, Jeffrey

    2006-11-01

    An efficient computational model for simulation of the individual dynamics of adhering blood cells is discussed. Each cell is represented as a discrete particle so that the model can extend existing discrete-element approaches for dense particulate fluid flows to account for receptor-ligand binding of particles, elliptical particle shape, and deformation of the particles due to shear forces. Capabilities of the method in simulating large numbers of particles are illustrated through simulations of the formation of red blood cell rouleaux in shear flow. The effects of several factors, such as aspect ratio of the elliptical particle, shear rate, strength of the cell adhesion force, and hematocrit are investigated. Comparison of the discrete-element results with results of a level-set approach which computes the entire flow field about a small number of cells is used to develop an improved model of the effect of nearby red blood cells on the cell drag force expression. The method is also being applied to examine the influence of red blood cells on other components of the blood, such as platelet dispersion and activation in high shear regions.

  12. Cell cycle: proteomics gives it a spin.

    PubMed

    Archambault, Vincent

    2005-08-01

    The eukaryotic cell division cycle has been studied at the molecular level for over 30 years, most fruitfully in model organisms. In the past 5 years, developments in mass spectrometry-based proteomics have been applied to the study of protein interactions and post-translational modifications involving key cell cycle regulators such as cyclin-dependent kinases and the anaphase-promoting complex, as well as effectors such as centrosomes, the kinetochore and DNA replication forks. In addition, innovations in chemical biology, functional proteomics and bioinformatics have been employed to study the cell cycle at the proteome level. This review surveys the contributions of proteomics to cell cycle research. The near future should see the application of more quantitative proteomic approaches to probe the dynamic aspects of the molecular system that underlie the cell cycle in model organisms and in human cells. PMID:16097893

  13. Application of Organosilane Monolayer Template to Quantitative Evaluation of Cancer Cell Adhesive Ability

    NASA Astrophysics Data System (ADS)

    Tanii, Takashi; Sasaki, Kosuke; Ichisawa, Kota; Demura, Takanori; Beppu, Yuichi; Vu, Hoan Anh; Thanh Chi, Hoan; Yamamoto, Hideaki; Sato, Yuko

    2011-06-01

    The adhesive ability of two human pancreatic cancer cell lines was evaluated using organosilane monolayer templates (OMTs). Using the OMT, the spreading area of adhered cells can be limited, and this enables us to focus on the initial attachment process of adhesion. Moreover, it becomes possible to arrange the cells in an array and to quantitatively evaluate the number of attached cells. The adhesive ability of the cancer cells cultured on the OMT was controlled by adding (-)-epigallocatechin-3-gallate (EGCG), which blocks a receptor that mediates cell adhesion and is overexpressed in cancer cells. Measurement of the relative ability of the cancer cells to attach to the OMT revealed that the ability for attachment decreased with increasing EGCG concentration. The results agreed well with the western blot analysis, indicating that the OMT can potentially be employed to evaluate the adhesive ability of various cancer cells.

  14. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  15. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction.

    PubMed

    Sager, Hendrik B; Dutta, Partha; Dahlman, James E; Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F; Kauffman, Kevin J; Xing, Yiping; Shaw, Taylor E; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K; Anderson, Daniel G; Nahrendorf, Matthias

    2016-06-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  16. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability.

    PubMed Central

    Hasan, N. M.; Adams, G. E.; Joiner, M. C.; Marshall, J. F.; Hart, I. R.

    1998-01-01

    The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29 cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth. PMID:9667649

  17. Cell adhesion in plants is under the control of putative O-fucosyltransferases.

    PubMed

    Verger, Stéphane; Chabout, Salem; Gineau, Emilie; Mouille, Grégory

    2016-07-15

    Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development. PMID:27317803

  18. Cell adhesion in plants is under the control of putative O-fucosyltransferases

    PubMed Central

    Verger, Stéphane; Chabout, Salem; Gineau, Emilie

    2016-01-01

    Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development. PMID:27317803

  19. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  20. Spatial organization of cell-adhesive ligands for advanced cell culture

    PubMed Central

    Ekerdt, Barbara L; Segalman, Rachel A; Schaffer, David V

    2013-01-01

    Interaction between biomaterials and cells is a critical aspect for successful application of tissue engineering research. Technological advances within the past decade have enabled a number of studies to investigate how the spatial organization of cell-adhesive ligands impacts complex and rich cell behaviors ranging from adhesion to differentiation. Cells in their native environment are surrounded by chemical and physical factors spanning a range of length scales from nanometers to hundreds of microns. Furthermore, signals in the form of cell-adhesive ligands presented from this environment in different size scales and/or geometrical arrangements can change how a cell senses and responds to its surroundings. Biology can thus convey information not only in the concentration of a ligand but through its ability to change the spatial organization of these cues, raising questions both on the mechanisms by which it patterns such information and on the means by which a cell interprets it. This review discusses major findings associated with various systems developed to study cell-adhesive ligand presentation as well as an overview of the important material systems used in these studies. Promising material systems to further investigations in this field are also examined. Future directions will likely include determining how cells sense local and global ligand concentrations, understanding underlying mechanisms that regulate cell behaviors, and investigating the function of more complex cell types and diverse ligands. PMID:24318636

  1. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  2. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion

    PubMed Central

    Zaytseva, Natalya; Lynn, Jeffery G.; Wu, Qi; Mudaliar, Deepti J.; Sun, Haiyan; Kuang, Patty Q.; Fang, Ye

    2013-01-01

    Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion. PMID:24319319

  3. Role of sulfatides in adhesion of Helicobacter pylori to gastric cancer cells.

    PubMed Central

    Kamisago, S; Iwamori, M; Tai, T; Mitamura, K; Yazaki, Y; Sugano, K

    1996-01-01

    We have demonstrated that clinical isolates of Helicobacter pylori preferentially bind to sulfatides (I3SO3-GalCer) and GM3 gangliosides (II3NeuAcLacCer), two predominant acidic glycosphingolipids in the human gastric mucosa, on thin-layer chromatography plates. However, it has not yet been clarified that these glycospingolipids truly serve as adhesion receptors for H. pylori in live cells. In this study, we used a gastric cancer cell line, KATO III, as a cellular model of H. pylori adhesion and examined the role of sulfatides in attachment. The adhesion of H. pylori (i.e., a standard strain of H. pylori, NCTC 11637) to KATO III cells and the effects of various substances on this adhesion were monitored and semiquantitated by flow cytometric analysis. Sulfated glycoconjugates, such as heparin and gastric mucin, significantly inhibited H. pylori adhesion to KATO III cells. Membrane preparations from KATO III cells strongly inhibited this adhesion. In the membrane preparations, sulfatides were present as a major acidic glycosphinoglipid. With the exception of sulfatides, no distinct adhesion of H. pylori to glycospingolipids from KATO III cells were observed. Moreover, H. pylori did not bind to any membrane proteins of KATO III cells. Finally, a monoclonal anti-sulfatide antibody markedly reduced H. pylori adhesion to KATO III cells. These results suggest that sulfatides, and possibly related sulfated compounds, serve as a major receptor for cell adhesion by H. pylori. PMID:8550217

  4. Ionizing radiation increases adhesiveness of human aortic endothelial cells via a chemokine-dependent mechanism.

    PubMed

    Khaled, Saman; Gupta, Kiran B; Kucik, Dennis F

    2012-05-01

    Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Since radiation also induces inflammation, a possible mechanism is a change in the adhesiveness of vascular endothelial cells, triggering pro-atherogenic accumulation of leukocytes. To investigate this mechanism at the cellular level, the effect of X rays on adhesiveness of cultured human aortic endothelial cells (HAECs) was determined. HAECs were grown as monolayers and exposed to 0 to 30 Gy X rays, followed by measurement of adhesiveness under physiological shear stress using a flow chamber adhesion assay. Twenty-four hours after irradiation, HAEC adhesiveness was increased, with a peak effect at 15 Gy. Radiation had no significant effect on surface expression of the endothelial adhesion molecules ICAM-1 and VCAM-1. Antibody blockade of the leukocyte integrin receptors for ICAM-1 and VCAM-1, however, abolished the radiation-induced adhesiveness. Since these leukocyte integrins can be activated by chemokines presented on the endothelial cell surface, the effect of pertussis toxin (PTX), an inhibitor of chemokine-mediated integrin activation, was tested. PTX specifically inhibited radiation-induced adhesiveness, with no significant effect on nonirradiated cells. Therefore, radiation induces increased adhesiveness of aortic endothelial cells through chemokine-dependent signaling from endothelial cells to leukocytes, even in the absence of increased expression of the adhesion molecules involved. PMID:22087741

  5. An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    PubMed Central

    Barnhart, Erin L.; Lee, Kun-Chun; Keren, Kinneret; Mogilner, Alex; Theriot, Julie A.

    2011-01-01

    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. PMID:21559321

  6. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  7. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. PMID:27612703

  8. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  9. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells

    PubMed Central

    Waghmare, Indrayani

    2016-01-01

    Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib) belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib-) surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells. PMID:27327956

  10. Physics of Cell Adhesion Failure and Human Diseases

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    Emergent phenomena in living systems, including your ability to read these lines, do not obviously follow as a consequence of the fundamental laws of physics. Understanding the physics of living systems clearly falls outside the conventional boundaries of scientific disciplines and requires a collaborative, multidisciplinary approach. Here I will discuss how theoretical and computational techniques from statistical physics can be used to make progress in explaining the physical mechanisms that underlie complex biological phenomena, including major diseases. In the specific cases of macular degeneration and cancer that we have studied recently, we find that the breakdown of the mechanical stability in the local tissue structure caused by weakening of the cell-cell adhesion plays a key role in the initiation and progression of the disease. This finding can help in the development of new therapies that would prevent or halt the initiation and progression of these diseases.

  11. Serum polysialylated neural cell adhesion molecule in childhood neuroblastoma.

    PubMed Central

    Glüer, S.; Schelp, C.; Madry, N.; von Schweinitz, D.; Eckhardt, M.; Gerardy-Schahn, R.

    1998-01-01

    Neuroblastoma cells express the polysialylated form of the neural cell adhesion molecule (NCAM), which normally becomes restricted to a few neural tissues after embryogenesis. In this study, we investigated serum levels of polysialylated NCAM in 14 children with different grades and stages of neuroblastoma using an immunoluminescence assay, and compared the results to 269 healthy control subjects. Simultaneously, the polysialylated NCAM content of the tumours was determined by immunohistochemistry. Serum levels were dramatically elevated (more than sixfold) in children with advanced stages and fatal courses of disease, whereas children with differentiated tumour types and limited disease had low or normal levels. Serum concentrations correlated with the polysialylated NCAM content of the tumours, and they decreased during successful therapy. We therefore suggest polysialylated NCAM to be a useful marker monitoring childhood neuroblastoma. Images Figure 2 Figure 3 PMID:9662259

  12. Immune T lymphocyte to tumor cell adhesion. Magnesium sufficient, calcium insufficient

    PubMed Central

    1980-01-01

    The prelytic adhesion of immune cytolytic thymus-derived lymphocytes to specific antigen-bearing ascites tumor target cells has been studied. A new assay was used in which adhesions are permitted to form for 2.5 min; the cells are then dispersed to prevent further adhesion, and the predispersion adhesions are quantitated by subsequent 51Cr release from the tumor cells as a result of cytolytic activity of the adhering lymphocytes. There were the following new findings: (a) magnesium is sufficient to support optimal adhesion formation even when EGTA is added to remove contaminating traces of calcium; (b) calcium supports no adhesion formation when traces of contaminating magnesium are removed by pretreating the medium with a chelating ion exchange resin; (c) calcium synergizes with suboptimal magnesium, increasing the apparent adhesion-supporting potency of magnesium 20-fold in the presence of 50 microM calcium; (d) in the presence of optimal magnesium (2--4 mM), calcium has not effect on the properties of the adhesion by any of six criteria; and (e) manganese supports adhesion better than magnesium, and strontium is ineffective. A survey of previous literature indicates that these results are remarkably similar to the predominant pattern for nonimmunologic cell adhesion (e.g., fibroblasts) involving cells from a variety of tissues in late embryonic and adult avians and mammals. This suggests that a "magnesium sufficient, calcium insufficient" mechanism may be found among the latter types of cell adhesions when appropriately examined. Moreover, it seems that the present lymphocyte-tumor cell adhesion, although evoked by specific receptor-antigen recognition, relies predominantly on mechanisms common to nonimmunologic intercellular adhesion processes. PMID:6766945

  13. Glycosylation Inhibitors Efficiently Inhibit P-Selectin-Mediated Cell Adhesion to Endothelial Cells

    PubMed Central

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD

  14. Bond strength and bioactivity of Zn-doped dental adhesives promoted by load cycling.

    PubMed

    Toledano, Manuel; Aguilera, Fátima S; Osorio, Estrella; Cabello, Inmaculada; Toledano-Osorio, Manuel; Osorio, Raquel

    2015-02-01

    The purpose of this study was to evaluate if mechanical loading influences bioactivity and bond strength at the resin-dentin interface after bonding with Zn-doped etch-and-rinse adhesives. Dentin surfaces were subjected to demineralization by 37% phosphoric acid (PA) or 0.5 M ethylenediaminetetraacetic acid (EDTA). Single bond (SB) adhesive—3M ESPE—SB+ZnO particles 20 wt% and SB+ZnCl2 2 wt% were applied on treated dentin to create the groups PA+SB, SB+ZnO, SB+ZnCl2, EDTA+SB, EDTA+ZnO, and EDTA+ZnCl2. Bonded interfaces were stored in simulated body fluid for 24 h and tested or submitted to mechanical loading. Microtensile bond strength (MTBS) was assessed. Debonded dentin surfaces were studied by high-resolution scanning electron microscopy. Remineralization of the bonded interfaces was assessed by atomic force microscope imaging/nanoindentation, Raman spectroscopy/cluster analysis, and Masson's trichrome staining. Load cycling (LC) produced reduction in MTBS in all PA+SB, and no change was encountered in EDTA+SB specimens, regardless of zinc doping. LC increased the mineralization and crystallographic maturity at the interface; a higher effect was noticed when using ZnO. Trichrome staining reflected a narrow demineralized dentin matrix after loading of dentin surfaces that were treated with SB-doped adhesives. This correlates with an increase in mineral platforms or plate-like multilayered crystals in PA or EDTA-treated dentin surfaces, respectively. PMID:25499741

  15. A Comparative Study of Adhesion of Melanoma and Breast Cancer Cells to Blood and Lymphatic Endothelium

    PubMed Central

    Safuan, Sabreena; Storr, Sarah J.; Patel, Poulam M.

    2012-01-01

    Abstract Background Lymphovascular invasion (LVI) is an important step in the metastatic cascade; tumor cell migration and adhesion to blood and lymphatic vessels is followed by invasion through the vessel wall and subsequent systemic spread. Although primary breast cancers and melanomas have rich blood vascular networks, LVI is predominately lymphatic in nature. Whilst the adhesion of tumor cells to blood endothelium has been extensively investigated, there is a paucity of information on tumor cell adhesion to lymphatic endothelium. Methods and Results Breast cancer (MDA-MB-231 and MCF7) and melanoma (MeWo and SKMEL-30) cell adhesion to lymphatic (hTERT-LEC and HMVEC dLy Neo) and blood (HUVEC and hMEC-1) endothelial cells were assessed using static adhesion assays. The effect of inflammatory conditions, tumor necrosis factor-α (TNF-α) stimulation of endothelial and tumor cells, on the adhesive process was also examined. In addition, the effects of TNF-α stimulation on tumor cell migration was investigated using haplotaxis (scratch wound) assays. Breast cancer and melanoma cells exhibited higher levels of adhesion to blood compared to lymphatic endothelial cells (p<0.001). TNF-α stimulation of endothelial cells, or of tumor cells alone, did not significantly alter tumor–endothelial cell adhesion or patterns. When both tumor and endothelial cells were stimulated with TNF-α, a significant increase in adhesion was observed (p<0.01), which was notably higher in the lymphatic cell models (p<0.001). TNF-α-stimulation of all tumor cell lines significantly increased their migration rate (p<0.01). Conclusions Results suggest that metastasis resultant from lymphatic vessel-tumor cell adhesion may be modulated by cytokine stimulation, which could represent an important therapeutic target in breast cancer and melanoma. PMID:23215743

  16. A simplified model for dynamics of cell rolling and cell-surface adhesion

    SciTech Connect

    Cimrák, Ivan

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  17. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  18. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    SciTech Connect

    Shen, Colette J.; Raghavan, Srivatsan; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 ; Xu, Zhe; Baranski, Jan D.; Yu, Xiang; Wozniak, Michele A.; Miller, Jordan S.; Gupta, Mudit; Buckbinder, Leonard; Chen, Christopher S.

    2011-08-01

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  19. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties. PMID:23990978

  20. Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*

    PubMed Central

    Fu, Changliang; Tong, Chunfang; Wang, Manliu; Gao, Yuxin; Zhang, Yan; Lü, Shouqin; Liang, Shile; Dong, Cheng; Long, Mian

    2011-01-01

    Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics. PMID:21840991

  1. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  2. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces.

    PubMed

    Wang, Xinlong; Hu, Xiaohong; Dulińska-Molak, Ida; Kawazoe, Naoki; Yang, Yingnan; Chen, Guoping

    2016-01-01

    Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions. In this study, 10 types of isotropical micropatterns that were composed of 2 μm microdots were prepared to precisely control the adhesion area and spreading area of human mesenchymal stem cells (MSCs). The respective influence of adhesion and spreading areas on stem cell functions was investigated. Adhesion area showed more significant influences on the focal adhesion formation, binding of myosin to actin fibers, cytoskeletal organization, cellular Young's modulus, accumulation of YAP/TAZ in nuclei, osteogenic and adipogenic differentiation of MSCs than did the spreading area. The results indicated that adhesion area rather than spreading area played more important roles in regulating cell functions. This study should provide new insight of the influence of cell adhesion and spreading on cell functions and inspire the design of biomaterials to process in an effective manner for manipulation of cell functions. PMID:27349298

  3. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces

    PubMed Central

    Wang, Xinlong; Hu, Xiaohong; Dulińska-Molak, Ida; Kawazoe, Naoki; Yang, Yingnan; Chen, Guoping

    2016-01-01

    Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions. In this study, 10 types of isotropical micropatterns that were composed of 2 μm microdots were prepared to precisely control the adhesion area and spreading area of human mesenchymal stem cells (MSCs). The respective influence of adhesion and spreading areas on stem cell functions was investigated. Adhesion area showed more significant influences on the focal adhesion formation, binding of myosin to actin fibers, cytoskeletal organization, cellular Young’s modulus, accumulation of YAP/TAZ in nuclei, osteogenic and adipogenic differentiation of MSCs than did the spreading area. The results indicated that adhesion area rather than spreading area played more important roles in regulating cell functions. This study should provide new insight of the influence of cell adhesion and spreading on cell functions and inspire the design of biomaterials to process in an effective manner for manipulation of cell functions. PMID:27349298

  4. High-Cycle-Life Lithium Cell

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  5. Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique.

    PubMed

    Colbert, M-J; Raegen, A N; Fradin, C; Dalnoki-Veress, K

    2009-10-01

    The fundamental study of the adhesion of cells to each other or to a substrate is a key research topic in cellular biophysics because cell adhesion is important to many biological processes. We report on the adhesion of a model cell, a liposome, and a living HeLa cell to a substrate measured with a novel experimental technique. The cells are held at the end of a micropipette mounted on a micromanipulator and brought into contact with a surface. The adhesion energy and membrane tension are measured directly using the deflection of the micropipette when binding or unbinding the cell from the substrate. Since the force applied on the cells is known throughout the experiment, the technique presented enables the measurement of dynamics such as changes in the adhesion, elasticity, and membrane tension with time. PMID:19777278

  6. Direct observation of catch bonds involving cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  7. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin.

    PubMed

    Zhang, Hui; Chen, Yiqian; Wadham, Carol; McCaughan, Geoffrey W; Keane, Fiona M; Gorrell, Mark D

    2015-02-01

    Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed member of the DPP4 gene and protease family. Deciphering the biological functions of DPP9 and its roles in pathogenesis has implicated DPP9 in tumor biology, the immune response, apoptosis, intracellular epidermal growth factor-dependent signaling and cell adhesion and migration. We investigated the intracellular distribution of DPP9 chimeric fluorescent proteins and consequent functions of DPP9. We showed that while some DPP9 is associated with mitochondria, the strongest co-localization was with microtubules. Under steady state conditions, DPP9 was not seen at the plasma membrane, but upon stimulation with either phorbol 12-myristate 13-acetate or epidermal growth factor, some DPP9 re-distributed towards the ruffling membrane. DPP9 was seen at the leading edge of the migrating cell and co-localized with the focal adhesion proteins, integrin-β1 and talin. DPP9 gene silencing and treatment with a DPP8/DPP9 specific inhibitor both reduced cell adhesion and migration. Expression of integrin-β1 and talin was decreased in DPP9-deficient and DPP9-enzyme-inactive cells. There was a concomitant decrease in the phosphorylation of focal adhesion kinase and paxillin, indicating that DPP9 knockdown or enzyme inhibition suppressed the associated adhesion signaling pathway, causing impaired cell movement. These novel findings provide mechanistic insights into the regulatory role of DPP9 in cell movement, and may thus implicate DPP9 in tissue and tumor growth and metastasis. PMID:25486458

  8. Modulation of lens cell adhesion molecules by particle beams.

    PubMed

    McNamara, M P; Bjornstad, K A; Chang, P Y; Chou, W; Lockett, S J; Blakely, E A

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  9. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  10. The role of sodium channels in cell adhesion.

    PubMed

    Isom, Lori L

    2002-01-01

    Voltage-gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming alpha subunit and two auxiliary beta subunits. The alpha subunits are members of a large gene family containing the voltage-gated sodium, potassium, and calcium channels. Sodium channel alpha subunits form a gene subfamily with at least eleven members. Mutations in sodium channel alpha subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel beta subunits with at least one alternative splice product. Unlike the pore-forming alpha subunits, the sodium channel beta subunits are not structurally related to beta subunits of calcium and potassium channels. Sodium channel beta subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that beta subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS+1 epilepsy in human families. We propose that the sodium channel signaling complex at nodes of Ranvier involves beta subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPbeta, and extracellular matrix molecules such as tenascin. Finally, we explore other subunits of voltage-gated ion channels as potential CAM candidates. PMID:11779698

  11. PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis.

    PubMed

    Cousin, Hélène; Desimone, Douglas W; Alfandari, Dominique

    2008-07-01

    We previously identified the adaptor protein PACSIN2 as a negative regulator of ADAM13 proteolytic function. In Xenopus embryos, PACSIN2 is ubiquitously expressed, suggesting that PACSIN2 may control other proteins during development. To investigate this possibility, we studied PACSIN2 function during Xenopus gastrulation and in XTC cells. Our results show that PACSIN2 is localized to the plasma membrane via its coiled-coil domain. We also show that increased levels of PACSIN2 in embryos inhibit gastrulation, fibronectin (FN) fibrillogenesis and the ability of ectodermal cells to spread on a FN substrate. These effects require PACSIN2 coiled-coil domain and are not due to a reduction of FN or integrin expression and/or trafficking. The expression of a Mitochondria Anchored PACSIN2 (PACSIN2-MA) sequesters wild type PACSIN2 to mitochondria, and blocks gastrulation without interfering with cell spreading or FN fibrillogenesis but perturbs both epiboly and convergence/extension. In XTC cells, the over-expression of PACSIN2 but not PACSIN2-MA prevents the localization of integrin beta1 to focal adhesions (FA) and filamin to stress fiber. PACSIN2-MA prevents filamin localization to membrane ruffles but not to stress fiber. We propose that PACSIN2 may regulate gastrulation by controlling the population of activated alpha5beta1 integrin and cytoskeleton strength during cell movement. PMID:18495106

  12. Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis.

    PubMed

    Davies, P F; Robotewskyj, A; Griem, M L

    1993-06-01

    Real time measurements of cell-substratum adhesion in endothelial cells were obtained by tandem scanning confocal microscopy of sites of focal contact (focal adhesions) at the abluminal cell surface. Focal contact sites were sharply defined (low radiance levels) in the living cell such that the images could be enhanced, digitized, and isolated from other cellular detail. Sites of focal contact are the principal determinant of cell-substratum adhesion. Measurements of (a) the focal contact area and (b) the closeness of contact (inverse radiance) were used to nominally define the adhesion of a single cell or field of cells, and to record spontaneous and induced changes of cell adhesion in real time. The topography of focal contacts was estimated by calculating separation distances from radiance values using a calibration technique based on interference ring optics. While slightly closer contact was noted between the cell membrane and substratum at or near the center of each focal contact, separation distances throughout the adhesion regions were always < 50 nm. Subtraction of consecutive images revealed continuous spontaneous remodeling of individual focal adhesions in unperturbed cells during periods of < 1 min. Despite extensive remodeling of focal contact sites, however, cell adhesion calculated for an entire cell over extended periods varied by < 10%. When cytoskeletal stability was impaired by exposure to cytochalasin or when cells were exposed to proteolytic enzyme, endothelial adhesion declined rapidly. Such changes were recorded at the level of single cells, groups of cells, and at single focal adhesions. In both unperturbed and manipulated cells, the dynamics of remodeling and cell adhesion characteristics varied greatly between individual sites within the same cell; disappearance of existing sites and appearance of new ones often occurred within minutes while adjacent sites underwent minimal remodelling. Tandem scanning confocal microscopy image analysis of

  13. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  14. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    PubMed Central

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2.

  15. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  16. Monitoring effects of microgravity on adhesion of white blood cells to vascular endothelium

    NASA Astrophysics Data System (ADS)

    Gupta, K.; Rouleau, R.; Smith, L.; Wu, X.; Kucik, D. F.

    Immune defects associated with space travel have been studied for decades but the mechanisms are not yet well understood Of particular interest is the effect of microgravity on white blood cells which has been shown to be independent of effects of cosmic radiation and physical stress One important aspect of white-cell function that has been difficult to address experimentally is regulation of leukocyte adhesion to the blood vessel wall This is a vital early step in the initiation of an immune response without which effective immunity is not possible Rotating wall vessels RWV are often used to simulate microgravity on the ground but current systems typically require stopping rotation removing a sample and fluorescently labeling the cells before an adhesion assay can be performed The entire process from cell sampling to completion of an adhesion assay can take hours giving the cells time to recover at 1g and complicating interpretation of results We have designed a new integrated flow-chamber adhesion assay for measuring leukocyte adhesion properties in simulated and actual microgravity Our integrated RWV flow chamber bioimaging adhesion system can assay adhesion of cells exposed to simulated microgravity within seconds of returning to 1g without stopping rotation of the chamber Data collected with this system show that the new integrated assay can detect defects in both rolling and firm adhesion with sensitivity equal to that of large microscope-based flow chamber adhesion assays This system has now been adapted to measure acute

  17. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    PubMed Central

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  18. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization.

    PubMed

    Datla, Srinivasa Raju; McGrail, Daniel J; Vukelic, Sasa; Huff, Lauren P; Lyle, Alicia N; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K; Hilenski, Lula L; Terada, Lance S; Dawson, Michelle R; Lassègue, Bernard; Griendling, Kathy K

    2014-10-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  19. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  20. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma.

    PubMed

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong; Xu, Xiaohong; He, Song

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1(S102) were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1(S102) nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. PMID:27397581

  1. Heterogeneity of cell adhesion molecules in the developing nervous system

    SciTech Connect

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  2. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach.

    PubMed

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kihm, Kenneth D; Baek, Seung Joon

    2010-01-15

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopically expressing COX-1, COX-2, and 15LOX-1, to investigate whether expression of COX-1, COX-2, or 15LOX-1 would affect cell adhesion using our opto-electric methodology. In a fixed-time point experiment, only COX-1- and COX-2-expressing cells enhanced phosphorylation of focal adhesion kinase, but all the transfected cells showed invasion activity. However, in a real-time experiment using opto-electric approaches, transmitted cellular morphology was much different with tight adhesion being shown in COX-2 expressing cells, as imaged by differential interference contrast microscopy (DICM) and interference reflection contrast microscopy (IRCM). Furthermore, micro-impedance measurements showed a continued increase in both resistance and reactance of COX- and LOX-transfected cells, consistent with the imaging data. Our data indicate that both COX- and LOX-expressing cells have strong cell-to-cell and cell-to-substrate adhesions, and that cell imaging analysis with cell impedance data generates fully reliable results on cell adhesion measurement. PMID:20026301

  3. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

    PubMed

    Ren, Guangwen; Zhao, Xin; Zhang, Liying; Zhang, Jimin; L'Huillier, Andrew; Ling, Weifang; Roberts, Arthur I; Le, Anh D; Shi, Songtao; Shao, Changshun; Shi, Yufang

    2010-03-01

    Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. PMID:20130212

  4. Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption

    PubMed Central

    Sumigray, Kaelyn; Zhou, Kang; Lechler, Terry

    2014-01-01

    Desmosomes are perturbed in a number of disease states – including genetic disorders, autoimmune and bacterial diseases. Here, we report unexpected changes in other cell-cell adhesion structures upon loss of desmosome function. We found that perturbation of desmosomes by either loss of the core desmosomal protein desmoplakin or treatment with pathogenic anti-desmoglein 3 (Dsg3) antibodies resulted in changes in adherens junctions consistent with increased tension. The total amount of myosin IIA was increased in desmoplakin-null epidermis, and myosin IIA became highly localized to cell contacts in both desmoplakin-null and anti-Dsg3-treated mouse keratinocytes. Inhibition of myosin II activity reversed the changes to adherens junctions seen upon desmosome disruption. The increased cortical myosin IIA promoted epithelial sheet fragility, as myosin IIA-null cells were less susceptible to disruption by anti-Dsg3 antibodies. In addition to the changes in adherens junctions, we found a significant increase in the expression of a number of claudin genes, which encode for transmembrane components of the tight junction that provide barrier function. These data demonstrate that desmosome disruption results in extensive transcriptional and posttranslational changes that alter the activity of other cell adhesion structures. PMID:25006807

  5. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  6. Differential Cell Adhesion of Breast Cancer Stem Cells on Biomaterial Substrate with Nanotopographical Cues

    PubMed Central

    Tan, Kenneth K.B.; Giam, Christine S.Y.; Leow, Ming Yi; Chan, Ching Wan; Yim, Evelyn K.F.

    2015-01-01

    Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24−/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC), breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC) cells obtained from patients’ samples, on micro- and nano-patterned poly-L-lactic acid (PLLA) films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24−/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24− in MCF7. A slightly higher percentage of CD44+CD24−/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24−ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells. PMID:25905435

  7. CLIC4 regulates cell adhesion and β1 integrin trafficking.

    PubMed

    Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H

    2014-12-15

    Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. PMID:25344254

  8. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells

    SciTech Connect

    Aanei, Carmen Mariana; Eloae, Florin Zugun; Flandrin-Gresta, Pascale; Tavernier, Emmanuelle; Carasevici, Eugen; Guyotat, Denis; Campos, Lydia

    2011-11-01

    Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

  9. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates

    PubMed Central

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Park, Ji Hoon; Kim, Sung Eun; Kim, Jin Su; Oh, Jin-Woo; Han, Dong-Wook

    2015-01-01

    In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds. PMID:26034884

  10. Simple and Biocompatible Ion Beam Micropatterning of a Cell-Repellent Polymer on Cell-Adhesive Surfaces to Manipulate Cell Adhesion.

    PubMed

    Hwang, In-Tae; Jung, Chan-Hee; Jung, Chang-Hee; Choi, Jae-Hak; Shin, Kwanwoo; Yoo, Young-Do

    2016-02-01

    In this paper, the simple and biocompatible micropatterning of cell-repellent poly(N-isopropylacrylamide) (PNIPAAm) on a cell-adhesive substrate by ion beam micropatterning to control cell adhesion is described. Cell-repellent PNIPAAm films spin-coated on cell-adhesive tissue culture polystyrene (TCPS) substrates were selectively irradiated by energetic proton ions at various fluences through a pattern mask, and subsequently developed to create the micropatterns of PNIPAAm. Well-defined negative-type PNIPAAm micropatterns were successfully created on the TCPS substrates at fluences higher than 5 x 10¹⁴ ions/cm², and their chemical properties were dependent on the fluence. Moreover, based on the results of the protein adsorption and in-vitro cell culture tests, 200 µm well-defined micropatterns of mammalian cells were clearly formed on the PNIPAAm-micropatterned TCPS substrates though the preferential adsorption and growth of cells on the TCPS regions due to the strong cell-repellency of PNIPAAm. PMID:27305772

  11. Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping

    PubMed Central

    Chirasatitsin, Somyot; Engler, Adam J

    2010-01-01

    The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites. PMID:21152375

  12. Expression of cell cycle regulator cdk2ap1 suppresses tumor cell phenotype by non-cell autonomous mechanisms

    PubMed Central

    Zolochevska, Olga; Figueiredo, Marxa L.

    2009-01-01

    We evaluated the effect of expressing the cell cycle regulator cdk2ap1 in epithelial or stromal cell compartments to reduce SCC growth in vitro and in vivo. Cell autonomous and/or non-cell autonomous expression of cdk2ap1 reduced tumor growth and invasion and altered cell cycle, adhesion, invasion, angiogenesis, and apoptotic gene expression, as assessed by several in vitro phenotype assays, quantitative real time PCR, and in vivo molecular imaging using a novel three-way xenograft animal model. Our findings suggest that the interactions between cancer cells and fibroblasts that promote abnormal growth can be minimized by expressing cdk2ap1, supporting a novel concept by which tumor/growth suppressor genes can impact tumorigenesis phenotypes from non-cell autonomous interactions within the tumor microenvironment. PMID:19515604

  13. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells.

    PubMed Central

    Faruqi, R; de la Motte, C; DiCorleto, P E

    1994-01-01

    Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but not basal adhesion, was inhibited in a time- and concentration-dependent manner by alpha-tcp. The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had no significant effect. Protein kinase C (PKC) does not appear to play a role in the alpha-tcp effect since no suppression of phosphorylation of PKC substrates was observed. Activation of the transcription factor NF-kappa B is reported to be necessary but not sufficient for E-selectin expression in EC. Electrophoretic mobility shift assays failed to show an alpha-tcp-induced decrease in activation of this transcription factor after cytokine stimulation. It has been hypothesized that alpha-tcp acts as an anti-atherosclerotic molecule by inhibiting generation of oxidized LDL--a putative triggering molecule in the atherosclerotic process. Our results point to a novel alternative mechanism of action of alpha-tcp. Images PMID:7518838

  14. α-Actinin-4 Enhances Colorectal Cancer Cell Invasion by Suppressing Focal Adhesion Maturation

    PubMed Central

    Yamada, Tesshi; Takenawa, Tadaomi

    2015-01-01

    α-Actinins (ACTNs) are known to crosslink actin filaments at focal adhesions in migrating cells. Among the four isoforms of mammalian ACTNs, ACTN1 and ACTN4 are ubiquitously expressed. Recently, ACTN4 was reported to enhance cancer cell motility, invasion, and metastasis. However, the mechanism by which ACTN4 drives these malignant phenotypes remains unclear. Here, we show that ACTN4, but not ACTN1, induces the formation of immature focal adhesions in DLD-1 cells, leading to the rapid turnover of focal adhesions. Interestingly, zyxin (ZYX) assembly to focal adhesions was markedly decreased in ACTN4-expressing DLD-1 cells, while the recruitment of paxillin (PAX) occurred normally. On the other hand, in ACTN1-expressing DLD-1 cells, PAX and ZYX were normally recruited to focal adhesions, suggesting that ACTN4 specifically impairs focal adhesion maturation by inhibiting the recruitment of ZYX to focal complexes. Using purified recombinant proteins, we found that ZYX binding to ACTN4 was defective under conditions where ZYX binding to ACTN1 was observed. Furthermore, Matrigel invasion of SW480 cells that express high endogenous levels of ACTN4 protein was inhibited by ectopic expression of ACTN1. Altogether, our results suggest that ZYX defective binding to ACTN4, which occupies focal adhesions instead of ACTN1, induces the formation of immature focal adhesions, resulting in the enhancement of cell motility and invasion. PMID:25860875

  15. Spatial anisotropy and heterogeneity in contractility and adhesion distribution may contribute to cell steering during migration

    NASA Astrophysics Data System (ADS)

    Soumya S S; Kolwankar, Subodh; George, Edna; Basu, Santanu K.; Sen, Shamik; Inamdar, Mandar M.

    2014-02-01

    Transition from random to persistent cell motility requires spatiotemporal organization of the cytoskeleton and focal adhesions. The influence of these two structures on cell steering can also be gleaned from trypsin de-adhesion experiments, wherein cells exposed to trypsin round up, exhibiting a combination of rotation and translation. Here, we present a model to evaluate the contributions of contractility and bond distribution to experimentally observed de-adhesion. We show that while asymmetry in bond distribution causes only cell translation, a combination of asymmetric bond distribution and non-uniform contractility is required for translation and rotation and may guide cell migration.

  16. A common clathrin-mediated machinery coordinates cell-cell adhesion and bacterial internalization

    PubMed Central

    Bonazzi, Matteo; Kühbacher, Andreas; Toledo-Arana, Alejandro; Mallet, Adeline; Vasudevan, Lavanya; Pizarro-Cerdá, Javier; Brodsky, Frances M.; Cossart, Pascale

    2013-01-01

    Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction machinery, and invade non-phagocytic cells by a clathrin-dependent mechanism. Here we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of adherens junction formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of adherens junctions. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form adherens junctions with cells expressing E-cadherin. To model bacterial invasion, we demonstrate that non-adherent cells expressing the InlA chimera can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes. PMID:22984946

  17. Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines.

    PubMed

    Nagao, F; Suzui, M; Takeda, K; Yagita, H; Okumura, K

    2000-10-01

    The change of plasma catecholamine concentration correlates with the change of natural killer (NK) activity and NK cell number in peripheral blood mononuclear cells (PBMC) during and after moderate exercise. We studied the causal relation between exercise-induced catecholamine and expression of adhesion molecules on NK cells during and after exercise. The expression of CD44 and CD18 on CD3(-)CD56(+) NK cells was significantly reduced during exercise (P < 0.01). When PBMC were stimulated with 10(-8)M norepinephrine in vitro, the expression of these adhesion molecules on CD3(-)CD56(+) NK cells was downmodulated within 30 min. The binding capacity of NK cells to a CD44 ligand, hyaluronate, was reduced by the stimulation with norepinephrine (P < 0.01). The intravenous injection of norepinephrine in mice decreased the expression of CD44 and CD18 on CD3(-)NK1.1(+) cells (P < 0.01) and increased the number of CD3(-)NK1.1(+) cells in PBMC (P < 0.01). These findings suggest that exercise-induced catecholamines modulate the expression of adhesion molecules on NK cells, resulting in the mobilization of NK cells into the circulation. PMID:11003990

  18. Nanostructured conducting polymers for stiffness controlled cell adhesion

    NASA Astrophysics Data System (ADS)

    Moyen, Eric; Hama, Adel; Ismailova, Esma; Assaud, Loic; Malliaras, George; Hanbücken, Margrit; Owens, Roisin M.

    2016-02-01

    We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm2 ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).

  19. Nectin spot: a novel type of nectin-mediated cell adhesion apparatus.

    PubMed

    Mizutani, Kiyohito; Takai, Yoshimi

    2016-09-15

    Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily cell adhesion molecules constituting a family with four members, all of which have three Ig-like loops at their extracellular regions. Nectins play roles in the formation of a variety of cell-cell adhesion apparatuses. There are at least three types of nectin-mediated cell adhesions: afadin- and cadherin-dependent, afadin-dependent and cadherin-independent, and afadin- and cadherin-independent. In addition, nectins trans-interact with nectin-like molecules (Necls) with three Ig-like loops and other Ig-like molecules with one to three Ig-like loops. Furthermore, nectins and Necls cis-interact with membrane receptors and integrins, some of which are associated with the nectin-mediated cell adhesions, and play roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, and survival, co-operatively with these cell surface proteins. The nectin-mediated cell adhesions are implicated in a variety of diseases, including genetic disorders, neural disorders, and cancers. Of the three types of nectin-mediated cell adhesions, the afadin- and cadherin-dependent apparatus has been most extensively investigated, but the examples of the third type of apparatus independent of afadin and cadherin are recently increasing and its morphological and functional properties have been well characterized. We review here recent advances in research on this type of nectin-mediated cell adhesion apparatus, which is named nectin spot. PMID:27621480

  20. Effects of simulated microgravity on cell cycle in human endothelial cells

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Alisa A.; Ignashkova, Tatiana I.; Bochenkova, Anna V.; Moskovtsev, Aleksey A.; Baranov, Victor M.; Kubatiev, Aslan A.

    2014-06-01

    The aim of the current study is to investigate effects of simulated microgravity on the cell cycle of endothelial cells. We analyze changes in the cell cycle after exposure of endothelial-like EA.hy 926 cells to simulated microgravity using a Desktop random positioning machine (RPM). Cell cycle profiles determined by flow cytometry show, that the percentage of the cells in the G0/G1 phase after 24 and 96 h of RPM-simulated microgravity is significantly increased as compared to the control group. However, no significant difference is observed after 120 h of RPM-simulated microgravity. In regard to S phase, the percentage of cells is significantly decreased after 24 and 96 h of RPM, respectively; whereas 120 h later, the number of S-phase cells is comparable to the control group. Thus, we show that simulated microgravity inhibits cell cycle progression of human EA.hy 926 cells from the G0/G1 phase to the S phase. We observe an effect of a hibernation-like state, when the growth of the cells in the RPM group slows down, but does not stop. Our results further show that simulated microgravity can affect adhesion of endothelial cells, and alpha-tubulin expression, as most cells begin to detach from the surface of OptiCell unit after 24 h, form aggregates after 48 h, and exhibit accumulation of alpha-tubulin around the nucleus after 48 h of exposure to simulated microgravity conditions. Our results demonstrate a chance in the cell cycle in a low gravitational field.

  1. CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.

    PubMed

    Liu, Ju-Fang; Hou, Sheng-Mou; Tsai, Chun-Hao; Huang, Chun-Yin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-05-01

    CCN4 is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov family of matricellular proteins. Here, we investigated the intracellular signaling pathways involved in CCN4-induced vascular cell adhesion molecule-1 expression in human osteoarthritis synovial fibroblasts. Stimulation of OASFs with CCN4 induced VCAM-1 expression. CCN4-induced VCAM-1 expression was attenuated by αvβ5 or α6β1 integrin antibody, Syk inhibitor, PKCδ inhibitor (rottlerin), JNK inhibitor (SP600125), and AP-1 inhibitors (curcumin and tanshinone). Stimulation of cells with CCN4 increased Syk, PKCδ, and JNK activation. Treatment of OASFs with CCN4 also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element in the VCAM-1 promoter. Moreover, up-regulation of VCAM-1 increased the adhesion of monocytes to OASF monolayers, and this adhesion was attenuated by transfection with a VCAM-1 siRNA. Our results suggest that CCN4 increases VCAM-1 expression in human OASFs via the Syk, PKCδ, JNK, c-Jun, and AP-1 signaling pathways. The CCN4-induced VCAM-1 expression promoted monocyte adhesion to human OASFs. PMID:23313051

  2. Integrins mediate adhesion of medulloblastoma cells to tenascin and activate pathways associated with survival and proliferation.

    PubMed

    Fiorilli, Paul; Partridge, Darren; Staniszewska, Izabela; Wang, Jin Y; Grabacka, Maja; So, Kelvin; Marcinkiewicz, Cezary; Reiss, Krzysztof; Khalili, Kamel; Croul, Sidney E

    2008-11-01

    Medulloblastoma spreads by leptomeningeal dissemination rather than by infiltration that characterizes other CNS tumors, eg, gliomas. This study represents an initial attempt to identify both the molecules that mediate medulloblastoma adhesion to leptomeninges and the pathways that are key to survival and proliferation of tumor following adhesion. As a first step in molecule identification, we produced adhesion of D283 medulloblastoma cells to the extracellular matrix (ECM) of H4 glioma cells in vitro. Within this context, D283 cells preferentially expressed the alpha9 and beta1 integrin subunits; antibody and disintegrin blockade of alpha9 and beta1 binding eliminated the adhesion. The H4 ECM was enriched in tenascin, a binding partner for the alpha9beta1 integrin heterodimer. Purified tenascin-C supported D283 cell adhesion. The adhesion was blocked by antibodies to alpha9 and beta1 integrin. In vivo data were similar; immunohistochemistry of primary human medulloblastomas with leptomeningeal extension demonstrated increased expression of alpha9 and beta1 integrins as well as tenascin at the interface of brain and leptomeningeal tumor. These data suggest that tumor-cell expressions of alpha9 and beta1 integrins in combination with extracellular tenascin are necessary for medulloblastoma adhesion to the leptomeninges. As a first step in the identification of pathways that mediate survival and proliferation of tumor following adhesion, we demonstrated that adhesion to H4 ECM was associated with survival and proliferation of D283 cells as well as activation of the MAPK pathway in a growth factor deficient environment. Antibody blockade of alpha9 and beta1 integrin binding that eliminated adhesion also eliminated the in vitro survival benefit. These data suggest that adhesion of medulloblastoma to the meninges is necessary for the survival and proliferation of these tumor cells at the secondary site. PMID:18794852

  3. Noninvasive and Reversible Cell Adhesion and Detachment via Single-Wavelength Near-Infrared Laser Mediated Photoisomerization.

    PubMed

    Li, Wei; Chen, Zhaowei; Zhou, Li; Li, Zhenhua; Ren, Jinsong; Qu, Xiaogang

    2015-07-01

    Dynamically regulating cell-molecule interactions is fundamental to a variety of biological and biomedical applications. Herein, for the first time, by utilizing spiropyran conjugated multishell upconversion nanoparticles (UCNPs) as a new generation of single-wavelength near-infrared (NIR)-controlled photoswitch, we report a simple yet versatile strategy for controlling cell adhesion/detachment reversibly and noninvasively. Specifically, the two-way isomerization of the photoswitch was merely dependent on the excitation power density of the 980 nm laser. At high power density, the ring-opening was prominent, whereas its reverse ring-closing process occurred upon irradiation by the same laser but with the lower power density. Such transformations made the interactions between spiropyran and cell surface protein fibronectin switchable, thus leading to reversible cell adhesion and detachment. Moreover, efficient adhesion-and-detachment of cells could be realized even after 10 cycles. Most importantly, the utilization of NIR not only showed little damage toward cells, but also improved penetration depth. Our work showed promising potential for in vivo dynamically manipulating cell-molecule interactions and biological process. PMID:26020685

  4. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  5. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  6. Platelet adhesion and fusion to endothelial cell facilitate the metastasis of tumor cell in hypoxia-reoxygenation condition.

    PubMed

    Zhang, Na; Zhang, Wen-Jian; Cai, Han-Qing; Liu, Hong-Lin; Peng, Liang; Li, Cheng-Hui; Ye, Li-Ya; Xu, Shi-Qing; Yang, Zhi-Hua; Lou, Jin-Ning

    2011-01-01

    To investigate the relevant molecular mechanisms of platelet in promoting metastasis of tumor cell. The adhesion of fluorescence dye labeled-platelet to human liver sinusoidal endothelial cell (LSEC) line and tumor cell lines were detected by fluorescence microscope and fluorescence plate reader or laser scanning confocal microscope. The relevant adhesion molecules were analyzed by the antibody blockage experiment. The immune colloidal gold transmission electron microscope (TEM), flow cytometry and dye transfer were used to decipher the adhesion and fusion of platelet and LSEC. The tumor cells adhesion to vessels in ischemia condition was analyzed on mouse mesenteric vessels and the metastasis and neovascularization of metastatic foci in pulmonary tissue were also detected after tumor cells injected into nude mice via tail veil. After hypoxia-reoxygenation, tumor cell or LSEC markedly increased its adhesion with platelet, which could be blocked by different antibodies to platelet adhesion molecules. Platelet increased adhesion of tumor cell to LSEC in dose-dependent manner. The fusion of platelet and LSEC was demonstrated by translocation of fluorescent dye from platelet into the adherent LSEC; gpIIb emerged on the LSEC; and confirmed by TEM. The morphological examination found platelet presented between tumor cell and LSEC. Animal experiment indicated that the tumor adhesion to vessels was seldom in normal condition, but increased in ischemia-reperfusion condition, and further significantly enhanced by platelets. The number of tumor metastatic foci and the density of blood vessels within metastatic foci in lung were markedly increased by tumor cell pre-adhered with platelet. The adhesion or fusion of platelet to endothelial cell mediated by platelet surface adhesion molecules, which could promote the adhesion of tumor cell with endothelial cells and the tumor metastasis. PMID:21061145

  7. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells.

    PubMed

    Nassif, X; Lowy, J; Stenberg, P; O'Gaora, P; Ganji, A; So, M

    1993-05-01

    Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low- and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence. PMID:8332064

  8. Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell–Cell Interactions Mediated by Classic Cadherins

    PubMed Central

    Litvinov, Sergey V.; Balzar, Maarten; Winter, Manon J.; Bakker, Hellen A.M.; Bruijn, Inge H. Briaire-de; Prins, Frans; Fleuren, Gert Jan; Warnaar, Sven O.

    1997-01-01

    The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in

  9. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  10. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow

    PubMed Central

    Spencer, Adrianne; Baker, Aaron B.

    2016-01-01

    The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis. PMID:26816215

  11. Contribution of stress wave and cavitation bubble in evaluation of cell-cell adhesion by femtosecond laser-induced impulse

    NASA Astrophysics Data System (ADS)

    Iino, Takanori; Li, Po-Lin; Wang, Wen-Zhe; Deng, Jia-Huei; Lu, Yun-Chang; Kao, Fu-Jen; Hosokawa, Yoichiroh

    2014-10-01

    When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell-cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell-cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell-cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.

  12. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  13. Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses.

    PubMed

    Sabbatini, Maurizio; Boccafoschi, Francesca; Bosetti, Michela; Cannas, Mario

    2014-01-01

    To verify the compatibility of rigid supports with neuronal cells for biomechanical application, we have evaluated the biocompatibility of Zn-doped bioglasses versus neuronal cell line SKNBE. Undifferentiated and retinoic acid-differentiated cells were used. We have observed that bioglasses doped with low concentration of Zn favored cell adhesion and proliferation of undifferentiated SKNBE neuronal cells, while the high Zn concentration strongly interfered with cell proliferation. Instead the high Zn concentration lightly stimulates the adhesive and strongly stimulates the phenotype characterization of differentiated SKNBE cells. Focal contact sites were observed in cells performing spread adhesive morphology, while they were down-regulated in cells performing differentiation behavior. GAP-43 and neurofilament were expressed in differentiated cells. However, GAP-43 was also found to be expressed in undifferentiated cells, where its expression seems related to proliferative behavior of cells. This work evidenced the importance of the biomaterial chemical structure in influencing proliferation or differentiation pathways of neuronal cells. PMID:23413232

  14. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration. PMID:27400149

  15. FLRT Structure: Balancing Repulsion and Cell Adhesion in Cortical and Vascular Development

    PubMed Central

    Seiradake, Elena; del Toro, Daniel; Nagel, Daniel; Cop, Florian; Härtl, Ricarda; Ruff, Tobias; Seyit-Bremer, Gönül; Harlos, Karl; Border, Ellen Clare; Acker-Palmer, Amparo; Jones, E. Yvonne; Klein, Rüdiger

    2014-01-01

    Summary FLRTs are broadly expressed proteins with the unique property of acting as homophilic cell adhesion molecules and as heterophilic repulsive ligands of Unc5/Netrin receptors. How these functions direct cell behavior and the molecular mechanisms involved remain largely unclear. Here we use X-ray crystallography to reveal the distinct structural bases for FLRT-mediated cell adhesion and repulsion in neurons. We apply this knowledge to elucidate FLRT functions during cortical development. We show that FLRTs regulate both the radial migration of pyramidal neurons, as well as their tangential spread. Mechanistically, radial migration is controlled by repulsive FLRT2-Unc5D interactions, while spatial organization in the tangential axis involves adhesive FLRT-FLRT interactions. Further, we show that the fundamental mechanisms of FLRT adhesion and repulsion are conserved between neurons and vascular endothelial cells. Our results reveal FLRTs as powerful guidance factors with structurally encoded repulsive and adhesive surfaces. PMID:25374360

  16. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  17. Retinal progenitor cells, differentiation, and barriers to cell cycle reentry.

    PubMed

    Davis, Denise M; Dyer, Michael A

    2010-01-01

    Neurogenesis in the retina occurs via the coordination of proliferation, cell cycle exit and differentiation of retinal progenitor cells. Until recently, it was widely assumed that once a retinal progenitor cell produced a postmitotic neuron, there was no possibility for cell-cycle re-entry. However, recent studies have shown that mature differentiated horizontal neurons with reduced Rb pathway function can re-enter the cell cycle and proliferate while maintaining their differentiated features. This chapter will explore the molecular and cellular mechanisms that help to keep differentiated retinal neurons and glia postmitotic. We propose that there are cell-type specific barriers to cell-cycle re-entry by differentiated neurons and these may include apoptosis, chromatin/epigenetics mechanisms, cellular morphology and/or metabolic demands that are distinct across cell populations. Our data suggest that differentiated neurons span a continuum of cellular properties related to their ability to re-enter the cell cycle and undergo cytokinesis while maintaining their differentiated features. A deeper understanding of these processes may allow us to begin to explain the cell type specificity of neuronal cell death and tumor susceptibility. For example, neurons that have more barriers to cell-cycle re-entry may be less likely to form tumors but more likely to undergo degeneration. Conversely, neurons that have fewer barriers to cell-cycle re-entry may be more likely to form tumors but less likely to undergo degeneration. PMID:20959166

  18. Clusterin promotes the aggregation and adhesion of renal porcine epithelial cells.

    PubMed Central

    Silkensen, J R; Skubitz, K M; Skubitz, A P; Chmielewski, D H; Manivel, J C; Dvergsten, J A; Rosenberg, M E

    1995-01-01

    The function of clusterin, a heterodimeric glycoprotein markedly induced in renal and other organ injuries, is unclear. Since renal injury is accompanied by alterations in cell attachment, it is possible that clusterin functions to promote cell-cell and cell-substratum interactions. In this study, a single cell suspension of renal epithelial (LLC-PK1) cells was treated with purified human clusterin, resulting in time- and dose-dependent cell aggregation. Electron microscopy of the cell aggregates demonstrated cell junction and lumen formation. To determine the effect of clusterin on cell adhesion, tissue culture plates were coated with clusterin, fibronectin, PBS, or albumin. Clusterin and fibronectin promoted cell adhesion to the same extent. The adhesion to clusterin was dose dependent and specific, as a monoclonal antibody against clusterin inhibited cell adhesion to clusterin but not fibronectin. Perterbations of the cytoskeleton may underlie the alterations in cell attachment which occur in renal injury. Induction of clusterin mRNA was seen after disruption of both microtubules and microfilaments and after inhibition of cell-substratum interactions. In conclusion, clusterin is a potent renal epithelial cell aggregation and adhesion molecule. We speculate that clusterin functions to promote cell-cell and cell-substratum interactions which are perturbed in the setting of renal injury, thereby preserving the integrity of the renal epithelial barrier. Images PMID:8675630

  19. Probing Cellular Mechanoadaptation Using Cell-Substrate De-Adhesion Dynamics: Experiments and Model

    PubMed Central

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M.; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales. PMID:25197799

  20. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    PubMed

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-01

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. PMID:26411289

  1. Cell Cycle Synchronization in Xenopus Egg Extracts.

    PubMed

    Gillespie, Peter J; Neusiedler, Julia; Creavin, Kevin; Chadha, Gaganmeet Singh; Blow, J Julian

    2016-01-01

    Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle. PMID:26254920

  2. Naxos disease: cardiocutaneous syndrome due to cell adhesion defect.

    PubMed

    Protonotarios, Nikos; Tsatsopoulou, Adalena

    2006-01-01

    Naxos disease is a recessively inherited condition with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) and a cutaneous phenotype, characterised by peculiar woolly hair and palmoplantar keratoderma. The disease was first described in families originating from the Greek island of Naxos. Moreover, affected families have been identified in other Aegean islands, Turkey, Israel and Saudi Arabia. A syndrome with the same cutaneous phenotype and predominantly left ventricular involvement has been described in families from India and Ecuador (Carvajal syndrome). Woolly hair appears from birth, palmoplantar keratoderma develop during the first year of life and cardiomyopathy is clinically manifested by adolescence with 100% penetrance. Patients present with syncope, sustained ventricular tachycardia or sudden death. Symptoms of right heart failure appear during the end stages of the disease. In the Carvajal variant the cardiomyopathy is clinically manifested during childhood leading more frequently to heart failure. Mutations in the genes encoding the desmosomal proteins plakoglobin and desmoplakin have been identified as the cause of Naxos disease. Defects in the linking sites of these proteins can interrupt the contiguous chain of cell adhesion, particularly under conditions of increased mechanical stress or stretch, leading to cell death, progressive loss of myocardium and fibro-fatty replacement. Implantation of an automatic cardioverter defibrillator is indicated for prevention of sudden cardiac death. Antiarrhythmic drugs are used for preventing recurrences of episodes of sustained ventricular tachycardia and classical pharmacological treatment for congestive heart failure, while heart transplantation is considered at the end stages. PMID:16722579

  3. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  4. A role for cell adhesion in beryllium-mediated lung disease

    SciTech Connect

    Hong-geller, Elizabeth

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  5. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  6. Matrix Stiffness and Nanoscale Spatial Organization of Cell-Adhesive Ligands Direct Stem Cell Fate.

    PubMed

    Ye, Kai; Wang, Xuan; Cao, Luping; Li, Shiyu; Li, Zhenhua; Yu, Lin; Ding, Jiandong

    2015-07-01

    One of the breakthroughs in biomaterials and regenerative medicine in the latest decade is the finding that matrix stiffness affords a crucial physical cue of stem cell differentiation. This statement was recently challenged by another understanding that protein tethering on material surfaces instead of matrix stiffness was the essential cue to regulate stem cells. Herein, we employed nonfouling poly(ethylene glycol) (PEG) hydrogels as the matrix to prevent nonspecific protein adsorption, and meanwhile covalently bound cell-adhesive arginine-glycine-aspartate (RGD) peptides onto the hydrogel surfaces in the form of well-defined nanoarrays to control specific cell adhesion. This approach enables the decoupling of the effects of matrix stiffness and surface chemistry. Mesenchymal stem cells (MSCs) were cultured on four substrates (two compressive moduli of the PEG hydrogels multiplied by two RGD nanospacings) and incubated in the mixed osteogenic and adipogenic medium. The results illustrate unambiguously that matrix stiffness is a potent regulator of stem cell differentiation. Moreover, we reveal that RGD nanospacing affects spreading area and differentiation of rat MSCs, regardless of the hydrogel stiffness. Therefore, both matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. PMID:26027605

  7. Glycated polyelectrolyte multilayer films: differential adhesion of primary versus tumor cells

    PubMed Central

    Schneider, Aurore; Bolcato-Bellemin, Anne-Laure; Francius, Gregory; Jedrzejwska, Justyna; Schaaf, Pierre; Voegel, Jean-Claude; Frisch, Benoit; Picart, Catherine

    2008-01-01

    Glycated polymers have already been widely employed for cell transfection studies as cell possess specific lectins. However, up to now, these glycated polymers have barely been investigated for their cell adhesive properties, save macrophages. In this work, we use polyelectrolyte multilayer films made of poly(L-lysine) and poly(L-glutamic) acid as polymeric substrates to investigate the role of sugar molecules, e.g. mannose and lactose, on the adhesion of primary cells as compared to that of a tumor cell line. The glycated polymeric films were compared to ungrafted and chemically cross-linked films, which are known to present opposite adhesive properties. A differential adhesion could be evidenced on mannose grafted films: primary chondrocytes adhere and proliferate well on these films whereas chondrosarcoma cells do not grow well. Although present, the effect of lactose on cell adhesion was much less important. This adhesion, mediated by glycated polymers, appears to be specific. These results show that it is possible to use glycated polyelectrolytes not only as non viral vectors but also as cell adhesive substrates. PMID:17025366

  8. Effect of ultraviolet light on the expression of adhesion molecules and T lymphocyte adhesion to human dermal microvascular endothelial cells.

    PubMed

    Chung, Kee Yang; Chang, Nam Soo; Park, Yoon Kee; Lee, Kwang Hoon

    2002-04-01

    In order to determine the effect of ultraviolet radiation (UVR) on the cell adhesion molecules expressed in human dermal microvascular endothelial cells (HDMEC), the cells were exposed to varying UVR doses and the cell surface was examined for expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM- 1), and E-selectin. The effect of UVB irradiation on the binding of T lymphocytes to HDMEC was also examined. UVA irradiation did not affect the surface expression of ICAM-1, VCAM-1, or E-selectin on the HDMEC. However, following UVB exposure, ELISA demonstrated a significant increase in the baseline ICAM-1 cell surface expression on the HDMEC. However, no induction of either E-selectin or VCAM-1 was noted. UVB also significantly augmented ICAM-1 induction by IL-1alpha and TNF-alpha. VCAM-1 was induced by stimulating HDMEC with IL-1alpha following a UVB irradiation dose of 100 mJ/cm2. Flow cytometric analysis of the HDMEC stimulated with IL-1alpha for 24h demonstrated that 12% of the cells expressed VCAM-1 but either IL-1alpha or UVB irradiation alone failed to induce VCAM-1 expression. Enhancement of T cell-HDMEC binding by IL-1alpha or TNF-alpha treatment was not significantly affected after UVB irradiation. This study demonstrated that UVB irradiation can alter ICAM-1 and VCAM-1 expression on the HDMEC surface and that augmentation of ICAM-1 expression and the IL-1alpha-dependent induction of VCAM-1 following UVB exposure might be important steps in the pathogenesis of sunburn. PMID:11971210

  9. Mathematical model for the effects of adhesion and mechanics on cell migration speed.

    PubMed Central

    DiMilla, P A; Barbee, K; Lauffenburger, D A

    1991-01-01

    Migration of mammalian blood and tissue cells over adhesive surfaces is apparently mediated by specific reversible reactions between cell membrane adhesion receptors and complementary ligands attached to the substratum. Although in a number of systems these receptors and ligand molecules have been isolated and identified, a theory capable of predicting the effects of their properties on cell migration behavior currently does not exist. We present a simple mathematical model for elucidating the dependence of cell speed on adhesion-receptor/ligand binding and cell mechanical properties. Our model can be applied to propose answers to questions such as: does an optimal adhesiveness exist for cell movement? How might changes in receptor and ligand density and/or affinity affect the rate of migration? Can cell rheological properties influence movement speed? This model incorporates cytoskeletal force generation, cell polarization, and dynamic adhesion as requirements for persistent cell movement. A critical feature is the proposed existence of an asymmetry in some cell adhesion-receptor property, correlated with cell polarity. We consider two major alternative mechanisms underlying this asymmetry: (a) a spatial distribution of adhesion-receptor number due to polarized endocytic trafficking and (b) a spatial variation in adhesion-receptor/ligand bond strength. Applying a viscoelastic-solid model for cell mechanics allows us to represent one-dimensional locomotion with a system of differential equations describing cell deformation and displacement along with adhesion-receptor dynamics. In this paper, we solve these equations under the simplifying assumption that receptor dynamics are at a quasi-steady state relative to cell locomotion. Thus, our results are strictly valid for sufficiently slow cell movement, as typically observed for tissue cells such as fibroblasts. Numerical examples relevant to experimental systems are provided. Our results predict how cell speed might

  10. Human recombinant granulocyte-macrophage colony-stimulating factor increases cell-to-cell adhesion and surface expression of adhesion-promoting surface glycoproteins on mature granulocytes.

    PubMed Central

    Arnaout, M A; Wang, E A; Clark, S C; Sieff, C A

    1986-01-01

    Human granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to inhibit migration of mature granulocytes and to enhance their antibody-dependent cellular cytotoxicity. We found that human recombinant GM-CSF also enhanced granulocyte-granulocyte adhesion and increased by two- to threefold the surface expression of Mo1 and LeuM5 (P150, 95), two members of a family of leukocyte adhesion molecules (Leu-CAM). Increased Mo1 surface expression occurred within 15 min at 37 degrees C and was maximal at the migration inhibitory concentration of 500 pM. One-half maximal rise in the expression of Mo1 on the cell surface occurred at 5 pM. The chemotactic peptide f-Met-Leu-Phe produced a comparable rise in surface Mo1 with one-half maximal expression occurring at 7 nM. Both GM-CSF and f-Met-Leu-Phe produced optimal granulocyte-granulocyte adhesion at 500 pM and 100 nM, respectively. This adhesion-promoting effect induced by either stimulus was inhibited by a mouse monoclonal antibody directed against Mo1 antigen. These data indicate that GM-CSF promotes cell-to-cell adhesion, presumably through enhanced expression of leukocyte adhesion molecules. This mechanism may explain, in part, the known effects of GM-CSF on the function of mature granulocytes. Images PMID:3090106

  11. Cycle life test of secondary spacecraft cells

    NASA Astrophysics Data System (ADS)

    Harkness, J. D.

    1980-04-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  12. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  13. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment

    PubMed Central

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S.; Romaguera, Jorge; McCarty, Nami

    2016-01-01

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  14. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment.

    PubMed

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S; Romaguera, Jorge; McCarty, Nami

    2016-03-22

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  15. A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces.

    PubMed

    Kim, Young Jick; Shin, Jung-Woog; Park, Ki Dong; Lee, Jin Woo; Yui, Nobuhiko; Park, Su-A; Jee, Kyoung Soo; Kim, Jeong Koo

    2003-01-01

    The mechanism of cell adhesion to biomaterials or components of the extracellular matrix is an important topic in the field of tissue engineering and related biotechnological processes. Many factors affect cell adhesion, and many biochemical and biological studies have attempted to identify their roles in the adhesion mechanism. Systematic studies of this nature require quantification of the adhesive force of a cell to identify the effect of a specific factor. However, most studies of cell adhesive force have used qualitative approaches. We propose a new technique for quantifying the force by which cells adhere to various biomaterial surfaces, which utilizes the relationship between the deflection of a cantilever beam and the required force. A micropipette was used as the cantilever beam. This technique was used to measure the attachment forces of chondrocytes seeded on three different biodegradable polymers commonly used in tissue engineering and medicine: poly epsilon-carprolactone (PCL), poly(L-lactide) (PLLA) and poly(lactic-co-glycolic acid) (PGLA, L/G = 75:25). The bond between the cells and the three polymers was evaluated using the quantified adhesive forces. The adhesive forces were also measured 8, 12, 24 h and 5 days after seeding the chondrocytes on the polymer surfaces. Results of statistical analysis showed that the cells attached to the PLLA had the strongest average attachment force for up to 24 h after seeding (P < 0.05). PMID:14870936

  16. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  17. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  18. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  19. Improved Gene Targeting through Cell Cycle Synchronization

    PubMed Central

    Tsakraklides, Vasiliki; Brevnova, Elena; Stephanopoulos, Gregory; Shaw, A. Joe

    2015-01-01

    Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications. PMID:26192309

  20. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    PubMed

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. PMID:26952425

  1. Flavonoids: from cell cycle regulation to biotechnology.

    PubMed

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC). PMID:15834800

  2. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation.

    PubMed

    Ben-Mahdi, Meriem H; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; O'Dowd, Yvonne; El-Benna, Jamel; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  3. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  4. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation

    PubMed Central

    Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  5. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  6. Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Hongrui; Molino, Paul J.; Wallace, Gordon G.; Higgins, Michael J.

    2015-09-01

    Single Cell Force Spectroscopy was combined with Electrochemical-AFM to quantify the adhesion between live single cells and conducting polymers whilst simultaneously applying a voltage to electrically switch the polymer from oxidized to reduced states. The cell-conducting polymer adhesion represents the non-specific interaction between cell surface glycocalyx molecules and polymer groups such as sulfonate and dodecylbenzene groups, which rearrange their orientation during electrical switching. Single cell adhesion significantly increases as the polymer is switched from an oxidized to fully reduced state, indicating stronger cell binding to sulfonate groups as opposed to hydrophobic groups. This increase in single cell adhesion is concomitant with an increase in surface hydrophilicity and uptake of cell media, driven by cation movement, into the polymer film during electrochemical reduction. Binding forces between the glycocalyx and polymer surface are indicative of molecular-level interactions and during electrical stimulation there is a decrease in both the binding force and stiffness of the adhesive bonds. The study provides insight into the effects of electrochemical switching on cell adhesion at the cell-conducting polymer interface and is more broadly applicable to elucidating the binding of cell adhesion molecules in the presence of electrical fields and directly at electrode interfaces.

  7. Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy.

    PubMed

    Zhang, Hongrui; Molino, Paul J; Wallace, Gordon G; Higgins, Michael J

    2015-01-01

    Single Cell Force Spectroscopy was combined with Electrochemical-AFM to quantify the adhesion between live single cells and conducting polymers whilst simultaneously applying a voltage to electrically switch the polymer from oxidized to reduced states. The cell-conducting polymer adhesion represents the non-specific interaction between cell surface glycocalyx molecules and polymer groups such as sulfonate and dodecylbenzene groups, which rearrange their orientation during electrical switching. Single cell adhesion significantly increases as the polymer is switched from an oxidized to fully reduced state, indicating stronger cell binding to sulfonate groups as opposed to hydrophobic groups. This increase in single cell adhesion is concomitant with an increase in surface hydrophilicity and uptake of cell media, driven by cation movement, into the polymer film during electrochemical reduction. Binding forces between the glycocalyx and polymer surface are indicative of molecular-level interactions and during electrical stimulation there is a decrease in both the binding force and stiffness of the adhesive bonds. The study provides insight into the effects of electrochemical switching on cell adhesion at the cell-conducting polymer interface and is more broadly applicable to elucidating the binding of cell adhesion molecules in the presence of electrical fields and directly at electrode interfaces. PMID:26335299

  8. Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy

    PubMed Central

    Zhang, Hongrui; Molino, Paul J.; Wallace, Gordon G.; Higgins, Michael J.

    2015-01-01

    Single Cell Force Spectroscopy was combined with Electrochemical-AFM to quantify the adhesion between live single cells and conducting polymers whilst simultaneously applying a voltage to electrically switch the polymer from oxidized to reduced states. The cell-conducting polymer adhesion represents the non-specific interaction between cell surface glycocalyx molecules and polymer groups such as sulfonate and dodecylbenzene groups, which rearrange their orientation during electrical switching. Single cell adhesion significantly increases as the polymer is switched from an oxidized to fully reduced state, indicating stronger cell binding to sulfonate groups as opposed to hydrophobic groups. This increase in single cell adhesion is concomitant with an increase in surface hydrophilicity and uptake of cell media, driven by cation movement, into the polymer film during electrochemical reduction. Binding forces between the glycocalyx and polymer surface are indicative of molecular-level interactions and during electrical stimulation there is a decrease in both the binding force and stiffness of the adhesive bonds. The study provides insight into the effects of electrochemical switching on cell adhesion at the cell-conducting polymer interface and is more broadly applicable to elucidating the binding of cell adhesion molecules in the presence of electrical fields and directly at electrode interfaces. PMID:26335299

  9. Cell cycle-specific effects of lovastatin.

    PubMed Central

    Jakóbisiak, M; Bruno, S; Skierski, J S; Darzynkiewicz, Z

    1991-01-01

    Lovastatin (LOV), the drug recently introduced to treat hypercholesteremia, inhibits the synthesis of mevalonic acid. The effects of LOV on the cell cycle progression of the human bladder carcinoma T24 cell line expressing activated p21ras were investigated. At a concentration of 2-10 microM, LOV arrested cells in G1 and also prolonged--or arrested a minor fraction of cells in--the G2 phase of the cell cycle; at a concentration of 50 microM, LOV was cytotoxic. The cytostatic effects were reversed by addition of exogenous mevalonate. Cells arrested in the cycle by LOV were viable for up to 72 hr and did not show any changes in RNA or protein content or chromatin condensation, which would be typical of either unbalanced growth or deep quiescence. The expression of the proliferation-associated nuclear proteins Ki-67 and p105 in these cells was reduced by up to 72% and 74%, respectively, compared with exponentially growing control cells. After removal of LOV, the cells resumed progression through the cycle; they entered S phase asynchronously after a lag of approximately 6 hr. Because mevalonate is essential for the posttranslational modification (isoprenylation) of p21ras, which in turn allows this protein to become attached to the cell membrane, the data suggest that the LOV-induced G1 arrest may be a consequence of the loss of the signal transduction capacity of p21ras. Indeed, while exposure of cells to LOV had no effect on the cellular content of p21ras (detected immunocytochemically), it altered the intracellular location of this protein, causing its dissociation from the cell membrane and translocation toward the cytoplasm and nucleus. However, it is also possible that inhibition of isoprenylation of proteins other than p21ras (e.g., nuclear lamins) by LOV may be responsible for the observed suppression of growth of T24 cells. Images PMID:1673788

  10. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  11. Mass spectrometry assisted lithography for the patterning of cell adhesion ligands on self-assembled monolayers.

    PubMed

    Kim, Young-Kwan; Ryoo, Soo-Ryoon; Kwack, Sul-Jin; Min, Dal-Hee

    2009-01-01

    Pattern of events: A simple and flexible method has been developed for patterning cell adhesion ligands. Locally erasing self-assembled monolayers with tri(ethyleneglycol) groups on a gold substrate by using a MALDI-TOF MS nitrogen laser and filling the exposed gold surface with an alkanethiol presenting carboxylic acid groups enables subsequent immobilization of maleimide and a cell adhesion peptide, which can then recognize cells (see scheme). PMID:19347909

  12. LRP-1–CD44, a New Cell Surface Complex Regulating Tumor Cell Adhesion

    PubMed Central

    Perrot, Gwenn; Langlois, Benoit; Devy, Jérôme; Jeanne, Albin; Verzeaux, Laurie; Almagro, Sébastien; Sartelet, Hervé; Hachet, Cathy; Schneider, Christophe; Sick, Emilie; David, Marion; Khrestchatisky, Michel; Emonard, Hervé; Martiny, Laurent

    2012-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. In the field of cancer, LRP-1-mediated endocytosis was first associated with antitumor properties. However, recent results suggested that LRP-1 may coordinate the adhesion-deadhesion balance in malignant cells to support tumor progression. Here, we observed that LRP-1 silencing or RAP (receptor-associated protein) treatment led to accumulation of CD44 at the tumor cell surface. Moreover, we evidenced a tight interaction between CD44 and LRP-1, not exclusively localized in lipid rafts. Overexpression of LRP-1-derived minireceptors indicated that the fourth ligand-binding cluster of LRP-1 is required to bind CD44. Labeling of CD44 with EEA1 and LAMP-1 showed that internalized CD44 is routed through early endosomes toward lysosomes in a LRP-1-dependent pathway. LRP-1-mediated internalization of CD44 was highly reduced under hyperosmotic conditions but poorly affected by membrane cholesterol depletion, revealing that it proceeds mostly via clathrin-coated pits. Finally, we demonstrated that CD44 silencing abolishes RAP-induced tumor cell attachment, revealing that cell surface accumulation of CD44 under LRP-1 blockade is mainly responsible for the stimulation of tumor cell adhesion. Altogether, our data shed light on the LRP-1-mediated internalization of CD44 that appeared critical to define the adhesive properties of tumor cells. PMID:22711991

  13. Dissecting the Impact of Matrix Anchorage and Elasticity in Cell Adhesion

    PubMed Central

    Pompe, Tilo; Glorius, Stefan; Bischoff, Thomas; Uhlmann, Ina; Kaufmann, Martin; Brenner, Sebastian; Werner, Carsten

    2009-01-01

    Abstract Extracellular matrices determine cellular fate decisions through the regulation of intracellular force and stress. Previous studies suggest that matrix stiffness and ligand anchorage cause distinct signaling effects. We show herein how defined noncovalent anchorage of adhesion ligands to elastic substrates allows for dissection of intracellular adhesion signaling pathways related to matrix stiffness and receptor forces. Quantitative analysis of the mechanical balance in cell adhesion using traction force microscopy revealed distinct scalings of the strain energy imparted by the cells on the substrates dependent either on matrix stiffness or on receptor force. Those scalings suggested the applicability of a linear elastic theoretical framework for the description of cell adhesion in a certain parameter range, which is cell-type-dependent. Besides the deconvolution of biophysical adhesion signaling, site-specific phosphorylation of focal adhesion kinase, dependent either on matrix stiffness or on receptor force, also demonstrated the dissection of biochemical signaling events in our approach. Moreover, the net contractile moment of the adherent cells and their strain energy exerted on the elastic substrate was found to be a robust measure of cell adhesion with a unifying power-law scaling exponent of 1.5 independent of matrix stiffness. PMID:19843448

  14. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  15. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  16. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  17. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  18. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  19. Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms.

    PubMed

    Casazza, Andrea; Fazzari, Pietro; Tamagnone, Luca

    2007-01-01

    Cell migration is pivotal in embryo development and in the adult. During development a wide range of progenitor cells travel over long distances before undergoing terminal differentiation. Moreover, the morphogenesis of epithelial tissues and of the cardiovascular system involves remodelling compact cell layers and sprouting of new tubular branches. In the adult, cell migration is essential for leucocytes involved in immune response. Furthermore, invasive and metastatic cancer cells have the distinctive ability to overcome normal tissue boundaries, travel in and out of blood vessels, and settle down in heterologous tissues. Cell migration normally follows strict guidance cues, either attractive, or inhibitory and repulsive. Semaphorins are a wide family of signals guiding cell migration during development and in the adult. Recent findings have established that semaphorin receptors, the plexins, govern cell migration by regulating integrin-based cell substrate adhesion and actin cytoskeleton dynamics, via specific monomeric GTPases. Plexins furthermore recruit tyrosine kinases in receptor complexes, which allows switching between multiple signaling pathways and functional outcomes. In this article, we will review the functional role of semaphorins in cell migration and the implicated molecular mechanisms controlling cell adhesion. PMID:17607949

  20. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  1. K+ channels and cell cycle progression in tumor cells

    PubMed Central

    Ouadid-Ahidouch, Halima; Ahidouch, Ahmed

    2013-01-01

    K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controlling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate. PMID:23970866

  2. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids. PMID:16515531

  3. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  4. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Holoubek, Aleš; Röselová, Pavla; Obr, Adam

    2014-01-01

    P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport. PMID:24664099

  5. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    PubMed

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus. PMID:12903721

  6. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  7. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    PubMed Central

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre, Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed. PMID:20471976

  8. Cell Cycle Regulation of DNA Replication

    PubMed Central

    Sclafani, R. A.; Holzen, T. M.

    2008-01-01

    Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of pre-replication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage. PMID:17630848

  9. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation

    PubMed Central

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  10. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation.

    PubMed

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G₀-G₁ phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  11. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    PubMed

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. PMID:22609942

  12. α-Tocopheryl Succinate as a Scaffold to Develop Potent Inhibitors of Breast Cancer Cell Adhesion

    PubMed Central

    Wang, Dasheng; Chuang, Hsiao-Ching; Weng, Shu-Chuan; Huang, Po-Hsien; Hsieh, Hao-Yu; Kulp, Samuel K.; Chen, Ching-Shih

    2009-01-01

    This study is aimed at the pharmacological exploitation of α-tocopheryl succinate (1) to develop potent anti-adhesion agents. Considering the structural cooperativity between the phytyl chain and the carboxylic terminus in determining the anti-adhesion activity, our structural optimization led to compound 5 ([2-(4,8-dimethyl-non-1-enyl)-2,5,7,8-tetramethyl-chroman-6-yloxy]-acetic acid), which exhibited an-order-of-magnitude higher potency than 1 in blocking the adhesion of 4T1 metastatic breast cancer cells to extracellular matrix proteins (IC50, 0.6 μM versus 10 μM). Evidence indicates that the ability of compound 5 to block cell adhesion and migration was attributable to its effect on disrupting focal adhesion and actin cytoskeletal integrity by facilitating the degradation of focal adhesion kinase. Interactions between tumor cells and the ECM in the tumor microenvironment have been increasingly recognized as critical modulators of the metastatic potential of tumor cells. Consequently, the ability of compound 5 to block such interactions provides a unique pharmacological tool to shed light onto mechanisms that govern cell adhesion and tumor metastasis. PMID:19708661

  13. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    PubMed

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. PMID:27040256

  14. Enhanced fibroblast cell adhesion on Al/Al2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Aktas, O. C.; Sander, M.; Miró, M. M.; Lee, J.; Akkan, C. K.; Smail, H.; Ott, A.; Veith, M.

    2011-02-01

    Biological cells stick together via transmembrane proteins, which are linked to receptor molecules of the extracellular matrix (ECM). This specific biochemical adhesion plays a leading role in many cellular processes, among them cell differentiation, morphogenesis, and wound healing. Various medical applications require endogen cells to bind to an exogene substrate as in the case of an implant. Coatings with proteins that naturally belong to the ECM are known to enhance the cell adhesion. However, the choice of inorganic materials, which promote cell adhesion, is limited. Here, we report on a new engineered surface composed of Al/Al2O3 bi-phasic nanowires (NWs), which promotes the adhesion of fibroblast cells. Fibroblasts grow well on this inorganic layer and keep proliferating. Using the cell monolayer rheology (CMR) technique, we show that the adhesion of fibroblasts on Al/Al2O3 NWs is comparable to fibronectin coated surfaces. To our knowledge, this is one of the strongest cell adhesions on an inorganic surface, which has been reported on so far, since it compares to bio-organic layers such as fibronectin.

  15. Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized microchannel

    NASA Astrophysics Data System (ADS)

    Siu-Lun Cheung, Luthur; Zheng, Xiangjun; Wang, Lian; Baygents, James C.; Guzman, Roberto; Schroeder, Joyce A.; Heimark, Ronald L.; Zohar, Yitshak

    2011-05-01

    The adhesion dynamics of circulating tumor cells in a bio-functionalized microchannel under hydrodynamic loading is explored experimentally and analyzed theoretically. EpCAM antibodies are immobilized on the microchannel surface to specifically capture EpCAM-expressing target breast cancer cells MDA-MB-231 from a homogeneous cell suspension in shear flow. In the cross-stream direction, gravity is the dominant physical mechanism resulting in continuous interaction between the EpCAM cell receptors and the immobilized surface anti-EpCAM ligands. Depending on the applied shear rate, three dynamic states have been characterized: firm adhesion, rolling adhesion and free rolling. The steady-state velocity under adhesion- and free-rolling conditions as well as the time-dependent velocity in firm adhesion has been characterized experimentally, based on video recordings of target cell motion in functionalized microchannels. A previously reported theoretical model, utilizing a linear spring to represent the specific receptor-ligand bonds, has been adopted to analyze adhesion dynamics including features such as the cell-surface binding force and separation gap. By fitting theoretical predictions to experimental measurements, a unified exponential decay function is proposed to describe the target cell velocity evolution during capture; the fitting parameters, velocity and time scales, depend on the particular cell-surface system.

  16. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker.

    PubMed

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-01

    Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially. PMID:21510921

  17. Cell cycle checkpoint regulators reach a zillion

    PubMed Central

    Yasutis, Kimberly M.; Kozminski, Keith G.

    2013-01-01

    Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered. PMID:23598718

  18. Potassium channels in cell cycle and cell proliferation

    PubMed Central

    Urrego, Diana; Tomczak, Adam P.; Zahed, Farrah; Stühmer, Walter; Pardo, Luis A.

    2014-01-01

    Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression. PMID:24493742

  19. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  20. Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease

    PubMed Central

    Gutsaeva, Diana R.; Parkerson, James B.; Yerigenahally, Shobha D.; Kurz, Jeffrey C.; Schaub, Robert G.; Ikuta, Tohru

    2011-01-01

    Adhesive interactions between circulating sickle red blood cells (RBCs), leukocytes, and endothelial cells are major pathophysiologic events in sickle cell disease (SCD). To develop new therapeutics that efficiently inhibit adhesive interactions, we generated an anti–P-selectin aptamer and examined its effects on cell adhesion using knockout-transgenic SCD model mice. Aptamers, single-stranded oligonucleotides that bind molecular targets with high affinity and specificity, are emerging as new therapeutics for cardiovascular and hematologic disorders. In vitro studies found that the anti–P-selectin aptamer exhibits high specificity to mouse P-selectin but not other selectins. SCD mice were injected with the anti–P-selectin aptamer, and cell adhesion was observed under hypoxia. The anti–P-selectin aptamer inhibited the adhesion of sickle RBCs and leukocytes to endothelial cells by 90% and 80%, respectively. The anti–P-selectin aptamer also increased microvascular flow velocities and reduced the leukocyte rolling flux. SCD mice treated with the anti–P-selectin aptamer demonstrated a reduced mortality rate associated with the experimental procedures compared with control mice. These results demonstrate that anti–P-selectin aptamer efficiently inhibits the adhesion of both sickle RBCs and leukocytes to endothelial cells in SCD model mice, suggesting a critical role for P-selectin in cell adhesion. Anti–P-selectin aptamer may be useful as a novel therapeutic agent for SCD. PMID:20926770

  1. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  2. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells.

    PubMed

    Chauvière, G; Coconnier, M H; Kernéis, S; Fourniat, J; Servin, A L

    1992-08-01

    Twenty-five strains of lactobacilli were tested for their ability to adhere to human enterocyte-like Caco-2 cells in culture. Seven Lactobacillus strains adhered well to the Caco-2 cells, of which three possessed calcium-independent adhesion properties. A high level of calcium-independent adhesion was observed with the human stool isolate Lactobacillus acidophilus strain LB. Scanning electron microscopy revealed that this strain adhered to the apical brush border of the cells. Adhesion increased in parallel with the morphological and functional differentiation of the Caco-2 cells. Two Lactobacillus components were involved in this adhesion. One was protease-resistant and bacterial-surface-associated; the other was heat-stable, extracellular and protease-sensitive. PMID:1527509

  3. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation.

    PubMed

    Hashimoto-Tane, Akiko; Sakuma, Machie; Ike, Hiroshi; Yokosuka, Tadashi; Kimura, Yayoi; Ohara, Osamu; Saito, Takashi

    2016-07-25

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro-adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro-adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro-adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro-adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals. PMID:27354546

  4. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration.

    PubMed

    Machiyama, Hiroaki; Hirata, Hiroaki; Loh, Xia Kun; Kanchi, Madhu Mathi; Fujita, Hideaki; Tan, Song Hui; Kawauchi, Keiko; Sawada, Yasuhiro

    2014-08-15

    Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton. PMID:24928898

  5. Distinct Roles of Frontal and Rear Cell-Substrate Adhesions in Fibroblast MigrationV⃞

    PubMed Central

    Munevar, Steven; Wang, Yu-li; Dembo, Micah

    2001-01-01

    Cell migration involves complex physical and chemical interactions with the substrate. To probe the mechanical interactions under different regions of migrating 3T3 fibroblasts, we have disrupted cell-substrate adhesions by local application of the GRGDTP peptide, while imaging stress distribution on the substrate with traction force microscopy. Both spontaneous and GRGDTP-induced detachment of the trailing edge caused extensive cell shortening, without changing the overall level of traction forces or the direction of migration. In contrast, disruption of frontal adhesions caused dramatic, global loss of traction forces before any significant shortening of the cell. Although traction forces and cell migration recovered within 10–20 min of transient frontal treatment, persistent treatment with GRGDTP caused the cell to develop traction forces elsewhere and reorient toward a new direction. We conclude that contractile forces of a fibroblast are transmitted to the substrate through two distinct types of adhesions. Leading edge adhesions are unique in their ability to transmit active propulsive forces. Their functions cannot be transferred directly to existing adhesions upon detachment. Trailing end adhesions create passive resistance during cell migration and readily redistribute their loads upon detachment. Our results indicate the distinct nature of mechanical interactions at the leading versus trailing edges, which together generate the mechanical interactions for fibroblast migration. PMID:11739792

  6. Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.

    PubMed

    Chen, Bin; Gao, Huajian

    2010-05-19

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tension is to shift the interfacial failure mode from cracklike propagation toward uniform bond failure within the contact region, thereby greatly increasing the adhesion lifetime. Since stress fibers are the primary load-bearing components of cells, as well as the basic functional units of cytoskeleton that facilitate cell adhesion, this study suggests a feasible mechanism by which cell adhesion could be actively controlled via cytoskeletal contractility and proposes that pre-tension may be a general principle in biological adhesion. PMID:20483323

  7. Effects of Adhesion Dynamics and Substrate Compliance on the Shape and Motility of Crawling Cells

    PubMed Central

    Ziebert, Falko; Aranson, Igor S.

    2013-01-01

    Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate’s elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes. PMID:23741334

  8. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells.

    PubMed

    Altamimi, M; Abdelhay, O; Rastall, R A

    2016-06-01

    The influence of five oligosaccharides (cellobiose, stachyose, raffinose, lactulose and chito-oligosaccharides) on the adhesion of eight gut bacteria (Bifidobacterium bifidum ATCC 29521, Bacteroides thetaiotaomicron ATCC 29148D-5, Clostridium leptum ATCC 29065, Blautia coccoides ATCC 29236, Faecalibacterium prausnitzii ATCC 27766, Bacteroides fragilis ATCC 23745, Clostridium difficile ATCC 43255 and Lactobacillus casei ATCC 393) to mucous secreting and non-mucous secreting HT-29 human epithelial cells, was investigated. In pure culture, the bacteria showed variations in their ability to adhere to epithelial cells. The effect of oligosaccharides diminished adhesion and the presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. However, clostridia displayed almost the same level of adhesion either with or without mucus being present. Bl. coccoides adhesion was decreased by stachyose and cellobiose in non-mucus-secreting cells in pure culture, while in mixed faecal culture cellobiose displayed the highest antiadhesive activity with an overall average of 65% inhibition amongst tested oligomers and lactulose displayed the lowest with an average of 47.4%. Bifidobacteria, Bacteroides, lactobacilli and clostridia were inhibited within the following ranges 47-78%, 32-65%, 11.7-58% and 64-85% respectively. This means that clostridia were the most strongly influenced members of the microflora amongst the bacterial groups tested in mixed culture. In conclusion, introducing oligosaccharides which are candidate prebiotics into pure or mixed cultures has affected bacterial adhesion. PMID:27018325

  9. CCN3 (NOV) regulates proliferation, adhesion, migration and invasion in clear cell renal cell carcinoma

    PubMed Central

    LIU, SHUAI; LIU, ZHENG; BI, DONGBIN; YUAN, XAODONG; LIU, XIAOWEN; DING, SENTAI; LU, JIAJU; NIU, ZHIHONG

    2012-01-01

    The CCN3/nephroblastoma overexpressed gene belongs to the CCN family of genes that encode secreted proteins involved in a variety of processes including tumorigenesis. Altered expression of CCN3 has been observed in human nephroblastoma and renal cell carcinoma (RCC), suggesting that CCN3 plays a role in kidney tumorigenesis. The aim of the present study was to examine the role of CCN3 in clear cell RCC biology. In particular, we studied the expression of CCN3 in 32 pairs of RCC tissues and corresponding normal kidney tissues using immunohistochemistry. The CCN3 gene was transfected into the 786-O cell line and the behaviors of stably transfected clones were analyzed. Results showed the expression of CCN3 was lower in RCC tissues compared to corresponding normal kidney tissues and the expression of CCN3 was inversely correlated with the Ki67 index. CCN3-expressing clones exhibited significantly inhibited cell proliferation. Furthermore, CCN3-transfected 786-O cells exhibited increased adhesion to extracellular matrix proteins, migration and invasion in Matrigel. Our data indicated that CCN3 plays an anti-proliferative role in clear cell RCC cells and promotes the adhesion, migration and invasion of clear cell RCC cells. PMID:22783399

  10. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  11. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  12. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  13. Mechanically Induced Focal Adhesion Assembly Amplifies Anti-Adipogenic Pathways in Mesenchymal Stem Cells

    PubMed Central

    Sen, Buer; Guilluy, Christophe; Xie, Zhihui; Case, Natasha; Styner, Maya; Thomas, Jacob; Oguz, Ipek; Rubin, Clinton; Burridge, Keith; Rubin, Janet

    2013-01-01

    The fate of pluripotent mesenchymal stem cells (MSC) is determined through integration of chemical, spatial, and physical signals. The suppression of MSC adipogenesis by mechanical stimuli, which requires Akt-induced inhibition of glycogen synthase kinase 3β (GSK3β) with β-catenin activation, can be enhanced by repetitive dosing within a single day. Here, we demonstrate that reapplication of cyclic strain within a 24-hour period leads to amplification of both Akt activation and its subsequent inhibition of GSK3β, such that total cycle number can be reduced while still inhibiting adipogenesis. Amplification of Akt signaling is facilitated by a dynamic restructuring of the cell in response to mechanical signals, as evidenced by a transient increase in focal adhesion (FA) number and increased RhoA activity. Preventing FA assembly or development of tension blocks activation of Akt by mechanical signals, but not by insulin. This indicates that the FA infrastructure is essential to the physical, but not necessarily the chemical, sensitivity, and responsiveness of the cell. Exploiting the transient nature of cytoskeletal remodeling may represent a process to enhance cell responsiveness to mechanical input and ultimately define the fate of MSCs with a minimal input. PMID:21898699

  14. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. PMID:27137802

  15. Switching first contact: photocontrol of E. coli adhesion to human cells.

    PubMed

    Möckl, L; Müller, A; Bräuchle, C; Lindhorst, T K

    2016-01-21

    We have shown previously that carbohydrate-specific bacterial adhesion to a non-physiological surface can be photocontrolled by reversible E/Z isomerisation using azobenzene-functionalised sugars. Here, this approach is applied to the surface of human cells. We show not only that bacterial adhesion to the azobenzene glycoside-modified cell surface is higher in the E than in the Z state, but add data about the specific modulation of the effect. PMID:26612767

  16. The cell cycle and acute kidney injury

    PubMed Central

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury. PMID:19536080

  17. Control points within the cell cycle

    SciTech Connect

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  18. Knockdown of Sec6 improves cell-cell adhesion by increasing α-E-catenin in oral cancer cells.

    PubMed

    Tanaka, Toshiaki; Iino, Mituyoshi; Goto, Kaoru

    2012-03-23

    The Sec6/8 complex is essential for specific exocytic sites on the plasma membrane and contributes to membrane growth in mammalian cells. In Madin-Darby canine kidney (MDCK) cells, E-cadherin and nectin-based adhesion complexes recruit the Sec6/8 complex to intercellular contacts. However, in cancer cells, the relationship between the Sec6/8 complex and the cell-cell adhesion proteins remains obscure. We demonstrate that the expression of α-E-catenin is increased by Sec6 siRNAs, and E-cadherin and β-catenin localize mainly at the cell-cell contact region in HSC3 cells, which were transfected with Sec6 siRNA. PMID:22381337

  19. Tumor suppressor Lzap regulates cell cycle progression, doming and zebrafish epiboly

    PubMed Central

    Liu, Dan; Wang, Wen-Der; Melville, David B.; Cha, Yong I.; Yin, Zhirong; Issaeva, Natalia; Knapik, Ela W.; Yarbrough, Wendell G.

    2012-01-01

    Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly – the earliest morphogenetic movement in animal development – which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation. PMID:21523853

  20. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay

    PubMed Central

    White, Jennell; Lancelot, Moira; Sarnaik, Sharada; Hines, Patrick

    2015-01-01

    Abstract Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60–120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow. PMID:24898561

  1. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    PubMed Central

    Marques, Márcia Martins

    2015-01-01

    Background. We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2). After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey's test (P < 0.05). Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives. PMID:25879065

  2. KIF17 regulates RhoA-dependent actin remodeling at epithelial cell-cell adhesions.

    PubMed

    Acharya, Bipul R; Espenel, Cedric; Libanje, Fotine; Raingeaud, Joel; Morgan, Jessica; Jaulin, Fanny; Kreitzer, Geri

    2016-03-01

    The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell-cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP-actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell-cell adhesions to challenge with calcium depletion. Expression of these KIF17 constructs also increased cellular levels of active RhoA, whereas active RhoA was diminished in KIF17-depleted cells. Inhibition of RhoA or its effector ROCK, or expression of LIMK1 kinase-dead or activated cofilin(S3A) inhibited KIF17-induced junctional actin accumulation. Interestingly, KIF17 activity toward actin depends on the motor domain but is independent of microtubule binding. Together, these data show that KIF17 can modify RhoA-GTPase signaling to influence junctional actin and the stability of the apical junctional complex of epithelial cells. PMID:26759174

  3. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    PubMed Central

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Assoian, Richard K.; Rader, Daniel J.; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD44 to atherosclerosis, we bred CD44-null mice to atherosclerosis-prone apoE-deficient mice. We found a 50–70% reduction in aortic lesions in CD44-null mice compared with CD44 heterozygote and wild-type littermates. We demonstrate that CD44 promotes the recruitment of macrophages to atherosclerotic lesions. Furthermore, we show that CD44 is required for phenotypic dedifferentiation of medial smooth muscle cells to the “synthetic” state as measured by expression of VCAM-1. Finally, we demonstrate that hyaluronan, the principal ligand for CD44, is upregulated in atherosclerotic lesions of apoE-deficient mice and that the low-molecular-weight proinflammatory forms of hyaluronan stimulate VCAM-1 expression and proliferation of cultured primary aortic smooth muscle cells, whereas high-molecular-weight forms of hyaluronan inhibit smooth muscle cell proliferation. We conclude that CD44 plays a critical role in the progression of atherosclerosis through multiple mechanisms. PMID:11581304

  4. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis

    PubMed Central

    Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.

    2013-01-01

    Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330

  5. High-Resolution Quantification of Focal Adhesion Spatiotemporal Dynamics in Living Cells

    PubMed Central

    Hahn, Klaus M.; Gomez, Shawn M.

    2011-01-01

    Focal adhesions (FAs) are macromolecular complexes that provide a linkage between the cell and its external environment. In a motile cell, focal adhesions change size and position to govern cell migration, through the dynamic processes of assembly and disassembly. To better understand the dynamic regulation of focal adhesions, we have developed an analysis system for the automated detection, tracking, and data extraction of these structures in living cells. This analysis system was used to quantify the dynamics of fluorescently tagged Paxillin and FAK in NIH 3T3 fibroblasts followed via Total Internal Reflection Fluorescence Microscopy (TIRF). High content time series included the size, shape, intensity, and position of every adhesion present in a living cell. These properties were followed over time, revealing adhesion lifetime and turnover rates, and segregation of properties into distinct zones. As a proof-of-concept, we show how a single point mutation in Paxillin at the Jun-kinase phosphorylation site Serine 178 changes FA size, distribution, and rate of assembly. This study provides a detailed, quantitative picture of FA spatiotemporal dynamics as well as a set of tools and methodologies for advancing our understanding of how focal adhesions are dynamically regulated in living cells. A full, open-source software implementation of this pipeline is provided at http://gomezlab.bme.unc.edu/tools. PMID:21779367

  6. Heterogeneous Red Blood Cell Adhesion and Deformability in Sickle Cell Disease

    NASA Astrophysics Data System (ADS)

    Alapan, Yunus; Little, Jane A.; Gurkan, Umut A.

    2014-11-01

    We present a microfluidic approach that allows simultaneous interrogation of RBC properties in physiological flow conditions at a single cell level. With this method, we studied healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs using whole blood samples from twelve subjects. We report that HbS-containing RBCs are heterogeneous in terms of adhesion and deformability in flow.

  7. Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces.

    PubMed

    Narasimhan, Sri Kamesh; Sejwal, Preeti; Zhu, Shifa; Luk, Yan-Yeung

    2013-04-15

    Highly selective molecular binding and the subsequent dynamic protein assemblies control the adhesion of mammalian cells. Molecules that inhibit cell adhesion have the therapeutic potential for a wide range of diseases. Here, we report an efficient synthesis (2-4 steps) of a class of squaramide molecules that mimics the natural tripeptide ligand Arg-Gly-Asp (RGD) that mediates mammalian cell adhesion through binding with membrane protein integrin. In solution, this class of squaramides exhibits a higher potency at inhibiting mammalian cell adhesion than RGD tripeptides. When immobilized on a bio-inert background formed by self-assembled monolayers of alkanethiols on gold films, squaramide ligands mediate vastly different intracellular structures than RGD ligands. Immunostaining revealed that the focal adhesions are smaller, but with a larger quantity, for cells adhered on squaramides than that on RGD ligands. Furthermore, the actin filaments are also more fibrous and well distributed for cell adhesion mediated by squaramide than that by RGD ligands. Quantification reveal that squaramide ligands mediate about 1.5 times more total focal adhesion (measured by the summation of the area of all focal adhesions) than that by natural RGD ligands. This result suggests that cell adhesion inhibitors, while blocking the attachment of cells to surfaces, may induce more focal adhesion proteins. Finally, this work demonstrates that immobilizing new ligands on bioinert surfaces provide a powerful tool to study mammalian cell adhesion. PMID:23490157

  8. Mitochondrial dynamics and the cell cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  9. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  10. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability.

    PubMed

    Wong, Donald; Prameya, Rukmini; Dorovini-Zis, Katerina

    2007-03-01

    The mechanisms by which polymorphonuclear leukocytes (PMN) cross the human blood-brain barrier have not been fully elucidated. Using a well characterized in vitro model of the human BBB, we examined the role of endothelial cell adhesion molecules on the adhesion and transendothelial migration of PMN across primary cultures of human brain microvessel endothelial cells (HBMEC). A small number of PMN (0.06%) adhered to unstimulated HBMEC, and the basal adhesion was not affected by anti-adhesion molecule antibodies. Treatment of HBMEC with tumor necrosis factor (TNF)-alpha resulted in increased PMN adhesion that was significantly inhibited by blocking antibodies to E-selectin and ICAM-1, but not VCAM-1 or PECAM-1. A very small number of adherent PMN migrated across unstimulated HBMEC monolayers. Migration increased 2 to 20 fold following stimulation of HBMEC with TNF-alpha. Monoclonal antibody blocking studies showed that PMN used ICAM-1, but not VCAM-1, E-selectin or PECAM-1 to move across activated monolayers. Anti-adhesion molecule antibodies did not diminish the basal PMN migration. Ultrastructurally, PMN often aggregated on top and between adjacent endothelial cells and adhered by first extending pseudopodia along the apical endothelial surface. They then flattened and inserted themselves between endothelial cells in order to migrate across the monolayers. At the end of the migration period, the cultures resumed their continuity with no evidence of disruption. Transendothelial migration of PMN decreased the transendothelial electrical resistance and increased the permeability to horseradish peroxidase, which penetrated alongside the migrating leukocytes. A blocking antibody to ICAM-1 that greatly decreased migration, had no effect on the permeability changes. These studies provide insights into the mechanisms that regulate the entry of PMN into the brain and the increased permeability of the BBB in CNS inflammation. PMID:17291598

  11. Src kinase inhibitors induce apoptosis and mediate cell cycle arrest in lymphoma cells.

    PubMed

    Nowak, Daniel; Boehrer, Simone; Hochmuth, Simone; Trepohl, Bettina; Hofmann, Wencke; Hoelzer, Dieter; Hofmann, Wolf-Karsten; Mitrou, Paris S; Ruthardt, Martin; Chow, Kai Uwe

    2007-10-01

    Src kinases are involved in multiple cellular contexts such as proliferation, adhesion, tumor invasiveness, angiogenesis, cell cycle control and apoptosis. We here demonstrate that three newly developed dual selective Src/Abl kinase inhibitors (SrcK-I) (AZM559756, AZD0530 and AZD0424) are able to induce apoptosis and cell cycle arrest in BCR-ABL, c-KIT and platelet-derived growth factor-negative lymphoma cell lines. Treatment of DOHH-2, WSU-NHL, Raji, Karpas-299, HUT78 and Jurkat cells with SrcK-I revealed that the tested substances were effective on these parameters in the cell lines DOHH-2 and WSU-NHL, whereas the other tested cell lines remained unaffected. Phosphorylation of Lyn and in particular Lck were affected most heavily by treatment with the SrcK-I. Extrinsic as well as intrinsic apoptosis pathways were activated and elicited unique expressional patterns of apoptosis-relevant proteins such as downregulation of survivin, Bcl-XL and c-FLIP. Protein levels of c-abl were downregulated and Akt phosphorylation was decreased by treatment with SrcK-I. Basal expression levels of c-Myc were notably lower in sensitive cell lines as compared with nonsensitive cell lines, possibly providing an explanation for sensitivity versus resistance against these novel substances. This study provides the first basis for establishing novel SrcK-I as weapons in the arsenal against lymphoma cells. PMID:17704648

  12. Effect of hypoxia on integrin-mediated adhesion of endothelial progenitor cells

    PubMed Central

    Kaiser, Ralf; Friedrich, Denise; Chavakis, Emmanouil; Böhm, Michael; Friedrich, Erik B

    2012-01-01

    Homing of endothelial progenitor cells (EPCs) is crucial for neoangiogenesis, which might be negatively affected by hypoxia. We investigated the influence of hypoxia on fibronectin binding integrins for migration and cell-matrix-adhesion. AMP-activated kinase (AMPK) and integrin-linked kinase (ILK) were examined as possible effectors of hypoxia.Human EPCs were expanded on fibronectin (FN) and integrin expression was profiled by flow cytometry. Cell-matrix-adhesion- and migration-assays on FN were performed to examine the influence of hypoxia and AMPK-activation. Regulation of AMPK and ILK was shown by Western blot analysis. We demonstrate the presence of integrin β1, β2 and α5 on EPCs. Adhesion to FN is reduced by blocking β1 and α5 (49% and 2% of control, P < 0.05) whereas α4-blockade has no effect. Corresponding effects were shown for migration. Hypoxia and AMPK-activation decrease adhesion on FN. Although total AMPK-expression remains unchanged, phospho-AMPK increases eightfold.The EPCs require α5 for adhesion on FN. Hypoxia and AMPK-activation decrease adhesion. As α5 is the major adhesive factor for EPCs on FN, this suggests a link between AMPK and α5-integrins. We found novel evidence for a connection between hypoxia, AMPK-activity and integrin activity. This might affect the fate of EPCs in ischaemic tissue. PMID:22353471

  13. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels

    PubMed Central

    Yan, W. W.; Cai, B.

    2016-01-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30–50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method, and the tumor cell dynamics was governed by the Newton’s law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor celladhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10−2) laminar flow. PMID:21818636

  14. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion

    PubMed Central

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor

    2016-01-01

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN. PMID:26943029

  15. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  16. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals

    PubMed Central

    Lee, Jong-Gyu; Ahn, Ji-Hye; Jin Kim, Tae; Ho Lee, Jae; Choi, Jung-Hye

    2015-01-01

    Missense mutations in the TP53 gene resulting in the accumulation of mutant proteins are extremely common in advanced ovarian cancer, which is characterised by peritoneal metastasis. Attachment of cancer cells to the peritoneal mesothelium is regarded as an initial, key step for the metastatic spread of ovarian cancer. In the present study, we investigated the possible role of a p53 mutant in the mesothelial adhesion of ovarian cancer cells. We found that OVCAR-3 cells with the R248 TP53 mutation (p53R248) were more adhesive to mesothelial Met5A cells than were A2780 cells expressing wild-type p53. In addition, ectopic expression of p53R248 in p53-null SKOV-3 cells significantly increased adhesion to Met5A cells. Knockdown of mutant p53 significantly compromised p53R248-induced cell adhesion to Met5A cells. Microarray analysis revealed that several adhesion-related genes, including integrin β4, were markedly up-regulated, and certain signalling pathways, including PI3K/Akt, were activated in p53R248 transfectants of SKOV-3 cells. Inhibition of integrin β4 and Akt signalling using blocking antibody and the inhibitor LY294002, respectively, significantly attenuated p53R248-mediated ovarian cancer-mesothelial adhesion. These data suggest that the p53R248 mutant endows ovarian cancer cells with increased adhesiveness and that integrin β4 and Akt signalling are associated with the mutation-enhanced ovarian cancer-mesothelial cell adhesion. PMID:26223322

  17. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration

    PubMed Central

    Villari, Giulia; Jayo, Asier; Zanet, Jennifer; Fitch, Briana; Serrels, Bryan; Frame, Margaret; Stramer, Brian M.; Goult, Benjamin T.; Parsons, Maddy

    2015-01-01

    ABSTRACT Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin–microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease. PMID:26542021

  18. Shedding of APP limits its synaptogenic activity and cell adhesion properties

    PubMed Central

    Stahl, Ronny; Schilling, Sandra; Soba, Peter; Rupp, Carsten; Hartmann, Tobias; Wagner, Katja; Merdes, Gunter; Eggert, Simone; Kins, Stefan

    2014-01-01

    The amyloid precursor protein (APP) plays a central role in Alzheimer’s disease (AD) and has essential synapse promoting functions. Synaptogenic activity as well as cell adhesion properties of APP presumably depend on trans-cellular dimerization via its extracellular domain. Since neuronal APP is extensively processed by secretases, it raises the question if APP shedding affects its cell adhesion and synaptogenic properties. We show that inhibition of APP shedding using cleavage deficient forms of APP or a dominant negative α-secretase strongly enhanced its cell adhesion and synaptogenic activity suggesting that synapse promoting function of APP is tightly regulated by α-secretase mediated processing, similar to other trans-cellular synaptic adhesion molecules. PMID:25520622

  19. Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium

    PubMed Central

    Raimondo, Theresa; Puckett, Sabrina; Webster, Thomas J

    2010-01-01

    Mostly due to desirable mechanical properties (such as high durability and low wear), certain synthetic polymers (such as polyethylene) and metals (such as titanium) have found numerous applications in the medical device arena from orthopedics to the vasculature, yet frequently, they do not proactively encourage desirable cell responses. In an effort to improve the efficacy of such traditional materials for various implant applications, this study used electron beam evaporation to create nanostructured surface features that mimic those of natural tissue on polyethylene and titanium. For other materials, it has been shown that the creation of nanorough surfaces increases surface energy leading to greater select protein (such as vitronectin and fibronectin) interactions to increase specific cell adhesion. Here, osteoblast (bone forming cells) and endothelial cell (cells that line the vasculature) adhesion was determined on nanostructured compared to conventional, nano-smooth polyethylene and titanium. Results demonstrated that nanorough surfaces created by electron beam evaporation increased the adhesion of both cells markedly better than conventional smooth surfaces. In summary, this study provided evidence that electron beam evaporation can modify implant surfaces (specifically, polyethylene and titanium) to have nanostructured surface features to improve osteoblast and endothelial cell adhesion. Since the adhesion of anchorage dependent cells (such as osteoblasts and endothelial cells) is a prerequisite for their long-term functions, this study suggests that electron beam evaporation should be further studied for improving materials for various biomedical applications. PMID:20856840

  20. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  1. Impairment of lymphocyte adhesion to cultured fibroblasts and endothelial cells by [gamma]-irradiation

    SciTech Connect

    Piela-Smith, T.H.; Aneiro, L.; Nuveen, E.; Korn, J.H. ); Aune, T. )

    1992-01-01

    A critical component of immune responsiveness is the localization of effector cells at sites of inflammatory lesions. Adhesive molecules that may play a role in this process have been described on the surfaces of both lymphocytes and connective tissue cells. Adhesive interactions of T lymphocytes with fibroblasts or endothelial cells can be inhibited by preincubation of the fibroblasts or endothelial cells with antibody to intercellular adhesion molecule 1 (CD54) or by preincubation of the T cells with antibody to lymphocyte function-associated Ag 1 (CD11a/CD18), molecules shown to be important in several other cell-cell adhesion interactions. Here the authors show that [gamma]-irradiation of human T lymphocytes impaired their ability to adhere to both fibroblasts and endothelial cells. This impairment was not associated with a loss of cell viability or of cell surface lymphocyte function-associated Ag 1 expression. [gamma]-Irradiation of T cells is known to result in the activation of ADP-ribosyltransferase, an enzyme involved in DNA strand-break repair, causing subsequent depletion of cellular nicotinamide adenine dinucleotide (NAD) pools by increasing NAD consumption for poly(ADP-ribose) formation. Preincubation of T cells with either nicotinamide or 3-aminobenzamide, both known inhibitors of ADP-ribosyltransferase, completely reversed the suppressive effects of [gamma]-irradiation on T cell adhesion. The maintenance of adhesion was accompanied by inhibition of irradiation-induced depletion of cellular NAD. These experiments suggest that the impairment of cellular immune function after irradiation in vivo may be caused, in part, by defective T cell emigration and localization at inflammatory sites. 44 refs., 5 figs., 3 tabs.

  2. Influence of thermal and mechanical load cycling on microtensile bond strengths of total and self-etching adhesive systems.

    PubMed

    Mitsui, Fabio Hiroyuki Ogata; Peris, Alessandra Rezende; Cavalcanti, Andrea Nóbrega; Marchi, Giselle Maria; Pimenta, Luiz André Freire

    2006-01-01

    This study evaluated the influence of different thermal (TC) and mechanical (MC) cycling protocols on microtensile bond strength (muTBS) to cervical dentin margins of Class II restorations using two total-etch (TE) adhesives and one self-etching (SE) primer. Class II slot cavities were prepared on the mesial surfaces of 168 bovine incisors and were divided into three groups according to the bonding system used: Single Bond, OptiBond Solo Plus and Clearfil SE Bond. All cavities were restored with Filtek Z250 composite. Following restorative procedures, the restored teeth were allocated to seven subgroups (n = 8) according to the thermal/mechanical protocol performed: G1-control (no cycling), G2-100,000 MC, G3-200,000 MC, G4-500,000 MC, G5-100,000 MC+1,000 TC, G6-200,000 MC+1,000 TC, G7-500,000 MC+1,000 TC. TC was performed using 5 +/- 2 degrees C and 55 +/- 2 degrees C baths, with a dwell time of 60 seconds in each bath. MC was achieved with an axial force of 80 N at 2 cycles/second. The restorations were sectioned perpendicular to the cervical bonded interface into two 0.8-1-mm thick slabs. The slabs were trimmed at the interface to obtain a cross-sectional surface area of 0.8-1 mm2. All specimens were then subjected to muTBS (v = 0.5 mm/minute). Fracture mode analysis was performed using SEM. Bond strength mean values (MPa) were analyzed with ANOVA 3-way and Tukey's test (alpha = 5%). Dunnett's test was used to compare tested groups against Control groups of each adhesive system (alpha = 56%). SE primer presented lower mean bond strength values when compared to TE adhesives (p = 0.05). In addition, specimens restored with the SE primer did not resist to the 200,000 and 500,000 MC associated with TC. The application of 100,000 MC did not present a significant decrease in bond strength when compared to the control. Mixed failures were predominant for all groups. The higher the amount of thermal/mechanical cycles, the greater the number of mixed failures and the

  3. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion

    PubMed Central

    Dart, Anna E.; Box, Gary M.; Court, William; Gale, Madeline E.; Brown, John P.; Pinder, Sarah E.; Eccles, Suzanne A.

    2015-01-01

    P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration. PMID:26598620

  4. Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films.

    PubMed

    Blau, A; Weinl, C; Mack, J; Kienle, S; Jung, G; Ziegler, C

    2001-11-15

    New strategies for spatially controllable cell adhesion have been developed for brain cells from embryonic chicken. They are based on electrochemically active phenol and pyrrole derivatives, and can be used for the selective coverage of electroconductive substrates. Besides mimicking standard laminin-related adhesion promoting mechanisms by means of an electroactive monomer-linked 18-peptide segment from laminin (SRARKQAASIKVAVSADR), electrochemically generated thin (6-30 nm) polymer films of 3-hydroxybenzyl-hydrazine (3HBH) and 2-(3-hydroxyphenyl)-ethanol (2(3HP)E) with and without mechanically entrapped or covalently linked D-lysine have proved to promote cell adhesion in serum-free medium on indium-doped tin oxide (ITO) substrates during the first 6 culturing days in vitro. The effectiveness of the peptide was strongly density-dependent. Unexpectedly, laminin itself or a combination of laminin and poly-D-lysine (PDL) did not promote cell adhesion and neuron differentiation in serum-free cultures on ITO. However, they worked perfectly well on regular polystyrene substrates in serum-free medium or on ITO when medium with serum was used. This finding might suggest that the adhesion efficiency of laminin does not depend only on the kind of medium supplement but also on the type of substrate. In contrast, the adhesion-promoting properties of "artificial" polymeric films seemed to be based on a more direct cell-film interaction, with the film masking the substrate properties. PMID:11640959

  5. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  6. Indirect-fired gas turbine dual fuel cell power cycle

    SciTech Connect

    Micheli, P.L.; Williams, M.C.; Sudhoff, F.A.

    1998-04-01

    The present invention relates generally to an integrated fuel cell power plant, and more specifically to a combination of cycles wherein a first fuel cell cycle tops an indirect-fired gas turbine cycle and a second fuel cell cycle bottoms the gas turbine cycle so that the cycles are thermally integrated in a tandem operating arrangement. The United States Government has rights in this invention pursuant to the employer-employee relationship between the United States Department of Energy and the inventors.

  7. Surfactant Functionalization Induces Robust, Differential Adhesion of Tumor Cells and Blood Cells to Charged Nanotube-Coated Biomaterials Under Flow

    PubMed Central

    Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.

    2015-01-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. PMID:25934290

  8. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  9. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells.

    PubMed

    Yin, Lijuan; Fang, Fang; Song, Xinglei; Wang, Yan; Huang, Gaoxiang; Su, Jie; Hui, Ning; Lu, Jian

    2016-07-01

    Cell adhesion to extracellular matrix (ECM) is controlled by multiple signaling molecules and intracellular pathways, and is pivotal for survival and growth of cells from most solid tumors. Our previous works demonstrated that dexamethasone (DEX) significantly enhances cell adhesion and cell resistance to chemotherapeutics by increasing the levels of integrin β1, α4, and α5 in human ovarian cancer cells. However, it is unclear whether the components of ECM or other membrane molecules are also involved in the pro-adhesive effect of DEX in ovarian cancer cells. In this study, we demonstrated that the treatment of cells with DEX did not change the expression of collagens (I, III, and IV), laminin, CD44, and its principal ligand hyaluronan (HA), but significantly increased the levels of intracellular and secreted fibronectin (FN). Inhibiting the expression of FN with FN1 siRNA or blocking CD44, another FN receptor, with CD44 blocking antibody significantly attenuated the pro-adhesion of DEX, indicating that upregulation of FN mediates the pro-adhesive effect of DEX by its interaction with CD44 besides integrin β1. Moreover, DEX significantly enhanced cell resistance to the chemotherapeutic agent paclitaxel (PTX) by activating PI-3K-Akt pathway. Finally, we found that DEX also significantly upregulated the expression of MUC1, a transmembrane glycoprotein. Inhibiting the expression of MUC1 with MUC1 siRNA significantly attenuated the DEX-induced effects of pro-adhesion, Akt-activation, and pro-survival. In conclusion, these results provide new data that upregulation of FN and MUC1 by DEX contributes to DEX-induced pro-adhesion and protects ovarian cancer cells from chemotherapy. PMID:27151574

  10. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  11. Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events.

    PubMed

    Fotia, Caterina; Messina, Grazia M L; Marletta, Giovanni; Baldini, Nicola; Ciapetti, Gabriela

    2013-01-01

    Cells are surrounded by a hyaluronan-rich coat called 'pericellular matrix' (PCM), mainly constituted by hyaluronan, a long-chain linear polysaccharide which is secreted and resorbed by the cell, depending on its activity. Cell attachment to a surface is mediated by PCM before integrins and focal adhesions are involved. As hyaluronan is known to bear a negative charge at physiological pH, the relevance of its electrical properties in driving the early cell adhesion steps has been studied, exploring how PCM mediates cell adhesion to charged surfaces, such as polyelectrolyte multilayer (PEM) films. Poly(ethylene imine) (PEI) and poly(sodium 4-styrene sulphonate) (PSS), assembled as PEI/PSS and PEI/PSS/PEI layers, were used. The nanoscale morphology of such layers was analysed by atomic force microscopy, and the detailed surface structure was analysed by X-ray photoemission spectroscopy. PCM-coated and PCM-depleted MG63 osteoblast-like cells were used, and cell density, morphology and adhesive structures were analysed during early steps of cell attachment to the PEM surfaces (1-6 h). The present study demonstrates that the pericellular matrix is involved in cell adhesion to material surfaces, and its arrangement depends on the cell interaction with the surface. Moreover, the PCM/surface interaction is not simply driven by electrostatic effects, as the cell response may be affected by specific chemical groups at the material surface. In the development of biomimetic surfaces promoting cell adhesion and function, the role of this unrecognised outer cell structure has to be taken into account. PMID:24052426

  12. Distinct sites on tenascin-C mediate repellent or adhesive interactions with different neuronal cell types.

    PubMed

    Husmann, K; Carbonetto, S; Schachner, M

    1995-11-01

    In this study we have determined the binding specificities of four different neuronal cell types to tenascin-C (TN-C) and laminin using a cell adhesion assay. TN-C was repulsive for small cerebellar neurons and PC12 phaeochromocytoma cells, since after short-term adhesion to the substrate-bound molecule with a maximum of cell binding at 45 min, the cells detached from the substrate and after 22 h only about 25% of the originally adherent cells were still bound. For N2A neuroblastoma cells and retinal cells TN-C was an adhesive substrate, since the number of adherent cells did not decrease after the initial attachment period. All four cell types adhered well to laminin at all time points studied. For short-term adhesion of small cerebellar neurons and PC12 cells two binding sites were identified on TN-C, one being localized within the epidermal growth factor-like repeats three to five and the second within fibronectin type III-like repeats three and four. One binding site for N2A and retinal cells was localized within fibronectin type III-like repeat seven. Binding of small cerebellar neurons to TN-C was dependent on Ca2+, but not on Mg2+ and was inhibitable by polyclonal antibodies to beta 1 integrin. Short-term adhesion of small cerebellar neurons was also inhibitable with a mixture of recombinant fragments of TN-C encompassing the whole molecule, although the specific inhibitory activity of this mixture was ten-fold lower on a molar basis when compared to the native molecule. Our observations indicate that different neuronal cell types use distinct binding sites on TN-C for repellent or adhesive interactions and that beta 1 integrin is involved in the recognition event leading to repulsion of small cerebellar neurons. PMID:8821032

  13. The Relative Importance of Topography and RGD Ligand Density for Endothelial Cell Adhesion

    PubMed Central

    Le Saux, Guillaume; Magenau, Astrid; Böcking, Till; Gaus, Katharina; Gooding, J. Justin

    2011-01-01

    The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD) could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×102–6×1011 RGD/mm2. We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×105 RGD/mm2 on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×108 RGD/mm2 irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry. PMID:21779342

  14. Cell shape dynamics during the staphylococcal cell cycle

    PubMed Central

    Monteiro, João M.; Fernandes, Pedro B.; Vaz, Filipa; Pereira, Ana R.; Tavares, Andreia C.; Ferreira, Maria T.; Pereira, Pedro M.; Veiga, Helena; Kuru, Erkin; VanNieuwenhze, Michael S.; Brun, Yves V.; Filipe, Sérgio R.; Pinho, Mariana G.

    2015-01-01

    Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. PMID:26278781

  15. AFM method to detect differences in adhesion of silica bids to cancer and normal epithelial cells

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Iyer, Swaminathan; Gaikwad, Ravi; Woodworth, Craig

    2009-03-01

    To date, the methods of detection of cancer cells have been mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell growth analysis, specific ligand-receptor labeling, or genetic tests. Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis. A search for alternative methods for the detection of cancer cells may be a fruitful approach. Here we describe an AFM study that may result in a new method for detection of cancer cells in vitro. Here we use atomic force microscopy (AFM) to study adhesion of single silica beads to malignant and normal cells cultured from human cervix. We found that adhesion depends on the time of contact, and can be statistically different for malignant and normal cells. Using these data, one could develop an optical method of cancer detection based on adhesion of various silica beads.

  16. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.

    PubMed

    Hwang, Se Yon; Kwon, Keon Woo; Jang, Kyung-Jin; Park, Min Cheol; Lee, Jeong Sang; Suh, Kahp Y

    2010-04-01

    We present a simple analytical method to measure adhesion of human umbilical vein endothelial cells (HUVECs) and calf pulmonary artery endothelial cells (CPAEs) using nanopatterned, biodegradable poly(lactic-co-glycolic acid) (PLGA) surfaces for potential applications to artificial tissue-engineered blood vessel. Various nanostructured PLGA surfaces (350 nm wide ridges/350 nm grooves, 350 nm ridges/700 nm grooves, 350 nm ridges/1750 nm grooves, 700 nm ridges/350 nm grooves, 1050 nm ridges/350 nm grooves, 1750 nm ridges/350 nm grooves) and flat (unpatterned) surfaces were fabricated on the bottom of polydimethylsiloxane (PDMS) microfluidic channel of 2 mm width and 60 microm height by using thermal imprinting and irreversible channel bonding. To measure adhesion strength of HUVECs and CPAEs, the cells were exposed to a range of shear stress (12, 40, and 80 dyn/cm(2)) within the channels for 20 min after a preculture for 3 days and the remaining cells were counted under each condition. The highest adhesion strength was found on the surface of 700 nm wide ridges, 350 nm wide grooves for both cell types. The enhanced adhesion on nanopatterned surfaces can be attributed to two aspects: (i) contact guidance along the line direction and (ii) clustered focal adhesions. In particular, the contact guidance induced cell alignment along the line directions, which in turn lowers wall shear stress applied to the cell surface, as supported by a simple hydrodynamic model based on cell morphology. PMID:20218573

  17. Adhesion and stress relaxation forces between melanoma and cerebral endothelial cells.

    PubMed

    Végh, Attila G; Fazakas, Csilla; Nagy, Krisztina; Wilhelm, Imola; Molnár, Judit; Krizbai, István A; Szegletes, Zsolt; Váró, György

    2012-02-01

    Mechanical parameters play a crucial role in proper cellular functions. This article examines the process of the appearance and breaking of adhesion forces during contact between the confluent cerebral endothelial cell layer and a melanoma cell attached to a tipless cantilever. This adhesion is the initial phase of melanoma transmigration through the endothelial cell layer. Taking the force measurement, if the contact was prolonged for several seconds, a decrease in the load force was observed, which corresponds to stress relaxation of the cells. The dependence of adhesion force and stress relaxation on dwell time showed a saturation-like behavior. These stress relaxation curves could be fitted with the sum of two exponentials, suggesting that two independent processes take place simultaneously. The breakup of the adhesion during the retraction of the cantilever with the attached melanoma cell is not continuous but shows jumps. Between living endothelial and melanoma cells, a minimum jump size of about 20 pN could be determined. The minimum jump is independent of the dwell time and load force. It seems to be the elementary binding force between these two cell types. In case of fixed endothelial cells, the adhesion force was strongly decreased and the jumps disappeared, whereas the stress relaxation did not show considerable change upon fixation. PMID:22038122

  18. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    PubMed

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  19. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    PubMed Central

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  20. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands. PMID:7511663

  1. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal

    PubMed Central

    Su, Yang; Lei, Xi; Wu, Lingyun; Liu, Lixin

    2012-01-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4·0–5·5 hr, with 84–92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications. PMID:22681228

  2. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    PubMed

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-01

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment. PMID:26668231

  3. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  4. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  5. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    SciTech Connect

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun; Wang, Yuchan; He, Song

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  6. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion.

    PubMed

    Yang, Xiaochen; Steinberg, Florian; Zhuang, Lei; Bessey, Ralph; Trueb, Beat

    2016-07-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn‑inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  7. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  8. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation.

    PubMed

    Capkovic, Katie L; Stevenson, Severin; Johnson, Marc C; Thelen, Jay J; Cornelison, D D W

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression. PMID:18308302

  9. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion

    PubMed Central

    YANG, XIAOCHEN; STEINBERG, FLORIAN; ZHUANG, LEI; BESSEY, RALPH; TRUEB, BEAT

    2016-01-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn-inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  10. Protein Kinase C beta Mediates CD40 Ligand-Induced Adhesion of Monocytes to Endothelial Cells

    PubMed Central

    Wu, Zeyu; Zhao, Gang; Peng, Lin; Du, Jialin; Wang, Sanming; Huang, Yijie; Ou, Jinrui; Jian, Zhixiang

    2013-01-01

    Accumulating evidence supports the early involvement of monocyte/macrophage recruitment to activated endothelial cells by leukocyte adhesion molecules during atherogenesis. CD40 and its ligand CD40L are highly expressed in vascular endothelial cells, but its impact on monocyte adhesion and the related molecular mechanisms are not fully understood. The present study was designed to evaluate the direct effect of CD40L on monocytic cell adhesion and gain mechanistic insight into the signaling coupling CD40L function to the proinflammatory response. Exposure of cultured human aortic endothelial cells (HAECs) to clinically relevant concentrations of CD40L (20 to 80 ng/mL) dose-dependently increased human monocytic THP-1 cells to adhere to them under static condition. CD40L treatment induced the expression of vascular cell adhesion molecule-1 (VCAM-1) mRNA and protein expression in HAECs. Furthermore, exposure of HAECs to CD40L robustly increased the activation of protein kinase C beta (PKCβ) in ECs. A selective inhibitor of PKCβ prevented the rise in VCAM-1 and THP-1 cell adhesion to ECs. Moreover, stimulation of ECs to CD40L induced nuclear factor-κB (NF-κB) activation. PKCβ inhibition abolished CD40L-induced NF-κB activation, and NF-κB inhibition reduced expression of VCAM-1, each resulting in reduced THP-1 cell adhesion. Our findings provide the evidence that CD40L increases VCAM-1 expression in ECs by activating PKCβ and NF-κB, suggesting a novel mechanism for EC activation. Finally, administration of CD40L resulted in PKCβ activation, increased VCAM-1 expression and activated monocytes adhesiveness to HAECs, processes attenuated by PKCβ inhibitor. Therefore, CD40L may contribute directly to atherogenesis by activating ECs and recruiting monocytes to them. PMID:24039784

  11. Lipid Raft Is Required for PSGL-1 Ligation Induced HL-60 Cell Adhesion on ICAM-1

    PubMed Central

    Xu, Tingshuang; Liu, Wenai; Luo, Jixian; Li, Chunfeng; Ba, Xueqing; Ampah, Khamal Kwesi; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2013-01-01

    P-selectin glycoprotein ligand-1 (PSGL-1) and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD), we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation) to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion. PMID:24312591

  12. Cell Adhesion and Proliferation on the "Living" Surface of a Polyelectrolyte Multilayer.

    PubMed

    Arias, Carlos J; Surmaitis, Richard L; Schlenoff, Joseph B

    2016-05-31

    The adhesion of living eukaryotic cells to a substrate, one of the most complex problems in surface science, requires adsorption of extracellular proteins such as fibronectin. Thin films of polyelectrolyte complex made layer-by-layer (polyelectrolyte multilayers or PEMUs) offer a high degree of control of surface charge and composition-interconnected and essential variables for protein adhesion. Fibroblasts grown on multilayers of poly(styrenesulfonate), PSS, and poly(diallyldimethylammonium), PDADMA, with increasing thickness exhibit good adhesion until the 12th layer of polyelectrolyte has been added, whereupon there is a sudden transition to nonadhesive behavior. This sharp change is due to the migration of excess positive charge to the surface-a previously unrecognized property of PEMUs. Precise radiotracer assays of adsorbed (125)I-albumin show how protein adsorption is related to multilayer surface charge. With more negative surface charge density from the sulfonates of PSS, more albumin adsorbs to the surface. However, a loosely held or "soft corona" exchanges with serum protein under the Vroman effect, which is correlated with poor cell adhesion. A comprehensive view of cell adhesion highlights the central role of robust protein adhesion, which is required before any secondary effects of matrix stiffness on cell fate can come into play. PMID:27191244

  13. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    SciTech Connect

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling; Lin, Chwan-Fwu; Wu, Wen-Bin

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratory effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling

  14. Cell locomotion and focal adhesions are regulated by substrate flexibility

    PubMed Central

    Pelham, Robert J.; Wang, Yu-li

    1997-01-01

    Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism. PMID:9391082

  15. TAp73 is essential for germ cell adhesion and maturation in testis

    PubMed Central

    Holembowski, Lena; Kramer, Daniela; Riedel, Dietmar; Sordella, Raffaella; Nemajerova, Alice; Dobbelstein, Matthias

    2014-01-01

    A core evolutionary function of the p53 family is to protect the genomic integrity of gametes. However, the role of p73 in the male germ line is unknown. Here, we reveal that TAp73 unexpectedly functions as an adhesion and maturation factor of the seminiferous epithelium orchestrating spermiogenesis. TAp73 knockout (TAp73KO) and p73KO mice, but not ΔNp73KO mice, display a “near-empty seminiferous tubule” phenotype due to massive premature loss of immature germ cells. The cellular basis of this phenotype is defective cell–cell adhesions of developing germ cells to Sertoli nurse cells, with likely secondary degeneration of Sertoli cells, including the blood–testis barrier, which leads to disruption of the adhesive integrity and maturation of the germ epithelium. At the molecular level, TAp73, which is produced in germ cells, controls a coordinated transcriptional program of adhesion- and migration-related proteins including peptidase inhibitors, proteases, receptors, and integrins required for germ–Sertoli cell adhesion and dynamic junctional restructuring. Thus, we propose the testis as a unique organ with strict division of labor among all family members: p63 and p53 safeguard germ line fidelity, whereas TAp73 ensures fertility by enabling sperm maturation. PMID:24662569

  16. Modulation of mast cell adhesion, proliferation, and cytokine secretion on electrospun bioresorbable vascular grafts.

    PubMed

    Garg, K; Ryan, J J; Bowlin, G L

    2011-06-15

    Mast cells synthesize several potent angiogenic factors and can also stimulate fibroblasts, endothelial cells, and macrophages. An understanding of how they participate in wound healing and angiogenesis is important to further our knowledge about in situ vascular prosthetic regeneration. The adhesion, proliferation, and cytokine secretion of bone marrow-derived murine mast cells (BMMC) on electrospun polydioxanone, polycaprolactone, and silk scaffolds, as well as tissue culture plastic, has been investigated in the presence or absence of IL-3, stem cell factor, IgE and IgE with a crosslinking antigen, dinitrophenol-conjugated albumin (DNP). It was previously believed that only activated BMMCs exhibit adhesion and cytokine secretion. However, this study shows nonactivated BMMC adhesion to electrospun scaffolds. Silk scaffold was not found to be conducive for mast cell adhesion and cytokine secretion. Activation by IgE and DNP significantly enhanced mast cell adhesion, proliferation, migration, and secretion of tumor necrosis factor alpha, macrophage inflammatory protein-1α, and IL-13. This indicates that mast cells might play a role in the process of biomaterial integration into the host tissue, regeneration, and possibly angiogenesis. PMID:21472976

  17. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  18. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation.

    PubMed

    Lord, Megan Susan; Modin, Charlotte; Foss, Morten; Duch, Mogens; Simmons, Anne; Pedersen, Finn S; Milthorpe, Bruce K; Besenbacher, Flemming

    2006-09-01

    The quartz crystal microbalance with dissipation (QCM-D) (Q-Sense AB, Sweden) has been established as a useful tool for evaluating interactions between various biological and non-biological systems, and there has been increasing interest in using the QCM-D technique for cell monitoring applications. This study investigated the potential of the QCM-D to characterise the initial adhesion and spreading of cells in contact with protein precoated biocompatible surfaces. The QCM-D technique is attractive for monitoring cell adhesion and spreading as it allows in situ real-time measurements. The adhesion of NIH3T3 (EGFP) fibroblasts to tantalum (Ta) and oxidised polystyrene (PS(ox)) surfaces precoated with serum proteins was examined using the QCM-D for a period of either 2 or 4 h. Time-lapse photography was performed at 30 min intervals to visually examine cell adhesion and spreading in order to relate cell morphology to the QCM-D response. Following adsorption of albumin, fibronectin or newborn calf serum onto the surfaces, QCM-D measurements showed that cells adhered and spread on the fibronectin and serum coated surfaces, while few cells adhered to the albumin coated surfaces. Cells adhered to albumin coated surfaces had a rounded morphology. The responses to fibronectin and serum precoated surfaces were quite different for each of the underlying substrates indicating that the process of cell adhesion and spreading elicits different responses depending on both the protein coating composition and the influence of the underlying substrate. The different response may be due to extracellular matrix remodelling as well as cytoskeletal changes. Frequency (f) and dissipation (D) changes associated with cell adhesion were less than would be expected from the Sauerbrey relation due to the viscoelastic properties of the cells. PMID:16716396

  19. 4D chromatin dynamics in cycling cells

    PubMed Central

    Strickfaden, Hilmar; Zunhammer, Andreas; van Koningsbruggen, Silvana; Köhler, Daniela

    2010-01-01

    This live cell study of chromatin dynamics in four dimensions (space and time) in cycling human cells provides direct evidence for three hypotheses first proposed by Theodor Boveri in seminal studies of fixed blastomeres from Parascaris equorum embryos: (I) Chromosome territory (CT) arrangements are stably maintained during interphase. (II) Chromosome proximity patterns change profoundly during prometaphase. (III) Similar CT proximity patterns in pairs of daughter nuclei reflect symmetrical chromosomal movements during anaphase and telophase, but differ substantially from the arrangement in mother cell nucleus. Hypothesis I could be confirmed for the majority of interphase cells. A minority, however, showed complex, rotational movements of CT assemblies with large-scale changes of CT proximity patterns,