Science.gov

Sample records for adhesion cell differentiation

  1. Investigating differential cell-matrix adhesion by directly comparative single-cell force spectroscopy.

    PubMed

    Dao, Lu; Gonnermann, Carina; Franz, Clemens M

    2013-11-01

    Tissue-embedded cells are often exposed to a complex mixture of extracellular matrix (ECM) molecules, to which they bind with different cell adhesion receptors and affinities. Differential cell adhesion to ECM components is believed to regulate many aspects of tissue function, such as the sorting of specific cell types into different tissue compartments or ECM niches. In turn, aberrant switches in cell adhesion preferences may contribute to cell misplacement, tissue invasion, and metastasis. Methods to determine differential adhesion profiles of single cells are therefore desirable, but established bulk assays usually only test cell population adhesion to a single type of ECM molecule. We have recently demonstrated that atomic force microscopy-based single-cell force spectroscopy (SCFS), performed on bifunctional, microstructured adhesion substrates, provides a useful tool for accurately quantitating differential matrix adhesion of single Chinese hamster ovary cells to laminin and collagen I. Here, we have extended this approach to include additional ECM substrates, such as bifunctional collagen I/collagen IV surfaces, as well as adhesion-passivated control surfaces. We investigate differential single cell adhesion to these substrates and analyze in detail suitable experimental conditions for comparative SCFS, including optimal cell-substrate contact times and the impact of force cycle repetitions on single cell adhesion force statistics. Insight gained through these experiments may help in adapting this technique to other ECM molecules and cell systems, making directly comparative SCFS a versatile tool for comparing receptor-mediated cell adhesion to different matrix molecules in a wide range of biological contexts. PMID:24089365

  2. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  3. Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses.

    PubMed

    Sabbatini, Maurizio; Boccafoschi, Francesca; Bosetti, Michela; Cannas, Mario

    2014-01-01

    To verify the compatibility of rigid supports with neuronal cells for biomechanical application, we have evaluated the biocompatibility of Zn-doped bioglasses versus neuronal cell line SKNBE. Undifferentiated and retinoic acid-differentiated cells were used. We have observed that bioglasses doped with low concentration of Zn favored cell adhesion and proliferation of undifferentiated SKNBE neuronal cells, while the high Zn concentration strongly interfered with cell proliferation. Instead the high Zn concentration lightly stimulates the adhesive and strongly stimulates the phenotype characterization of differentiated SKNBE cells. Focal contact sites were observed in cells performing spread adhesive morphology, while they were down-regulated in cells performing differentiation behavior. GAP-43 and neurofilament were expressed in differentiated cells. However, GAP-43 was also found to be expressed in undifferentiated cells, where its expression seems related to proliferative behavior of cells. This work evidenced the importance of the biomaterial chemical structure in influencing proliferation or differentiation pathways of neuronal cells. PMID:23413232

  4. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  5. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties. PMID:23990978

  6. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  7. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  8. Glycated polyelectrolyte multilayer films: differential adhesion of primary versus tumor cells

    PubMed Central

    Schneider, Aurore; Bolcato-Bellemin, Anne-Laure; Francius, Gregory; Jedrzejwska, Justyna; Schaaf, Pierre; Voegel, Jean-Claude; Frisch, Benoit; Picart, Catherine

    2008-01-01

    Glycated polymers have already been widely employed for cell transfection studies as cell possess specific lectins. However, up to now, these glycated polymers have barely been investigated for their cell adhesive properties, save macrophages. In this work, we use polyelectrolyte multilayer films made of poly(L-lysine) and poly(L-glutamic) acid as polymeric substrates to investigate the role of sugar molecules, e.g. mannose and lactose, on the adhesion of primary cells as compared to that of a tumor cell line. The glycated polymeric films were compared to ungrafted and chemically cross-linked films, which are known to present opposite adhesive properties. A differential adhesion could be evidenced on mannose grafted films: primary chondrocytes adhere and proliferate well on these films whereas chondrosarcoma cells do not grow well. Although present, the effect of lactose on cell adhesion was much less important. This adhesion, mediated by glycated polymers, appears to be specific. These results show that it is possible to use glycated polyelectrolytes not only as non viral vectors but also as cell adhesive substrates. PMID:17025366

  9. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  10. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation.

    PubMed

    Capkovic, Katie L; Stevenson, Severin; Johnson, Marc C; Thelen, Jay J; Cornelison, D D W

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression. PMID:18308302

  11. Modulation of cationicity of chitosan for tuning mesenchymal stem cell adhesion, proliferation, and differentiation.

    PubMed

    He, Jing; Wu, Fang; Wang, Dong; Yao, Ruijuan; Wu, Yao; Wu, Fang

    2015-01-01

    The aim of this study was to modulate the cationicity of chitosan to influence the mesenchymal stem cell (MSC) responses in terms of cell adhesion, proliferation, and differentiation. The authors prepared water-soluble carboxymethyl chitosan hydrogels using genipin as the crosslinking agent. The chitosan cationicity was modulated by varying the genipin content from 0.5 to 10 wt. %. The results indicated that the cationicity exerted a striking modulation effect on various MSC responses. The increase of the genipin content, i.e., decrease of the free amino group content (cationicity), overall promoted the MSC adhesion, cytoskeleton organization, proliferation, and differentiation into the osteogenic lineage. A surprising cell alignment effect was also observed on chitosan samples with high genipin concentrations (>2.5%). The chitosan sample with the highest genipin concentrations (10%) exhibited the best MSC proliferation and highest protein expression levels toward osteogenic lineages. The genipin content also showed a strong modulation effect on MSC condensation, and cell-cell and cell-matrix interactions, as suggested by the expressions of the sry related HMG box9 (Sox9), intercellular adhesion molecule 1, and N-Cadherin. Overall, the authors have demonstrated that modulation of cationicity (amino content) of chitosan is an effective and simple approach to tuning various MSC responses, including adhesion, proliferation, differentiation, as well as cell-cell interactions. Such findings might have important implications in biomaterial design for various biomedical applications. PMID:26433366

  12. Differential DNA methylome profiling of nonfunctioning pituitary adenomas suggesting tumour invasion is correlated with cell adhesion.

    PubMed

    Gu, Ye; Zhou, Xinyao; Hu, Fan; Yu, Yong; Xie, Tao; Huang, Yuying; Zhao, Xinzhi; Zhang, Xiaobiao

    2016-08-01

    Global and gene-specific changes to the epigenome are hallmarks of most tumours including those of pituitary origin, and this fact might offer important clues about diagnostic and therapeutic applications. We performed global DNA methylation screening with 6 invasive and 6 noninvasive nonfunctioning pituitary adenomas (PA) to investigate whether DNA methylation was associated with the invasion of nonfunctioning pituitary adenomas. An additional seven PAs were included as an independent cohort to validate the initial results. Five thousand nine hundred thirty-one CpGs were selected (△β ≥0.15 and p value ≤0.01) as differentially methylated sites (DMSs). The hypomethylated DMSs in the invasive PAs were significantly more than the hypermethylated sites. Cluster analysis of 339 CpGs (△β ≥0.25 and p value ≤0.001) demonstrated a complete distinction between the invasive and noninvasive nonfunctioning groups. GO analysis of the three hundred seven corresponding genes shown they were involved in homophilic cell adhesion, cell-cell adhesion, cell adhesion and biological adhesion. The mRNA expression of GALNT9 which contain a validated DMS was significantly downregulated in invasive group. Our findings indicate that the differential DNA methylome profiling of invasive and noninvasive nonfunctioning PAs suggesting tumour invasion is correlated with cell adhesion. PMID:27168190

  13. Differential Adhesion of Tumor Cells to Capillary Endothelial Cells in vitro

    NASA Astrophysics Data System (ADS)

    Alby, Laverna; Auerbach, Robert

    1984-09-01

    Adhesion studies were carried out to determine the relative ability of glioma cells and ovary-derived teratoma cells to adhere to endothelial cells obtained from mouse brain capillaries (designated MBE cell line) or mouse ovaries (designated MOE cell line). The teratoma cells showed preferential adhesion to MOE cells, whereas the glioma cells showed preferential adhesion to the MBE cell line. In contrast, the glioma and teratoma cells adhered equally to L929 and 3T3 fibroblasts. A testicular teratoma with ovary-seeking properties in vivo also adhered preferentially to MOE cells, while the preference for MBE cells was shared by glioma cells with an endothelioma and a bladder tumor line. The endothelioma, interestingly, showed a marked preferential adhesion to 3T3 cells, thus distinguishing it from the glioma. The experiments demonstrate that capillary endothelial cells derived from different sources are not alike and that differences expressed at the cell surface of these cells can be distinguished by tumor cells.

  14. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation.

    PubMed

    Su, Changlei; Zhang, Bomiao; Liu, Wenzhi; Zheng, Hongqun; Sun, Lingyu; Tong, Jinxue; Wang, Tian; Jiang, Xiaofeng; Liang, Hongyan; Xue, Li; Zhang, Qifan

    2016-08-01

    Slightly increased pressure stimulates tumor cell adhesion and proliferation. In the present study, we aimed to evaluate the effects of high pressure on gene expression and the biological behavior of gastric cancer cells. After incubation for 30 min at 37˚C under ambient and increased pressure, one portion of SGC7901 cells was used for cell proliferation and apoptosis assays, cell cycle analysis, adhesion invasion or migration assays. The other portion of cells was harvested for detection of matrix metalloproteinase-2 (MMP-2), inhibitor of DNA binding-1 (ID1), sonic Hedgehog (SHH) and E-cadherin expression by western blotting or RT-PCR. In addition, we investigated the effects of high pressure on SGC7901 cell ultrastructure by transmission electron microscopy. We found that the adhesion fold under increased pressure of 760 and 1,520 mmHg was 2.39±1.05 (P<0.05) and 2.47±0.85 (P<0.01) as compared with the control, respectively. The invasion fold was 3.42±2.06 (P<0.05) and 5.13±2.49 (P<0.01) as compared with the control, respectively. The migration was 1.65±0.20 (P<0.001) and 2.53±0.50 (P<0.001) as compared with the control, respectively. At increased pressure, MMP-2 and ID1 expression increased significantly, while the expression of SHH decreased significantly. However, we did not find significant change in proliferation, apoptosis, cell cycle or ultrastructure of the SGC7901 cells under high pressure. In conclusion, high pressure promoted the adhesion, invasion and migration of SGC7901 cells. Moreover, the present study suggests that the pressure-augmented invasion and migration may be related to the increase in MMP-2 expression. Moreover, high pressure may suppress SGC7901 cell differentiation, which may result from the change in SHH and ID1 expression. PMID:27278077

  15. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells

    PubMed Central

    Lee, Briana; Villarreal-Ponce, Alvaro; Fallahi, Magid; Ovadia, Jeremy; Sun, Peng; Yu, Qian-Chun; Ito, Seiji; Sinha, Satrajit; Nie, Qing; Dai, Xing

    2014-01-01

    During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/2-deficient epidermal cells fail to undertake α-catenin–driven actin cytoskeletal reorganization and adhesive maturation, and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations as well as defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight functions of Ovol as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity. PMID:24735878

  16. A modified method by differential adhesion for enrichment of bladder cancer stem cells

    PubMed Central

    Zhu, Yong-tong; Pang, Shi-yu; Luo, Yang; Chen, Wei; Bao, Ji-ming; Tan, Wan-long

    2016-01-01

    ABSTRACT Purpose: In a previous study the vaccine was effective against bladder cancer in a mouse model. However, a small portion of tumors regrew because the vaccine could not eliminate bladder cancer stem cells (CSCs). In this study, we showed a modified method for the isolation of bladder CSCs using a combination of differential adhesion method and serum-free culture medium (SFM) method. Materials and Methods: Trypsin-resistant cells and trypsin-sensitive cells were isolated from MB49, EJ and 5637 cells by a combination of differential adhesion method and SFM method. The CSCs characterizations of trypsin-resistant cells were verified by the flow cytometry, the western blotting, the quantitative polymerase chain reaction, the resistance to chemotherapy assay, the transwell assay, and the tumor xenograft formation assay. Results: Trypsin-resistant cells were isolated and identified in CSCs characters, with high expression of CSCs markers, higher resistance to chemotherapy, greater migration in vitro, and stronger tumorigenicity in vivo. Conclusion: Trypsin-resistant cells displayed specific CSCs properties. Our study showed trypsin-resistant cells were isolated successfully with a modified method using a combination of differential adhesion method and SFM method. PMID:27564296

  17. Insights into the Role of Focal Adhesion Modulation in Myogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Yu, Haiyang; Lui, Yuan Siang; Xiong, Sijing; Leong, Wen Shing; Wen, Feng; Nurkahfianto, Himawan; Rana, Sravendra; Leong, David Tai; Ng, Kee Woei

    2013-01-01

    We report the establishment of a novel platform to induce myogenic differentiation of human mesenchymal stem cells (hMSCs) via focal adhesion (FA) modulation, giving insights into the role of FA on stem cell differentiation. Micropatterning of collagen type I on a polyacrylamide gel with a stiffness of 10.2 kPa efficiently modulated elongated FA. This elongated FA profile preferentially recruited the β3 integrin cluster and induced specific myogenic differentiation at both transcription and translation levels with expression of myosin heavy chain and α-sarcomeric actin. This was initiated with elongation of FA complexes that triggered the RhoA downstream signaling toward a myogenic lineage commitment. This study also illustrates how one could partially control myogenic differentiation outcomes of similar-shaped hMSCs by modulating FA morphology and distribution. This technology increases our toolkit choice for controlled differentiation in muscle engineering. PMID:22765653

  18. The effect of plasma-nitrided titanium surfaces on osteoblastic cell adhesion, proliferation, and differentiation.

    PubMed

    Ferraz, Emanuela P; Sa, Juliana C; de Oliveira, Paulo T; Alves, Clodomiro; Beloti, Marcio M; Rosa, Adalberto L

    2014-04-01

    In this study, we evaluated the effect of new plasma-nitrided Ti surfaces on the progression of osteoblast cultures, including cell adhesion, proliferation and differentiation. Ti surfaces were treated using two plasma-nitriding protocols, hollow cathode for 3 h (HC 3 h) and 1 h (HC 1 h) and planar for 1 h. Untreated Ti surfaces were used as control. Cells derived from human alveolar and rat calvarial bones were cultured on Ti surfaces for periods of up to 14 days and the following parameters were evaluated: cell morphology, adhesion, spreading and proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and gene expression of key osteoblast markers. Plasma-nitriding treatments resulted in Ti surfaces with distinct physicochemical characteristics. The cell adhesion and ALP activity were higher on plasma-nitrided Ti surfaces compared with untreated one, whereas cell proliferation and extracellular matrix mineralization were not affected by the treatments. In addition, the plasma-nitrided Ti surfaces increased the ALP, reduced the osteocalcin and did not affect the Runx2 gene expression. We have shown that HC 3 h and planar Ti surfaces slightly favored the osteoblast differentiation process, and then these surfaces should be considered for further investigation using preclinical models. PMID:23625878

  19. Surfactant Functionalization Induces Robust, Differential Adhesion of Tumor Cells and Blood Cells to Charged Nanotube-Coated Biomaterials Under Flow

    PubMed Central

    Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.

    2015-01-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. PMID:25934290

  20. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells

    PubMed Central

    Hou, Yanhua; Cai, Kaiyong; Li, Jinghua; Chen, Xiuyong; Lai, Min; Hu, Yan; Luo, Zhong; Ding, Xingwei; Xu, Dawei

    2013-01-01

    Background The purpose of this study was to investigate the influences of nanoscale wear particles derived from titanium/titanium alloy-based implants on integration of bone. Here we report the potential impact of titanium oxide (TiO2) nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells (MSC) from the cellular level to the molecular level in the Wistar rat. Methods A series of TiO2 nanoparticles (14 nm, 108 nm, and 196 nm) were synthesized and characterized by scanning electron microscopy and transmission electron microscopy, respectively. Results The TiO2 nanoparticles had negative effects on cell viability, proliferation, and the cell cycle of MSC in a dose-dependent and size-dependent manner. Confocal laser scanning microscopy was used to investigate the effects of particle internalization on adhesion, spreading, and morphology of MSC. The integrity of the cell membrane, cytoskeleton, and vinculin of MSC were negatively influenced by large TiO2 nanoparticles. Conclusion The Transwell migration assay and a wound healing model suggested that TiO2 nanoparticles had a strong adverse impact on cell migration as particle size increased (P < 0.01). Furthermore, alkaline phosphatase, gene expression of osteocalcin (OC) and osteopontin (OPN), and mineralization measurements indicate that the size of the TiO2 nanoparticles negatively affected osteogenic differentiation of MSC. PMID:24101871

  1. Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells

    PubMed Central

    Arabzadeh, Azadeh; Dupaul-Chicoine, Jeremy; Breton, Valérie; Haftchenary, Sina; Yumeen, Sara; Turbide, Claire; Saleh, Maya; McGregor, Kevin; Greenwood, Celia M T; Akavia, Uri David; Blumberg, Richard S; Gunning, Patrick T; Beauchemin, Nicole

    2015-01-01

    Objective Nearly 20%–29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. Design Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. Results MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. Conclusions CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas. PMID:25666195

  2. Differential Cell Adhesion of Breast Cancer Stem Cells on Biomaterial Substrate with Nanotopographical Cues

    PubMed Central

    Tan, Kenneth K.B.; Giam, Christine S.Y.; Leow, Ming Yi; Chan, Ching Wan; Yim, Evelyn K.F.

    2015-01-01

    Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24−/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC), breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC) cells obtained from patients’ samples, on micro- and nano-patterned poly-L-lactic acid (PLLA) films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24−/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24− in MCF7. A slightly higher percentage of CD44+CD24−/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24−ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells. PMID:25905435

  3. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    SciTech Connect

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  4. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  5. Computational Modeling Reveals that a Combination of Chemotaxis and Differential Adhesion Leads to Robust Cell Sorting during Tissue Patterning

    PubMed Central

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2014-01-01

    Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting. PMID:25302949

  6. Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride).

    PubMed

    Pärssinen, Jenita; Hammarén, Henrik; Rahikainen, Rolle; Sencadas, Vitor; Ribeiro, Clarisse; Vanhatupa, Sari; Miettinen, Susanna; Lanceros-Méndez, Senentxu; Hytönen, Vesa P

    2015-03-01

    Poly(vinylidene fluoride) (PVDF) is a biocompatible material with excellent electroactive properties. Nonelectroactive α-PVDF and electroactive β-PVDF were used to investigate the substrate polarization and polarity influence on the focal adhesion (FA) size and number as well as on human adipose stem cells (hASCs) differentiation. hASCs were cultured on different PVDF surfaces adsorbed with fibronectin and FA size and number, total adhesion area, cell size, cell aspect ratio and FA density were estimated using cells expressing vinculin fused to enhanced green fluorescent protein. Osteogenic differentiation was also determined using a quantitative alkaline phosphatase assay. The surface charge of the poled PVDF films (positive or negative) influenced the hydrophobicity of the samples, leading to variations in the conformation of adsorbed extracellular matrix proteins, which ultimately modulated the stem cell adhesion on the films and induced their osteogenic differentiation. PMID:24838756

  7. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation.

    PubMed

    Toh, Yi-Chin; Xing, Jiangwa; Yu, Hanry

    2015-05-01

    Heterogeneity in human pluripotent stem cell (PSC) fates is partially caused by mechanical asymmetry arising from spatial polarization of cell-cell and cell-matrix adhesions. Independent studies have shown that integrin and E-cadherin adhesions promote opposing differentiation and pluripotent fates respectively although their crosstalk mechanism in modulating cell fate heterogeneity remains unknown. Here, we demonstrated that spatial polarization of integrin and E-cadherin adhesions in a human PSC colony compete to recruit Rho-ROCK activated myosin II to different localities to pattern pluripotent-differentiation decisions, resulting in spatially heterogeneous colonies. Cell micropatterning was used to modulate the spatial polarization of cell adhesions, which enabled us to prospectively determine localization patterns of activated myosin II and mesoendoderm differentiation. Direct inhibition of Rho-ROCK-myosin II activation phenocopied E-cadherin rather than integrin inhibition to form uniformly differentiated colonies. This indicated that E-cadherin was the primary gatekeeper to differentiation progression. This insight allows for biomaterials to be tailored for human PSC maintenance or differentiation with minimal heterogeneity. PMID:25736499

  8. Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings

    PubMed Central

    Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190

  9. Combinatorial Screening of Mesenchymal Stem Cell Adhesion and Differentiation Using Polymer Pen Lithography

    PubMed Central

    Cabezas, Maria D.; Eichelsdoerfer, Daniel J.; Brown, Keith A.; Mrksich, Milan; Mirkin, Chad A.

    2014-01-01

    The extracellular matrix (ECM) is a complex, spatially inhomogeneous environment that is host to myriad cell–receptor interactions that promote changes in cell behavior. These biological systems can be probed and simulated with engineered surfaces,but doing so demands careful control over the arrangement of ligands. Here, we describe how such surfaces can be fabricated by utilizing polymer pen lithography (PPL), which is a cantilever-free scanning probe lithographic method that utilizes polymeric pen arrays to generate patterns over large areas. With the advent of PPL, fundamental questions in cell biology can be answered by recapitulating cell–ECM interactions to explore how these interactions lead to changes in cell behavior. Here, we describe an approach for the combinatorial screening of cell adhesion behavior to gain understanding of how ECM protein feature size dictates osteogenic differentiation of mesenchymal stem cells. The technique outlined here is generalizable to other biological systems and can be paired with quantitative analytical methods to probe important processes such as cell polarization, proliferation, signaling, and differentiation. PMID:24439289

  10. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  11. Vinculin phosphorylation differentially regulates mechanotransduction at cell–cell and cell–matrix adhesions

    PubMed Central

    Bays, Jennifer L.; Peng, Xiao; Tolbert, Catlin E.; Guilluy, Christophe; Angell, Ashley E.; Pan, Yuan; Superfine, Richard; Burridge, Keith

    2014-01-01

    Cells experience mechanical forces throughout their lifetimes. Vinculin is critical for transmitting these forces, yet how it achieves its distinct functions at cell–cell and cell–matrix adhesions remains unanswered. Here, we show vinculin is phosphorylated at Y822 in cell–cell, but not cell–matrix, adhesions. Phosphorylation at Y822 was elevated when forces were applied to E-cadherin and was required for vinculin to integrate into the cadherin complex. The mutation Y822F ablated these activities and prevented cells from stiffening in response to forces on E-cadherin. In contrast, Y822 phosphorylation was not required for vinculin functions in cell–matrix adhesions, including integrin-induced cell stiffening. Finally, forces applied to E-cadherin activated Abelson (Abl) tyrosine kinase to phosphorylate vinculin; Abl inhibition mimicked the loss of vinculin phosphorylation. These data reveal an unexpected regulatory mechanism in which vinculin Y822 phosphorylation determines whether cadherins transmit force and provides a paradigm for how a shared component of adhesions can produce biologically distinct functions. PMID:24751539

  12. Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions

    PubMed Central

    Kowalewski, Jacob M.; Shafqat-Abbasi, Hamdah; Jafari-Mamaghani, Mehrdad; Endrias Ganebo, Bereket; Gong, Xiaowei

    2015-01-01

    Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed “membrane dynamics”). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often non-linear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future. PMID:26248038

  13. Oxidized Low Density Lipoprotein Induces Differentiation and Adhesion of Human Monocytes and the Monocytic Cell Line U937

    NASA Astrophysics Data System (ADS)

    Frostegard, Johan; Nilsson, Jan; Haegerstrand, Anders; Hamsten, Anders; Wigzell, Hans; Gidlund, Magnus

    1990-02-01

    Hypercholesterolemia is a major risk factor for development of atherosclerosis. In experimental animals fed a high-cholesterol diet, monocytes adhere to the arterial endothelium and penetrate into the intima where they differentiate into macrophages and ingest lipids thus giving rise to fatty streaks, the earliest type of atherosclerotic plaque. Macrophages express few receptors for normal low density lipo-protein (LDL) but can take up oxidized LDL by way of a scavenger receptor. The present study was designed to investigate the possible role of oxidized LDL in recruitment of resident intimal macrophages. We found that oxidized LDL induced enhanced expression of major histocompatibility complex class II molecules on human monocytes and U937 cells, a well-established system for studies of monocytic differentiation. Oxidized LDL also induced enhanced expression of the surface antigen LEuM3 but caused decreased expression of CD4 antigen, a pattern compatible with expression of a more differentiated macrophage-like phenotype. Oxidized LDL also initiated aggregation of monocytes and U937 cells and stimulated adhesion of U937 cells to cultured endothelial cells. The results indicate that oxidized LDL may contribute to development of atherosclerosis by inducing adhesion of monocytes to the arterial intima and by stimulating intimal monocytes to differentiate into resident macrophages.

  14. The cell adhesion molecule DdCAD-1 regulates morphogenesis through differential spatiotemporal expression in Dictyostelium discoideum.

    PubMed

    Sriskanthadevan, Shrivani; Zhu, Yingyue; Manoharan, Kumararaaj; Yang, Chunxia; Siu, Chi-Hung

    2011-06-01

    During development of Dictyostelium, multiple cell types are formed and undergo a coordinated series of morphogenetic movements guided by their adhesive properties and other cellular factors. DdCAD-1 is a unique homophilic cell adhesion molecule encoded by the cadA gene. It is synthesized in the cytoplasm and transported to the plasma membrane by contractile vacuoles. In chimeras developed on soil plates, DdCAD-1-expressing cells showed greater propensity to develop into spores than did cadA-null cells. When development was performed on non-nutrient agar, wild-type cells sorted from the cadA-null cells and moved to the anterior zone. They differentiated mostly into stalk cells and eventually died, whereas the cadA-null cells survived as spores. To assess the role of DdCAD-1 in this novel behavior of wild-type and mutant cells, cadA-null cells were rescued by the ectopic expression of DdCAD-1-GFP. Morphological studies have revealed major spatiotemporal changes in the subcellular distribution of DdCAD-1 during development. Whereas DdCAD-1 became internalized in most cells in the post-aggregation stages, it was prominent in the contact regions of anterior cells. Cell sorting was also restored in cadA(-) slugs by exogenous recombinant DdCAD-1. Remarkably, DdCAD-1 remained on the surface of anterior cells, whereas it was internalized in the posterior cells. Additionally, DdCAD-1-expressing cells migrated slower than cadA(-) cells and sorted to the anterior region of chimeric slugs. These results show that DdCAD-1 influences the sorting behavior of cells in slugs by its differential distribution on the prestalk and prespore cells. PMID:21561987

  15. The differential adhesion hypothesis: a direct evaluation.

    PubMed

    Foty, Ramsey A; Steinberg, Malcolm S

    2005-02-01

    The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives. PMID:15649477

  16. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles.

    PubMed

    Glaser, Talita; Bueno, Vânia B; Cornejo, Daniel R; Petri, Denise F S; Ulrich, Henning

    2015-08-01

    Hybrid scaffolds made of xanthan and magnetite nanoparticles (XCA/mag) were prepared by dipping xanthan membranes (XCA) into dispersions of magnetic nanoparticles for different periods of time. The resulting hybrid scaffolds presented magnetization values ranging from 0.25 emu g(-1) to 1.80 emu g(-1) at 70 kOe and corresponding iron contents ranging from 0.25% to 2.3%, respectively. They were applied as matrices for in vitro embryoid body adhesion and neuronal differentiation of embryonic stem cells; for comparison, neat XCA and commercial plastic plates were also used. Adhesion rates were more pronounced when cells were seeded on XCA/mag than on neat XCA or plastic dishes; however, proliferation levels were independent from those of the scaffold type. Embryonic stem cells showed similar differentiation rates on XCA/mag scaffolds with magnetization of 0.25 and 0.60 emu g(-1), but did not survive on scaffolds with 1.80 emu g(-1). Differentiation rates, expressed as the number of neurons obtained on the chosen scaffolds, were the largest on neat XCA, which has a high density of negative charge, and were smallest on the commercial plastic dishes. The local magnetic field inherent of magnetite particles present on the surface of XCA/mag facilitates synapse formation, because synaptophysin expression and electrical transmission were increased when compared to the other scaffolds used. We conclude that XCA/mag and XCA hydrogels are scaffolds with distinguishable performance for adhesion and differentiation of ESCs into neurons. PMID:26154495

  17. Vitronectin expression in differentiating neuroblastic tumors: integrin alpha v beta 5 mediates vitronectin-dependent adhesion of retinoic-acid-differentiated neuroblastoma cells.

    PubMed Central

    Gladson, C. L.; Dennis, C.; Rotolo, T. C.; Kelly, D. R.; Grammer, J. R.

    1997-01-01

    The metastatic potential of undifferentiated neuroblastomas is typically lost when differentiation into ganglioneuroblastomas occurs spontaneously or is induced. Cell adhesion may play a role in metastasis, and we have shown recently that expression of integrin alpha v beta 5 protein and mRNA is up-regulated in ganglioneuroblastomas in vivo. To investigate whether interactions of alpha v beta 5 with matrix components play a role in the loss of metastatic potential, we used immunohistochemical and in situ hybridization to analyze neuroblastic tumors at various stages of differentiation for expression of the alpha v beta 5 ligands, vitronectin and osteopontin, and determined the ability of vitronectin to promote attachment and neurite outgrowth in vitro in a retinoic-acid-differentiated neuroblastoma cell model. We found that vitronectin, but not osteopontin, was expressed in 5 of 5 ganglioneuroblastomas but was absent or weakly expressed in 6 of 6 undifferentiated neuroblastomas. Neuronal cell vitronectin was detected in 7 of 9 ganglioneuromas, 5 of 8 peripheral ganglia, and 14 of 21 adrenal gland medullae, confirming expression of vitronectin in mature peripheral neurons. In vitro, vitronectin promoted attachment of both undifferentiated and retinoic-acid-differentiated neuroblastoma cells, which was inhibited 20 and 60%, respectively, by monoclonal antibody anti-integrin alpha v beta 5. Vitronectin-promoted neurite outgrowth of retinoic-acid-differentiated neuroblastoma cells was not inhibited by monoclonal antibody anti-alpha v beta 5. These data suggest that the synthesis of vitronectin and the ability of integrin alpha v beta 5 to mediate vitronectin adhesion on retinoic-acid-differentiated neuroblastoma cells may promote differentiation of neuroblastoma cells in vivo. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 8 PMID:9137089

  18. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability.

    PubMed

    Wong, Donald; Prameya, Rukmini; Dorovini-Zis, Katerina

    2007-03-01

    The mechanisms by which polymorphonuclear leukocytes (PMN) cross the human blood-brain barrier have not been fully elucidated. Using a well characterized in vitro model of the human BBB, we examined the role of endothelial cell adhesion molecules on the adhesion and transendothelial migration of PMN across primary cultures of human brain microvessel endothelial cells (HBMEC). A small number of PMN (0.06%) adhered to unstimulated HBMEC, and the basal adhesion was not affected by anti-adhesion molecule antibodies. Treatment of HBMEC with tumor necrosis factor (TNF)-alpha resulted in increased PMN adhesion that was significantly inhibited by blocking antibodies to E-selectin and ICAM-1, but not VCAM-1 or PECAM-1. A very small number of adherent PMN migrated across unstimulated HBMEC monolayers. Migration increased 2 to 20 fold following stimulation of HBMEC with TNF-alpha. Monoclonal antibody blocking studies showed that PMN used ICAM-1, but not VCAM-1, E-selectin or PECAM-1 to move across activated monolayers. Anti-adhesion molecule antibodies did not diminish the basal PMN migration. Ultrastructurally, PMN often aggregated on top and between adjacent endothelial cells and adhered by first extending pseudopodia along the apical endothelial surface. They then flattened and inserted themselves between endothelial cells in order to migrate across the monolayers. At the end of the migration period, the cultures resumed their continuity with no evidence of disruption. Transendothelial migration of PMN decreased the transendothelial electrical resistance and increased the permeability to horseradish peroxidase, which penetrated alongside the migrating leukocytes. A blocking antibody to ICAM-1 that greatly decreased migration, had no effect on the permeability changes. These studies provide insights into the mechanisms that regulate the entry of PMN into the brain and the increased permeability of the BBB in CNS inflammation. PMID:17291598

  19. Controlling the Adhesion and Differentiation of Mesenchymal Stem Cells Using Hyaluronic Acid-based, Doubly Crosslinked Networks

    PubMed Central

    Jha, Amit K.; Xu, Xian; Duncan, Randall L.; Jia, Xinqiao

    2011-01-01

    We have created hyaluronic acid (HA)-based, cell-adhesive hydrogels that direct the initial attachment and the subsequent differentiation of human mesenchymal stem cells (MSCs) into pre-osteoblasts without osteogenic supplements. HA-based hydrogel particles (HGPs) with an average diameter of 5-6 μm containing an estimated 2.2 wt% gelatin (gHGPs) were synthesized by covalent immobilization of gelatin to HA HGPs prepared via an inverse emulsion polymerization technique. Separately, a photocrosslinkable HA macromer (HAGMA) was synthesized by chemical modification of HA with glycidyl methacrylate (GMA). Doubly crosslinked networks (DXNs) were engineered by embedding gHGPs in a secondary network established by HAGMA at a particle concentration of 2.5 wt%. The resultant composite gels, designated as HA-gHGP, have an average compressive modulus of 21 kPa, and are non-toxic to the cultured MSCs. MSCs readily attached to these gels, exhibiting an early stage of stress fibers assembly 3 h post seeding. By day 7, stellated-shaped cells with extended filopodia were found on HA-gHGP gels. Moreover, cells had migrated deep into the matrix, forming a three dimensional, branched and interconnected cell community. Conversely, MSCs on the control gels lacking gelatin moieties formed isolated spheroids with rounded cell morphology. After 28 days of culture on HA-gHGP, Type I collagen production and mineral deposition were detected in the absence of osteogenic supplements, suggesting induction of osteogenic differentiation. In contrast, cells on the control gels expressed markers for adipogenesis. Overall, the HA-gHGP composite matrix has great promise for directing the osteogenic differentiation of MSCs by providing an adaptable environment through the spatial presentation of cell adhesive modules. PMID:21216457

  20. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  1. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A.

    PubMed

    Tu, Chia-Ling; Chang, Wenhan; Bikle, Daniel D

    2011-05-01

    Extracellular Ca(2+) (Ca(2+)(o)) functioning through the calcium-sensing receptor (CaR) induces E-cadherin-mediated cell-cell adhesion and cellular signals mediating cell differentiation in epidermal keratinocytes. Previous studies indicate that CaR regulates cell-cell adhesion through Fyn/Src tyrosine kinases. In this study, we investigate whether Rho GTPase is a part of the CaR-mediated signaling cascade regulating cell adhesion and differentiation. Suppressing endogenous Rho A expression by small interfering RNA (siRNA)-mediated gene silencing blocked the Ca(2+)(o)-induced association of Fyn with E-cadherin and suppressed the Ca(2+)(o)-induced tyrosine phosphorylation of β-, γ-, and p120-catenin and formation of intercellular adherens junctions. Rho A silencing also decreased the Ca(2+)(o)-stimulated expression of terminal differentiation markers. Elevating the Ca(2+)(o) level induced interactions among CaR, Rho A, E-cadherin, and the scaffolding protein filamin A at the cell membrane. Inactivation of CaR expression by adenoviral expression of a CaR antisense complementary DNA inhibited Ca(2+)(o)-induced activation of endogenous Rho. Ca(2+)(o) activation of Rho required a direct interaction between CaR and filamin A. Interference of CaR-filamin interaction inhibited Ca(2+)(o)-induced Rho activation and the formation of cell-cell junctions. These results indicate that Rho is a downstream mediator of CaR in the regulation of Ca(2+)(o)-induced E-cadherin-mediated cell-cell adhesion and keratinocyte differentiation. PMID:21209619

  2. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation

    NASA Astrophysics Data System (ADS)

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-01

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  3. Differential Adhesion Selection for Enrichment of Tendon-Derived Progenitor Cells During In Vitro Culture.

    PubMed

    Durgam, Sushmitha; Schuster, Brooke; Cymerman, Anna; Stewart, Allison; Stewart, Matthew

    2016-08-01

    Preplating, a technique used to separate rapidly adherent fibroblasts from the less-adherent progenitor cells, has been used successfully to isolate skeletal muscle-derived stem cells. The objective of this study was to determine if preplating could also be applied to enrich tendon-derived progenitor cells (TDPCs) before monolayer expansion. Cell suspensions obtained by collagenase digestion of equine lateral digital extensor tendon were serially transferred into adherent plates every 12 h for 4 days. TDPC fractions obtained from initial (TPP0), third (TPP3), and seventh (TPP7) preplate were passaged twice and used for subsequent analyses. Growth/proliferation and basal tenogenic gene expression of the three TDPC fractions were largely similar. Preplating and subsequent monolayer expansion did not alter the immunophenotype (CD29(+), CD44(+), CD90(+), and CD45(-)) and trilineage differentiation capacity of TDPC fractions. Overall, TDPCs were robustly osteogenic, but exhibited comparatively weak adipogenic and chondrogenic capacities. These outcomes indicate that preplating does not enrich for tendon-derived progenitors during in vitro culture, and "whole tendon digest"-derived cells are as appropriate for cell-based therapies. PMID:27406327

  4. Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice.

    PubMed Central

    Komatsu, S.; Flores, S.; Gerritsen, M. E.; Anderson, D. C.; Granger, D. N.

    1997-01-01

    Although circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) are frequently used as an indicator of the severity of different immune, inflammatory, or neoplastic diseases, little is known about the factors that govern plasma sICAM-1 concentration and its relationship to the membranous form of ICAM-1 (mICAM-1) expressed on vascular endothelial cells. Plasma sICAM-1 concentration (measured by enzyme-linked immunosorbent assay) and mICAM-1 expression (measured using the dual radiolabeled monoclonal antibody technique) in different vascular beds (eg, lung, small intestine, and spleen) were monitored in wild-type (C57BL) and ICAM-1-deficient mice, before and after administration of tumor necrosis factor (TNF)-alpha. In wild-type mice, TNF-alpha elicited time-dependent increases in lung and intestine mICAM-1 (plateau achieved at 12 hours), with a corresponding increase in plasma sICAM-1 (peaked at 5 hours and then declined). The initial increases in mICAM-1 and pulmonary leukocyte sequestration (measured as lung myeloperoxidase activity) induced by TNF-alpha preceded any detectable elevation in sICAM-1. In ICAM-1-deficient mice, plasma sICAM-1 was reduced by approximately 70%, with > 95% reductions of mICAM-1 in lung and intestine, and > 75% reduction in splenic accumulation of anti-ICAM-1 antibody. Although TNF-alpha doubled plasma sICAM-1 in ICAM-1-deficient mice, mICAM-1 was unaffected in all tissues. Either splenectomy or pretreatment with cycloheximide resulted in an attenuated TNF-induced increase in sICAM-1, without affecting mICAM-1 expression. These findings indicate that plasma sICAM-1 concentration does not accurately reflect the level of ICAM-1 expression on endothelial cells in different vascular beds. PMID:9212746

  5. Cyclin D1 localizes in the cytoplasm of keratinocytes during skin differentiation and regulates cell-matrix adhesion.

    PubMed

    Fernández-Hernández, Rita; Rafel, Marta; Fusté, Noel P; Aguayo, Rafael S; Casanova, Josep M; Egea, Joaquim; Ferrezuelo, Francisco; Garí, Eloi

    2013-08-01

    The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with β1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased β1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation. PMID:23839032

  6. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes

    PubMed Central

    Bellance, Catherine; Khan, Junaid A.; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-01-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(–) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl­amino)­phenyl-17β-hydroxy-17-(1-propynyl)­estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes. PMID:23485561

  7. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development. PMID:25448695

  8. Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics

    PubMed Central

    König, Annekatrin; Shcherbata, Halyna R.

    2015-01-01

    ABSTRACT It is known that signaling from the germline stem cell niche is required to maintain germline stem cell identity in Drosophila. However, it is not clear whether the germline stem-cell daughters differentiate by default (because they are physically distant from the niche) or whether additional signaling is necessary to initiate the differentiation program. Previously, we showed that ecdysteroid signaling cell non-autonomously regulates early germline differentiation via its soma-specific co-activator and co-repressor, Taiman and Abrupt. Now, we demonstrate that this regulation is modulated by the miRNA let-7, which acts in a positive feedback loop to confer ecdysone signaling robustness via targeting its repressor, the transcription factor Abrupt. This feedback loop adjusts ecdysteroid signaling in response to some stressful alterations in the external and internal conditions, which include temperature stress and aging, but not nutritional deprivation. Upon let-7 deficit, escort cells fail to properly differentiate: their shape, division, and cell adhesive characteristics are perturbed. These cells have confused cellular identity and form columnar-like rather than squamous epithelium and fail to send protrusions in between differentiating germline cysts, affecting soma-germline communication. Particularly, levels of the homophilic cell adhesion protein Cadherin, which recruits Wg signaling transducer β-catenin, are increased in mutant escort cells and, correspondingly, in the adjacent germline cells. Readjustment of heterotypic (soma-germline) cell adhesion modulates Wg signaling intensity in the germline, which in turn regulates histone modifications that promote expression of the genes necessary to trigger early germline differentiation. Thus, our data first show the intrinsic role for Wg signaling in the germline and support a model where the soma influences the tempo of germline differentiation in response to external conditions. PMID:25661868

  9. Host Selection of Microbiota via Differential Adhesion.

    PubMed

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  10. Simulating convergent extension by way of anisotropic differential adhesion.

    PubMed

    Zajac, Mark; Jones, Gerald L; Glazier, James A

    2003-05-21

    Simulations using the Extended Potts Model suggest that anisotropic differential adhesion can account for convergent extension, as observed during embryonic development of the frog Xenopus laevis for example. During gastrulation in these frogs, convergent extension produces longitudinal tissue growth from latitudinal elongation and migration of aligned constituent cells. The Extended Potts Model employs clustered points on a grid to represent subdivided cells with probabilistic displacement of cell boundaries such that small changes in energy drive gradual tissue development. For modeling convergent extension, simulations include anisotropic differential adhesion: the degree of attachment between adjacent elongated cells depends on their relative orientation. Without considering additional mechanisms, simulations based on anisotropic differential adhesion reproduce the hallmark stages of convergent extension in the correct sequence, with random fluctuations as sufficient impetus for cell reorganization. PMID:12727459

  11. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells

    PubMed Central

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Background and methods Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. Results The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. Conclusion This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo. PMID:23345973

  12. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy

    PubMed Central

    Kim, Myung-Sun; Yu, Ji Hea; Lee, Min-Young; Kim, Ah Leum; Jo, Mi Hyun; Kim, MinGi; Cho, Sung-Rae; Kim, Young-Han

    2016-01-01

    Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE). The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs) from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy. PMID:27218821

  13. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy.

    PubMed

    Kim, Myung-Sun; Yu, Ji Hea; Lee, Min-Young; Kim, Ah Leum; Jo, Mi Hyun; Kim, MinGi; Cho, Sung-Rae; Kim, Young-Han

    2016-01-01

    Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE). The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs) from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy. PMID:27218821

  14. Costimulation-Adhesion Blockade is Superior to Cyclosporine A and Prednisone Immunosuppressive Therapy for Preventing Rejection of Differentiated Human Embryonic Stem Cells Following Transplantation

    PubMed Central

    Huber, Bruno C.; Ransohoff, Julia D.; Ransohoff, Katherine J.; Riegler, Johannes; Ebert, Antje; Kodo, Kazuki; Gong, Yongquan; Sanchez-Freire, Veronica; Dey, Devaveena; Kooreman, Nigel G.; Diecke, Sebastian; Zhang, Wendy Y.; Odegaard, Justin; Hu, Shijun; Gold, Joseph D.; Robbins, Robert C.; Wu, Joseph C.

    2014-01-01

    Rationale Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction. Objective To test the hypothesis that a short-course, dual-agent regimen of two costimulation-adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents. Methods and Results We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP), and differentiated these cells to endothelial cells (hESC-ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging (BLI). Costimulation-adhesion therapy resulted in superior hESC-EC and mouse EC engraftment compared to cyclosporine therapy in a hindlimb model. Costimulation-adhesion therapy also promoted robust hESC-EC and hESC-derived cardiomyocyte (hESC-CM) survival in an ischemic myocardial injury model. Improved hESC-EC engraftment had a cardioprotective effect after myocardial injury, as assessed by magnetic resonance imaging (MRI). Mechanistically, costimulation-adhesion therapy is associated with systemic and intra-graft upregulation of T cell immunoglobulin and mucin domain 3 (TIM3) and a reduced pro-inflammatory cytokine profile. Conclusions Costimulation-adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post-transplant rejection of hESC derivatives. By extending the window for cellular engraftment, costimulation-adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3-dependent mechanism. PMID:24038578

  15. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    PubMed

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions. PMID:26796232

  16. Hybrid GPCR/cadherin (Celsr) proteins in rat testis are expressed with cell type specificity and exhibit differential Sertoli cell-germ cell adhesion activity.

    PubMed

    Beall, Stephanie A; Boekelheide, Kim; Johnson, Kamin J

    2005-01-01

    Spermatogenesis requires Sertoli cell-germ cell adhesion for germ cell survival and maturation. Cadherins are a diverse superfamily of adhesion proteins; structurally unique members of this superfamily (celsr cadherins) are hybrid molecules containing extracellular cadherin repeats connected to a G protein-coupled receptor transmembrane motif. Here we demonstrate postnatal testicular mRNA expression of the 3 celsr paralogs (celsr1, celsr2, and celsr3), protein localization of celsr2 and celsr3, and functional analysis of celsr2 adhesion activity in primary Sertoli cell-germ cell co-cultures. Evaluation of celsr mRNA levels during a postnatal time course indicated that celsr1 and celsr2 were Sertoli cell and/or early-stage germ cell products, whereas celsr3 was expressed in later-stage germ cells. Cell type-specific expression was verified using the Sertoli cell line 93RS2, where celsr1 and celsr2 mRNA, but not celsr3, were detected. Immunostaining of testicular cryosections resulted in celsr2 protein localization to a spokelike pattern in the basal seminiferous epithelium and punctate figures in the apical epithelium, consistent with both Sertoli cell and germ cell expression. Celsr3 localized to punctate structures in the adluminal epithelium from postnatal day 40, consistent with elongate spermatid expression. The subcellular localization of celsr2 was examined further to define its localization in Sertoli cells and germ cells. Celsr2 localized to the Golgi complex in Sertoli cells and germ cells. In addition, germ cell celsr2 localized to a rab7-positive structure, which may be an endocytic compartment. Neither celsr2 nor celsr3 immunostaining was present at classic cadherin-based adhesion junctions. Nonetheless, the addition of a recombinant celsr2 protein fragment consisting of extracellular cadherin domains 4 through 8 to Sertoli cell-germ cell co-cultures resulted in germ cell detachment from Sertoli cells. Collectively, these data indicate that celsr

  17. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  18. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds. PMID:26726438

  19. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C

    PubMed Central

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2014-01-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  20. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C.

    PubMed

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2013-04-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  1. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway.

    PubMed

    Liu, Dan-Dan; Ge, Kun; Jin, Yi; Sun, Jing; Wang, Shu-Xiang; Yang, Meng-Su; Zhang, Jin-Chao

    2014-08-01

    With its special physical and chemical properties, terbium has been widely used, which has inevitably increased the chance of human exposure to terbium-based compounds. It was reported that terbium mainly deposited in bone after introduction into the human body. Although some studies revealed the effects of terbium on bone cell lines, there have been few reports about the potential effect of terbium on adhesion and differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the effects of terbium on the adhesion and osteogenic and adipogenic differentiation of MSCs and the associated molecular mechanisms. Our data reveal that terbium promoted the osteogenic differentiation in a time-dependent manner and conversely inhibited the adipogenic differentiation of MSCs. Meanwhile, the cell-cell or cell-matrix interaction was enhanced by activating adherent-related key factors, which were evaluated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Real-time RT-PCR and Western blot analysis were also performed to further detect osteogenic and adipogenic biomarkers of MSCs. The regulation of terbium on differentiation of MSCs led to the interaction between the transforming growth factor β/bone morphogenetic protein and peroxisome-proliferator-activated receptor γ (PPARγ) signaling pathways, resulting in upregulation of the osteogenic master transcription factors, such as Runt-related transcription factor 2, bone morphogenetic protein 2, collagen I, alkaline phosphatase, and osteocalcin, and downregulation of the adipogenic master transcription factors, such as PPARγ2. The results provide novel evidence to elucidate the mechanisms of bone metabolism by terbium and may be helpful for more rational application of terbium-based compounds in the future. PMID:24585101

  2. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells

    PubMed Central

    Schneider-Hohendorf, Tilman; Rossaint, Jan; Mohan, Hema; Böning, Daniel; Breuer, Johanna; Kuhlmann, Tanja; Gross, Catharina C.; Flanagan, Ken; Sorokin, Lydia; Vestweber, Dietmar; Zarbock, Alexander

    2014-01-01

    The focus of this study is the characterization of human T cell blood–brain barrier migration and corresponding molecular trafficking signatures. We examined peripheral blood and cerebrospinal fluid immune cells from patients under long-term anti–very late antigen-4 (VLA-4)/natalizumab therapy (LTNT) and from CNS specimens. LTNT patients’ cerebrospinal fluid T cells exhibited healthy central-/effector-memory ratios, but lacked CD49d and showed enhanced myeloma cell adhesion molecule (MCAM) expression. LTNT led to an increase of PSGL-1 expression on peripheral T cells. Although vascular cell adhesion molecule-1 (VLA-4 receptor) was expressed at all CNS barriers, P-selectin (PSGL-1-receptor) was mainly detected at the choroid plexus. Accordingly, in vitro experiments under physiological flow conditions using primary human endothelial cells and LTNT patients’ T cells showed increased PSGL-1–mediated rolling and residual adhesion, even under VLA-4 blockade. Adhesion of MCAM+/TH17 cells was not affected by VLA-4 blocking alone, but was abrogated when both VLA-4 and MCAM were inhibited. Consistent with these data, MCAM+ cells were detected in white matter lesions, and in gray matter of multiple sclerosis patients. Our data indicate that lymphocyte trafficking into the CNS under VLA-4 blockade can occur by using the alternative adhesion molecules, PSGL-1 and MCAM, the latter representing an exclusive pathway for TH17 cells to migrate over the blood–brain barrier. PMID:25135296

  3. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating

    NASA Astrophysics Data System (ADS)

    Li, Huihua; Luo, Chuang; Luo, Binghong; Wen, Wei; Wang, Xiaoying; Ding, Shan; Zhou, Changren

    2016-01-01

    To develop a chitooligosaccharide(COS)-functionalized poly(D,L-lactide) (PDLLA) membrane to enhance growth and osteogenic differentiation of MC3T3-E1 cells, firstly a thin polydopamine (PDOPA) layer was adhered to the PDLLA membrane via the self-polymerization and strong adhesion behavior of dopamine. Subsequently, COS was immobilized covalently on the resultant PDLLA/PDOPA composite membrane by coupling with PDOPA active coating. The successful immobilization of the PDOPA and COS was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) results indicated that the surface topography and roughness of the membranes were changed, and the root mean square increased from 0.613 nm to 6.96 and 7.12 nm, respectively after coating PDOPA and COS. Water contact angle and surface energy measurements revealed that the membrane hydrophilicity was remarkably improved by surface modification. In vitro cells culture results revealed that the PDOPA- and COS-functionalized surfaces showed a significant increase in MC3T3-E1 cells adhesion, proliferation, osteogenic differentiation and alkaline phosphate activity compared to the pristine PDLLA substrate. Furthermore the COS-functionalized PDLLA membrane was more effectively at enhancing osteoblast activity than the PDOPA-functionalized PDLLA membrane.

  4. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    PubMed

    Kalia, Priya; Brooks, Roger A; Kinrade, Stephen D; Morgan, David J; Brown, Andrew P; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased

  5. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells

    PubMed Central

    Kalia, Priya; Brooks, Roger A.; Kinrade, Stephen D.; Morgan, David J.; Brown, Andrew P.; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0–42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface’s water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased

  6. Notch-Mediated Cell Adhesion.

    PubMed

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  7. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  8. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes. PMID:27067049

  9. Adhesion- and Degranulation-Promoting Adapter Protein Promotes CD8 T Cell Differentiation and Resident Memory Formation and Function during an Acute Infection.

    PubMed

    Fiege, Jessica K; Beura, Lalit K; Burbach, Brandon J; Shimizu, Yoji

    2016-09-15

    During acute infections, naive Ag-specific CD8 T cells are activated and differentiate into effector T cells, most of which undergo contraction after pathogen clearance. A small population of CD8 T cells persists as memory to protect against future infections. We investigated the role of adhesion- and degranulation-promoting adapter protein (ADAP) in promoting CD8 T cell responses to a systemic infection. Naive Ag-specific CD8 T cells lacking ADAP exhibited a modest expansion defect early after Listeria monocytogenes or vesicular stomatitis virus infection but comparable cytolytic function at the peak of response. However, reduced numbers of ADAP-deficient CD8 T cells were present in the spleen after the peak of the response. ADAP deficiency resulted in a greater frequency of CD127(+) CD8 memory precursors in secondary lymphoid organs during the contraction phase. Reduced numbers of ADAP-deficient killer cell lectin-like receptor G1(-) CD8 resident memory T (TRM) cell precursors were present in a variety of nonlymphoid tissues at the peak of the immune response, and consequently the total numbers of ADAP-deficient TRM cells were reduced at memory time points. TRM cells that did form in the absence of ADAP were defective in effector molecule expression. ADAP-deficient TRM cells exhibited impaired effector function after Ag rechallenge, correlating with defects in their ability to form T cell-APC conjugates. However, ADAP-deficient TRM cells responded to TGF-β signals and recruited circulating memory CD8 T cells. Thus, ADAP regulates CD8 T cell differentiation events following acute pathogen challenge that are critical for the formation and selected functions of TRM cells in nonlymphoid tissues. PMID:27521337

  10. Differentiation of MCF-7 tumor cells from leukocytes and fibroblast cells using epithelial cell adhesion molecule targeted multicore surface-enhanced Raman spectroscopy labels

    NASA Astrophysics Data System (ADS)

    Freitag, Isabel; Matthäus, Christian; Csaki, Andrea; Clement, Joachim H.; Cialla-May, Dana; Weber, Karina; Krafft, Christoph; Popp, Jürgen

    2015-05-01

    Identification of tumor and normal cells is a promising application of Raman spectroscopy. The throughput of Raman-assisted cell sorting is limited by low sensitivity. Surface-enhanced Raman spectroscopy (SERS) is a well-recognized candidate to increase the intensity of Raman signals of cells. First, different strategies are summarized to detect tumor cells using targeted SERS probes. Then, a protocol is described to prepare multicore-SERS-labels (MSLs) by aggregating gold nanoparticles, coating with a reporter molecule and a thin silver shell to further boost enhancement, encapsulating with a stable silica layer, and functionalizing by epithelial cell adhesion molecule (EpCAM) antibodies. Raman, dark field and fluorescence microscopy proved the specific and nonspecific binding of functionalized and nonfunctionalized MSLs to MCF-7 tumor cells, leukocytes from blood, and nontransformed human foreskin fibroblasts. Raman imaging and dark field microscopy indicated no uptake of MSLs, yet binding to the cellular membrane. Viability tests were performed with living tumor cells to demonstrate the low toxicity of MSL-EpCAM. The SERS signatures were detected from cells with exposure times down to 25 ms at 785-nm laser excitation. The prospects of these MSLs in multiplex assays, for enumeration and sorting of circulating tumor cells in microfluidic chips, are discussed.

  11. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    NASA Astrophysics Data System (ADS)

    Vandrovcova, Marta; Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan; Stankova, Lubica; Lisa, Vera; Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek; Bacakova, Lucie

    2015-12-01

    Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  12. Triglyceride-Rich Lipoprotein Modulates Endothelial Vascular Cell Adhesion Molecule (VCAM)-1 Expression via Differential Regulation of Endoplasmic Reticulum Stress

    PubMed Central

    Wang, Ying I.; Bettaieb, Ahmed; Sun, Chongxiu; DeVerse, J. Sherrod; Radecke, Christopher E.; Mathew, Steven; Edwards, Christina M.; Haj, Fawaz G.; Passerini, Anthony G.; Simon, Scott I.

    2013-01-01

    Circulating triglyceride-rich lipoproteins (TGRL) from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC), defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα) stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL’s atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK) and inositol requiring protein 1α (IRE1α), and downstream effectors including eukaryotic initiation factor-2α (eIF2α), spliced X-box-binding protein 1 (sXBP1) and C/EBP homologous protein (CHOP), directly correlated with the atherogenic activity of an individual’s TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1), a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and IRF-1

  13. Intercellular Adhesion Molecule-1 Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells and Impairs Bio-Scaffold-Mediated Bone Regeneration In Vivo

    PubMed Central

    Xu, Fen-Fen; Li, Xi-Mei; Yang, Fei; Chen, Ji-De; Tang, Bo; Sun, Hong-Guang; Chu, Ya-Nan; Zheng, Rong-Xiu; Liu, Yuan-Lin

    2014-01-01

    Mesenchymal stem cell (MSC) loaded bio-scaffold transplantation is a promising therapeutic approach for bone regeneration and repair. However, growing evidence shows that pro-inflammatory mediators from injured tissues suppress osteogenic differentiation and impair bone formation. To improve MSC-based bone regeneration, it is important to understand the mechanism of inflammation mediated osteogenic suppression. In the present study, we found that synovial fluid from rheumatoid arthritis patients and pro-inflammatory cytokines including interleukin-1α, interleukin-1β, and tumor necrosis factor α, stimulated intercellular adhesion molecule-1(ICAM-1) expression and impaired osteogenic differentiation of MSCs. Interestingly, overexpression of ICAM-1 in MSCs using a genetic approach also inhibited osteogenesis. In contrast, ICAM-1 knockdown significantly reversed the osteogenic suppression. In addition, after transplanting a traceable MSC-poly(lactic-co-glycolic acid) construct in rat calvarial defects, we found that ICAM-1 suppressed MSC osteogenic differentiation and matrix mineralization in vivo. Mechanistically, we found that ICAM-1 enhances MSC proliferation but causes stem cell marker loss. Furthermore, overexpression of ICAM-1 stably activated the MAPK and NF-κB pathways but suppressed the PI3K/AKT pathway in MSCs. More importantly, specific inhibition of the ERK/MAPK and NF-κB pathways or activation of the PI3K/AKT pathway partially rescued osteogenic differentiation, while inhibition of the p38/MAPK and PI3K/AKT pathway caused more serious osteogenic suppression. In summary, our findings reveal a novel function of ICAM-1 in osteogenesis and suggest a new molecular target to improve bone regeneration and repair in inflammatory microenvironments. PMID:24702024

  14. Adhesion in the stem cell niche: biological roles and regulation

    PubMed Central

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated. PMID:23250203

  15. Alterations in cell adhesion proteins and cardiomyopathy

    PubMed Central

    Li, Jifen

    2014-01-01

    Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models. PMID:24944760

  16. Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion

    PubMed Central

    Van Bockstal, Mieke; Lambein, Kathleen; Van Gele, Mireille; De Vlieghere, Elly; Limame, Ridha; Braems, Geert; Van den Broecke, Rudy; Cocquyt, Veronique; Denys, Hannelore; Bracke, Marc; Libbrecht, Louis; De Wever, Olivier

    2014-01-01

    Cancer progression is characterized by a complex reciprocity between neoplastic epithelium and adjacent stromal cells. In ductal carcinoma in situ (DCIS) of the breast, both reduced stromal decorin expression and myxoid stroma are correlated with increased recurrence risk. In this study, we aimed to investigate paracrine regulation of expression of decorin and related extracellular matrix (ECM) proteins in cancer-associated fibroblasts (CAFs). Transforming growth factor-β1 (TGF-β1) was identified as a competent ECM modulator, as it reduced decorin and strongly enhanced versican, biglycan and type I collagen expression. Similar but less pronounced effects were observed when fibroblasts were treated with basic fibroblast growth factor (bFGF). Despite this concerted ECM modulation, TGF-β1 and bFGF differentially regulated alpha-smooth muscle actin (α-SMA) expression, which is often proposed as a CAF-marker. Cancer cell-derived secretomes induced versican and biglycan expression in fibroblasts. Immunohistochemistry on twenty DCIS specimens showed a trend toward periductal versican overexpression in DCIS with myxoid stroma. Cancer cell adhesion was inhibited by decorin, but not by CAF-derived matrices. Cancer cells presented significantly enhanced spreading when seeded on matrices derived from TGF-β1-treated CAF. Altogether these data indicate that preinvasive cancerous lesions might modulate the composition of surrounding stroma through TGF-β1 release to obtain an invasion-permissive microenvironment. PMID:25593993

  17. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  18. EB1 Levels Are Elevated in Ascorbic Acid (AA)-stimulated Osteoblasts and Mediate Cell-Cell Adhesion-induced Osteoblast Differentiation*

    PubMed Central

    Pustylnik, Sofia; Fiorino, Cara; Nabavi, Noushin; Zappitelli, Tanya; da Silva, Rosa; Aubin, Jane E.; Harrison, Rene E.

    2013-01-01

    Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation. PMID:23740245

  19. TiO2-coated CoCrMo: improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro.

    PubMed

    Logan, Niall; Sherif, Anas; Cross, Alison J; Collins, Simon N; Traynor, Alison; Bozec, Laurent; Parkin, Ivan P; Brett, Peter

    2015-03-01

    The current gold standard material for orthopedic applications is titanium (Ti), however, other materials such as cobalt-chromium-molybdenum (CoCrMo) are often preferred due to their wear resistance and mechanical strength. This study investigates if the bioactivity of CoCrMo can be enhanced by coating the surface with titanium oxide (TiO2 ) by atmospheric pressure chemical vapor deposition (CVD), thereby replicating the surface oxide layer found on Ti. CoCrMo, TiO2-coated CoCrMo (CCMT) and Ti substrates were used for this study. Cellular f-actin distribution was shown to be noticeably different between cells on CCMT and CoCrMo after 24 h in osteogenic culture, with cells on CCMT exhibiting greater spread with developed protrusions. Osteogenic differentiation was shown to be enhanced on CCMT compared to CoCrMo, with increased calcium ion content per cell (p < 0.05), greater hydroxyapatite nodule formation (p < 0.05) and reduced type I collagen deposition per cell (p < 0.05). The expression of the focal adhesion protein vinculin was shown to be marginally greater on CCMT compared to CoCrMo, whereas AFM results indicated that CCMT required more force to remove a single cell from the substrate surface compared to CoCrMo (p < 0.0001). These data suggest that CVD TiO2 coatings may have the potential to increase the biocompatibility of CoCrMo implantable devices. PMID:25045159

  20. Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Tax1 and Tax2 of human T-cell leukemia viruses.

    PubMed Central

    Tanaka, Y; Hayashi, M; Takagi, S; Yoshie, O

    1996-01-01

    Previously, we showed that surface expression of intercellular adhesion molecule 1 (ICAM-1) was strongly upregulated in T cells carrying proviral human T-cell leukemia virus type 1 (HTLV-1) and that the viral transactivator protein Tax1 was capable of inducing the ICAM-1 gene. To determine the responsive elements in the human ICAM-1 gene promoter, a reporter construct in which the 5'-flanking 4.4-kb region of the ICAM-1 gene was linked to the promoterless chloramphenicol acetyltransferase (CAT) gene was cotransfected with expression vectors for Tax1 and Tax2, both of which were separately confirmed to be potent transactivators of the HTLV-1 long terminal repeat (LTR). Tax1 strongly activated the ICAM-1 promoter in all the cell lines tested: three T-cell lines (Jurkat, MOLT-4, and CEM), one monocytoid cell line (U937), and HeLa. Unexpectedly, Tax2 activated the ICAM-1 promoter only in HeLa. By deletion and mutation analyses of the 1.3-kb 5'-flanking region, we found that Tax1 transactivated the ICAM-1 promoter mainly via a cyclic AMP-responsive element (CRE)-like site at -630 to -624 in the Jurkat T-cell line and via an NF-kappaB site at -185 to -177 and an SP-1 site at -59 to -54 in HeLa. On the other hand, Tax2 was totally inactive on the ICAM-1 promoter in Jurkat but transactivated the promoter via the NF-kappaB site at -185 to -177 in HeLa. Gel mobility shift assays demonstrated proteins specifically binding to the CRE-like site at -630 to -624 in Tax1-expressing T-cell lines. Stable expression of Tax1 but not Tax2 in Jurkat subclones enhanced the surface expression of ICAM-1. The differential ability of Tax1 and Tax2 in transactivation of the ICAM-1 gene may be related to the differential pathogenicity of HTLV-1 and HTLV-2. PMID:8970974

  1. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee.

    PubMed

    Advani, Alexander S; Chen, Annie Y; Babbitt, Courtney C

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. PMID:26971204

  2. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee

    PubMed Central

    Advani, Alexander S.; Chen, Annie Y.; Babbitt, Courtney C.

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. PMID:26971204

  3. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  4. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  5. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub

  6. MiR-9-5p, miR-675-5p and miR-138-5p Damages the Strontium and LRP5-Mediated Skeletal Cell Proliferation, Differentiation, and Adhesion.

    PubMed

    Sun, Tianhao; Leung, Frankie; Lu, William W

    2016-01-01

    This study was designed to evaluate the effects of strontium on the expression levels of microRNAs (miRNAs) and to explore their effects on skeletal cell proliferation, differentiation, adhesion, and apoptosis. The targets of these miRNAs were also studied. Molecular cloning, cell proliferation assay, cell apoptosis assay, quantitative real-time PCR, and luciferase reporter assay were used. Strontium altered the expression levels of miRNAs in vitro and in vivo. miR-9-5p, miR-675-5p, and miR-138-5p impaired skeletal cell proliferation, cell differentiation and cell adhesion. miR-9-5p and miR-675-5p induced MC3T3-E1 cell apoptosis more specifically than miR-138-5p. miR-9-5p, miR-675-5p, and miR-138-5p targeted glycogen synthase kinase 3 β (GSK3β), ATPase Aminophospholipid Transporter Class I Type 8A Member 2 (ATP8A2), and Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1), respectively. Low-density lipoprotein receptor-related protein 5 (LRP5) played a positive role in skeletal development. miR-9-5p, miR-675-5p, and miR-138-5p damage strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion, and induce cell apoptosis by targeting GSK3β, ATP8A2, and EIF4EBP1, respectively. PMID:26891291

  7. miR-9-5p, miR-675-5p and miR-138-5p Damages the Strontium and LRP5-Mediated Skeletal Cell Proliferation, Differentiation, and Adhesion

    PubMed Central

    Sun, Tianhao; Leung, Frankie; Lu, William W.

    2016-01-01

    This study was designed to evaluate the effects of strontium on the expression levels of microRNAs (miRNAs) and to explore their effects on skeletal cell proliferation, differentiation, adhesion, and apoptosis. The targets of these miRNAs were also studied. Molecular cloning, cell proliferation assay, cell apoptosis assay, quantitative real-time PCR, and luciferase reporter assay were used. Strontium altered the expression levels of miRNAs in vitro and in vivo. miR-9-5p, miR-675-5p, and miR-138-5p impaired skeletal cell proliferation, cell differentiation and cell adhesion. miR-9-5p and miR-675-5p induced MC3T3-E1 cell apoptosis more specifically than miR-138-5p. miR-9-5p, miR-675-5p, and miR-138-5p targeted glycogen synthase kinase 3 β (GSK3β), ATPase Aminophospholipid Transporter Class I Type 8A Member 2 (ATP8A2), and Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1), respectively. Low-density lipoprotein receptor-related protein 5 (LRP5) played a positive role in skeletal development. miR-9-5p, miR-675-5p, and miR-138-5p damage strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion, and induce cell apoptosis by targeting GSK3β, ATP8A2, and EIF4EBP1, respectively. PMID:26891291

  8. Quantitation of Endothelial Cell Adhesiveness In Vitro

    PubMed Central

    Lowe, Donna J.; Raj, Kenneth

    2015-01-01

    One of the cardinal processes of inflammation is the infiltration of immune cells from the lumen of the blood vessel to the surrounding tissue. This occurs when endothelial cells, which line blood vessels, become adhesive to circulating immune cells such as monocytes. In vitro measurement of this adhesiveness has until now been done by quantifying the total number of monocytes that adhere to an endothelial layer either as a direct count or by indirect measurement of the fluorescence of adherent monocytes. While such measurements do indicate the average adhesiveness of the endothelial cell population, they are confounded by a number of factors, such as cell number, and do not reveal the proportion of endothelial cells that are actually adhesive. Here we describe and demonstrate a method which allows the enumeration of adhesive cells within a tested population of endothelial monolayer. Endothelial cells are grown on glass coverslips and following desired treatment are challenged with monocytes (that may be fluorescently labeled). After incubation, a rinsing procedure, involving multiple rounds of immersion and draining, the cells are fixed. Adhesive endothelial cells, which are surrounded by monocytes are readily identified and enumerated, giving an adhesion index that reveals the actual proportion of endothelial cells within the population that are adhesive. PMID:26132714

  9. Cell morphology and focal adhesion location alters internal cell stress.

    PubMed

    Mullen, C A; Vaughan, T J; Voisin, M C; Brennan, M A; Layrolle, P; McNamara, L M

    2014-12-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  10. Cell morphology and focal adhesion location alters internal cell stress

    PubMed Central

    Mullen, C. A.; Vaughan, T. J.; Voisin, M. C.; Brennan, M. A.; Layrolle, P.; McNamara, L. M.

    2014-01-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  11. Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model.

    PubMed

    Dostal, Alexandra; Gagnon, Mélanie; Chassard, Christophe; Zimmermann, Michael Bruce; O'Mahony, Liam; Lacroix, Christophe

    2014-01-01

    In regions with a high infectious disease burden, concerns have been raised about the safety of iron supplementation because higher iron concentrations in the gut lumen may increase risk of enteropathogen infection. The aim of this study was to investigate interactions of the enteropathogen Salmonella enterica ssp. enterica Typhimurium with intestinal cells under different iron concentrations encountered in the gut lumen during iron deficiency and supplementation using an in vitro colonic fermentation system inoculated with immobilized child gut microbiota combined with Caco-2/HT29-MTX co-culture monolayers. Colonic fermentation effluents obtained during normal, low (chelation by 2,2'-dipyridyl) and high iron (26.5 mg iron/L) fermentation conditions containing Salmonella or pure Salmonella cultures with similar iron conditions were applied to cellular monolayers. Salmonella adhesion and invasion capacity, cellular integrity and immune response were assessed. Under high iron conditions in pure culture, Salmonella adhesion was 8-fold increased compared to normal iron conditions while invasion was not affected leading to decreased invasion efficiency (-86%). Moreover, cellular cytokines IL-1β, IL-6, IL-8 and TNF-α secretion as well as NF-κB activation in THP-1 cells were attenuated under high iron conditions. Low iron conditions in pure culture increased Salmonella invasion correlating with an increase in IL-8 release. In fermentation effluents, Salmonella adhesion was 12-fold and invasion was 428-fold reduced compared to pure culture. Salmonella in high iron fermentation effluents had decreased invasion efficiency (-77.1%) and cellular TNF-α release compared to normal iron effluent. The presence of commensal microbiota and bacterial metabolites in fermentation effluents reduced adhesion and invasion of Salmonella compared to pure culture highlighting the importance of the gut microbiota as a barrier during pathogen invasion. High iron concentrations as

  12. Control of cell adhesion on poly(methyl methacrylate).

    PubMed

    Patel, Shyam; Thakar, Rahul G; Wong, Josh; McLeod, Stephen D; Li, Song

    2006-05-01

    Keratoprostheses have been constructed from a wide variety of transparent materials, including poly(methyl methacrylate) (PMMA). However, the success of keratoprosthesis has been plagued by numerous shortcomings that include the weakening of the implant-host interface due to weak cell adhesion and opaque fibrous membrane formation over the inner surface of the implant due to fibroblast attachment. An effective solution requires a surface modification that would selectively allow enhanced cell attachment at the implant-host interface and reduced cell attachment over the interior surface of the implant. Here, we have developed a novel and simple peptide conjugation scheme to modify PMMA surfaces, which allowed for region-specific control of cell adhesion. This method uses di-amino-PEG, which can be grafted onto PMMA using hydrolysis or aminolysis method. PEG can resist cell adhesion and protein adsorption. The functionalization of grafted di-amino-PEG molecules with RGD peptide not only restored cell adhesion to the surfaces, but also enhanced cell attachment and spreading as compared to untreated PMMA surfaces. Long-term cell migration and micropatterning studies clearly indicated that PEG-PMMA surfaces with and without RGD conjugation can be used to differentiate cell adhesion and control cell attachment spatially on PMMA, which will have potential applications in the modification of keratoprostheses. PMID:16439014

  13. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Pawlizak, Steve; Fritsch, Anatol W.; Grosser, Steffen; Ahrens, Dave; Thalheim, Tobias; Riedel, Stefanie; Kießling, Tobias R.; Oswald, Linda; Zink, Mareike; Manning, M. Lisa; Käs, Josef A.

    2015-08-01

    We analyze the mechanical properties of three epithelial/mesenchymal cell lines (MCF-10A, MDA-MB-231, MDA-MB-436) that exhibit a shift in E-, N- and P-cadherin levels characteristic of an epithelial-mesenchymal transition associated with processes such as metastasis, to quantify the role of cell cohesion in cell sorting and compartmentalization. We develop a unique set of methods to measure cell-cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions from cell sorting in mixtures of cell populations. We find that the final sorted state is extremely robust among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting may play an important role in organization and boundary formation in tumours. We find that surface densities of adhesive molecules do not correlate with measured cell-cell adhesion, but do correlate with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended version of the differential adhesion hypothesis (DAH). Surprisingly, the DAH does not correctly predict the final sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical effects such as directional motility, friction and jamming may play an important role in tissue compartmentalization across the epithelial-mesenchymal transition.

  14. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Pawlizak, Steve; Fritsch, Anatol; Grosser, Steffen; Oswald, Linda; Manning, Lisa; Kas, Josef

    We analyze the properties of three epithelial/mesenchymal cell lines that exhibit a shift in cadherin levels characteristic of an epithelial-mesenchymal transition (EMT) associated with processes such as metastasis, to quantify the role of cell cohesion in cell sorting and compartmentalization. We develop a unique set of methods to measure cell-cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions from cell sorting in mixtures of cell populations. We find that the final sorted state is extremely robust among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting may play an important role in organization and boundary formation in tumours. We find that surface densities of adhesive molecules do not correlate with measured cell-cell adhesion, but do correlate with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended differential adhesion hypothesis (DAH). Surprisingly, the DAH does not correctly predict the final sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical effects such as directional motility, friction and jamming may play an important role in tissue compartmentalization across the EMT.

  15. Bioinspired Quercitrin Nanocoatings: A Fluorescence-Based Method for Their Surface Quantification, and Their Effect on Stem Cell Adhesion and Differentiation to the Osteoblastic Lineage.

    PubMed

    Córdoba, Alba; Monjo, Marta; Hierro-Oliva, Margarita; González-Martín, María Luisa; Ramis, Joana Maria

    2015-08-01

    Polyphenol-based coatings have several potential applications in medical devices, such as cardiovascular stents, contrast agents, drug delivery systems, or bone implants, due to the multiple bioactive functionalities of these compounds. In a previous study, we fabricated titanium surfaces functionalized with flavonoids through covalent chemistry, and observed their osteogenic, anti-inflammatory, and antifibrotic properties in vitro. In this work, we report a fluorescence-based method for the quantification of the amount of flavonoid grafted onto the surfaces, using 2-aminoethyl diphenylborinate, a boronic ester that spontaneously forms a fluorescent complex with flavonoids. The method is sensitive, simple, rapid, and easy to perform with routine equipment, and could be applied to determine the surface coverage of other plant-derived polyphenol-based coatings. Besides, we evaluated an approach based on reductive amination to covalently graft the flavonoid quercitrin to Ti substrates, and optimized the grafting conditions. Depending on the reaction conditions, the amount of quercitrin grafted was between 64 ± 10 and 842 ± 361 nmol on 6.2 mm Ti coins. Finally, we evaluated the in vitro behavior of bone-marrow-derived human mesenchymal stem cells cultured on the quercitrin nanocoated Ti surfaces. The surfaces functionalized with quercitrin showed a faster stem cell adhesion than control surfaces, probably due to the presence of the catechol groups of quercitrin on the surfaces. A rapid cell adhesion is crucial for the successful performance of an implant. Furthermore, quercitrin-nanocoated surfaces enhanced the mineralization of the cells after 21 days of cell culture. These results indicate that quercitrin nanocoatings could promote the rapid osteointegration of bone implants. PMID:26167954

  16. Schwann cell differentiation inhibits interferon-gamma induction of expression of major histocompatibility complex class II and intercellular adhesion molecule-1.

    PubMed

    Lisak, Robert P; Bealmear, Beverly; Benjamins, Joyce A

    2016-06-15

    Interferon-gamma (IFN-γ) upregulates major histocompatibility complex class II (MHC class II) antigens and intercellular adhesion molecule-1 (ICAM-1) on Schwann cells (SC) in vitro, but in nerves of animals and patients MHC class II is primarily expressed on inflammatory cells. We investigated whether SC maturation influences their expression. IFN-γ induced MHC class II and upregulated ICAM-1; the axolemma-like signal 8-bromo cyclic adenosine monophosphate (8 Br cAMP) with IFN-γ inhibited expression. Delaying addition of 8 Br cAMP to SC already exposed to IFN-γ inhibited ongoing expression; addition of IFN-γ to SC already exposed to 8 Br cAMP resulted in minimal expression. Variability of cytokine-induced MHC class II and ICAM-1 expression by SC in vivo may represent the variability of signals from axolemma. PMID:27235355

  17. Micropatterning cell adhesion on polyacrylamide hydrogels.

    PubMed

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  18. Bistability of Cell Adhesion in Shear Flow

    PubMed Central

    Efremov, Artem; Cao, Jianshu

    2011-01-01

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area—bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms. PMID:21889439

  19. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques.

    PubMed

    Cai, J P; Harris, K; Falanga, V; Taylor, J R; Chin, Y H

    1996-01-01

    that UVB treatment interferes with the adhesive properties of both psoriatic PBMC and endothelial cells, and differentially regulates the expression of endothelial adhesion molecules. The study also provided direct evidence for the involvement of E-selectin in the adhesion of circulating lymphocytes to psoriatic endothelial cells. PMID:8745879

  20. Topographic cell instructive patterns to control cell adhesion, polarization and migration

    PubMed Central

    Ventre, Maurizio; Natale, Carlo Fortunato; Rianna, Carmela; Netti, Paolo Antonio

    2014-01-01

    Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry. PMID:25253035

  1. Characterizing cell adhesion by using micropipette aspiration.

    PubMed

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I; Husson, Julien

    2015-07-21

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  2. Characterizing Cell Adhesion by Using Micropipette Aspiration

    PubMed Central

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I.; Husson, Julien

    2015-01-01

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  3. Hybrid inverse opals for regulating cell adhesion and orientation.

    PubMed

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering. PMID:25088946

  4. Hybrid inverse opals for regulating cell adhesion and orientation

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-08-01

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  5. A Continuum Approach to Modelling Cell-Cell Adhesion

    PubMed Central

    Armstrong, Nicola J.; Painter, Kevin J.; Sherratt, Jonathan A.

    2007-01-01

    Cells adhere to each other through the binding of cell adhesion molecules at the cell surface. This process, known as cell-cell adhesion, is fundamental in many areas of biology, including early embryo development, tissue homeostasis and tumour growth. In this paper we develop a new continuous mathematical model of this phenomenon by considering the movement of cells in response to the adhesive forces generated through binding. We demonstrate that our model predicts the aggregation behaviour of a disassociated adhesive cell population. Further, when the model is extended to represent the interactions between multiple populations, we demonstrate that it is capable of replicating the different types of cell sorting behaviour observed experimentally. The resulting pattern formation is a direct consequence of the relative strengths of self-population and cross-population adhesive bonds in the model. While cell sorting behaviour has been captured previously with discrete approaches, it has not, until now, been observed with a fully continuous model. PMID:16860344

  6. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  7. Differential Regulation and Function of CD73, a Glycosyl-Phosphatidylinositol–linked 70-kD Adhesion Molecule, on Lymphocytes and Endothelial Cells

    PubMed Central

    Airas, Laura; Niemelä, Jussi; Salmi, Marko; Puurunen, Tarja; Smith, David J.; Jalkanen, Sirpa

    1997-01-01

    CD73, otherwise known as ecto-5′-nucleotidase, is a glycosyl-phosphatidylinositol–linked 70-kD molecule expressed on different cell types, including vascular endothelial cells (EC) and certain subtypes of lymphocytes. There is strong evidence for lymphocyte CD73 having a role in several immunological phenomena such as lymphocyte activation, proliferation, and adhesion to endothelium, but the physiological role of CD73 in other cell types is less clear. To compare the biological characteristics of CD73 in different cell types, we have studied the structure, function, and surface modulation of CD73 on lymphocytes and EC. CD73 molecules on lymphocytes are shed from the cell surface as a consequence of triggering with an antiCD73 mAb, mimicking ligand binding. In contrast, triggering of endothelial CD73 does not have any effect on its expression. Lymphocyte CD73 is susceptible to phosphatidylinositol phospholipase, whereas only a small portion of CD73 on EC could be removed by this enzyme. Furthermore, CD73 on EC was unable to deliver a tyrosine phosphorylation inducing signal upon mAb triggering, whereas triggering of lymphocyte CD73 can induce tyrosine phosphorylation. Despite the functional differences, CD73 molecules on lymphocytes and EC were practically identical structurally, when studied at the protein, mRNA, and cDNA level. Thus, CD73 is an interesting example of a molecule which lacks structural variants but yet has a wide diversity of biological functions. We suggest that the ligand- induced shedding of lymphocyte CD73 represents an important and novel means of controlling lymphocyte– EC interactions. PMID:9015312

  8. Physics of cell elasticity, shape and adhesion

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  9. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  10. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells.

    PubMed

    Filova, Elena; Fojt, Jaroslav; Kryslova, Marketa; Moravec, Hynek; Joska, Ludek; Bacakova, Lucie

    2015-01-01

    Ti-6Al-4V-based nanotubes were prepared on a Ti-6Al-4V surface by anodic oxidation on 10 V, 20 V, and 30 V samples. The 10 V, 20 V, and 30 V samples and a control smooth Ti-6Al-4V sample were evaluated in terms of their chemical composition, diameter distribution, and cellular response. The surfaces of the 10 V, 20 V, and 30 V samples consisted of nanotubes of a relatively wide range of diameters that increased with the voltage. Saos-2 cells had a similar initial adhesion on all nanotube samples to the control Ti-6Al-4V sample, but it was lower than on glass. On day 3, the highest concentrations of both vinculin and talin measured by enzyme-linked immunosorbent assay and intensity of immunofluorescence staining were on 30 V nanotubes. On the other hand, the highest concentrations of ALP, type I collagen, and osteopontin were found on 10 V and 20 V samples. The final cellular densities on 10 V, 20 V, and 30 V samples were higher than on glass. Therefore, the controlled anodization of Ti-6Al-4V seems to be a useful tool for preparing nanostructured materials with desirable biological properties. PMID:26648719

  11. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells

    PubMed Central

    Filova, Elena; Fojt, Jaroslav; Kryslova, Marketa; Moravec, Hynek; Joska, Ludek; Bacakova, Lucie

    2015-01-01

    Ti-6Al-4V-based nanotubes were prepared on a Ti-6Al-4V surface by anodic oxidation on 10 V, 20 V, and 30 V samples. The 10 V, 20 V, and 30 V samples and a control smooth Ti-6Al-4V sample were evaluated in terms of their chemical composition, diameter distribution, and cellular response. The surfaces of the 10 V, 20 V, and 30 V samples consisted of nanotubes of a relatively wide range of diameters that increased with the voltage. Saos-2 cells had a similar initial adhesion on all nanotube samples to the control Ti-6Al-4V sample, but it was lower than on glass. On day 3, the highest concentrations of both vinculin and talin measured by enzyme-linked immunosorbent assay and intensity of immunofluorescence staining were on 30 V nanotubes. On the other hand, the highest concentrations of ALP, type I collagen, and osteopontin were found on 10 V and 20 V samples. The final cellular densities on 10 V, 20 V, and 30 V samples were higher than on glass. Therefore, the controlled anodization of Ti-6Al-4V seems to be a useful tool for preparing nanostructured materials with desirable biological properties. PMID:26648719

  12. Collective cell streams in epithelial monolayers depend on cell adhesion

    NASA Astrophysics Data System (ADS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-07-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.

  13. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. PMID:27261363

  14. Cell adhesion in regulation of asymmetric stem cell division

    PubMed Central

    Yamashita, Yukiko M.

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the recent discovery that cell adhesion molecules govern the behavior of stem cells. PMID:20724132

  15. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  16. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells

    PubMed Central

    Kuo, Jean-Cheng

    2013-01-01

    Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA-related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration-related human diseases. PMID:23551528

  17. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates

    PubMed Central

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Park, Ji Hoon; Kim, Sung Eun; Kim, Jin Su; Oh, Jin-Woo; Han, Dong-Wook

    2015-01-01

    In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds. PMID:26034884

  18. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces.

    PubMed

    Wang, Xinlong; Hu, Xiaohong; Dulińska-Molak, Ida; Kawazoe, Naoki; Yang, Yingnan; Chen, Guoping

    2016-01-01

    Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions. In this study, 10 types of isotropical micropatterns that were composed of 2 μm microdots were prepared to precisely control the adhesion area and spreading area of human mesenchymal stem cells (MSCs). The respective influence of adhesion and spreading areas on stem cell functions was investigated. Adhesion area showed more significant influences on the focal adhesion formation, binding of myosin to actin fibers, cytoskeletal organization, cellular Young's modulus, accumulation of YAP/TAZ in nuclei, osteogenic and adipogenic differentiation of MSCs than did the spreading area. The results indicated that adhesion area rather than spreading area played more important roles in regulating cell functions. This study should provide new insight of the influence of cell adhesion and spreading on cell functions and inspire the design of biomaterials to process in an effective manner for manipulation of cell functions. PMID:27349298

  19. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces

    PubMed Central

    Wang, Xinlong; Hu, Xiaohong; Dulińska-Molak, Ida; Kawazoe, Naoki; Yang, Yingnan; Chen, Guoping

    2016-01-01

    Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions. In this study, 10 types of isotropical micropatterns that were composed of 2 μm microdots were prepared to precisely control the adhesion area and spreading area of human mesenchymal stem cells (MSCs). The respective influence of adhesion and spreading areas on stem cell functions was investigated. Adhesion area showed more significant influences on the focal adhesion formation, binding of myosin to actin fibers, cytoskeletal organization, cellular Young’s modulus, accumulation of YAP/TAZ in nuclei, osteogenic and adipogenic differentiation of MSCs than did the spreading area. The results indicated that adhesion area rather than spreading area played more important roles in regulating cell functions. This study should provide new insight of the influence of cell adhesion and spreading on cell functions and inspire the design of biomaterials to process in an effective manner for manipulation of cell functions. PMID:27349298

  20. Optical biosensors for cell adhesion.

    PubMed

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes. PMID:19635032

  1. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  2. The Effects Of Micro Arc Oxidation Of Gamma Titanium Aluminide Surfaces On Osteoblast Adhesion And Differentiation

    PubMed Central

    Santiago-Medina, Pricilla; Sundaram, Paul A.; Diffoot-Carlo, Nanette

    2014-01-01

    The adhesion and proliferation of human fetal osteoblasts, hFOB 1.19, on micro arc oxidized (MAO) gamma titanium aluminide (γTiAl) surfaces were examined in vitro. Cells were seeded on MAO treated γTiAl disks and incubated for 3 days at 33.5°C and subsequently for 7 days at 39.5°C. Samples were then analyzed by Scanning Electron Microscopy (SEM) and the Alkaline Phosphatase Assay (ALP) to evaluate cell adhesion and differentiation, respectively. Similar Ti-6Al-4V alloy samples were used for comparison. Untreated γTiAl and Ti-6Al-4V disks, to study the effect of micro arc oxidation and glass coverslips as cell growth controls were also incubated concurrently. The ALP Assay results, at 10 days post seeding, showed significant differences in cell differentiation, with p values < 0.05 between MAO γTiAl and MAO Ti-6Al-4V with respect to the corresponding untreated alloys. While SEM images showed that hFOB 1.19 cells adhered and proliferated on all MAO and untreated surfaces, as well as on glass coverslips at 10 days post seeding, cell differentiation, determined by the ALP assay, was significantly higher for the MAO alloys. PMID:24577944

  3. The effects of micro arc oxidation of gamma titanium aluminide surfaces on osteoblast adhesion and differentiation.

    PubMed

    Santiago-Medina, Pricilla; Sundaram, Paul A; Diffoot-Carlo, Nanette

    2014-06-01

    The adhesion and proliferation of human fetal osteoblasts, hFOB 1.19, on micro arc oxidized (MAO) gamma titanium aluminide (γTiAl) surfaces were examined in vitro. Cells were seeded on MAO treated γTiAl disks and incubated for 3 days at 33.5 °C and subsequently for 7 days at 39.5 °C. Samples were then analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Similar Ti-6Al-4V alloy samples were used for comparison. Untreated γTiAl and Ti-6Al-4V disks to study the effect of micro arc oxidation and glass coverslips as cell growth controls were also incubated concurrently. The ALP Assay results, at 10 days post seeding, showed significant differences in cell differentiation, with P values <0.05 between MAO γTiAl and MAO Ti-6Al-4V with respect to the corresponding untreated alloys. While SEM images showed that hFOB 1.19 cells adhered and proliferated on all MAO and untreated surfaces, as well as on glass coverslips at 10 days post seeding, cell differentiation, determined by the ALP assay, was significantly higher for the MAO alloys. PMID:24577944

  4. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture.

    PubMed Central

    Beauchamp, J. R.; Abraham, D. J.; Bou-Gharios, G.; Partridge, T. A.; Olsen, I.

    1992-01-01

    The infiltration of skeletal muscle by leukocytes occurs in a variety of myopathies and frequently accompanies muscle degeneration and regeneration. The latter involves development of new myofibers from precursor myoblasts, and so infiltrating cells may interact with muscle at all stages of differentiation. The authors have investigated the surface expression of ligands for T-cell adhesion during the differentiation of human skeletal muscle in vitro. Myoblasts expressed low levels of ICAM-1 (CD54), which remained constant during muscle cell differentiation and could be induced by cytokines such as gamma-interferon. It is therefore likely that ICAM-1 is involved in the invasive accumulation of lymphocytes during skeletal muscle inflammation. In contrast, LFA-3 (CD58) was expressed at higher levels than ICAM-1 on myoblasts, decreased significantly during myogenesis, and was unaffected by immune mediators. Both ICAM-1 and LFA-3 were able to mediate T cell binding to myoblasts, whereas adhesion to myotubes was independent of the LFA-3 ligand. Although expressed throughout myogenesis, human leukocyte antigen class I and CD44 did not appear to mediate T cell binding. The expression of ligands that facilitate interaction of myogenic cells with lymphocytes may have important implications for myoblast transplantation. Images Figure 1 Figure 3 Figure 4 PMID:1739132

  5. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells

    PubMed Central

    Waghmare, Indrayani

    2016-01-01

    Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib) belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib-) surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells. PMID:27327956

  6. Control cell adhesion with dynamic bilayer films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2012-02-01

    Interfacially-directed assembly of amphiphilic block copolymers was employed to create ultrathin films having the potential to correlate the dynamics of ECM cues with cell adhesion and cytoskeletally-generated forces. The mobility of the polymeric bilayer films were tuned by the incorporation of hydrophobic homopolymer chains, which are thought to reduce interlayer friction. Labeling of the block copolymer chains with an adhesive peptide ligand (RGD) provided a specific means to study integrin-mediated cellular processes and the corresponding mechanotransduction. By seeding anchorage-dependent cells on ``dynamic'' (laterally mobile) and ``static'' films that display the same amount of RGD, we have found that cells recognize the difference in RGD diffusivity and develop distinct responses over time. We intend to examine changes in cell response by controlling the extent of cytoskeletally-generated forces and the assembly dynamics of focal adhesion complexes. Such films provide a unique platform to unveil the biomechanical signals related with ECM dynamics, and may ultimately facilitate a deeper understanding of cellular processes.

  7. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    PubMed

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. PMID:26477544

  8. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  9. Force nanoscopy of cell mechanics and cell adhesion

    NASA Astrophysics Data System (ADS)

    Dufrêne, Yves F.; Pelling, Andrew E.

    2013-05-01

    Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.

  10. Cell Differentiation and Checkpoint

    PubMed Central

    Sancho, Sara Cuesta; Ouchi, Toru

    2015-01-01

    DNA damage is induced in many types of cells by internal and external cell stress. When DNA is damaged, DNA Damage Response (DDR) programs are activated to repair the DNA lesions in order to preserve genomic integrity and suppress subsequent malignant transformation. Among these programs is cell cycle checkpoint that ensures cell cycle arrest and subsequent repair of the damaged DNA, apoptosis and senescence in various phases of the cell cycle. Moreover, recent studies have established the cell differentiation checkpoint, the other type of the checkpoint that is specifically activated in the course of differentiation. We will discuss the evidences that support the link between DNA damage proteins and C2C12 cell differentiation. PMID:26998525

  11. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach.

    PubMed

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kihm, Kenneth D; Baek, Seung Joon

    2010-01-15

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopically expressing COX-1, COX-2, and 15LOX-1, to investigate whether expression of COX-1, COX-2, or 15LOX-1 would affect cell adhesion using our opto-electric methodology. In a fixed-time point experiment, only COX-1- and COX-2-expressing cells enhanced phosphorylation of focal adhesion kinase, but all the transfected cells showed invasion activity. However, in a real-time experiment using opto-electric approaches, transmitted cellular morphology was much different with tight adhesion being shown in COX-2 expressing cells, as imaged by differential interference contrast microscopy (DICM) and interference reflection contrast microscopy (IRCM). Furthermore, micro-impedance measurements showed a continued increase in both resistance and reactance of COX- and LOX-transfected cells, consistent with the imaging data. Our data indicate that both COX- and LOX-expressing cells have strong cell-to-cell and cell-to-substrate adhesions, and that cell imaging analysis with cell impedance data generates fully reliable results on cell adhesion measurement. PMID:20026301

  12. Mesenchymal stem cell-induced 3D displacement field of cell-adhesion matrices with differing elasticities.

    PubMed

    Morita, Yasuyuki; Kawase, Naoki; Ju, Yang; Yamauchi, Takashi

    2016-07-01

    Cells maintain homeostasis and perform various functions by interacting mechanically with a cell-adhesive matrix. Regarding cellular differentiation, it has been found that matrix elasticity can determine the differentiation lineage of mesenchymal stem cells (MSCs). Direct quantitative measurements of the mechanical interaction between MSCs and matrix for differentiation, however, have yet to be reported. Herein, the displacement field of the cell-adhesive matrix was observed quantitatively using a digital volume correlation (DVC) method. Maximum displacement and cellular traction stress were analyzed when the MSC differentiated into a neuron-like cell or an osteoblast-like cell on a soft or hard elastic matrix, respectively. The function of non-muscle myosin II (NMM II), which plays an important role in intracellular cytoskeletal dynamics, was investigated during cellular differentiation. The mechanical interaction (maximum displacement and subjected area of the matrix) between the cell and matrix was dependent on matrix elasticity. It has also been shown that the mechanical interaction between the intracellular cytoskeleton and cell-adhesion matrix is indispensable for cellular differentiation. This work provides the first quantitative visualization of the mechanical interaction between MSCs and the cell-adhesion matrix for differentiation. PMID:26945874

  13. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  14. Spatial organization of cell-adhesive ligands for advanced cell culture

    PubMed Central

    Ekerdt, Barbara L; Segalman, Rachel A; Schaffer, David V

    2013-01-01

    Interaction between biomaterials and cells is a critical aspect for successful application of tissue engineering research. Technological advances within the past decade have enabled a number of studies to investigate how the spatial organization of cell-adhesive ligands impacts complex and rich cell behaviors ranging from adhesion to differentiation. Cells in their native environment are surrounded by chemical and physical factors spanning a range of length scales from nanometers to hundreds of microns. Furthermore, signals in the form of cell-adhesive ligands presented from this environment in different size scales and/or geometrical arrangements can change how a cell senses and responds to its surroundings. Biology can thus convey information not only in the concentration of a ligand but through its ability to change the spatial organization of these cues, raising questions both on the mechanisms by which it patterns such information and on the means by which a cell interprets it. This review discusses major findings associated with various systems developed to study cell-adhesive ligand presentation as well as an overview of the important material systems used in these studies. Promising material systems to further investigations in this field are also examined. Future directions will likely include determining how cells sense local and global ligand concentrations, understanding underlying mechanisms that regulate cell behaviors, and investigating the function of more complex cell types and diverse ligands. PMID:24318636

  15. Nectin spot: a novel type of nectin-mediated cell adhesion apparatus.

    PubMed

    Mizutani, Kiyohito; Takai, Yoshimi

    2016-09-15

    Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily cell adhesion molecules constituting a family with four members, all of which have three Ig-like loops at their extracellular regions. Nectins play roles in the formation of a variety of cell-cell adhesion apparatuses. There are at least three types of nectin-mediated cell adhesions: afadin- and cadherin-dependent, afadin-dependent and cadherin-independent, and afadin- and cadherin-independent. In addition, nectins trans-interact with nectin-like molecules (Necls) with three Ig-like loops and other Ig-like molecules with one to three Ig-like loops. Furthermore, nectins and Necls cis-interact with membrane receptors and integrins, some of which are associated with the nectin-mediated cell adhesions, and play roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, and survival, co-operatively with these cell surface proteins. The nectin-mediated cell adhesions are implicated in a variety of diseases, including genetic disorders, neural disorders, and cancers. Of the three types of nectin-mediated cell adhesions, the afadin- and cadherin-dependent apparatus has been most extensively investigated, but the examples of the third type of apparatus independent of afadin and cadherin are recently increasing and its morphological and functional properties have been well characterized. We review here recent advances in research on this type of nectin-mediated cell adhesion apparatus, which is named nectin spot. PMID:27621480

  16. Matrix Stiffness and Nanoscale Spatial Organization of Cell-Adhesive Ligands Direct Stem Cell Fate.

    PubMed

    Ye, Kai; Wang, Xuan; Cao, Luping; Li, Shiyu; Li, Zhenhua; Yu, Lin; Ding, Jiandong

    2015-07-01

    One of the breakthroughs in biomaterials and regenerative medicine in the latest decade is the finding that matrix stiffness affords a crucial physical cue of stem cell differentiation. This statement was recently challenged by another understanding that protein tethering on material surfaces instead of matrix stiffness was the essential cue to regulate stem cells. Herein, we employed nonfouling poly(ethylene glycol) (PEG) hydrogels as the matrix to prevent nonspecific protein adsorption, and meanwhile covalently bound cell-adhesive arginine-glycine-aspartate (RGD) peptides onto the hydrogel surfaces in the form of well-defined nanoarrays to control specific cell adhesion. This approach enables the decoupling of the effects of matrix stiffness and surface chemistry. Mesenchymal stem cells (MSCs) were cultured on four substrates (two compressive moduli of the PEG hydrogels multiplied by two RGD nanospacings) and incubated in the mixed osteogenic and adipogenic medium. The results illustrate unambiguously that matrix stiffness is a potent regulator of stem cell differentiation. Moreover, we reveal that RGD nanospacing affects spreading area and differentiation of rat MSCs, regardless of the hydrogel stiffness. Therefore, both matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. PMID:26027605

  17. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  18. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  19. Modulation of lens cell adhesion molecules by particle beams.

    PubMed

    McNamara, M P; Bjornstad, K A; Chang, P Y; Chou, W; Lockett, S J; Blakely, E A

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  20. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  1. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  2. Enhanced cell adhesion on silk fibroin via lectin surface modification.

    PubMed

    Teuschl, Andreas H; Neutsch, Lukas; Monforte, Xavier; Rünzler, Dominik; van Griensven, Martijn; Gabor, Franz; Redl, Heinz

    2014-06-01

    Various tissue engineering (TE) approaches are based on silk fibroin (SF) as scaffold material because of its superior mechanical and biological properties compared to other materials. The translation of one-step TE approaches to clinical application has generally failed so far due to the requirement of a prolonged cell seeding step before implantation. Here, we propose that the plant lectin WGA (wheat germ agglutinin), covalently bound to SF, will mediate cell adhesion in a time frame acceptable to be part of a one-step surgical intervention. After the establishment of a modification protocol utilizing carbodiimide chemistry, we examined the attachment of cells, with a special focus on adipose-derived stromal cells (ASC), on WGA-SF compared to pure native SF. After a limited time frame of 20min the attachment of ASCs to WGA-SF showed an increase of about 17-fold, as compared to pure native SF. The lectin-mediated cell adhesion further showed an enhanced resistance to trypsin (as a protease model) and to applied fluid shear stress (mechanical stability). Moreover, we could demonstrate that the adhesion of ASCs on the WGA-SF does not negatively influence proliferation or differentiation potential into the osteogenic lineage. To test for in vitro immune response, the proliferation of peripheral blood mononuclear cells in contact with the WGA-SF was determined, showing no alterations compared to plain SF. All these findings suggest that the WGA modification of SF offers important benefits for translation of SF scaffolds into clinical applications. PMID:24530561

  3. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  4. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  5. Probing Cellular Mechanoadaptation Using Cell-Substrate De-Adhesion Dynamics: Experiments and Model

    PubMed Central

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M.; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales. PMID:25197799

  6. A new in vitro model of Entamoeba histolytica adhesion, using the human colon carcinoma cell line Caco-2: scanning electron microscopic study.

    PubMed Central

    Rigothier, M C; Coconnier, M H; Servin, A L; Gayral, P

    1991-01-01

    The human colon carcinoma cell line Caco-2, which is widely used to study the adhesion and cytotoxicity of enterobacteria, was used to investigate the adhesion of the trophozoites of Entamoeba histolytica. We observed a high percentage of adhesion of amoebae to Caco-2 cells. Scanning electron microscopy showed that amoebial membrane structures were involved in adhesion and the cytolytic action. These differentiated cells should prove to be a useful model system for investigation of the pathogenic action of amoebae. Images PMID:1937772

  7. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: enhancement of osteoblast cell adhesion, proliferation, and differentiation.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wang, Xungai; Lin, Tong

    2014-11-01

    Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration. PMID:24288259

  8. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  9. Ligand Targeting of EphA2 Enhances Keratinocyte Adhesion and Differentiation via Desmoglein 1

    PubMed Central

    Lin, Samantha; Gordon, Kristin; Kaplan, Nihal

    2010-01-01

    EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1–based cues from their neighbors to facilitate entry into a terminal differentiation pathway. PMID:20861311

  10. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells.

    PubMed

    Chauvière, G; Coconnier, M H; Kernéis, S; Fourniat, J; Servin, A L

    1992-08-01

    Twenty-five strains of lactobacilli were tested for their ability to adhere to human enterocyte-like Caco-2 cells in culture. Seven Lactobacillus strains adhered well to the Caco-2 cells, of which three possessed calcium-independent adhesion properties. A high level of calcium-independent adhesion was observed with the human stool isolate Lactobacillus acidophilus strain LB. Scanning electron microscopy revealed that this strain adhered to the apical brush border of the cells. Adhesion increased in parallel with the morphological and functional differentiation of the Caco-2 cells. Two Lactobacillus components were involved in this adhesion. One was protease-resistant and bacterial-surface-associated; the other was heat-stable, extracellular and protease-sensitive. PMID:1527509

  11. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells.

    PubMed

    Martínez-Zárate, Alma Delia; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J; Cerecedo, Doris

    2014-06-01

    Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells. PMID:24792180

  12. Synapses: Sites of Cell Recognition, Adhesion, and Functional Specification

    PubMed Central

    Yamada, Soichiro; Nelson, W. James

    2012-01-01

    Synapses are specialized adhesive contacts characteristic of many types of cell-cell interactions involving neurons, immune cells, epithelial cells, and even pathogens and host cells. Cell-cell adhesion is mediated by structurally diverse classes of cell-surface glycoproteins, which form homophilic or heterophilic interactions across the intercellular space. Adhesion proteins bind to a cytoplasmic network of scaffolding proteins, regulators of the actin cytoskeleton, and signal transduction pathways that control the structural and functional organization of synapses. The themes of this review are to compare the organization of synapses in different cell types and to understand how different classes of cell adhesion proteins and cytoplasmic protein networks specify the assembly of functionally distinct synapses in different cell contexts. PMID:17506641

  13. Cellular Adhesion Gene SELP Is Associated with Rheumatoid Arthritis and Displays Differential Allelic Expression

    PubMed Central

    Petit-Teixeira, Elisabeth; Hugo Teixeira, Vitor; Steiner, Anke; Quente, Elfi; Wolfram, Grit; Scholz, Markus; Pierlot, Céline; Migliorini, Paola; Bombardieri, Stefano; Balsa, Alejandro; Westhovens, René; Barrera, Pilar; Radstake, Timothy R. D. J.; Alves, Helena; Bardin, Thomas; Prum, Bernard; Emmrich, Frank; Cornelis, François

    2014-01-01

    In rheumatoid arthritis (RA), a key event is infiltration of inflammatory immune cells into the synovial lining, possibly aggravated by dysregulation of cellular adhesion molecules. Therefore, single nucleotide polymorphisms of 14 genes involved in cellular adhesion processes (CAST, ITGA4, ITGB1, ITGB2, PECAM1, PTEN, PTPN11, PTPRC, PXN, SELE, SELP, SRC, TYK2, and VCAM1) were analyzed for association with RA. Association analysis was performed consecutively in three European RA family sample groups (Nfamilies = 407). Additionally, we investigated differential allelic expression, a possible functional consequence of genetic variants. SELP (selectin P, CD62P) SNP-allele rs6136-T was associated with risk for RA in two RA family sample groups as well as in global analysis of all three groups (ptotal = 0.003). This allele was also expressed preferentially (p<10−6) with a two- fold average increase in regulated samples. Differential expression is supported by data from Genevar MuTHER (p1 = 0.004; p2 = 0.0177). Evidence for influence of rs6136 on transcription factor binding was also found in silico and in public datasets reporting in vitro data. In summary, we found SELP rs6136-T to be associated with RA and with increased expression of SELP mRNA. SELP is located on the surface of endothelial cells and crucial for recruitment, adhesion, and migration of inflammatory cells into the joint. Genetically determined increased SELP expression levels might thus be a novel additional risk factor for RA. PMID:25147926

  14. Mathematical model for the effects of adhesion and mechanics on cell migration speed.

    PubMed Central

    DiMilla, P A; Barbee, K; Lauffenburger, D A

    1991-01-01

    Migration of mammalian blood and tissue cells over adhesive surfaces is apparently mediated by specific reversible reactions between cell membrane adhesion receptors and complementary ligands attached to the substratum. Although in a number of systems these receptors and ligand molecules have been isolated and identified, a theory capable of predicting the effects of their properties on cell migration behavior currently does not exist. We present a simple mathematical model for elucidating the dependence of cell speed on adhesion-receptor/ligand binding and cell mechanical properties. Our model can be applied to propose answers to questions such as: does an optimal adhesiveness exist for cell movement? How might changes in receptor and ligand density and/or affinity affect the rate of migration? Can cell rheological properties influence movement speed? This model incorporates cytoskeletal force generation, cell polarization, and dynamic adhesion as requirements for persistent cell movement. A critical feature is the proposed existence of an asymmetry in some cell adhesion-receptor property, correlated with cell polarity. We consider two major alternative mechanisms underlying this asymmetry: (a) a spatial distribution of adhesion-receptor number due to polarized endocytic trafficking and (b) a spatial variation in adhesion-receptor/ligand bond strength. Applying a viscoelastic-solid model for cell mechanics allows us to represent one-dimensional locomotion with a system of differential equations describing cell deformation and displacement along with adhesion-receptor dynamics. In this paper, we solve these equations under the simplifying assumption that receptor dynamics are at a quasi-steady state relative to cell locomotion. Thus, our results are strictly valid for sufficiently slow cell movement, as typically observed for tissue cells such as fibroblasts. Numerical examples relevant to experimental systems are provided. Our results predict how cell speed might

  15. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif.

    PubMed

    Jacob, Reeba S; George, Edna; Singh, Pradeep K; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K

    2016-03-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  16. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  17. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  18. Serum polysialylated neural cell adhesion molecule in childhood neuroblastoma.

    PubMed Central

    Glüer, S.; Schelp, C.; Madry, N.; von Schweinitz, D.; Eckhardt, M.; Gerardy-Schahn, R.

    1998-01-01

    Neuroblastoma cells express the polysialylated form of the neural cell adhesion molecule (NCAM), which normally becomes restricted to a few neural tissues after embryogenesis. In this study, we investigated serum levels of polysialylated NCAM in 14 children with different grades and stages of neuroblastoma using an immunoluminescence assay, and compared the results to 269 healthy control subjects. Simultaneously, the polysialylated NCAM content of the tumours was determined by immunohistochemistry. Serum levels were dramatically elevated (more than sixfold) in children with advanced stages and fatal courses of disease, whereas children with differentiated tumour types and limited disease had low or normal levels. Serum concentrations correlated with the polysialylated NCAM content of the tumours, and they decreased during successful therapy. We therefore suggest polysialylated NCAM to be a useful marker monitoring childhood neuroblastoma. Images Figure 2 Figure 3 PMID:9662259

  19. Enhanced fibroblast cell adhesion on Al/Al2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Aktas, O. C.; Sander, M.; Miró, M. M.; Lee, J.; Akkan, C. K.; Smail, H.; Ott, A.; Veith, M.

    2011-02-01

    Biological cells stick together via transmembrane proteins, which are linked to receptor molecules of the extracellular matrix (ECM). This specific biochemical adhesion plays a leading role in many cellular processes, among them cell differentiation, morphogenesis, and wound healing. Various medical applications require endogen cells to bind to an exogene substrate as in the case of an implant. Coatings with proteins that naturally belong to the ECM are known to enhance the cell adhesion. However, the choice of inorganic materials, which promote cell adhesion, is limited. Here, we report on a new engineered surface composed of Al/Al2O3 bi-phasic nanowires (NWs), which promotes the adhesion of fibroblast cells. Fibroblasts grow well on this inorganic layer and keep proliferating. Using the cell monolayer rheology (CMR) technique, we show that the adhesion of fibroblasts on Al/Al2O3 NWs is comparable to fibronectin coated surfaces. To our knowledge, this is one of the strongest cell adhesions on an inorganic surface, which has been reported on so far, since it compares to bio-organic layers such as fibronectin.

  20. Differential Associations between CDH13 Genotypes, Adiponectin Levels, and Circulating Levels of Cellular Adhesive Molecules

    PubMed Central

    Teng, Ming-Sheng; Wu, Semon; Hsu, Lung-An; Chou, Hsin-Hua; Ko, Yu-Lin

    2015-01-01

    CDH13 gene variants with lower adiponectin levels are paradoxically associated with a more favorable metabolic profile. We investigated the statistical association between CDH13 locus variants and adiponectin levels by examining 12 circulating inflammation marker levels and adiposity status in 530 Han Chinese people in Taiwan. After adjustments for clinical covariates, adiponectin levels were positively associated with soluble vascular cell adhesion molecule-1 (sVCAM1) levels and negatively associated with adiposity status and levels of C-reactive protein (CRP), soluble E-selectin (sE-selectin), and soluble intercellular adhesion molecule-1 (sICAM1). In addition, minor alleles of the CDH13 rs12051272 polymorphism were found to have lower adiponectin levels and higher CRP, sE-selectin, sICAM1, and sVCAM1 levels as well as higher body mass indices and waist circumferences in participants (all P < 0.05). In a subgroup analysis stratified by sex, significant associations between CDH13 genotypes and sE-selectin levels occurred only in men (P = 3.9 × 10−4 and interaction P = 0.005). CDH13 locus variants and adiponectin levels are associated with circulating levels of cellular adhesion molecules and adiposity status in a differential manner that interacts with sex. These results provide further evidence for the crucial role of adiponectin levels and CDH13 gene variants in immune-mediated and inflammatory diseases. PMID:26600672

  1. Stem cell isolation: Differential stickiness

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2013-06-01

    Technologies to isolate colonies of human pluripotent stem cells from other cell types in a high-throughput manner are lacking. A microfluidic-based approach that exploits differences in the adhesion strength between these cells and a substrate may soon fill the gap.

  2. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  3. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  4. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  5. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    PubMed Central

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre, Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed. PMID:20471976

  6. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  7. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence.

    PubMed

    Kennedy, Nicole M; Mukherjee, Nabanita; Banerjee, Pratik

    2016-07-01

    Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level. PMID:27357048

  8. Cell adhesion strength from cortical tension - an integration of concepts.

    PubMed

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  9. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  10. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  11. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  12. Emergence of proto-organisms from bistable stochastic differentiation and adhesion.

    PubMed

    Duran-Nebreda, Salva; Bonforti, Adriano; Montañez, Raúl; Valverde, Sergi; Solé, Ricard

    2016-04-01

    The rise of multicellularity in the early evolution of life represents a major challenge for evolutionary biology. Guidance for finding answers has emerged from disparate fields, from phylogenetics to modelling and synthetic biology, but little is known about the potential origins of multicellular aggregates before genetic programmes took full control of developmental processes. Such aggregates should involve spatial organization of differentiated cells and the modification of flows and concentrations of metabolites within well-defined boundaries. Here, we show that, in an environment where limited nutrients and toxic metabolites are introduced, a population of cells capable of stochastic differentiation and differential adhesion can develop into multicellular aggregates with conflict mediation mechanisms and a complex internal structure. The morphospace of possible patterns is shown to be very rich, including proto-organisms that display a high degree of organizational complexity, far beyond simple heterogeneous populations of cells. Our findings reveal that there is a potentially enormous richness of organismal complexity between simple mixed cooperators and embodied living organisms. PMID:27053655

  13. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    PubMed

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  14. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  15. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment. PMID:26603095

  16. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    PubMed

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815

  17. The self-renewal of mouse embryonic stem cells is regulated by cell–substratum adhesion and cell spreading☆

    PubMed Central

    Murray, Patricia; Prewitz, Marina; Hopp, Isabel; Wells, Nicola; Zhang, Haifei; Cooper, Andrew; Parry, Kristina L.; Short, Robert; Antoine, Daniel J.; Edgar, David

    2013-01-01

    Mouse embryonic stem cells (mESCs) undergo self-renewal in the presence of the cytokine, leukaemia inhibitory factor (LIF). Following LIF withdrawal, mESCs differentiate, and this is accompanied by an increase in cell–substratum adhesion and cell spreading. The purpose of this study was to investigate the relationship between cell spreading and mESC differentiation. Using E14 and R1 mESC lines, we have restricted cell spreading in the absence of LIF by either culturing mESCs on chemically defined, weakly adhesive biomaterial substrates, or by manipulating the cytoskeleton. We demonstrate that by restricting the degree of spreading by either method, mESCs can be maintained in an undifferentiated and pluripotent state. Under these conditions, self-renewal occurs without the need for LIF and is independent of nuclear translocation of tyrosine-phosphorylated STAT3 or β-catenin, which have previously been implicated in self-renewal. We also demonstrate that the effect of restricted cell spreading on mESC self-renewal is not mediated by increased intercellular adhesion, as evidenced by the observations that inhibition of mESC adhesion using a function blocking anti E-cadherin antibody or siRNA do not promote differentiation. These results show that mESC spreading and differentiation are regulated both by LIF and by cell–substratum adhesion, consistent with the hypothesis that cell spreading is the common intermediate step in the regulation of mESC differentiation by either LIF or cell–substratum adhesion. PMID:23871934

  18. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  19. Travelling Waves of Cell Differentiation.

    PubMed

    Benmir, M; Bessonov, N; Boujena, S; Volpert, V

    2015-12-01

    The paper is devoted to modelling of cell differentiation in an initially homogeneous cell population. The mechanism which provides coexistence of two cell lineages in the initially homogeneous cell population is suggested. If cell differentiation is initiated locally in space in the population of undifferentiated cells, it can propagate as a travelling wave converting undifferentiated cells into differentiated ones. We suggest a model of this process which takes into account intracellular regulation, extracellular regulation and different cell types. They include undifferentiated cells and two types of differentiated cells. When a cell differentiates, its choice between two types of differentiated cells is determined by the concentrations of intracellular proteins. Differentiated cells can either stimulate differentiation into their own cell lineage or into another cell lineage. In the case of the positive feedback, only one lineage of differentiated cells will finally appear. In the case of negative feedback, both of them can coexist. In this case a periodic spatial pattern emerges behind the wave. PMID:26141967

  20. Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films.

    PubMed

    Blau, A; Weinl, C; Mack, J; Kienle, S; Jung, G; Ziegler, C

    2001-11-15

    New strategies for spatially controllable cell adhesion have been developed for brain cells from embryonic chicken. They are based on electrochemically active phenol and pyrrole derivatives, and can be used for the selective coverage of electroconductive substrates. Besides mimicking standard laminin-related adhesion promoting mechanisms by means of an electroactive monomer-linked 18-peptide segment from laminin (SRARKQAASIKVAVSADR), electrochemically generated thin (6-30 nm) polymer films of 3-hydroxybenzyl-hydrazine (3HBH) and 2-(3-hydroxyphenyl)-ethanol (2(3HP)E) with and without mechanically entrapped or covalently linked D-lysine have proved to promote cell adhesion in serum-free medium on indium-doped tin oxide (ITO) substrates during the first 6 culturing days in vitro. The effectiveness of the peptide was strongly density-dependent. Unexpectedly, laminin itself or a combination of laminin and poly-D-lysine (PDL) did not promote cell adhesion and neuron differentiation in serum-free cultures on ITO. However, they worked perfectly well on regular polystyrene substrates in serum-free medium or on ITO when medium with serum was used. This finding might suggest that the adhesion efficiency of laminin does not depend only on the kind of medium supplement but also on the type of substrate. In contrast, the adhesion-promoting properties of "artificial" polymeric films seemed to be based on a more direct cell-film interaction, with the film masking the substrate properties. PMID:11640959

  1. Transcriptionally Regulated Cell Adhesion Network Dictates Distal Tip Cell Directionality

    PubMed Central

    Wong, Ming-Ching; Kennedy, William P.; Schwarzbauer, Jean E.

    2015-01-01

    Background The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. Results Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. Conclusions Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion. PMID:24811939

  2. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    PubMed

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  3. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  4. Endothelial cell Ca2+ increases upon tumor cell contact and modulates cell-cell adhesion.

    PubMed Central

    Pili, R; Corda, S; Passaniti, A; Ziegelstein, R C; Heldman, A W; Capogrossi, M C

    1993-01-01

    The signal transduction mechanisms involved in tumor cell adhesion to endothelial cells are still largely undefined. The effect of metastatic murine melanoma cell and human prostate carcinoma cell contact on cytosolic [Ca2+] of bovine artery endothelial cells was examined in indo-1-loaded endothelial cell monolayers. A rapid increase in endothelial cell [Ca2+] occurred on contact with tumor cells, but not on contact with 8-microns inert beads. A similar increase in endothelial cell [Ca2+] was observed with human neutrophils or monocyte-like lymphoma cells, but not with endothelial cells, red blood cells, and melanoma cell-conditioned medium. The increase in endothelial cell [Ca2+] was not inhibited by extracellular Ca2+ removal. In contrast, endothelial cell pretreatment with thapsigargin, which releases endoplasmic reticulum Ca2+ into the cytosol and depletes this Ca2+ store site, abolished the cytosolic [Ca2+] rise upon melanoma cell contact. Endothelial cell pretreatment with the membrane-permeant form of the Ca2+ chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid blocked the increase in cytosolic [Ca2+]. Under static and dynamic flow conditions (0.46 dyn/cm2) bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid pretreatment of bovine pulmonary artery endothelial cell monolayers inhibited melanoma cell adhesion to the endothelial cells. Thus, tumor cell contact with endothelial cells induces a rapid Ca2+ release from endothelial intracellular stores, which has a functional role in enhancing cell-cell adhesion. Images PMID:8254056

  5. Synergistic and hierarchical adhesive and topographic guidance of BHK cells.

    PubMed

    Britland, S; Morgan, H; Wojiak-Stodart, B; Riehle, M; Curtis, A; Wilkinson, C

    1996-11-01

    Guided cell movement is a fundamental process in development and regeneration. We have used microengineered culture substrates to study the interaction between model topographic and adhesive guidance cues in steering BHK cell orientation. Grooves 0.1, 0.5, 1.0, 3.0, and 6.0 microm deep together with pitch-matched aminosilane tracks 5, 12, 25, 50, and 100 microm wide were fabricated on fused silica substrates using photolithographic and dry-etching techniques. The cues were presented to the cells individually, simultaneously in parallel and orthogonally opposed. Cells aligned most strongly to 25-microm-wide adhesive tracks and to 5-microm-wide, 6-microm-deep grooves. Stress fibers and vinculin were found to align with the adhesive tracks and to the grooves and ridges. Cell alignment was profoundly enhanced on all surfaces that presented both cues in parallel. Cells were able to switch alignment from ridges to grooves, and vice versa, depending on the location of superimposed adhesive tracks. Cells aligned preferentially to adhesive tracks superimposed orthogonally over grooves of matched pitch, traversing numerous grooves and ridges. The strength of the cues was more closely matched on narrower 3- and 6-microm-deep gratings with cells showing evidence of alignment to both cues. Confocal fluorescence microscopy revealed two groups of mutually opposed f-actin stress fibers within the same cell, one oriented with the topographic cues and the other with the adhesive cues. However, the adhesive response was consistently dominant. We conclude that cells are able to detect and respond to multiple guidance cues simultaneously. The adhesive and topographic guidance cues modeled here were capable of interacting both synergistically and hierarchically to guide cell orientation. PMID:8912725

  6. Endothelial cell–cell adhesion during zebrafish vascular development

    PubMed Central

    Lagendijk, Anne Karine; Yap, Alpha S; Hogan, Benjamin M

    2014-01-01

    The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell–cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell–cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell–cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell–cell adhesion. PMID:24621476

  7. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    PubMed Central

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions. This induction of cell adhesion is likely due to clustering of ALCAM at the cell surface, which is observed after CytD treatment. Single-particle tracking demonstrated that the lateral mobility of ALCAM in the cell membrane is increased 30-fold after CytD treatment. In contrast, both surface distribution and adhesion of a glycosylphosphatidylinositol (GPI)-anchored ALCAM mutant are insensitive to CytD, despite the increase in lateral mobility of GPI-ALCAM upon CytD treatment. This demonstrates that clustering of ALCAM is essential for cell adhesion, whereas enhanced diffusion of ALCAM alone is not sufficient for cluster formation. In addition, upon ligand binding, both free diffusion and the freely dragged distance of wild-type ALCAM, but not of GPI-ALCAM, are reduced over time, suggesting strengthening of the cytoskeleton linkage. From these findings we conclude that activation of ALCAM-mediated adhesion is dynamically regulated through actin cytoskeleton-dependent clustering. PMID:10848629

  8. Differentiation of neuronal growth cones: specialization of filopodial tips for adhesive interactions.

    PubMed Central

    Tsui, H C; Lankford, K L; Klein, W L

    1985-01-01

    Adhesive contacts made by filopodia of developing neurons are important in neurite growth and in the formation of synaptic junctions. In the present work, filopodial interactions of cultured chicken retina neurons were studied by using video-enhanced contrast, differential interference contrast (VEC-DIC) microscopy and the high-voltage electron microscope (HVEM). Use of the HVEM to examine whole mounts of fixed cells showed that filopodia in older cultures developed an appearance that might be expected of nascent synapses, becoming enlarged at their endings and accumulating organelles resembling synaptic vesicles. VEC-DIC microscopy, used to observe the motility and adhesive properties of filopodia in living cells, showed there was a particularly high affinity between filopodia tips. Contacting filopodia typically repositioned themselves so they could attach at a tip-to-tip position, occasionally bending as much as 90 degrees to achieve this preferred orientation. Interacting filopodia frequently remained together as they pushed or pulled on each other, moved laterally together, or stretched tightly and underwent intense vibratory movements. Such linked motility occurred even when apparent gaps existed between the filopodia. Examination of these gaps with the HVEM revealed filamentous structures linking the apposed membranes. The filamentous links were 10-13 nm in diameter and 30-100 nm long. Although it has not yet been established that the filaments reflect the native configuration of the interconnecting materials, the structures seem likely to be associated with the strongly adhesive behavior of the filopodial tips. The possible significance of these structural and functional properties of filopodia tips to axon growth and synapse formation is discussed. Images PMID:3865227

  9. [Bovine leukocyte adhesion deficiency: clinical picture and differential diagnosis].

    PubMed

    Lienau, A; Stöber, M; Kehrli, M E; Tammen, I; Schwenger, B; Kuczka, A; Pohlenz, J

    1994-10-01

    The pathological clinical and laboratory findings obtained in 50 calves and young cattle affected with Bovine Leukocyte Adhesion Deficiency are compared with those found in 114 calves and young cattle showing marked neutrophil leukocytosis of other origin (age: < 2 years; leukocyte count: > 30,000 per microl; percentage of lymphocytes: < 55%). PMID:7851303

  10. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs) with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.). Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants. PMID:26640782

  11. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  12. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    PubMed

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  13. Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms.

    PubMed

    Casazza, Andrea; Fazzari, Pietro; Tamagnone, Luca

    2007-01-01

    Cell migration is pivotal in embryo development and in the adult. During development a wide range of progenitor cells travel over long distances before undergoing terminal differentiation. Moreover, the morphogenesis of epithelial tissues and of the cardiovascular system involves remodelling compact cell layers and sprouting of new tubular branches. In the adult, cell migration is essential for leucocytes involved in immune response. Furthermore, invasive and metastatic cancer cells have the distinctive ability to overcome normal tissue boundaries, travel in and out of blood vessels, and settle down in heterologous tissues. Cell migration normally follows strict guidance cues, either attractive, or inhibitory and repulsive. Semaphorins are a wide family of signals guiding cell migration during development and in the adult. Recent findings have established that semaphorin receptors, the plexins, govern cell migration by regulating integrin-based cell substrate adhesion and actin cytoskeleton dynamics, via specific monomeric GTPases. Plexins furthermore recruit tyrosine kinases in receptor complexes, which allows switching between multiple signaling pathways and functional outcomes. In this article, we will review the functional role of semaphorins in cell migration and the implicated molecular mechanisms controlling cell adhesion. PMID:17607949

  14. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  15. Minimal Synthetic Cells to Study Integrin-Mediated Adhesion

    PubMed Central

    Frohnmayer, Johannes P; Brüggemann, Dorothea; Eberhard, Christian; Neubauer, Stefanie; Mollenhauer, Christine; Boehm, Heike; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P

    2015-01-01

    To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIbβ3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIbβ3. PMID:26257266

  16. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    NASA Astrophysics Data System (ADS)

    Kal Van Tam, Janice; Uto, Koichiro; Ebara, Mitsuhiro; Pagliari, Stefania; Forte, Giancarlo; Aoyagi, Takao

    2012-12-01

    The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ɛ-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  17. Adhesion of leukocytes to dermal endothelial cells is induced after single-dose, but reduced after repeated doses of UVA.

    PubMed

    Heckmann, M; Pirthauer, M; Plewig, G

    1997-12-01

    Approximately 20-50% of ultraviolet A (UVA) irradiation delivered to the skin surface may reach the human dermal microvascular endothelial cells (HDMEC) that play a pivotal role in cellular inflammatory tissue; however, the pathophysiologic role of HDMEC in UVA-induced skin changes is largely unknown. Based on previous in vivo and in vitro studies revealing UVA-induced expression of endothelial adhesion molecules, we studied isolated HDMEC under various conditions in order to further delineate the impact of UVA on these cells. The expression of cell adhesion molecules was determined by flow cytometry and the resulting changes of stable adhesion of leukocytes to endothelial cells were quantitated for granulocytes, lymphocytes, and monocytes using a newly developed multicellular adhesion assay. Additionally, antibody blocking experiments were performed to delineate the role of individual cell adhesion molecules in UVA-induced leukocyte adherence. High-dose polychromatic UVA (25 J per cm2, maximal emission at 375 nm) induced intercellular adhesion molecule-1 and E-selectin with different kinetics but correlating the adhesion of leukocyte subsets. This effect subsided, however, in the course of 3-6 daily applied UVA doses. Moreover, pro-inflammatory cytokine challenge by tumor necrosis factor-alpha and interleukin-1-alpha resulted in significantly weaker induction of intercellular adhesion molecule-1 and E-selectin in repeatedly UVA-exposed HDMEC. Differential quantitation of peripheral blood derived granulocytes, lymphocytes, and monocytes revealed reduced adhesion particularly of lymphocytes followed by monocytes and granulocytes compared with leukocyte adhesion to nonirradiated but cytokine-stimulated HDMEC. It is concluded that UVA substantially influences endothelial cell adhesion molecules expression and thus directly interferes with leukocyte adhesion to endothelial cells. Divergent UVA-induced effects in this respect can be attributed to the mode of UV exposure

  18. Single-cell force spectroscopy of pili-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  19. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  20. Substrate & Cell Compliance Effects on Cell Spreading and Differentiation

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Sheehan, Maureen; Engler, Adam

    2004-03-01

    The stiffness of the substrate that a cell adheres to is emerging as a critically important physical factor in the response of many cell types. The effects are seen with cells on gels as well as cells on cells - highlighting implications for organism development. The basis for the effects lies in the fact that cells literally 'feel' their substrate. Like other anchorage dependent cells, muscle cells feel their substrate and are found in our studies to spread more and organize their cytoskeleton and focal adhesions much more so on rigid glass and stiff substrates than on soft gels. Such spreading is not necessarily physiological or conducive to biological function. Collagen density certainly factors into cell on gel adhesive spreading, with minimal spreading on very low collagen and a weak maximum in cell spreading on intermediate collagen densities. Bell-shaped curves are readily modeled to highlight the coupling between ligand density and substrate stiffness. Most surprising, however, spreading on soft gels is found to be almost independent of adhesive ligand density: even with high collagen densities, the minimal spreading of cells cannot be over-ridden. Remarkably, muscle cells show the strongest tendency to differentiate and striate their acto-myosin on gels that have a stiffness similar to relaxed muscle. Cells gown on top of other cells also show a very strong tendency to striate, even if the underlying cells do not striate; elasticity measurements appear to unify all of the effects. The implications for organismal development as well as cell biological studies can be very important.

  1. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    PubMed Central

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Le Gac, Séverine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m2). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 109 cells/m2, above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied. PMID:25564849

  2. Cell adhesion molecules and in vitro fertilization.

    PubMed

    Simopoulou, Maria; Nikolopoulou, Elena; Dimakakos, Andreas; Charalabopoulos, Konstantinos; Koutsilieris, Michael

    2014-01-01

    This review addresses issues regarding the need in the in vitro fertilization (IVF) field for further predictive markers enhancing the standing embryo selection criteria. It aims to serve as a source of defining information for an audience interested in factors related to the wide range of multiple roles played by cell adhesion molecules (CAMs) in several aspects of IVF ultimately associated with the success of an IVF cycle. We begin by stressing the importance of enriching the standing embryo selection criteria available aiming for the golden standard: "extract as much information as possible focusing on non-invasive techniques" so as to guide us towards selecting the embryo with the highest implantation potential. We briefly describe the latest trends on how to best select the right embryo, moving closer towards elective single embryo transfer. These trends are: frozen embryo transfer for all, preimplantation genetic screening, non-invasive selection criteria, and time-lapse imaging. The main part of this review is dedicated to categorizing and presenting published research studies focused on the involvement of CAMs in IVF and its final outcome. Specifically, we discuss the association of CAMs with conditions and complications that arise from performing assisted reproductive techniques, such as ovarian hyperstimulation syndrome, the state of the endometrium, and tubal pregnancies, as well as the levels of CAMs in biological materials available in the IVF laboratory such as follicular fluid, trophectoderm, ovarian granulosa cells, oocytes, and embryos. To conclude, since CAMs have been successfully employed as a diagnostic tool in several pathologies in routine clinical work, we suggest that their multi-faceted nature could serve as a prognostic marker in assisted reproduction, aiming to enrich the list of non-invasive selection and predictive criteria in the IVF setting. We propose that in light of the well-documented involvement of CAMs in the developmental

  3. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  4. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  5. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  6. Mechanical regulation of mesenchymal stem cell differentiation.

    PubMed

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed. PMID:25382217

  7. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin

    PubMed Central

    Tachibana, Kouichi; Haghparast, Seyed Mohammad Ali; Miyake, Jun

    2015-01-01

    Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases. Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate. These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells. PMID:26555866

  8. Nanostructured conducting polymers for stiffness controlled cell adhesion

    NASA Astrophysics Data System (ADS)

    Moyen, Eric; Hama, Adel; Ismailova, Esma; Assaud, Loic; Malliaras, George; Hanbücken, Margrit; Owens, Roisin M.

    2016-02-01

    We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm2 ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).

  9. Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche.

    PubMed

    Anselmo, A; Lauranzano, E; Soldani, C; Ploia, C; Angioni, R; D'amico, G; Sarukhan, A; Mazzon, C; Viola, A

    2016-08-01

    Establishment of cell-cell adhesion is crucial in embryonic development as well as within the stem cell niches of an adult. Adhesion between macrophages and erythroblasts is required for the formation of erythroblastic islands, specialized niches where erythroblasts proliferate and differentiate to produce red blood cells throughout life. The Eph family is the largest known family of receptor tyrosine kinases (RTKs) and controls cell adhesion, migration, invasion and morphology by modulating integrin and adhesion molecule activity and by modifying the actin cytoskeleton. Here, we identify the proteoglycan agrin as a novel regulator of Eph receptor signaling and characterize a novel mechanism controlling cell-cell adhesion and red cell development within the erythroid niche. We demonstrate that agrin induces clustering and activation of EphB1 receptors on developing erythroblasts, leading to the activation of α5β1 integrins. In agreement, agrin knockout mice display severe anemia owing to defective adhesion to macrophages and impaired maturation of erythroid cells. These results position agrin-EphB1 as a novel key signaling couple regulating cell adhesion and erythropoiesis. PMID:26990660

  10. RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation

    PubMed Central

    Morales, Mònica; Arenas, Enrique J; Urosevic, Jelena; Guiu, Marc; Fernández, Esther; Planet, Evarist; Fenwick, Robert Bryn; Fernández-Ruiz, Sonia; Salvatella, Xavier; Reverter, David; Carracedo, Arkaitz; Massagué, Joan; Gomis, Roger R

    2014-01-01

    In estrogen receptor-negative breast cancer patients, metastatic relapse usually occurs in the lung and is responsible for the fatal outcome of the disease. Thus, a better understanding of the biology of metastasis is needed. In particular, biomarkers to identify patients that are at risk of lung metastasis could open the avenue for new therapeutic opportunities. Here we characterize the biological activity of RARRES3, a new metastasis suppressor gene whose reduced expression in the primary breast tumors identifies a subgroup of patients more likely to develop lung metastasis. We show that RARRES3 downregulation engages metastasis-initiating capabilities by facilitating adhesion of the tumor cells to the lung parenchyma. In addition, impaired tumor cell differentiation due to the loss of RARRES3 phospholipase A1/A2 activity also contributes to lung metastasis. Our results establish RARRES3 downregulation as a potential biomarker to identify patients at high risk of lung metastasis who might benefit from a differentiation treatment in the adjuvant programme. PMID:24867881

  11. RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation.

    PubMed

    Morales, Mònica; Arenas, Enrique J; Urosevic, Jelena; Guiu, Marc; Fernández, Esther; Planet, Evarist; Fenwick, Robert Bryn; Fernández-Ruiz, Sonia; Salvatella, Xavier; Reverter, David; Carracedo, Arkaitz; Massagué, Joan; Gomis, Roger R

    2014-07-01

    In estrogen receptor-negative breast cancer patients, metastatic relapse usually occurs in the lung and is responsible for the fatal outcome of the disease. Thus, a better understanding of the biology of metastasis is needed. In particular, biomarkers to identify patients that are at risk of lung metastasis could open the avenue for new therapeutic opportunities. Here we characterize the biological activity of RARRES3, a new metastasis suppressor gene whose reduced expression in the primary breast tumors identifies a subgroup of patients more likely to develop lung metastasis. We show that RARRES3 downregulation engages metastasis-initiating capabilities by facilitating adhesion of the tumor cells to the lung parenchyma. In addition, impaired tumor cell differentiation due to the loss of RARRES3 phospholipase A1/A2 activity also contributes to lung metastasis. Our results establish RARRES3 downregulation as a potential biomarker to identify patients at high risk of lung metastasis who might benefit from a differentiation treatment in the adjuvant programme. PMID:24867881

  12. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  13. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation.

    PubMed

    Roberts, Jemma N; Sahoo, Jugal Kishore; McNamara, Laura E; Burgess, Karl V; Yang, Jingli; Alakpa, Enateri V; Anderson, Hilary J; Hay, Jake; Turner, Lesley-Anne; Yarwood, Stephen J; Zelzer, Mischa; Oreffo, Richard O C; Ulijn, Rein V; Dalby, Matthew J

    2016-07-26

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  14. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation

    PubMed Central

    2016-01-01

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  15. The Regulation of Traction Force in Relation to Cell Shape and Focal Adhesions

    PubMed Central

    Rape, Andrew; Guo, Wei-hui; Wang, Yu-li

    2011-01-01

    Mechanical forces provide critical inputs for proper cellular functions. The interplay between the generation of, and response to, mechanical forces regulate such cellular processes as differentiation, proliferation, and migration. We postulate that adherent cells respond to a number of physical and topographical factors, including cell size and shape, by detecting the magnitude and/or distribution of traction forces under different conditions. To address this possibility we introduce a new simple method for precise micropatterning of hydrogels, and then apply the technique to systematically investigate the relationship between cell geometry, focal adhesions, and traction forces in cells with a series of spread areas and aspect ratios. Contrary to previous findings, we find that traction force is not determined primarily by the cell spreading area but by the distance from cell center to the perimeter. This distance in turn controls traction forces by regulating the size of focal adhesions, such that constraining the size of focal adhesions by micropatterning can override the effect of geometry. We propose that the responses of traction forces to center-periphery distance, possibly through a positive feedback mechanism that regulates focal adhesions, provide the cell with the information on its own shape and size. A similar positive feedback control may allow cells to respond to a variety of physical or topographical signals via a unified mechanism. PMID:21163521

  16. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  17. Quantification of depletion-induced adhesion of red blood cells.

    PubMed

    Steffen, P; Verdier, C; Wagner, C

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow. PMID:23383842

  18. Intraepithelial p63-dependent expression of distinct components of cell adhesion complexes in normal esophageal mucosa and squamous cell carcinoma.

    PubMed

    Thépot, Amélie; Hautefeuille, Agnès; Cros, Marie-Pierre; Abedi-Ardekani, Behnoush; Pétré, Aurélia; Damour, Odile; Krutovskikh, Vladimir; Hainaut, Pierre

    2010-11-01

    TP63 gene is a member of TP53 tumor suppressor gene family that encodes several protein isoforms involved in the process of epithelial stratification and in epithelial-mesenchyme interactions. TP63 is amplified in a significant proportion of squamous cell carcinoma of the esophagus (ESCC), resulting in the hyper-expression of DeltaNp63 as the major p63 isoform. To better understand the contribution of this high expression to tumorigenesis, we have analyzed the impact of intraepithelial p63 expression on the expression of cell adhesion complexes in normal esophagus and in ESCC cell lines. Cells expressing p63 showed an adhesion pattern characterized by lack of tight junctions and presence of adherens junctions. Cell differentiation was accompanied by a decrease in p63 and by a shift to adhesion patterns involving tight junctions. Silencing of p63 mRNA in ESCC cell lines resulted in a similar shift, characterized by increased expression of component of tight junctions, decreased cell-to-cell communication and downregulation of cell proliferation. These results indicate that DeltaNp63 may contribute to esophageal squamous carcinogenesis by maintaining cell adhesion patterns compatible with cell proliferation. PMID:20127860

  19. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  20. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    SciTech Connect

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-10-15

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.

  1. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk

    PubMed Central

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-01-01

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  2. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk.

    PubMed

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-02-26

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  3. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

    PubMed

    Segal, Dagan; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-08-01

    Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface. PMID:27505416

  4. Mechanisms of lymphocyte adhesion to endothelial cells: studies using a LFA-1-deficient cell line.

    PubMed Central

    Haskard, D O; Strobel, S; Thornhill, M; Pitzalis, C; Levinsky, R J

    1989-01-01

    In order to investigate the role of lymphocyte function-associated antigen 1 (LFA-1) in lymphocyte adhesion to endothelial cells (EC), we have studied the adhesion of a LFA-1-deficient lymphoblastoid cell line, ICH-KM, which has < 10% of the cell surface LFA-1 expressed on a normal lymphoblastoid cell line, ICH-BJ. The adhesion of ICH-KM cells to unstimulated EC was 49.9 +/- 8.6% (mean +/- SD) that of ICH-BJ cells. Moreover, phorbol ester-stimulated ICH-KM cells showed a considerably weaker increase in adhesion to unstimulated EC compared with ICH-BJ cells (mean +/- SD increase in percentage adhesion, 3.8 +/- 2.3 compared with 18.5 +/- 8.0; P<0.025). In contrast, there was no significant difference between the enhanced adhesion of ICH-KM cells and ICH-BJ cells to interleukin-1 (IL-1)-stimulated EC. Thus ICH-KM cells showed a 22.7 +/- 11.0 (mean +/- SD) increase in percentage adhesion to IL-1-stimulated EC compared with the 24.8 +/- 8.5 increase in percentage adhesion of ICH-BJ cells. Anti-LFA-1 monoclonal antibodies had no effect on the enhanced adhesion of ICH-KM and ICH-BJ cells to IL-1-stimulated EC but abolished the differences in adhesion between the two cell lines. The study therefore indicates that although a major part of unstimulated and phorbol ester-stimulated lymphocyte-EC adhesion is dependent upon LFA-1, the enhanced adhesion due to stimulation of EC with IL-1 is not dependent upon this molecule. The data therefore supports the existence of cytokine-inducible LFA-1-independent adhesion molecules for lymphocytes on EC. PMID:15493272

  5. Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    2014-09-01

    This letter presents a method which employs surface acoustic wave induced acoustic streaming to differentially peel treated red blood cells (RBCs) off a substrate based on their adhesive properties and separate populations of pathological cells from normal ones. We demonstrate the principle of operation by comparing the applied power and time required to overcome the adhesion displayed by healthy, glutaraldehyde-treated or malaria-infected human RBCs. Our experiments indicate that the method can be used to differentiate between various cell populations contained in a 9 μl droplet within 30 s, suggesting potential for rapid diagnostics.

  6. Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche

    PubMed Central

    Anselmo, A; Lauranzano, E; Soldani, C; Ploia, C; Angioni, R; D'amico, G; Sarukhan, A; Mazzon, C; Viola, A

    2016-01-01

    Establishment of cell–cell adhesion is crucial in embryonic development as well as within the stem cell niches of an adult. Adhesion between macrophages and erythroblasts is required for the formation of erythroblastic islands, specialized niches where erythroblasts proliferate and differentiate to produce red blood cells throughout life. The Eph family is the largest known family of receptor tyrosine kinases (RTKs) and controls cell adhesion, migration, invasion and morphology by modulating integrin and adhesion molecule activity and by modifying the actin cytoskeleton. Here, we identify the proteoglycan agrin as a novel regulator of Eph receptor signaling and characterize a novel mechanism controlling cell–cell adhesion and red cell development within the erythroid niche. We demonstrate that agrin induces clustering and activation of EphB1 receptors on developing erythroblasts, leading to the activation of α5β1 integrins. In agreement, agrin knockout mice display severe anemia owing to defective adhesion to macrophages and impaired maturation of erythroid cells. These results position agrin-EphB1 as a novel key signaling couple regulating cell adhesion and erythropoiesis. PMID:26990660

  7. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells

    PubMed Central

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  8. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    PubMed

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  9. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  10. Adhesion and function of rat liver cells adherent to silk fibroin/collagen blend films.

    PubMed

    Cirillo, B; Morra, M; Catapano, G

    2004-01-01

    Collagen is often used in bioartificial livers as a biomimetic coating to promote liver cell adhesion and differentiation. Animal proteins are expensive and expose the host to risks of cross-species infection due to contamination with prions. Silk fibroin (SF) is a biocompatible protein produced by Bombyx mori silk worms and possibly an alternative to collagen. We prepared SF-collagen blend films with different SF content adherent to the bottom of standard tissue culture dishes, and characterized their surface morphology by SEM, their wettability and examined them for their capacity to support rat liver cell adhesion and metabolism. Cell metabolism was characterized by estimating the rate at which cells eliminated ammonia and synthesized urea for up to 48h of culture. SF-containing films were smooth, clear and more wettable than collagen. Cells readily adhered, formed junctions and small size aggregates on all films. As many cells adhered on SF as on collagen films. Cell adhesion to high collagen content blend films could not be reliably estimated because cells dwelt in the large cavities in the film. The effect of SF on cell metabolism differed with the investigated metabolic pathway. However, cells on SF-containing films eliminated ammonia and synthesized urea at rates generally comparable to, for urea synthesis at times higher than, that of cells on collagen. These results suggest that silk fibroin is a suitable substratum for liver cell attachment and culture, and a potential alternative to collagen as a biomimetic coating. PMID:14984185

  11. Apicobasal polarity controls lymphocyte adhesion to hepatic epithelial cells.

    PubMed

    Reglero-Real, Natalia; Alvarez-Varela, Adrián; Cernuda-Morollón, Eva; Feito, Jorge; Marcos-Ramiro, Beatriz; Fernández-Martín, Laura; Gómez-Lechón, Maria José; Muntané, Jordi; Sandoval, Pilar; Majano, Pedro L; Correas, Isabel; Alonso, Miguel A; Millán, Jaime

    2014-09-25

    Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1) adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α). We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery. PMID:25242329

  12. Osteoblast Adhesion of Breast Cancer Cells with Scanning Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, C.; Mercer, R. R.; Mastro, A. M.

    Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adhere in a different way to the substrate and to each other. To characterize cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days. With mechanical scanning acoustic reflection microscopy, we were able to detect a change in the adhesive condition of the interface between the cell and the substrate, but not with optical microscopy

  13. Jun‐Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency

    PubMed Central

    Veluscek, Giulia; Li, Yaoyong; Yang, Shen‐Hsi

    2016-01-01

    Abstract Embryonic stem cells (ESC) are able to give rise to any somatic cell type. A lot is known about how ESC pluripotency is maintained, but comparatively less is known about how differentiation is promoted. Cell fate decisions are regulated by interactions between signaling and transcriptional networks. Recent studies have shown that the overexpression or downregulation of the transcription factor Jun can affect the ESC fate. Here we have focussed on the role of the Jun in the exit of mouse ESCs from ground state pluripotency and the onset of early differentiation. Transcriptomic analysis of differentiating ESCs reveals that Jun is required to upregulate a programme of genes associated with cell adhesion as ESCs exit the pluripotent ground state. Several of these Jun‐regulated genes are shown to be required for efficient adhesion. Importantly this adhesion is required for the timely regulated exit of ESCs from ground state pluripotency and the onset of early differentiation events. Stem Cells 2016;34:1213–1224 PMID:26850660

  14. A monoclonal antibody directed against a human cell membrane antigen prevents cell substrate adhesion and tumor invasion.

    PubMed Central

    De Potter, C. R.; Schelfhout, A. M.; De Smet, F. H.; Van Damme, S.; de Ridder, L.; Dhont, E.; van Emmelo, J.

    1994-01-01

    It was the aim of this study to design mouse monoclonal antibodies (MAbs) that can inhibit the invasion of breast cancer cells in the host tissue. Therefore, MAbs were raised against epitopes on the extracellular domain of SK-BR-3 human breast cancer cells, and biological assays were performed to test the capability of the MAbs to inhibit cell substrate adhesion. MAb 14C5 bound an extracellular plasma membrane antigen of SK-BR-3 and MCF-7 human breast cancer cells and inhibited the cell substrate adhesion of these cells in vitro. The MAb delayed the adhesion of MCF-7 and SK-BR-3 cells on precultured embryonic heart fragments (PHFS). It inhibited the destruction of the PHF by MCF-7 cells and the invasion of the PHF by SK-BR-3 cells. The MAb reacted with an epitope on the cell membrane of in situ and invasive ductal carcinomas of the breast in immunohistochemistry. Poorly differentiated, highly invasive ductal carcinomas show extensive staining of long plasma membrane extensions. Normal multilayered epithelia, normal connective tissue, and tumors derived from these tissues as well as normal breast tissue were negative. From both cell lines a protein complex consisting of two subunits with molecular weight of 50 and 90 kd, respectively, was immunoprecipitated. It is concluded that the 14C5 antigen plays a role in cell substrate adhesion and subsequently also in invasion of breast cancer cells. The 14C5 MAb was able to inhibit cell substrate adhesion and invasion in vitro of breast cancer cells. Images Figure 3 Figure 4 Figure 5 PMID:8291615

  15. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  16. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry. PMID:25239531

  17. Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells.

    PubMed

    Ye, Kai; Cao, Luping; Li, Shiyu; Yu, Lin; Ding, Jiandong

    2016-08-31

    Stem cells are capable of sensing and responding to the mechanical properties of extracellular matrixes (ECMs). It is well-known that, while osteogenesis is promoted on the stiff matrixes, adipogenesis is enhanced on the soft ones. Herein, we report an "abnormal" tendency of matrix-stiffness-directed stem cell differentiation. Well-defined nanoarrays of cell-adhesive arginine-glycine-aspartate (RGD) peptides were modified onto the surfaces of persistently nonfouling poly(ethylene glycol) (PEG) hydrogels to achieve controlled specific cell adhesion and simultaneously eliminate nonspecific protein adsorption. Mesenchymal stem cells were cultivated on the RGD-nanopatterned PEG hydrogels with the same RGD nanospacing but different hydrogel stiffnesses and incubated in the induction medium to examine the effect of matrix stiffness on osteogenic and adipogenic differentiation extents. When stem cells were kept at a low density during the induction period, the differentiation tendency was consistent with the previous reports in the literature; however, both lineage commitments were favored on the stiff matrices at a high cell density. We interpreted such a complicated stiffness effect at a high cell density in two-dimensional culture as the interplay of matrix stiffness and cell-cell contact. As a result, this study strengthens the essence of the stiffness effect and highlights the combinatory effects of ECM cues and cell cues on stem cell differentiation. PMID:26600563

  18. Adhesion between peptides/antibodies and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  19. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  20. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Müller, Petra; Bulnheim, Ulrike; Diener, Annette; Lüthen, Frank; Teller, Marianne; Klinkenberg, Ernst-Dieter; Neumann, Hans-Georg; Nebe, Barbara; Liebold, Andreas; Steinhoff, Gustav; Rychly, Joachim

    2008-01-01

    Abstract Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix®, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell–extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix®, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation. PMID:18366455

  1. Microfluidic shear devices for quantitative analysis of cell adhesion.

    PubMed

    Lu, Hang; Koo, Lily Y; Wang, Wechung M; Lauffenburger, Douglas A; Griffith, Linda G; Jensen, Klavs F

    2004-09-15

    We describe the design, construction, and characterization of microfluidic devices for studying cell adhesion and cell mechanics. The method offers multiple advantages over previous approaches, including a wide range of distractive forces, high-throughput performance, simplicity in experimental setup and control, and potential for integration with other microanalytic modules. By manipulating the geometry and surface chemistry of the microdevices, we are able to vary the shear force and the biochemistry during an experiment. The dynamics of cell detachment under different conditions can be captured simultaneously using time-lapse videomicroscopy. We demonstrate assessment of cell adhesion to fibronectin-coated substrates as a function of the shear stress or fibronectin concentration in microchannels. Furthermore, a combined perfusion-shear device is designed to maintain cell viability for long-term culture as well as to introduce exogenous reagents for biochemical studies of cell adhesion regulation. In agreement with established literature, we show that fibroblasts cultured in the combined device reduced their adhesion strength to the substrate in response to epidermal growth factor stimulation. PMID:15362881

  2. A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment.

    PubMed

    Mittenthal, J E; Mazo, R M

    1983-02-01

    We present a model for the energetic factors determining the most stable shape of a tubular epithelium such as the hypodermis of an arthropod leg segment. The model uses the analysis by Steinberg (1963) of rearrangement of cells in aggregates under the influence of differential adhesion, combining this analysis with the assumption that the epithelium behaves as an elastic sheet. The epithelium is assumed to consist of blocks of cells with different adhesive affinities, which remain unmixed in a quilt pattern. Rearrangement of cells within each block can adjust the shape of the tube by changing the shapes of the blocks. By means of such rearrangements the tube develops that shape which minimizes a free energy. The free energy is the difference between the energy of mechanical strain due to bending of the epithelium and the work of adhesion among cells. Minimization of the free energy for a cylindrical segment yields a scaling relation involving the length and radius of the segment. Leg segments of Drosophila conformed approximately to this relation, with deviations which suggest that a whole-limb pattern of adhesive affinities modulates the shaping effects of an adhesive pattern repeated in each leg segment. The model also predicts a transient deformation in an epithelium following a grafting operation. For example, deleting a slab of tissue from a tubular segment and reuniting the cut ends should produce a constriction of the tube at the host-graft junction. We propose that patterns of strain and adhesion can provide positional information which regulates subsequent development. Local increases in strain or adhesive disparity may stimulate mitoses; the resulting changes in distribution of cells will affect morphogenesis. PMID:6834865

  3. Evidence for heterophilic adhesion of embryonic retinal cells and neuroblastoma cells to substratum-adsorbed NCAM.

    PubMed

    Murray, B A; Jensen, J J

    1992-06-01

    The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal perturbing drugs colchicine and cytochalasin D. These results indicated that the tubulin and actin cytoskeletons were not critically required for adhesion to NCAM and make it unlikely that the cell surface ligand for NCAM is an integrin. Adhesion was however temperature dependent, strengthening greatly after a brief incubation at 37 degrees C. CHO cells transfected with NCAM cDNAs did not adhere specifically to substratum-bound NCAM and pretreatment of N2A cells and retinal cells with anti-NCAM antibodies did not inhibit adhesion to substratum-bound NCAM. These results suggest that a heterophilic interaction between substratum-adsorbed NCAM and a non-NCAM ligand on the surface of the probe cells affects adhesion in this system and support the possibility that heterophilic adhesion may be a function of NCAM in vivo. PMID:1607391

  4. Adhesive pad differentiation in Drosophila melanogaster depends on the Polycomb group gene Su(z)2.

    PubMed

    Hüsken, Mirko; Hufnagel, Kim; Mende, Katharina; Appel, Esther; Meyer, Heiko; Peisker, Henrik; Tögel, Markus; Wang, Shuoshuo; Wolff, Jonas; Gorb, Stanislav N; Paululat, Achim

    2015-04-15

    The ability of many insects to walk on vertical smooth surfaces such as glass or even on the ceiling has fascinated biologists for a long time, and has led to the discovery of highly specialized adhesive organs located at the distal end of the animals' legs. So far, research has primarily focused on structural and ultrastructural investigations leading to a deeper understanding of adhesive organ functionality and to the development of new bioinspired materials. Genetic approaches, e.g. the analysis of mutants, to achieve a better understanding of adhesive organ differentiation have not been used so far. Here, we describe the first Drosophila melanogaster mutant that develops malformed adhesive organs, resulting in a complete loss of climbing ability on vertical smooth surfaces. Interestingly, these mutants fail to make close contact between the setal tips and the smooth surface, a crucial condition for wet adhesion mediated by capillary forces. Instead, these flies walk solely on their claws. Moreover, we were able to show that the mutation is caused by a P-element insertion into the Su(z)2 gene locus. Remobilization of the P-element restores climbing ability. Furthermore, we provide evidence that the P-element insertion results in an artificial Su(z)2 transcript, which most likely causes a gain-of-function mutation. We presume that this transcript causes deregulation of yet unknown target genes involved in pulvilli differentiation. Our results nicely demonstrate that the genetically treatable model organism Drosophila is highly suitable for future investigations on adhesive organ differentiation. PMID:25714570

  5. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease.

    PubMed Central

    Ruco, L. P.; Pomponi, D.; Pigott, R.; Gearing, A. J.; Baiocchini, A.; Baroni, C. D.

    1992-01-01

    The immunocytochemical expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelial leukocyte adhesion molecule (ELAM-1), endothelial cell adhesion molecule (EndoCAM CD31), and HLA-DR antigens was investigated in sections of 24 reactive lymph nodes and in 15 cases of Hodgkin's disease. ICAM-1 was detected in sinus macrophages, follicular dendritic reticulum cells (FDRCs), interdigitating reticulum cells (IDRCs), epithelioid macrophages, Hodgkin's cells (HCs), and vascular endothelium. ICAM-1 expression was often associated with that of HLA-DR antigens. VCAM-1 was detected in FDRCs, in fibroblast reticulum cells (FRCs), in macrophages, and in rare blood vessels. EndoCAM (CD31) was constitutively expressed in all types of endothelial cells, sinus macrophages, and in epithelioid granulomas. ELAM-1 was selectively expressed by activated endothelial cells of high endothelium venules (HEVs). When expression of the inducible adhesion molecules ICAM-1, VCAM-1 and ELAM-1 was comparatively evaluated in HEVs, it was found that ICAM-1 + HEVs were present in all reactive and HD nodes, whereas ELAM-1 and/or VCAM-1 were expressed only in those pathologic conditions characterized by high levels of interleukin-1/tumor necrosis factor (IL-1/TNF) production, such as granulomatosis and Hodgkin's disease. In Hodgkin's disease, the expression of ELAM-1/VCAM-1 was more pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. Images Figure 1 Figure 2 PMID:1605306

  6. Structural requirements for neural cell adhesion molecule-heparin interaction.

    PubMed Central

    Reyes, A A; Akeson, R; Brezina, L; Cole, G J

    1990-01-01

    Two biological domains have been identified in the amino terminal region of the neural cell adhesion molecule (NCAM): a homophilic-binding domain, responsible for NCAM-NCAM interactions, and a heparin-binding domain (HBD). It is not known whether these two domains exist as distinct structural entities in the NCAM molecule. To approach this question, we have further defined the relationship between NCAM-heparin binding and cell adhesion. A putative HBD consisting of two clusters of basic amino acid residues located close to each other in the linear amino acid sequence of NCAM has previously been identified. Synthetic peptides corresponding to this domain were shown to bind both heparin and retinal cells. Here we report the construction of NCAM cDNAs with targeted mutations in the HBD. Mouse fibroblast cells transfected with the mutant cDNAs express NCAM polypeptides with altered HBD (NCAM-102 and NCAM-104) or deleted HBD (HBD-) at levels similar to those of wild-type NCAM. Mutant NCAM polypeptides purified from transfected cell lines have substantially reduced binding to heparin and fail to promote chick retinal cell attachment. Furthermore, whereas a synthetic peptide that contains both basic amino acid clusters inhibits retinal-cell adhesion to NCAM-coated dishes, synthetic peptides in which either one of the two basic regions is altered to contain only neutral amino acids do not inhibit this adhesion. These results confirm that this region of the NCAM polypeptide does indeed mediate not only the large majority of NCAM's affinity for heparin but also a significant portion of the cell-adhesion-mediating capability of NCAM. Images PMID:2078567

  7. Inhibition of Rac and ROCK Signalling Influence Osteoblast Adhesion, Differentiation and Mineralization on Titanium Topographies

    PubMed Central

    Prowse, Paul D. H.; Elliott, Christopher G.; Hutter, Jeff; Hamilton, Douglas W.

    2013-01-01

    Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications. PMID:23505566

  8. Cell adhesion: The effect of a surprising cohesive force

    NASA Astrophysics Data System (ADS)

    Vasseur, H.

    2009-10-01

    When an experimentalist or a biological mechanism applies an external force onto a cell chemically sticking to its substrate, a reacting “suction” force, due to the slow penetration of the surrounding fluid between the cell and the substrate, opposes to the dissociation. This force can overcome other known adhesive forces when the process is sufficiently violent (typically 105pN ). Its maximal contribution to the total adhesive energy of the cell can then be estimated to 2×10-3J/m2 . The physical origin of this effect is quite simple and it may be compared to that leaning a “suction cup” against a bathroom wall. We address the consequences of this effect on (i) the separation energy, (ii) the motion of the fluid surrounding the cell, and more especially on the pumping of the fluid by moving cells, and (iii) the inhibition of cell motion.

  9. Bacterial adhesion to uroepithelial cells: a morphologic study.

    PubMed

    Marrie, T J; Lam, J; Costerton, J W

    1980-08-01

    Urethral and midstream urine samples from healthy women and from patients with urinary tract infections (UTI) were examined by electron microscopy. Urethral urine samples from healthy subjects contained sparsely and densely colonized uroepithelial cells. The latter had morphologically heterogeneous bacteria adherent to each other and to the epithelial cell by a ruthenium red-positive fibrous matrix, which was present on the surface of all bacteria examined. Urethral urine samples from patients with UTI often had two distinct microcolonies of morphologically similar bacteria adherent to the same uroepithelial cell. Midstream urine samples from these patients contained large microcolonies of morphologically identical bacteria. Urine from patients with catheter-associated infections contained few uroepithelial cells and two distinct varieties of bacterial microcolonies--one of intact homogeneous cells and another of a mixture of damaged and intact bacteria. These in vivo observations indicate that the bacterial surface matrix participates in bacterial adhesion to uroepithelial cells and in bacteria-bacteria adhesion. PMID:6774033

  10. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs. PMID:27429988

  11. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation

    PubMed Central

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs. PMID:27429988

  12. Cytoplasmic Tail Regulates the Intercellular Adhesion Function of the Epithelial Cell Adhesion Molecule

    PubMed Central

    Balzar, Maarten; Bakker, Hellen A. M.; Briaire-de-Bruijn, Inge H.; Fleuren, Gert Jan; Warnaar, Sven O.; Litvinov, Sergey V.

    1998-01-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of α-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with α-actinin. Binding of α-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for α-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via α-actinin. PMID:9671492

  13. Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell adhesion molecule.

    PubMed

    Balzar, M; Bakker, H A; Briaire-de-Bruijn, I H; Fleuren, G J; Warnaar, S O; Litvinov, S V

    1998-08-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of alpha-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with alpha-actinin. Binding of alpha-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for alpha-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via alpha

  14. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  15. Cell shape and the presentation of adhesion ligands guide smooth muscle myogenesis.

    PubMed

    Zhang, Douglas; Sun, Michael B; Lee, Junmin; Abdeen, Amr A; Kilian, Kristopher A

    2016-05-01

    The reliable generation of smooth muscle cells is important for a number of tissue engineering applications. Human mesenchymal stem cells (MSCs) are a promising progenitor of smooth muscle, with high expression of smooth muscle markers observed in a fraction of isolated cells, which can be increased by introduction of soluble supplements that direct differentiation. Here we demonstrate a new micropatterning technique, where peptides of different ligand affinity can be microcontact printed onto an inert background, to explore MSC differentiation to smooth muscle through controlled biochemical and biophysical cues alone. Using copper-catalyzed alkyne-azide cycloaddition (CuAAC), we patterned our surfaces with RGD peptide ligands-both a linear peptide with low integrin affinity and a cyclic version with high integrin affinity-for the culture of MSCs in shapes with various aspect ratios. At low aspect ratio, ligand affinity is a prime determinant for smooth muscle differentiation, while at high aspect ratio, ligand affinity has less of an effect. Pathway analysis reveals a role for focal adhesion turnover, Rac1, RhoA/ROCK, and calpain during smooth muscle differentiation of MSCs in response to cell shape and the affinity of the cell adhesion interface. Controlling integrin-ligand affinity at the biomaterials interface is important for mediating adhesion but may also prove useful for directing smooth muscle myogenesis. Peptide patterning enables the systematic investigation of single to multiple peptides derived from any protein, at different densities across a biomaterials surface, which has the potential to direct multiple MSC differentiation outcomes without the need for soluble supplements. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1212-1220, 2016. PMID:26799164

  16. Adhesion of Annexin 7 Deficient Erythrocytes to Endothelial Cells

    PubMed Central

    Abed, Majed; Balasaheb, Siraskar; Towhid, Syeda Tasneem; Daniel, Christoph; Amann, Kerstin; Lang, Florian

    2013-01-01

    Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca2+ concentration ([Ca2+]i) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca2+]i by Ca2+ ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7−/−) than in erythrocytes from wild type mice (anxA7+/+). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7−/− and anx7+/+-mice following increase of [Ca2+]i by Ca2+ ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7−/− than in anx7+/+-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7−/− than in anx7+/+-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia. PMID:23437197

  17. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb

    PubMed Central

    Popławski, Nikodem J.; Swat, Maciej; Gens, J. Scott; Glazier, James A.

    2007-01-01

    A central question in developmental biology is how cells interact to organize into tissues? In this paper, we study the role of mesenchyme-ectoderm interaction in the growing chick limb bud using Glazier and Graner's cellular Potts model, a grid-based stochastic framework designed to simulate cell interactions and movement. We simulate cellular mechanisms including cell adhesion, growth, and division and diffusion of morphogens, to show that differential adhesion between the cells, diffusion of growth factors through the extracellular matrix, and the elastic properties of the apical ectodermal ridge together can produce the proper shape of the limb bud. PMID:18167520

  18. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma

    PubMed Central

    Chowdhury, Basudev; Porter, Elizabeth G.; Stewart, Jane C.; Ferreira, Christina R.; Schipma, Matthew J.; Dykhuizen, Emily C.

    2016-01-01

    Polybromo-1 (PBRM1) is a component of the PBAF (Polybromo-associated-BRG1- or BRM-associated factors) chromatin remodeling complex and is the second most frequently mutated gene in clear-cell renal cell Carcinoma (ccRCC). Mutation of PBRM1 is believed to be an early event in carcinogenesis, however its function as a tumor suppressor is not understood. In this study, we have employed Next Generation Sequencing to profile the differentially expressed genes upon PBRM1 re-expression in a cellular model of ccRCC. PBRM1 re-expression led to upregulation of genes involved in cellular adhesion, carbohydrate metabolism, apoptotic process and response to hypoxia, and a downregulation of genes involved in different stages of cell division. The decrease in cellular proliferation upon PBRM1 re-expression was confirmed, validating the functional role of PBRM1 as a tumor suppressor in a cell-based model. In addition, we identified a role for PBRM1 in regulating metabolic pathways known to be important for driving ccRCC, including the regulation of hypoxia response genes, PI3K signaling, glucose uptake, and cholesterol homeostasis. Of particular novelty is the identification of cell adhesion as a major downstream process uniquely regulated by PBRM1 expression. Cytoskeletal reorganization was induced upon PBRM1 reexpression as evidenced from the increase in the number of cells displaying cortical actin, a hallmark of epithelial cells. Genes involved in cell adhesion featured prominently in our transcriptional dataset and overlapped with genes uniquely regulated by PBRM1 in clinical specimens of ccRCC. Genes involved in cell adhesion serve as tumor suppressor and maybe involved in inhibiting cell migration. Here we report for the first time genes linked to cell adhesion serve as downstream targets of PBRM1, and hope to lay the foundation of future studies focusing on the role of chromatin remodelers in bringing about these alterations during malignancies. PMID:27100670

  19. Mutant p53 in cell adhesion and motility.

    PubMed

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  20. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    PubMed Central

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  1. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion.

    PubMed

    Nalvarte, Ivan; Damdimopoulos, Anastasios E; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279: , 54510-54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  2. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGESBeta

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  3. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-01

    Neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  4. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    SciTech Connect

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  5. The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms

    PubMed Central

    Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James

    2014-01-01

    SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433

  6. Bioactive DNA-Peptide Nanotubes Enhance the Differentiation of Neural Stem Cells Into Neurons

    PubMed Central

    2015-01-01

    We report the construction of DNA nanotubes covalently functionalized with the cell adhesion peptide RGDS as a bioactive substrate for neural stem cell differentiation. Alteration of the Watson–Crick base pairing program that builds the nanostructures allowed us to probe independently the effect of nanotube architecture and peptide bioactivity on stem cell differentiation. We found that both factors instruct synergistically the preferential differentiation of the cells into neurons rather than astrocytes. PMID:25546084

  7. Microgel Film Dynamics Modulate Cell Adhesion Behavior

    PubMed Central

    Saxena, Shalini; Spears, Mark W.; Yoshida, Hiroaki; Gaulding, Jeffrey C.; García, Andrés J.; Lyon, L. Andrew

    2014-01-01

    A material’s mechanical properties greatly control cell behavior at the cell-substrate interface. In this work, we demonstrate that microgel multilayers have unique elastic and viscoelastic-like properties that can be modulated to produce morphological changes in fibroblasts cultured on the film. Protein adsorption is also examined and the data are contrasted with the number of cells adhered. The dynamic interaction of cell and substrate is only partially explained by conventional understanding of surface-receptor interactions and substrate elasticity. Viscoelasticity, a mechanical property not often considered, plays a significant role at cellular length and time scales for microgel films. PMID:24634694

  8. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia. PMID:26646071

  9. Role of Periostin in Adhesion and Migration of Bone Remodeling Cells

    PubMed Central

    Cobo, Teresa; Viloria, Cristina G.; Solares, Laura; Fontanil, Tania; González-Chamorro, Elena; De Carlos, Félix; Cobo, Juan; Cal, Santiago; Obaya, Alvaro J.

    2016-01-01

    Periostin is an extracellular matrix protein highly expressed in collagen-rich tissues subjected to continuous mechanical stress. Functionally, periostin is involved in tissue remodeling and its altered function is associated to numerous pathological processes. In orthodontics, periostin plays key roles in the maintenance of dental tissues and it is mainly expressed in those areas where tension or pressing forces are taking place. In this regard, high expression of periostin is essential to promote migration and proliferation of periodontal ligament fibroblasts. However little is known about the participation of periostin in migration and adhesion processes of bone remodeling cells. In this work we employ the mouse pre-osteoblastic MC3T3-E1 and the macrophage-like RAW 264.7 cell lines to overexpress periostin and perform different cell-based assays to study changes in cell behavior. Our data indicate that periostin overexpression not only increases adhesion capacity of MC3T3-E1 cells to different matrix proteins but also hampers their migratory capacity. Changes on RNA expression profile of MC3T3-E1 cells upon periostin overexpression have been also analyzed, highlighting the alteration of genes implicated in processes such as cell migration, adhesion or bone metabolism but not in bone differentiation. Overall, our work provides new evidence on the impact of periostin in osteoblasts physiology. PMID:26809067

  10. Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion

    PubMed Central

    Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development. PMID:25698877

  11. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  12. Effects of cell-cell contact and oxygen tension on chondrogenic differentiation of stem cells.

    PubMed

    Cao, Bin; Li, Zhenhua; Peng, Rong; Ding, Jiandong

    2015-09-01

    While cell condensation has been thought to enhance chondrogenesis, no direct evidence so far confirms that cell-cell contact itself increases chondrogenic differentiation of stem cells, since the change of cell-cell contact is usually coupled with those of other cell geometry cues and soluble factors in cell culture. The present study semi-quantitatively examined the effect of cell-cell contact in a decoupled way. We fabricated two-dimensional micropatterns with cell-adhesive peptide arginine-glycine-aspartate (RGD) microdomains on a nonfouling poly(ethylene glycol) (PEG) hydrogel. Mesenchymal stem cells (MSCs) were well localized on the microdomains for a long time. Based on our micropattern design, single MSCs or cell clusters with given cell numbers (1, 2, 3, 6 and 15) and a similar spreading area per cell were achieved on the same substrate, thus the interference of soluble factor difference from cell autocrine and that of cell spreading area were ruled out. After 9-day chondrogenic induction, collagen II was stained to characterize the chondrogenic induction results; the mRNA expression levels of SOX9, collagen II, aggrecan, HIF-1α and collagen I were also detected. The statistics confirmed unambiguously that the extent of the chondrogenic differentiation increased with cell-cell contact, and even a linear relation between differentiation extent and contact extent was established within the examined range. The cell-cell contact effect worked under both hypoxia (5% O2) and normoxia (21% O2) conditions, and the hypoxia condition promoted the chondrogenic induction of MSCs on adhesive microdomains more efficiently than the normoxia condition under the same cell-cell contact extents. PMID:26113183

  13. A Review of Cell Adhesion Studies for Biomedical and Biological Applications.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  14. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  15. Flexible polymeric ultrathin film for mesenchymal stem cell differentiation.

    PubMed

    Pensabene, Virginia; Taccola, Silvia; Ricotti, Leonardo; Ciofani, Gianni; Menciassi, Arianna; Perut, Francesca; Salerno, Manuela; Dario, Paolo; Baldini, Nicola

    2011-07-01

    Ultrathin films (also called nanofilms) are two-dimensional (2-D) polymeric structures with potential application in biology, biotechnology, cosmetics and tissue engineering. Since they can be handled in liquid form with micropipettes or tweezers they have been proposed as flexible systems for cell adhesion and proliferation. In particular, with the aim of designing a novel patch for bone or tendon repair and healing, in this work the biocompatibility, adhesion and proliferation activity of Saos-2, MRC-5 and human and rat mesenchymal stem cells on poly(lactic acid) nanofilms were evaluated. The nanofilms did not impair the growth and differentiation of osteoblasts and chondrocytes. Moreover, nanofilm adhesion to rabbit joints was evident under ex vivo conditions. PMID:21421086

  16. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death

    PubMed Central

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  17. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death.

    PubMed

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  18. LINKIN, a new transmembrane protein necessary for cell adhesion

    PubMed Central

    Kato, Mihoko; Chou, Tsui-Fen; Yu, Collin Z; DeModena, John; Sternberg, Paul W

    2014-01-01

    In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI: http://dx.doi.org/10.7554/eLife.04449.001 PMID:25437307

  19. Cell-cell signaling and adhesion in phagocytosis and early development of Dictyostelium.

    PubMed

    Bracco, E; Pergolizzi, B; Peracino, B; Ponte, E; Balbo, A; Mai, A; Ceccarelli, A; Bozzaro, S

    2000-01-01

    Cell-cell signaling and adhesion regulate transition from the unicellular to the multicellular stage of development in the cellular slime mold Dictyostelium. Essential gene networks involved in these processes have been identified and their interplay dissected. Heterotrimeric G protein-linked signal transduction plays a key role in regulating expression of genes mediating chemotaxis or cell adhesion, as well as coordinating actin-based cell motility during phagocytosis and chemotaxis. Two classes of cell adhesion molecules, one cadherin-like and the second belonging to the IgG superfamily, contribute to the strength of adhesion in Dictyostelium aggregates. The developmental role of genes involved in motility and adhesion, and their degree of redundancy, have been re-assessed by using novel developmental assay conditions which are closer to development in nature. PMID:11061438

  20. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  1. Temperature-controlled masking/unmasking of cell-adhesive cues with poly(ethylene glycol) methacrylate based brushes.

    PubMed

    Desseaux, Solenne; Klok, Harm-Anton

    2014-10-13

    Thin, thermoresponsive polymer coatings that allow to reversibly modulate cell adhesion and detachment are attractive substrates for cell sheet engineering. Usually, this is accomplished by applying thin poly(N-isopropylacrylamide) (PNIPAM) coatings, which allow cell adhesion via nonspecific interactions above the collapse temperature (T(T)) of the surface-attached polymer and cell detachment upon cooling below T(T). This Article presents an alternative, thermoresponsive polymer platform that is based on 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) containing copolymer brushes prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). These brushes are interesting as they gradually collapse and dehydrate upon increasing the temperature from 10 to 40 °C, yet resist nonspecific adhesion of cells over this entire temperature window. The MEO2MA based brushes presented here were modified via a two-step postpolymerization modification protocol to introduce cell-adhesive RGD containing peptide ligands. The possibility to reversibly control the swelling and collapse of these brush films by varying temperature allows to modulate the effectively available surface concentration of these cell-adhesive cues and thus provides a way to mask/unmask their biological activity. As a first proof of concept, this Article demonstrates that these MEO2MA brush copolymer films enable integrin-mediated adhesion of 3T3 fibroblasts at 37 °C and allow release of these cells by cooling to 23 °C. The use of cell-adhesive ligands, which can be thermoreversibly masked/unmasked, is attractive as it enables the use of serum-free cell culture conditions. This is advantageous since it avoids possible concerns regarding eventual toxicity and immunological side effects of serum proteins and also provides opportunities to select for particular cell types and for enhanced control over cell stimulation and differentiation. PMID:25208302

  2. Physics of cell adhesion: some lessons from cell-mimetic systems

    PubMed Central

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM–cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin–microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways. PMID:24651316

  3. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  4. miR-125b is an adhesion-regulated microRNA that protects mesenchymal stem cells from anoikis

    PubMed Central

    Yu, Xiang; Cohen, Daniel M; Chen, Christopher S

    2012-01-01

    Mesenchymal stem cells (MSCs) have the capacity for multilineage differentiation and are being explored as a source for stem cell-based therapies. Previous studies have shown that adhesion to extracellular matrix plays a critical role in guiding MSC differentiation to distinct lineages. Here we conducted a focused screen of microRNAs to reveal one microRNA, miR-125b, whose expression changes as a function of cell adhesion. miR-125b expression was upregulated by limiting cell-matrix adhesion using micropatterned substrates, knocking down beta5 integrin, or placing cells in suspension culture. Interestingly, we noted that suspending hMSCs did not induce substantial apoptosis (anoikis) as is typically observed in adherent cells. Although miR-125b appeared to have some effects of on hMSC differentiation, we demonstrated a striking role for miR-125b in protecting hMSCs from anoikis. Knockdown of miR-125b increased anoikis while expressing a mimic protected cells. Mechanistic studies demonstrated that miR-125b protected against anoikis by increasing ERK phosphorylation and by suppressing p53. Lastly, we found that miR-125b expression is quite limited in endothelial cells and MEFs; the rapid anoikis normally observed in these cells is antagonized by expressing a miR-125b mimic; and induced pluripotent stem (iPS) cells generated from the MEFs led to upregulated miR-125b expression. Together, these observations demonstrate a novel link between cell-matrix adhesion, miR-125b expression, and a stem-cell specific survival program triggered in adhesion-limited contexts such as might occur in early development and wound healing. PMID:22331826

  5. Microvascular Transport and Tumor Cell Adhesion in the Microcirculation

    PubMed Central

    Fu, Bingmei M.; Liu, Yang

    2016-01-01

    One critical step in tumor metastasis is tumor cell adhesion to the endothelium forming the microvessel wall. Understanding this step may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to, and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent ECs (interendothelial cleft) is the principal pathway for water and solutes transport through the microvessel wall in health. It is also suggested to be the pathway for high molecular weight plasma proteins, leukocytes and tumor cells across microvessel walls in disease. Thus the first part of the review introduced the mathematical models for water and solutes transport through the interendothelial cleft. These models, combined with the experimental results from in vivo animal studies and electron microscopic observations, are used to evaluate the role of the endothelial surface glycocalyx, the junction strand geometry in the interendothelial cleft, and the surrounding extracellular matrix and tissue cells, as the determinants of microvascular transport. The second part of the review demonstrated how the microvascular permeability, hydrodynamic factors, microvascular geometry and cell adhesion molecules affect tumor cell adhesion in the microcirculation. PMID:22476895

  6. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    PubMed

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  7. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion.

    PubMed

    Benavidez, Tomás E; Wechsler, Marissa E; Farrer, Madeleine M; Bizios, Rena; Garcia, Carlos D

    2016-01-01

    The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607

  8. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  9. Robust adhesive precision bonding in automated assembly cells

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-03-01

    Diode lasers are gaining importance, making their way to higher output powers along with improved BPP. The assembly of micro-optics for diode laser systems goes along with the highest requirements regarding assembly precision. Assembly costs for micro-optics are driven by the requirements regarding alignment in a submicron and the corresponding challenges induced by adhesive bonding. For micro-optic assembly tasks a major challenge in adhesive bonding at highest precision level is the fact, that the bonding process is irreversible. Accordingly, the first bonding attempt needs to be successful. Today's UV-curing adhesives inherit shrinkage effects crucial for submicron tolerances of e.g. FACs. The impact of the shrinkage effects can be tackled by a suitable bonding area design, such as minimal adhesive gaps and an adapted shrinkage offset value for the specific assembly parameters. Compensating shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not constant between two different lots and varies even over the storage period even under ideal circumstances as first test results indicate. An up-to-date characterization of the adhesive appears necessary for maximum precision in optics assembly to reach highest output yields, minimal tolerances and ideal beamshaping results. Therefore, a measurement setup to precisely determine the up-to-date level of shrinkage has been setup. The goal is to provide necessary information on current shrinkage to the operator or assembly cell to adjust the compensation offset on a daily basis. Impacts of this information are expected to be an improved beam shaping result and a first-time-right production.

  10. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease.

    PubMed

    Alapan, Yunus; Kim, Ceonne; Adhikari, Anima; Gray, Kayla E; Gurkan-Cavusoglu, Evren; Little, Jane A; Gurkan, Umut A

    2016-07-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  11. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease

    PubMed Central

    ALAPAN, YUNUS; KIM, CEONNE; ADHIKARI, ANIMA; GRAY, KAYLA E.; GURKAN-CAVUSOGLU, EVREN; LITTLE, JANE A.; GURKAN, UMUT A.

    2016-01-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  12. Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

    PubMed Central

    Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis

    2015-01-01

    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used. PMID:26498381

  13. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  14. Stem cell adhesion and proliferation on hydrolyzed poly(butylene succinate)/β-tricalcium phosphate composites.

    PubMed

    Patntirapong, Somying; Singhatanadgit, Weerachai; Meesap, Preeyapan; Theerathanagorn, Tharinee; Toso, Montree; Janvikul, Wanida

    2015-02-01

    Although poly(butylene succinate)/β-tricalcium phosphate (PBSu/TCP) composites are biocompatible and allow the growth and osteogenic differentiation of stem cells, cell attachment and adhesion to the PBSu-based substrates is often limited. To enhance cell adhesion and proliferation, we used a sodium hydroxide (NaOH) hydrolysis technique to generate a different degree of roughness on PBSu/TCP substrates with different PBSu:TCP ratios. The results showed that NaOH hydrolysis increased surface roughness of PBSu/TCP substrates in a concentration-dependent manner. Substrates with higher ratios of TCP:PBSu provided more porous topography after NaOH hydrolysis, with a substrate containing 40 wt % TCP (PBSu/TCP-6040) hydrolyzed with 1.5M NaOH (HPBSu/TCP-6040-1.5) showing the highest degree of roughness. As with the roughness, PBSu/TCP surface hydrophilicity was positively affected by the increasing NaOH concentration and TCP incorporation. Stem cells adhered best on HPBSu/TCP-6040-1.5 with three-dimensionally elongated cell extensions. Moreover, the HPBSu/TCP-6040-1.5 substrate most significantly facilitated stem cell actin cytoskeleton reorganization and vinculin-positive focal adhesion formation when compared with the other substrates tested. HPBSu/TCP-6040-1.5 also demonstrated the greatest increase in cell proliferation when compared with the other substrates studied. In conclusion, the results have shown that among various substrates tested, HPBSu/TCP-6040-1.5 provided the best support for stem cell adhesion and proliferation, suggesting its potential use in bone engineering. PMID:24788123

  15. Mechanics in Mechanosensitivity of Cell Adhesion and its Roles in Cell Migration

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; He, Shijie; Ji, Baohua

    2012-12-01

    Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.

  16. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    PubMed Central

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  17. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    PubMed

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host. PMID:26959526

  18. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation.

    PubMed

    Mao, Angelo S; Shin, Jae-Won; Mooney, David J

    2016-08-01

    The mechanical properties of the microenvironment and direct contact-mediated cell-cell interactions are two variables known to be important in the determination of stem cell differentiation fate, but little is known about the interplay of these cues. Here, we use a micropatterning approach on polyacrylamide gels of tunable stiffnesses to study how homotypic cell-cell contacts and mechanical stiffness affect different stages of osteogenesis of mesenchymal stem cells (MSCs). Nuclear localization of transcription factors associated with osteogenesis depended on substrate stiffness and was independent of the degree of cell-cell contact. However, expression of alkaline phosphatase, an early protein marker for osteogenesis, increased only in cells with both direct contact with neighboring cells and adhesion to stiffer substrates. Finally, mature osteogenesis, as assessed by calcium deposition, was low in micropatterned cells, even on stiff substrates and in multicellular clusters. These results indicate that substrate stiffness and the presence of neighboring cells regulate osteogenesis in MSCs. PMID:27203745

  19. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    PubMed Central

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C-terminal half and that these domains were critical for AMBN binding to dental epithelial cells. Overexpression of full-length AMBN protein inhibited proliferation of human ameloblastoma AM-1 cells, but overexpression of heparin binding domain-deficient AMBN protein had no inhibitory effect. In full-length AMBN-overexpressing AM-1 cells, the expression of Msx2, which is involved in the dental epithelial progenitor phenotype, was decreased, whereas the expression of cell proliferation inhibitors p21 and p27 was increased. We also found that the expression of enamelin, a marker of differentiated ameloblasts, was induced, suggesting that AMBN promotes odontogenic tumor differentiation. Thus, our results suggest that AMBN promotes cell binding through the heparin binding sites and plays an important role in preventing odontogenic tumor development by suppressing cell proliferation and maintaining differentiation phenotype through Msx2, p21, and p27. PMID:19648121

  20. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    PubMed Central

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  1. Adhesion and invasion of bovine endothelial cells by Neospora caninum.

    PubMed

    Hemphill, A; Gottstein, B; Kaufmann, H

    1996-02-01

    Neospora caninum is a recently identified coccidian parasite which was, until 1988, misdiagnosed as Toxoplasma gondii. It causes paralysis and death in dogs and neonatal mortality and abortion in cattle, sheep, goats and horses. The life-cycle of Neospora has not yet been elucidated. The only two stages identified so far are tissue cysts and intracellularly dividing tachyzoites. Very little is known about the biology of this species. We have set up a fluorescence-based adhesion/invasion assay in order to investigate the interaction of N. caninum tachyzoites with bovine aorta endothelial (BAE) cells in vitro. Treatment of both host cells and parasites with metabolic inhibitors determined the metabolic requirements for adhesion and invasion. Chemical and enzymatic modifications of parasite and endothelial cell surfaces were used in order to obtain information on the nature of cell surface components responsible for the interaction between parasite and host. Electron microscopical investigations defined the ultrastructural characteristics of the adhesion and invasion process, and provided information on the intracellular development of the parasites. PMID:8851858

  2. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  3. Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior.

    PubMed

    Tsuneki, Masayuki; Madri, Joseph A

    2014-12-01

    Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors. PMID:25266662

  4. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  5. Cell adhesion. Competition between nonspecific repulsion and specific bonding.

    PubMed Central

    Bell, G I; Dembo, M; Bongrand, P

    1984-01-01

    We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples. PMID:6743742

  6. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  7. Adhesion of pancreatic beta cells to biopolymer films.

    PubMed

    Williams, S Janette; Wang, Qun; Macgregor, Ronal R; Siahaan, Teruna J; Stehno-Bittel, Lisa; Berkland, Cory

    2009-08-01

    Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 mum) as compared with large islets (>125 mum), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 676-685, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19353639

  8. PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion.

    PubMed

    Alcheikh, A; Pavon-Djavid, G; Helary, G; Petite, H; Migonney, V; Anagnostou, F

    2013-07-01

    Titanium surface modifications to simultaneously prevent bacterial adhesion but promote bone-cell functions could be highly beneficial for improving implant osseointegration. In the present in vitro study, the effect of sulfonate groups on titanium surfaces was investigated with respect to both S. aureus adhesion and osteoblast functions pertinent to new bone formation. Commercial pure titanium (cpTi) squares were oxydized (Tiox), grafted with poly(sodium styrene sulfonate) groups (Tigraft) by covalent bonding using radical polymerization, and were characterized by infrared spectroscopy (HATR-FTIR) and colorimetry. Bacterial adhesion study showed that Tigraft exhibited high inhibition of S. aureus adhesion S at levels >90 %, when compared to cpTi (P < 0.05). In contrast osteoblasts adhesion was similar on all three titanium surfaces. While the kinetics of cell proliferation were similar on the three titanium surfaces, Alkaline phosphatase-specific activity of osteoblasts cultured on Tigraft surfaces was twofold higher than that observed on either on Tiox or cpTi surfaces (P < 0.01). More importantly, the amount and the distribution of calcium-containing nodules was different. The total area covered by calcium-containing nodules was 2.2-fold higher on the Tigraft as compared to either Tiox or cpTi surfaces (P < 0.01). These results provide evidence that poly(sodium styrene sulfonate) groups grafting on cpTi simultaneously inhibits bacteria adhesion but promote osteoblast function pertinent to new bone formation. Such modified titanium surfaces offer a promising strategy for preventing biofilm-related infections and enhancing osteointegration of implants in orthopaedic and dental applications. PMID:23625318

  9. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  10. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation

    PubMed Central

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

  11. Neuronal cell biocompatibility and adhesion to modified CMOS electrodes.

    PubMed

    Graham, Anthony H D; Bowen, Chris R; Taylor, John; Robbins, Jon

    2009-10-01

    The use of CMOS (Complementary Metal Oxide Semiconductor) integrated circuits to create electrodes for biosensors, implants and drug-discovery has several potential advantages over passive multi-electrode arrays (MEAs). However, unmodified aluminium CMOS electrodes may corrode in a physiological environment. We have investigated a low-cost electrode design based on the modification of CMOS metallisation to produce a nanoporous alumina electrode as an interface to mammalian neuronal cells and corrosion inhibitor. Using NG108-15 mouse neuroblastoma x rat glioma hybrid cells, results show that porous alumina is biocompatible and that the inter-pore distance (pore pitch) of the alumina has no effect on cell vitality. To establish whether porous alumina and a cell membrane can produce a tight junction required for good electrical coupling between electrode and cell, we devised a novel cell detachment centrifugation assay to assess the long-term adhesion of cells. Results show that porous alumina substrates produced with a large pore pitch of 206 nm present a significantly improved surface compared to the unmodified aluminium control and that small pore-pitches of 17 nm and 69 nm present a less favourable surface for cell adhesion. PMID:19459049

  12. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  13. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  14. A practical guide to quantify cell adhesion using single-cell force spectroscopy.

    PubMed

    Friedrichs, Jens; Legate, Kyle R; Schubert, Rajib; Bharadwaj, Mitasha; Werner, Carsten; Müller, Daniel J; Benoit, Martin

    2013-04-01

    Quantitative analysis of cellular interactions with the extracellular environment is necessary to gain an understanding of how cells regulate adhesion in the development and maintenance of multicellular organisms, and how changes in cell adhesion contribute to diseases. We provide a practical guide to quantify the adhesive strength of living animal cells to various substrates using atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS). We describe how to control cell state and attachment to the AFM cantilever, how to functionalize supports for SCFS measurements, how to conduct cell adhesion measurements, and how to analyze and interpret the recorded SCFS data. This guide is intended to assist newcomers in the field to perform AFM-based SCFS measurements. PMID:23396062

  15. Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness

    PubMed Central

    Meller, Julia; Rogozin, Igor B.; Poliakov, Eugenia; Meller, Nahum; Bedanov-Pack, Mark; Plow, Edward F.; Qin, Jun; Podrez, Eugene A.; Byzova, Tatiana V.

    2015-01-01

    Kindlins are integrin-interacting proteins essential for integrin-mediated cell adhesiveness. In this study, we focused on the evolutionary origin and functional specialization of kindlins as a part of the evolutionary adaptation of cell adhesive machinery. Database searches revealed that many members of the integrin machinery (including talin and integrins) existed before kindlin emergence in evolution. Among the analyzed species, all metazoan lineages—but none of the premetazoans—had at least one kindlin-encoding gene, whereas talin was present in several premetazoan lineages. Kindlin appears to originate from a duplication of the sequence encoding the N-terminal fragment of talin (the talin head domain) with a subsequent insertion of the PH domain of separate origin. Sequence analysis identified a member of the actin filament–associated protein 1 (AFAP1) superfamily as the most likely origin of the kindlin PH domain. The functional divergence between kindlin paralogues was assessed using the sequence swap (chimera) approach. Comparison of kindlin 2 (K2)/kindlin 3 (K3) chimeras revealed that the F2 subdomain, in particular its C-terminal part, is crucial for the differential functional properties of K2 and K3. The presence of this segment enables K2 but not K3 to localize to focal adhesions. Sequence analysis of the C-terminal part of the F2 subdomain of K3 suggests that insertion of a variable glycine-rich sequence in vertebrates contributed to the loss of constitutive K3 targeting to focal adhesions. Thus emergence and subsequent functional specialization of kindlins allowed multicellular organisms to develop additional tissue-specific adaptations of cell adhesiveness. PMID:25540429

  16. Reversing adhesion with light: a general method for functionalized bead release from cells.

    PubMed

    Goulet-Hanssens, Alexis; Magdesian, Margaret H; Lopez-Ayon, G Monserratt; Grutter, Peter; Barrett, Christopher J

    2016-07-19

    Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells. Herein we demonstrate in vitro release of a poly-d-lysine (PDL) layer from anionic polystyrene beads, allowing complete bead release from rat cortical neurons post-adhesion. PMID:27165466

  17. Thermoresponsive copolymer nanofilms for controlling cell adhesion, growth, and detachment.

    PubMed

    Yang, Lei; Pan, Fang; Zhao, Xiubo; Yaseen, Mohammed; Padia, Faheem; Coffey, Paul; Freund, Amy; Yang, Luyuan; Liu, Tianqing; Ma, Xuehu; Lu, Jian R

    2010-11-16

    This study reports the development and use of a novel thermoresponsive polymeric nanofilm for controlling cell adhesion and growth at 37 °C, and then cell detachment for cell recovery by subsequent temperature drop to the ambient temperature, without enzymatic cleavage or mechanical scraping. A copolymer, poly(N-isopropylacrylamide-co-hydroxypropyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (abbreviated PNIPAAm copolymer), was synthesized by free radical polymerization. The thermoresponses of the copolymer in aqueous solution were demonstrated by dynamic light scattering (DLS) through detecting the sensitive changes of copolymer aggregation against temperature. The DLS measurements revealed the lower critical solution temperature (LCST) at approximately 30 °C. The PNIPAAm film stability and robustness was provided through silyl cross-linking within the film and with the hydroxyl groups on the substrate surface. Film thickness, stability, and reversibility with respect to temperature switches were examined by spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle measurements. The results confirmed the high extent of thermosensitivity and structural restoration based on the alterations of film thickness and surface wettability. The effective control of adhesion, growth, and detachment of HeLa and HEK293 cells demonstrated the physical controllability and cellular compatibility of the copolymer nanofilms. These PNIPAAm copolymer nanofilms could open up a convenient interfacial mediation for cell film production and cell expansion by nonenzymatic and nonmechanical cell recovery. PMID:20964301

  18. M protein mediates streptococcal adhesion to HEp-2 cells.

    PubMed

    Wang, J R; Stinson, M W

    1994-02-01

    Streptococcus pyogenes adheres to human epithelial cells in vitro and in vivo. To identify adhesins, cell wall components were extracted from S. pyogenes M6 with alkali or by treatment with mutanolysin and lysozyme. HEp-2 cells were incubated with extracts of S. pyogenes M6 and then analyzed by Western blot (immunoblot) assays, using antibodies to S. pyogenes. Only one streptococcal component (62 kDa) was bound to HEp-2 cells and was identified serologically as M6 protein. Experiments with pepsin-cleaved fragments of M protein indicated that the binding site was located at the N-terminal half of the molecule. M protein was bound selectively to two trypsin-sensitive surface components, 97 and 205 kDa, of HEp-2 cells on nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels. Tritium-labeled lipoteichoic acid bound to different HEp-2 cell components, 34 and 35 kDa, in a parallel experiment, indicating that lipoteichoic acid was not complexed with M protein and does not mediate M-protein binding. The four HEp-2 components were unrelated to fibronectin since they did not react with specific antibodies. An M-protein-deficient (M-) strain of streptococcus (JRS75), grown in chemically defined medium, showed 73% less adhesion activity to HEp-2 monolayers than an M+ strain (JRS4). Streptococcal adhesion was insensitive to competitive inhibition by selected monosaccharides. These results indicate that M protein binds directly to certain HEp-2 cell membrane components and mediates streptococcal adhesion. PMID:8300205

  19. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    PubMed

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. PMID:27016619

  20. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies. PMID:27280255

  1. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  2. Involvement of the Tyrosine Kinase Fer in Cell Adhesion

    PubMed Central

    Rosato, Roberto; Veltmaat, Jacqueline M.; Groffen, John; Heisterkamp, Nora

    1998-01-01

    The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cells from the substratum, which eventually led to cell death. Induction of Fer expression coincided with increased complex formation between Fer and the cadherin/src-associated substrate p120cas and elevated tyrosine phosphorylation of p120cas. β-Catenin also exhibited clearly increased phosphotyrosine levels, and Fer and β-catenin were found to be in complex. Significantly, although the levels of α-catenin, β-catenin, and E-cadherin were unaffected by Fer overexpression, decreased amounts of α-catenin and β-catenin were coimmunoprecipitated with E-cadherin, demonstrating a dissolution of adherens junction complexes. A concomitant decrease in levels of phosphotyrosine in the focal adhesion-associated protein p130 was also observed. Together, these results provide a mechanism for explaining the phenotype of cells overexpressing Fer and indicate that the Fer tyrosine kinase has a function in the regulation of cell-cell adhesion. PMID:9742093

  3. Ion implantation induced nanotopography on titanium and bone cell adhesion

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; de Maeztu, Miguel Ángel

    2014-08-01

    Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40-80 keV), fluence (1-2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted surfaces, without surface chemistry modification, are in the same range and that such modifications, in certain conditions, do have a statistically significant effect on bone tissue forming cell adhesion.

  4. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    PubMed Central

    Lee, Jong Ho; Kang, Seok Hee; Hwang, Eun Young; Hwang, Yu-Shik; Lee, Mi Hee; Park, Jong-Chul

    2014-01-01

    Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs), that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay), intracellular oxidative stress (with ROS assay), and membrane integrity (with LDH assay). Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine. PMID:24592382

  5. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  6. L1 cell adhesion molecule as a therapeutic target in cancer.

    PubMed

    Yu, Xinzhe; Yang, Feng; Fu, De-Liang; Jin, Chen

    2016-03-01

    L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy. PMID:26781307

  7. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    PubMed

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  8. Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating

    SciTech Connect

    Kornu, R.; Kelly, M.A.; Smith, R.L.; Maloney, W.J.

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. 40 refs., 4 figs.

  9. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    PubMed Central

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S. K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact. PMID:25165597

  10. Cell Adhesion and Long-Term Survival of Transplanted Mesenchymal Stem Cells: A Prerequisite for Cell Therapy

    PubMed Central

    Lee, Seahyoung; Choi, Eunhyun; Cha, Min-Ji; Hwang, Ki-Chul

    2015-01-01

    The literature provides abundant evidence that mesenchymal stem cells (MSCs) are an attractive resource for therapeutics and have beneficial effects in regenerating injured tissues due to their self-renewal ability and broad differentiation potential. Although the therapeutic potential of MSCs has been proven in both preclinical and clinical studies, several questions have not yet been addressed. A major limitation to the use of MSCs in clinical applications is their poor viability at the site of injury due to the harsh microenvironment and to anoikis driven by the loss of cell adhesion. To improve the survival of the transplanted MSCs, strategies to regulate apoptotic signaling and enhance cell adhesion have been developed, such as pretreatment with cytokines, growth factors, and antiapoptotic molecules, genetic modifications, and hypoxic preconditioning. More appropriate animal models and a greater understanding of the therapeutic mechanisms of MSCs will be required for their successful clinical application. Nevertheless, the development of stem cell therapies using MSCs has the potential to treat degenerative diseases. This review discusses various approaches to improving MSC survival by inhibiting anoikis. PMID:25722795

  11. Dasatinib affects focal adhesion and myosin regulation to inhibit matrix contraction by Müller cells.

    PubMed

    Tsukahara, Rintaro; Umazume, Kazuhiko; Yamakawa, Naoyuki; McDonald, Kevin; Kaplan, Henry J; Tamiya, Shigeo

    2015-10-01

    Epiretinal membrane (ERM) contraction is associated with a variety of ocular diseases that cause macular dysfunction. Trans-differentiated Müller cells have been identified in ERMs, and have been implicated to be involved in the contractile process. In this study, we tested the effect of dasatinib, an FDA-approved tyrosine kinase inhibitor, on matrix contraction caused by Müller cells, and examined molecular mechanism of action. Type I collagen matrix contraction assays were used to examine the effect of drugs on matrix contraction by trans-differentiated Müller cells. Fluophore-conjugated phalloidin was used for the detection of actin cytoskeleton, and Western-blot analyses were carried out to examine protein expression and phosphorylation status. Dasatinib inhibited collagen matrix contraction by trans-differentiated Müller cells that was associated with decreased cell spreading and reduction of actomyosin stress fibers. Concomitantly, dasatinib-treated Müller cells had reduced phosphorylation of Src family kinase, paxillin, as well as myosin II light chain. Specific inhibitors of Rho/ROCK and myosin II confirmed the critical role played by this pathway in Müller cell contraction. Our data demonstrate that dasatinib significantly reduced matrix contraction by Müller cells via inhibition of focal adhesion, as well as actomyosin contraction. PMID:26240967

  12. Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment.

    PubMed

    De Grandis, Maria; Lhoumeau, Anne-Catherine; Mancini, Stéphane J C; Aurrand-Lions, Michel

    2016-02-01

    Hematopoiesis takes place in the bone marrow of adult mammals and is the process by which blood cells are replenished every day throughout life. Differentiation of hematopoietic cells occurs in a stepwise manner through intermediates of differentiation that could be phenotypically identified. This has allowed establishing hematopoietic cell classification with hematopoietic stem cells (HSCs) at the top of the hierarchy. HSCs are mostly quiescent and serve as a reservoir for maintenance of lifelong hematopoiesis. Over recent years, it has become increasingly clear that HSC quiescence is not only due to intrinsic properties, but is also mediated by cognate interactions between HSCs and surrounding cells within micro-anatomical sites called “niches”. This hematopoietic/stromal crosstalk model also applies to more mature progenitors such as B cell progenitors, which are thought to reside in distinct “niches”. This prompted many research teams to search for specific molecular mechanisms supporting leuko-stromal crosstalk in the bone marrow and acting at specific stage of differentiation to regulate hematopoietic homeostasis. Here, we review recent data on adhesion mechanisms involved in HSCs and B cell progenitors interactions with surrounding bone marrow stromal cells. PMID:26495446

  13. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  14. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials.

    PubMed

    Lee, Ted T; García, José R; Paez, Julieta I; Singh, Ankur; Phelps, Edward A; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials. PMID:25502097

  15. Light-triggered in vivo Activation of Adhesive Peptides Regulates Cell Adhesion, Inflammation and Vascularization of Biomaterials

    PubMed Central

    Lee, Ted T.; García, José R.; Paez, Julieta; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; del Campo, Aránzazu; García, Andrés J.

    2014-01-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have been recently realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials. PMID:25502097

  16. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions.

    PubMed

    Takino, Takahisa; Saeki, Hiromi; Miyamori, Hisashi; Kudo, Tomoya; Sato, Hiroshi

    2007-12-15

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells. PMID:18089791

  17. Simulation of proliferation and differentiation of cells in a stem-cell niche

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2008-10-01

    Stem-cell niches represent microscopic compartments formed of environmental cells that nurture stem cells and enable them to maintain tissue homeostasis. The spatio-temporal kinetics of proliferation and differentiation of cells in such niches depend on the specifics of the niche structure and on adhesion and communication between cells and may also be influenced by spatial constraints on cell division. We propose a generic lattice model, taking all these factors into account, and systematically illustrate their role. The model is motivated by the experimental data available for the niches located in the subventricular zone of adult mammalian brain. The general conclusions drawn from our Monte Carlo simulations are applicable to other niches as well. One of our main findings is that the kinetics under consideration are highly stochastic due to a relatively small number of cells proliferating and differentiating in a niche and the autocatalytic character of the symmetric cell division. In particular, the kinetics exhibit huge stochastic bursts especially if the adhesion between cells is taken into account. In addition, the results obtained show that despite the small number of cells present in stem-cell niches, their arrangement can be predetermined to appreciable extent provided that the adhesion of different cells is different so that they tend to segregate.

  18. CADM1 Controls Actin Cytoskeleton Assembly and Regulates Extracellular Matrix Adhesion in Human Mast Cells

    PubMed Central

    Moiseeva, Elena P.; Straatman, Kees R.; Leyland, Mark L.; Bradding, Peter

    2014-01-01

    CADM1 is a major receptor for the adhesion of mast cells (MCs) to fibroblasts, human airway smooth muscle cells (HASMCs) and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM). Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion. PMID:24465823

  19. Surface deformation and shear flow in ligand mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*<0.5) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favored in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical value). Continuation of the limit points (i.e., the turning points where the slope of the function g* changes sign within a select range of critical shear SS is supported by the Adelaide University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  20. Adhesive hierarchy involving the cell adhesion molecules L1, CD24, and alpha 6 integrin in murine neuroblastoma N2A cells.

    PubMed

    Kadmon, G; Imhof, B A; Altevogt, P; Schachner, M

    1995-09-01

    The aggregation rate of resuspended neuroblastoma N2A cells depends on the density of the cells in culture prior to their resuspension: isolated, fast growing cells have a weak tendency to aggregate whereas confluent, slowly growing cells reaggregate very strongly. L1 antibody 557 strongly inhibited the slow aggregation of isolated, fast growing cells but not the reaggregation of confluent cells. CD24 (nectadrin) antibodies did not affect the aggregation of isolated or confluent cells but stimulated the aggregation of subconfluent cells. In all stages aggregation was not inhibited when antibody 557 was used together with CD24 antibodies at 37 degrees C in the presence of divalent cations. EA-1 antibody to alpha 6 integrin chain stimulated the aggregation of subconfluent cells but inhibited the reaggregation of confluent cells. Therefore, L1 appears to be an early recognition molecule mediating weak primary adhesion. CD24 appears to participate in activating secondary adhesion mechanisms during primary adhesion, possibly in cooperation with L1, and alpha 6 integrin seems to serve as a secondary, strong adhesion molecule that in early adhesion phases also mediates the activation of itself or of other adhesion mechanisms. These results indicate that neural cells might employ a strategy of adhesion cascade in establishing stable contacts. PMID:7669058

  1. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  2. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    PubMed

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, José Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  3. Expression of the cluster 1 antigen (neural cell adhesion molecule) in neuroectodermal tumours.

    PubMed Central

    Patel, K.; Frost, G.; Kiely, F.; Phimister, E.; Coakham, H. B.; Kemshead, J. T.

    1991-01-01

    In this study, we have investigated the expression of the neural cell adhesion molecule (NCAM) in the human brain, primary brain tumours and neuroblastoma. Adult brain was found to express discrete isoforms of 180, 170, 140 and 120 kDa, which on neuraminidase treatment resolved into bands of 180, 170, 140, 120 and 95 kDa. Primary brain tumours such as Schwannoma and medulloblastoma expressed embryonic NCAM characterised by a high level of glycosylation, whereas other tumours, e.g. astrocytoma, meningioma, glioma and oligodendroglioma expressed adult NCAM. Post-neuraminidase treatment, differential expression of the 180, 170, 140, 120 and 95 kDa isoforms were noted in these various tumour types. On the other hand, neuroblastoma cell lines were found to express only embryonic NCAM, which after neuraminidase treatment resulted in differential presence of only 180, 140 and 120 kDa proteins. Images Figure 1 Figure 2 PMID:2039710

  4. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  5. Cell adhesion molecule control of planar spindle orientation.

    PubMed

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  6. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker

    SciTech Connect

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Highlights: {yields} A nano-picker is developed for single cell adhesion force measurement. {yields} The adhesion of picker-cell has no influence to the cell-cell measurement result. {yields} Cell-cell adhesion force has a rise at the first few minutes and then becomes constant. -- Abstract: Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  7. Disruption of the novel gene fad104 causes rapid postnatal death and attenuation of cell proliferation, adhesion, spreading and migration

    SciTech Connect

    Nishizuka, Makoto; Kishimoto, Keishi; Kato, Ayumi; Ikawa, Masahito; Okabe, Masaru; Sato, Ryuichiro; Niida, Hiroyuki; Nakanishi, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-03-10

    The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration.

  8. Cell adhesion on a polymerized peptide-amphiphile monolayer.

    PubMed

    Biesalski, Markus A; Knaebel, Alexandra; Tu, Raymond; Tirrell, Matthew

    2006-03-01

    We report the synthesis and characterization of a stable polymerized monolayer of peptide-amphihiles on a planar solid support that promotes mouse fibroblast cell adhesion and spreading. Peptide-amphiphiles consisting of a polymerizable fatty acid attached to a short RGD containing peptide sequence are self-assembled and polymerized at the water-air interface by means of the Langmuir- Blodgett technique. The surface concentration of the peptide-amphiphile is varied by co-spreading the peptide-amphiphile with an analogous non-modified polymerizable amphiphile at the water/air interface, prior to UV light-induced polymerization. The polymerized monolayer is transferred onto a hydrophobized smooth mica surface and the resulting surfaces have been investigated with respect to directing the cell adhesion and spreading of mouse fibroblast cells in a serum-free medium. Fibroblast cells adhere and spread on surfaces exposing the bioactive ligand but do not spread on reference surfaces without peptide. We find a maximum number of adherent cells at rather high peptide surface concentrations of about 10 mol% in the mixed monolayer, equivalent to more than 50 pmol/cm2 peptide on the surface of the film. We attribute this finding to a limited accessibility of the ligands by the integrins. Because of the stability of the polymerized peptide-amphiphile monolayer, these surfaces can be re-seeded multiple times with cells, i.e. adherent cells can be removed from the surface, the surface can be sterilized and cells can be re-attached. PMID:16157369

  9. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation

    PubMed Central

    Jung, Younghun; Wang, Jingcheng; Song, Junhui; Shiozawa, Yusuke; Wang, Jianhua; Havens, Aaron; Wang, Zhuo; Sun, Yan-Xi; Emerson, Stephen G.; Krebsbach, Paul H.

    2007-01-01

    Differentiation of hematopoietic stem cells (HSCs) after birth is largely restricted to the bone marrow cavity, where HSCs are associated closely with osteoblasts (OBs). How OBs localize HSCs to the endosteal niche remains unclear. To explore adhesive interactions between HSCs and OBs, a cell blot analysis was used that revealed 2 major bands that corresponded to monomers and multimers of annexin II (Anxa2). Immunohistochemistry revealed that OBs and marrow endothelial cells express Anxa2 at high levels. Function-blocking studies confirmed that Anxa2 mediates HSC adhesion mainly via the N-terminal portion of the Anxa2 peptide. Adhesion of HSCs to OBs derived from Anxa2-deficient animals (Anxa2−/−) was significantly impaired compared with OBs obtained from wild-type animals (Anxa2+/+). Moreover, fewer HSCs were found in the marrow of Anxa2−/− versus Anxa2+/+ animals. Short-term lodging, engraftment, and survival of irradiated mice with whole marrow cells were substantially inhibited by N-terminal peptide fragments of Anxa2 or anti-Anxa2 antibodies. Similar findings were noted in long-term competitive repopulation studies. Collectively, these findings reveal that Anxa2 regulates HSC homing and binding to the bone marrow microenvironment and suggest that Anxa2 is crucial for determining the bone marrow niche of HSCs. PMID:17360942

  10. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    NASA Astrophysics Data System (ADS)

    Pan, Hsu-An; Hung, Yao-Ching; Su, Chia-Wei; Tai, Shih-Ming; Chen, Chiun-Hsun; Ko, Fu-Hsiang; Steve Huang, G.

    2009-08-01

    Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN) or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  11. Serine protease inhibitor kunitz-type 2 is downregulated in myelodysplastic syndromes and modulates cell-cell adhesion.

    PubMed

    Roversi, Fernanda Marconi; Lopes, Matheus Rodrigues; Machado-Neto, João Agostinho; Longhini, Ana Leda F; Duarte, Adriana da Silva Santos; Baratti, Mariana Ozello; Palodetto, Bruna; Corrocher, Flávia Adolfo; Pericole, Fernando Vieira; Campos, Paula de Melo; Favaro, Patricia; Traina, Fabiola; Saad, Sara Teresinha Olalla

    2014-05-15

    Myelodysplastic syndromes (MDS) are clonal disorders involving hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis. In addition to HSC defects, a defective hematopoiesis supporting capacity of mesenchymal stromal cells (MSCs) in the microenvironment niche has been implicated in MDS pathophysiology. The interaction between the dysfunctional MSCs MDS and HSC regulates diverse adhesion-related processes, such as progenitor cell survival, proliferation, differentiation, and self-renewal. As previously reported, a microarray analysis identified serine protease inhibitor kunitz-type 2 (SPINT2), an inhibitor of hepatocyte growth factor (HGF) activation, to be downregulated in MSCs from MDS patients. To define the role of SPINT2 in MDS hematopoietic microenvironment, an analysis of the effect of SPINT2 silencing in MSCs was carried out. We herein reported significantly lower levels of SPINT2 whereas HGF was expressed at higher levels in MSCs from MDS patients compared with healthy controls. SPINT2 underexpression results in an increased expression, production, and secretion of HGF and stromal cell-derived factor 1 (SDF-1) by MSCs. An increased adhesion of normal HSC or malignant cells onto MSCs silenced for SPINT2 was also observed. The altered MSCs adhesion in SPINT2-knockdown cells was correlated with increased CD49b and CD49d expression and with a decrease in CD49e expression. Our results suggest that the SPINT2 underexpression in the MSC from MDS patients is probably involved in the adhesion of progenitors to the bone marrow niche, through an increased HGF and SDF-1 signaling pathway. PMID:24410667

  12. Integrin adhesion drives the emergent polarization of active cytoskeletal stresses to pattern cell delamination

    PubMed Central

    Meghana, C.; Ramdas, Nisha; Hameed, Feroz Meeran; Rao, Madan; Shivashankar, G. V.; Narasimha, Maithreyi

    2011-01-01

    Tissue patterning relies on cellular reorganization through the interplay between signaling pathways and mechanical stresses. Their integration and spatiotemporal coordination remain poorly understood. Here we investigate the mechanisms driving the dynamics of cell delamination, diversely deployed to extrude dead cells or specify distinct cell fates. We show that a local mechanical stimulus (subcellular laser perturbation) releases cellular prestress and triggers cell delamination in the amnioserosa during Drosophila dorsal closure, which, like spontaneous delamination, results in the rearrangement of nearest neighbors around the delaminating cell into a rosette. We demonstrate that a sequence of “emergent cytoskeletal polarities” in the nearest neighbors (directed myosin flows, lamellipodial growth, polarized actomyosin collars, microtubule asters), triggered by the mechanical stimulus and dependent on integrin adhesion, generate active stresses that drive delamination. We interpret these patterns in the language of active gels as asters formed by active force dipoles involving surface and body stresses generated by each cell and liken delamination to mechanical yielding that ensues when these stresses exceed a threshold. We suggest that differential contributions of adhesion, cytoskeletal, and external stresses must underlie differences in spatial pattern. PMID:21571643

  13. Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis.

    PubMed

    Kundu, Samrat T; Gosavi, Prajakta; Khapare, Nileema; Patel, Rachana; Hosing, Amol S; Maru, Girish B; Ingle, Arvind; Decaprio, James A; Dalal, Sorab N

    2008-11-15

    Plakophilin3 is a desmosomal plaque protein whose levels are reduced in poorly differentiated tumors of the oropharyngeal cavity and in invasive colon carcinomas. To test the hypothesis that plakophilin3 loss stimulates neoplastic progression, plakophilin3 expression was inhibited by DNA vector driven RNA interference in 3 epithelial cell lines, HCT116, HaCaT and fetal buccal mucosa. The plakophilin3-knockdown clones showed a decrease in cell-cell adhesion as assessed in a hanging drop assay, which was accompanied by an increase in cell migration. The HCT116 plakophilin3-knockdown clones showed a decrease in desmosome size as revealed by electron microscopy. These altered desmosomal properties were accompanied by colony formation in soft agar and growth to high density in culture. The HCT116-derived clones showed accelerated tumor formation in nude mice and increased metastasis to the lung, a phenotype consistent with the increased migration observed in vitro and is consistent with data from human tumors that suggests that plakophililn3 is lost in invasive and metastatic tumors. These data indicate that plakophilin3 loss leads to a decrease in cell-cell adhesion leading to the stimulation of neoplastic progression and metastasis. PMID:18729189

  14. The Effect of Novel Fluorapatite Surfaces on Osteoblast-Like Cell Adhesion, Growth, and Mineralization

    PubMed Central

    Liu, Jun; Jin, Taocong; Chang, Syweren; Czajka-Jakubowska, Agata; Zhang, Zhaocheng; Nör, Jacques E.

    2010-01-01

    There is increasing demand for biomedical implants to correct skeletal defects caused by trauma, disease, or genetic disorder. In this study, the MG-63 cells were grown on metals coated with ordered and disordered fluorapatite (FA) crystal surfaces to study the biocompatibility, initial cellular response, and the underlying mechanisms during this process. The long-term growth and mineralization of the cells were also investigated. After 3 days, the cell numbers on etched metal surface are significantly higher than those on the ordered and disordered FA surfaces, but the initial adherence of a greater number of cells did not lead to earlier mineral formation at the cell–implant interface. Of the 84 cell adhesion and matrix-focused pathway genes, an up- or down-regulation of a total of 15 genes such as integrin molecules, integrin alpha M and integrin alpha 7 and 8 was noted, suggesting a modulating effect on these adhesion molecules by the ordered FA surface compared with the disordered. Osteocalcin expression and the mineral nodule formation are most evident on the FA surfaces after osteogenic induction (OI) for 7 weeks. The binding of the ordered FA surfaces to the metal, with and without OI, was significantly higher than that of the disordered FA surfaces with OI. Most significantly, even without the OI supplement, the MG-63 cells grown on FA crystal surfaces start to differentiate and mineralize, suggesting that the FA crystal could be a simple and bioactive implant coating material. PMID:20412028

  15. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes.

    PubMed

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R

    2015-09-01

    Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons. PMID:25988664

  16. A non-local evolution equation model of cell–cell adhesion in higher dimensional space

    PubMed Central

    Dyson, Janet; Gourley, Stephen A.; Webb, Glenn F.

    2013-01-01

    A model for cell–cell adhesion, based on an equation originally proposed by Armstrong et al. [A continuum approach to modelling cell–cell adhesion, J. Theor. Biol. 243 (2006), pp. 98–113], is considered. The model consists of a nonlinear partial differential equation for the cell density in an N-dimensional infinite domain. It has a non-local flux term which models the component of cell motion attributable to cells having formed bonds with other nearby cells. Using the theory of fractional powers of analytic semigroup generators and working in spaces with bounded uniformly continuous derivatives, the local existence of classical solutions is proved. Positivity and boundedness of solutions is then established, leading to global existence of solutions. Finally, the asymptotic behaviour of solutions about the spatially uniform state is considered. The model is illustrated by simulations that can be applied to in vitro wound closure experiments. AMS Classifications: 35A01; 35B09; 35B40; 35K57; 92C17 PMID:23289870

  17. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  18. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging.

    PubMed

    Zhu, Yi; Qiu, Hongyu; Trzeciakowski, Jerome P; Sun, Zhe; Li, Zhaohui; Hong, Zhongkui; Hill, Michael A; Hunter, William C; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2012-10-01

    A spectral analysis approach was developed for detailed study of time-resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young's modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti-beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10(-3) to 1.9 × 10(-2) Hz in old and 8.4 × 10(-4) to 1.5 × 10(-2) Hz in young) and showed that the amplitude of oscillation was larger (P < 0.05) in old than in young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin-myosin-driven processes. In conclusion, these data demonstrate the efficacy of time-resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real-time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness. PMID:22639979

  19. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties. PMID:27612825

  20. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Zhao, Ningbo; Wang, Xin; Qin, Lei; Guo, Zhengze; Li, Dehua

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. PMID:26284973

  1. TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain*S

    PubMed Central

    Su, Li-Ting; Agapito, Maria A.; Li, Mingjiang; Simonson, William T. N.; Huttenlocher, Anna; Habas, Raymond; Yue, Lixia; Runnels, Loren W.

    2011-01-01

    m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes. PMID:16436382

  2. Functional nanoparticles translocation into cell and adhesion force curve analysis.

    PubMed

    Lee, Haisung; Veerapandian, Murugan; Kim, Byung Tae; Yun, Kyusik; Seo, Soo-Won

    2012-10-01

    The aim of this research is to investigate the cell translocation of two functional nanoparticles (barium sulfate (BaSO4NPs), europium (III) doped gadolinium oxide nanoparticles (Gd2O3@EuNPs)) into A549 cells by Bio-Atomic Force Microscopy (Bio-AFM). Successful cell translocation of these two nanoparticles are ensured from the measurement of changes in the cell surface roughness and interaction (extension), retraction forces from the vertical deflection of tip towards substrate surfaces through force-distance curve slope analysis. Measurement of typical adhesion forces (i.e., extension and retraction) between the tip-substrate (0.0963 and 1.155 nN), tip-A549 cell substrate (0.1177 and 2.468 nN), tip-Gd2O3@EuNPs/A549 substrate (0.0785 and 0.4276 nN) and tip-BaSO4NPs/A549 substrate (0.518 and 6.838 nN) confirms the successful cell translocation of functional nanoparticles into A549 cells. Further the nanoscale resolution of topographical height and 3D images evinces the surface characteristics of normal A549 cells and nanoparticles translocated A549 cells. PMID:23421137

  3. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion.

    PubMed

    Coconnier, M H; Bernet, M F; Kernéis, S; Chauvière, G; Fourniat, J; Servin, A L

    1993-07-01

    Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors. PMID:8354463

  4. Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells.

    PubMed

    Yu, V; Damek-Poprawa, M; Nicoll, S B; Akintoye, S O

    2009-09-01

    The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress. PMID:19555657

  5. Dynamic Hydrostatic Pressure Promotes Differentiation of Human Dental Pulp Stem Cells

    PubMed Central

    Yu, V; Damek-Poprawa, M.; Nicoll, S. B.; Akintoye, S.O.

    2009-01-01

    The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress. PMID:19555657

  6. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    PubMed Central

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidates that is involved in the development of pathological lesions; it is an intercellular adhesion molecule that is expressed in various types of cells such as pulmonary cells, neurons, and mast cells. Recent studies have revealed that alterations in the transcriptional or post-transcriptional expressions of CADM1 correlate with the pathogenesis of pulmonary diseases and allergic diseases. In this review, we specifically focus on how CADM1 is involved in the development of pathological lesions in pulmonary emphysema and atopic dermatitis. PMID:26636084

  7. Adhesive bond cryogenic lens cell margin of safety test

    NASA Astrophysics Data System (ADS)

    Stubbs, David M.; Hom, Craig L.; Holmes, Howard C.; Cannon-Morret, Joseph C.; Lindstrom, Obert F.; Irwin, J. Wes; Ryder, Leigh A.; Hix, Troy T.; Bonvallet, Jane A.; Hu, Hsin-Kuei S.; Chapman, Ira V.; Lomax, Curtis; Kvamme, E. Todd; Feller, Gregory S.; Haynes, Mark M.

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which employs four triplet lens cells. The instrument will operate at 35K after experiencing launch loads at approximately 295K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain an exceptional wavefront during operation. Lockheed Martin Space Systems Company (LMSSC) was tasked to design and qualify the bonded cryogenic lens assemblies for room temperature launch, cryogenic operation, and thermal survival (25K) environments. The triplet lens cell designs incorporated coefficient of thermal expansion (CTE) matched bond pad-to-optic interfaces, in concert with flexures to minimize bond line stress and induced optical distortion. A companion finite element study determined the bonded system's sensitivity to bond line thickness, adhesive modulus, and adhesive CTE. The design team used those results to tailor the bond line parameters, minimizing stress transmitted into the optic. The challenge for the Margin of Safety (MOS) team was to design and execute a test that verified all bond pad/adhesive/ optic substrate combinations had the required safety factor to generate confidence in a very low probability optic bond failure during the warm launch and cryogenic survival conditions. Because the survival temperature was specified to be 25K, merely dropping the test temperature to verify margin was not possible. A shear/moment loading device was conceived that simultaneously loaded the test coupons at 25K to verify margin. This paper covers the design/fab/SEM measurement/thermal conditioning of the MOS test articles, the thermal/structural analysis, the test apparatus, and the test execution/results.

  8. Serum protein layers on parylene-C and silicon oxide: Effect on cell adhesion

    PubMed Central

    Delivopoulos, Evangelos; Ouberai, Myriam M.; Coffey, Paul D.; Swann, Marcus J.; Shakesheff, Kevin M.; Welland, Mark E.

    2015-01-01

    Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning. PMID:25555155

  9. Non-viral gene delivery regulated by stiffness of cell adhesion substrates

    NASA Astrophysics Data System (ADS)

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J.

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  10. Reversible Holographic Patterns on Azopolymers for Guiding Cell Adhesion and Orientation.

    PubMed

    Rianna, Carmela; Calabuig, Alejandro; Ventre, Maurizio; Cavalli, Silvia; Pagliarulo, Vito; Grilli, Simonetta; Ferraro, Pietro; Netti, Paolo A

    2015-08-12

    Topography of material surfaces is known to influence cell behavior at different levels: from adhesion up to differentiation. Different micro- and nanopatterning techniques have been employed to create patterned surfaces to investigate various aspects of cell behavior, most notably cellular mechanotransduction. Nevertheless, conventional techniques, once implemented on a specific substrate, fail in allowing dynamic changes of the topographic features. Here we investigated the response of NIH-3T3 cells to reversible topographic signals encoded on light-responsive azopolymer films. Switchable patterns were fabricated by means of a well-established holographic setup. Surface relief gratings were realized with Lloyd's mirror system and erased with circularly polarized or incoherent light. Cell cytoskeleton organization and focal adhesion assembly proved to be very sensitive to the underlying topographic signal. Thereafter, pattern reversibility was tested in air and wet environment by using temperature or light as a trigger. Additionally, pattern modification was dynamically performed on substrates with living cells. This study paves the way toward an in situ and real-time investigation of the material-cytoskeleton crosstalk caused by the intrinsic properties of azopolymers. PMID:25876082

  11. A Discrete-Element Approach for Blood Cell Adhesion

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer; Marshall, Jeffrey

    2006-11-01

    An efficient computational model for simulation of the individual dynamics of adhering blood cells is discussed. Each cell is represented as a discrete particle so that the model can extend existing discrete-element approaches for dense particulate fluid flows to account for receptor-ligand binding of particles, elliptical particle shape, and deformation of the particles due to shear forces. Capabilities of the method in simulating large numbers of particles are illustrated through simulations of the formation of red blood cell rouleaux in shear flow. The effects of several factors, such as aspect ratio of the elliptical particle, shear rate, strength of the cell adhesion force, and hematocrit are investigated. Comparison of the discrete-element results with results of a level-set approach which computes the entire flow field about a small number of cells is used to develop an improved model of the effect of nearby red blood cells on the cell drag force expression. The method is also being applied to examine the influence of red blood cells on other components of the blood, such as platelet dispersion and activation in high shear regions.

  12. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins. PMID:27358127

  13. Application of Organosilane Monolayer Template to Quantitative Evaluation of Cancer Cell Adhesive Ability

    NASA Astrophysics Data System (ADS)

    Tanii, Takashi; Sasaki, Kosuke; Ichisawa, Kota; Demura, Takanori; Beppu, Yuichi; Vu, Hoan Anh; Thanh Chi, Hoan; Yamamoto, Hideaki; Sato, Yuko

    2011-06-01

    The adhesive ability of two human pancreatic cancer cell lines was evaluated using organosilane monolayer templates (OMTs). Using the OMT, the spreading area of adhered cells can be limited, and this enables us to focus on the initial attachment process of adhesion. Moreover, it becomes possible to arrange the cells in an array and to quantitatively evaluate the number of attached cells. The adhesive ability of the cancer cells cultured on the OMT was controlled by adding (-)-epigallocatechin-3-gallate (EGCG), which blocks a receptor that mediates cell adhesion and is overexpressed in cancer cells. Measurement of the relative ability of the cancer cells to attach to the OMT revealed that the ability for attachment decreased with increasing EGCG concentration. The results agreed well with the western blot analysis, indicating that the OMT can potentially be employed to evaluate the adhesive ability of various cancer cells.

  14. Minimal model for stem-cell differentiation

    NASA Astrophysics Data System (ADS)

    Goto, Yusuke; Kaneko, Kunihiko

    2013-09-01

    To explain the differentiation of stem cells in terms of dynamical systems theory, models of interacting cells with intracellular protein expression dynamics are analyzed and simulated. Simulations were carried out for all possible protein expression networks consisting of two genes under cell-cell interactions mediated by the diffusion of a protein. Networks that show cell differentiation are extracted and two forms of symmetric differentiation based on Turing's mechanism and asymmetric differentiation are identified. In the latter network, the intracellular protein levels show oscillatory dynamics at a single-cell level, while cell-to-cell synchronicity of the oscillation is lost with an increase in the number of cells. Differentiation to a fixed-point-type behavior follows with a further increase in the number of cells. The cell type with oscillatory dynamics corresponds to a stem cell that can both proliferate and differentiate, while the latter fixed-point type only proliferates. This differentiation is analyzed as a saddle-node bifurcation on an invariant circle, while the number ratio of each cell type is shown to be robust against perturbations due to self-consistent determination of the effective bifurcation parameter as a result of the cell-cell interaction. Complex cell differentiation is designed by combing these simple two-gene networks. The generality of the present differentiation mechanism, as well as its biological relevance, is discussed.

  15. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction.

    PubMed

    Sager, Hendrik B; Dutta, Partha; Dahlman, James E; Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F; Kauffman, Kevin J; Xing, Yiping; Shaw, Taylor E; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K; Anderson, Daniel G; Nahrendorf, Matthias

    2016-06-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  16. Focal Adhesion Kinase (FAK)-related Non-kinase Inhibits Myofibroblast Differentiation through Differential MAPK Activation in a FAK-dependent Manner*

    PubMed Central

    Ding, Qiang; Gladson, Candece L.; Wu, Hongju; Hayasaka, Haurko; Olman, Mitchell A.

    2008-01-01

    Transforming growth factor (TGF)-β1 induces fibroblast transdifferentiation to myofibroblasts, a process that requires the involvement of integrin-mediated signaling and focal adhesion kinase (FAK). FAK-related non-kinase (FRNK) is known for its role in inhibiting integrin-mediated cell migration; however, its role in myofibroblast differentiation has not been defined. Here, we report that FRNK abrogates TGF-β1-induced myofibroblast differentiation in vitro and in vivo. TGF-β1 can induce α-smooth muscle actin (α-SMA) expression in the presence or absence of FAK; however, TGF-β1-induced α-SMA expression is reduced (∼73%) in FAK-deficient fibroblasts. Although both ERK and p38 MAPK activation is required for maximal TGF-β1-induced α-SMA expression, ERK is the major signaling intermediate in cells that express FAK. In contrast, p38 MAPK is the dominant mediator of TGF-β1-induced α-SMA expression in FAK-deficient cells. FRNK overexpression blocks TGF-β1-induced ERK or p38 MAPK activation in the presence, and surprisingly, in the absence of FAK. The loss of FRNK was tested in vivo during experimentally induced pulmonary fibrosis in mice. FRNK knock-out mice have a greater increase in α-SMA-expressing cells in response to a pulmonary fibrotic stimulus in vivo, as compared with congenic wild type mice. This is the first time that FRNK loss has been shown to modify the pathobiology in any animal disease model. Together, the data demonstrate that FRNK negatively regulates myofibroblast differentiation in vitro and in vivo. These data further suggest that modulation FRNK expression may be a novel avenue for therapeutic intervention in tissue fibrosis. PMID:18669633

  17. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability.

    PubMed Central

    Hasan, N. M.; Adams, G. E.; Joiner, M. C.; Marshall, J. F.; Hart, I. R.

    1998-01-01

    The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29 cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth. PMID:9667649

  18. Cell adhesion in plants is under the control of putative O-fucosyltransferases.

    PubMed

    Verger, Stéphane; Chabout, Salem; Gineau, Emilie; Mouille, Grégory

    2016-07-15

    Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development. PMID:27317803

  19. Cell adhesion in plants is under the control of putative O-fucosyltransferases

    PubMed Central

    Verger, Stéphane; Chabout, Salem; Gineau, Emilie

    2016-01-01

    Cell-to-cell adhesion in plants is mediated by the cell wall and the presence of a pectin-rich middle lamella. However, we know very little about how the plant actually controls and maintains cell adhesion during growth and development and how it deals with the dynamic cell wall remodeling that takes place. Here we investigate the molecular mechanisms that control cell adhesion in plants. We carried out a genetic suppressor screen and a genetic analysis of cell adhesion-defective Arabidopsis thaliana mutants. We identified a genetic suppressor of a cell adhesion defect affecting a putative O-fucosyltransferase. Furthermore, we show that the state of cell adhesion is not directly linked with pectin content in the cell wall but instead is associated with altered pectin-related signaling. Our results suggest that cell adhesion is under the control of a feedback signal from the state of the pectin in the cell wall. Such a mechanism could be necessary for the control and maintenance of cell adhesion during growth and development. PMID:27317803

  20. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  1. Carcinoembryonic antigen-related cell adhesion molecule 1 is expressed and as a function histotype in ovarian tumors.

    PubMed

    Li, Ning; Yang, Jing-Yan; Wang, Xiao-Ying; Wang, Hai-Tao; Guan, Bing-Xin; Zhou, Cheng-Jun

    2016-02-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell-cell adhesion receptor and is implicated in several cellular functions. It is rarely reported in ovarian tumors. The aim of this study is to determine the expression of CEACAM1 in ovarian tumors, trying to see whether CEACAM1 has different expression patterns as a function of histotype. Antigen expression was examined by immunohistochemistry with mouse anti-human antibody for CEACAM1. Immunohistochemistry was performed using avidin-biotin-diaminobenzide staining. The results were expressed as average score ± SD (0, negative; 8, highest) for each histotype. In ovarian tumors, the benign serous and mucinous cystadenoma negatively or weakly expressed CEACAM1, the malignant epithelial tumors strongly expressed CEACAM1, and there was significant difference between benign epithelial tumor and adenocarcinoma (P < .05). The well-differentiated serous adenocarcinoma expressed CEACAM1 mainly with membrane pattern, and the intermediately and poorly differentiated serous adenocarcinomas expressed CEACAM1 mainly with cytoplasmic pattern (P < .05). In addition, CEACAM1 expression is elevated in solid tumors of ovary but variable as a function of histotype. Compared with membranous expression, the cytoplasmic expression was observed almost in metastatic carcinoma that might decrease the adhesive interactions of the carcinoma cells with the surrounding cells, especially with tumor cells, and this could facilitate the tumor cells to metastasize to distant regions. So, we thought that cytoplasmic CEACAM1 might play an important role in tumor progression, especially in tumor metastasis. PMID:26653024

  2. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion

    PubMed Central

    Zaytseva, Natalya; Lynn, Jeffery G.; Wu, Qi; Mudaliar, Deepti J.; Sun, Haiyan; Kuang, Patty Q.; Fang, Ye

    2013-01-01

    Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion. PMID:24319319

  3. Role of sulfatides in adhesion of Helicobacter pylori to gastric cancer cells.

    PubMed Central

    Kamisago, S; Iwamori, M; Tai, T; Mitamura, K; Yazaki, Y; Sugano, K

    1996-01-01

    We have demonstrated that clinical isolates of Helicobacter pylori preferentially bind to sulfatides (I3SO3-GalCer) and GM3 gangliosides (II3NeuAcLacCer), two predominant acidic glycosphingolipids in the human gastric mucosa, on thin-layer chromatography plates. However, it has not yet been clarified that these glycospingolipids truly serve as adhesion receptors for H. pylori in live cells. In this study, we used a gastric cancer cell line, KATO III, as a cellular model of H. pylori adhesion and examined the role of sulfatides in attachment. The adhesion of H. pylori (i.e., a standard strain of H. pylori, NCTC 11637) to KATO III cells and the effects of various substances on this adhesion were monitored and semiquantitated by flow cytometric analysis. Sulfated glycoconjugates, such as heparin and gastric mucin, significantly inhibited H. pylori adhesion to KATO III cells. Membrane preparations from KATO III cells strongly inhibited this adhesion. In the membrane preparations, sulfatides were present as a major acidic glycosphinoglipid. With the exception of sulfatides, no distinct adhesion of H. pylori to glycospingolipids from KATO III cells were observed. Moreover, H. pylori did not bind to any membrane proteins of KATO III cells. Finally, a monoclonal anti-sulfatide antibody markedly reduced H. pylori adhesion to KATO III cells. These results suggest that sulfatides, and possibly related sulfated compounds, serve as a major receptor for cell adhesion by H. pylori. PMID:8550217

  4. Ionizing radiation increases adhesiveness of human aortic endothelial cells via a chemokine-dependent mechanism.

    PubMed

    Khaled, Saman; Gupta, Kiran B; Kucik, Dennis F

    2012-05-01

    Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Since radiation also induces inflammation, a possible mechanism is a change in the adhesiveness of vascular endothelial cells, triggering pro-atherogenic accumulation of leukocytes. To investigate this mechanism at the cellular level, the effect of X rays on adhesiveness of cultured human aortic endothelial cells (HAECs) was determined. HAECs were grown as monolayers and exposed to 0 to 30 Gy X rays, followed by measurement of adhesiveness under physiological shear stress using a flow chamber adhesion assay. Twenty-four hours after irradiation, HAEC adhesiveness was increased, with a peak effect at 15 Gy. Radiation had no significant effect on surface expression of the endothelial adhesion molecules ICAM-1 and VCAM-1. Antibody blockade of the leukocyte integrin receptors for ICAM-1 and VCAM-1, however, abolished the radiation-induced adhesiveness. Since these leukocyte integrins can be activated by chemokines presented on the endothelial cell surface, the effect of pertussis toxin (PTX), an inhibitor of chemokine-mediated integrin activation, was tested. PTX specifically inhibited radiation-induced adhesiveness, with no significant effect on nonirradiated cells. Therefore, radiation induces increased adhesiveness of aortic endothelial cells through chemokine-dependent signaling from endothelial cells to leukocytes, even in the absence of increased expression of the adhesion molecules involved. PMID:22087741

  5. An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    PubMed Central

    Barnhart, Erin L.; Lee, Kun-Chun; Keren, Kinneret; Mogilner, Alex; Theriot, Julie A.

    2011-01-01

    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. PMID:21559321

  6. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. PMID:27612703

  7. Controlling Osteogenic Stem Cell Differentiation via Soft Bioinspired Hydrogels

    PubMed Central

    Jha, Amit K.; Jackson, Wesley M.; Healy, Kevin E.

    2014-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is guided by various physical and biochemical factors. Among these factors, modulus (i.e., rigidiy) of the ECM has gained significant attention as a physical osteoinductive signal that can contribute to endochondral ossification of a cartilaginous skeletal template. However, MSCs also participate in intramembranous bone formation, which occurs de novo from within or on a more compliant tissue environment. To further understand the role of the matrix interactions in this process, we evaluated osteogenic differentiation of hMSCs cultured on low moduli (102, 390 or 970 Pa) poly(N-isopropylacrylamide) (p(NIPAAm)) based semi-interpenetrating networks (sIPN) modified with the integrin engaging peptide bsp-RGD(15) (0, 105 or 210 µM). Cell adhesion, proliferation, and osteogenic differentiation of hMSCs, as measured by alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), bone sialoprotein-2 (iBSP), and osteocalcien (OCN) protein expression, was highest on substrates with the highest modulus and peptide concentrations. However, within this range of substrate stiffness, many osteogenic cellular functions were enhanced by increasing either the modulus or the peptide density. These findings suggest that within a compliant and low modulus substrate, a high affinity adhesive ligand serves as a substitute for a rigid matrix to foster osteogenic differentiation. PMID:24937602

  8. Rapid Reversible Photoswitching of Integrin-Mediated Adhesion at the Single-Cell Level.

    PubMed

    Kadem, Laith F; Holz, Michelle; Suana, Kristine Grace; Li, Qian; Lamprecht, Constanze; Herges, Rainer; Selhuber-Unkel, Christine

    2016-03-01

    Rapid and reversible photoswitching of cell adhesion is achieved by c(RGDfK)-azobenzenes embedded in a poly(ethylene glycol) background on surfaces. The light-induced cis-trans-isomerization of the azobenzene enables switching of cell adhesion on the surface. Reversibility of switching over several consecutive switching cycles is demonstrated by single-cell force spectroscopy. PMID:26685922

  9. Focal Adhesion Kinase-Dependent Regulation of Adhesive Force Involves Vinculin Recruitment to Focal Adhesions

    PubMed Central

    Hanks, Steven K.; García, Andrés J.

    2016-01-01

    Background information Focal adhesion kinase (FAK), an essential non-receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signaling, and mechanotransduction. FAK-dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contributions of FAK to the generation of adhesive forces are not well understood. Results Using FAK-null cells expressing wild-type and mutant FAK under an inducible tetracycline promoter, we analyzed the role of FAK in the generation of steady-state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady-state strength by 30% compared to FAK-null cells. FAK expression reduced vinculin localization to focal adhesions by 35% independently from changes in integrin binding and localization of talin and paxillin. RNAi knockdown of vinculin abrogated the FAK-dependent differences in adhesive force. FAK-dependent changes in vinculin localization and adhesive force were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Y397 and kinase domain Y576/Y577 sites were differentially required for FAK-mediated adhesive responses. Conclusions We demonstrate that FAK reduces steady-state adhesion strength by modulating vinculin recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix. PMID:19883375

  10. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  11. Physics of Cell Adhesion Failure and Human Diseases

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    Emergent phenomena in living systems, including your ability to read these lines, do not obviously follow as a consequence of the fundamental laws of physics. Understanding the physics of living systems clearly falls outside the conventional boundaries of scientific disciplines and requires a collaborative, multidisciplinary approach. Here I will discuss how theoretical and computational techniques from statistical physics can be used to make progress in explaining the physical mechanisms that underlie complex biological phenomena, including major diseases. In the specific cases of macular degeneration and cancer that we have studied recently, we find that the breakdown of the mechanical stability in the local tissue structure caused by weakening of the cell-cell adhesion plays a key role in the initiation and progression of the disease. This finding can help in the development of new therapies that would prevent or halt the initiation and progression of these diseases.

  12. Programmable Laser-Assisted Surface Microfabrication on a Poly(Vinyl Alcohol)-Coated Glass Chip with Self-Changing Cell Adhesivity for Heterotypic Cell Patterning.

    PubMed

    Li, Yi-Chen; Lin, Meng-Wei; Yen, Meng-Hua; Fan, Sabrina Mai-Yi; Wu, June-Tai; Young, Tai-Horng; Cheng, Ji-Yen; Lin, Sung-Jan

    2015-10-14

    Organs are composed of heterotypic cells with patterned architecture that enables intercellular interaction to perform specific functions. In tissue engineering, the ability to pattern heterotypic cells into desired arrangement will allow us to model complex tissues in vitro and to create tissue equivalents for regeneration. This study was aimed at developing a method for fast heterotypic cell patterning with controllable topological manipulation on a glass chip. We found that poly(vinyl alcohol)-coated glass showed a biphasic change in adhesivity to cells in vitro: low adhesivity in the first 24 h and higher adhesivity at later hours due to increased serum protein adsorption. Combining programmable CO2 laser ablation to remove poly(vinyl alcohol) and glass, we were able to create arrays of adhesive microwells of adjustable patterns. We tested whether controllable patterns of epithelial-mesenchymal interaction could be created. When skin dermal papilla cells and fibroblasts were seeded respectively 24 h apart, we were able to pattern these two cells into aggregates of dermal papilla cells in arrays of microwells in a background of fibroblasts sheet. Seeded later, keratinocytes attached to these mesenchymal cells. Keratinocytes contacting dermal papilla cells started to differentiate toward a hair follicle fate, demonstrating patternable epithelial-mesenchymal interaction. This method allows fast adjustable heterotypic cell patterning and surface topology control and can be applied to the investigation of heterotypic cellular interaction and creation of tissue equivalent in vitro. PMID:26393271

  13. Immune T lymphocyte to tumor cell adhesion. Magnesium sufficient, calcium insufficient

    PubMed Central

    1980-01-01

    The prelytic adhesion of immune cytolytic thymus-derived lymphocytes to specific antigen-bearing ascites tumor target cells has been studied. A new assay was used in which adhesions are permitted to form for 2.5 min; the cells are then dispersed to prevent further adhesion, and the predispersion adhesions are quantitated by subsequent 51Cr release from the tumor cells as a result of cytolytic activity of the adhering lymphocytes. There were the following new findings: (a) magnesium is sufficient to support optimal adhesion formation even when EGTA is added to remove contaminating traces of calcium; (b) calcium supports no adhesion formation when traces of contaminating magnesium are removed by pretreating the medium with a chelating ion exchange resin; (c) calcium synergizes with suboptimal magnesium, increasing the apparent adhesion-supporting potency of magnesium 20-fold in the presence of 50 microM calcium; (d) in the presence of optimal magnesium (2--4 mM), calcium has not effect on the properties of the adhesion by any of six criteria; and (e) manganese supports adhesion better than magnesium, and strontium is ineffective. A survey of previous literature indicates that these results are remarkably similar to the predominant pattern for nonimmunologic cell adhesion (e.g., fibroblasts) involving cells from a variety of tissues in late embryonic and adult avians and mammals. This suggests that a "magnesium sufficient, calcium insufficient" mechanism may be found among the latter types of cell adhesions when appropriately examined. Moreover, it seems that the present lymphocyte-tumor cell adhesion, although evoked by specific receptor-antigen recognition, relies predominantly on mechanisms common to nonimmunologic intercellular adhesion processes. PMID:6766945

  14. Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties.

    PubMed

    Jun, Indong; Lee, Yu Bin; Choi, Yu Suk; Engler, Adam J; Park, Hansoo; Shin, Heungsoo

    2015-06-01

    Development of stem cell delivery system with ability of control over mutilineage differentiation and improved engraft efficiency is imperative in regenerative medicine. We herein report transfer stamping of human mesenchymal stem cells (hMSCs) patches using thermally expandable hydrogels with tunable cell-adhesive properties. The hydrogels were prepared from functionalized four arm copolymer of Tetronic(®), and the cell adhesion on the hydrogel was modulated by incorporation of fibronectin (FN) or cell-adhesive peptide (RGD). The resulting hydrogels showed spontaneous expansion in size within 10 min in response to the temperature reduction from 37 to 4°C. The adhesion and proliferation of hMSCs on FN-hydrogels were positively tunable in proportion to the amount of FN within hydrogels with complete monolayer of hMSCs (hMSC patch) being successfully achieved. The hMSC patch on the hydrogel was faced to the target substrate, which was then easily detached and re-attached to the target when the temperature was reduced from 37°C up to 4°C. We found that the transfer stamping of cell patch was facilitated at lower temperature of 4°C relative to 25°C, with the use of thinner hydrogels (0.5 mm in thickness relatively to 1.0 or 1.5 mm) and longer transfer time (>15 min). Notably, the hMSC patch was simply transferred from the hydrogel to the subcutaneous mouse skin tissue within 15 min with cold saline solution being dropped to the hydrogel. The hMSC patch following osteogenic or adipogenic commitment was also achieved with long-term culture of hMSCs on the hydrogel, which was successfully detached to the target surface. These results suggest that the hydrogels with thermally expandable and tunable cell-adhesive properties may serve as a universal substrate to harvest hMSC patch in a reliable and effective manner, which could potentially be utilized in many cell-sheet based therapeutic applications. PMID:25907038

  15. Glycosylation Inhibitors Efficiently Inhibit P-Selectin-Mediated Cell Adhesion to Endothelial Cells

    PubMed Central

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD

  16. A Comparative Study of Adhesion of Melanoma and Breast Cancer Cells to Blood and Lymphatic Endothelium

    PubMed Central

    Safuan, Sabreena; Storr, Sarah J.; Patel, Poulam M.

    2012-01-01

    Abstract Background Lymphovascular invasion (LVI) is an important step in the metastatic cascade; tumor cell migration and adhesion to blood and lymphatic vessels is followed by invasion through the vessel wall and subsequent systemic spread. Although primary breast cancers and melanomas have rich blood vascular networks, LVI is predominately lymphatic in nature. Whilst the adhesion of tumor cells to blood endothelium has been extensively investigated, there is a paucity of information on tumor cell adhesion to lymphatic endothelium. Methods and Results Breast cancer (MDA-MB-231 and MCF7) and melanoma (MeWo and SKMEL-30) cell adhesion to lymphatic (hTERT-LEC and HMVEC dLy Neo) and blood (HUVEC and hMEC-1) endothelial cells were assessed using static adhesion assays. The effect of inflammatory conditions, tumor necrosis factor-α (TNF-α) stimulation of endothelial and tumor cells, on the adhesive process was also examined. In addition, the effects of TNF-α stimulation on tumor cell migration was investigated using haplotaxis (scratch wound) assays. Breast cancer and melanoma cells exhibited higher levels of adhesion to blood compared to lymphatic endothelial cells (p<0.001). TNF-α stimulation of endothelial cells, or of tumor cells alone, did not significantly alter tumor–endothelial cell adhesion or patterns. When both tumor and endothelial cells were stimulated with TNF-α, a significant increase in adhesion was observed (p<0.01), which was notably higher in the lymphatic cell models (p<0.001). TNF-α-stimulation of all tumor cell lines significantly increased their migration rate (p<0.01). Conclusions Results suggest that metastasis resultant from lymphatic vessel-tumor cell adhesion may be modulated by cytokine stimulation, which could represent an important therapeutic target in breast cancer and melanoma. PMID:23215743

  17. A simplified model for dynamics of cell rolling and cell-surface adhesion

    SciTech Connect

    Cimrák, Ivan

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  18. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  19. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    SciTech Connect

    Shen, Colette J.; Raghavan, Srivatsan; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 ; Xu, Zhe; Baranski, Jan D.; Yu, Xiang; Wozniak, Michele A.; Miller, Jordan S.; Gupta, Mudit; Buckbinder, Leonard; Chen, Christopher S.

    2011-08-01

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  20. Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*

    PubMed Central

    Fu, Changliang; Tong, Chunfang; Wang, Manliu; Gao, Yuxin; Zhang, Yan; Lü, Shouqin; Liang, Shile; Dong, Cheng; Long, Mian

    2011-01-01

    Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics. PMID:21840991

  1. Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique.

    PubMed

    Colbert, M-J; Raegen, A N; Fradin, C; Dalnoki-Veress, K

    2009-10-01

    The fundamental study of the adhesion of cells to each other or to a substrate is a key research topic in cellular biophysics because cell adhesion is important to many biological processes. We report on the adhesion of a model cell, a liposome, and a living HeLa cell to a substrate measured with a novel experimental technique. The cells are held at the end of a micropipette mounted on a micromanipulator and brought into contact with a surface. The adhesion energy and membrane tension are measured directly using the deflection of the micropipette when binding or unbinding the cell from the substrate. Since the force applied on the cells is known throughout the experiment, the technique presented enables the measurement of dynamics such as changes in the adhesion, elasticity, and membrane tension with time. PMID:19777278

  2. Direct observation of catch bonds involving cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  3. Antibacterial and Cell-adhesive Polypeptide and Poly(ethylene glycol) Hydrogel as a Potential Scaffold for Wound Healing

    PubMed Central

    Song, Airong; Rane, Aboli A.; Christman, Karen L.

    2011-01-01

    The ideal wound healing scaffold should provide the appropriate physical and mechanical properties to prevent secondary infection, as well as an excellent physiological environment to facilitate cell adhesion, proliferation and/or differentiation. Therefore, we developed a synthetic cell-adhesive polypeptide hydrogel with inherent antibacterial activity. A series of polypeptides, poly(Lys)x(Ala)y (x+y=100) with varied hydrophobicity via metal-free ring-opening polymerization of NCA-Lys(Boc) and NCA-Ala monomers (NCA = N-carboxylic anhydride) mediated by hexamethyldisilazane (HMDS) were synthesized. These polypeptides were cross-linked with 6-arm PEG-amide succinimidyl glutarate (ASG) (Mw = 10K) to form hydrogels with a gelation time of five minutes and a storage modulus (G') of 1400–3000 Pa as characterized by rheometry. The hydrogel formed by cross-linking of poly(Lys)60(Ala)40 (5 wt%) and 6-arm PEG-ASG (16 wt%) (Gel-III) exhibited cell adhesion and cell proliferation activities superior to other polypeptide hydrogels. In addition, Gel-III displays significant antibacterial activity against E. coli JM109 and S. aureus ATCC25923. Thus, we have developed a novel, cell-adhesive hydrogel with inherent antibacterial activity as a potential scaffold for cutaneous wound healing. PMID:22023748

  4. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin.

    PubMed

    Zhang, Hui; Chen, Yiqian; Wadham, Carol; McCaughan, Geoffrey W; Keane, Fiona M; Gorrell, Mark D

    2015-02-01

    Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed member of the DPP4 gene and protease family. Deciphering the biological functions of DPP9 and its roles in pathogenesis has implicated DPP9 in tumor biology, the immune response, apoptosis, intracellular epidermal growth factor-dependent signaling and cell adhesion and migration. We investigated the intracellular distribution of DPP9 chimeric fluorescent proteins and consequent functions of DPP9. We showed that while some DPP9 is associated with mitochondria, the strongest co-localization was with microtubules. Under steady state conditions, DPP9 was not seen at the plasma membrane, but upon stimulation with either phorbol 12-myristate 13-acetate or epidermal growth factor, some DPP9 re-distributed towards the ruffling membrane. DPP9 was seen at the leading edge of the migrating cell and co-localized with the focal adhesion proteins, integrin-β1 and talin. DPP9 gene silencing and treatment with a DPP8/DPP9 specific inhibitor both reduced cell adhesion and migration. Expression of integrin-β1 and talin was decreased in DPP9-deficient and DPP9-enzyme-inactive cells. There was a concomitant decrease in the phosphorylation of focal adhesion kinase and paxillin, indicating that DPP9 knockdown or enzyme inhibition suppressed the associated adhesion signaling pathway, causing impaired cell movement. These novel findings provide mechanistic insights into the regulatory role of DPP9 in cell movement, and may thus implicate DPP9 in tissue and tumor growth and metastasis. PMID:25486458

  5. Differential pattern of integrin receptor expression in differentiated and anaplastic thyroid cancer cell lines.

    PubMed

    Hoffmann, S; Maschuw, K; Hassan, I; Reckzeh, B; Wunderlich, A; Lingelbach, S; Zielke, A

    2005-09-01

    Adhesion of tumor cells to the extracellular matrix (ECM) is a crucial step for the development of metastatic disease and is mediated by specific integrin receptor molecules (IRM). The pattern of metastatic spread differs substantially among the various histotypes of thyroid cancer (TC). However, IRM have only occasionally been characterized in TC until now. IRM expression was investigated in 10 differentiated (FTC133, 236, 238, HTC, HTC TSHr, XTC, PTC4.0/4.2, TPC1, Kat5) and two anaplastic TC cell lines (ATC, C643, Hth74), primary cultures of normal thyroid tissue (Thy1,3), and thyroid cancer specimens (TCS). Expression of 16 IRM (beta1-4, beta7, alpha1-6, alphaV, alphaIIb, alphaL, alphaM, alphaX) and of four IRM heterodimers (alpha2beta1, alpha5beta1, alphaVbeta3, alphaVbeta5), was analyzed by fluorescent-activated cell sorter (FACS) and immunohistochemical staining. Thyroid tumor cell adhesion to ECM proteins and their IRM expression in response to thyrotropin (TSH) was assessed. Follicular TC cell lines presented high levels of integrins alpha2, alpha3, alpha5, beta1, beta3 and low levels of alpha1, whereas papillary lines expressed a heterogenous pattern of IRM, dominated by alpha5 and beta1. ATC mainly displayed integrins alpha2, alpha3, alpha5, alpha6, beta1 and low levels of alpha1, alpha4 and alphaV. Integrin heterodimers correlated with monomer expression. Evaluation of TCS largely confirmed these results with few exceptions, namely alpha4, alpha6, and beta3. The ability of TC cell lines to adhere to purified ECM proteins correlated with IRM expression. TSH induced TC cell adhesion in a dose-dependent fashion, despite an unchanged array of IRM expression or level of a particular IRM. Thyroid carcinoma cell lines of different histogenetic background display profoundly different patterns of IRM expression that appear to correlate with tumor aggressiveness. In vitro adhesion to ECM proteins and IRM expression concur. Finally, TSH-stimulated adhesion of

  6. The role of sodium channels in cell adhesion.

    PubMed

    Isom, Lori L

    2002-01-01

    Voltage-gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming alpha subunit and two auxiliary beta subunits. The alpha subunits are members of a large gene family containing the voltage-gated sodium, potassium, and calcium channels. Sodium channel alpha subunits form a gene subfamily with at least eleven members. Mutations in sodium channel alpha subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel beta subunits with at least one alternative splice product. Unlike the pore-forming alpha subunits, the sodium channel beta subunits are not structurally related to beta subunits of calcium and potassium channels. Sodium channel beta subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that beta subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS+1 epilepsy in human families. We propose that the sodium channel signaling complex at nodes of Ranvier involves beta subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPbeta, and extracellular matrix molecules such as tenascin. Finally, we explore other subunits of voltage-gated ion channels as potential CAM candidates. PMID:11779698

  7. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells. PMID:25280667

  8. PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis.

    PubMed

    Cousin, Hélène; Desimone, Douglas W; Alfandari, Dominique

    2008-07-01

    We previously identified the adaptor protein PACSIN2 as a negative regulator of ADAM13 proteolytic function. In Xenopus embryos, PACSIN2 is ubiquitously expressed, suggesting that PACSIN2 may control other proteins during development. To investigate this possibility, we studied PACSIN2 function during Xenopus gastrulation and in XTC cells. Our results show that PACSIN2 is localized to the plasma membrane via its coiled-coil domain. We also show that increased levels of PACSIN2 in embryos inhibit gastrulation, fibronectin (FN) fibrillogenesis and the ability of ectodermal cells to spread on a FN substrate. These effects require PACSIN2 coiled-coil domain and are not due to a reduction of FN or integrin expression and/or trafficking. The expression of a Mitochondria Anchored PACSIN2 (PACSIN2-MA) sequesters wild type PACSIN2 to mitochondria, and blocks gastrulation without interfering with cell spreading or FN fibrillogenesis but perturbs both epiboly and convergence/extension. In XTC cells, the over-expression of PACSIN2 but not PACSIN2-MA prevents the localization of integrin beta1 to focal adhesions (FA) and filamin to stress fiber. PACSIN2-MA prevents filamin localization to membrane ruffles but not to stress fiber. We propose that PACSIN2 may regulate gastrulation by controlling the population of activated alpha5beta1 integrin and cytoskeleton strength during cell movement. PMID:18495106

  9. Modulation of fibronectin adhesive functions for fibroblasts and neural cells by chemically derivatized substrata.

    PubMed

    Lewandowska, K; Balachander, N; Sukenik, C N; Culp, L A

    1989-11-01

    Adhesion responses of fibroblasts (Balb/c 3T3 cells) and human neuron-derived (Platt neuroblastoma) cells have been examined with plasma fibronectin (pFN) adsorbed to glass surfaces derivatized with an alkyl chain and six chemical end groups interfacing with the bound pFN to test regulation of pFN function. Using new derivatization protocols, the following surfaces have been tested in order of increasing polarity: [CH3], [C = C], [Br], [CN], [Diol], [COOH], and underivatized glass [( SiOH]). For all substrata, pFN bound equivalently using either a supersaturating amount of pFN or a subsaturating amount in competition with bovine albumin. Attachment of both cell types was also equivalent on all substrata. However, spreading/differentiation responses varied considerably. F-actin reorganization was tested in 3T3 cells with rhodamine-phalloidin staining. While stress fibers formed effectively on pFN-coated [SiOH] and [Br] substrata, only small linear bundles of F-actin and a few thin stress fibers were observed on the [COOH], [Diol], and [CN] substrata; the hydrophobic substrata [( CH3] and [C = C]) gave an intermediate response. When a synthetic peptide containing the Arg-Gly-Asp-Ser sequence required for integrin binding to FNs was included in the medium as an inhibitor, additional differences were noted: Stress fiber formation was completely inhibited on [SiOH] but not on [Br] and stress fiber formation was very sensitive to inhibition on the hydrophobic substrata while the F-actin patterns on the [CN] and [COOH] substrata were unaffected. Evaluation of neurite outgrowth by neuroblastoma cells on these substrata revealed both qualitative and quantitative differences as follows: [Diol] = [COOH] greater than [SiOH] much greater than [CN] = [Br] greater than [CH3] = [C = C]. While there was poor cytoplasmic spreading and virtually no neurites formed on the hydrophobic surfaces when pFN alone was adsorbed, neurite formation could be "rescued" if a mixture of pFN with an

  10. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  11. Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis.

    PubMed

    Davies, P F; Robotewskyj, A; Griem, M L

    1993-06-01

    Real time measurements of cell-substratum adhesion in endothelial cells were obtained by tandem scanning confocal microscopy of sites of focal contact (focal adhesions) at the abluminal cell surface. Focal contact sites were sharply defined (low radiance levels) in the living cell such that the images could be enhanced, digitized, and isolated from other cellular detail. Sites of focal contact are the principal determinant of cell-substratum adhesion. Measurements of (a) the focal contact area and (b) the closeness of contact (inverse radiance) were used to nominally define the adhesion of a single cell or field of cells, and to record spontaneous and induced changes of cell adhesion in real time. The topography of focal contacts was estimated by calculating separation distances from radiance values using a calibration technique based on interference ring optics. While slightly closer contact was noted between the cell membrane and substratum at or near the center of each focal contact, separation distances throughout the adhesion regions were always < 50 nm. Subtraction of consecutive images revealed continuous spontaneous remodeling of individual focal adhesions in unperturbed cells during periods of < 1 min. Despite extensive remodeling of focal contact sites, however, cell adhesion calculated for an entire cell over extended periods varied by < 10%. When cytoskeletal stability was impaired by exposure to cytochalasin or when cells were exposed to proteolytic enzyme, endothelial adhesion declined rapidly. Such changes were recorded at the level of single cells, groups of cells, and at single focal adhesions. In both unperturbed and manipulated cells, the dynamics of remodeling and cell adhesion characteristics varied greatly between individual sites within the same cell; disappearance of existing sites and appearance of new ones often occurred within minutes while adjacent sites underwent minimal remodelling. Tandem scanning confocal microscopy image analysis of

  12. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants.

    PubMed

    Vandrovcová, M; Bačáková, L

    2011-01-01

    This review briefly outlines the history and possibilities of bone reconstruction using various types of artificial materials, which allow interaction with cells only on the surface of the implant or enable ingrowth of cells inside the material. Information is also provided on the most important properties of bone cells taking part in bone tissue development, and on diseases and regeneration. The most common cell types used for testing cell-material interaction in vitro are listed, and the most commonly used approaches to this testing are also mentioned. A considerable part of this review is dedicated to the physical and chemical properties of the material surface, which are decisive for the cell-material interaction, and also to modifications to the surface of the material aimed at integrating it better with the surrounding bone tissue. Special attention is paid to the effects of nanoscale and microscale surface roughness on cell behaviour, to material surface patterning, which allows regionally-selective adhesion and growth of cells, and also to the surface chemistry. In addition, coating the materials with bioactive layers is examined, particularly those created by deposition of fullerenes, hybrid metal-fullerene composites, carbon nanotubes, nanocrystalline diamond films, diamond-like carbon, and nanocomposite hydrocarbon plasma polymer films enriched with metals. PMID:21401307

  13. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    PubMed Central

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2.

  14. Monitoring effects of microgravity on adhesion of white blood cells to vascular endothelium

    NASA Astrophysics Data System (ADS)

    Gupta, K.; Rouleau, R.; Smith, L.; Wu, X.; Kucik, D. F.

    Immune defects associated with space travel have been studied for decades but the mechanisms are not yet well understood Of particular interest is the effect of microgravity on white blood cells which has been shown to be independent of effects of cosmic radiation and physical stress One important aspect of white-cell function that has been difficult to address experimentally is regulation of leukocyte adhesion to the blood vessel wall This is a vital early step in the initiation of an immune response without which effective immunity is not possible Rotating wall vessels RWV are often used to simulate microgravity on the ground but current systems typically require stopping rotation removing a sample and fluorescently labeling the cells before an adhesion assay can be performed The entire process from cell sampling to completion of an adhesion assay can take hours giving the cells time to recover at 1g and complicating interpretation of results We have designed a new integrated flow-chamber adhesion assay for measuring leukocyte adhesion properties in simulated and actual microgravity Our integrated RWV flow chamber bioimaging adhesion system can assay adhesion of cells exposed to simulated microgravity within seconds of returning to 1g without stopping rotation of the chamber Data collected with this system show that the new integrated assay can detect defects in both rolling and firm adhesion with sensitivity equal to that of large microscope-based flow chamber adhesion assays This system has now been adapted to measure acute

  15. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    PubMed Central

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  16. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization.

    PubMed

    Datla, Srinivasa Raju; McGrail, Daniel J; Vukelic, Sasa; Huff, Lauren P; Lyle, Alicia N; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K; Hilenski, Lula L; Terada, Lance S; Dawson, Michelle R; Lassègue, Bernard; Griendling, Kathy K

    2014-10-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  17. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT)

    PubMed Central

    Humphreys, William James Edward; Comerford, Eithne Josephine Veronica; Clegg, Peter David; Canty‐Laird, Elizabeth Gail

    2015-01-01

    ABSTRACT The aim of this study was to characterize stem and progenitor cell populations from the equine superficial digital flexor tendon, an energy‐storing tendon with similarities to the human Achilles tendon, which is frequently injured. Using published methods for the isolation of tendon‐derived stem/progenitor cells by low‐density plating we found that isolated cells possessed clonogenicity but were unable to fully differentiate towards mesenchymal lineages using trilineage differentiation assays. In particular, adipogenic differentiation appeared to be restricted, as assessed by Oil Red O staining of stem/progenitor cells cultured in adipogenic medium. We then assessed whether differential adhesion to fibronectin substrates could be used to isolate a population of cells with broader differentiation potential. However we found little difference in the stem and tenogenic gene expression profile of these cells as compared to tenocytes, although the expression of thrombospondin‐4 was significantly reduced in hypoxic conditions. Tendon‐derived stem/progenitor cells isolated by differential adhesion to fibronectin had a similar differentiation potential to cells isolated by low density plating, and when grown in either normoxic or hypoxic conditions. In summary, we have found a restricted differentiation potential of cells isolated from the equine superficial digital flexor tendon despite evidence for stem/progenitor‐like characteristics. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 33:849–858, 2015. PMID:25877997

  18. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  19. Optically trapping tumor cells to assess differentiation and prognosis of cancers

    PubMed Central

    Pradhan, M.; Pathak, S.; Mathur, D.; Ladiwala, U.

    2016-01-01

    We report an optical trapping method that may enable assessment of the differentiation status of cancerous cells by determining the minimum time required for cell-cell adhesion to occur. A single, live cell is trapped and brought into close proximity of another; the minimum contact time required for cell-cell adhesion to occur is measured using transformed cells from neural tumor cell lines: the human neuroblastoma SK-N-SH and rat C6 glioma cells. Earlier work on live adult rat hippocampal neural progenitors/stem cells had shown that a contact minimum of ~5 s was required for cells to adhere to each other. We now find the average minimum time for adhesion of cells from both tumor cell lines to substantially increase to ~20-25 s, in some cases up to 45 s. Upon in vitro differentiation of these cells with all-trans retinoic acid the average minimum time reverts to ~5-7 s. This proof-of-concept study indicates that optical trapping may be a quick, sensitive, and specific method for determining differentiation status and, thereby, the prognosis of cancer cells. PMID:27231599

  20. Heterogeneity of cell adhesion molecules in the developing nervous system

    SciTech Connect

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  1. Dynamic and Static Interactions between p120 Catenin and E-Cadherin Regulate the Stability of Cell-Cell Adhesion

    SciTech Connect

    Ishiyama, Noboru; Lee, Seung-Hye; Liu, Shuang; Li, Guang-Yao; Smith, Matthew J.; Reichardt, Louis F.; Ikura, Mitsuhiko

    2010-04-26

    The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD{sub core}) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD{sub core}. Single-residue mutations within the JMD{sub core}-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete dynamic and static binding sites.

  2. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

    PubMed

    Ren, Guangwen; Zhao, Xin; Zhang, Liying; Zhang, Jimin; L'Huillier, Andrew; Ling, Weifang; Roberts, Arthur I; Le, Anh D; Shi, Songtao; Shao, Changshun; Shi, Yufang

    2010-03-01

    Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. PMID:20130212

  3. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    PubMed Central

    Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression. PMID:26151554

  4. Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption

    PubMed Central

    Sumigray, Kaelyn; Zhou, Kang; Lechler, Terry

    2014-01-01

    Desmosomes are perturbed in a number of disease states – including genetic disorders, autoimmune and bacterial diseases. Here, we report unexpected changes in other cell-cell adhesion structures upon loss of desmosome function. We found that perturbation of desmosomes by either loss of the core desmosomal protein desmoplakin or treatment with pathogenic anti-desmoglein 3 (Dsg3) antibodies resulted in changes in adherens junctions consistent with increased tension. The total amount of myosin IIA was increased in desmoplakin-null epidermis, and myosin IIA became highly localized to cell contacts in both desmoplakin-null and anti-Dsg3-treated mouse keratinocytes. Inhibition of myosin II activity reversed the changes to adherens junctions seen upon desmosome disruption. The increased cortical myosin IIA promoted epithelial sheet fragility, as myosin IIA-null cells were less susceptible to disruption by anti-Dsg3 antibodies. In addition to the changes in adherens junctions, we found a significant increase in the expression of a number of claudin genes, which encode for transmembrane components of the tight junction that provide barrier function. These data demonstrate that desmosome disruption results in extensive transcriptional and posttranslational changes that alter the activity of other cell adhesion structures. PMID:25006807

  5. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA A