Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex
Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua
2013-01-01
Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235] PMID:23615266
Complex coacervates as a foundation for synthetic underwater adhesives
Stewart, Russell J.; Wang, Ching Shuen; Shao, Hui
2011-01-01
Complex coacervation was proposed to play a role in the formation of the underwater bioadhesive of the Sandcastle worm (Phragmatopoma californica) based on the polyacidic and polybasic nature of the glue proteins and the balance of opposite charges at physiological pH. Morphological studies of the secretory system suggested the natural process does not involve complex coacervation as commonly defined. The distinction may not be important because electrostatic interactions likely play an important role in formation of the sandcastle glue. Complex coacervation has also been invoked in the formation of adhesive underwater silk fibers of caddisfly larvae and the adhesive plaques of mussels. A process similar to complex coacervation, that is, condensation and dehydration of biopolyelectrolytes through electrostatic associations, seems plausible for the caddisfly silk. This much is clear, the sandcastle glue complex coacervation model provided a valuable blueprint for the synthesis of a biomimetic, waterborne, underwater adhesive with demonstrated potential for repair of wet tissue. PMID:21081223
Orai1 as New Therapeutic Target for Inhibiting Breast Tumor Metastasis
2009-09-01
includes focal adhesion assembly (formation of focal complex) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of assembly...A and B) Live cell imaging of paxillin-GFP transfected MEF cells in the absence (A) or presence (B) of SKF96365. Scale bar: 10 µm. (C and D...includes focal adhesion assembly (formation of focal complexes) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of focal
Altering wettability to recover more oil from tight formations
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...
2016-06-03
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Altering wettability to recover more oil from tight formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Regulation of substrate adhesion dynamics during cell motility.
Kaverina, Irina; Krylyshkina, Olga; Small, J Victor
2002-07-01
The movement of a metazoan cell entails the regulated creation and turnover of adhesions with the surface on which it moves. Adhesion sites form as a result of signaling between the extracellular matrix on the outside and the actin cytoskeleton on the inside, and they are associated with specific assembles of actin filaments. Two broad categories of adhesion sites can be distinguished: (1) "focal complexes" associated with lamellipodia and filopodia that support protrusion and traction at the cell front; and (2) "focal adhesions" at the termini of stress fibre bundles that serve in longer term anchorage. Focal complexes are signaled via Rac1 or Cdc42 and can either turnover on a minute scale or differentiate, via intervention of the RhoA pathway, into longer-lived focal adhesions. All classes of adhesion sites depend on the stress in the actin cytoskeleton for their formation and maintenance. Different cell types use different adhesion strategies to move, in terms of the relative engagement of filopodia and lamellipodia in focal complex formation and protrusion and the extent of focal adhesion formation. These differences can be attributed to variations in the relative activities of Rho family members. However, the Rho GTPases alone are unable to signal asymmetry in the actin cytoskeleton, necessary for polarisation and movement. Polarisation requires the collaboration of the microtubule cytoskeleton. Changes in the polymerisation state of microtubules influences the activities of both Rac1 and RhoA and microtubules interact directly with adhesion foci and promote their turnover. Possible mechanisms of cross-talk between the microtubule and actin cytoskeletons in determining polarity are discussed.
Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction
Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela
2014-01-01
Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660
Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung
2016-11-01
Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Case, Lindsay B.; Waterman, Clare M.
2011-01-01
At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459
Collins, Caitlin
2014-01-01
Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion. PMID:25452388
Venkatareddy, Madhusudan; Cook, Leslie; Abuarquob, Kamal; Verma, Rakesh; Garg, Puneet
2011-01-01
Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5′ inositol phosphatase), Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics. PMID:22194892
Fogel, Adam I; Stagi, Massimiliano; Perez de Arce, Karen; Biederer, Thomas
2011-09-16
Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.
[Can dexpanthenol prevent peritoneal adhesion formation? An experimental study].
Akdeniz, Yusuf; Tarhan, Omer Ridvan; Barut, Ibrahim
2007-04-01
Peritoneum has an intrinsic fibrinolytic activity that breaks the peritoneal adhesions. Ischemic peritoneal injuries interfere with this fibrinolytic activity. Local application of dexpanthenol, the alcohol form of pantothenic acid (vitamin B5) accelerates wound healing by increasing mitosis. We hypothesized that dexpanthenol would decrease peritoneal adhesions. In rats, antimesenteric border of cecum was abraded with gauze. No medication was given to the control group (n=15). Dexpanthenol was administered intraperitoneally (IP) (n=15, 25 mg/kg, before abdominal closure) or intravenously (IV) (n=15, 25 mg/kg, for 9 days after operation) in the experiment groups. On postoperative day 10, adhesions were graded; activities and concentrations of tissue plasminogen activator (tPA), plasminogen activator inhibitor type 1 (PAI-1), tPA/PAI-1 complex and hydroxyproline contents were determined in peritoneum. Adhesion formation was decreased in IP dexpanthenol group compared with control group (p=0.034). tPA concentration and activity and tPA/PAI-1 complex levels were increased in the treated groups compared to controls. PAI-1 levels were similar among the three groups. Peritoneal hydroxyproline levels were lower in animals receiving IV dexpanthenol compared with control animals and in addition, they remained unchanged in IP dexpanthenol treated group (p=0.009, p=0.84, respectively). Our results suggest that dexpanthenol administration through IP may reduce peritoneal adhesion formation probably by altering peritoneal fibrinolytic activity.
Lawrence, Patrick G; Lapitsky, Yakov
2015-02-03
Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.
WAVE2 Protein Complex Coupled to Membrane and Microtubules.
Takahashi, Kazuhide
2012-01-01
E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion.
WAVE2 Protein Complex Coupled to Membrane and Microtubules
Takahashi, Kazuhide
2012-01-01
E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion. PMID:22315597
NASA Astrophysics Data System (ADS)
Liu, Zhenlei; Ji, Shude; Meng, Xiangchen
2018-03-01
Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.
Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.
Escribano, J; Sánchez, M T; García-Aznar, J M
2015-11-07
Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E.; Bragas, Andrea V.; Pietrasanta, Lía I.
2017-01-01
The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E; Bragas, Andrea V; Pietrasanta, Lía I
2017-01-01
The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans
Lázaro-Peña, María I.; Díaz-Balzac, Carlos A.; Bülow, Hannes E.; Emmons, Scott W.
2018-01-01
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans. It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections. PMID:29559501
Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe
2014-01-01
The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin–vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin–talin–vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton. PMID:24452080
Hernández-Vásquez, Magda Nohemí; Adame-García, Sendi Rafael; Hamoud, Noumeira; Chidiac, Rony; Reyes-Cruz, Guadalupe; Gratton, Jean Philippe; Côté, Jean-François; Vázquez-Prado, José
2017-07-21
Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J
2008-07-01
Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.
Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.
2013-01-01
Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906
Mena binds α5 integrin directly and modulates α5β1 function.
Gupton, Stephanie L; Riquelme, Daisy; Hughes-Alford, Shannon K; Tadros, Jenny; Rudina, Shireen S; Hynes, Richard O; Lauffenburger, Douglas; Gertler, Frank B
2012-08-20
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.
Mena binds α5 integrin directly and modulates α5β1 function
Riquelme, Daisy; Hughes-Alford, Shannon K.; Tadros, Jenny; Rudina, Shireen S.; O.Hynes, Richard; Lauffenburger, Douglas
2012-01-01
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell–cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue “LERER” repeats. In fibroblasts, the Mena–α5 complex was required for “outside-in” α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins. PMID:22908313
Sen, Shamik; Tewari, Manorama; Zajac, Allison; Barton, Elisabeth; Sweeney, H. Lee; Discher, Dennis E.
2010-01-01
Anchorage to matrix is mediated for many cells not only by integrin-based focal adhesions but also by a parallel assembly of integral and peripheral membrane proteins known as the Dystroglycan Complex. Deficiencies in either dystrophin (mdx mice) or γ-sarcoglycan (γSG−/− mice) components of the Dystroglycan Complex lead to upregulation of numerous focal adhesion proteins, and the phosphoprotein paxillin proves to be among the most prominent. In mdx muscle, paxillin-Y31 and Y118 are both hyper-phosphorylated as are key sites in focal adhesion kinase (FAK) and the stretch-stimulatable pro-survival MAPK pathway, whereas γSG−/− muscle exhibits more erratic hyper-phosphorylation. In cultured myotubes, cell tension generated by myosin-II appears required for localization of paxillin to adhesions while vinculin appears more stably integrated. Over-expression of wild-type (WT) paxillin has no obvious effect on focal adhesion density or the physical strength of adhesion, but WT and a Y118F mutant promote contractile sarcomere formation whereas a Y31F mutant shows no effect, implicating Y31 in striation. Self-peeling of cells as well as Atomic Force Microscopy (AFM) probing of cells with or without myosin II inhibition indicate an increase in cell tension within paxillin-overexpressing cells. However, prednisolone, a first-line glucocorticoid for muscular dystrophies, decreases cell tension without affecting paxillin at adhesions, suggesting a non-linear relationship between paxillin and cell tension. Hypertension that results from upregulation of integrin adhesions is thus a natural and treatable outcome of dystroglycan complex down-regulation. PMID:20663583
A Mussel-Derived One-Component Adhesive Coacervate
Wei, Wei; Tan, Yerpeng; Rodriguez, N. Martinez; Yu, Jing; Israelachvili, Jacob N.; Waite, J. Herbert
2013-01-01
Marine organisms process and deliver many of their underwater coatings and adhesives as complex fluids. In marine mussels, one such fluid, secreted during the formation of adhesive plaques, consists of a concentrated colloidal suspension of a mussel foot protein (mfp) known as Mfp-3S. Results of this study suggest that Mfp-3S becomes a complex fluid by a liquid-liquid phase separation from equilibrium solution at a pH and ionic strength reminiscent of conditions created by the mussel foot during plaque formation. The pH dependence of phase separation and its sensitivity indicate that inter/intra-molecular electrostatic interactions are partially responsible for driving the phase separation. Hydrophobic interactions between the nonpolar Mfp-3S proteins provide another important driving force for coacervation. As complex coacervation typically results from charge-charge interactions between polyanions and polycations, Mfp-3S is thus unique in being the only known protein that coacervates with itself. The Mfp-3S coacervate was shown to have an effective interfacial energy of ≤ 1 mJ/m2 which explains its tendency to spread over or engulf most surfaces. Of particular interest to biomedical applications is the extremely high adsorption capacity of coacervated Mfp-3S on hydroxyapatite. PMID:24060881
Ooshio, Takako; Kobayashi, Reiko; Ikeda, Wataru; Miyata, Muneaki; Fukumoto, Yuri; Matsuzawa, Naomi; Ogita, Hisakazu; Takai, Yoshimi
2010-02-12
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with beta- and alpha-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-DeltaPR1-2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.
Ooshio, Takako; Kobayashi, Reiko; Ikeda, Wataru; Miyata, Muneaki; Fukumoto, Yuri; Matsuzawa, Naomi; Ogita, Hisakazu; Takai, Yoshimi
2010-01-01
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with β- and α-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-ΔPR1–2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells. PMID:20008323
Kind, T V
2010-01-01
The rate of Calliphora vicina haemocytic defense reaction to foreign particles injection depends on the larval age and on the previous bacterial immunization. Immunization of crop-empting larvae induces an evident increase in particles phagocytosis by juvenile plasmatocytes in 24 h after injection. Both the hemogram and the pattern of cellular defense reaction change significantly after crop-empting. Immunized larvae start intensive adhesion of foreign particles to plasmatocytes surface and formation of great aggregations of plasmatocytes (morules) no longer than in 34 min after injection. The period of particle-haemocyte adhesion is short-termed and no more than after 30 min cell aggregates dissociate and adhered charcoal particles pass to thrombocydoidal agglutinates. Unimmunized control larvae of the same age have shown no adhesion and morules formation. In immunized wadering and diapausing larvae, formation of capsules consisting of central thrombocydoidal agglutinate filled with alien particles and adherent plasmatocytes I is intensified. In contrast to moru-les, this capsule formation is not accompanied by charcoal particles adhesion to plasmatocytes. Immunization of mature larvae of C. vicina shown no prominent influence on both the rate of phagocytosis and the hyaline cells differentiation. It might be supposed that the receptors system is complex and the immunization both the mechanisms of foreigners recognition (adhesion, morulation and incapsulation) and the far more lately occurring phagocytosis.
Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects
NASA Astrophysics Data System (ADS)
Kaur, Sarbjit
Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 +/- 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.
Magruder, Hilary T.; Quinn, Jeffrey A.; Schwartzbauer, Jean E.; Reichner, Jonathan; Huang, Allan
2016-01-01
The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in “hanging drop” assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression. PMID:25096985
Zhang, Lin; Sun, Yan
2014-04-29
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
De-adhesion dynamics of melanoma cells from brain endothelial layer.
Varga, Béla; Domokos, Réka Anita; Fazakas, Csilla; Wilhelm, Imola; Krizbai, István A; Szegletes, Zsolt; Gergely, Csilla; Váró, György; Végh, Attila G
2018-03-01
Metastasis formation is a complex and not entirely understood process. The poorest prognosis and the most feared complications are associated to brain metastases. Melanoma derived brain metastases show the highest prevalence. Due to the lack of classical lymphatic drainage, in the process of brain metastases formation the haematogenous route is of primordial importance. The first and crucial step in this multistep process is the establishment of firm adhesion between the blood travelling melanoma cells and the tightly connected layer of the endothelium, which is the fundamental structure of the blood-brain barrier. This study compares the de-adhesion properties and dynamics of three melanoma cells types (WM35, A2058 and A375) to a confluent layer of brain micro-capillary endothelial cells. Cell type dependent adhesion characteristics are presented, pointing towards the existence of metastatic potential related nanomechanical aspects. Apparent mechanical properties such as elasticity, maximal adhesion force, number, size and distance of individual rupture events showed altered values pointing towards cell type dependent aspects. Our results underline the importance of mechanical details in case of intercellular interactions. Nevertheless, it suggests that in adequate circumstances elastic and adhesive characterizations might be used as biomarkers. Copyright © 2017. Published by Elsevier B.V.
Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal
2017-09-05
Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.
Improved adhesion of Ni films on X-ray damaged polytetrafluoroethylene
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Pepper, S. V.
1981-01-01
The considered investigation shows that the adhesion of evaporated Ni on polytetrafluoroethylene (PTFE) is enhanced by irradiating the PTFE surface prior to evaporation. Evidence obtained with the aid of X-ray photoelectron spectroscopy is presented concerning the association of the enhanced adhesion with an interfacial chemical reaction. Evaporated Ni clearly adheres better to the X-ray damaged PTFE surface than to the undamaged surface. There is evidence that the improved adhesion is not related to the Ni-C bond, but rather to the NiF2. A possible mechanism which may be consistent with the data is the formation of a F-Ni-C complex, where C is a member of the polymer chain.
CD44 in cancer progression: adhesion, migration and growth regulation.
Marhaba, R; Zöller, M
2004-03-01
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.
2016-01-01
The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294
Changes in E-cadherin rigidity sensing regulate cell adhesion.
Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James
2017-07-18
Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.
Changes in E-cadherin rigidity sensing regulate cell adhesion
Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James
2017-01-01
Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019
[Pathogenesis of adhesions formation after intraabdominal operations].
Voskanian, S É; Kyzlasov, P S
2011-01-01
The article describes the pathogenesis of adhesions formation after intraabdominal operations. Described predisposing factors leading of which is mechanical trauma, resulting from the use of surgical instruments, rough manipulations during surgery, damage to the mesothelium by dry gauze etc, which cause the adhesions. The pathogenesis of adhesions formation after intraabdominal surgery is presented in outline form, which described the changes occurring in the body starting with combination of predisposing factors and ending with the development of adhesions with blood vessels by 7-12 days after surgery. At the genetic level predisposition to adhesions formation and development of adhesive disease is treated as a manifestation of rapid acetylation phenotype, in which the intensity of fibrin formation exceeds normal rate of its catabolism. Thus, according to modem concepts, adhesive disease is a separate nosologic unit that dictates the necessity of its detailed study, development and introduction new universal methods of preventing the adhesions formation after intraabdominal operations.
Pathogenesis of rhegmatogenous retinal detachment: predisposing anatomy and cell biology.
Mitry, Danny; Fleck, Brian W; Wright, Alan F; Campbell, Harry; Charteris, David G
2010-01-01
The pathogenesis of rhegmatogenous retinal detachment is complex, and our knowledge of the exact mechanism of vitreoretinal attachment and detachment remains incomplete. We performed a Medline, Ovid, and EMBASE search using search words rhegmatogenous, retinal detachment, vitreous, and retinal adhesion. All appropriate articles were reviewed, and the evidence was compiled. Cortical vitreous contains fibrillar collagens type II, V/XI, and IX. The inner limiting membrane of the retina contains collagens type I, IV, VI, and XVIII as well as numerous other glycoproteins and potential adhesion molecules. The distribution and age-related changes in the structure of these molecules play an important role in the formation of a retinal break, which may compromise and disrupt the normal mechanisms of neurosensory retinal adhesion. Rhegmatogenous retinal detachment development is intimately related to changes in the fibrillar structure of the aging vitreous culminating in posterior vitreous detachment with regions of persistent and tangential vitreoretinal traction predisposing to retinal tear formation. A complex interplay of factors such as weakening of vitreoretinal adhesion, posterior migration of the vitreous base, and molecular changes at the vitreoretinal interface are important in predisposing to focal areas of vitreoretinal traction precipitating rhegmatogenous retinal detachment. Once formed, the passage of liquefied vitreous through a retinal break may overwhelm normal neurosensory-retinal pigment epithelium adhesion perpetuating and extending detachment and causing visual loss. To understand the molecular events underlying rhegmatogenous retinal detachment so that new therapies can be developed, it is important to appreciate the structural organization of the vitreous, the biology underlying vitreous liquefaction and posterior vitreous detachment, and the mechanisms of vitreoretinal attachment and detachment.
Molecular cell biology and physiology of solute transport
Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li
2010-01-01
Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392
Hybrid copper complex-derived conductive patterns printed on polyimide substrates
NASA Astrophysics Data System (ADS)
Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho
2012-06-01
We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.
Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra; Sato, Francielle; Benetti, Ana R; Pascotto, Renata C
2012-06-01
The purpose of this study was to provide the physicochemical interactions at the interfaces between two commercial etch-&-rinse adhesives and human dentin in a simulated moist bond technique. Six dentin specimens were divided into two groups (n=3) according to the use of two different adhesive systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems alone. Acid-conditioning resulted in a decalcification pattern. Adhesive treated spectra subtraction suggested the occurrence of chemical bonding to dentin expressed through modifications of the OH stretching peak (3340 cm(-1)) and symmetric CH stretching (2900 cm(-1)) for both adhesives spectra; a decrease of orthophosphate absorption band (1040 to 970 cm(-1)) for adhesive A and a better resolved complex band formation (1270 to 970 cm(-1)) for adhesive B were observed. These results suggested the occurrence of chemical bonding between sound human dentin and etch-&-rinse adhesives through a clinical typical condition.
Topical non-barrier agents for postoperative adhesion prevention in animal models.
Imai, Atsushi; Suzuki, Noriko
2010-04-01
Pelvic adhesion can form as a result of inflammation, endometriosis or surgical trauma. Most surgical procedures performed by obstetrician-gynecologists are associated with pelvic adhesions that may cause subsequent serious sequelae, including small bowel obstruction, infertility, chronic pelvic pain, and difficulty in postoperative treatment, including complexity during subsequent surgical procedures. An increasing number of adhesion reduction agents, in the form of site-specific and broad-coverage barriers and solutions, are becoming available to surgical teams. The most widely studied strategies include placing synthetic barrier agents between the pelvic structures. Most of the adhesions in the barrier-treated patients develop in uncovered areas in the abdomen. This fact suggests that the application of liquid or gel anti-adhesive agents to cover all potential peritoneal lesions, together with the use of barrier agents, may reduce the formation of postoperative adhesions. This article introduces the topical choices available for adhesion prevention mentioned in preliminary clinical applications and animal models. To date there is no substantial evidence that their use reduces the incidence of postoperative adhesions. In combination with good surgical techniques, these non-barrier agents may play an important role in adhesion reduction. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Assembly and mechanosensory function of focal adhesions: experiments and models.
Bershadsky, Alexander D; Ballestrem, Christoph; Carramusa, Letizia; Zilberman, Yuliya; Gilquin, Benoit; Khochbin, Saadi; Alexandrova, Antonina Y; Verkhovsky, Alexander B; Shemesh, Tom; Kozlov, Michael M
2006-04-01
Initial integrin-mediated cell-matrix adhesions (focal complexes) appear underneath the lamellipodia, in the regions of the "fast" centripetal flow driven by actin polymerization. Once formed, these adhesions convert the flow behind them into a "slow", myosin II-driven mode. Some focal complexes then turn into elongated focal adhesions (FAs) associated with contractile actomyosin bundles (stress fibers). Myosin II inhibition does not suppress formation of focal complexes but blocks their conversion into mature FAs and further FA growth. Application of external pulling force promotes FA growth even under conditions when myosin II activity is blocked. Thus, individual FAs behave as mechanosensors responding to the application of force by directional assembly. We proposed a thermodynamic model for the mechanosensitivity of FAs, taking into account that an elastic molecular aggregate subject to pulling forces tends to grow in the direction of force application by incorporating additional subunits. This simple model can explain a variety of processes typical of FA behavior. Assembly of FAs is triggered by the small G-protein Rho via activation of two major targets, Rho-associated kinase (ROCK) and the formin homology protein, Dia1. ROCK controls creation of myosin II-driven forces, while Dia1 is involved in the response of FAs to these forces. Expression of the active form of Dia1, allows the external force-induced assembly of mature FAs, even in conditions when Rho is inhibited. Conversely, downregulation of Dia1 by siRNA prevents FA maturation even if Rho is activated. Dia1 and other formins cap barbed (fast growing) ends of actin filaments, allowing insertion of the new actin monomers. We suggested a novel mechanism of such "leaky" capping based on an assumption of elasticity of the formin/barbed end complex. Our model predicts that formin-mediated actin polymerization should be greatly enhanced by application of external pulling force. Thus, the formin-actin complex might represent an elementary mechanosensing device responding to force by enhancement of actin assembly. In addition to its role in actin polymerization, Dia1 seems to be involved in formation of links between actin filaments and microtubules affecting microtubule dynamics. Alpha-tubulin deacetylase HDAC6 cooperates with Dia1 in formation of such links. Since microtubules are known to promote FA disassembly, the Dia1-mediated effect on microtubule dynamics may possibly play a role in the negative feedback loop controlling size and turnover of FAs.
Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza
2015-01-01
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon–axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type–specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule–mediated axon–axon interactions that enable precise assembly of complex neuronal circuits. PMID:25825519
Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza; Pielage, Jan
2015-03-30
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits. © 2015 Siegenthaler et al.
Pulpo-dentin complex response after direct capping with self-etch adhesive systems.
Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga
2012-01-01
The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.
The role of Proteus mirabilis cell wall features in biofilm formation.
Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław
2016-11-01
Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.
Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Murata, Hitoshi; Watanabe, Masami; Huang, Peng; Kinoshita, Rie; Futami, Junichiro; Inoue, Yusuke; Yamauchi, Akira; Sumardika, I Wayan; Youyi, Chen; Yamamoto, Ken-Ichi; Nasu, Yasutomo; Nishibori, Masahiro; Hibino, Toshihiko; Sakaguchi, Masakiyo
2016-08-01
The dynamic interaction between tumor cells and their microenvironment induces a proinflammatory milieu that drives cancer development and progression. The S100A8/A9 complex has been implicated in chronic inflammation, tumor development, and progression. The cancer microenvironment contributes to the up-regulation of this protein complex in many invasive tumors, which is associated with the formation of pre-metastatic niches and poor prognosis. Changing adhesive preference of cancer cells is at the core of the metastatic process that governs the reciprocal interactions of cancer cells with the extracellular matrices and neighboring stromal cells. Cell adhesion molecules (CAMs) have been confirmed to have high-level expression in various highly invasive tumors. The expression and function of CAMs are profoundly influenced by the extracellular milieu. S100A8/A9 mediates its effects by binding to cell surface receptors, such as heparan sulfate, TLR4 and RAGE on immune and tumor cells. RAGE has recently been identified as an adhesion molecule and has considerably high identity and similarity to ALCAM and MCAM, which are frequently over-expressed on metastatic malignant melanoma cells. In this study, we demonstrated that ALCAM and MCAM also function as S100A8/A9 receptors as does RAGE and induce malignant melanoma progression by NF-κB activation and ROS formation. Notably, MCAM not only activated NF-κB more prominently than ALCAM and RAGE did but also mediated intracellular signaling for the formation of lung metastasis. MCAM is known to be involved in malignant melanoma development and progression through several mechanisms. Therefore, MCAM is a potential effective target in malignant melanoma treatment.
Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G
1998-03-01
To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.
Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G
2015-01-01
We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.
Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G.
2015-01-01
We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity. PMID:25814989
Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen
2016-01-01
P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779
Kim, Byunghyuk; Emmons, Scott W
2017-09-13
Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans , we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.
Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways
Ho, Ernest; Dagnino, Lina
2012-01-01
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury. PMID:22568984
Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways.
Ho, Ernest; Dagnino, Lina
2012-01-01
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury.
Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland
2001-01-01
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930
Oner, Gokalp; Ulug, Pasa; Demirci, Elif; Kumtepe, Yakup; Gündogdu, Cemal
2015-01-01
To evaluate the effects of fulvestrant and micronized progesterone on post-operative adhesion formation and ovarian reserve in a rat uterine horn adhesion. In this prospective randomized controlled trial, 32 female Wistar albino rats were randomly divided into four groups including control group (Group 1), the control adhesion group (Group 2), 1 mg/kg daily intramuscular fulvestrant received group (Group 3) and 1 mg/kg daily oral micronized progesterone received group (Group 4). The extent and severity of adhesions were scored and samples were taken from adhesion areas to investigate the grades of adhesions according to the immunohistochemical scoring system. Ovarian reserves were measured with anti-Müllerian hormone (AMH) and histological ovarian follicles count. The extent, severity and total adhesion scores were reduced in all treatment groups compared to control adhesion group (Group 2). Similarly, immunohistochemical adhesion scores were lower in the treatment groups. AMH and follicle count were significantly found lower in adhesion groups compared with control group. However, treatment groups were found to have higher ovarian reserve compared to control adhesion group (Group 2). Fulvestrant and micronized progesterone were found to reduce post-operative adhesion formations and have decreased detrimental effects of adhesion formation on ovarian reserve.
Lee, Sang-Bae; González-Cabezas, Carlos; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kuroda, Kenichi
2015-08-10
This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe(3+) additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe-catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives.
2015-01-01
This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305
Jałyński, Marek; Piskorz, Łukasz; Brocki, Marian
2013-01-01
Introduction Formation of adhesions after laparoscopic hernia repair using the intra-peritoneal onlay mesh (IPOM) procedure can lead to intestinal obstruction or mesh erosion into intestinal lumen. The aims of this study included: measurement of adhesion formation with Dynamesh IPOM after laparoscopic intraperitoneal implantation, and assessment of the occurrence of isolated adhesions at the fastening sites of slowly absorbable sutures. Material and methods Twelve healthy pigs underwent laparoscopic implantation of 2 Dynamesh IPOM mesh fragments each, one was fastened with PDSII, and the other with Maxon sutures. An assessment of adhesion formation was carried out after 6 weeks and included an evaluation of surface area, hardness according to the Zhulke scale, and index values. The occurrence of isolated adhesions at slowly absorbable suture fixation points was also analyzed. Results Adhesions were noted in 83.3% of Dynamesh IPOM meshes. Adhesions covered on average 37.7% of the mesh surface with mean hardness 1.46 and index value 78.8. In groups fixed with PDS in comparison to Maxon sutures adhesions covered mean 31.6% vs. 42.5% (p = 0.62) of the mesh surface, mean hardness was 1.67 vs.1.25 (p = 0.34) and index 85.42 vs. 72.02 (p = 0.95). Conclusions The Dynamesh IPOM mesh, in spite of its anti-adhesive layer of PVDF, does not prevent the formation of adhesions. Adhesion hardness, surface area, and index values of the Dynamesh IPOM mesh are close to the mean values of these parameters for other commercially available 2-layer meshes. Slowly absorbable sutures used for fastening did not increase the risk of adhesion formation. PMID:23847671
Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).
Kim, Yul-Min; Kim, Jae-heon
2004-03-01
The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.
Assay for adhesion and agar invasion in S. cerevisiae.
Guldal, Cemile G; Broach, James
2006-11-08
Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth of large spots, which we then wash with water to assess adhesion and rub cells completely off the agar surface to assess invasion into the agar. We eliminate the need for streaking cells onto agar, which affects the invasion of cells into the agar. In general, we observed that haploid strains that invade agar are always adhesive, yet not all adhesive strains can invade agar medium. Our approach can be used in conjunction with other assays to carefully dissect the differentiation steps and requirements of yeast signal transduction, differentiation, quorum sensing, and biofilm formation.
Assay for Adhesion and Agar Invasion in S. cerevisiae
Guldal, Cemile G; Broach, James
2006-01-01
Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth of large spots, which we then wash with water to assess adhesion and rub cells completely off the agar surface to assess invasion into the agar. We eliminate the need for streaking cells onto agar, which affects the invasion of cells into the agar. In general, we observed that haploid strains that invade agar are always adhesive, yet not all adhesive strains can invade agar medium. Our approach can be used in conjunction with other assays to carefully dissect the differentiation steps and requirements of yeast signal transduction, differentiation, quorum sensing, and biofilm formation. PMID:18704175
Reduction of retrosternal and pericardial adhesions with rapidly resorbable polymer films.
Okuyama, N; Wang, C Y; Rose, E A; Rodgers, K E; Pines, E; diZerega, G S; Oz, M C
1999-09-01
The formation of postoperative cardiac adhesions makes a repeat sternotomy time consuming and dangerous. Many attempts have been made to solve this problem by using either drugs to inhibit fibrinolytic activity or different types of pericardial substitutes. The results have not been satisfactory. The efficacy of bioresorbable film prototypes made of polyethylene glycol (EO) and polylactic acid (LA) (EO/LA = 1.5, 2.5, and 3.0) in the prevention of adhesions after cardiac operations in canine models was tested. After desiccation and abrasion of the epicardium, a transparent bioresorbable film was placed over the heart. The pericardium was closed to allow intrapericardial adhesions (n = 32) or left open and attached to the chest wall to induce retrosternal adhesions (n = 17). Postoperative recovery was similar among the groups. Retrosternal and pericardial adhesions were evaluated at necropsy 3 weeks later by assessing area, tenacity, and density of the adhesions. In the control dogs, tenacious, dense adhesions were observed. In contrast, adhesion formation was reduced at all sites covered by the films. The bioresorbable films were efficacious in the reduction of adhesion formation between epicardium and pericardium or between epicardium and sternum after cardiac operation. The EO/LA 1.5 film most effectively prevented the early adhesions. The bioresorbable films (EO/LA = 1.5, 2.5, and 3.0) significantly reduced adhesion formation, with EO/LA = 1.5 (Repel CV) being optimal. As the barrier was rapidly resorbed, the capsule formation induced by permanent barriers was avoided.
Adhesion and formation of microbial biofilms in complex microfluidic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Aloke; Karig, David K; Neethirajan, Suresh
2012-01-01
Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles inmore » the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.« less
Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model
Li, Fang; Wang, Ping; Weir, Michael D.; Fouad, Ashraf F.; Xu, Hockin H. K.
2014-01-01
Antibacterial and remineralizing dental composites and adhesives were recently developed to inhibit biofilm acids and combat secondary caries. It is not clear what effect these materials will have on dental pulps in vivo. The objectives of this study were to investigate the antibacterial and remineralizing restorations in a rat tooth cavity model, and determine pulpal inflammatory response and tertiary dentin formation. Nanoparticles of amorphous calcium phosphate (NACP) and antibacterial dimethylaminododecyl methacrylate (DMADDM) were synthesized and incorporated into a composite and an adhesive. Occlusal cavities were prepared in the first molars of rats and restored with four types of restoration: Control composite and adhesive; control plus DMADDM; control plus NACP; and control plus both DMADDM and NACP. At 8 or 30 days (d), rat molars were harvested for histological analysis. For inflammatory cell response, regardless of time periods, NACP group and DMADDM+NACP group showed lower scores (better biocompatibility) than control group (p = 0.014 for 8 d, p = 0.018 for 30 d). For tissue disorganization, NACP and DMADDM+NACP had better scores than control (p = 0.027) at 30 d. At 8 d, restorations containing NACP had tertiary dentin thickness (TDT) that was 5-6 fold that of control. At 30 d, restorations containing NACP had TDT that was 4-6 fold that of control. In conclusion, novel antibacterial and remineralizing restorations were tested in rat teeth in vivo for the first time. Composite and adhesive containing NACP and DMADDM exhibited milder pulpal inflammation and much greater tertiary dentin formation, than control adhesive and composite. Therefore, the novel composite and adhesive containing NACP and DMADDM are promising as a new therapeutic restorative system to not only combat oral pathogens and biofilm acids as shown previously, but also facilitate the healing of the dentin-pulp complex. PMID:24583320
Guadarrama Bello, Dainelys; Fouillen, Aurélien; Badia, Antonella; Nanci, Antonio
2017-09-15
While topography is a key determinant of the cellular response to biomaterials, the mechanisms implicated in the cell-surface interactions are complex and still not fully elucidated. In this context, we have examined the effect of nanoscale topography on the formation of filopodia, focal adhesions, and gene expression of proteins associated with cell adhesion and sensing. Commercially pure titanium discs were treated by oxidative nanopatterning with a solution of H 2 SO 4 /H 2 O 2 50:50 (v/v). Scanning electron microscopy and atomic force microscopy characterizations showed that this facile chemical treatment efficiently creates a unique nanoporous surface with a root-mean-square roughness of 11.5nm and pore diameter of 20±5nm. Osteogenic cells were cultured on polished (control) and nanotextured discs for periods of 6, 24, and 72h. Immunofluorescence analysis revealed increases in the adhesion formation per cell area, focal adhesion length, and maturity on the nanoporous surface. Gene expression for various focal adhesion markers, including paxillin and talin, and different integrins (e.g. α1, β1, and α5) was also significantly increased. Scanning electron microscopy revealed the presence of more filopodia on cells grown on the nanoporous surface. These cell extensions displayed abundant and distinctive nanoscale lateral protrusions of 10-15nm diameter that molded the nanopore walls. Together the increase in the focal adhesions and abundance of filopodia and associated protrusions could contribute to strengthening the adhesive interaction of cells with the surface, and thereby, alter the nanoscale biomechanical relationships that trigger cellular cascades that regulate cell behavior. Oxidative patterning was exploited to create a unique three-dimensional network of nanopores on titanium surfaces. Our study illustrates how a facile chemical treatment can be advantageously used to modulate cellular behavior. The nanoscale lateral protrusions on filopodia elicited by this surface are novel adhesive structures. Altogether, the increases in focal adhesion, length, maturity, and filopodia with distinctive lateral protrusions could substantially increase the contact area and adhesion strength of cells, thereby promoting the activation of cellular signaling cascades that may explain the positive osteogenic outcomes previously achieved with this surface. Such physicochemical cueing offers a simple attractive alternative to the use of bioactive agents for guiding tissue repair/regeneration around implantable metals. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A Chitosan-Based Sinus Sealant for Reduction of Adhesion Formation in Rabbit and Sheep Models
Medina, Jennifer G.; Steinke, John W.; Das, Subinoy
2013-01-01
Objective Chronic sinusitis is the most prevalent chronic disease in the United States in adults aged 18 to 44 years, with approximately 250,000 operations performed annually. Although often successful, sinus surgery fails in greater than 15% of patients. Adhesion formation is a common complication and cause for subsequent revision surgery. Here, the authors evaluate a sprayable chitosan/starch-based sinus sealant and demonstrate its ability to reduce adhesion formation both in vitro and in 2 animal models. Study Design Randomized, controlled, animal trials. Setting Academic medical center (fibroblast experiments) and animal laboratories (sheep and rabbit studies). Subjects and Methods This sinus sealant was applied to human cultured fibroblasts obtained from surgically removed polyps to examine its ability to inhibit fibroblast migration and proliferation. The sinus sealant was applied to New Zealand White rabbits (n = 20) in an established cecal-sidewall abrasion model and to sheep (n = 10) in a sinus surgical adhesion model to examine its ability to reduce adhesion formation. Results This sinus sealant inhibited migration and proliferation of human cultured fibroblasts and reduced the total adhesion score from 4.9 to 0.3 for a total reduction of 94% (95th percentile confidence interval [CI], 78%, 100%; P < .001) in a well-established rabbit cecal-sidewall model commonly used for adhesion testing. Moreover, this sealant reduced adhesion formation from 80% to 10% for a total reduction of 70% (95th percentile CI, 57%, 93%; P = .003) in a sheep sinus adhesion surgical model. Conclusion This chitosan-based sealant demonstrates promise for reducing adhesion formation in sinus surgery. PMID:22492298
Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina
2003-03-28
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.
Liakakos, T; Thomakos, N; Fine, P M; Dervenis, C; Young, R L
2001-01-01
To summarize the most common etiologic factors and describe the pathophysiology in the formation of peritoneal adhesions, to outline their clinical significance and consequences, and to evaluate the pharmacologic, mechanical, and surgical adjuvant strategies to minimize peritoneal adhesion formation. We performed an extensive MEDLINE search of the internationally published English literature of all medical and epidemiological journal articles, textbooks, scientific reports, and scientific journals from 1940 to 1997. We also reviewed reference lists in all the articles retrieved in the search as well as those of major texts regarding intraperitoneal postsurgical adhesion formation. All sources identified were reviewed with particular attention to risk factors, pathophysiology, clinical manifestations, various methods, and innovative techniques for effectively and safely reducing the formation of postsurgical adhesions. The formation of postoperative peritoneal adhesions is an important complication following gynecological and general abdominal surgery, leading to clinical and significant economical consequences. Adhesion occur in more than 90% of the patients following major abdominal surgery and in 55-100% of the women undergoing pelvic surgery. Small-bowel obstruction, infertility, chronic abdominal and pelvic pain, and difficult reoperative surgery are the most common consequences of peritoneal adhesions. Despite elaborate efforts to develop effective strategies to reduce or prevent adhesions, their formation remains a frequent occurrence after abdominal surgery. Until additional information and findings from future clinical investigations exist, only a meticulous surgical technique can be advocated in order to reduce unnecessary morbidity and mortality rates from these untoward effects of surgery. Copyright 2001 S. Karger AG, Basel
Prakash, Saurabh; Maclendon, Helen; Dubreuil, Catherine I.; Ghose, Aurnab; Hwa, Jennifer; Dennehy, Kelly A.; Tomalty, Katharine M.H.; Clark, Kelsey; Van Vactor, David; Clandinin, Thomas R.
2009-01-01
The formation of stable adhesive contacts between pre- and post-synaptic neurons represents the initial step in synapse assembly. The cell adhesion molecule N-cadherin, the receptor tyrosine phosphatase DLAR, and the scaffolding molecule Liprin-α play critical, evolutionarily conserved roles in this process. However, how these proteins signal to the growth cone, and are themselves regulated, remains poorly understood. Using Drosophila photoreceptors (R cells) as a model, we evaluate genetic and physical interactions among these three proteins. We demonstrate that DLAR function in this context is independent of phosphatase activity, but requires interactions mediated by its intracellular domain. Genetic studies reveal both positive and, surprisingly, inhibitory interactions amongst all three genes. These observations are corroborated by biochemical studies demonstrating that DLAR physically associates via its phosphatase domain with N-cadherin in Drosophila embryos. Together, these data demonstrate that N-cadherin, DLAR, and Liprin-α function in a complex to regulate adhesive interactions between pre- and post-synaptic cells, and provide a novel mechanism for controlling the activity of liprin-α in the developing growth cone. PMID:19766621
Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.
Walker, P G; Alshorman, A A; Westwood, S; David, T
2002-01-01
Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan
2018-01-01
Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.
Conductive Adhesive Based on Mussel-Inspired Graphene Decoration with Silver Nanoparticles.
Casa, Marcello; Sarno, Maria; Liguori, Rosalba; Cirillo, Claudia; Rubino, Alfredo; Bezzeccheri, Emanuele; Liu, Johan; Ciambelli, Paolo
2018-02-01
Decoration with silver nanoparticles was obtained by coating graphene with a polydopamine layer, able to induce spontaneous metallic nanoparticles formation without any specific chemical interfacial modifier, neither using complex instrumentation. The choice of dopamine was inspired by the composition of adhesive proteins in mussels, related to their robust attach to solid surfaces. The synthesis procedure started from graphite and involved eco-friendly compounds, such as Vitamin C and glucose as reducing agent and water as reaction medium. Silver decorated graphene was inserted as secondary nanofiller in the formulation of a reference conductive adhesive based on epoxy resin and silver flakes. A wide characterization of the intermediate materials obtained along the step procedure for the adhesive preparation was carried out by several techniques. We have found that the presence of nanofiller yields, in addition to an improvement of the thermal conductivity (up to 7.6 W/m · K), a dramatic enhancement of the electrical conductivity of the adhesive. In particular, starting from 3 · 102 S/cm of the reference adhesive, we obtained a value of 4 · 104 S/cm at a nanofiller concentration of 11.5 wt%. The combined double filler conductivity was evaluated by Zallen's model. The effect of the temperature on the resistivity of the adhesive has been also studied.
Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling
Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less
Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording.
Priel, Avi; Gil, Ziv; Moy, Vincent T; Magleby, Karl L; Silberberg, Shai D
2007-06-01
Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossier, Olivier; Giannone, Grégory; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements andmore » interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.« less
Rossier, Olivier; Giannone, Grégory
2016-04-10
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells. Copyright © 2015. Published by Elsevier Inc.
Kerosuo, Laura; Bronner, Marianne E.
2014-01-01
Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680
Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.
Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping
2018-05-01
Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
Focal Contacts as Mechanosensors
Riveline, Daniel; Zamir, Eli; Balaban, Nathalie Q.; Schwarz, Ulrich S.; Ishizaki, Toshimasa; Narumiya, Shuh; Kam, Zvi; Geiger, Benjamin; Bershadsky, Alexander D.
2001-01-01
The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force. PMID:11402062
Isolation of integrin-based adhesion complexes.
Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J
2015-03-02
The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.
The preventive effect of Rofecoxib in postoperative intraperitoneal adhesions.
Aldemir, M; Oztürk, H; Erten, C; Büyükbayram, H
2004-02-01
Previous studies showed that nonsteroidal anti-inflammatory (NSAI) drugs suppressed prostaglandin synthesis and were able to prevent adhesion formation following surgical trauma to the peritoneum. The selective suppression inflammatory cascade may prevent adhesion formation. Therefore, we planned this study to experimentally evaluate the effects of Rofecoxib, the selective cyclo-oxygenase-2 inhibitor, in postoperative intraperitoneal adhesions in an animal model. Male Sprague-Dawley rats were divided into three groups of 10. All rats underwent midline laparotomy under ketamine anaesthesia (25 mg/kg im). In group 1 (n = 10), the sham operation group (SG); abdominal walls were closed without any process after 2 minutes. In Group 2 (n = 10), the control group (CG); standard serosal damage was constituted and the abdominal wall was closed. In group 3 (n = 10), the COX-2 group (COXG), after serosal damage, the abdominal wall was closed. A 12 mg/kg/day dose of was given orally to the rats during one week. On the 7th postoperative day, all rats were sacrificed and intra-abdominal adhesions were evaluated both macroscopically and microscopically. Macroscopically, no serious adhesion formations were seen in the SG. Multiple adhesion formations of the CG were significantly more than those of the SG (p < 0.0001). It was determined that adhesions of the COXG diminished (p < 0.0001) when macromorphological adhesion scale results of the COXG were compared with those of the CG. The adhesion scores of the CG were compared microscopically with those of the COXG and granulation tissue formation and fibrosis in the COXG were found to be significantly less than those of the CG (respectively p = 0.002, p < 0.0001). We were of the opinion that Rofecoxib, the selective cyclo-oxygenase inhibitor, was effective in the prevention of postoperative peritoneal adhesions.
Effect of Emodin on Preventing Postoperative Intra-Abdominal Adhesion Formation.
Wei, Guangbing; Wu, Yunhua; Gao, Qi; Zhou, Cancan; Wang, Kai; Shen, Cong; Wang, Guanghui; Wang, Kang; Sun, Xuejun; Li, Xuqi
2017-01-01
Postoperative intra-abdominal adhesions are a major complication after abdominal surgery. Although various methods have been used to prevent and treat adhesions, the effects have not been satisfactory. Emodin, a naturally occurring anthraquinone derivative and an active ingredient in traditional Chinese herbs, exhibits a variety of pharmacological effects. In our study, we demonstrated the effect of emodin treatment on preventing postoperative adhesion formation. A total of 48 rats were divided into six groups. Abdominal adhesions were created by abrasion of the cecum and its opposite abdominal wall. In the experimental groups, the rats were administered daily oral doses of emodin. On the seventh day after operation, the rats were euthanized, and blood and pathological specimens were collected. Abdominal adhesion formation was evaluated by necropsy, pathology, immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay analyses. Abdominal adhesions were markedly reduced by emodin treatment. Compared with the control group, collagen deposition was reduced and the peritoneal mesothelial completeness rate was higher in the emodin-treated groups. Emodin had anti-inflammatory effects, reduced oxidative stress, and promoted the movement of the intestinal tract ( P < 0.05). Emodin significantly reduced intra-abdominal adhesion formation in a rat model.
Effect of Emodin on Preventing Postoperative Intra-Abdominal Adhesion Formation
Wei, Guangbing; Zhou, Cancan; Wang, Guanghui; Wang, Kang
2017-01-01
Background Postoperative intra-abdominal adhesions are a major complication after abdominal surgery. Although various methods have been used to prevent and treat adhesions, the effects have not been satisfactory. Emodin, a naturally occurring anthraquinone derivative and an active ingredient in traditional Chinese herbs, exhibits a variety of pharmacological effects. In our study, we demonstrated the effect of emodin treatment on preventing postoperative adhesion formation. Materials and Methods A total of 48 rats were divided into six groups. Abdominal adhesions were created by abrasion of the cecum and its opposite abdominal wall. In the experimental groups, the rats were administered daily oral doses of emodin. On the seventh day after operation, the rats were euthanized, and blood and pathological specimens were collected. Abdominal adhesion formation was evaluated by necropsy, pathology, immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay analyses. Results Abdominal adhesions were markedly reduced by emodin treatment. Compared with the control group, collagen deposition was reduced and the peritoneal mesothelial completeness rate was higher in the emodin-treated groups. Emodin had anti-inflammatory effects, reduced oxidative stress, and promoted the movement of the intestinal tract (P < 0.05). Conclusion Emodin significantly reduced intra-abdominal adhesion formation in a rat model. PMID:28831292
Panahi, Farzad; Sadraie, Seyed Homayoon; Khoshmohabat, Hadi; Shahram, Elias; Kaka, Gholamreza; Hosseinalipour, Mohammad
2012-01-01
Adhesion formation after abdominal surgery is a major cause of postoperative bowel obstruction, infertility, and chronic abdominal pain. In this study, we evaluated the effect of normal saline and methylene blue (MB) on postoperative adhesion formation in a rat cecum model. A total of 30 Wistar female rats in 2 treatment and 1 control groups underwent midline laparotomy and standardized abrasion of the visceral peritoneum. Normal saline and methylene blue were administrated intraperitoneally at the end of the surgical procedure in 2 treatment groups. Fourteen days after surgery, a re-laparotomy was performed for macroscopic and pathological assessment. The adhesion grade and extent of the normal saline group was lower than control and MB groups in macroscopic assessment (P<0.05 for both). A comparison of adhesion stages in pathological assessment showed increment in abdominal adhesion by usage methylene blue 1% and demonstrated significant difference between MB and 2 other groups (P<0.05). Administrated normal saline individually reduce the adhesion grade near cecum. Conversely, usage of methylene blue 1% may unpredictably increase risk of adhesion formation. Copyright © 2012 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Adhesion formation after previous caesarean section-a meta-analysis and systematic review.
Shi, Z; Ma, L; Yang, Y; Wang, H; Schreiber, A; Li, X; Tai, S; Zhao, X; Teng, J; Zhang, L; Lu, W; An, Y; Alla, N R; Cui, T
2011-03-01
The optimal technique for performing caesarean section with respect to minimising postoperative adhesions has not been determined. To evaluate adhesion formation for three common caesarean section techniques in women undergoing repeat caesarean section surgeries. A database was constructed from Medline, EMBASE, Cochrane Library, National Science Digital Library, China Biological Medicine Database and through contact with experts in this field from January 1990 to May 2010. Studies were included if they examined adhesion formation in repeat caesarean sections as a primary objective, delineated a clear study design, specified an adhesion scoring system, and had sufficient patient exclusion criteria. We abstracted data regarding adhesion formation. The Mantel-Haenszel random-effects model was employed for all analyses using odds ratio or inverse variance, along with 95% CI. Thirty-three qualified studies including 4423 women were analysed. There were 406 adhesions among 571 women and 238 adhesions among 596 women in the Stark's caesarean section (also known as Misgav-Ladach method) group and modified Stark's caesarean section group, respectively, with pooled OR 4.69 (95% CI 3.32-6.62; P < 0.01, 12 studies); 1173 adhesions among 1555 women and 1179 adhesions among 1625 women in Stark's caesarean section group and classic lower-segment caesarean section group, respectively, with pooled odds ratio 1.28 (95% CI 0.97-1.68; P = 0.08, 21 studies); and 29 adhesions from 102 women and 115 adhesions from 193 women in modified Stark's caesarean section group and classic lower-segment caesarean section group, respectively, with pooled odds ratio 0.28 (95% CI 0.10-0.82; P = 0.02, two studies). Closure of the peritoneum in modified Stark's caesarean section resulted in less adhesion formation and should be recommended. © 2010 The Authors Journal compilation © RCOG 2010 BJOG An International Journal of Obstetrics and Gynaecology.
Brochhausen, Christoph; Schmitt, Volker H; Rajab, Taufiek K; Planck, Constanze N E; Krämer, Bernhard; Wallwiener, Markus; Hierlemann, Helmut; Kirkpatrick, C James
2011-07-01
Peritoneal adhesions remain a relevant clinical problem despite the currently available prophylactic barrier materials. So far, the physical separation of traumatized serosa areas using barriers represents the most important clinical strategy for adhesion prevention. However, the optimal material has not yet been found. Further optimization or pharmacological functionalization of these barriers could give an innovative input for peritoneal adhesion prevention. Therefore, a more complete understanding of pathogenesis is required. On the basis of the pathophysiology of adhesion formation the main barriers currently in clinical practice as well as new innovations are discussed in the present review. Physiologically, mesothelial cells play a decisive role in providing a frictionless gliding surface on the serosa. Adhesion formation results from a cascade of events and is regulated by a variety of cellular and humoral factors. The main clinically applied strategy for adhesion prevention is based on the use of liquid or solid adhesion barriers to separate physically any denuded tissue. Both animal and human trials have not yet been able to identify the optimal barrier to prevent adhesion formation in a sustainable way. Therefore, further developments are required for effective prevention of postoperative adhesion formation. To reach this goal the combination of structural modification and pharmacological functionalization of barrier materials should be addressed. Achieving this aim requires the interaction between basic research, materials science and clinical expertise. Copyright © 2011 Wiley Periodicals, Inc.
Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim
2012-07-01
Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.
Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim
2012-01-01
Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens. PMID:22722243
Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon
2008-05-01
Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.
Tokita, Y; Satoh, K; Sakaguchi, M; Endoh, Y; Mori, I; Yuzurihara, M; Sakakibara, I; Kase, Y; Takeda, S; Sasaki, H
2007-04-01
The present study investigated the effect of Daikenchuto (DKT) on postoperative intestinal adhesion in rats. We evaluated the effects of DKT, constituent medical herbs and active compounds on talc-induced intestinal adhesion in rats and DKT-induced contractions using isolated guinea pig ileum. DKT significantly prevented adhesion formation, and this action was inhibited by pretreatment with atropine or ruthenium red. The constituent medical herbs, Zanthoxylum Fruit and Maltose Syrup Powder significantly prevented adhesion formation. Moreover, hydroxy sanshool (HS) prevented adhesion formation, and this action was inhibited by pretreatment with ruthenium red. In contrast, DKT-induced contractions were inhibited by tetrodotoxin, atropine, and capsazepine. These results suggested that DKT had a preventive action on postoperative adhesive intestinal obstruction, and that this action was mediated by sensory and cholinergic nerves. Furthermore, HS was found to be one of the active compound of DKT, and its action was mediated by sensory nerves.
Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás
2015-07-22
We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.
Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions
NASA Technical Reports Server (NTRS)
Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.
1998-01-01
The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.
Investigating intermolecular forces associated with thrombus initiation using optical tweezers
NASA Astrophysics Data System (ADS)
Arya, Maneesh; Lopez, Jose A.; Romo, Gabriel M.; Dong, Jing-Fei; McIntire, Larry V.; Moake, Joel L.; Anvari, Bahman
2002-05-01
Thrombus formation occurs when a platelet membrane receptor, glycoprotein (GP) Ib-IX-V complex, binds to its ligand, von Willebrand factor (vWf), in the subendothelium or plasma. To determine which GP Ib-IX-V amino acid sequences are critical for bond formation, we have used optical tweezers to measure forces involved in the binding of vWf to GP Ib-IX-V variants. Inasmuch as GP Ib(alpha) subunit is the primary component in human GP Ib-IX-V complex that binds to vWf, and that canine GP Ib(alpha) , on the other hand, does not bind to human vWf, we progressively replaced human GP Ib(alpha) amino acid sequences with canine GP Ib(alpha) sequences to determine the sequences essential for vWf/GP Ib(alpha) binding. After measuring the adhesive forces between optically trapped, vWf-coated beads and GP Ib(alpha) variants expressed on mammalian cells, we determined that leucine- rich repeat 2 of GP Ib(alpha) was necessary for vWf/GP Ib-IX- V bond formation. We also found that deletion of the N- terminal flanking sequence and leucine-rich repeat 1 reduced adhesion strength to vWf but did not abolish binding. While divalent cations are known to influence binding of vWf, addition of 1mM CaCl2 had no effect on measured vWf/GP Ib(alpha) bond strengths.
Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex
Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter
2012-01-01
Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260
Kapoor, Vidushi; Rai, Rajanikant; Thiyagarajan, Durairaj; Mukherjee, Sandipan; Das, Gopal; Ramesh, Aiyagari
2017-08-04
Zinc-complexing ligands are prospective anti-biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole-based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose-dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti-biofilm agent. The essential understanding of the structure-driven implications of zinc-complexing ligands acquired in this study might assist future screening regimes for identification of potent anti-biofilm agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta
2014-06-01
T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.
Wallwiener, Christian W; Kraemer, Bernhard; Wallwiener, Markus; Brochhausen, Christoph; Isaacson, Keith B; Rajab, Taufiek K
2010-03-01
To investigate the effect of three types of peritoneal trauma occurring during surgery (high-frequency bipolar current, suturing, and mechanical damage) on postoperative adhesion formation in a rodent animal model. Randomized, controlled experimental trial in an in vitro animal model. Laboratory facilities of a university department of obstetrics and gynecology. Thirty-five female Wistar rats. Bilateral experimental lesions were created on the abdominal wall in every animal. The effect of minimal electrocoagulation was examined by creating lesions (n = 14) through sweeps of a bipolar forceps with a duration of 1 second and standardized pressure. For extensive electrocoagulation standardized lesions (n = 14) were created using sweeps of a duration of 3 seconds and three times more pressure. For mechanical trauma, standardized lesions (n = 14) were created by denuding the peritoneum mechanically. To study the additive effect of suturing, experimental lesions were created by suturing plus minimal electrocoagulation (n = 14) or mechanical denuding (n = 14). Adhesion incidence, quantity, and quality of the resulting adhesions were scored 14 days postoperatively. Adhesions were studied histopathologically. Mechanical denuding of the peritoneum did not result in adhesion formation. After minimal electrocoagulation, mean adhesion quantity of the traumatized area averaged 0%. This contrasted with extensive electrocoagulation, where there was 50% adhesion. Additional suturing increased mean adhesion quantity to 73% and 64% for superficial electrocoagulation and mechanical denuding, respectively. We conclude that superficial trauma limited mostly to the parietal peritoneum may be a negligible factor in adhesion formation in this model. This appears to be irrespective of the mode of trauma. However, additional trauma to the underlying tissues, either by deeper electrocoagulation or suturing, leads to significantly increased adhesion formation. These data also show that there is a spectrum of electrocoagulation trauma at the lower end of which there is little adhesion formation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Bacterial adherence and biofilm formation on medical implants: a review.
Veerachamy, Suganthan; Yarlagadda, Tejasri; Manivasagam, Geetha; Yarlagadda, Prasad Kdv
2014-10-01
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants. © IMechE 2014.
Yilmaz, Erhan; Avci, Mustafa; Bulut, Mehmet; Kelestimur, Halidun; Karakurt, Lokman; Ozercan, Ibrahim
2010-03-01
Adhesion of the tendon, which can occur during healing of tendon repair, is negatively affected by the outcome of surgery. In this experimental study, we sought to prevent adhesion of the tendon, and determined the mechanical stiffness of repair tissue by wrapping sodium hyaluronate and carboxymethylcellulose (Seprafilm; Genzyme, Cambridge, Massachusetts) around the repaired tendon segments. The study group comprised 2 groups of 20 chickens. In group I, the right gastrocnemius tendons of the chickens were cut smoothly, and after tendon and sheath repair, the skin was sutured. In group II, the right gastrocnemius tendons of the chickens were cut, the tendons were repaired, and before skin closure, Seprafilm was wrapped around the repaired tendon segments. Plastic splints were used for holding the chickens' ankles in a neutral position, and they were allowed weight bearing for 8 weeks. In group II, anatomic space between the tendon-sheath and tendon was clear and the tendon-sheath complex was sliding easily around the repaired tendon segment, and this complex was more functional both biomechanically and histologically. Also, the Seprafilm-applied tendons (group II) were observed to be biomechanically more resistant to the tensile forces in group I. Seprafilm is an easily applied interpositional material that can be used safely to prevent adhesion during the tendon healing process. Copyright 2010, SLACK Incorporated.
Cellular events in adhesion formation due to thermal trauma.
Kaplun, A; Aronson, M; Halperin, B; Griffel, B
1984-01-01
Consequent to thermal traumatization of the intestinal wall of the mouse, histopathological events ensue which lead to peritoneal adhesion formation. In the first 48 h, the main pathological findings are of a necrotic and inflammatory nature, but subsequently fibroplasia is the main feature, as evidenced by the appearance of spindle-shaped cells followed by fibroblasts. Factors essential for and contributing to the formation of adhesions are described.
Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P
2016-05-01
Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamazaki, Daisuke; Oikawa, Tsukasa; Takenawa, Tadaomi
2007-01-01
During cadherin-dependent cell-cell adhesion, the actin cytoskeleton undergoes dynamic reorganization in epithelial cells. Rho-family small GTPases, which regulate actin dynamics, play pivotal roles in cadherin-dependent cell-cell adhesion; however, the precise molecular mechanisms that underlie cell-cell adhesion formation remain unclear. Here we show that Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE)-mediated reorganization of actin, downstream of Rac plays an important role in normal development of cadherin-dependent cell-cell adhesions in MDCK cells. Rac-induced development of cadherin-dependent adhesions required WAVE2-dependent actin reorganization. The process of cell-cell adhesion is divided into three steps: formation of new cell-cell contacts, stabilization of these new contacts and junction maturation. WAVE1 and WAVE2 were expressed in MDCK cells. The functions of WAVE1 and WAVE2 were redundant in this system but WAVE2 appeared to play a more significant role. During the first step, WAVE2-dependent lamellipodial protrusions facilitated formation of cell-cell contacts. During the second step, WAVE2 recruited actin filaments to new cell-cell contacts and stabilized newly formed cadherin clusters. During the third step, WAVE2-dependent actin reorganization was required for organization and maintenance of mature cell-cell adhesions. Thus, Rac-WAVE-dependent actin reorganization is not only involved in formation of cell-cell adhesions but is also required for their maintenance.
CYTOTOXICITY AND BIOCOMPATIBILITY OF DIRECT AND INDIRECT PULP CAPPING MATERIALS
Modena, Karin Cristina da Silva; Casas-Apayco, Leslie Caroll; Atta, Maria Teresa; Costa, Carlos Alberto de Souza; Hebling, Josimeri; Sipert, Carla Renata; Navarro, Maria Fidela de Lima; Santos, Carlos Ferreira
2009-01-01
There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH. PMID:20027424
μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.
Chen, Yi-Ting; Tai, Chin-Yin
2017-05-01
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pollenkitt wetting mechanism enables species-specific tunable pollen adhesion.
Lin, Haisheng; Gomez, Ismael; Meredith, J Carson
2013-03-05
Plant pollens are microscopic particles exhibiting a remarkable breadth of complex solid surface features. In addition, many pollen grains are coated with a viscous liquid, "pollenkitt", thought to play important roles in pollen dispersion and adhesion. However, there exist no quantitative studies of the effects of solid surface features or pollenkitt on adhesion of pollen grains, and it remains unclear what role these features play in pollen adhesion and transport. We report AFM adhesion measurements of five pollen species with a series of test surfaces in which each pollen has a unique solid surface morphology and pollenkitt volume. The results indicate that the combination of surface morphology (size and shape of echinate or reticulate features) with the pollenkitt volume provides pollens with a remarkably tunable adhesion to surfaces. With pollenkitt removed, pollen grains had relatively low adhesion strengths that were independent of surface chemistry and scalable with the tip radius of the pollen's ornamentation features, according to the Hamaker model. With the pollenkitt intact, adhesion was up to 3-6 times higher than the dry grains and exhibited strong substrate dependence. The adhesion enhancing effect of pollenkitt was driven by the formation of pollenkitt capillary bridges and was surprisingly species-dependent, with echinate insect-pollinated species (dandelion and sunflower) showing significantly stronger adhesion and higher substrate dependence than wind-pollinated species (ragweed, poplar, and olive). The combination of high pollenkitt volume and large convex, spiny surface features in echinate entomophilous varieties appears to enhance the spreading area of the liquid pollenkitt relative to varieties of pollen with less pollenkitt volume and less pronounced surface features. Measurements of pollenkitt surface energy indicate that the adhesive strength of capillary bridges is primarily dependent on nonpolar van der Waals interactions, with some contribution from the Lewis basic component of surface energy.
State diagram for adhesion dynamics of deformable capsules under shear flow.
Luo, Zheng Yuan; Bai, Bo Feng
2016-08-17
Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca < 0.0075), whole-capsule deformation confers the capsule a flattened bottom in contact with the functionalized surface, which hence promotes the rolling-to-firm-adhesion transition. It is consistent with the observations from previous studies that cell deformation promotes the adhesion of cells lying in the rolling regime. However, it is surprising to find that, at relatively high capillary numbers (e.g. 0.0075 < Ca < 0.0175), the effect of capsule deformability on its adhesion dynamics is far more complex than just promoting adhesion. High deformability of capsules makes their bottom take a concave shape with no adhesion bond formation in the middle. The appearance of this specific capsule shape inhibits the transitions of both rolling-to-firm-adhesion and detachment-to-rolling, and it means that capsule deformation no longer promotes the capsule adhesion. Besides, it is interesting to note that, when the capillary number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape.
Bruzzaniti, Angela; Neff, Lynn; Sanjay, Archana; Horne, William C.; De Camilli, Pietro; Baron, Roland
2005-01-01
Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption. PMID:15872089
Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins.
Corne, Tobias D J; Sieprath, Tom; Vandenbussche, Jonathan; Mohammed, Danahe; Te Lindert, Mariska; Gevaert, Kris; Gabriele, Sylvain; Wolf, Katarina; De Vos, Winnok H
2017-09-03
The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.
Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji
2011-01-01
This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.
Biswas, Soma; Leitao, Samuel; Theillaud, Quentin; Erickson, Blake W; Fantner, Georg E
2018-06-20
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves. One therefore, generally characterizes the total dissipated energy over a whole pulling cycle, as it is difficult to decompose the complex force curves into individual single molecule events. However, calculating the energy dissipation directly from the transformed force spectroscopy curves can lead to a significant over-estimation of the dissipated energy during a pulling experiment. The over-estimation of dissipated energy arises from the finite stiffness of the cantilever used for AFM based SMFS. Although this error can be significant, it is generally not compensated for. This can lead to significant misinterpretation of the energy dissipation (up to the order of 30%). In this paper, we show how in complex SMFS the excess dissipated energy caused by the stiffness of the cantilever can be identified and corrected using a high throughput algorithm. This algorithm is then applied to experimental results from molecular networks and cell-adhesion measurements to quantify the improvement in the estimation of the total energy dissipation.
Won, Seoung Youn; Kim, Cha Yeon; Kim, Doyoun; Ko, Jaewon; Um, Ji Won; Lee, Sung Bae; Buck, Matthias; Kim, Eunjoon; Heo, Won Do; Lee, Jie-Oh; Kim, Ho Min
2017-01-01
The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-like family of proteins (Slitrks), IL-1 receptor accessory protein-like 1 (IL1RAPL1), interleukin-1 receptor accessory protein (IL-1RAcP) and neurotrophin receptor tyrosine kinase C (TrkC), to regulate synaptogenesis. Here, we determined the crystal structure of the human LAR-RPTP/IL1RAPL1 complex and found that lateral interactions between neighboring LAR-RPTP/IL1RAPL1 complexes in crystal lattices are critical for the higher-order assembly and synaptogenic activity of these complexes. Moreover, we found that LAR-RPTP binding to the postsynaptic adhesion ligands, Slitrk3, IL1RAPL1 and IL-1RAcP, but not TrkC, induces reciprocal higher-order clustering of trans-synaptic adhesion complexes. Although LAR-RPTP clustering was induced by either HS or postsynaptic adhesion ligands, the dominant binding of HS to the LAR-RPTP was capable of dismantling pre-established LAR-RPTP-mediated trans-synaptic adhesion complexes. These findings collectively suggest that LAR-RPTP clustering for synaptogenesis is modulated by a complex synapse-organizing protein network. PMID:29081732
Riveline, D; Zamir, E; Balaban, N Q; Schwarz, U S; Ishizaki, T; Narumiya, S; Kam, Z; Geiger, B; Bershadsky, A D
2001-06-11
The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.
Chitosan-catechol: a writable bioink under serum culture media.
Lee, Daiheon; Park, Joseph P; Koh, Mi-Young; Kim, Pureum; Lee, Junhee; Shin, Mikyung; Lee, Haeshin
2018-05-01
Mussel-inspired adhesive coatings on biomedical devices have attracted significant interest due to their unique properties such as substrate independency and high efficiency. The key molecules for mussel-inspired adhesive coatings are catechol and amine groups. Along with the understanding of catechol chemistry, chitosan-catechol has also been developed as a representative mussel-inpired adhesive polymer that contains catechol and amine groups for adhesiveness. Herein, we demonstrated the direct writability of chitosan-catechol as a bioink for 3D printing, one of the additive techniques. The use of chitosan-catechol bioink results in the formation of 3D constructs in normal culture media via rapid complexation of this bioink with serum proteins; in addition, the metal/catechol combination containing tiny amounts of vanadyl ions, in which the ratio of metal to catechol is 0.0005, dramatically enhances the mechanical strength and printability of the cell-encapsulated inks, showing a cell viability of approximately 90%. These findings for mussel-inspired bioinks will be a promising way to design a biocompatible 3D bioink cross-linked without any external stimuli.
High-performance mussel-inspired adhesives of reduced complexity.
Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert
2015-10-19
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.
Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G
2011-01-01
Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.
Shimotoyodome, A; Kobayashi, H; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y
2007-01-01
Colonization of enamel surfaces by Streptococcus mutans is thought to be initiated by the attachment of bacteria to a saliva-derived conditioning film (acquired pellicle). However, the clinical relevance of the contribution of saliva-promoted S. mutans adhesion in biofilm formation has not yet been fully elucidated. The aim of this study was to correlate saliva-promoted S. mutans adhesion with biofilm formation in humans. We correlated all measurements of salivary factors and dental plaque formation in 70 healthy subjects. Dental plaque development after thorough professional teeth cleaning correlated positively with S. mutans adhesion onto saliva-coated hydroxyapatite pellets and the glycoprotein content of either parotid or whole saliva. Saliva-promoted S. mutans adhesion and glycoprotein content were also positively correlated with each other in parotid and whole saliva. By contrast, neither salivary mutans streptococci, Lactobacillus nor Candida correlated with biofilm formation. Parotid saliva-mediated S. mutans adhesion was significantly higher in 12 caries-experienced (CE) subjects than in 9 caries-inexperienced (CI) subjects. Salivary S. mutans adhesion was significantly less (p < 0.01) in the CI group than in the CE group. In conclusion, the present findings suggest the initial S. mutans adhesion, modulated by salivary protein adsorption onto the enamel surface, as a possible correlate of susceptibility to dental plaque and caries. Copyright 2007 S. Karger AG, Basel.
Law, Mary E; Ferreira, Renan B; Davis, Bradley J; Higgins, Paul J; Kim, Jae-Sung; Castellano, Ronald K; Chen, Sixue; Luesch, Hendrik; Law, Brian K
2016-08-05
While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact.
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression.
Middelbeek, Jeroen; Vrenken, Kirsten; Visser, Daan; Lasonder, Edwin; Koster, Jan; Jalink, Kees; Clark, Kristopher; van Leeuwen, Frank N
2016-11-01
Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics and cell-matrix interactions. Copyright © 2016 Elsevier GmbH. All rights reserved.
Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui
2018-02-01
Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.
High-performance mussel-inspired adhesives of reduced complexity
Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert
2015-01-01
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273
[Study on the effect of phloretin on inhibiting malignant pheotype of BEL-7402 cells].
Luo, Hui; Wang, Ya-Jun; Chen, Jie; Liu, Jiang-Qin
2008-07-01
To investigate the effect of phloretin on inhibiting BEL-7402 cells' growth, invasive, migration and adhesion ability and the rate of colony formation. BEL-7402 cells' growth, invasive, migration and adhesion ability and the rate of colony formation were examined with MIT method and Costar Transwell. Phloretin inhibited the growth, invasive, migration and adhesion ability of BEL-7402 cells and reduced the rate of colony formation in dose-dependent. Phloretin can inhibit BEL-7402 cells' malignant pheotype.
Mapping the Dynamics of Shear Stress—Induced Structural Changes in Endothelial Cells
Mott, Rosalind E.; Helmke, Brian P.
2009-01-01
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and extracellular matrix on a time scale of minutes. Using multi-wavelength 4-D fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and of GFP-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in both subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly towards the downstream direction within one minute after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and extracellular matrix are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction. PMID:17855768
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-01-01
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-12-18
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.
A non-canonical role for Rgnef in promoting integrin-stimulated focal adhesion kinase activation
Miller, Nichol L. G.; Lawson, Christine; Kleinschmidt, Elizabeth G.; Tancioni, Isabelle; Uryu, Sean; Schlaepfer, David D.
2013-01-01
Summary Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin–FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef–FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef–FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner. PMID:24006257
A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions
Wolfenson, Haguy; Lubelski, Ariel; Regev, Tamar; Klafter, Joseph; Henis, Yoav I.; Geiger, Benjamin
2009-01-01
Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and play crucial roles in cell-matrix sensing. Considerable information is available on the complex molecular composition of these sites, yet the regulation of FA dynamics is largely unknown. Based on a combination of FRAP studies in live cells, with in silico simulations and mathematical modeling, we show that the FA plaque proteins paxillin and vinculin exist in four dynamic states: an immobile FA-bound fraction, an FA-associated fraction undergoing exchange, a juxtamembrane fraction experiencing attenuated diffusion, and a fast-diffusing cytoplasmic pool. The juxtamembrane region surrounding FAs displays a gradient of FA plaque proteins with respect to both concentration and dynamics. Based on these findings, we propose a new model for the regulation of FA dynamics in which this juxtamembrane domain acts as an intermediary layer, enabling an efficient regulation of FA formation and reorganization. PMID:19172999
Konstantinidis, I; Tsakiropoulou, E; Vital, I; Triaridis, S; Vital, V; Constantinidis, J
2008-06-01
Obstruction of the osteomeatal complex is the commonest anatomic finding in revision endoscopic sinus surgery. This study assesses the efficacy of topical mitomycin C in the middle meatus, intra- and postoperatively in the prevention of adhesion formation and restenosis of the maxillary sinus antrostomy. At the end of endoscopic surgery for chronic rhinosinusitis and four weeks postoperatively 30 patients received a pledget soaked with 1 ml of mitomycin C (0.5 mg/ml) in the middle meatus for 5 minutes while a pledget soaked in saline was placed in the contralateral side. Patients were assessed at least 6 months postoperatively by a blinded observer for the presence of synechiae and antrostomy stenosis. Medical records were reviewed for episodes of recurrent sinusitis. Adhesions were observed in 8 patients. All adhesions rated as moderate to severe (4 patients) were observed in the control side (p = 0.043). Restenosis was observed in 2 sides treated with mitomycin C and in 9 control sides (p = 0.032). Recurrent symptoms of sinusitis occurred in three patients on the saline side. Mitomycin C is safe and effective in the prevention of severe adhesions and antrostomy stenosis when applied twice, during surgery and the early postoperative period.
In vivo quantitative analysis of Talin turnover in response to force
Hákonardóttir, Guðlaug Katrín; López-Ceballos, Pablo; Herrera-Reyes, Alejandra Donají; Das, Raibatak; Coombs, Daniel; Tanentzapf, Guy
2015-01-01
Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development. PMID:26446844
Cortactin as a Target for FAK in the Regulation of Focal Adhesion Dynamics
Ghassemian, Majid; Schlaepfer, David D.
2012-01-01
Background Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear. Principal Findings Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin. Conclusions Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement. PMID:22952866
de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W
2017-03-01
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. © 2016 John Wiley & Sons Ltd.
Giampaolino, Pierluigi; Morra, Ilaria; Tommaselli, Giovanni Antonio; Di Carlo, Costantino; Nappi, Carmine; Bifulco, Giuseppe
2016-10-01
To compare conventional laparoscopic ovarian drilling (LOD) with transvaginal hydrolaparoscopy (THL) ovarian drilling in terms of ovarian adhesion formation, evaluated using office THL during follow-up in CC-resistant anovulatory patients affected by PCOS. Prospective randomized study on 246 CC-resistant women with PCOS. The patients enrolled were divided into two groups, 123 were scheduled to undergo LOD and 123 to undergo THL ovarian drilling. Six months after the procedure all patients were offered office transvaginal hydrolaparoscopy (THL) follow-up, under local anesthesia to evaluate adhesion formation. Duration of the procedure was significantly shorter in the THL group in comparison with LOD group (p < 0.0001). No intra- or post-operative complication was observed in any of the patients in both groups. Post-operative THL follow-up after 6 months showed that 15 (15.5 %) patients in the THL group and 73 (70.2 %) in the LOD group showed the presence of ovarian adhesion. This difference was highly significant with a p value <0.0001 and a relative risk of 0.22 [95 % IC 0.133-0.350]. This study seems to indicate that THL ovarian drilling may reduce the risk of ovarian adhesion formation and could be used as a safe and effective option to reduce ovarian adhesion formation in patients undergoing ovarian drilling.
Peiretti, Michele; Minerba, Luigi
2017-01-01
Objective To evaluate if improvement of laparoscopic skills can reduce postoperative peritoneal adhesion formation in a clinical setting. Study Design We retrospectively evaluated 25 women who underwent laparoscopic myomectomy from January 1993 to June 1994 and 22 women who underwent laparoscopic myomectomy from March 2002 to November 2004. Women had one to four subserous/intramural myomas and received surgery without antiadhesive agents or barriers. Women underwent second-look laparoscopy for assessment of peritoneal adhesion formation 12 to 14 weeks after myomectomy. Adhesions were graded according to the Operative Laparoscopy Study Group scoring system. The main variable to be compared between the two cohorts was the proportion that showed no adhesions at second-look laparoscopy. Results Demographic and surgical characteristics were similar between the two cohorts. No complications were observed during surgery. No adverse events were recorded during postoperative course. At second-look laparoscopy, a higher proportion of adhesion-free patients was observed in women who underwent laparoscopic myomectomy from March 2002 to November 2004 (9 out of 22) compared with women who underwent the same surgery from January 1993 to June 1994 (3 out of 25). Conclusion The improvement of surgeons' skills obtained after ten years of surgery can reduce postoperative adhesion formation. PMID:29410967
Effects of Alcohol on Pericardial Adhesion Formation in Hypercholesterolemic Swine
Lassaletta, Antonio D.; Chu, Louis M.; Sellke, Frank W.
2012-01-01
Objective Re-operative cardiac surgery is complicated in part because of extensive adhesions encountered during the second operation. The purpose of this study was to examine the effects of alcohol with and without resveratrol (red wine vs. vodka), on post-operative pericardial adhesion formation in a porcine model of hypercholesterolemia and chronic myocardial ischemia. Methods Male Yorkshire swine were fed a high-cholesterol diet to simulate conditions of coronary artery disease followed by surgical placement of an ameroid constrictor to induce chronic ischemia. Post-operatively, control pigs continued their high-cholesterol diet alone, while the two experimental groups had diets supplemented with either red wine or vodka. Seven weeks after ameroid placement, all animals underwent re-operative sternotomy. Results Compared to controls, pericardial adhesion grade was markedly reduced in the vodka group while there was no difference in the wine group. Intramyocardial fibrosis was significantly reduced in the vodka group compared to controls. There was no difference in expression of proteins involved in focal adhesion formation between any groups (FAK, Int α5, Int β1, Paxillin, Vinculin, PYK2, PKCε, p-PKCε). The wine group exhibited elevated CRP levels vs. control and vodka group. Conclusions Post-operative vodka consumption markedly reduced the formation of pericardial adhesions and intramyocardial fibrosis while red wine had no effect. Analysis of protein expression did not reveal any obvious explanation for this phenomenon, suggesting a post-translational effect of alcohol on fibrous tissue deposition. The difference in adhesion formation in the vodka vs. wine groups may be due to increased inflammation in the wine group. PMID:22244558
Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.
Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip
2016-04-06
The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.
Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks
Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil
2011-01-01
Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388
Icodextrin reduces adhesion formation following gynecological surgery in rabbits
Khani, Behnaz; Bahrami, Nahid; Mehrabian, Ferdous; Naderi Naeni, Hormoz
2011-01-01
Background: Adhesion is a common complication of gynecology surgery so different barrier agents and solutions have been used during these operations to separate and protect tissues from adhesion after surgery. Adept is one of these solutions that have been postulated to reduce the chance of adhesion following gynecolgy surgery. Objective: To evaluate the effect of 4% icodextrin in reducing adhesion formation in comparing with sterile water and human amniotic fluid in rabbits. Materials and Methods: In this prospective experimental study 30 white Newzealand female rabbits were selected and randomized in to three treatment groups. The rabbits were anesthetized and an abdominal incison was made, uterine horns were abrated with gauze until bleeding occurred. Before closing the abdomen, the traumatized area was irrigated either by 30cc of sterile water, 30cc of 4% Adept or 30cc of human amniotic fluid. The solutions were labeled only as solutions A (steriel water), B (icodextrin), or C (human amniotic fluid). On the seventh day after surgery, second laparotomy was performed to determine and compare adhesion formation in rabbits. Results: There was significant difference between mean score of adhesions in 4% icodextrin group (2.1±0.70) in comparison to sterile water group (10.4±0.60) and amniotic fluid group (8.7±0.84). But the difference between mean score of adhesions in amniotic fluid group in comparison to sterile water group was not significant (8.7±0.84) versus (10.4±0.60). Conclusion: The use of 4% icodextrin solution was more effective than human amniotic fluid and sterile water in reducing adhesion formation in a gynecological surgery model in rabbits PMID:26396562
Back, Ja Hoon; Cho, Wan Jin; Kim, Jun Ho; Park, Il Kyu; Kwon, Sung Won
2016-04-01
Postsurgical adhesion formation is a concern in every field of surgery. We evaluated the efficacy of hyaluronic acid/sodium alginate-based microparticle anti-adhesive agents (MP) for the prevention of postsurgical adhesion formation in a standardized rabbit model. To evaluate the anti-adhesion effect, a uterus-abdominal wall abrasion model was created in rabbits. On the surface of the injured uterus, an anti-adhesive agent, Interceed(®) or MP, was applied (positive control and study groups, respectively; n = 10 each). In another group of 10 animals, neither agent was applied (negative control group). The adhesion levels were graded 3 weeks after surgery. Acute and chronic toxicity was also evaluated. The grade of adhesion was significantly lower in the MP group than in the negative control and positive control groups. No evidence of acute or chronic toxicity induced by this material was found in blood and tissue analysis. MP shows potential as an effective novel type of resorbable biomaterial to reduce postoperative adhesion. The easy placement and handling of this material make the MP powder attractive as a tissue adhesion barrier.
NASA Astrophysics Data System (ADS)
Collier, Terry Odell, III
Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface modified polyurethane materials to control macrophage adhesion indicates the complexity of macrophage adhesion and protein adsorption onto a surface. These studies have indicated components and adhesive mechanisms which can be utilized to create materials with enhanced resistance to macrophage adhesion and/or degradative abilities.
Sun, Lingmei; Liao, Kai; Wang, Dayong
2015-01-01
The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection.
Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.
Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O
2013-10-01
The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Ditzel, M; Deerenberg, E B; Grotenhuis, N; Harlaar, J J; Monkhorst, K; Bastiaansen-Jenniskens, Y M; Jeekel, J; Lange, J F
2013-10-01
In laparoscopic incisional hernia repair, direct contact between the prosthesis and the abdominal viscera is inevitable, which may lead to an inflammatory reaction resulting in abdominal adhesion formation. This study compared five different synthetic and biologic meshes in terms of adhesion formation, shrinkage, incorporation, and histologic characteristics after a period of 30 and 90 days. In 85 rats, a mesh was positioned intraperitoneally in direct contact with the viscera. Five different meshes were implanted: Prolene (polypropylene), Parietex composite (collagen-coated polyester), Strattice (porcine dermis, non-cross-linked), Surgisis (porcine small intestine submucosa, non-cross-linked), and Permacol (porcine dermis, cross-linked). The meshes were tested in terms of adhesion formation, shrinkage, and incorporation after a period of 30 and 90 days. Additionally, collagen formation after 90 days was determined. Significantly less adhesion formation was observed with Parietex composite (5 %; interquartile range [IQR], 2-5 %) and Strattice (5 %; IQR, 4-10 %) in the long term. In contrast, organs were attached to Permacol with four of seven meshes (57 %), and adhesion coverage of Surgisis mesh was present in 66 % (IQR, 0-100 %) of the cases. After 90 days, the best incorporation was seen with the Parietex composite mesh (79 %; IQR, 61-83 %). After 90 days, major alterations in adhesion formation were seen compared with 30 days. Histologically, Strattice and Parietex composite showed a new mesothelial layer on the visceral side of the mesh. Microscopic degradation and new collagen formation were seen in the Surgisis group. Parietex composite mesh demonstrated the best long-term results compared with all the other meshes. The biologic non-cross-linked mesh, Strattice, showed little adhesion formation and moderate shrinkage but poor incorporation. Biologic meshes are promising, but varying results require a more detailed investigation and demonstrate that biologic meshes are not necessarily superior to synthetic meshes. The significant changes that take place between 30 and 90 days should lead to careful interpretation of short-term experimental results.
Jiang, Ting-Xin; Widelitz, Randall B.; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming
2015-01-01
Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically co-localize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to swarming robot navigation, reaching intelligent automata and representing a self-re-configurable type of control rather than a follow-the-instruction type of control. PMID:15272377
Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads
Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.
2015-01-01
Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574
Kocgozlu, Leyla; Lavalle, Philippe; Koenig, Géraldine; Senger, Bernard; Haikel, Youssef; Schaaf, Pierre; Voegel, Jean-Claude; Tenenbaum, Henri; Vautier, Dominique
2010-01-01
Actin cytoskeleton forms a physical connection between the extracellular matrix, adhesion complexes and nuclear architecture. Because tissue stiffness plays key roles in adhesion and cytoskeletal organization, an important open question concerns the influence of substrate elasticity on replication and transcription. To answer this major question, polyelectrolyte multilayer films were used as substrate models with apparent elastic moduli ranging from 0 to 500 kPa. The sequential relationship between Rac1, vinculin adhesion assembly, and replication becomes efficient at above 200 kPa because activation of Rac1 leads to vinculin assembly, actin fiber formation and, subsequently, to initiation of replication. An optimal window of elasticity (200 kPa) is required for activation of focal adhesion kinase through auto-phosphorylation of tyrosine 397. Transcription, including nuclear recruitment of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), occurred above 50 kPa. Actin fiber and focal adhesion signaling are not required for transcription. Above 50 kPa, transcription was correlated with alphav-integrin engagement together with histone H3 hyperacetylation and chromatin decondensation, allowing little cell spreading. By contrast, soft substrate (below 50 kPa) promoted morphological changes characteristic of apoptosis, including cell rounding, nucleus condensation, loss of focal adhesions and exposure of phosphatidylserine at the outer cell surface. On the basis of our data, we propose a selective and uncoupled contribution from the substrate elasticity to the regulation of replication and transcription activities for an epithelial cell model.
Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy
2014-01-01
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120
Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro
2016-01-01
ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037
Dinc, Soykan; Ozaslan, Cihangir; Kuru, Bekir; Karaca, Sefa; Ustun, Huseyin; Alagol, Haluk; Renda, Nurten; Oz, Murat
2006-01-01
Objectives Adhesion formation continues to be an important problem in gastrointestinal surgery. In recent years, methylene blue (MB) has been reported to be an effective agent for preventing peritoneal adhesions. However, its effects on the wound healing process are unknown. In the present study, we investigated the effects of MB on the early and late phases of anastomotic wound healing and on adhesion formation. Methods We randomly categorized 92 rats into 2 groups in bursting pressure measurements and 50 rats into 3 groups in the adhesion model. We divided the animals into saline-treated (n = 46) or MB-treated (n = 46) groups. Bursting pressures of the anastomoses were measured on postoperative days 3 and 7. In biochemical studies, tissue hydroxyproline levels, total nitrite/nitrate levels and nitric oxide synthase activity were measured on postoperative days 3 and 7. In the adhesion model, we randomly categorized rats into sham (n = 10), saline-treated (n = 20) and MB-treated (n = 20) groups, and the formation of intraperitoneal adhesions was scored on postoperative day 14. We compared the measurement of bursting pressure and biochemical measurements of tissue hydroxyproline levels, total nitrite/nitrate levels and nitric oxide synthase activity. Histopathological findings of specimens were presented. Results During the early phase of wound healing (postoperative day 3), bursting pressures, tissue hydroxyproline, total nitrite/nitrate levels and nitric oxide synthase activity in the MB-treated group were significantly lower than those of the saline-treated group. On postoperative day 7, there was no significant difference in these parameters between MB and saline-treated groups. In the adhesion model, MB caused a significant reduction in the formation of peritoneal adhesions. Conclusion MB prevents peritoneal adhesions but causes a significant impairment of anastomotic bursting pressure during the early phase of the wound healing process by its transient inhibitory effect on the nitric oxide pathway. PMID:17152569
Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion.
Konar, S; Guha, R; Kundu, B; Nandi, S; Ghosh, T K; Kundu, S C; Konar, A; Hazra, S
2017-02-01
Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a physical barrier on polypropylene mesh for the prevention of adhesion following ventral hernia repair. Peritoneal explants were cultured on silk fibroin scaffold to evaluate its support for mesothelial cell growth. Full thickness uniform sized defects were created on the ventral abdominal wall of rabbits, and the defects were covered either with silk hydrogel coated polypropylene mesh or with plain polypropylene mesh as a control. The animals were killed after 1 month, and the adhesion formation was graded; healing response of peritoneum was evaluated by immunohistochemistry with calretinin, collagen staining of peritoneal sections, and expression of PCNA, collagen-I, TNFα, IL6 by real time PCR; and its adverse effect if any was determined. Silk fibroin scaffold showed excellent support for peritoneal cell growth in vitro and the cells expressed calretinin. A remarkable prevention of adhesion formation was observed in the animals implanted with silk hydrogel coated mesh compared to the control group; in these animals peritoneal healing was complete and predominantly by mesothelial cells with minimum fibrotic changes. Expression of inflammatory cytokines decreased compared to control animals, histology of abdominal organs, haematological and blood biochemical parameters remained normal. Therefore, silk hydrogel coating of polypropylene mesh can improve peritoneal healing, minimize adhesion formation, is safe and can augment the outcome of hernia surgery.
Reed, Karen L; Fruin, A Brent; Gower, Adam C; Stucchi, Arthur F; Leeman, Susan E; Becker, James M
2004-06-15
Fibrous adhesions remain a major sequela of abdominal surgery. The proinflammatory peptide substance P (SP), known to participate in inflammatory events, may play a key role in adhesion formation. This hypothesis was tested by using an antagonist, CJ-12,255 (Pfizer), that blocks the binding of SP to the neurokinin 1 receptor (NK-1R). Adhesion formation was surgically induced in the peritoneum of rats receiving daily doses of the NK-1R antagonist (NK-1RA; 5.0 or 10.0 mg/kg per day) or saline. On postoperative day 7, both the low and high doses of NK-1RA significantly (P < 0.05) reduced adhesion formation by 45% and 53%, respectively, compared with controls. Subsequently, the effect of NK-1RA administration on peritoneal fibrinolytic activity was investigated to determine a potential mechanism for SP action in the peritoneum. Samples were collected from nonoperated controls and from animals 24 h postsurgery that were administered either NK-1RA or saline. Fibrinolytic activity in peritoneal fluid was assayed by zymography, and expression of tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1, both regulators of fibrinolytic activity, was assessed in peritoneal tissue and fluid by RT-PCR and bioassay, respectively. NK-1RA administration led to a marked (P < 0.05) increase in tPA mRNA levels in peritoneal tissue compared with nonoperated and saline-administered animals. Likewise, NK-1RA administration significantly (P < 0.05) increased tPA in the peritoneal fluid. These data suggest that activation of the NK-1R promotes peritoneal adhesion formation by limiting fibrinolytic activity in the postoperative peritoneum, thus enabling fibrinous adhesions to persist.
Adhesion barriers at cesarean delivery: advertising compared with the evidence.
Albright, Catherine M; Rouse, Dwight J
2011-07-01
Cesarean delivery, the most common surgery performed in the United States, is complicated by adhesion formation in 24-73% of cases. Because adhesions have potential sequelae, different synthetic adhesion barriers are currently heavily marketed as a means of reducing adhesion formation resultant from cesarean delivery. However, their use for this purpose has been studied in only two small, nonblinded and nonrandomized trials, both of which were underpowered and subject to bias. Neither demonstrated improvement in meaningful clinical outcomes. In the only cost-effectiveness analysis of adhesion barriers to date, the use of synthetic adhesion barriers was cost-effective only when the subsequent rate of small bowel obstruction was at least 2.4%, a rate far higher than that associated with cesarean delivery. In fact, intra-abdominal adhesions from prior cesarean delivery rarely cause maternal harm and have not been demonstrated to adversely affect perinatal outcome. Based on our review of the available literature, we think the use of adhesion barriers at the time of cesarean delivery would be ill-advised at the present time.
Kumahashi, Nobuyuki; Uchio, Yuji; Kitamura, Nobuto; Satake, Shigeru; Iwamoto, Mikio; Yasuda, Kazunori
2014-11-01
The purpose of this study was to clarify the biomechanical characteristics of cement-material interfaces for the zirconia ceramic and cobalt-chromium (Co-Cr) alloy femoral components used for total knee arthroplasty. In the first sub-study, we compared the strength of adhesion of the cement to flat plates, by tensile testing under dry and moistened conditions. In the second sub-study, we compared the maximum load of the cement-component complex by tensile testing. In the third sub-study, we compared the fatigue characteristics of the cement-component complex by use of a dynamic tensile testing machine. Under dry conditions, the maximum strength of adhesion to the zirconia ceramic plate was the same as that to the Co-Cr alloy plate. Under moistened conditions, however, the strength of adhesion to the zirconia ceramic plate was significantly lower (p = 0.0017) whereas the strength of adhesion to the Co-Cr alloy plate was not reduced. Maximum load for the cement-component complexes for zirconia ceramic and Co-Cr alloy was no different under both dry and moistened conditions. Fatigue testing showed that cement-zirconia adhesion was stronger than cement-Co-Cr alloy adhesion (p = 0.0161). The strength of adhesion of cement to zirconia ceramic is substantially weaker under wet conditions than under dry conditions. The mechanical properties of cement-zirconia ceramic component complexes and cement-Co-Cr alloy component complexes are equivalent.
Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover
Hammer, Alan; Oladimeji, Peter; De Las Casas, Luis E.; Diakonova, Maria
2015-01-01
The p21-activated serine-threonine kinase (PAK1) regulates cell motility and adhesion. We have previously shown that the prolactin (PRL)-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo and in vitro and identified tyrosines 153, 201, and 285 in PAK1 as sites of JAK2 tyrosyl phosphorylation. Here, we further investigate the role of the tyrosyl phosphorylated PAK1 (pTyr-PAK1) in regulation of cell adhesion. We use human breast cancer T47D cell lines that stably overexpress PAK1 wild type or PAK1 Y3F mutant in which these 3 JAK2 phosphorylation sites were mutated to phenylalanine. We demonstrate that PRL/JAK2-dependent phosphorylation of these tyrosines promotes a motile phenotype in the cells upon adhesion, participates in regulation of cell adhesion on collagen IV, and is required for maximal PAK1 kinase activity. Down-regulation of PAK1 abolishes the effect of PAK1 on cell adhesion. We show that the tyrosyl phosphorylation of PAK1 promotes PAK1 binding to β-PAK1-interacting guanine-nucleotide exchange factor (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), phosphorylation of paxillin on Ser273, and formation and distribution of adhesion complexes. Using phosphospecific antibodies (Abs) directed to single phosphorylated tyrosines on PAK1, we identified Tyr285 as a site of PRL-dependent phosphorylation of PAK1 by JAK2. Furthermore, using PAK1 Y285F mutant, we provide evidence for a role of pTyr285 in cell adhesion, enhanced βPIX/GIT1 binding, and adhesion turnover. Our immunohistochemistry analysis demonstrates that pTyr285- PAK1 may modulate PAK1 signaling during tumor progression.—Hammer, A., Oladimeji, P., De La Casas, L. E., Diakonova, M. Phosphorylation of tyrosine 285 of PAK1 facilitates bPIX/GIT1 binding and adhesion turnover. PMID:25466889
RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1.
Meyer Zum Büschenfelde, Uta; Brandenstein, Laura Isabel; von Elsner, Leonie; Flato, Kristina; Holling, Tess; Zenker, Martin; Rosenberger, Georg; Kutsche, Kerstin
2018-05-01
RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.
RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1
von Elsner, Leonie; Flato, Kristina; Holling, Tess; Zenker, Martin; Rosenberger, Georg
2018-01-01
RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS. PMID:29734338
Oz, Murat; Cetinkaya, Nilufer; Bas, Sevda; Korkmaz, Elmas; Ozgu, Emre; Terzioglu, Gokay Serdar; Buyukkagnici, Umran; Akbay, Serap; Caydere, Muzaffer; Gungor, Tayfun
2016-09-01
Platelet-rich plasma (PRP) has been known to possess an efficacy in tissue regeneration. The aim of this study was to determine the role of PRP on post-operative adhesion formation in an experimental rat study. Thirty Sprague-Dawley rats were randomly divided into control, hyaluronic acid, and PRP treatment groups and operated on for uterine horn adhesion modeling. Blood was collected to produce a PRP with platelet counts of 688 × 10(3)/μL, and 1 ml of either hyaluronic acid gel or PRP was administered over the standard lesions, while the control group received no medication. The evaluation of post-operative adhesions was done on the 30th post-operative day. The location, extent, type, and tenacity of adhesions as well as total adhesion scores, tissue inflammation, fibrosis and transforming growth factor-1beta (TGF-1β) expressions were evaluated. The total adhesion score was significantly lower in the PRP group (3.2 ± 1.5) compared with the hyaluronic acid (5.0 ± 1.3) and control (8.1 ± 1.7) groups. The extent of the adhesions was significantly lower in the PRP group. There was no significant difference in the type and tenacity of adhesions between the hyaluronic acid and the PRP group. The level of inflammation was significantly higher in the control group than the others, while there was no difference between the PRP and hyaluronic acid groups. TGF-1β expression was significantly lesser in the PRP group than the control and hyaluronic acid groups. PRP is more effective than hyaluronic acid treatment in preventing post-operative adhesion formation in an experimental rat uterine horn adhesion model.
2010-01-01
Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489
Sun, Lingmei; Liao, Kai; Wang, Dayong
2015-01-01
Background The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. Methods The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Results and conclusions Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. General Significance This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection. PMID:25710475
Bazaa, Amine; Pasquier, Eddy; Defilles, Céline; Limam, Ines; Kessentini-Zouari, Raoudha; Kallech-Ziri, Olfa; Battari, Assou El; Braguer, Diane; Ayeb, Mohamed El; Marrakchi, Naziha; Luis, José
2010-01-01
Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of αvβ3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration. PMID:20405031
Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.
Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi
2013-06-04
The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p < 0.05) and a lower adhesion score compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.
Rice, Amanda D.; King, Richard; Reed, Evette D’Avy; Patterson, Kimberley; Wurn, Belinda F.; Wurn, Lawrence J.
2013-01-01
Background: Adhesion formation is a widely acknowledged risk following abdominal or pelvic surgery. Adhesions in the abdomen or pelvis can cause or contribute to partial or total small bowel obstruction (SBO). These adhesions deter or prevent the passage of nutrients through the digestive tract, and may bind the bowel to the peritoneum, or other organs. Small bowel obstructions can quickly become life-threatening, requiring immediate surgery to resect the bowel, or lyse any adhesions the surgeon can safely access. Bowel repair is an invasive surgery, with risks including bowel rupture, infection, and peritonitis. An additional risk includes the formation of new adhesions during the healing process, creating the potential for subsequent adhesiolysis or SBO surgeries. Objective: Report the use of manual soft tissue physical therapy for the reversal of adhesion-related partial SBOs, and create an initial inquiry into the possibility of nonsurgical lysis of adhesions. Case Reports: Two patients presenting with SBO symptoms due to abdominal adhesions secondary to abdominal and pelvic surgery were treated with manual soft tissue physical therapy focused on decreasing adhesions. Conclusions: Successful treatment with resolution of symptom presentation of partial SBO and sustained results were observed in both patients treated. PMID:26237678
Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J
2009-10-01
Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.
Administration of Intravenous Inf liximab for Prevention of Peritoneal Adhesions Formation in Rats.
Nikeghbalian, Saman; Vafaei, Homeira; Moradian, Farid; Kazemi, Kourosh; Tanideh, Nader; Shayan, Leila; Nikeghbalian, Zahra
2015-07-01
To investigate the effects of intravenous infliximab in preventing the formation of peritoneal adhesions in an animal model of rat. This was an experimental study being performed in animal laboratory of Shiraz University of Medical Sciences during 2012. Sixty albino rats were randomly assigned in to three groups by Random Design Method. The first group received single infliximab injection (n=20), the second one received double infliximab injection (n=20) and the third received nothing (n=20), after receiving intra-peritoneal injection of talc for induction of peritoneal adhesions. All the animals were sacrificed after 6 weeks and the peritoneal adhesions were evaluated according to Nair classification. We observed that the mean adhesion grade was lower in those who received double dose of infliximib when compared to single dose and controls. However the difference did not reach a significant value (p=0.178). The grade of peritoneal adhesion was also comparable between the three study groups (p=0.103). The mean number of 1st WBC count was also comparable between three study groups (p=0.382). We observed that 2nd WBC count was also comparable between two study groups (p=0.317). Administration of intravenous infliximab after intraabdominal surgicalprocedures would not prevent the formation of peritoneal adhesions in animal model of albino rat.
Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto
2016-01-01
ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964
Ouaïssi, M; Gaujoux, S; Veyrie, N; Denève, E; Brigand, C; Castel, B; Duron, J J; Rault, A; Slim, K; Nocca, D
2012-04-01
Post-operative adhesions after gastrointestinal surgery are responsible for significant morbidity and constitute an important public health problem. The aim of this study was to review the surgical literature to determine the incidence, consequences and the variety of possible countermeasures to prevent adhesion formation. A systematic review of English and French language surgical literature published between 1995 and 2009 was performed using the keywords "adhesion" and "surgery". Peritoneal adhesions are reported as the cause of 32% of acute intestinal obstruction and 65-75% of all small bowel obstructions. It is estimated that peritoneal adhesions develop after 93-100% of upper abdominal laparotomies and after 67-93% of lower abdominal laparotomies. Nevertheless, only 15-18% of these adhesions require surgical re-intervention. The need for re-intervention for adhesion-related complications varies depending on the initial type of surgery, the postoperative course and the type of incision. The laparoscopic approach appears to decrease the risk of adhesion formation by 45% and the need for adhesion-related re-intervention to 0.8% after appendectomy and to 2.5% after colorectal surgery. At the present time, only one product consisting of hyaluronic acid applied to a layer of carboxymethylcellulose (Seprafilm(®)) has been shown to significantly reduce the incidence of postoperative adhesion formation; but this product is also associated with a significant increase in the incidence of anastomotic leakage when the membrane is applied in direct contact with the anastomosis. The use of this product has not been shown to decrease the risk of re-intervention for bowel obstruction. The prevention of postoperative adhesions is an important public health goal, particularly in light of the frequency of this complication. The routine use of anti-adhesion products is not recommended given the lack of studies with a high level of evidence concerning their efficacy and safety of use. Copyright © 2012. Published by Elsevier Masson SAS.
Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives
NASA Astrophysics Data System (ADS)
Lee, Haeshin
The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as medical devices, adhesives, and diagnostics, nanotechnology, biointerface, and catalysis.
Moraes, Juliana O; Cruz, Ellen A; Souza, Enio G F; Oliveira, Tereza C M; Alvarenga, Verônica O; Peña, Wilmer E L; Sant'Ana, Anderson S; Magnani, Marciane
2018-05-26
This study aimed to assess the capability of 97 epidemic S. enterica strains belonging to 18 serovars to form biofilm. Five strains characterized as strong biofilm-producers, belonging to distinct serovars (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) were assayed for adhesion/biofilm formation on stainless steel surfaces. The experiments were conducted in different combinations of NaCl (0, 2, 4, 5, 6, 8 and 10% w/v), pH (4, 5, 6 and 7) and temperatures (8 °C, 12 °C, 20 °C and 35 °C). Only adhesion was assumed to occur when S. enterica counts were ≥3 and <5 log CFU/cm 2 , whereas biofilm formation was defined as when the counts were ≥5 log CFU/cm 2 . The binary responses were used to develop models to predict the probability of adhesion/biofilm formation on stainless steel surfaces by five strains belonging to different S. enterica serovars. A total of 99% (96/97) of the tested S. enterica strains were characterized as biofilm-producers in the microtiter plate assays. The ability to form biofilm varied (P < 0.05) within and among the different serovars. Among the biofilm-producers, 21% (20/96), 45% (43/96), and 35% (34/96) were weak, moderate and strong biofilm-producers, respectively. The capability for adhesion/biofilm formation on stainless steel surfaces under the experimental conditions studied varied among the strains studied, and distinct secondary models were obtained to describe the behavior of the five S. enterica tested. All strains showed adhesion at pH 4 up to 4% of NaCl and at 20 °C and 35 °C. The probability of adhesion decreased when NaCl concentrations were >8% and at 8 °C, as well as in pH values ≤ 5 and NaCl concentrations > 6%, for all tested strains. At pH 7 and 6, biofilm formation for S. Enteritidis, S. Infantis, S. Typhimurium, S. Heidelberg was observed up to 6% of NaCl at 35 °C and 20 °C. The predicted boundaries for adhesion were pH values < 5 and NaCl ≥ 4% and at temperatures <20 °C. For biofilm formation, the predicted boundaries were pH values < 5 and NaCl concentrations ≥ 2% and at temperatures <20 °C for all strains. The secondary models obtained describe the variability in boundaries of adhesion and biofilm formation on stainless steel by five strains belonging to different S. enterica serovars. The boundary models can be used to predict adhesion and biofilm formation ability on stainless steel by S. enterica as affected by pH, NaCl and temperature. Copyright © 2018 Elsevier B.V. All rights reserved.
Okeyo, Kennedy O; Tanabe, Maiko; Kurosawa, Osamu; Oana, Hidehiro; Washizu, Masao
2018-04-01
Cellular dynamics leading to the formation of the trophectoderm in humans remain poorly understood owing to limited accessibility to human embryos for research into early human embryogenesis. Compared to animal models, organoids formed by self-organization of stem cells in vitro may provide better insights into differentiation and complex morphogenetic processes occurring during early human embryogenesis. Here we demonstrate that modulating the cell culture microenvironment alone can trigger self-organization of human induced pluripotent stem cells (hiPSCs) to yield trophectoderm-mimicking cysts without chemical induction. To modulate the adhesion microenvironment, we used the mesh culture technique recently developed by our group, which involves culturing hiPSCs on suspended micro-structured meshes with limited surface area for cell adhesion. We show that this adhesion-restriction strategy can trigger a two-stage self-organization of hiPSCs; first into stem cell sheets, which express pluripotency signatures until around day 8-10, then into spherical cysts following differentiation and self-organization of the sheet-forming cells. Detailed morphological analysis using immunofluorescence microscopy with both confocal and two-photon microscopes revealed the anatomy of the cysts as consisting of a squamous epithelial wall richly expressing E-cadherin and CDX2. We also confirmed that the cysts exhibit a polarized morphology with basal protrusions, which show migratory behavior when anchored. Together, our results point to the formation of cysts which morphologically resemble the trophectoderm at the late-stage blastocyst. Thus, the mesh culture microenvironment can initiate self-organization of hiPSCs into trophectoderm-mimicking cysts as organoids with potential application in the study of early embryogenesis and also in drug development. © 2018 Japanese Society of Developmental Biologists.
Changes in materials properties explain the effects of humidity on gecko adhesion.
Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar
2010-11-01
Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.
Kindler syndrome in mice and men.
Duperret, Elizabeth K; Ridky, Todd W
2014-09-01
Kindler syndrome (KS) in humans is a severe skin blistering disease associated with inflammation and increased risk of epidermal squamous cell carcinoma (SCC). This disease is known to be caused by loss-of-function mutations in Kindlin-1, a focal adhesion β-integrin binding protein. Thus far, it has been unclear what specific signaling events occur in KS keratinocytes to promote tumorigenesis, especially since loss of β-integrins and focal adhesion complexes has been previously shown to prevent or delay tumor formation. In the April issue of Nature Medicine, Rognoni and colleagues generate a transgenic mouse lacking Kindlin-1 in the epidermis to model the key features of KS, and show that Kindlin-1 regulates Wnt and TGFβ signaling independent of β-integrins. These β1-integrin-independent functions of Kindlin-1 may contribute to the increased SCC risk in KS patients.
Quantal concept of T-cell activation: adhesion domains as immunological synapses
NASA Astrophysics Data System (ADS)
Sackmann, Erich
2011-06-01
Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.
Force loading explains spatial sensing of ligands by cells
NASA Astrophysics Data System (ADS)
Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere
2017-12-01
Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.
Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces
Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.
2011-01-01
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201
Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit
2018-02-01
The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of ovarian surgery in polycystic ovary syndrome.
Farquhar, Cynthia M
2004-10-01
Problems in inducing ovulation in women with polycystic ovary syndrome (PCOS) and anovulation are well recognized. In 1935, Stein and Leventhal first described surgical treatment by ovarian wedge resection at laparotomy for women with anovulation and PCOS. Ovarian wedge resection was eventually abandoned because of the significant risk of postsurgical adhesion formation, which resulted in tubal adhesions, and because of the advent of medical ovulation induction with clomiphene and gonadotrophins. However, since the arrival of minimally invasive surgical techniques, laparoscopic ovarian surgery has become feasible. The potential advantages of laparoscopic ovarian surgery include repeated single ovulations and less adhesion formation. Lowered costs make ovarian surgery an attractive alternative to gonadotrophins. However, although many case series have suggested that ovarian surgery is an effective strategy, few randomized, controlled trials have been undertaken comparing the success rates of surgery with gonadotrophins. The long-term concerns with surgery include adhesion formation and premature ovarian failure.
Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P
The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.
The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution
NASA Astrophysics Data System (ADS)
Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi
2016-10-01
An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.
Xylella fastidiosa Afimbrial Adhesins Mediate Cell Transmission to Plants by Leafhopper Vectors▿
Killiny, Nabil; Almeida, Rodrigo P. P.
2009-01-01
The interactions between the economically important plant-pathogenic bacterium Xylella fastidiosa and its leafhopper vectors are poorly characterized. We used different approaches to determine how X. fastidiosa cells interact with the cuticular surface of the foreguts of vectors. We demonstrate that X. fastidiosa binds to different polysaccharides with various affinities and that these interactions are mediated by cell surface carbohydrate-binding proteins. In addition, competition assays showed that N-acetylglucosamine inhibits bacterial adhesion to vector foregut extracts and intact wings, demonstrating that attachment to leafhopper surfaces is affected in the presence of specific polysaccharides. In vitro experiments with several X. fastidiosa knockout mutants indicated that hemagglutinin-like proteins are associated with cell adhesion to polysaccharides. These results were confirmed with biological experiments in which hemagglutinin-like protein mutants were transmitted to plants by vectors at lower rates than that of the wild type. Furthermore, although these mutants were defective in adhesion to the cuticle of vectors, their growth rate once attached to leafhoppers was similar to that of the wild type, suggesting that these proteins are important for initial adhesion of X. fastidiosa to leafhoppers. We propose that X. fastidiosa colonization of leafhopper vectors is a complex, stepwise process similar to the formation of biofilms on surfaces. PMID:19011051
Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis
NASA Astrophysics Data System (ADS)
Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.
2013-10-01
A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.
Chen, Chien Peter; Posy, Shoshana; Ben-Shaul, Avinoam; Shapiro, Lawrence; Honig, Barry H.
2005-01-01
Cadherins constitute a family of cell-surface proteins that mediate intercellular adhesion through the association of protomers presented from juxtaposed cells. Differential cadherin expression leads to highly specific intercellular interactions in vivo. This cell–cell specificity is difficult to understand at the molecular level because individual cadherins within a given subfamily are highly similar to each other both in sequence and structure, and they dimerize with remarkably low binding affinities. Here, we provide a molecular model that accounts for these apparently contradictory observations. The model is based in part on the fact that cadherins bind to one another by “swapping” the N-terminal β-strands of their adhesive domains. An inherent feature of strand swapping (or, more generally, the domain swapping phenomenon) is that “closed” monomeric conformations act as competitive inhibitors of dimer formation, thus lowering affinities even when the dimer interface has the characteristics of high-affinity complexes. The model describes quantitatively how small affinity differences between low-affinity cadherin dimers are amplified by multiple cadherin interactions to establish large specificity effects at the cellular level. It is shown that cellular specificity would not be observed if cadherins bound with high affinities, thus emphasizing the crucial role of strand swapping in cell–cell adhesion. Numerical estimates demonstrate that the strength of cellular adhesion is extremely sensitive to the concentration of cadherins expressed at the cell surface. We suggest that the domain swapping mechanism is used by a variety of cell-adhesion proteins and that related mechanisms to control affinity and specificity are exploited in other systems. PMID:15937105
López-Ortega, Orestes; Santos-Argumedo, Leopoldo
2017-01-01
Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775
The sticky business of adhesion prevention in minimally invasive gynecologic surgery.
Han, Esther S; Scheib, Stacey A; Patzkowsky, Kristin E; Simpson, Khara; Wang, Karen C
2017-08-01
The negative impact of postoperative adhesions has long been recognized, but available options for prevention remain limited. Minimally invasive surgery is associated with decreased adhesion formation due to meticulous dissection with gentile tissue handling, improved hemostasis, and limiting exposure to reactive foreign material; however, there is conflicting evidence on the clinical significance of adhesion-related disease when compared to open surgery. Laparoscopic surgery does not guarantee the prevention of adhesions because longer operative times and high insufflation pressure can promote adhesion formation. Adhesion barriers have been available since the 1980s, but uptake among surgeons remains low and there is no clear evidence that they reduce clinically significant outcomes such as chronic pain or infertility. In this article, we review the ongoing magnitude of adhesion-related complications in gynecologic surgery, currently available interventions and new research toward more effective adhesion prevention. Recent literature provides updated epidemiologic data and estimates of healthcare costs associated with adhesion-related complications. There have been important advances in our understanding of normal peritoneal healing and the pathophysiology of adhesions. Adhesion barriers continue to be tested for safety and effectiveness and new agents have shown promise in clinical studies. Finally, there are many experimental studies of new materials and pharmacologic and biologic prevention agents. There is great interest in new adhesion prevention technologies, but new agents are unlikely to be available for clinical use for many years. High-quality effectiveness and outcomes-related research is still needed.
Wang, Shujie; Watanabe, Takashi; Matsuzawa, Kenji; Katsumi, Akira; Kakeno, Mai; Matsui, Toshinori; Ye, Feng; Sato, Kazuhide; Murase, Kiyoko; Sugiyama, Ikuko; Kimura, Kazushi; Mizoguchi, Akira; Ginsberg, Mark H.; Collard, John G.
2012-01-01
Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration. PMID:23071154
NASA Astrophysics Data System (ADS)
Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae
2017-09-01
This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.
Viitaniemi, L; Abdulmajeed, A; Sulaiman, T; Söderling, E; Närhi, T
2017-12-01
Monolithic zirconia and glass ceramics are increasingly used in implant crowns. Limited data is available on bacterial adhesion and early biofilm formation on these materials. Four different materials were investigated: (1) Lithium disilicate glass-ceramics (LDS), (2) Fully stabilized zirconia (FSZ), (3) Partially stabilized zirconia (PSZ), and (4) Dual curing cement (DCC). The materials' surfaces were characterized with spinning disc confocal microscopy and by water contact angle and surface free energy (SFE) measurements. For the adhesion tests the materials were rolled in suspensions of Streptococcus mutans. Early biofilm formation was studied on the materials and allowing the biofilms to form for 24 h. S. mutans cell counts were determined by plate culturing. ANOVA and post-hoc Tukey's tests (p⟨0.05) were used for statistical evaluation. The LDS surfaces were clearly hydrophilic with the highest SFE value (p⟨0.001). For S. mutans adhesion, the ranking of the materials from lowest to highest was: LDS = FSZ ⟨ DCC ⟨ PSZ (p⟨0.05). No significant differences among the materials were noticed in biofilm formation. LDS has lower S.mutans adhesion than other materials examined in this study, but the difference was not reflected in early biofilm formation. Copyright© 2017 Dennis Barber Ltd.
NASA Astrophysics Data System (ADS)
Dharan, Nadiv; Farago, Oded
Adhesion between a T cell and an antigen presenting cell is achieved by TCR-pMHC and LFA1-ICAM1 protein complexes. These segregate to form a special pattern, known as the immunological synapse (IS), consisting of a central quasi-circular domain of TCR-pMHC bonds surrounded by a peripheral domain of LFA1-ICAM1 complexes. Insights gained from imaging studies had led to the conclusion that the formation of the central adhesion domain in the IS is driven by active (ATP-driven) mechanisms. Recent studies, however, suggested that passive (thermodynamic) mechanisms may also play an important role in this process. Here, we present a simple physical model, taking into account the membrane-mediated thermodynamic attraction between the TCR-pMHC bonds and the effective forces that they experience due to ATP-driven actin retrograde flow and transport by dynein motor proteins. Monte Carlo simulations of the model exhibit a good spatio-temporal agreement with the experimentally observed pattern evolution of the TCR-pMHC microclusters. The agreement is lost when one of the aggregation mechanisms is "muted", which helps to identify the respective roles in the process. We conclude that actin retrograde flow drives the centripetal motion of TCR-pMHC bonds, while the membrane-mediated interactions facilitate microcluster formation and growth. In the absence of dynein motors, the system evolves into a ring-shaped pattern, which highlights the role of dynein motors in the formation of the final concentric pattern. The interplay between the passive and active mechanisms regulates the rate of the accumulation process, which in the absence of one them proceeds either too quickly or slowly.
Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru
2018-03-30
Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.
Zhao, Xin; Jiang, Shichao; Liu, Shen; Chen, Shuai; Lin, Zhi Yuan William; Pan, Guoqing; He, Fan; Li, Fengfeng; Fan, Cunyi; Cui, Wenguo
2015-08-01
To balance intrinsic and extrinsic healing during tendon repair is challenging in tendon surgery. We hypothesized that by mediating apoptotic gene and collagen synthesis of exogenous fibroblasts, the adhesion formation induced by extrinsic healing could be inhibited. With the maintenance of intrinsic healing, the tendon could be healed with proper function with no adhesion. In this study, we loaded hydrophilic mitomycin-C (MMC) into hyaluronan (HA) hydrosols, which were then encapsulated in poly(L-lactic acid) (PLLA) fibers by micro-sol electrospinning. This strategy successfully provided a controlled release of MMC to inhibit adhesion formations with no detrimental effect on intrinsic healing. We found that micro-sol electrospinning was an effective and facile approach to incorporate and control hydrophilic drug release from hydrophobic polyester fibers. MMC exhibited an initially rapid, and gradually steadier release during 40 days, and the release rates could be tuned by its concentration. In vitro studies revealed that low concentrations of MMC could inhibit fibroblast adhesion and proliferation. When lacerate tendons were healed using the MMC-HA loaded PLLA fibers in vivo, they exhibited comparable mechanical strength to the naturally healed tendons but with no significant presence of adhesion formation. We further identified the up-regulation of apoptotic protein Bax expression and down-regulation of proteins Bcl2, collage I, collagen III and α-SMA during the healing process associated with minimum adhesion formations. This approach presented here leverages new advances in drug delivery and nanotechnology and offers a promising strategy to balance intrinsic and extrinsic tendon healing through modulating genes associated with fibroblast apoptosis and collagen synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms
Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James
2014-01-01
SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433
Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd
2003-10-01
The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1
Mechanisms of excitatory synapse maturation by trans-synaptic organizing complexes
McMahon, Samuel A.; Díaz, Elva
2011-01-01
Synapses are specialized cell-cell adhesion contacts that mediate communication within neural networks. During development, excitatory synapses are generated by step-wise recruitment of pre- and postsynaptic proteins to sites of contact. Several classes of synaptic organizing complexes have been identified that function during the initial stages of synapse formation. However, mechanisms underlying the later stages of synapse development are less well understood. In recent years, molecules have been discovered that appear to play a role in synapse maturation. In this review, we highlight recent findings that have provided key insights for understanding postsynaptic maturation of developing excitatory synapses with a focus on recruitment of AMPA receptors to developing synapses. PMID:21242087
Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.
Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo
2012-11-21
To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.
Sivasankar, S; Gumbiner, B; Leckband, D
2001-01-01
Direct measurements of the interactions between antiparallel, oriented monolayers of the complete extracellular region of C-cadherin demonstrate that, rather than binding in a single unique orientation, the cadherins adhere in three distinct alignments. The strongest adhesion is observed when the opposing extracellular fragments are completely interdigitated. A second adhesive alignment forms when the interdigitated proteins separate by 70 +/- 10 A. A third complex forms at a bilayer separation commensurate with the approximate overlap of cadherin extracellular domains 1 and 2 (CEC1-2). The locations of the energy minima are independent of both the surface density of bound cadherin and the stiffness of the force transducer. Using surface element integration, we show that two flat surfaces that interact through an oscillatory potential will exhibit discrete minima at the same locations in the force profile measured between hemicylinders covered with identical materials. The measured interaction profiles, therefore, reflect the relative separations at which the antiparallel proteins adhere, and are unaffected by the curvature of the underlying substrate. The successive formation and rupture of multiple protein contacts during detachment can explain the observed sluggish unbinding of cadherin monolayers. Velocity-distance profiles, obtained by quantitative video analysis of the unbinding trajectory, exhibit three velocity regimes, the transitions between which coincide with the positions of the adhesive minima. These findings suggest that cadherins undergo multiple stage unbinding, which may function to impede adhesive failure under force. PMID:11259289
Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan
2007-04-15
Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.
NASA Astrophysics Data System (ADS)
Satriani, W. H.; Redjeki, S.; Kartinah, N. T.
2017-08-01
Increased neuroplasticity induced by complex aerobic physical exercise is associated with improved cognitive function in adult mice. Increased cognitive function is assumed to be based on increased synapse formation. One of the regions of the brain that is important in cognitive function is the hippocampus, which plays a role in memory formation. Post synaptic density-95 (PSD-95) is an adhesion protein of the post-synaptic density scaffolding that is essential to synaptic stabilization. As we age, the PSD-95 molecule matures the synapses needed for the formation of the basic circuitry of the nervous system in the brain. However, during the growth period, synapse elimination is higher than its formation. This study aims to determine whether complex aerobic exercise can improve cognitive function and PSD-95 levels in the hippocampus of juvenile mice during their growth stage. The mice performed complex aerobic exercise starting at five weeks of age and continuing for seven weeks with a gradual increase of 8 m/min. At eight weeks it was increased to 10 m/min. The exercise was done for five days of each week. The subjects of the study were tested for cognition one week before being sacrificed (at 12 weeks). The PSD-95 in the hippocampus was measured with ELISA. The results showed that there was a significant difference in cognitive function, where p < 0.05, between the group that was given complex aerobic exercise and a control group that did not. However, the PSD-95 levels did not differ significantly between the two groups. The results of this study indicate that early complex aerobic exercise can improve cognitive ability in adulthood but does not increase the levels of PSD-95 in adults.
PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS
Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.
2014-01-01
Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222
Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.
Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo
2004-01-01
Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.
Dual Function of the pUL7-pUL51 Tegument Protein Complex in Herpes Simplex Virus 1 Infection.
Albecka, Anna; Owen, Danielle J; Ivanova, Lyudmila; Brun, Juliane; Liman, Rukayya; Davies, Laura; Ahmed, M Firoz; Colaco, Susanna; Hollinshead, Michael; Graham, Stephen C; Crump, Colin M
2017-01-15
The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells. Copyright © 2017 Albecka et al.
Adhesive interactions of biologically inspired soft condensed matter
NASA Astrophysics Data System (ADS)
Anderson, Travers Heath
Improving our fundamental understanding of the surface interactions between complex materials is needed to improve existing materials and products as well as develop new ones. The object of this research was to apply the measurements of fundamental surface interactions to real world problems facing chemical engineers and materials scientists. I focus on three systems of biologically inspired soft condensed matter, with an emphasis on the adhesive interactions between them. The formation of phospholipid bilayers of the neutral lipid, dimyristoyl-phosphatidylcholine (DMPC) on silica surfaces from vesicles in aqueous solutions was investigated. The process involves five stages: vesicle adhesion to the substrate surfaces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water and ions into the solution. The forces between DMPC bilayers and silica were measured in the Surface Forces Apparatus (SFA) in phosphate buffered saline. The adhesion energy was found to be much stronger than the expected adhesion predicted by van der Waals interactions, likely due to an attractive electrostatic interaction. The effects of non-adsorbing cationic polyelectrolytes on the interactions between supported cationic surfactant bilayers were studied using the SFA. Addition of polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction and screening of the double-layer repulsion. Calculations are made that allow for the conversion of the adhesion energy measured in the SFA to the overall interaction energy between vesicles in solution, which determines the stability behavior of vesicle dispersions. Mussels use a variety of dihydroxyphenyl-alanine (DOPA) rich proteins specifically tailored to adhering to wet surfaces. The SFA was used to study the role of DOPA on the adhesive properties of these proteins to TiO 2 and mica using both real mussel foot proteins (mfp) and a synthetic polypeptide analogue of mfp-3. Adhesion increased with DOPA concentration, although oxidation of DOPA reduces the adhesive capabilities of the proteins. Comparison of the two shows that DOPA is responsible for at least 80% of the adhesion energy of mfp-3 and can be attributed to DOPA groups favorably oriented within or at the interface of these films.
BAG3 regulates formation of the SNARE complex and insulin secretion
Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C
2015-01-01
Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323
Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N
2018-06-19
Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.
Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination
NASA Astrophysics Data System (ADS)
Sobac, Benjamin; Brutin, David
2011-11-01
The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.
Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers.
Du, Shan; Zhang, Jin; Zhou, Wei T; Li, Quan X; Greene, George W; Zhu, Hai J; Li, Jing L; Wang, Xun G
2016-09-15
Silkworm silk fibers are core-shell composites of fibroin and sericin proteins. Studying the interactions between fibroin and sericin is essential for understanding the properties of these composites. It is observed that compared to the domestic silk cocoon Bombyx mori (B. mori), the adhesion between fibroin and sericin from the wild silk cocoon, Antheraea pernyi (A. pernyi), is significantly stronger with a higher degree of heterogeneity. The adsorption of A. pernyi sericin on its fibroin is almost twice the value for B. mori sericin on fibroin, both showing a monolayer Langmuir adsorption. (1)H NMR and FTIR studies demonstrate on a molecular level the stronger interactions and the more intensive complex formation between A. pernyi fibroin and sericin, facilitated by the hydrogen bonding between glycine and serine. The findings of this study may help the design of composites with superior interfacial adhesion between different components. Copyright © 2016 Elsevier Inc. All rights reserved.
Differential expression of neuroligin genes in the nervous system of zebrafish.
Davey, Crystal; Tallafuss, Alexandra; Washbourne, Philip
2010-02-01
The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance.
Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
Song, F; Koo, H; Ren, D
2015-08-01
Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.
Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.
Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera
2017-06-05
Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Faivre-Sarrailh, Catherine; Banerjee, Swati; Li, Jingjun; Hortsch, Michael; Laval, Monique; Bhat, Manzoor A
2004-10-01
Septate junctions (SJs) in epithelial and neuronal cells play an important role in the formation and maintenance of charge and size selective barriers. They form the basis for the ensheathment of nerve fibers in Drosophila and for the attachment of myelin loops to axonal surface in vertebrates. The cell-adhesion molecules NRX IV/Caspr/Paranodin (NCP1), contactin and Neurofascin-155 (NF-155) are all present at the vertebrate axo-glial SJs. Mutational analyses have shown that vertebrate NCP1 and its Drosophila homolog, Neurexin IV (NRX IV) are required for the formation of SJs. In this study, we report the genetic, molecular and biochemical characterization of the Drosophila homolog of vertebrate contactin, CONT. Ultrastructural and dye-exclusion analyses of Cont mutant embryos show that CONT is required for organization of SJs and paracellular barrier function. We show that CONT, Neuroglian (NRG) (Drosophila homolog of NF-155) and NRX IV are interdependent for their SJ localization and these proteins form a tripartite complex. Hence, our data provide evidence that the organization of SJs is dependent on the interactions between these highly conserved cell-adhesion molecules.
Super-complexes of adhesion GPCRs and neural guidance receptors
NASA Astrophysics Data System (ADS)
Jackson, Verity A.; Mehmood, Shahid; Chavent, Matthieu; Roversi, Pietro; Carrasquero, Maria; Del Toro, Daniel; Seyit-Bremer, Goenuel; Ranaivoson, Fanomezana M.; Comoletti, Davide; Sansom, Mark S. P.; Robinson, Carol V.; Klein, Rüdiger; Seiradake, Elena
2016-04-01
Latrophilin adhesion-GPCRs (Lphn1-3 or ADGRL1-3) and Unc5 cell guidance receptors (Unc5A-D) interact with FLRT proteins (FLRT1-3), thereby promoting cell adhesion and repulsion, respectively. How the three proteins interact and function simultaneously is poorly understood. We show that Unc5D interacts with FLRT2 in cis, controlling cell adhesion in response to externally presented Lphn3. The ectodomains of the three proteins bind cooperatively. Crystal structures of the ternary complex formed by the extracellular domains reveal that Lphn3 dimerizes when bound to FLRT2:Unc5, resulting in a stoichiometry of 1:1:2 (FLRT2:Unc5D:Lphn3). This 1:1:2 complex further dimerizes to form a larger `super-complex' (2:2:4), using a previously undescribed binding motif in the Unc5D TSP1 domain. Molecular dynamics simulations, point-directed mutagenesis and mass spectrometry demonstrate the stability and molecular properties of these complexes. Our data exemplify how receptors increase their functional repertoire by forming different context-dependent higher-order complexes.
Lin, Yuli; Peng, Nana; Zhuang, Hongqin; Zhang, Di; Wang, Yao; Hua, Zi-Chun
2014-08-30
The urokinase-type plasminogen activator receptor (uPAR) is an important regulator of ECM proteolysis, cell-ECM interactions and cell signaling. uPAR and heat shock proteins HSP70 and MRJ (DNAJB6) have been implicated in tumor growth and metastasis. We have reported recently that MRJ (DNAJB6, a heat shock protein) can interact with uPAR and enhance cell adhesion. Here, we identified another heat shock protein HSP70 as a novel uPAR-interacting protein. We performed co-immunoprecipitation in human embryonic kidney (HEK) 293 and colon cancer HCT116 cells as well as immunofluorence assays in HEK293 cells stably transfected with uPAR to investigate the association of suPAR with HSP70/MRJ. To understand the biological functions of the triple complex of suPAR/HSP70/MRJ, we determined whether HSP70 and/or MRJ regulated uPAR-mediated cell invasion, migration, adhesion to vitronectin and MAPK pathway in two pair of human tumor cells (uPAR negative HEK293 cells vs HEK293 cells stably transfected with uPAR and HCT116 cells stably transfected with antisense-uPAR vs HCT116 mock cells transfected with vector only) using transwell assay, wound healing assay, quantitative RT-PCR analyzing mmp2 and mmp9 transcription levels, cell adhesion assay and Western blotting assay. HSP70 and MRJ formed a triple complex with uPAR and over-expression of MRJ enhanced the interaction between HSP70 and uPAR, while knockdown of MRJ decreased soluble uPAR in HCT116 cells (P < 0.05) and reduced the formation of the triple complex, suggesting that MRJ may act as an uPAR-specific adaptor protein to link uPAR to HSP70. Further experiments showed that knockdown of HSP70 and/or MRJ by siRNA inhibited uPAR-mediated cell adhesion to vitronectin as well as suppressed cell invasion and migration. Knockdown of HSP70 and/or MRJ inhibited expression of invasion related genes mmp2 and mmp9. Finally, HSP70 and/or MRJ up-regulated phosphorylation levels of ERK1/2 and FAK suggesting MAPK pathway was involved. All the biological function experiments in cell level showed an additive effect when HSP70 and MRJ were regulated simultaneously indicating their collaborated regulation effects on uPAR. These findings may offer a novel insight into the interactions between uPAR and HSP70/MRJ and their functions in cell adhesion and migration may provide more understanding of the roles in regulating cancer metastasis.
Osteoblast mineralization requires β1 integrin/ICAP-1–dependent fibronectin deposition
Brunner, Molly; Millon-Frémillon, Angélique; Chevalier, Genevieve; Nakchbandi, Inaam A.; Mosher, Deane; Block, Marc R.
2011-01-01
The morphogenetic and differentiation events required for bone formation are orchestrated by diffusible and insoluble factors that are localized within the extracellular matrix. In mice, the deletion of ICAP-1, a modulator of β1 integrin activation, leads to severe defects in osteoblast proliferation, differentiation, and mineralization and to a delay in bone formation. Deposition of fibronectin and maturation of fibrillar adhesions, adhesive structures that accompany fibronectin deposition, are impaired upon ICAP-1 loss, as are type I collagen deposition and mineralization. Expression of β1 integrin with a mutated binding site for ICAP-1 recapitulates the ICAP-1–null phenotype. Follow-up experiments demonstrated that ICAP-1 negatively regulates kindlin-2 recruitment onto the β1 integrin cytoplasmic domain, whereas an excess of kindlin-2 binding has a deleterious effect on fibrillar adhesion formation. These results suggest that ICAP-1 works in concert with kindlin-2 to control the dynamics of β1 integrin–containing fibrillar adhesions and, thereby, regulates fibronectin deposition and osteoblast mineralization. PMID:21768292
Hyaluronic acid for post sinus surgery care: systematic review and meta-analysis.
Fong, E; Garcia, M; Woods, C M; Ooi, E
2017-01-01
Wound healing after endoscopic sinus surgery may result in adhesion formation. Hyaluronic acid may prevent synechiae development. A systematic review was performed to evaluate the current evidence on the clinical efficacy of hyaluronic acid applied to the nasal cavity after sinus surgery. Studies using hyaluronic acid as an adjunct treatment following endoscopic sinus surgery for chronic rhinosinusitis were identified. The primary outcome was adhesion formation rates. A meta-analysis was performed on adhesion event frequency. Secondary outcome measures included other endoscopic findings and patient-reported outcomes. Thirteen studies (501 patients) met the selection criteria. A meta-analysis of adhesion formation frequency on endoscopy demonstrated a lower risk ratio in the hyaluronic acid intervention group (42 out of 283 cases) compared to the control group (81 out of 282) of 0.52 (95 per cent confidence interval = 0.37-0.72). Hyaluronic acid use was not associated with any significant adverse events. Hyaluronic acid appears to be clinically safe and well tolerated, and may be useful in the early stages after sinus surgery to limit adhesion rate. Further research, including larger randomised controlled trials, is required to evaluate patient- and clinician-reported outcomes of hyaluronic acid post sinus surgery.
Reversible Thermoset Adhesives
NASA Technical Reports Server (NTRS)
Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)
2016-01-01
Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.
A pectin-honey hydrogel prevents postoperative intraperitoneal adhesions in a rat model.
Giusto, Gessica; Vercelli, Cristina; Iussich, Selina; Audisio, Andrea; Morello, Emanuela; Odore, Rosangela; Gandini, Marco
2017-02-17
Adhesions are a common postoperative surgical complication. Liquid honey has been used intraperitoneally to reduce the incidence of these adhesions. However, solid barriers are considered more effective than liquids in decreasing postoperative intra-abdominal adhesion formation; therefore, a new pectin-honey hydrogel (PHH) was produced and its effectiveness was evaluated in a rat cecal abrasion model. Standardized cecal/peritoneal abrasion was performed through laparotomy in 48 adult Sprague-Dawley rats to induce peritoneal adhesion formation. Rats were randomly assigned to a control (C) and treatment (T) group. In group T, PHHs were placed between the injured peritoneum and cecum. Animals were euthanized on day 15 after surgery. Adhesions were evaluated macroscopically and adhesion scores were recorded and compared between the two groups. Inflammation, fibrosis, and neovascularization were histologically graded and compared between the groups. In group C, 17 of 24 (70.8%) animals developed adhesions between the cecum and peritoneum, while in group T only 5 of 24 (20.8%) did (p = 0.0012). In group C, one rat had an adhesion score of 3, sixteen had scores of 2, and seven rats had scores of 0. In group T, four rats had adhesion scores of 2, one rat had an adhesion score of 1 and nineteen have score 0 (p = 0.0003). Significantly lower grades of inflammation, fibrosis, and neovascularization were seen in group T (p = 0.006, p = 0.001, p = 0.002, respectively). PHH is a novel absorbable barrier that is effective in preventing intra-abdominal adhesions in a cecal abrasion model in rats.
Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin.
Thanatvarakorn, Ornnicha; Prasansuttiporn, Taweesak; Thittaweerat, Suppason; Foxton, Richard M; Ichinose, Shizuko; Tagami, Junji; Hosaka, Keiichi; Nakajima, Masatoshi
2018-03-01
Smear layer deproteinizing was proved to reduce the organic phase of smear layer covered on dentin surface. It was shown to eliminate hybridized smear layer and nanoleakage expression in resin-dentin bonding interface of two-step self-etch adhesive. This study aimed to investigate those effects on various one-step self-etch adhesives. Four different one-step self-etch adhesives were used in this study; SE One (SE), Scotchbond™ Universal (SU), BeautiBond Multi (BB), and Bond Force (BF). Flat human dentin surfaces with standardized smear layer were prepared. Smear layer deproteinizing was carried out by the application of 50ppm hypochlorous acid (HOCl) on dentin surface for 15s followed by Accel ® (p-toluenesulfinic acid salt) for 5s prior to adhesive application. No surface pretreatment was used as control. Microtensile bond strength (μTBS) and nanoleakage under TEM observation were investigated. The data were analyzed by two-way ANOVA and Tukey's post-hoc test and t-test at the significant level of 0.05. Smear layer deproteinizing significantly improved μTBS of SE, SU, and BB (p<0.001). Hybridized smear layer observed in control groups of SE, BB, and BF, and reticular nanoleakage presented throughout the hybridized complex in control groups of BB and BF were eliminated upon the smear layer deproteinizing. Smear layer deproteinizing by HOCl and Accel ® application could enhance the quality of dentin for bonding to one-step self-etch adhesives, resulting in the improving μTBS, eliminating hybridized smear layer and preventing reticular nanoleakage formation in resin-dentin bonding interface. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Bittig, Arne T; Matschegewski, Claudia; Nebe, J Barbara; Stählke, Susanne; Uhrmacher, Adelinde M
2014-09-09
Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments. Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally.
2014-01-01
Background Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. Results To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments. Conclusion Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally. PMID:25200251
Charles R. Frihart
2005-01-01
An appreciation of rheology, material science, organic chemistry, polymer science, and mechanics leads to better understanding of the factors controlling the performance of the bonded assemblies. Given the complexity of wood as a substrate, it is hard to understand why some wood adhesives work better than other wood adhesives, especially when under the more severe...
Charles R. Frihart; Linda F. Lorenz
2018-01-01
Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...
Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M
1996-01-01
The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.
Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer
Jahangiri, Arman; Nguyen, Alan; Sidorov, Maxim K.; Yagnik, Garima; Rick, Jonathan; Han, Sung Won; Chen, William; Flanigan, Patrick M.; Schneidman-Duhovny, Dina; Mascharak, Smita; De Lay, Michael; Imber, Brandon; Park, Catherine C.; Matsumoto, Kunio; Lu, Kan; Bergers, Gabriele; Sali, Andrej; Weiss, William A.
2017-01-01
The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/β1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and β1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/β1 complex to maintain the high-affinity β1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/β1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from β1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5β1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/β1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes. PMID:28973887
Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.
Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T
2017-01-01
To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Kwak, Tae Kyoung; Lee, Mi-Sook; Ryu, Jihye; Choi, Yoon-Ju; Kang, Minkyung; Jeong, Doyoung; Lee, Jung Weon
2012-01-01
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration. PMID:22761432
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben
2015-11-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.
Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.
Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V
2007-09-14
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.
Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2013-03-21
Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.
de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W.
2016-01-01
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function is still poorly understood. In this study we show that L. amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin and phosphorylated FAK when compared to non-infected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. PMID:27641840
Marshall, Jamie L.; Kwok, Yukwah; McMorran, Brian; Baum, Linda G.; Crosbie-Watson, Rachelle H.
2013-01-01
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important therapeutic target. Here, we review current protein replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082
Switchable bio-inspired adhesives
NASA Astrophysics Data System (ADS)
Kroner, Elmar
2015-03-01
Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.
Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard
2014-06-27
The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Adhesives with wood materials : bond formation and performance
Charles R. Frihart; Christopher G. Hunt
2010-01-01
Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...
Adhesive interactions with wood
Charles R. Frihart
2004-01-01
While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....
Liu, Shen; Hu, Changmin; Li, Fengfeng; Li, Xu-jun; Cui, Wenguo; Fan, Cunyi
2013-02-01
Physical barriers are commonly used to reduce peritendinous adhesion after injury. However, the inflammatory response to surgery cannot be prevented. This study was designed to evaluate the ability of ibuprofen-loaded poly(l-lactic acid)-polyethylene glycol (PELA) diblock copolymer fibrous membranes in preventing adhesion formation and reduce inflammation. Electrospun PELA fibrous membranes underwent mechanical testing and were characterized by morphology, surface wettability, drug release, and degradation. Results of an in vitro drug release study showed that a burst release was followed by sustained release from fibrous membranes with high initial ibuprofen content. Fewer L929 mouse fibroblasts adhered to and proliferated on the ibuprofen-loaded PELA fibrous membrane compared with tissue culture plates or PELA fibrous membrane without ibuprofen. In a chicken model of flexor digitorum profundus tendon surgery, the ibuprofen-loaded PELA fibrous membranes prevented tissue adhesion and significantly reduced inflammation. Taken together, these results demonstrate that ibuprofen-loaded PELA fibrous membranes prevent peritendinous adhesion formation better than membranes that do not contain ibuprofen, through anti-adhesion and anti-inflammatory actions.
Makarchian, Hamid Reza; Kasraianfard, Amir; Ghaderzadeh, Pezhman; Javadi, Seyed Mohammad Reza; Ghorbanpoor, Manoochehr
2017-01-01
To assess the effectiveness of heparin, platelet-rich plasma (PRP), and silver nanoparticles on prevention of postoperative adhesion in animal models. Sixty males Albino Wistar rats aged 5 to 6 weeks were classified into five groups receiving none, heparin, PRP, silver nanoparticles, PRP plus silver nanoparticles intraperitoneally. After 2 weeks, the animals underwent laparotomy and the damaged site was assessed for peritoneal adhesions severity. The mean severity scores were 2.5 ± 0.9, 2.16 ± 0.7, 1.5 ± 0.5, 2.66 ± 0.88, and 2.25 ± 0.62 in the control, heparin, PRP, silver and PRP plus silver groups, respectively with significant intergroup difference (p = 0.004). The highest effective material for preventing adhesion formation was PRP followed by heparin and PRP plus silver. Moreover, compared to the controls, only use of PRP was significantly effective, in terms of adhesion severity (p = 0.01) . Platelet-rich plasma alone may have the highest efficacy for preventing postoperative peritoneal adhesions in comparison with heparin, silver nanoparticles and PRP plus silver nanoparticles.
Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E
2015-08-01
The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan
2007-07-01
An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.
The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-05-27
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.
The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-01-01
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153
Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J
2017-04-01
During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology.
Gordon, V D; O'Halloran, T J; Shindell, O
2015-06-28
Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development.
Mechano-sensing and mechano-reaction of soft connective tissue cells
NASA Astrophysics Data System (ADS)
Lambert, Ch. A.; Nusgens, B. V.; Lapière, Ch. M.
One main function of the connective tissues is to provide cells with a mechanically resistant attachment support required for survival, division and differentiation. All cells contain membrane-anchored attachment proteins able to recognize specific chemical motifs in the extracellular macromolecules forming the supporting scaffold, made of various types of collagen, adhesive glycoproteins, elastin, proteoglycans, etc... These cell-matrix interactions are mainly mediated by re ceptors of the integrins family, heterodimeric molecules made of an extracellular domain connected through a transmembrane sequence to an intracytoplasmic tail. Upon recognition of the extracellular ligand, the clustering and activation of the integrins result in the recruitment of a complex of proteins and formation of the focal adhesion plaque, containing both cytoskeletal and catalytic signaling molecules. Activation results in polymerization of actin and formation of stress fibers. These structures establish a physical link between the extracellular matrix components and the cytoskeleton through the integrins providing a continuous path acting as a mechanotransducer. This connection is used by the cells to perform their mechanical functions as adhesion, migration and traction. In vitro experimental models using fibroblasts in a collagen gel demonstrate that cells are in mechanical equilibrium with their support which regulates their replicative and biosynthetic phenotype. The present review discusses the molecular structures operating in the transmission of the mechanical messages from the support to the connective tissue cells, and their effect on the cellular machinery. We present arguments for investigating these mechanisms in understanding the perception of reduced gravity and the resulting reaction leading to microgravity induced pathologies.
Effects of sodium hyaluronate on tendon healing and adhesion formation in horses.
Gaughan, E M; Nixon, A J; Krook, L P; Yeager, A E; Mann, K A; Mohammed, H; Bartel, D L
1991-05-01
Sodium hyaluronate reduces adhesions after tendon repair in rodents and dogs, and has been used in limited clinical trials in people. To evaluate its effect on tendon healing and adhesion formation in horses and to compare these effects with those of a compound of similar visco-elastic properties, a study was performed in horses, using a model of collagenase injection in the flexor tendons within the digital sheath. Eight clinically normal horses were randomly allotted to 2 groups. Adhesion formation between the deep digital flexor tendon and the tendon sheath at the pastern region was induced in the forelimbs of all horses. Using tenoscopic control, a 20-gauge needle was inserted into the deep digital flexor tendon of horses under general anesthesia and 0.2 ml of collagenase (2.5 mg/ml) was injected. The procedure was repeated proximally at 2 other sites, spaced 1.5 cm apart. A biopsy forceps was introduced, and a 5-mm tendon defect was created at each injection site. Group-A horses had 120 mg of sodium hyaluronate (NaHA) gel injected into the tendon sheath of one limb. Group-B horses had methylcellulose gel injected at the same sites. The contralateral limbs of horses in both groups served as surgical, but noninjected, controls. Horses were euthanatized after 8 weeks of stall rest. Ultrasonographic evaluation revealed improved tendon healing after NaHa injection, but no difference in peritendinous adhesion formation. Tendon sheath fluid volume and hyaluronic acid (HA) content were greater in NaHA-treated limbs. Gross pathologic examination revealed considerably fewer and smaller adhesions when limbs were treated with NaHA. However, significant difference in pull-out strengths was not evident between NaHA-treated and control limbs. Histologically, the deep digital flexor tendon from the NaHA-treated limbs had reduced inflammatory cell infiltration, improved tendon structure, and less intratendinous hemorrhage. Treatment with methylcullulose had no significant effect on tendon healing, adhesion size, quantity, or strength or on the volume and composition of the tendon sheath fluid. Sodium hyaluronate, administered intrathecally, appears to have a pharmaceutically beneficial action in this collagenase-induced tendinitis and adhesion model in horses.
αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion
Benjamin, Jacqueline M.; Kwiatkowski, Adam V.; Yang, Changsong; Korobova, Farida; Pokutta, Sabine; Svitkina, Tatyana
2010-01-01
αE-catenin binds the cell–cell adhesion complex of E-cadherin and β-catenin (β-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of αE-catenin to the E-cadherin–β-cat complex lowers αE-catenin affinity for F-actin, and αE-catenin alone can bind F-actin and inhibit Arp2/3 complex–mediated actin polymerization. In cells, to test whether αE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic αE-catenin pool was sequestered to mitochondria without affecting overall levels of αE-catenin or the cadherin–catenin complex. Sequestering cytosolic αE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell–cell adhesion. In contrast, sequestration of cytosolic αE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of αE-catenin regulates actin dynamics independently of cell–cell adhesion. PMID:20404114
Yamazaki, Daisuke; Fujiwara, Takashi; Suetsugu, Shiro; Takenawa, Tadaomi
2005-05-01
When a cell spreads and moves, reorganization of the actin cytoskeleton pushes the cell membrane, and the resulting membrane protrusions create new points of contact with the substrate and generate the locomotive force. Membrane extension and adhesion to a substrate must be tightly coordinated for effective cell movement, but little is known about the mechanisms underlying these processes. WAVEs are critical regulators of Rac-induced actin reorganization. WAVE2 is essential for formation of lamellipodial structures at the cell periphery stimulated by growth factors, but it is thought that WAVE1 is dispensable for such processes in mouse embryonic fibroblasts (MEFs). Here we show a novel function of WAVE in lamellipodial protrusions during cell spreading. During spreading on fibronectin (FN), MEFs with knockouts (KOs) of WAVE1 and WAVE2 showed different membrane dynamics, suggesting that these molecules have distinct roles in lamellipodium formation. Formation of lamellipodial structures on FN was inhibited in WAVE2 KO MEFs. In contrast, WAVE1 is not essential for extension of lamellipodial protrusions but is required for stabilization of such structures. WAVE1-deficiency decreased the density of actin filaments and increased the speed of membrane extension, causing deformation of focal complex at the tip of spreading edges. Thus, at the tip of the lamellipodial protrusion, WAVE2 generates the membrane protrusive structures containing actin filaments, and modification by WAVE1 stabilizes these structures through cell-substrate adhesion. Coordination of WAVE1 and WAVE2 activities appears to be necessary for formation of proper actin structures in stable lamellipodia.
Repeated Origin and Loss of Adhesive Toepads in Geckos
Gamble, Tony; Greenbaum, Eli; Jackman, Todd R.; Russell, Anthony P.; Bauer, Aaron M.
2012-01-01
Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation. PMID:22761794
Silva, S; Costa, E M; Mendes, M; Morais, R M; Calhau, C; Pintado, M M
2016-09-01
The present work aimed to characterize the impact of an anthocyanin-rich blueberry extract upon the growth, adhesion and biofilm formation of several pathogens including some multiresistant bacteria. A group comprised of reference strains and clinical multiresistant isolates of Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Acinetobacter baumannii and Staphylococcus aureus, were used to screen for antimicrobial activity. Microbial growth was determined through the measurement of the optical density while adhesion and biofilm formation was determined using the standard crystal violet staining procedure. The results showed that, while blueberry extract was only effective in hindering the growth of Staph. aureus and E. coli, it was capable of significantly inhibiting biofilm formation and bacterial adhesion for all micro-organisms tested. The extract demonstrated a considerable potential as a natural, alternative antimicrobial capable of either interfering with microbial growth or hamper the adhesion to surfaces, with Staph. aureus proving to be the most susceptible micro-organism. The overall study demonstrates the potential of anthocyanin extracts as natural effective alternative antimicrobial agents. Additionally, the extract's capacity to reduce adhesion without reducing bacterial growth reduces the likeliness of resistance development while reducing the probability of infection. © 2016 The Society for Applied Microbiology.
Improved understanding of moisture effects on outdoor wood–adhesive bondlines
Joseph E. Jakes; Nayomi Plaza-Rodriguez; Xavier Arzola Villegas; Charles R. Frihart
2017-01-01
The development of improved moisture-durable wood adhesives for outdoor applications, such as repairing historic covered bridges, is hindered by an incomplete mechanistic understanding of what makes a woodâadhesive bond moisture-durable. The woodâadhesive bondline is extraordinarily difficult to study because of the chemical, structural, and mechanical complexities and...
Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H
2013-09-01
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. © 2013 FEBS.
Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus.
Nagar, Elad; Zilberman, Shaul; Sendersky, Eleonora; Simkovsky, Ryan; Shimoni, Eyal; Gershtein, Diana; Herzberg, Moshe; Golden, Susan S; Schwarz, Rakefet
2017-07-01
The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology
Gordon, V. D.; O’Halloran, T.J.; Shindell, O.
2015-01-01
Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development. PMID:25866854
Schmitt, Volker H; Mamilos, Andreas; Schmitt, Christine; Neitzer-Planck, Constanze N E; Rajab, Taufiek K; Hollemann, David; Wagner, Willi; Krämer, Bernhard; Hierlemann, Helmut; James Kirkpatrick, C; Brochhausen, Christoph
2018-02-01
Separating wounded serosa by physical barriers is the only clinically approved adjunct for postoperative adhesion prevention. Since the optimal adhesion barrier has not been found, it is essential to improve our pathogenic understanding of adhesion formation and to compare the effects of different barrier materials on tissue and cells. Wistar rats underwent standardized peritoneal damage and were treated either with Seprafilm, Adept, Intercoat, Spraygel, SupraSeal or remained untreated as a control. 14 days postoperatively, the lesions were explanted and histomorphologically analyzed using the European ISO score to evaluate material implants. Striking differences between the material groups were present regarding the inflammation, fibrosis, and foreign body reaction. According to the ISO score, Intercoat and Spraygel were considered as nonirritating to tissue. Adept, Seprafilm, and SupraSeal were assessed as mild-irritating materials. Interestingly, the most effective material in adhesion prevention revealed moderate inflammation accompanied by minor fibrosis. The degree of inflammation to barrier materials does not predict the efficacy in the prevention of adhesions. Histopathological investigations are crucial to improve our understanding of the cellular mechanisms during adhesion formation and elucidate the tissue response to material approaches used in adhesion prevention. This will lead to improved antiadhesive strategies and the development of functional barrier biomaterials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 598-609, 2018. © 2017 Wiley Periodicals, Inc.
Meng, Guoyu; Spahich, Nicole; Kenjale, Roma; Waksman, Gabriel; St Geme, Joseph W
2011-01-01
Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram-negative bacteria, a major subgroup of extracellular proteins called self-associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X-ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C-terminal SAAT domain folds into a triangular-prism-like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies. PMID:21841773
Lacanna, Egidio; Bigosch, Colette; Kaever, Volkhard; Boehm, Alex
2016-01-01
ABSTRACT DgcZ is the main cyclic dimeric GMP (c-di-GMP)-producing diguanylate cyclase (DGC) controlling biosynthesis of the exopolysaccharide poly-β-1,6-N-acetylglucosamine (poly-GlcNAc or PGA), which is essential for surface attachment of Escherichia coli. Although the complex regulation of DgcZ has previously been investigated, its primary role and the physiological conditions under which the protein is active are not fully understood. Transcription of dgcZ is regulated by the two-component system CpxAR activated by the lipoprotein NlpE in response to surface sensing. Here, we show that the negative effect of a cpxR mutation and the positive effect of nlpE overexpression on biofilm formation both depend on DgcZ. Coimmunoprecipitation data suggest several potential interaction partners of DgcZ. Interaction with FrdB, a subunit of the fumarate reductase complex (FRD) involved in anaerobic respiration and in control of flagellum assembly, was further supported by a bacterial-two-hybrid assay. Furthermore, the FRD complex was required for the increase in DgcZ-mediated biofilm formation upon induction of oxidative stress by addition of paraquat. A DgcZ-mVENUS fusion protein was found to localize at one bacterial cell pole in response to alkaline pH and carbon starvation. Based on our data and previous knowledge, an integrative role of DgcZ in regulation of surface attachment is proposed. We speculate that both DgcZ-stimulated PGA biosynthesis and interaction of DgcZ with the FRD complex contribute to impeding bacterial escape from the surface. IMPORTANCE Bacterial cells can grow by clonal expansion to surface-associated biofilms that are ubiquitous in the environment but also constitute a pervasive problem related to bacterial infections. Cyclic dimeric GMP (c-di-GMP) is a widespread bacterial second messenger involved in regulation of motility and biofilm formation, and plays a primary role in bacterial surface attachment. E. coli possesses a plethora of c-di-GMP-producing diguanylate cyclases, including DgcZ. Our study expands the knowledge on the role of DgcZ in regulation of surface attachment and suggests that it interconnects surface sensing and adhesion via multiple routes. PMID:27402625
Lacanna, Egidio; Bigosch, Colette; Kaever, Volkhard; Boehm, Alex; Becker, Anke
2016-09-15
DgcZ is the main cyclic dimeric GMP (c-di-GMP)-producing diguanylate cyclase (DGC) controlling biosynthesis of the exopolysaccharide poly-β-1,6-N-acetylglucosamine (poly-GlcNAc or PGA), which is essential for surface attachment of Escherichia coli Although the complex regulation of DgcZ has previously been investigated, its primary role and the physiological conditions under which the protein is active are not fully understood. Transcription of dgcZ is regulated by the two-component system CpxAR activated by the lipoprotein NlpE in response to surface sensing. Here, we show that the negative effect of a cpxR mutation and the positive effect of nlpE overexpression on biofilm formation both depend on DgcZ. Coimmunoprecipitation data suggest several potential interaction partners of DgcZ. Interaction with FrdB, a subunit of the fumarate reductase complex (FRD) involved in anaerobic respiration and in control of flagellum assembly, was further supported by a bacterial-two-hybrid assay. Furthermore, the FRD complex was required for the increase in DgcZ-mediated biofilm formation upon induction of oxidative stress by addition of paraquat. A DgcZ-mVENUS fusion protein was found to localize at one bacterial cell pole in response to alkaline pH and carbon starvation. Based on our data and previous knowledge, an integrative role of DgcZ in regulation of surface attachment is proposed. We speculate that both DgcZ-stimulated PGA biosynthesis and interaction of DgcZ with the FRD complex contribute to impeding bacterial escape from the surface. Bacterial cells can grow by clonal expansion to surface-associated biofilms that are ubiquitous in the environment but also constitute a pervasive problem related to bacterial infections. Cyclic dimeric GMP (c-di-GMP) is a widespread bacterial second messenger involved in regulation of motility and biofilm formation, and plays a primary role in bacterial surface attachment. E. coli possesses a plethora of c-di-GMP-producing diguanylate cyclases, including DgcZ. Our study expands the knowledge on the role of DgcZ in regulation of surface attachment and suggests that it interconnects surface sensing and adhesion via multiple routes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.
2015-01-01
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045
Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A
2015-04-20
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
Relationship between water status in dentin and interfacial morphology in all-in-one adhesives.
Yoshida, Eiji; Uno, Sigeru; Nodasaka, Yoshinobu; Kaga, Msayuki; Hirano, Susumu
2007-05-01
All-in-one adhesive systems have been recently developed to simplify bonding procedures. The adhesives containing acidic resin monomers generate a relatively thin bonding zone between dentin and composite. This zone may be left acidic and permeable when polymerization is poor. In this study, the effect of water contained in dentin on the quality of the bonding interface was morphologically investigated for all-in-one adhesives. Intact coronal dentin (hydrated dentin), desiccated coronal dentin (dehydrated dentin), caries-affected dentin (CAD) and resin composites were used for adherends to assess the effects of water contained in dentin on the ultra-structures of bonding interfaces created with two all-in-one adhesives and a resin composite. The bonding interfaces were observed under TEM without demineralization. Voids of various sizes were found at the bottom of the adhesive resin layers along the bonding interface of hydrated dentin, while dehydrated dentin, CAD and resin composites did not generate voids. The results showed that the voids were possibly formed by water that had penetrated from the underlying dentin. When the adherend contains little water, the formation of voids will not occur. It was verified that a phenomenon of void formation would not occur in a clinical situation in which caries-affected dentin is mainly subjected to adhesive practices.
The effective control of a bleeding injury using a medical adhesive containing batroxobin.
You, Kyung Eun; Koo, Min-Ah; Lee, Dae-Hyung; Kwon, Byeong-Ju; Lee, Mi Hee; Hyon, Suong-Hyu; Seomun, Young; Kim, Jong-Tak; Park, Jong-Chul
2014-04-01
Many types of hemostatic agents have been studied for the effective control of bleeding. In this study, a powdery medical adhesive composed of aldehyded dextran and ε-poly (L-lysine) was used with the recombinant batroxobin. Batroxobin is a venomous component from the snake Bothrops atrox moojeni and catalyzes fibrinogen conversion to form soluble fibrin clots. This research aims to examine the performance of the batroxobin-containing adhesive for hemostasis, and evaluate its potential as a novel hemostatic adhesive. The fibrinogen conversion ability of batroxobin was evaluated by a fibrinogen clotting assay and a whole blood clotting assay. Both experiments demonstrated the effectiveness of the batroxobin-containing adhesive for blood clot formation. Animal experiments were also conducted. After a pricking wound was made in an ICR (imprinting control region) mouse liver, the adhesive and various concentrations of batroxobin were applied. The total amount of blood loss was reduced with increasing concentrations of batroxobin. For excessive bleeding conditions, the femoral artery wound model of SD (Sprague-Dawley) rats was adopted. With higher concentrations of batroxobin, hemostasis was more rapidly achieved. Histological analysis of the liver model also supports the hemostatic effects through fibrin clot formation. In conclusion, batroxobin and medical adhesive effectively facilitate blood coagulation, and could be developed for clinical use.
diZerega, Gere S; Coad, James; Donnez, Jacques
2007-03-01
To correlate parameters of endometriosis obtained during routine clinical evaluation with the subsequent formation of adhesions following surgical treatment by laparoscopy. Randomized, controlled, double-blind, clinical trial. Tertiary referral centers for the treatment of endometriosis. Thirty-seven patients (65 with adnexa) with stage I-III endometriosis; endometrioma-only patients were excluded. Laparoscopic surgical treatment of endometriosis, followed by randomization to Oxiplex/AP (FzioMed, Inc., San Luis Obispo, California) gel treatment (treated group) of adnexa, or surgery alone (control group); follow-up laparoscopy 6-10 weeks later. Adnexal Americn Fertility Society score, correlated with color and location of endometriosis, as well as stage of disease determined by masked review of videotapes. Control patients with at least 50% red lesions had a greater increase in ipsilateral adnexal adhesion scores than patients with mostly black or white and/or clear lesions. Treated patients with red lesions had a greater decrease in adnexal adhesion scores than control patients. There was a correlation between baseline endometriosis stage and postoperative adhesion formation in control patients, but not treated patients. Patients with red endometriotic lesions had greater increases in their adhesion scores than patients with only black, white, and/or clear lesions. Oxiplex/AP gel was effective in reducing adhesions, compared to surgery alone, in all groups.
Bromelain: a natural proteolytic for intra-abdominal adhesion prevention.
Sahbaz, Ahmet; Aynioglu, Oner; Isik, Hatice; Ozmen, Ulku; Cengil, Osman; Gun, Banu Dogan; Gungorduk, Kemal
2015-02-01
Peritoneal adhesions are pathological fibrous connections between peritoneal surfaces resulting from incomplete peritoneal repair. Adhesions cause various health problems ranging from pelvic pain and bowel obstruction to infertility. To date, no effective agent exists for intra-abdominal adhesion prevention. Bromelain is the crude extract of the pineapple and it has fibrinolytic, antithrombotic, and anti-inflammatory properties. Bromelain has been shown to be effective for removing necrotic tissues and has been found to be effective for treating various wounds, inflammatory conditions, and thrombotic pathologies. In the present study, we evaluated bromelain as a novel agent for preventing intra-abdominal adhesions. Group 1 (control group): Adhesions were produced by cecal abrasion method, and no treatment was applied. Group 2 (i.p. bromelain-treated group): After adhesion formation, 10 mg/kg/BW of bromelain dissolved in 1 mL saline solution was applied intraperitoneally for 10 days. Group 3 (i.p. saline-treated group): After adhesion formation, 1 mL saline solution was applied intraperitoneally for 10 days. On postoperative day 10, all animals were sacrificed. All 30 rats survived surgery. Throughout the follow-up period, no complications were observed. Statistically significant differences were found between the groups with regards to macroscopic adhesion scores, inflammation, fibrosis and neo-vascularization (p < 0.001, <0.001, p = 0.001, p = 0.002, respectively). Macroscopic and histopathologic (inflammation, fibrosis, neo-vascularization) adhesion scores were lowest in the bromelain-treated group. Bromelain, acting through its barrier, anti-inflammatory, antioxidant, and proteolytic effects and without increasing bleeding tendency or having any adverse effects on wound healing, may be a suitable agent for intra-abdominal adhesion prevention. Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Terekhov, G V; Furmanov, Iu A; Gvozdetskiĭ, V S; Savitskaia, I M
2008-06-01
A new method of the live biological tissues connection, using thermal energy of a high-temperature argon plasma, constituting perspective trend of application of a new nonsuture methods of the tissues connection, original for the world practice, was elaborated in the Department of Experimental Surgery together with the Institute of welding named after Academician E. O. Paton NAS of Ukraine. The argon-plasma welding application secure safe adhesion of the connecting surfaces formation due to the protein complexes temperature denaturation occurrence. The absence of foreign bodies in the connection zone as well as the presence of the plasma flow bacterocidal properties secure, while application of this new method, a significant lowering of a bacterial soiling of the formatted anastomoses, not interfering with the tissue natural regeneration process course.
Antiinflammatory effects of glucocorticoids in brain cells, independent of NF-kappa B.
Bourke, E; Moynagh, P N
1999-08-15
Glucocorticoids are potent antiinflammatory drugs. They inhibit the expression of proinflammatory cytokines and adhesion molecules. It has recently been proposed that the underlying basis to such inhibition is the induction of the protein I kappa B, which inhibits the transcription factor NF-kappa B. The latter is a key activator of the genes encoding cytokines and adhesion molecules. The present study shows that the synthetic glucocorticoid, dexamethasone, inhibits the induction of the proinflammatory cytokine IL-8 and the adhesion molecules VCAM-1 and ICAM-1 in human 1321N1 astrocytoma and SK.N.SH neuroblastoma cells. However, dexamethasone failed to induce I kappa B or inhibit activation of NF-kappa B by IL-1 in the two cell types. EMSA confirmed the identity of the activated NF-kappa B by demonstrating that an oligonucleotide, containing the wild-type NF-kappa B-binding motif, inhibited formation of the NF-kappa B-DNA complexes whereas a mutated form of the NF-kappa B-binding motif was ineffective. In addition, supershift analysis showed that the protein subunits p50 and p65 were prevalent components in the activated NF-kappa B complexes. The lack of effect of dexamethasone on the capacity of IL-1 to activate NF-kappa B correlated with its inability to induce I kappa B and the ability of IL-1 to cause degradation of I kappa B, even in the presence of dexamethasone. The results presented in this paper strongly suggest that glucocorticoids may exert antiinflammatory effects in cells of neural origin by a mechanism(s) independent of NF-kappa B.
Numerical implementation of multiple peeling theory and its application to spider web anchorages.
Brely, Lucas; Bosia, Federico; Pugno, Nicola M
2015-02-06
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.
Numerical implementation of multiple peeling theory and its application to spider web anchorages
Brely, Lucas; Bosia, Federico; Pugno, Nicola M.
2015-01-01
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations. PMID:25657835
Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K
2014-09-01
Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.
Khater, Fida; Balestrino, Damien; Charbonnel, Nicolas; Dufayard, Jean François; Brisse, Sylvain; Forestier, Christiane
2015-01-01
Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches. PMID:25751658
Reidl, Sebastian; Lehmann, Annika; Schiller, Roswitha; Salam Khan, A; Dobrindt, Ulrich
2009-08-01
Antigen 43 (Ag43) represents an entire family of closely related autotransporter proteins in Escherichia coli and has been described to confer aggregation and fluffing of cells, to promote biofilm formation, uptake and survival in macrophages as well as long-term persistence of uropathogenic E. coli in the murine urinary tract. Furthermore, it has been reported that glycosylation of the Ag43 passenger domain (alpha(43)) stabilizes its conformation and increases adhesion to Hep-2 cells. We characterized the role of Ag43 as an adhesin and the impact of O-glycosylation on the function of Ag43. To analyze whether structural variations in the alpha(43) domain correlate with different functional properties, we cloned 5 different agn43 alleles from different E. coli subtypes and tested them for autoaggregation, biofilm formation, adhesion to different eukaryotic cell lines as well as to purified components of the extracellular matrix. These experiments were performed with nonglycosylated and O-glycosylated Ag43 variants. We show for the first time that Ag43 mediates bacterial adhesion in a cell line-specific manner and that structural variations of the alpha(43) domain correlate with increased adhesive properties to proteins of the extracellular matrix such as collagen and laminin. Whereas O-glycosylation of many alpha(43) domains led to impaired autoaggregation and a significantly reduced adhesion to eukaryotic cell lines, their interaction with collagen was significantly increased. These data demonstrate that O-glycosylation is not a prerequisite for Ag43 function and that the different traits mediated by Ag43, i.e., biofilm formation, autoaggregation, adhesion to eukaryotic cells and extracellular matrix proteins, rely on distinct mechanisms.
Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz
2013-01-01
The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.
Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology
NASA Astrophysics Data System (ADS)
So, Christopher R.; Fears, Kenan P.; Leary, Dagmar H.; Scancella, Jenifer M.; Wang, Zheng; Liu, Jinny L.; Orihuela, Beatriz; Rittschof, Dan; Spillmann, Christopher M.; Wahl, Kathryn J.
2016-11-01
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.
Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling
Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.
2013-01-01
Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597
Zhang, Wenwu; Huang, Youliang; Gunst, Susan J
2016-09-01
In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G-protein-coupled receptor kinase-interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak-GIT1-βPIX-paxillin complex was necessary for cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N-WASP activation, actin dynamics and cell contractility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Zhang, Wenwu; Huang, Youliang
2016-01-01
Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G‐protein‐coupled receptor kinase‐interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak–GIT1–βPIX–paxillin complex was necessary for cdc42 and neuronal Wiskott–Aldrich syndrome protein (N‐WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N‐WASP activation, actin dynamics and cell contractility. PMID:27038336
Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication
Priemel, Tobias; Degtyar, Elena; Dean, Mason N.; Harrington, Matthew J.
2017-01-01
Protein-based biogenic materials provide important inspiration for the development of high-performance polymers. The fibrous mussel byssus, for instance, exhibits exceptional wet adhesion, abrasion resistance, toughness and self-healing capacity–properties that arise from an intricate hierarchical organization formed in minutes from a fluid secretion of over 10 different protein precursors. However, a poor understanding of this dynamic biofabrication process has hindered effective translation of byssus design principles into synthetic materials. Here, we explore mussel byssus assembly in Mytilus edulis using a synergistic combination of histological staining and confocal Raman microspectroscopy, enabling in situ tracking of specific proteins during induced thread formation from soluble precursors to solid fibres. Our findings reveal critical insights into this complex biological manufacturing process, showing that protein precursors spontaneously self-assemble into complex architectures, while maturation proceeds in subsequent regulated steps. Beyond their biological importance, these findings may guide development of advanced materials with biomedical and industrial relevance. PMID:28262668
Adhesion, friction, and wear of a copper bicrystal with (111) and (210) grains
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1973-01-01
Sliding friction experiments were conducted in air with polycrystalline copper and ruby riders sliding against a copper bicrystal. Friction coefficient was measured across the bicrystal surface, and the initiation of adhesive wear was examined with scanning electron microscopy. Results indicate a marked increase in friction coefficient as the copper rider crossed the grain boundary from the (111) plane to the (210) plane of the bicrystal. Adhesion, friction, and initiation of adhesive wear was notably different in the adjacent grains of differing orientation. A slip-band adhesion-generated fracture mechanism for wear particle formation is proposed.
Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.
Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L
2014-03-06
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.
Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse
NASA Astrophysics Data System (ADS)
Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.
2014-03-01
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.
Bjerke, Maureen A.; Dzamba, Bette; Wang, Chong; DeSimone, Douglas W.
2014-01-01
Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity. PMID:25127991
Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D
2013-08-13
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.
Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.
2013-01-01
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484
Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur
2014-01-01
Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.
Collisions of deformable cells lead to collective migration
NASA Astrophysics Data System (ADS)
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
2015-03-01
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.
Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta.
de Souza, Alessandra A; Takita, Marco A; Pereira, Eridan O; Coletta-Filho, Helvécio D; Machado, Marcos A
2005-04-01
Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.
Resolving the molecular mechanism of cadherin catch bond formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi
2014-06-02
Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less
Provenzano, Paolo P; Inman, David R; Eliceiri, Kevin W; Beggs, Hilary E; Keely, Patricia J
2008-11-01
Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.M.; Saxena, A.; Mok, H. Y.-K.
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein ({Delta}PilS), which makes the pilus, was determined at 1.9 {angstrom} resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of {Delta}PilS and a target CFTR peptide, determined at 1.8 {angstrom}, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons.
Triana-Baltzer, Gallen B; Liu, Zhaoping; Gounko, Natalia V; Berg, Darwin K
2008-09-01
Neuroligin, SynCAM, and L1-CAM are cell adhesion molecules with synaptogenic roles in glutamatergic pathways. We show here that SynCAM is expressed in the chick ciliary ganglion, embedded in a nicotinic pathway, and, as shown previously for neuroligin and L1-CAM, acts transcellularly to promote synaptic maturation on the neurons in culture. Moreover, we show that electroporation of chick embryos with dominant negative constructs disrupting any of the three molecules in vivo reduces the total amount of presynaptic SV2 overlaying the neurons expressing the constructs. Only disruption of L1-CAM and neuroligin, however, reduces the number of SV2 puncta specifically overlaying nicotinic receptor clusters. Disrupting L1-CAM and neuroligin together produces no additional decrement, indicating that they act on the same subset of synapses. SynCAM may affect synaptic maturation rather than synapse formation. The results indicate that individual neurons can express multiple synaptogenic molecules with different effects on the same class of nicotinic synapses.
Laval, Monique; Bel, Christophe; Faivre-Sarrailh, Catherine
2008-07-18
A complex of three cell adhesion molecules (CAMs) Neurexin IV(Nrx IV), Contactin (Cont) and Neuroglian (Nrg) is implicated in the formation of septate junctions between epithelial cells in Drosophila. These CAMs are interdependent for their localization at septate junctions and e.g. null mutation of nrx IV or cont induces the mislocalization of Nrg to the baso-lateral membrane. These mutations also result in ultrastructural alteration of the strands of septate junctions and breakdown of the paracellular barrier. Varicose (Vari) and Coracle (Cora), that both interact with the cytoplasmic tail of Nrx IV, are scaffolding molecules required for the formation of septate junctions. We conducted photobleaching experiments on whole living Drosophila embryos to analyze the membrane mobility of CAMs at septate junctions between epithelial cells. We show that GFP-tagged Nrg and Nrx IV molecules exhibit very stable association with septate junctions in wild-type embryos. Nrg-GFP is mislocalized to the baso-lateral membrane in nrx IV or cont null mutant embryos, and displays increased mobile fraction. Similarly, Nrx IV-GFP becomes distributed to the baso-lateral membrane in null mutants of vari and cora, and its mobile fraction is strongly increased. The loss of Vari, a MAGUK protein that interacts with the cytoplasmic tail of Nrx IV, has a stronger effect than the null mutation of nrx IV on the lateral mobility of Nrg-GFP. The strands of septate junctions display a stable behavior in vivo that may be correlated with their role of paracellular barrier. The membrane mobility of CAMs is strongly limited when they take part to the multimolecular complex forming septate junctions. This restricted lateral diffusion of CAMs depends on both adhesive interactions and clustering by scaffolding molecules. The lateral mobility of CAMs is strongly increased in embryos presenting alteration of septate junctions. The stronger effect of vari by comparison with nrx IV null mutation supports the hypothesis that this scaffolding molecule may cross-link different types of CAMs and play a crucial role in stabilizing the strands of septate junctions.
Bello-Guerrero, Jorge Alberto; Cruz-Santiago, César Alberto; Luna-Martínez, Javier
2016-01-01
Up to 93% of patients undergoing abdominal surgery will develop intra-abdominal adhesions with the subsequent morbidity that they represent. Various substances have been tested for the prevention of adhesions with controversial results; the aim of our study is to compare the capability of pirfenidone in adhesion prevention against sodium hyaluronate/carboxymethylcellulose. A randomized, prospective, longitudinal experimental study with Winstar rats. They were divided into 3 groups. The subjects underwent an exploratory laparotomy and they had a 4cm(2) cecal abrasion. The first group received saline on the cecal abrasion, and groups 2 and 3 received pirfenidone and sodium hyaluronate/carboxymethylcellulose respectively. All rats were sacrificed on the 21st day after surgery and the presence of adhesions was evaluated with the modified Granat scale. Simple frequency, central tendency and dispersion measures were recorded. For the statistical analysis we used Fisher's test. To evaluate adhesions we used the Granat's modified scale. The control group had a median adhesion formation of 3 (range 0-4). The pirfenidone group had 1.5 (range 0-3), and the sodium hyaluronate/carboxymethylcellulose group had 0 (range 0-1). There was a statistically significant difference to favor sodium hyaluronate/carboxymethylcellulose against saline and pirfenidone (P<0.009 and P<.022 respectively). The use of sodium hyaluronate/carboxymethylcellulose is effective for the prevention of intra-abdominal adhesions. More experimental studies are needed in search for the optimal adhesion prevention drug. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences.
Conconi, Maria Teresa; Ghezzo, Francesca; Dettin, Monica; Urbani, Luca; Grandi, Claudio; Guidolin, Diego; Nico, Beatrice; Di Bello, Carlo; Ribatti, Domenico; Parnigotto, Pier Paolo
2010-07-01
It is well known that tumor growth is strictly dependent on neo-vessel formation inside the tumor mass and that cell adhesion is required to allow EC proliferation and migration inside the tumor. In this work, we have evaluated the in vitro and in vivo effects on angiogenesis of some peptides, originally designed to promote cell adhesion on biomaterials, containing RGD motif mediating cell adhesion via integrin receptors [RGD, GRGDSPK, and (GRGDSP)(4)K] or the heparin-binding sequence of human vitronectin that interacts with HSPGs [HVP(351-359)]. Cell adhesion, proliferation, migration, and capillary-like tube formation in Matrigel were determined on HUVECs, whereas the effects on in vivo angiogenesis were evaluated using the CAM assay. (GRGDSP)(4)K linear sequence inhibited cell adhesion, decreased cell proliferation, migration and morphogenesis in Matrigel, and induced anti-angiogenic responses on CAM at higher degree than that determined after incubation with RGD or GRGDSPK. Moreover, it counteracted both in vitro and in vivo the pro-angiogenic effects induced by the Fibroblast growth factor (FGF-2). On the other hand, HVP was not able to affect cell adhesion and appeared less effective than (GRGDSP)(4)K. Our data indicate that the activity of RGD-containing peptides is related to their adhesive properties, and their effects are modulated by the number of cell adhesion motifs and the aminoacidic residues next to these sequences. The anti-angiogenic properties of (GRGDSP)(4)K seem to depend on its interaction with integrins, whereas the effects of HVP may be partially due to an impairment of HSPGs/FGF-2.
Lu, S; Hu, W; Zhang, Z; Ji, Z; Zhang, T
2018-05-18
This study evaluated the manufacturing method and anti-adhesion properties of a new composite mesh in the rat model, which was made from sirolimus (SRL) grafts on a poly(L-lactic acid) (PLLA)-modified polypropylene (PP) hernia mesh. PLLA was first grafted onto argon-plasma-treated native PP mesh through catalysis of stannous chloride. SRL was grafted onto the surface of PP-PLLA meshes using catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in a CH 2 Cl 2 solvent. Sprague-Dawley female rats received either SRL-coated meshes, PP-PLLA meshes, or native PP meshes to repair abdominal wall defects. At different intervals, rats were euthanized by a lethal dose of chloral hydrate and adhesion area and tenacity were evaluated. Sections of the mesh with adjacent tissues were assessed histologically. Attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy indicated the existence of a C=O group absorption peak (1724.1 cm -1 ), and scanning electron microscope morphological analysis indicated that the surface of the PP mesh was covered with SRL. Compared to the native PP meshes and PP-PLLA meshes, SRL-coated meshes demonstrated the greatest ability to decrease the formation of adhesions (P < 0.05) and inflammation. The SRL-coated composite mesh showed minimal formation of intra-abdominal adhesions in a rat model of abdominal wall defect repair.
Tahmourespour, Arezoo; Kermanshahi, Rooha Kasra
2011-02-01
The objective of this study was to investigate the ability of biofilm formation among mutans and non mutans oral streptococci and to determine the effect of Lactobacillus acidophilus DSM 20079 as a probiotic strain on the adhesion of selected streptococcal strains on the surfaces. The sample comprised 40 isolates of oral streptococci from dental plaque and caries of volunteer persons. Streptococcus mutans ATCC35668 (no24) was as an standard strain. The probiotic strain was Lactobacillus acidophilus DSM 20079. The ability of biofilm formation was investigated with colorimetric method and the strongest isolates were selected. Then the effect of probiotic strain on the adhesion of streptococci isolates was determined in polystyrene microtiter plate simultaneously and 30 minutes before streptococci entrance to the system. The results showed that 42% of mutans streptococci were strongly adherent (SA) and in non mutans streptococci, only 23.5% of isolates were found strongly adherent. The strong biofilm forming bacterium isolated was Streptococcus mutans strain22. In the next step, in the presence of probiotic strain the streptococcal adhesion were reduced, and this reduction was non significantly stronger if the probiotic strain was inoculated to the system before the oral bacteria. The Lactobacillus acidophilus had more effect on adherence of mutans streptococci than non mutans streptococci with significant difference (p < 0.05). Adhesion reduction is likely due to bacterial interactions and colonization of adhesion sites with probiotic strain before the presence of streptococci. Adhesion reduction can be an effective way on decreasing cariogenic potential of oral streptococci.
A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics
NASA Technical Reports Server (NTRS)
Dwight, D. W.; Wightman, J. P.
1977-01-01
The effects of composites as adherends was studied. Several other variables were studied by fractography: aluminum powder adhesive filler, fiber glass cloth scrim or adhesive carrier, new adhesives PPQ-413 and LARC-13, and strength-test temperature. When the new results were juxtaposed with previous work, it appeared that complex interactions between adhesive, adherend, bonding, and testing conditions govern the observed strength and fracture-surface features. The design parameters likely to have a significant effect upon strength-test results are listed.
Săndulescu, Oana; Bleotu, Coralia; Matei, Lilia; Streinu-Cercel, Anca; Oprea, Mihaela; Drăgulescu, Elena Carmina; Chifiriuc, Mariana Carmen; Rafila, Alexandru; Pirici, Daniel; Tălăpan, Daniela; Dorobăţ, Olga Mihaela; Neguţ, Alina Cristina; Oţelea, Dan; Berciu, Ioana; Ion, Daniela Adriana; Codiţă, Irina; Calistru, Petre Iacob; Streinu-Cercel, Adrian
2017-01-01
Despite their commensal status, staphylococci can become problematic pathogens expressing multiple and redundant virulence factors. This study aimed to evaluate aggressiveness markers comparatively in staphylococcal strains isolated from severe infections versus asymptomatic carriage in order to identify clinically relevant bacterial traits that could easily be detected in clinical practice and could be suggestive for particular host-pathogen interactions such as cyto-adhesion or biofilm formation, ultimately orienting the clinical decision-making process. We have used in vitro phenotypic methods to assess adhesion to and invasion of eukaryotic cells, biofilm development, and expression of soluble virulence factors in 92 Staphylococcus spp. strains. The adhesion index, invasion capacity, biofilm formation and expression of soluble factors did not differ significantly between clinical and commensal strains. The major bacterial traits we found to be significantly more prevalent in clinical staphylococci were the aggregative adhesion pattern (P = 0.012), cluster adhesion (P = 0.001) and tetrad morphology (P = 0.018). The aggregative adhesion pattern was correlated with higher cyto-adhesion (P < 0.001), higher invasion capacity (P = 0.003) and lower Carmeli scores (P = 0.002). Three major bacterial traits, namely tetrad morphology, aggregative adhesion pattern, and resistance to methicillin (acronym: TAM), can be used to compute an aggressiveness score (SAS) predictive of the staphylococcal strain's virulence and capacity to initiate and develop a biofilm-driven chronic infectious process versus a fulminant acute infection, in a susceptible host. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parsa, Hossein; Saravani, Hengameh; Sameei-Rad, Fatemeh; Nasiri, Marjan; Farahaninik, Zahra; Rahmani, Amirhossein
2017-05-01
Intra-abdominal adhesions are fibrous bands that develop after abdominal surgery or inflammation and cause mortality and morbidity following surgeries. This study aimed to assess the effects of bupivacaine, saline and two doses of lidocaine, after peritoneal lavage and to compare their effects in reducing abdominal adhesions in rat. In a blinded, randomised, placebo-controlled clinical trial, 50 female rats were anaesthetised and the parietal peritoneum was scratched to induce punctate bleeding. The rats were randomly assigned to five groups: saline, lidocaine 2% (3 and 6 mg/kg), bupivacaine 0.25% (2 mg/kg) and control (no irrigation). The peritoneal cavity was irrigated with the appropriate solution during laparotomy. Two weeks later, re-laparotomy was performed. The quantity, quality, severity and scores of adhesions were recorded and compared. The quantity and quality of adhesions were significantly higher in the control group than in the lidocaine (6 mg/kg) and bupivacaine groups. The quality of the adhesions was higher in the normal saline group than in the lidocaine (6 mg/kg) and bupivacaine groups. The severity of adhesions between the lidocaine 3 and 6 mg/kg groups and between the lidocaine 3 mg/kg and saline groups was lower than that in the control group. Using lidocaine (6 mg/kg) and bupivacaine lavage in first laparotomy reduces abdominal peritoneal obstruction because of the formation of adhesion bands.
Alborzi, Saeed; Motazedian, Shahdokht; Parsanezhad, Mohammad E
2003-05-01
To evaluate the chance of adhesion formation after laparoscopic salpingo-ovariolysis and determine the efficacy of early second-look laparoscopy (SLL). Prospective, randomized study (Canadian Task Force classification I). Shiraz University hospitals. Ninety women with mean duration of infertility of 7.2 years. Operative laparoscopy, with early SLL with adhesiolysis in 46 (group 1) and no SLL in 44 women (group 2). Adnexal adhesions were evaluated according to American Society for Reproductive Medicine adhesion classification. Separation of newly reformed adhesions was performed at the time of SLL. Patients were followed for a year after operation without other infertility treatment. At the time of operation in group 1, adnexal adhesions were graded as severe (class D) in 19 women, moderate (class C) in 31, mild (class B) in 28, and minimal (class A) in 14. Respective figures in group 2 were 10, 30, 34, and 14. After salpingo-ovariolysis these figures were 12, 10, 20, and 50 in group 1 and 6, 14, 17, and 51 in group 2. In group 1 in whom early second-look laparoscopy was performed, at the start of the operation these figures were 17, 20, 21, and 34, and after operation 12, 8, 20, and 52, respectively. There were 11 term pregnancies in group 1 and 15 in group 2. No women with severe adhesions in either group conceived. In group 1, chances of term pregnancy were 18.75% for those with moderate adhesions, 35.71% for women with mild adhesions, and 42.86% in patients with minimal adhesions. Respective figures in group 2 were 26.67%, 41.18%, and 57.14%. The chance of moderate and severe adhesion reformation after laparoscopic salpingo-ovariolysis was 40.2%. Although separation of these adhesions could be performed more easily at the time of early SLL, the chance of pregnancy did not increase compared with that in patients who did not undergo SLL.
Vargas, K; Wertz, P W; Drake, D; Morrow, B; Soll, D R
1994-04-01
Cells of the laboratory strain 3153A of Candida albicans can be stimulated to undergo high-frequency phenotypic switching by a low dose of UV. We have compared the adhesive properties of cells exhibiting the basic original smooth (o-smooth) phenotype and three switch phenotypes (star, irregular wrinkle, and revertant smooth) to buccal epithelium and stratum corneum. The generalized hierarchy of adhesion is as follows: o-smooth > irregular wrinkle > revertant smooth > star. This is the inverse of the hierarchy of the proportions of elongate hyphae formed by these phenotypes in culture. These results suggest that the differences in adhesion between o-smooth and the three switch phenotypes of strain 3153A reflect, at least in part, the level of interference due to the formation of elongate hyphae, which tend to cause clumping in suspension. No major differences in the levels of adhesion of cells of the different phenotypes between buccal epithelium and stratum corneum were observed. Results which demonstrate that buccal epithelium induces germination (hypha formation) by conditioning the medium are also presented.
Nelson, W James; Weis, William I
2016-07-01
Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sequeira, Sharon J.; Soscia, David A.; Oztan, Basak; Mosier, Aaron P.; Jean-Gilles, Riffard; Gadre, Anand; Cady, Nathaniel C.; Yener, Bülent; Castracane, James; Larsen, Melinda
2012-01-01
Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-L-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland. PMID:22285464
Advanced glycation end products and the progressive course of renal disease.
Heidland, A; Sebekova, K; Schinzel, R
2001-10-01
In experimental and human diabetic nephropathy (DN), it has been shown that advanced glycation end products (AGEs), in particular, carboxymethyl-lysine and pentosidine, accumulate with malondialdehyde in glomerular lesions in relation to disease severity and in the presence of an upregulated receptor for AGE (RAGE) in podocytes. Toxic effects of AGEs result from structural and functional alterations in plasma and extracellular matrix (ECM) proteins, in particular, from cross-linking of proteins and interaction of AGEs with their receptors and/or binding proteins. In mesangial and endothelial cells, the AGE-RAGE interaction caused enhanced formation of oxygen radicals with subsequent activation of nuclear factor-kappaB and release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-alpha), growth factors (transforming growth factor-beta1 [TGF-beta1], insulin-like growth factor-1), and adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1). In tubular cells, incubation with AGE albumin was followed by stimulation of the mitogen-activating protein (MAP) kinase pathway and its downstream target, the activating protien-1 (AP-1) complex, TGF-beta1 overexpression, enhanced protein kinase C activity, decreased cell proliferation, and impaired protein degradation rate, in part caused by decreased cathepsin activities. The pathogenic relevance of AGEs was further verified by in vivo experiments in euglycemic rats and mice by the parenteral administration of AGE albumin, leading in the glomeruli to TGF-beta1 overproduction, enhanced gene expression of ECM proteins, and morphological lesions similar to those of DN. Evidence for the pathogenic relevance of AGEs in DN also comes from experimental studies in which the formation and/or action of AGEs was modulated by aminoguanidine, OPB-9195, pyridoxamine, soluble RAGEs, serine protease trypsin, and antioxidants, resulting in improved cell and/or renal function.
Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein
2018-03-01
Long-term culture, passage and proliferation of human mesenchymal stem cells (hMSCs) cause loss of their stemness properties including self-renewal and multipotency. By optimizing the MSCs environment in vitro, maintaining the stemness state and better controlling the cell fate might be possible. We have recently reported the significant effects of bioactive Tat protein-derived peptide named R-peptide on hMSC adhesion, morphology and proliferation, which has demonstrated R-peptide enhanced MSC early adhesion and proliferation in comparison to other bioactive molecules including RGD peptide, fibronectin and collagen. In this study, R-peptide was used to evaluate stemness properties of MSCs after long-term passaging. R-peptide conjugated poly caprolactone (PCL) nanofibrous scaffold and unmodified nanofibrous scaffold were used to study the impact of R-peptide modified PCL nanofibers and PCL nanofibers on cell behavior. The results showed early formation of focal adhesion (FA) complex on R-peptide modified scaffolds at 30min after cell seeding. The rate of cell proliferation was significantly increased due to presence of R-peptide, and the MSCs marker analyses using flow cytometry and immunocytochemistry staining proved the ability of R-peptide to maintain mesenchymal stem cell properties (high proliferation, expression of multipotent markers and differentiation capacity) even after long-term passage culturing. Accordingly, our (The) results concluded that bioactive R-peptide in combination with nanofibrous scaffold can mimic the native ECM comprising micro/nano architecture and biochemical molecules in a best way. The designed scaffold can link extracellular matrix (ECM) to nucleus via formation of FA and organization of cytoskeleton, causing fast and strong attachment of MSCs and allowing integrin-mediated signaling to start. Copyright © 2017 Elsevier B.V. All rights reserved.
Adhesion forces of biofilms developed in vitro from clinical strains of skin wounds.
Alvarado-Gomez, Elizabeth; Perez-Diaz, Mario; Valdez-Perez, Donato; Ruiz-Garcia, Jaime; Magaña-Aquino, Martin; Martinez-Castañon, Gabriel; Martinez-Gutierrez, Fidel
2018-01-01
A biofilm is a very complex consortium formed by a mix of different microorganisms, which have become an important health problem, because its formation is a resistance mechanism used by bacteria against antibiotics or the immune system. In this work, we show differences between some physicochemical properties of biofilms in mono- and multi-species, formed by bacteria from clinical samples of infected chronic wounds. Of the most prevalent bacteria in wounds, two mono- and one multi-species biofilms were developed in vitro by Drip Flow Reactor: one biofilm was developed by S. aureus, other by P. aeruginosa, and a third one by the mix of both strains. With these biofilms, we determined microbial growth by plate counting, and their physicochemical characterization by Atomic Force Microscopy, Raman Micro-Spectroscopy and Scanning Electron Microscopy. We found that the viability of S. aureus was less than P. aeruginosa in multi-species biofilm. However, the adhesion force of S. aureus is much higher than that of P. aeruginosa, but it decreased while that of P. aeruginosa increased in the multi-species biofilm. In addition, we found free pyrimidines functional groups in the P. aeruginosa biofilm and its mix with S. aureus. Surprisingly, each bacterium alone formed single layer biofilms, while the mix bacteria formed a multilayer biofilm at the same observation time. Our results show the necessity to evaluate biofilms from clinically isolated strains and have a better understanding of the adhesion forces of bacteria in biofilm multispecies, which could be of prime importance in developing more effective treatments against biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of Kombucha on post-operative intra-abdominal adhesion formation in rats.
Maghsoudi, Hemmat; Mohammadi, Hussein Benagozar
2009-04-01
Peritoneal adhesions are fibrous bands of tissues formed between organs that are normally separated and/or between organs and the internal body wall after peritoneal injury. The aim of the study was to investigate the effect of intra-peritoneal administration of Kombucha on intra-peritoneal adhesions. Eighty Wistar rats were subjected to standardized lesion by scraping model and were randomly divided into two groups. Group I received no treatment, and Group II received 15 ml of Kombucha solution intra-peritoneally. On the post-operative 14th day adhesion intensity score, inflammatory cell reaction and number of adhesion bands were determined. In the control group, there were no rats with grade 0 and I adhesions. In the group II, there were 26 rats (78.8%) with grade 0-2 adhesions. Adhesion intensity was significantly less in group II (P<0.0001). Number of adhesion bands was significantly less in group II (P<0.001). It was concluded that intra-peritoneal administration of Kombucha might be useful for preventing peritoneal adhesions.
Adhesion Testing of Firebricks from Launch Pad 39A Flame Trench after STS-124
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Curran, Jerome P.
2009-01-01
Adhesion testing was performed on the firebricks in the flame trench of Launch Complex 39A to determine the strength of the epoxy/firebrick bond to the backing concrete wall. The testing used an Elcometer 110 pneumatic adhesion tensile testing instrument (PATTI).
NASA Astrophysics Data System (ADS)
Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya
2015-04-01
Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.
Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A
2013-02-01
The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.
Rodgers, K E; Schwartz, H E; Roda, N; Thornton, M; Kobak, W; diZerega, G S
2000-04-01
To assess the efficacy of Oxiplex (FzioMed, Inc., San Luis Obispo, CA) barriers. Film of polyethylene oxide and carboxymethylcellulose (Oxiplex) were tested for strength and tissue adherence. Films were selected for evaluation in models for biocompatability and adherence. Three films were selected for evaluation in efficacy studies, and one was evaluated for effects on bacterial peritonitis. Handling characteristics of Oxiplex film were evaluated via laparoscopy. University laboratory. Rabbits, rats, pigs. Placement of Oxiplex prototypes at the site of injury. Mechanical properties, biocompatibility, tissue adherence, adhesion development, infection potentiation, and device handling. Mechanical tests indicated that tensile strength and elongation were inversely correlated. All films tested had excellent tissue adherence properties. Selected films, based on residence time and biocompatibility, prevented adhesion formation in all animals and were highly efficacious in preventing adhesion reformation. The optimal Oxiplex prototype prevented adhesion reformation in 91% of the animals. This Oxiplex film, dyed to allow visualization, prevented adhesion reformation and did not affect bacterial peritonitis. In a laparoscopic model, the Oxiplex film, delivered in FilmSert forceps, via a 5.0-mm trocar, rapidly unfurled and could be easily applied to tissue with strong adherence. These data show development of an adhesion prevention material that is tissue adherent, can be placed via laparoscopy, and does not affect host resistance.
Fusaoka, Eri; Inoue, Takeshi; Mineta, Katsuhiko; Agata, Kiyokazu; Takeuchi, Kosei
2006-05-01
Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection.
Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.
2016-01-01
Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895
There are four dynamically and functionally distinct populations of E-cadherin in cell junctions
Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I.
2015-01-01
ABSTRACT E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767
Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions
Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette
2014-01-01
To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362
Nanoindentation methods for wood-adhesive bond lines
Joseph E. Jakes; Donald S. Stone; Charles R. Frihart
2008-01-01
As an adherend, wood is structurally, chemically, and mechanically more complex than metals or plastics, and the largest source of this complexity is woodâs chemical and mechanical inhomogeneities. Understanding and predicting the performance of adhesively bonded wood requires knowledge of the interactions occurring at length scales ranging from the macro down to the...
Dietrich, Arne; Bouzidi, Maria; Hartwig, Thomas; Schütz, Alexander; Jonas, Sven
2012-06-01
Rapamycin, an immunosuppressive in transplant surgery, has an additional antiproliferative effect. The aim of this study was to investigate the potential protective effects of rapamycin on postoperative adhesion development. Ten rats per group underwent midline incision laparotomy and adhesion induction including bowel sutures. Therapy groups received daily intraperitoneal rapamycin injections (1.5 mg/kg body weight) for 3 weeks postoperatively. Controls were rats without any postoperative treatment, rats receiving the rapamycin solvent or a hyaluronic acid-carboxymethylcellulose membrane (Seprafilm(™)). Postoperative rapamycin application led to enhanced adhesion development and there was a higher rate of wound infections. In addition, Seprafilm(™) did not reduce adhesions, in subgroups there were even more. Rapamycin is not recommendable for perioperative immunosuppression, it enhances adhesion development and leads to a higher rate of wound infections. Surprisingly, the established Seprafilm(™) membrane led to more adhesions in our experimental setting.
Induction of trap formation in nematode-trapping fungi by bacteria-released ammonia.
Su, H N; Xu, Y Y; Wang, X; Zhang, K Q; Li, G H
2016-04-01
A total of 11 bacterial strains were assayed for bacteria-induced trap formation in the nematode-trapping fungus Arthrobotrys oligospora YMF1·01883 with two-compartmented Petri dish. These strains were identified on the basis of their 16S rRNA gene sequences. Volatile organic compounds (VOCs) of eight isolates were extracted using solid-phase micro-extraction (SPME) and their structures were identified based on gas chromatography-mass spectrometry (GC-MS). At the same time, all isolates were used for quantitative measurement of ammonia by the indophenol blue method. The effects of pure commercial compounds on inducement of trap formation in A. oligospora were tested. Taken together, results demonstrated that the predominant bacterial volatile compound inducing trap formation was ammonia. Meanwhile, ammonia also played a role in other nematode-trapping fungi, including Arthrobotrys guizhouensis YMF1·00014, producing adhesive nets; Dactylellina phymatopaga YMF1·01474, producing adhesive knobs; Dactylellina cionopaga YMF1·01472, producing adhesive columns and Drechslerella brochopaga YMF1·01829, producing constricting rings. © 2016 The Society for Applied Microbiology.
Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion
NASA Astrophysics Data System (ADS)
Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José
2014-06-01
Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.
Takeda, Tetsuro
2003-12-01
During development, glomerular visceral epithelial cells, or podocytes, undergo extensive morphologic changes necessary for the creation of the glomerular filter. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of filtration slits. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in keeping the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. By a cell aggregation assay, the expression level of podocalyxin correlated closely with the anti-adhesion effect. Treatment of the cells with sialidase reversed the inhibitory effect of podocalyxin, indicating that sialic acid residue is required for inhibition of cell adhesion. In addition to its ectodomain, the highly conserved cytoplasmic tail of podocalyxin may contribute to the unique organization of podocytes. By immunocytochemistry, it was shown that two cytosolic adaptor proteins, Na(+)/H(+)-exchanger regulatory factor 2 (NHERF2) and ezrin, colocalize with podocalyxin along the apical plasma membrane of podocytes, where they form a co-immunoprecipitable complex. Moreover, the podocalyxin/NHERF2 /ezrin complex interacts with the actin cytoskeleton, and this interaction is disrupted in pathologic conditions associated with changes in the foot processes, indicating its importance in maintaining the unique organization of this epithelium. Further studies will be needed to identify the signaling molecules responsible for the regulation of this complex in podocyte damage.
Ductile film delamination from compliant substrates using hard overlayers
Cordill, M.J.; Marx, V.M.; Kirchlechner, C.
2014-01-01
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. PMID:25641995
Ductile film delamination from compliant substrates using hard overlayers.
Cordill, M J; Marx, V M; Kirchlechner, C
2014-11-28
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.
Loosli, Y; Vianay, B; Luginbuehl, R; Snedeker, J G
2012-05-01
We present a novel approach to modeling cell spreading, and use it to reveal a potentially central mechanism regulating focal adhesion maturation in various cell phenotypes. Actin bundles that span neighboring focal complexes at the lamellipodium-lamellum interface were assumed to be loaded by intracellular forces in proportion to bundle length. We hypothesized that the length of an actin bundle (with the corresponding accumulated force at its adhesions) may thus regulate adhesion maturation to ensure cell mechanical stability and morphological integrity. We developed a model to test this hypothesis, implementing a "top-down" approach to simplify certain cellular processes while explicitly incorporating complexity of other key subcellular mechanisms. Filopodial and lamellipodial activities were treated as modular processes with functional spatiotemporal interactions coordinated by rules regarding focal adhesion turnover and actin bundle dynamics. This theoretical framework was able to robustly predict temporal evolution of cell area and cytoskeletal organization as reported from a wide range of cell spreading experiments using micropatterned substrates. We conclude that a geometric/temporal modeling framework can capture the key functional aspects of the rapid spreading phase and resultant cytoskeletal complexity. Hence the model is used to reveal mechanistic insight into basic cell behavior essential for spreading. It demonstrates that actin bundles spanning nascent focal adhesions such that they are aligned to the leading edge may accumulate centripetal endogenous forces along their length, and could thus trigger focal adhesion maturation in a force-length dependent fashion. We suggest that this mechanism could be a central "integrating" factor that effectively coordinates force-mediated adhesion maturation at the lamellipodium-lamellum interface.
Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling
Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, Alan R.
2013-01-01
Cell–matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm–µm) and time (ms–min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions. PMID:23280111
Liu, Jun; Wang, Qiao-Chu; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen
2012-01-01
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.
Feghhi, Shirin; Sniadecki, Nathan J.
2011-01-01
Coagulation involves a complex set of events that are important in maintaining hemostasis. Biochemical interactions are classically known to regulate the hemostatic process, but recent evidence has revealed that mechanical interactions between platelets and their surroundings can also play a substantial role. Investigations into platelet mechanobiology have been challenging however, due to the small dimensions of platelets and their glycoprotein receptors. Platelet researchers have recently turned to microfabricated devices to control these physical, nanometer-scale interactions with a higher degree of precision. These approaches have enabled exciting, new insights into the molecular and biomechanical factors that affect platelets in clot formation. In this review, we highlight the new tools used to understand platelet mechanobiology and the roles of adhesion, shear flow, and retraction forces in clot formation. PMID:22272117
Zhu, Wenzhen; Yang, Jian; Iqbal, Jabed; Peck, Yvonne; Fan, Changjiang; Wang, Dong-An
2017-07-01
Seroma formation is a common postsurgical complication of breast cancer surgery. It delays wound healing and may lead to other more serious complications. Conventional methods of reducing seroma formation through suturing or placement of surgical drainage produce inconsistent clinical outcomes. Tissue adhesives are viable alternatives but most of them are unsuitable for internal use and for large-area applications because of weak tissue adhesion strength or biocompatibility issues. The aim of this study was to evaluate the efficacy and biocompatibility of a mussel-inspired double-crosslinked tissue adhesive (DCTA) in reducing seroma formation after mastectomy. Thirty-six female Sprague-Dawley rats were randomly assigned to either the saline control group (n = 12), the TISSEEL sealant (Baxter) group (n = 12), or the DCTA group (n = 12). After performing a mastectomy and applying the corresponding treatment, the efficacy of DCTA was evaluated by measurement of seroma volume while its biocompatibility was assessed via micronuclei test and histopathologic examination. During the 1-wk postsurgical period, the average total seroma volume of DCTA was significantly lower than the saline control group. Importantly, the mean seroma volume in DCTA showed a decreasing trend, whereas those in TISSEEL and saline control groups showed otherwise. The application of DCTA showed no genotoxic effect on the host and no severe inflammation. This study demonstrates that the good tissue adhesion strength and stability of DCTA were successful in reducing seroma formation over a period of 1 wk. Furthermore, the results also showed that it is biocompatible, which makes it suitable for large-area, internal use. Copyright © 2017 Elsevier Inc. All rights reserved.
Nickerson, Kourtney P; McDonald, Christine
2012-01-01
Crohn's disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20(th) century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute to disease susceptibility.
A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.
Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad
2002-10-07
The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE(-)(/)(-) mice before the development of manifest atherosclerotic lesions. Platelet-endothelial cell interaction involved both platelet glycoprotein (GP)Ibalpha and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE(-)(/)(-) mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process.
Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers.
Jamshidi-Adegani, Fatemeh; Seyedjafari, Ehsan; Gheibi, Nematollah; Soleimani, Masoud; Sahmani, Mehdi
2016-07-08
In this study, prevention of the adhesion bands and inflammatory features has been investigated using poly (lactic-co-glycolic acid)-ibuprofen (PLGA-IB) nanofibrous meshes in a mice model. To find the optimized membrane for prevention of postoperative adhesion bands, we have compared PLGA-IB group with PLGA, IB, and control groups in a mice adhesion model. Two scoring adhesion systems were used to represent the outcome. According to the results obtained in this study, the PLGA-IB nanofiber membrane showed a greater reduction in adhesion band than other groups. In conclusion, among FDA-approved polymers and drugs, PLGA-IB meshes could be applicable as a potential candidate for prevention of postoperative abdominal inflammation and adhesion bands formation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:990-997, 2016. © 2016 American Institute of Chemical Engineers.
Characterization of Adhesives for Attaching Reusable Surface Insulation on Space Shuttle Vehicles
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1973-01-01
An extensive development and testing program on adhesive systems shows that: (1) A closed cell silicone rubber sponge bonded to substrates with thin bond lines of glass filled adhesive exhibits density and modulus values approximately one third that of solid silicone adhesives; (2) utilization of glass or phenolic microballoons as fillers in silicone adhesives reduces density but increases moduli of the vulcanized materials; (3) the silicone elastomer based adhesives appear to be complex systems rather than homogeneous, isotropic materials. Tensile, shear, and compression properties plotted versus temperature verify this conjecture; and (4) constant strain-stress relaxation tests on glass-filled adhesive show that stress relaxation is most pronounced near the glass transition temperature.
Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.
2008-01-01
Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171
Liquid Paraffin vs Hyaluronic Acid in Preventing Intraperitoneal Adhesions.
Kataria, Hanish; Singh, Vinod Prem
2017-12-01
Adhesion formation after abdominal and pelvic operations remains a challenging problem. Role of adjuvant barriers have been studied but there is no comparative study between liquid paraffin and hyaluronic acid as a barrier method. Hence, we planned to compare the effectiveness of 0.4 % hyaluronic acid and liquid paraffin in the prevention of postoperative intraperitoneal adhesions in rats. This prospective, randomized and controlled study was conducted in 60 adult Wistar albino rats. Surgical trauma by caecal abrasion and 1 g talcum powder was used in the rat model to induce adhesion formation. After trauma, 3 ml normal saline was instilled in the peritoneal cavity in control group ( n = 20), 3 ml liquid paraffin was instilled in experimental group A ( n = 20) and 3 ml 0.4 % hyaluronic acid was instilled in experimental group B ( n = 20). Two weeks after laparotomy, repeat laparotomy was performed and the adhesions were scored according to Zuhlke classification. Liquid paraffin and hyaluronic acid both reduce the extent and grade of adhesions both macroscopically ( p = 0.018, p = 0.017) and microscopically ( p = 0.019, p = 0.019) respectively. Although there was significant reduction in adhesions by hyaluronic acid at certain specific sites as compared with liquid paraffin, its overall effectiveness in preventing postoperative intraperitoneal adhesions is not significantly different from liquid paraffin ( p = 0.092, p = 0.193) respectively. The presence of liquid paraffin and hyaluronic acid in the peritoneal cavity reduce postoperative intraperitoneal adhesions significantly in rats. However, there is no overall significant difference in the effectiveness of two groups. Dosage and safety of these chemicals in human beings remains to be established.
Prevention of postoperative pericardial adhesions with TachoSil.
Kuschel, Tarah J; Gruszka, Anna; Hermanns-Sachweh, Benita; Elyakoubi, Jaouad; Sachweh, Joerg S; Vázquez-Jiménez, Jaime F; Schnoering, Heike
2013-01-01
The prevention of the pericardial adhesions largely accountable for the technical difficulty and risk of injury inherent to resternotomy continues to gain in importance with the increasing frequency of reoperations. The hemostatic sponge TachoSil (Nycomed Austria GmbH, Linz, Austria), has shown promising results in adhesion prevention in several regions of the body. This study was designed to evaluate its effectiveness in the prevention of pericardial adhesions in comparison with the Gore-Tex (W. L. Gore and Assoc, Flagstaff, AZ) surgical membrane and a control. Twenty-four rabbits were distributed into 3 groups: TachoSil, Gore-Tex, or no barrier agent (control). After median sternotomy and pericardiotomy, the cardial surface was exposed to the aggravating effects of room air, irrigation, and gauze abrasion for one hour. A pericardial defect was created and repaired with one of the barrier agents, or left uncovered (control). Resternotomy was performed after 6 months for the evaluation of adhesion formation. Significantly fewer macroscopic adhesions were observed with TachoSil than Gore-Tex in all regions (p < 0.05) excluding the coronary arteries, where the difference in favor of TachoSil did not achieve significance (0.05< p-value <0.10). TachoSil also demonstrated significantly fewer retrosternal adhesions than the control, as well as a universal non-significant trend of fewer adhesions in all regions. The limited lesions present in the TachoSil group were filmy in nature and removed with blunt dissection relatively easily. No significant differences were found between Gore-Tex and the control. Microscopically, the least pronounced fibrosis formation and inflammatory reaction was detected with TachoSil. TachoSil is effective in the prevention of pericardial adhesions. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Apparatus for installing condition-sensing means in subterranean earth formations
Shuck, Lowell Z.
1981-01-01
The present invention is directed to an apparatus for installing strain gages or other sensors-transducers in wellbores penetrating subterranean earth formations. The subject apparatus comprises an assembly which is lowered into the wellbore, secured in place, and then actuated to sequentially clean the wellbore or casing surface at a selected location with suitable solvents, etchants and neutralizers, grind the surface to a relatively smooth finish, apply an adhesive to the surface, and attach the strain gages or the like to the adhesive-bearing surface. After installing the condition-sensing gages to the casing or earth formation the assembly is withdrawn from the wellbore leaving the sensing gages securely attached to the casing or the subterranean earth formation.
Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael
2009-01-01
Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism. PMID:19433786
Chernyshova, Yana; Leshchyns'ka, Iryna; Hsu, Shu-Chan; Schachner, Melitta; Sytnyk, Vladimir
2011-03-09
The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.
Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.
Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A
2016-02-14
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.
Erfanian, Reza; Firouzi, Masoumeh; Nabian, Mohammad Hossein; Darvishzadeh, Masoud; Zanjani, Leila Oryadi; Zadegan, Shayan Abdollah; Kamrani, Reza Shahryar
2014-01-01
The use of fibrin adhesives has a broad background in nerve repair. Currently the suboptimal physical properties of single- donor fibrin adhesives have restricted their usage. The present experiment studies the performance and physical characteristics of a modified fibrin glue prepared from single-donor human plasma in the repair of posterior tibial nerve of rat. Forty Wistar rats were divided into 5 groups; in the control group, tibial nerve was completely transected and no treatment was done, while in the four experimental groups the nerve stumps were reconnected by one suture, three sutures, one suture with fibrin glue and fibrin glue alone respectively. During 8 weeks of follow-up, Tibial Function Index was measured weekly and adhesive strength, inflammation and scar formation were assessed at the end of the study. Nerve stumps dehiscence rate and adhesive strength were similar in all experimental groups and significantly differed from control group (P<0.05). By the end of the eighth follow-up week, functional recovery of one and three sutures groups were significantly higher than groups in which fibrin glue was used for repair (P<0.05). The amount of inflammation and scar tissue formation was similar among all groups. The study results show that the prepared single-donor fibrin adhesive has acceptable mechanical properties which could provide required adhesiveness and hold nerve stumps in the long term; yet, we acknowledge that more studies are needed to improve functional outcome of single donor fibrin adhesive repair.
Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength
NASA Astrophysics Data System (ADS)
Jeon, Jaehyeon; Jang, Hanmin; Chang, Jinho; Lee, Kwan-Soo; Kim, Dong Rip
2018-05-01
We report a fabrication method to obtain a low-ice-adhesion aluminum surface by surface texturing using solution etching and subsequent thin-film coating. Specifically, the textured surface has microstructures of a low aspect ratio, that is, with a much smaller height than width. Such microstructures can effectively reduce ice-adhesion strengths by sliding the ice during detachment. Because our method is based on solution etching, it can be applied to curved surfaces with complex shapes for uniformly constructing the morphology of a low-ice-adhesion aluminum surface. Finally, the low-ice-adhesion aluminum surface reduces the ice-adhesion strengths by up to 95%.
Park, Yang-Nim; Srikantha, Thyagarajan; Daniels, Karla J.; Jacob, Melissa R.; Agarwal, Ameeta K.; Li, Xing-Cong
2017-01-01
ABSTRACT In the screening of natural plant extracts for antifungal activity, assessment of their effects on the growth of cells in suspension or in the wells of microtiter plates is expedient. However, microorganisms, including Candida albicans, grow in nature as biofilms, which are organized cellular communities with a complex architecture capable of conditioning their microenvironment, communicating, and excluding low- and high-molecular-weight molecules and white blood cells. Here, a confocal laser scanning microscopy (CLSM) protocol for testing the effects of large numbers of agents on biofilm development is described. The protocol assessed nine parameters from a single z-stack series of CLSM scans for each individual biofilm analyzed. The parameters included adhesion, thickness, formation of a basal yeast cell polylayer, hypha formation, the vertical orientation of hyphae, the hyphal bend point, pseudohypha formation, calcofluor white staining of the extracellular matrix (ECM), and human white blood cell impenetrability. The protocol was applied first to five plant extracts and derivative compounds and then to a collection of 88 previously untested plant extracts. They were found to cause a variety of phenotypic profiles, as was the case for 64 of the 88 extracts (73%). Half of the 46 extracts that did not affect biofilm thickness affected other biofilm parameters. Correlations between specific effects were revealed. The protocol will be useful not only in the screening of chemical libraries but also in the analysis of compounds with known effects and mutations. PMID:28893778
Collisions of deformable cells lead to collective migration
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
2015-03-17
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less
Collisions of deformable cells lead to collective migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less
Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy
Vaid, Rishi; Diggins, Patrick; Weimer, Jeffrey J.; Koopman, M.; Vohra, Yogesh K.
2010-01-01
While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O2 in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O2 feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O2 is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O2 remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation. PMID:21221739
MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.
Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu
2018-04-01
Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.
Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation.
Privett, Benjamin J; Nutz, Steven T; Schoenfisch, Mark H
2010-11-01
This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm(-2) s(-1) were sufficient to reduce fungal adhesion by ∼49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.
Zhu, Lin; Zhang, Yu-Qing
2016-04-01
N,O-Carboxymethyl chitosan (NOCC) can prevent postsurgical adhesion formation. Here, we described the preparation of a novel silkworm pupa NOCC and its effects on the prevention of postoperative adhesion in a rat cecal abrasion model. The degree of deacetylation (DDA) of silkworm pupa chitosan was only 49.87 ± 0.86%; regardless, it was used as the raw material to construct the novel silkworm pupa NOCC, which had a weaker crystallinity than the NOCC standard. Sixty male Sprague-Dawley rats were divided into three groups and treated as follows: 0.9% normal saline solution as a negative control, medical anti-adhesion gel as a positive control and the silkworm pupa NOCC anti-adhesion solution. Two and three weeks after surgery, the animals were killed and the adhesion formation was scored. The silkworm pupa NOCC solution significantly decreased the levels of WBC, TNF-α, IL-1β, IL-2, IL-6 and IL-8 but had no effect on IL-4. Additionally, a lower level of TGF-β1 expression was found in the silkworm pupa NOCC group, and significantly less collagen (P<0.01) and fewer inflammatory cells and fibroblasts were detected in the animals of this group. These results suggested that the novel NOCC from silkworm pupa using the method described here have potential applications in the prevention of postoperative intestinal adhesion. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-assembled Nano-layering at the Adhesive interface.
Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van
2012-04-01
According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.
Sabatini, Camila; Pashley, David H.
2015-01-01
Purpose This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices bye host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Methods Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by fifty-one studies published in peer-reviewed journals between January 1999 and December 2013 was compiled in this systematic review. Results Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. PMID:25831604
Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood laminating adhesive.
Juhaida, M F; Paridah, M T; Mohd Hilmi, M; Sarani, Z; Jalaluddin, H; Mohamad Zaki, A R
2010-02-01
A study was carried out to produce polyurethane (PU) as a wood laminating adhesive from liquefied kenaf core (LKC) polyols by reacting it with toluene-2,4-diisocyanate (TDI) and 1,4-butanediol (BDO). The LKC polyurethane (LKCPU) adhesive has a molecular weight (MW) of 2666, viscosity of 5370 mPa s, and solids content of 86.9%. The average shear strength of the rubberwood (RW) bonded with LKCPU adhesive was 2.9 MPa. Most of the sheared specimens experienced a total adhesive failure. The formation of air bubbles through the liberation of carbon dioxide was observed to reduce the adhesive penetration and bonding strength which was obviously seen on the sheared specimens. The percentage of catalyst used can be varied based on the usage and working time needed. Nonetheless, the physical properties of LKCPU produced in this work had shown good potential as edge-bonding adhesive.
Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes.
Yang, Ruiguo; Song, Bo; Sun, Zhiyong; Lai, King Wai Chiu; Fung, Carmen Kar Man; Patterson, Kevin C; Seiffert-Sinha, Kristina; Sinha, Animesh A; Xi, Ning
2015-01-01
We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Cartier-Michaud, Amandine; Bailly, Anne-Laure; Betzi, Stéphane; Shi, Xiaoli; Lissitzky, Jean-Claude; Zarubica, Ana; Sergé, Arnauld; Roche, Philippe; Lugari, Adrien; Hamon, Véronique; Bardin, Florence; Derviaux, Carine; Lembo, Frédérique; Audebert, Stéphane; Marchetto, Sylvie; Durand, Bénédicte; Borg, Jean-Paul; Shi, Ning; Morelli, Xavier; Aurrand-Lions, Michel
2017-06-01
Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.
Wichelhaus, Dagmar Alice; Beyersdoerfer, Sascha Tobias; Gierer, Philip; Vollmar, Brigitte; Mittlmeier, Th
2016-07-01
The outcome of flexor tendon surgery is negatively affected by the formation of adhesions which can occur during the healing of the tendon repair. In this experimental study, we sought to prevent adhesion formation by wrapping a collagen-elastin scaffold around the repaired tendon segment. In 28 rabbit hind legs, the flexor tendons of the third and fourth digits were cut and then repaired using a two-strand suture technique on the fourth digit and a four-strand technique on the third digit. Rabbits were randomly assigned to study and control groups. In the control group, the operation ended by closing the tendon sheath and the skin. In the study group, a collagen-elastin scaffold was wrapped around the repaired tendon segment in both digits. After 3 and 8 weeks, the tendons were harvested and processed histologically. The range of motion of the digits and the gap formation between the repaired tendon ends were measured. The formation of adhesions, infiltration of leucocytes and extracellular inflammatory response were quantified. At the time of tendon harvesting, all joints of the operated toes showed free range of motion. Four-strand core sutures lead to significantly less diastasis between the repaired tendon ends than two-strand core suture repairs. The collagen-elastin scaffold leads to greater gapping after 3 weeks compared to the controls treated without the matrix. Within the tendons treated with the collagen-elastin matrix, a significant boost of cellular and extracellular inflammation could be stated after 3 weeks which was reflected by a higher level of CAE positive cells and more formation of myofibroblasts in the αSMA stain in the study group. The inflammatory response subsided gradually and significantly until the late stage of the study. Both the cellular and extracellular inflammatory response was emphasized with the amount of material used for the repair. The use of a collagen-elastin matrix cannot be advised for the prevention of adhesion formation in flexor tendon surgery, because it enhances both cellular and extracellular inflammation. Four-strand core sutures lead to less gapping than two-strand core sutures, but at the same time, the cellular and extracellular inflammatory response is more pronounced.
A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation
Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad
2002-01-01
The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE − / − mice before the development of manifest atherosclerotic lesions. Platelet–endothelial cell interaction involved both platelet glycoprotein (GP)Ibα and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE − / − mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process. PMID:12370251
Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.
Nunes Filho, Antonio; Aires, Michelle de Medeiros; Braz, Danilo Cavalcante; Hinrichs, Ruth; Macedo, Alexandre José; Alves, Clodomiro
2018-02-01
Bacterial adhesion on three different surfaces: untreated Ti, plasma nitriding, and plasma carbonitriding Ti substrates were investigated. The samples were placed in bacterial cultures of Pseudomonas aeruginosa to assess biofilm formation. The correlation between the amount of bacteria attached to the surface after a lapse of time with nanotopography and physicochemical properties was performed. TiN showed the highest capacity to avoid bacterial adhesion, while presenting intermediate roughness and wettability. Although the surface of TiCN had the highest surface roughness and low contact angle (high wettability), bacterial adhesion was intermediate on this sample. Untreated Ti, even though presenting a smooth surface and low wettability, had the highest tendency to form biofilms. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A Novel Role for Integrin-linked Kinase in Epithelial Sheet Morphogenesis
Vespa, Alisa; D'Souza, Sudhir J.A.; Dagnino, Lina
2005-01-01
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca2+ triggers formation of cell–cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca2+ treatment of keratinocytes induces rapid (≤1 h) translocation to the cell membrane of the adherens junction (AJ) proteins E-cadherin and β-catenin. This is followed by slower (>6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell–cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/β-catenin to cell borders, precluding Ca2+-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell–cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell–cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration. PMID:15975904
A novel role for integrin-linked kinase in epithelial sheet morphogenesis.
Vespa, Alisa; D'Souza, Sudhir J A; Dagnino, Lina
2005-09-01
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (
Differential Dynamics of Platelet Contact and Spreading
Lee, Dooyoung; Fong, Karen P.; King, Michael R.; Brass, Lawrence F.; Hammer, Daniel A.
2012-01-01
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin αIIbβ3 mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α2-, or β3-deficient platelets on collagen or fibrinogen suggests the integrin α2 is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α2 regulate integrin αIIbβ3-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading. PMID:22325269
Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut
2018-01-18
Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.
Evaluation of a Linear Cumulative Damage Failure Model for Epoxy Adhesive
NASA Technical Reports Server (NTRS)
Richardson, David E.; Batista-Rodriquez, Alicia; Macon, David; Totman, Peter; McCool, Alex (Technical Monitor)
2001-01-01
Recently a significant amount of work has been conducted to provide more complex and accurate material models for use in the evaluation of adhesive bondlines. Some of this has been prompted by recent studies into the effects of residual stresses on the integrity of bondlines. Several techniques have been developed for the analysis of bondline residual stresses. Key to these analyses is the criterion that is used for predicting failure. Residual stress loading of an adhesive bondline can occur over the life of the component. For many bonded systems, this can be several years. It is impractical to directly characterize failure of adhesive bondlines under a constant load for several years. Therefore, alternative approaches for predictions of bondline failures are required. In the past, cumulative damage failure models have been developed. These models have ranged from very simple to very complex. This paper documents the generation and evaluation of some of the most simple linear damage accumulation tensile failure models for an epoxy adhesive. This paper shows how several variations on the failure model were generated and presents an evaluation of the accuracy of these failure models in predicting creep failure of the adhesive. The paper shows that a simple failure model can be generated from short-term failure data for accurate predictions of long-term adhesive performance.
Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions.
Irons, Linda; Owen, Markus R; O'Dea, Reuben D; Brook, Bindi S
2018-06-05
Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
el-Ghoul, W
2005-01-01
The study was carried out on 40 apparently clinical healthy dogs classified into 5 groups of 8 dogs each. Adhesion was experimentally induced by transsection and reanastomosis of jejunum. In the control group the site of anastomosis and abdominal cavity was lavaged with 250 ml saline solution. In group two lavage was done with 250 ml of a liquid barrier composed of a combination of high molecular weight solution (1% sodium carboxymethylcellulose) as a carrier, non-steroidal anti-inflammatory drug (Piroxecam), broad spectrum antibiotic (Cephalosporin), anticoagulant (Heparin) and antioxidant (0.5% methylene blue). In group three the anastomosis site was covered with a sodium hyalouronate/carboxymethylcellulose bioresorbable membrane (Seprafilm). In group four a natural biocompatible collagen sheet (VET BIO SIS T) was applied on the anastomosis site. In group five the abdominal cavity was lavaged with 250 ml liquid barrier and the anastomosis site was covered by either Seprafilm membrane or VET BIO SIS T sheet. At the fourteen day after operation, adhesion was assessed by ultrasonography after instillation of 1000 ml of physiological saline solution into the abdominal cavity. The dogs were sacrificed and an autopsy examination was carried out with the attention to the number, density and site of the adhesion formation. The results revealed that all the control dogs and some dogs in the treatment groups had positive ultrasonographic findings. Transabdominal sonogram clearly showed echogenic bands floating in the abdominal cavity and echogenic masses in more serious subjects. Necropsy examination showed that all the control dogs had intra-abdominal adhesions (8 of 8 dogs) and treatment with liquid barrier (4 of 8 dogs), seprafilm membrane barrier (3 of 8 dogs), VET BIO SIS T sheet barrier (4 of 8 dogs) and combination of fluid and membrane barrier groups (4 of 8 dogs) significantly (p < 0.05) reduced the incidence of adhesion formation. The adhesion severity in the four treated groups was significantly (p < 0.05) decreased compared with the control group as shown by both ultrasonography and necropsy examination scores. In conclusion the suggested hypothesis is more or less positive and the combined liquid and membrane barriers might be an effective way to decrease intra-abdominal adhesion formation, and the ultrasonography is a useful tool to diagnose intra-abdominal adhesion, and their applications might be valuable to the clinical settings.
Bio-inspired reversible underwater adhesive.
Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai
2017-12-20
The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.
Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro
2014-01-01
Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332
Chen, Sheng; He, Nianhai; Yu, Jialin; Li, Luquan; Sun, Fengjun; Hu, Ying; Deng, Rui; Zhong, Shiming; Shen, Leilei
2015-10-01
The biofilms (BF) formed by Escherichia coli (E. coli) is an important cause of chronic and recurrent infections due to its capacity to persist on medical surfaces and indwelling devices, demonstrating the importance of inhibiting the formation of E. coli BF and reducing BF infection. Although 2‑mercaptoethane sulfonate (MESNA) exhibits a marked mucolytic effect clinically, the effect of MESNA on the inhibition of E. coli BF formation remains to be elucidated. The present study investigated whether MESNA inhibits the formation of E. coli BF in vitro. The minimum inhibitory concentration of MESNA on E. coli was determined to be 10 mg/ml. Subsequently, the effect of MESNA on BF early adhesion, extracellular polysaccharide (EPS) and extracellular protein were detected. The effect of a subinhibitory concentration of MESNA on BF formation was evaluated, and the inhibitory potency of MESNA against matured BF was assayed. The results revealed that MESNA inhibited early stage adhesion and formation of the E. coli BF, destroyed the mature BF membrane and reduced the EPS and extracellular proteins levels of the BF. In addition, the present study investigated the effects of MESNA on the expression of EPS‑ and adhesion protein‑associated genes using quantitative polymerase chain reaction analysis, which demonstrated that MESNA effectively inhibited the expression of these genes. These results suggested that MESNA possesses anti‑BF formation capability on E. coli in vitro and may be used as a potential reagent for the clinical treatment of E. coli BF‑associated infections.
Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis
Silverman, Heather G.; Roberto, Francisco F.
2006-02-07
The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.
Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis
Silverman, Heather G.; Roberto, Francisco F.
2006-01-17
The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.
Prevention of Intraabdominal Adhesions: An Experimental Study Using Mitomycin-C and 4% Icodextrin.
Urkan, Murat; Özerhan, İsmail Hakkı; Ünlü, Aytekin; Can, Mehmet Fatih; Öztürk, Erkan; Günal, Armağan; Yağcı, Gökhan
2017-01-01
Intraabdominal adhesions remain a significant cause of morbidity and mortality. Moreover, intraabdominal adhesions can develop in more than 50% of abdominal operations. We compared the anti-adhesive effects of two different agents on postoperative adhesion formation in a cecal abrasion model. Experimental animal study. Forty Wistar albino type female rats were anesthetized and underwent laparotomy. Study groups comprised Sham, Control, Mitomycin-C, 4% Icodextrin, and Mitomycin-C +4% Icodextrin groups. Macroscopic and histopathological evaluations of adhesions were performed. The frequencies of moderate and severe adhesions were significantly higher in the control group than the other groups. The mitomycin-C and Mitomycin-C +4% Icodextrin groups were associated with significantly lower adhesion scores compared to the control group and 4% Icodextrin group scores (p=0.002 and p=0.008, respectively). The adhesion scores of the Mitomycin-C group were also significantly lower than those of the 4% Icodextrin group (p=0.008). Despite its potential for bone marrow toxicity, Mitomycin-C seems to effectively prevent adhesions. Further studies that prove an acceptable safety profile relating to this promising anti-adhesive agent are required before moving into clinical trials.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.
Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X
2015-02-15
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.
Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis
Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.
2014-01-01
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303
de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko
2014-03-01
We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.
N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO
Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.
2009-01-01
Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814
Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.
Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe
2017-03-15
The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhou, Shunhua; Liang, Chen; Rogers, Craig A.; Sun, Fanping P.; Vick, L.
1993-07-01
Applications of polymeric adhesives in joining different materials have necessitated quantitative health inspection of adhesive joints (coverage, state of cure, adhesive strength, location of voids, etc.). A new in-situ sensory method has been proposed in this paper to inspect the amount and distribution of the critical constituents of polymers and to measure the characteristic parameters (complex Young's modulus and damping). In this technique, ferromagnetic particles have been embedded in a polymeric matrix, similar to a particle- reinforced composite. The dynamic signatures extracted from the tests as a result of magnetic excitation of the embedded ferromagnetic particles are used to evaluate the complex Young's modulus of the host polymers. Moreover, the amplitude of the frequency response is utilized to identify the amount and distribution of embedded particles in polymeric materials or adhesive joints. The results predicted from the theoretical model agree well with the experimental results. The theoretical analyses and the experimental work conducted have demonstrated the utility of the sensory technique presented for in-service health interrogation.
NASA Technical Reports Server (NTRS)
Connell, John W.
2004-01-01
PETI-5 (1250 and 2500 g/mole) were prepared and characterized. Neat resin, adhesive and composite properties were determined and compared with those of PETI-5 (5000 g/mole). Relative to PETI-5 (5000 g/mole), PETI-5 (2500 g/mole) exhibited improved processability and equivalency in the adhesive and composite properties measured thus far. This resin, in both adhesive film and prepreg form, has the potential to offer significant improvements in the processing of complex structural composite parts.
Interconnect mechanisms in microelectronic packaging
NASA Astrophysics Data System (ADS)
Roma, Maria Penafrancia C.
Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire alloy showed differences in adhesion strength and IMC formation. Bond strength by wire pull testing showed the 95Ag alloy with higher values while shear bond testing showed the 88Ag higher bond strength. Use of Cu pillars in flip chips and eutectic bonding in wafer level chip scale packages are direct consequences of diminishing interconnect dimension as a result of the drive for miniaturization. The combination of Cu-Sn interdiffusion, Kirkendall mechanism and heterogeneous vacancy precipitation are the main causes of IMC and void formation in Cu pillar - Sn solder - Cu lead frame sandwich structure. However, adding a Ni barrier agent showed less porous IMC layer as well as void formation as a result of the modified Cu and Sn movement well as the void formation. Direct die to die bonding using Al-Ge eutectic bonds is necessary when 3D integration is needed to reduce the footprint of a package. Hermeticity and adhesion strength are a function of the Al/Ge thickness ratio, bonding pressure, temperature and time. Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB) allowed imaging of interfacial microstructures, porosity, grain morphology while Scanning Transmission Electron microscope (STEM) provided diffusion profile and confirmed interdiffusion. Ion polishing technique provided information on porosity and when imaged using backscattered mode, grain structure confirmed mechanical deformation of the bonds. Measurements of the interfacial bond strength are made by wire pull tests and ball shear tests based on existing industry standard tests. However, for the Al-Ge eutectic bonds, no standard strength is available so a test is developed using the stud pull test method using the Dage 4000 Plus to yield consistent results. Adhesion strengths of 30-40 MPa are found for eutectic bonded packages however, as low as 20MPa was measured in low temperature bonded areas.
Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A
2011-01-01
Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730
Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan
2013-01-01
Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of sFRP1 in regulating spermiation via its effects on the FAK signaling and retention of nectin-3 adhesion complex at the apical ES.—Wong, E. W. P., Lee, W. M., Cheng, C. Y. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. PMID:23073828
Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules
NASA Technical Reports Server (NTRS)
Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.
1994-01-01
Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.
Protein-based underwater adhesives and the prospects for their biotechnological production.
Stewart, Russell J
2011-01-01
Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.
Protein-based underwater adhesives and the prospects for their biotechnological production
Stewart, Russell J.
2011-01-01
Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives. PMID:20890598
Salzillo, Marzia; Vastano, Valeria; Capri, Ugo; Muscariello, Lidia; Marasco, Rosangela
2017-04-01
Multi-functional surface proteins have been observed in a variety of pathogenic bacteria, where they mediate host cell adhesion and invasion, as well as in commensal bacterial species, were they mediate positive interaction with the host. Among these proteins, some glycolytic enzymes, expressed on the bacterial cell surface, can bind human extracellular matrix components (ECM). A major target for them is collagen, an abundant glycoprotein of connective tissues. We have previously shown that the enolase EnoA1 of Lactobacillus plantarum, one of the most predominant species in the gut microbiota of healthy individuals, is involved in binding with collagen type I (CnI). In this study, we found that PDHB, a component of the pyruvate dehydrogenase complex, contributes to the L. plantarum LM3 adhesion to CnI. By a cellular adhesion assay to immobilized CnI, we show that LM3-B1 cells, carrying a null mutation in the pdhB gene, bind to CnI - coated surfaces less efficiently than wild-type cells. Moreover, we show that the PDHB-CnI interaction requires a native state for PDHB. We also analyzed the ability to develop biofilm in wild-type and mutant strains and we found that the lack of the PDHB on cell surface generates cells partially impaired in biofilm development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.
Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime
2016-07-01
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O
2015-01-01
We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486
Microsurgical principles and postoperative adhesions: lessons from the past.
Gomel, Victor; Koninckx, Philippe R
2016-10-01
"Microsurgery" is a set of principles developed to improve fertility surgery outcomes. These principles were developed progressively based on common sense and available evidence, under control of clinical feedback obtained with the use of second-look laparoscopy. Fertility outcome was the end point; significant improvement in fertility rates validated the concept clinically. Postoperative adhesion formation being a major cause of failure in fertility surgery, the concept of microsurgery predominantly addresses prevention of postoperative adhesions. In this concept, magnification with a microscope or laparoscope plays a minor role as technical facilitator. Not surprisingly, the principles to prevent adhesion formation are strikingly similar to our actual understanding: gentle tissue handling, avoiding desiccation, irrigation at room temperature, shielding abdominal contents from ambient air, meticulous hemostasis and lavage, avoiding foreign body contamination and infection, administration of dexamethasone postoperatively, and even the concept of keeping denuded areas separated by temporary adnexal or ovarian suspension. The actual concepts of peritoneal conditioning during surgery and use of dexamethasone and a barrier at the end of surgery thus confirm without exception the tenets of microsurgery. Although recent research helped to clarify the pathophysiology of adhesion formation, refined its prevention and the relative importance of each factor, the clinical end point of improvement of fertility rates remains demonstrated for only the microsurgical tenets as a whole. In conclusion, the principles of microsurgery remain fully valid as the cornerstones of reproductive microsurgery, whether performed by means of open access or laparoscopy. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined in this paper the crystalmore » structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Finally, our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.« less
Diverse oligomeric states of CEACAM IgV domains
Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert; Beckett, Dorothy; Sundberg, Eric J.
2015-01-01
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans. PMID:26483485
Diverse oligomeric states of CEACAM IgV domains.
Bonsor, Daniel A; Günther, Sebastian; Beadenkopf, Robert; Beckett, Dorothy; Sundberg, Eric J
2015-11-03
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6-CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6-CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.
Phan, T T; Allen, J; Hughes, M A; Cherry, G; Wojnarowska, F
2000-01-01
The fresh leaves and extract of the plant Chromolaena odorata are a traditional herbal treatment in developing countries for burns, soft tissue wounds and skin infections. We have previously shown that the extract had an effect on the growth and proliferation of keratinocytes and fibroblasts in culture. This study has demonstrated that Eupolin extract increased expression of several components of the adhesion complex and fibronectin by human keratinocytes. Using indirect immunofluorescence we found increased expression (dose-dependent) of laminin 5, laminin 1, collagen IV, and fibronectin. The expression of the b1 and b4 integrins was upregulated by the extract at low concentrations (0.1 and 1 microg/ml), but the expression was decreased at higher doses of Eupolin (10 microg-150 microg/ml). A number of clinical studies carried out by Vietnamese and international medical investigators have demonstrated the efficacy of this extract on the wound healing process. In this study we have shown that Eupolin stimulated the expression of many proteins of the adhesion complex and fibronectin by human keratinocytes. The adhesion complex proteins are essential to stabilise epithelium and this effect could contribute to the clinical efficacy of Eupolin in healing.
Williams, Michael J
2009-03-25
When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) 1. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of haemocytes Neuroglian may be involved in cell-cell interactions, while at the cell centre Neuroglian regulates the localisation of the nucleokinesis complex protein lissencephaly-1.
Williams, Michael J
2009-01-01
Background When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Results Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) [1]. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. Conclusion The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of haemocytes Neuroglian may be involved in cell-cell interactions, while at the cell centre Neuroglian regulates the localisation of the nucleokinesis complex protein lissencephaly-1. PMID:19320973
Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong
2012-09-21
To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P < 0.05), indicating a role of the T3SS in contact lens adhesion. ATF-incubated CL had significantly more bacterial adhesion (P < 0.05). SEM showed most of the bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.
2015-01-01
Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433
Effect of Molecular Flexibility upon Ice Adhesion Shear Strength
NASA Technical Reports Server (NTRS)
Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin
2016-01-01
Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.
Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland
2015-05-07
We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.
E. coli interactions, adhesion and transport in alumino-silica clays.
Wei, Houzhen; Yang, Guang; Wang, Boya; Li, Runwei; Chen, Gang; Li, Zhenze
2017-06-01
Bacterial adhesion and transport in the geological formation are controlled by their mutual complex interactions, which have been quantified by the traditional and extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory as well as direct atomic force microscopy (AFM) measurements. In this research, the DLVO forces calculated based on the independently determined bacterial and porous media surface thermodynamic properties were compared with those of AFM measurements. Although differences in the order of several magnitudes existed, forces obtained from both ways could explain the observations of E. coli attachment to alumino-silica clays evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition in alumino-silica clays was simulated using a two-site convection-dispersion transport model against E. coli transport breakthrough curves, which was then linked to the interactions forces. By exploring the differences of the two force measurements, it was concluded that the thermodynamic calculations could complement the direct force measurements in describing bacterial interactions with the surrounding environment and the subsequent transport in the porous media. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Modeling and simulating networks of interdependent protein interactions.
Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven
2018-05-21
Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).
Neurobeachin is required postsynaptically for electrical and chemical synapse formation
Miller, Adam C.; Voelker, Lisa H.; Shah, Arish N.; Moens, Cecilia B.
2014-01-01
Summary Background Neural networks and their function are defined by synapses, which are adhesions specialized for intercellular communication that can be either chemical or electrical. At chemical synapses transmission between neurons is mediated by neurotransmitters, while at electrical synapses direct ionic and metabolic coupling occurs via gap junctions between neurons. The molecular pathways required for electrical synaptogenesis are not well understood and whether they share mechanisms of formation with chemical synapses is not clear. Results Here, using a forward genetic screen in zebrafish we find that the autism-associated gene neurobeachin (nbea), which encodes a BEACH-domain containing protein implicated in endomembrane trafficking, is required for both electrical and chemical synapse formation. Additionally, we find that nbea is dispensable for axonal formation and early dendritic outgrowth, but is required to maintain dendritic complexity. These synaptic and morphological defects correlate with deficiencies in behavioral performance. Using chimeric animals in which individually identifiable neurons are either mutant or wildtype we find that Nbea is necessary and sufficient autonomously in the postsynaptic neuron for both synapse formation and dendritic arborization. Conclusions Our data identify a surprising link between electrical and chemical synapse formation and show that Nbea acts as a critical regulator in the postsynaptic neuron for the coordination of dendritic morphology with synaptogenesis. PMID:25484298
Isolation and biochemical characterization of underwater adhesives from diatoms.
Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T
2014-01-01
Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.
Liu, Jun; Wang, Qiao-Chu; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen
2012-01-01
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division. PMID:23272233
Advanced Fast Curing Adhesives for Adverse Conditions
2007-07-01
experimentation. The catalyst is composed of 50% phthalate esters and 50% trivalent organic chromium complexes (15). 2.3 Aluminum Lap Plates...adhesives (2). Tape adhesives never provide weld - strength bonds and often have low tackiness when used underwater. Ultraviolet and visible light curable...diisocyanate and diphenylmethane-4, 4 diisocyanate (MDI) (12). The low viscosity ethyl cyanoacrylate Scotch- Weld CA40 was obtained from 3M of St
Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, James A.; Simpson, Peter J.; Taylor, Jonathan
2012-01-06
Highlights: Black-Right-Pointing-Pointer Crystal structure of Streptococcus parasanguinis Fap1-NR{sub {alpha}} at pH 5.0. Black-Right-Pointing-Pointer pH-dependent conformational changes mediated through electrostatic potential of Fap1-NR{sub {alpha}}. Black-Right-Pointing-Pointer Fap1 facilitates pH-dependent biofilms. Black-Right-Pointing-Pointer We model inter-Fap1 biofilm interactions. -- Abstract: The fimbriae-associated protein 1 (Fap1) is a major adhesin of Streptococcus parasanguinis, a primary colonizer of the oral cavity that plays an important role in the formation of dental plaque. Fap1 is an extracellular adhesive surface fibre belonging to the serine-rich repeat protein (SRRP) family, which plays a central role in the pathogenesis of streptococci and staphylococci. The N-terminal adhesive region of Fap1 (Fap1-NR)more » is composed of two domains (Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}}) and is projected away from the bacterial surface via the extensive serine-rich repeat region, for adhesion to the salivary pellicle. The adhesive properties of Fap1 are modulated through a pH switch in which a reduction in pH results in a rearrangement between the Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}} domains, which assists in the survival of S. parasanguinis in acidic environments. We have solved the structure of Fap1-NR{sub {alpha}} at pH 5.0 at 3.0 A resolution and reveal how subtle rearrangements of the 3-helix bundle combined with a change in electrostatic potential mediates 'opening' and activation of the adhesive region. Further, we show that pH-dependent changes are critical for biofilm formation and present an atomic model for the inter-Fap1-NR interactions which have been assigned an important role in the biofilm formation.« less
Silicone Liner-Free Pressure Sensitive Adhesive Labels
NASA Astrophysics Data System (ADS)
Empereur, Johanne; Chaussy, Didier; Belgacem, Mohamed Naceur
2008-08-01
Pressure sensitive adhesives (PSA) were microencapsulated using simple and complex coacervation and aminoplaste. The microcapsules thus prepared were characterized by FTIR spectroscopy, particle size distribution, rheological behavior and peeling tests. The microcapsules were isolated and found to be out of sticky indicating that the PSAs were indeed encapsulated. The prepared suspensions were deposited at the surface of a paper sheets and the dried labels were then pressed against each other. The ensuing complex was then characterized in terms of peeling forces and showed that the encapsulation using aminoplaste technique of a commercial PSA yielded peel energy of 170 J/m2, which constitutes the recovering of about 68% of the adhesive power of the original non encapsulated PSA.
Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming
2016-01-01
Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation. PMID:27382277
Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L
2017-07-01
Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system.
Inostroza-Brito, Karla E; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H; Monge-Marcet, Amàlia; Ferreira, Daniela S; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system
NASA Astrophysics Data System (ADS)
Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M
2011-08-01
Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.
Gomaa, Ola M; Husseiny, Sherif M; Abd El Kareem, Hussein; Talaat, Riham
2016-10-01
Fungi are known to be affected by external environmental stimuli, resulting in different stress response effects, which in turn could be used to enhance its biodegrading ability. In a previous study, ethanol was used to manipulate cell-cell and cell-surface interaction to prevent cell loss and maximize the usage of Penicillium purpurogenum cells in the media, a correlation was drawn between ethanol oxidative stress, surface-bound proteins and fungal adhesion. The present study focuses on a more detailed study of the effect of ethanol on the same fungus. The results show that the presence of Yap1p gene and the detection of an oxidized form of glutathione (GSSG) suggest that a stress response might be involved in the adhesion process. The process of adhesion could be described as a signaling process and it is affected by the germ tube formation as an initial step in adhesion. Protein profile showed polymorphism in surface-bound proteins for cultures amended with ethanol when compared to control cultures. Ethanol also affected the DNA polymorphic profile of DNA, rendering the fungus genetically variable. P. purpurogenum produced phenol oxidase enzyme and could be used to degrade total phenols in olive mill waste water without the formation of biofilm on the surface of the containers.
Eckert, Mark A.; Santiago-Medina, Miguel; Lwin, Thinzar M.; Kim, Jihoon; Courtneidge, Sara A.
2017-01-01
ABSTRACT The Twist1 transcription factor promotes tumor invasion and metastasis by inducing epithelial–mesenchymal transition (EMT) and invadopodia-mediated extracellular matrix (ECM) degradation. The critical transcription targets of Twist1 for mediating these events remain to be uncovered. Here, we report that Twist1 strongly induces expression of a disintegrin and metalloproteinase 12 (ADAM12). We observed that the expression levels of Twist1 mRNA and ADAM12 mRNA are tightly correlated in human breast tumors. Knocking down ADAM12 blocked cell invasion in a 3D mammary organoid culture. Suppression of ADAM12 also inhibited Twist1-induced tumor invasion and metastasis in human breast tumor xenografts, without affecting primary tumor formation. Mechanistically, knockdown of ADAM12 in breast cancer cells significantly reduced invadopodia formation and matrix degradation, and simultaneously increased overall cell adhesion to the ECM. Live-imaging analysis showed that knockdown of ADAM12 significantly inhibited focal adhesion turnover. Mechanistically, both the disintegrin and metalloproteinase domains of ADAM12 are required for its function at invadopodia, whereas the metalloproteinase domain is dispensable for its function at focal adhesions. Taken together, these data suggest that ADAM12 plays a crucial role in tumor invasion and metastasis by regulating both invadopodia and focal adhesions. PMID:28468988
Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin.
Kishen, Anil; Sum, Chee-Peng; Mathew, Shibi; Lim, Chwee-Teck
2008-07-01
Enterococcus faecalis is frequently associated with post-treatment endodontic infections. Because adherence of bacteria to a substrate is the earliest stage in biofilm formation, eliciting the factors that links adherence of this bacterium to dentin would help in understanding its association with treatment-failed root canals. This investigation aimed to study the effects of endodontic irrigants on the adherence of E. faecalis to dentin. The bacteria adherence assay was conducted by using fluorescence microscopy, and the adhesion force was measured by using atomic force microscopy. There were significant increases in adherence and adhesion force after irrigation of dentin with ethylenediaminetetraacetic acid (EDTA), whereas sodium hypochlorite (NaOCl) reduced it. With the use of chlorhexidine (CHX), the force of adhesion increased, but the adherence assay showed a reduction in the number of adhering bacteria. The irrigation regimen of EDTA, NaOCl, and CHX resulted in the least number of adhering E. faecalis cells. This study highlighted that chemicals that alter the physicochemical properties of dentin will influence the nature of adherence, adhesion force, and subsequent biofilm formation of E. faecalis to dentin.
Shimotoyodome, A; Kobayashi, H; Nakamura, J; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y
2006-01-01
The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.
Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity.
Duman, Joseph G; Tu, Yen-Kuei; Tolias, Kimberley F
2016-01-01
Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.
N-cadherin prodomain processing regulates synaptogenesis.
Reinés, Analía; Bernier, Louis-Philippe; McAdam, Robyn; Belkaid, Wiam; Shan, Weisong; Koch, Alexander W; Séguéla, Philippe; Colman, David R; Dhaunchak, Ajit S
2012-05-02
Classical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths. In cultured hippocampal neurons, a high ProN/N-cad ratio downregulates synapse formation. Neurons expressing genetically engineered uncleavable ProN make markedly fewer synapses. The synapse number can be rescued to normality by depleting surface ProN levels through prodomain cleavage by an exogenous protease. Finally, prodomain processing is developmentally regulated in the rat hippocampus. We conclude that it is the ProN/N-cad ratio and not mature N-cad alone that is critical for regulation of adhesion during synaptogenesis.
Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi
2016-01-01
Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473
Kamiya, Kazunobu; Suzuki, Noboru
2016-12-01
Some aluminium complexes are excellent catalysts of cationic polymerisation and are used for low-temperature and fast-curing adhesive, used in electronic part mounting. Microencapsulation is a suitable technique for getting high latency of the catalysts and long shelf life of the adhesives. For the higher latency in a cycloaliphatic epoxy compound, the microcapsule surface which retained small amount of aluminium complex was coated with epoxy polymer and the effect was examined. From the X-ray photoelectron spectroscopic results, the surface was recognised to be sufficiently coated and the differential scanning calorimetric analyses showed that the coating did not significantly affect the low-temperature and fast-curing properties of adhesive. After storing the mixture of cycloaliphatic epoxy compound, coated microcapsules, triphenylsilanol and silane coupling agent for 48 h at room temperature, the increase in viscosity was only 0.01 Pa s, resulting in the excellent shelf life.
González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas
2013-04-01
Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.
Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration
Griffin, MF; Szarko, M; Seifailan, A; Butler, PE
2016-01-01
Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208
The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice
Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.
2008-01-01
Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497
[The role of fibronectin in adhesion of corynebacteria to vaginal epitheliocytes].
Gladysheva, I V; Cherkasov, S V
2014-01-01
Determination of the role of fibronectin in adhesion of corynebacteria to vaginal epitheliocytes. Corynebacterium genus microorganisms and primary epitheliocytes isolated from the lower reproductive tract of women were used. Adhesive ability of corynebacteria was studied in polystyrene plates against fixed fibronectin and on the model of vaginal epitheliocytes. Changes in adhesion of corynebacteria to vaginal epitheliocytes was evaluated after treatment of the latter with fibronectin. All the studied strains had the adhesion ability to fibronectin and vaginal epitheliocytes. The same strains were attributed to groups of high, moderate or low adhesive using both plate method and method utilizing vaginal epitheliocytes model, that tells of their comparability. During the addition of fibronectin to epitheliocytes, an enhancement of adhesion of all the studied corynebacteria strains took place. Adhesion index in strains isolated from healthy women increased by an average of 46.6%, adhesion index by 10.5 bact. cells/epith. In strains isolated from women with micro-ecologic disruption, adhesion increase was by 15.3% and 4.9 bact. cells/epith., respectively. Fibronectin is a factor that determines adhesion of corynebacteria to vaginal epitheliocytes and thus is important for formation of associative symbiosis of reproductive tract of women. The data obtained open perspective of use of fibronectin with the aim of colonizing ability increase of probiotics.
Nam, Seo Hee; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Kim, Doyeun; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Sunghoon; Lee, Jung Weon
2016-04-01
The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.
NASA Astrophysics Data System (ADS)
Schumann, M.; Geiß, P. L.
2015-05-01
Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.
Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2015-02-14
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.
Martini, Melanie; Gnann, Alexandra; Scheikl, Daniela; Holzmann, Bernhard; Janssen, Klaus-Peter
2011-11-01
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell-matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gu, Changkyu; Park, Soochul
2001-01-01
Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136
Kanda, Shoichiro; Harita, Yutaka; Shibagaki, Yoshio; Sekine, Takashi; Igarashi, Takashi; Inoue, Takafumi; Hattori, Seisuke
2011-01-01
Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6–PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type–specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity. PMID:21471003
Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C
2018-05-01
Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.
Desiccation of a pool of blood: from fluid mechanics to forensic investigations
NASA Astrophysics Data System (ADS)
Nicloux, Celine; Brutin, David
2012-11-01
The evaporation of biological fluids (with droplet configuration) has been studied since a few years due to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The evaporation of a pool of blood is studied in order to link the pattern formation and the evaporation dynamics. We intend to transfer the knowledge acquired for drops on pool to improve the forensic investigations. In this study, we focus on both pool of blood and pure water to determine the transition region from drop to pool and then to characterize the evaporation rate in the pool configuration. The spreading of blood which can be seen as a complex fluid is strongly influenced the substrate nature. The initial contact angle of blood on different substrate nature will influence the maximum thickness of the layer and then will influence the evaporation mass flux. The authors gratefully acknowledge the help and the fruitful discussions raised with A. Boccoz.
Mussel adhesion – essential footwork
2017-01-01
ABSTRACT Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid–fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification. PMID:28202646
Use of methylene blue in the prevention of recurrent intra-abdominal postoperative adhesions.
Neagoe, Octavian C; Ionica, Mihaela; Mazilu, Octavian
2018-01-01
Objective To evaluate the efficacy of methylene blue in preventing recurrent symptomatic postoperative adhesions. Methods Patients with a history of >2 surgeries for intra-abdominal adhesion-related complications were selected for this study. Adhesiolysis surgery was subsequently performed using administration of 1% methylene blue. The follow-up period was 28.5 ± 11.1 months. Results Data were available from 20 patients (seven men and 13 women) whose mean ± SD age was 51.2 ± 11.4 years. Adhesions took longer to become symptomatic after the first abdominal surgery when the initial pathology was malignant compared with benign. However, the recurrence of adhesions after a previous adhesiolysis surgery had a similar time onset regardless of the initial disease. Following adhesiolysis surgery with methylene blue, the majority of patients did not present with symptoms associated with adhesion complications (i.e., chronic abdominal pain, bowel obstruction) for the length of the follow-up period. Conclusions The use of methylene blue during adhesiolysis surgery appears to reduce the recurrence of adhesion-related symptoms, suggesting a beneficial effect in the prevention of adhesion formation.
Leroy, C; Delbarre-Ladrat, C; Ghillebaert, F; Rochet, M J; Compère, C; Combes, D
2007-04-01
To develop a method to screen antifouling agents against marine bacterial adhesion as a sensitive, rapid and quantitative microplate fluorescent test. Our experimental method is based on a natural biofilm formed by mono-incubation of the marine bacterium Pseudoalteromonas sp. D41 in sterile natural sea water in a 96-well polystyrene microplate. The 4'6-diamidino-2-phenylindole dye was used to quantify adhered bacteria in each well. The total measured fluorescence in the wells was correlated with the amount of bacteria showing a detection limit of one bacterium per 5 microm(2) and quantifying 2 x 10(7) to 2 x 10(8) bacteria adhered per cm(2). The antifouling properties of three commercial surface-active agents and chlorine were tested by this method in the prevention of adhesion and also in the detachment of already adhered bacteria. The marine bacterial adhesion inhibition rate depending on the agent concentration showed a sigmoid shaped dose-response curve. This test is well adapted for a rapid and quantitative first screening of antifouling agents directly in seawater in the early steps of marine biofilm formation. In contrast to the usual screenings of antifouling products which detect a bactericidal activity, this test is more appropriate to screen antifouling agents for bacterial adhesion removal or bacterial adhesion inhibition activities. This screening test focuses on the antifouling properties of the products, especially the initial steps of marine biofilm formation.
Acellular derivatives of mesenchymal stem cells prevent peritoneal adhesions in an animal model.
Rojo, Daniel; Conget, Paulette
2018-03-01
Peritoneal adhesions are nonanatomical connections that bind organs to the abdominal wall or among them. They arise after peritoneal injury, which triggers an inflammatory response followed by a healing process that leads to fibrotic tissue formation. Mesenchymal stem cells and their secretion products, also referred to as acellular derivatives (ACDs), have anti-inflammatory, fibrinolytic, and antifibrogenic properties. The aim of this study was to determine the effect of intraoperative administration of ACD on the appearance, severity, and progression of peritoneal adhesions, in an animal model. Cecal erosions were mechanically induced in adult mice. Before closure, the vehicle, ACD, or Seprafilm was administered. Seven days later, the presence and grade of peritoneal adhesions were assessed macroscopically. One, 3, and 7 d after intervention, molecular and cellular markers of inflammation, fibrinolysis, and fibrogenesis were evaluated both locally and systemically. ACDs avoided the appearance of clinically relevant peritoneal adhesions. The vehicle had no effect, and Seprafilm reduced them inconsistently. The antiadhesive effect of ACD was associated with an early reduction of proinflammatory cytokine (tumor necrosis factor-alpha and interferon-gamma) secretion and leukocyte (polymorphonuclears, mononuclears, and macrophages) infiltration. High levels of D-dimer, low fibrin deposits, low myofibroblasts infiltration, and less fibrosis were also observed. ACD administered at the end of abdominal surgeries prevents the formation of peritoneal adhesions due to the modulation of inflammatory, fibrinolytic, and fibrogenic processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development
Bush, Jeffrey O.; Jiang, Rulang
2012-01-01
Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation. PMID:22186724
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R. Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A.; Davidson, Michael W.; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M.; Fabry, Ben
2015-01-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton–ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell–ECM adhesion and traction force generation.—Thievessen, I., Fakhri, N., Steinwachs, J., Kraus, V., McIsaac, R. S., Gao, L., Chen, B.-C., Baird, M. A., Davidson, M. W., Betzig, E., Oldenbourg, R., Waterman, C., M., Fabry, B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. PMID:26195589
NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy
Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.
2012-01-01
Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. PMID:23109907
Jans, Christoph; de Wouters, Tomas; Bonfoh, Bassirou; Lacroix, Christophe; Kaindi, Dasel Wambua Mulwa; Anderegg, Janine; Böck, Désirée; Vitali, Sabrina; Schmid, Thomas; Isenring, Julia; Kurt, Fabienne; Kogi-Makau, Wambui; Meile, Leo
2016-06-21
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach.
The Zeldovich & Adhesion approximations and applications to the local universe
NASA Astrophysics Data System (ADS)
Hidding, Johan; van de Weygaert, Rien; Shandarin, Sergei
2016-10-01
The Zeldovich approximation (ZA) predicts the formation of a web of singularities. While these singularities may only exist in the most formal interpretation of the ZA, they provide a powerful tool for the analysis of initial conditions. We present a novel method to find the skeleton of the resulting cosmic web based on singularities in the primordial deformation tensor and its higher order derivatives. We show that the A 3 lines predict the formation of filaments in a two-dimensional model. We continue with applications of the adhesion model to visualise structures in the local (z < 0.03) universe.
Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK
Wang, Qin; Downey, Gregory P.; McCulloch, Christopher A.
2011-01-01
In connective tissue cells, IL-1-induced ERK activation leading to matrix metalloproteinase (MMP)-3 expression is dependent on cooperative interactions between focal adhesions and the endoplasmic reticulum (ER). As Ras can be activated on the ER, we investigated the role of Ras in IL-1 signaling and focal adhesion formation. We found that constitutively active H-Ras, K-Ras or N-Ras enhanced focal adhesion maturation and β1-integrin activation. IL-1 promoted the accumulation of Ras isoforms in ER and focal adhesion fractions, as shown in cells cotransfected with GFP-tagged Ras isoforms and YFP-ER protein and by analysis of subcellular fractions enriched for ER or focal adhesion proteins. Dominant-negative H-Ras or K-Ras reduced accumulation of H-Ras and K-Ras in focal adhesions induced by IL-1 and also blocked ERK activation and focal adhesion maturation. Ras-GRF was enriched constitutively in focal adhesion fractions and was required for Ras recruitment to focal adhesions. We conclude that Ras activation and IL-1 signaling are interactive processes that regulate the maturation of focal adhesions, which, in turn, is required for ERK activation.—Wang, Q., Downey, G. P., McCulloch, C. A. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK. PMID:21719512
Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi
2017-12-01
When bioinert substrates with fine-sized pores are immersed in a simulated body fluid (SBF) and the pH value or the temperature is increased, fine particles of calcium phosphate, which the authors denoted as 'precursor of apatite' (PrA), are formed in the pores. By this method, hydroxyapatite formation ability can be provided to various kinds of bioinert materials. In this study, the authors studied fabrication methods of bioactive PEEK by using the above-mentioned process. First, the fine-sized pores were formed on the surface of the PEEK substrate by H 2 SO 4 treatment. Next, to provide hydrophilic property to the PEEK, the surfaces of the PEEK were treated with O 2 plasma. Finally, PrA were formed in the pores by the above-mentioned process, which is denoted as 'Alkaline SBF' treatment, and the bioactive PEEK was obtained. By immersing in SBF with the physiological condition, hydroxyapatite formation was induced on the whole surface of the substrate within 1day. The formation of PrA directly contributed to hydroxyapatite formation ability. By applying the O 2 plasma treatment, hydroxyapatite formation was uniformly performed on the whole surface of the substrate. The H 2 SO 4 treatment contributed to a considerable enhancement of adhesive strength of the formed hydroxyapatite layer formed in SBF because of the increase of surface areas of the substrate. As a comparative study, the sandblasting method was applied as the pores formation process instead of the H 2 SO 4 treatment. Although hydroxyapatite formation was provided also in this case, however, the adhesion of the formed hydroxyapatite layer to the substrate was not sufficient even if the O 2 plasma treatment was conducted. This result indicates that the fine-sized pores should be formed on the whole surface of the substrate uniformly to achieve high adhesive strength of the hydroxyapatite layer. Therefore, it is considered that the H 2 SO 4 treatment before the O 2 plasma and the 'Alkaline SBF' treatment is an important factor to achieve high adhesive strength of hydroxyapatite layer to the PEEK substrate. This material is expected to be a candidate for next-generation implant materials with high bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Hope, Elyse A.; Dunham, Maitreya J.
2014-01-01
The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and “flocs” (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast. PMID:25060625
Hope, Elyse A; Dunham, Maitreya J
2014-07-24
The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and "flocs" (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast. Copyright © 2014 Hope and Dunham.
Chan, Karen Y T; Zhao, Chunyi; Siren, Erika M J; Chan, Jeanne C Y; Boschman, Jeffrey; Kastrup, Christian J
2016-06-13
The adhesion of blood clots to blood vessels, such as through the adhesion of fibrin, is essential in hemostasis. While numerous strategies for initiating clot formation and preventing clot lysis are being developed to create improved hemostatic agents, strategies for enhancing clot adhesion have not been widely explored. Here, we show that adhesion of blood clots can be increased by adding a previously characterized synthetic polymer that is crosslinked by coagulation factor XIIIa during clotting. Addition of the polymer to normal plasma increased the adhesive strength of clots by 2-fold. It also recovered the adhesive strength of nonadhesive fibrinogen-deficient whole blood clots from <0.06 kPa to 1.9 ± 0.14 kPa, which is similar to the adhesive strength of a fibrinogen-rich clot (1.8 ± 0.64 kPa). The polymer also enabled plasma clots to remain adhered under fibrinolytic conditions. By demonstrating that the adhesive strength of clots can be increased with a synthetic material, this provides a potential strategy for creating advanced hemostatic materials, such as treatments for fibrinogen deficiency in trauma-induced coagulopathy.
Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.
Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna
2015-07-01
Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir
2016-09-01
Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. © 2016 Wiley Periodicals, Inc.
Hasdemir, Pinar Solmaz; Ozkut, Mahmud; Guvenal, Tevfik; Uner, Melis Aylin; Calik, Esat; Koltan, Semra Oruc; Koyuncu, Faik Mumtaz; Ozbilgin, Kemal
2017-02-01
To study the efficacy of pirfenidone for prevention of postoperative adhesion formation in an adhesion rat model. Eighteen female Wistar rats were subjected to right-sided parietal peritoneum and right uterine horn adhesion model. Rats were randomized into three groups: group 1 (control) (closure of midline abdominal incision without any agent administration), group 2 (closure of incision after intraperitoneal administration of pirfenidone), and group 3 (closure of incision and only oral administration of pirfenidone for 14 days). Relaparotomy was performed 14 days after the first surgery. Effect of pirfenidone on adhesion formation was assessed on light microscopy by scoring vascular proliferation, inflammation, fibrosis, and collagen formation in the scarred tissue. Effect of pirfenidone on inflammation was assessed by measurement of transforming growth factor-β and interleukin-17 levels in scarred tissue. The degree of vascular proliferation (1.32 ± 0.39 versus 2.34 ± 0.46, p < 0.001), inflammation (1.60 ± 0.70 versus 2.60 ± 0.52, p < 0.01), and fibrosis (1.50 ± 0.53 versus 2.40 ± 0.52, p < 0.01) were less prominent in group 2 compared to group 1, respectively. Only vascular proliferation was found to be less prominent in group 3 compared to group 1 (1.60 ± 0.42 versus 2.34 ± 0.46, p < 0.01). Intraperitoneal and oral administration of pirfenidone reduced tissue levels of inflammatory markers (TGF-β and IL-17) in parietal and visceral peritoneum compared to control group. Intraperitoneal administration of pirfenidone compared to oral administration was more effective in reducing tissue levels of inflammatory markers. Pirfenidone is an effective agent on the prevention of postoperative vascular proliferation, inflammation and fibrosis in scarred tissue particularly with intraperitoneal administration.
Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo
2018-06-01
To evaluate the influence of zinc oxide quantum dots (ZnO QDs ) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. ZnO QDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnO QDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student's t-test (α = 0.05). The antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnO QDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). ZnO QDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnO QDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. ZnO QDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts. Copyright © 2018 Elsevier Ltd. All rights reserved.
A physical description of the adhesion and aggregation of platelets
NASA Astrophysics Data System (ADS)
Chopard, Bastien; de Sousa, Daniel Ribeiro; Lätt, Jonas; Mountrakis, Lampros; Dubois, Frank; Yourassowsky, Catherine; Van Antwerpen, Pierre; Eker, Omer; Vanhamme, Luc; Perez-Morga, David; Courbebaisse, Guy; Lorenz, Eric; Hoekstra, Alfons G.; Boudjeltia, Karim Zouaoui
2017-04-01
The early stages of clot formation in blood vessels involve platelet adhesion-aggregation. Although these mechanisms have been extensively studied, gaps in their understanding still persist. We have performed detailed in vitro experiments, using the well-known Impact-R device, and developed a numerical model to better describe and understand this phenomenon. Unlike previous studies, we took into account the differential role of pre-activated and non-activated platelets, as well as the three-dimensional nature of the aggregation process. Our investigation reveals that blood albumin is a major parameter limiting platelet aggregate formation in our experiment. Simulations are in very good agreement with observations and provide quantitative estimates of the adhesion and aggregation rates that are hard to measure experimentally. They also provide a value of the effective diffusion of platelets in blood subject to the shear rate produced by the Impact-R.
Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites.
Münter, Sylvia; Sabass, Benedikt; Selhuber-Unkel, Christine; Kudryashev, Mikhail; Hegge, Stephan; Engel, Ulrike; Spatz, Joachim P; Matuschewski, Kai; Schwarz, Ulrich S; Frischknecht, Friedrich
2009-12-17
Sporozoites are the highly motile stages of the malaria parasite injected into the host's skin during a mosquito bite. In order to navigate inside of the host, sporozoites rely on actin-dependent gliding motility. Although the major components of the gliding machinery are known, the spatiotemporal dynamics of the proteins and the underlying mechanism powering forward locomotion remain unclear. Here, we show that sporozoite motility is characterized by a continuous sequence of stick-and-slip phases. Reflection interference contrast and traction force microscopy identified the repeated turnover of discrete adhesion sites as the underlying mechanism of this substrate-dependent type of motility. Transient forces correlated with the formation and rupture of distinct substrate contact sites and were dependent on actin dynamics. Further, we show that the essential sporozoite surface protein TRAP is critical for the regulated formation and rupture of adhesion sites but is dispensable for retrograde capping.
Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base
NASA Astrophysics Data System (ADS)
Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.
2016-08-01
Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.
Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li
2015-03-01
This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm. Copyright © 2015 Elsevier Ltd. All rights reserved.
Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres
NASA Astrophysics Data System (ADS)
Drukteinis, Saulius E.
Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were composed of nano-scale particles and resulted in significant osteoblast adhesion compared to control samples or to PLD CAP films deposited on heated substrates. Surface amplitude parameters (Sa, Sq, St, and Sz) correlated with osteoblast adhesion. This new approach of control over H2O ( g) operating atmospheres enabled the deposition of unique PLD CAP films with potential use as thin films for biomedical implants or as regenerative bone graft materials. Keywords: hydroxyapatite, pulsed laser deposition, biomaterials.
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through mechanisms involving its adhesive and signaling functions.« less
Utility of Horioka’s and Marra’s models for adhesive failure
Charles R. Frihart
2005-01-01
Bond formation primarily involves adhesive rheology and interface chemistry. Bonded assembly strength, however, primarily involves the viscoelastic dissipation of stress over the entire assembly. Models can aid in the understanding of where and why failure occurs and how to improve the strength of the assembly. Horioka and Marra have both proposed models which define...
Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S
2000-11-15
Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.
Ahmed, Ijaz; Naeem, Mohammad; Samad, Ambreen; Nasir, Amir; Aman, Zahid; Ahmed, Siddique; Manan, Fazal
2010-01-01
Diverticula of small intestine are rare. Jejunal diverticula can be single or multiple. Diverticula in the jejunum tend to be large and multiple. Clinically they may be asymptomatic or may give rise to symptoms like pain, flatulence and borborygmi, may produce malabsorption syndrome or may present in emergency with different acute pathologies like perforation, haemorrhage, obstruction, enterolith formation and inflammation. The Objective was to see the pattern of complications in jejunal diverticula presenting as a surgical emergency. This descriptive study was conducted at Surgical Units of the 3 tertiary care Hospitals of Peshawar, for 7 years from January 1, 2002 to December 31, 2008. Study included all patients presenting to and admitted in Surgical Unit, Hayatabad Medical Complex, Peshawar with complicated jejunal diverticula during the above mentioned period. Name, age, sex, other relevant data, history and examination findings and results of investigation were recorded. Uncomplicated jejuna diverticula were excluded from study. The operative findings and the type of complication were recorded. Ten patients were admitted during 7 years of study. Out of all patients 9 were male and 1 was female. Eight out of 10 patients presented with perforation of diverticula while 1 patient had severe inflammation of diverticulum causing pain, ileus and acute abdomen. One patient had acute pain due to adhesion formation. It is seen that complicated jejunal diverticulae are quite rare and the most common complication is perforation. Inflammation and adhesion are other complications with which jejunal diverticula presented during this study.
Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias
2016-01-01
ABSTRACT The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. PMID:27521427
The adhesion and hysteresis effect in friction skin with artificial materials
NASA Astrophysics Data System (ADS)
Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H. S.
2017-02-01
Human skin is a soft biomaterial with a complex anatomical structure and it has a complex material behavior during the mechanical contact with objects and surfaces. The friction adhesion component is defined by means of the theories of Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis - Dugdale (MD). We shall consider the human skin entering into contact with a rigid surface. The deformation (hysteresis) component of the skin friction is evaluated with Voigt rheological model for the spherical contact, with the original model, developed in MATHCAD software. The adhesive component of the skin friction is greater than the hysteresis component for all friction parameters (load, velocity, the strength of interface between skin and the artificial material).
Clinical management of scar tissue.
Kasch, M C
1988-01-01
This paper will review the physiology of scar formation including the properties of wound healing and scar remodeling. A clinical scar management program that includes evaluation of scar adhesions and use of a variety of therapy interventions to minimize the formation of scar will be described. Use of compression, massage, splints and functional activities is included in this program. The information is applicable for the general occupational therapist who sees patients with hand dysfunction as well as a therapist specializing in hand rehabilitation. Every therapist who treats hand trauma must be familiar with the sequence and the properties of scar formation in order to reestablish tendon gliding and facilitate early remodeling of scar tissue. Many treatment techniques can be directed toward scar adhesions and no one method is totally effective when used alone; used together, these techniques can positively influence scar formation and restore maximal hand function.
Surface characterization and adhesion of oxygen plasma-modified LARC-TPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, J.W.; Wightman, J.P.
1992-01-01
LARC-TPI, an aromatic thermoplastic polyimide, was exposed to an oxygen plasma as a surface pretreatment of adhesive bonding. Chemical and physical changes which occurred in the polyimide surface as a result of the plasma treatment were investigated using X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IR-RAS), contact angle analysis, ellipsometry and high resolution scanning electron microscopy (HR-SEM). A 180{degree} peel test with an acrylate-based pressure sensitive adhesive as a flexible adherend was utilized to study the interactions of the plasma-treated polyimide surface with other polymeric materials. The surface characterization and adhesion testing results showed that the oxygen plasma treatment, whilemore » creating a more hydrophilic, polar surface, also caused chain scission resulting in the formation of a weak boundary layer which inhibited adhesion.« less
A modular reactor to simulate biofilm development in orthopedic materials.
Barros, Joana; Grenho, Liliana; Manuel, Cândida M; Ferreira, Carla; Melo, Luís F; Nunes, Olga C; Monteiro, Fernando J; Ferraz, Maria P
2013-09-01
Surfaces of medical implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue- or osseo-integration. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. To understand the mechanisms of bone tissue infection associated with contaminated biomaterials, a detailed understanding of bacterial adhesion and subsequent biofilm formation on biomaterial surfaces is needed. In this study, a continuous-flow modular reactor composed of several modular units placed in parallel was designed to evaluate the activity of circulating bacterial suspensions and thus their predilection for biofilm formation during 72 h of incubation. Hydroxyapatite discs were placed in each modular unit and then removed at fixed times to quantify biofilm accumulation. Biofilm formation on each replicate of material, unchanged in structure, morphology, or cell density, was reproducibly observed. The modular reactor therefore proved to be a useful tool for following mature biofilm formation on different surfaces and under conditions similar to those prevailing near human-bone implants.
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a uniquemore » opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.« less
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
NASA Astrophysics Data System (ADS)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.
Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons
Li, Linxi; Gao, Ying; Chen, Haiqi; Jesus, Tito; Tang, Elizabeth; Li, Nan; Lian, Qingquan; Ge, Ren-shan; Cheng, C. Yan
2017-01-01
In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP) is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2) in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19) interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin) at the actin-rich apical ectoplasmic specialization (ES) since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin), tight junction (occludin-ZO-1 and claudin 11-ZO-1), and gap junction (connexin 43-plakophilin-2) and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2). In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both) and these polarity (or PCP) protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed. PMID:28928959
Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters
2012-03-01
versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach
Swaminathan, Vinay; Fischer, R S; Waterman, Clare M
2016-04-01
Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK(-/-)cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK-Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. © 2016 Swaminathan et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku
Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less
Yonathan Sunarsa, Timotius; Aryan, Pouria; Jeon, Ikgeun; Park, Byeongjin; Liu, Peipei; Sohn, Hoon
2017-12-08
Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries ® and IKTS Fraunhofer ® . Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.
Yonathan Sunarsa, Timotius; Aryan, Pouria; Jeon, Ikgeun; Park, Byeongjin; Liu, Peipei
2017-01-01
Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method. PMID:29292752
Willey, Christopher D; Balasubramanian, Sundaravadivel; Rodríguez Rosas, María C; Ross, Robert S; Kuppuswamy, Dhandapani
2003-06-01
In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.
Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin
2010-01-01
Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID:20706577
Benjamin, Jacqueline M.; Nelson, W. James
2009-01-01
The cadherin/catenin complex, comprised of E-cadherin, β-catenin and α-catenin, is essential for initiating cell-cell adhesion, establishing cellular polarity and maintaining tissue organization. Disruption or loss of the cadherin/catenin complex is common in cancer. As the primary cell-cell adhesion protein in epithelial cells, E-cadherin has long been studied in cancer progression. Similarly, additional roles for β-catenin in the Wnt signaling pathway has led to many studies of the role of β-catenin in cancer. Alpha-catenin, in contrast, has received less attention. However, recent data demonstrate novel functions for α-catenin in regulating the actin cytoskeleton and cell-cell adhesion, which when perturbed could contribute to cancer progression. In this review, we use cancer data to evaluate molecular models of α-catenin function, from the canonical role of α-catenin in cell-cell adhesion to non-canonical roles identified following conditional α-catenin deletion. This analysis identifies α-catenin as a prognostic factor in cancer progression. PMID:17945508
ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex.
Mendoza, Michelle C; Er, E Emrah; Zhang, Wenjuan; Ballif, Bryan A; Elliott, Hunter L; Danuser, Gaudenz; Blenis, John
2011-03-18
Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal-regulated kinase-mitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate that ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 regulatory complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show that ERK colocalizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration. Copyright © 2011 Elsevier Inc. All rights reserved.
ERK-MAPK Drives Lamellipodia Protrusion by Activating the WAVE2 Regulatory Complex
Mendoza, Michelle C.; Emrah, E.; Zhang, Wenjuan; Ballif, Bryan A.; Elliott, Hunter L.; Danuser, Gaudenz; Blenis, John
2011-01-01
Summary Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal regulated kinasemitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 Regulatory Complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show ERK co-localizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration. PMID:21419341
Theory and simulations of adhesion receptor dimerization on membrane surfaces.
Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam
2013-03-19
The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Glinskii, Olga V; Huxley, Virginia H; Glinsky, Gennadi V; Pienta, Kenneth J; Raz, Avraham; Glinsky, Vladislav V
2005-05-01
In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-l-leucine), targeting specifically beta-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and beta-galactoside-binding lectin galectin-3. Efficient blocking of beta-galactoside-mediated adhesion precludes malignant cell lodging in target organs.
NASA Astrophysics Data System (ADS)
Fong-Ngern, Kedsarin; Thongboonkerd, Visith
2016-10-01
To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.
Yildiz, Hamit; Durmus, Ali Said; Simsek, Halil; Yaman, Ihsan
2011-02-01
To compare the effects of vitamin E and 1% methylen blue solutions on prevention of experimentally induced adhesions in rats. Thirty seven female Spraque Dawley rats were randomized into four groups. First group was kept as sham operated group. An adhesion model was constituted on the left uterine horn of the other groups. The lesion areas of rats from the second, the third and the fourth groups were coated with 2 ml 0.9 % saline solution (C group), 10 mg vitamin E (VE group) and 1% methylen blue solutions (MB group), respectively. Histopathologically, adhesion scores, mononuclear cell infiltration, oedema and fibrosis were more prominent in the MB group compared with C and VE groups. There were no significant differences between the groups in tissue glutathione peroxidase (GPx), catalase (CAT) activities and glutation (GSH) level, these parameters were slightly increased in group with VE supplementation though. The administration of VE and MB significantly decreased NO (P<0.01) levels when compared to the C group. The level of malondialdehyde (MDA) in the VE group was significantly lower (P<0.05) than those of the Sh and C groups. Intraperitoneal methylen blue solutions treatments were more effective according to vitamin E in preventing the formation of intra-abdominal adhesion in a rat uterine horn model.
[Influence of slime production and adhesion of Candida sp. on biofilm formation].
Ciok-Pater, Emilia; Smolak, Przemysław; Wróblewska, Joanna; Gospodarek, Eugenia
2011-01-01
The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.
Zhao, L; Ashraf, M A
2015-12-01
The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE , fbe , sap , iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE , fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating.
NASA Astrophysics Data System (ADS)
Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.
2016-05-01
Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.
Wolfenson, Haguy; Henis, Yoav I.; Geiger, Benjamin; Bershadsky, Alexander D.
2010-01-01
Focal adhesions (FAs) are large clusters of transmembrane receptors of the integrin family and a multitude of associated cytoplasmic “plaque” proteins, which connect the extracellular matrix-bound receptors with the actin cytoskeleton. The formation of nearly stationary focal adhesions defines a boundary between dense and highly dynamic actin network in lamellipodium and the sparser and more diverse cytoskeletal organization in the lamella proper, creating a template for the organization of entire actin network. The major “mechanical” and “sensory” functions of FAs, namely, the nucleation and regulation of the contractile, myosin-II-containing, stress fibers and the mechanosensing of external surfaces depend, to a major extent, on the dynamics of molecular components within FAs. A central element in FA regulation concerns the positive feedback loop, based on the most intriguing feature of FAs, namely, their dependence on mechanical tension developing by the growing stress fibers. FAs grow in response to such tension, and rapidly disassemble upon its relaxation. In this article we address the mechanistic relationships between the process of FA development, maturation and dissociation and the dynamic molecular events, which take place in different regions of the FA, primarily in the distal end of this structure (the “toe”) and the proximal “heel”, and discuss the central role of local mechanical forces in orchestrating the complex interplay between FAs and the actin system. PMID:19598236
Bigerelle, M; Anselme, K; Dufresne, E; Hardouin, P; Iost, A
2002-08-01
We present a new parameter to quantify the order of a surface. This parameter is scale-independent and can be used to compare the organization of a surface at different scales of range and amplitude. To test the accuracy of this roughness parameter versus a hundred existing ones, we created an original statistical bootstrap method. In order to assess the physical relevance of this new parameter, we elaborated a great number of surfaces with various roughness amplitudes on titanium and titanium-based alloys using different physical processes. Then we studied the influence of the roughness amplitude on in vitro adhesion and proliferation of human osteoblasts. It was then shown that our new parameter best discriminates among the cell adhesion phenomena than others' parameters (Average roughness (Ra em leader )): cells adhere better on isotropic surfaces with a low order, provided this order is quantified on a scale that is more important than that of the cells. Additionally, on these low ordered metallic surfaces, the shape of the cells presents the same morphological aspect as that we can see on the human bone trabeculae. The method used to prepare these isotropic surfaces (electroerosion) could be undoubtedly and easily applied to prepare most biomaterials with complex geometries and to improve bone implant integration. Moreover, the new order parameter we developed may be particularly useful for the fundamental understanding of the mechanism of bone cell installation on a relief and of the formation of bone cell-material interface.
Polysaccharide-based antibiofilm surfaces.
Junter, Guy-Alain; Thébault, Pascal; Lebrun, Laurent
2016-01-01
Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered. Besides classical hydrophilic coatings based on hyaluronic acid and heparin, the promising anti-adhesive properties of the algal polysaccharide ulvan are underlined. Surface functionalization by antimicrobial chitosan and derivatives is extensively surveyed, in particular chitosan association with other polysaccharides in layer-by-layer assemblies to form both anti-adhesive and bactericidal coatings. Bacterial contamination of surfaces, leading to biofilm formation, is a major problem in fields as diverse as medicine, first, but also food and cosmetics. Many prophylactic strategies have emerged to try to eliminate or reduce bacterial adhesion and biofilm formation on surfaces of materials exposed to bacterial contamination, in particular implant materials. Polysaccharides are widely distributed in nature. A number of these natural polymers display antibiofilm properties. Hence, surface treatment by natural or modified polysaccharides is a promising means to fight against implant-associated biofilm infections. The present manuscript is an in-depth look at polysaccharide-based antibiofilm surfaces that have been proposed over the last ten years. This review, which is a novelty compared to published literature, will bring well documented and updated information to readers of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ma, Rui; Lai, Yu-xiao; Li, Long; Tan, Hong-lue; Wang, Jia-li; Li, Ye; Tang, Ting-ting; Qin, Ling
2015-01-01
Bone infections are common in trauma-induced open fractures with bone defects. Therefore, developing anti-infection scaffolds for repairing bone defects is desirable. This study develoepd novel Mg-based porous composite scaffolds with a basal matrix composed of poly(lactic-co-glycolicacid) (PLGA) and tricalcium phosphate (TCP). A unique low-temperature rapid prototyping technology was used to fabricate the scaffolds, including PLGA/TCP (PT), PLGA/TCP/5%Mg (PT5M), PLGA/TCP/10%Mg (PT10M), and PLGA/TCP/15%Mg (PT15M). The bacterial adhesion and biofilm formation of Staphylococcus aureus were evaluated. The results indicated that the Mg-based scaffolds significantly inhibited bacterial adhesion and biofilm formation compared to PT, and the PT10M and PT15M exhibited significantly stronger anti-biofilm ability than PT5M. In vitro degratation tests revealed that the degradation of the Mg-based scaffolds caused an increase of pH, Mg2+ concentration and osmolality, and the increased pH may be one of the major contributing factors to the antibacterial function of the Mg-based scaffolds. Additionally, the PT15M exhibited an inhibitory effect on cell adhesion and proliferation of MC3T3-E1 cells. In conclusion, the PLGA/TCP/Mg scaffolds could inhibit bacterial adhesion and biofilm formation, and the PT10M scaffold was considered to be an effective composition with considerable antibacterial ability and good cytocompatibility. PMID:26346217
Yadav, Suresh Singh; Prasad, Chandra Bhushan; Prasad, Shyam Babu; Pandey, Lakshmi Kant; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar
2015-07-15
The fundamental events for cancer progression and metastases include loss of cell adhesion, cell proliferation, anchorage-independent cell growth (evading anoikis), cell migration and cell invasion. All these events leading to cancer progression happen in a favorable nurturing tumor microenvironment. This study was designed to explore the anti-tumor activity of staurosporine (a nonspecific protein kinase inhibitor) in the tumor microenvironment of cervical cancer. The anti-tumor activity of staurosporine was investigated by cell adhesion assay, colony formation assay, apoptosis assay and quantitative real-time polymerase chain reaction (PCR) in cervical cancer cell lines. The cell adhesion assay showed that staurosporine induces adhesion of cervical cancer cells to the extracellular matrix (ECM) protein fibronectin. The soft agar colony formation assay showed that staurosporine inhibits both the number and size of colony formation in a dose dependent manner and also induces adherent tendency in the cancer cells. Staurosporine also induces prominent apoptosis in single cell suspensions compared to adherent cells. Stroma cell induced transcription of matrix metalloprotease 1 (MMP1) and matrix metalloprotease 2 (MMP2) in cervical cancer cells was inhibited by staurosporine. Our results indicate that staurosporine induces anti-tumor response in the cervical tumor microenvironment by inhibiting the fundamental events for cancer progression and metastases. The present study represents an attractive area for further research and opens up new avenues towards the understanding of cervical cancer therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Sueon; Han, Dong Yeol; Chen, Zhenzhong; Lee, Won Gu
2018-04-30
In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.
Innexin 3, a New Gene Required for Dorsal Closure in Drosophila Embryo
Giuliani, Fabrizio; Giuliani, Giuliano; Bauer, Reinhard; Rabouille, Catherine
2013-01-01
Background Dorsal closure is a morphogenetic event that occurs during mid-embryogenesis in many insects including Drosophila, during which the ectoderm migrates on the extraembryonic amnioserosa to seal the embryo dorsally. The contribution of the ectoderm in this event has been known for a long time. However, amnioserosa tension and contractibility have recently been shown also to be instrumental to the closure. A critical pre-requisite for dorsal closure is integrity of these tissues that in part is mediated by cell-cell junctions and cell adhesion. In this regard, mutations impairing junction formation and/or adhesion lead to dorsal closure. However, no role for the gap junction proteins Innexins has so far been described. Results and Discussion Here, we show that Innexin 1, 2 and 3, are present in the ectoderm but also in the amnioserosa in plaques consistent with gap junctions. However, only the loss of Inx3 leads to dorsal closure defects that are completely rescued by overexpression of inx3::GFP in the whole embryo. Loss of Inx3 leads to the destabilisation of Inx1, Inx2 and DE-cadherin at the plasma membrane, suggesting that these four proteins form a complex. Accordingly, in addition to the known interaction of Inx2 with DE-cadherin, we show that Inx3 can bind to DE-cadherin. Furthermore, Inx3-GFP overexpression recruits DE-cadherin from its wildtype plasma membrane domain to typical Innexin plaques, strengthening the notion that they form a complex. Finally, we show that Inx3 stability is directly dependent on tissue tension. Taken together, we propose that Inx3 is a critical factor for dorsal closure and that it mediates the stability of Inx1, 2 and DE-cadherin by forming a complex. PMID:23894431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Xiangqiang; Kang, Hyunook; Loveless, Timothy
Stable tissue integrity during embryonic development relies on the function of the cadherin·catenin complex (CCC). The Caenorhabditis elegans CCC is a useful paradigm for analyzing in vivo requirements for specific interactions among the core components of the CCC, and it provides a unique opportunity to examine evolutionarily conserved mechanisms that govern the interaction between α- and β-catenin. HMP-1, unlike its mammalian homolog α-catenin, is constitutively monomeric, and its binding affinity for HMP-2/β-catenin is higher than that of α-catenin for β-catenin. A crystal structure shows that the HMP-1·HMP-2 complex forms a five-helical bundle structure distinct from the structure of the mammalianmore » α-catenin·β-catenin complex. Deletion analysis based on the crystal structure shows that the first helix of HMP-1 is necessary for binding HMP-2 avidly in vitro and for efficient recruitment of HMP-1 to adherens junctions in embryos. HMP-2 Ser-47 and Tyr-69 flank its binding interface with HMP-1, and we show that phosphomimetic mutations at these two sites decrease binding affinity of HMP-1 to HMP-2 by 40–100-fold in vitro. In vivo experiments using HMP-2 S47E and Y69E mutants showed that they are unable to rescue hmp-2(zu364) mutants, suggesting that phosphorylation of HMP-2 on Ser-47 and Tyr-69 could be important for regulating CCC formation in C. elegans. Our data provide novel insights into how cadherin-dependent cell–cell adhesion is modulated in metazoans by conserved elements as well as features unique to specific organisms.« less
Shao, Xiangqiang; Kang, Hyunook; Loveless, Timothy; ...
2017-08-25
Stable tissue integrity during embryonic development relies on the function of the cadherin·catenin complex (CCC). The Caenorhabditis elegans CCC is a useful paradigm for analyzing in vivo requirements for specific interactions among the core components of the CCC, and it provides a unique opportunity to examine evolutionarily conserved mechanisms that govern the interaction between α- and β-catenin. HMP-1, unlike its mammalian homolog α-catenin, is constitutively monomeric, and its binding affinity for HMP-2/β-catenin is higher than that of α-catenin for β-catenin. A crystal structure shows that the HMP-1·HMP-2 complex forms a five-helical bundle structure distinct from the structure of the mammalianmore » α-catenin·β-catenin complex. Deletion analysis based on the crystal structure shows that the first helix of HMP-1 is necessary for binding HMP-2 avidly in vitro and for efficient recruitment of HMP-1 to adherens junctions in embryos. HMP-2 Ser-47 and Tyr-69 flank its binding interface with HMP-1, and we show that phosphomimetic mutations at these two sites decrease binding affinity of HMP-1 to HMP-2 by 40–100-fold in vitro. In vivo experiments using HMP-2 S47E and Y69E mutants showed that they are unable to rescue hmp-2(zu364) mutants, suggesting that phosphorylation of HMP-2 on Ser-47 and Tyr-69 could be important for regulating CCC formation in C. elegans. Our data provide novel insights into how cadherin-dependent cell–cell adhesion is modulated in metazoans by conserved elements as well as features unique to specific organisms.« less
Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal Flap—Conditions for Tissue Adhesion
Littlechild, Stacy L.; Brummer, Gage; Zhang, Yuntao; Conrad, Gary W.
2012-01-01
Purpose. Laser-assisted in situ keratomileus (LASIK) creates a permanent flap that remains non-attached to the underlying laser-modified stroma. This lack of permanent adhesion is a liability. To immobilize a corneal flap, a protocol using fibrinogen (FIB), riboflavin (RF), and ultraviolet (UVA) light (FIB+RF+UVA) was devised to re-adhere the flap to the stroma. Methods. A model flap was created using rabbit (Oryctolagus cuniculus) and shark (Squalus acanthias) corneas. Solutions containing FIB and RF were applied between corneal strips as glue. Experimental corneas were irradiated with long wavelength (365 nm) UVA. To quantify adhesive strength between corneal strips, the glue-tissue interface was subjected to a constant force while a digital force gauge recorded peak tension. Results. In the presence of FIB, substantive non-covalent interactions occurred between rabbit corneal strips. Adhesiveness was augmented if RF and UVA also were applied, suggesting formation of covalent bonds. Additionally, exposing both sides of rabbit corneas to UVA generated more adhesion than exposure from one side, suggesting that RF in the FIB solution catalyzes formation of covalent bonds at only the interface between stromal molecules and FIB closest to the UVA. In contrast, in the presence of FIB, shark corneal strips interacted non-covalently more substantively than those of rabbits, and adhesion was not augmented by applying RF+UVA, from either or both sides. Residual RF could be rinsed away within 1 hour. Conclusions. Glue solution containing FIB and RF, together with UVA treatment, may aid immobilization of a corneal flap, potentially reducing risk of flap dislodgement. PMID:22589434
Emre, Arif; Akin, Murat; Isikgonul, Ipek; Yuksel, Osman; Anadol, Ahmet Ziya; Cifter, Cagatay
2009-01-01
BACKGROUND: Abdominal surgery can lead to postoperative intra-abdominal adhesions (PIAAs) with significant morbidity and mortality. This study compares the use of honey with a standard bioresorbable membrane (Seprafilm™) to prevent the formation of PIAAs in rats. METHODS: Thirty rats underwent laparotomy, and PIAAs were induced by scraping the cecum. The animals were divided into three groups, each containing ten rats. Group 1 (control) represented the cecal abrasion group, with no intraperitoneal administration of any substance. Group 2 (honey group) underwent cecal abrasion and intraperitoneal administration of honey. Group 3 (Seprafilm™ group) underwent cecal abrasion and intraperitoneal Seprafilm™ application. RESULTS: Group 1 exhibited higher adhesion scores for adhesions between the abdominal wall and the organs. Groups 2 and 3 had decreased adhesive attachments to the intra-abdominal structures. Compared to group 1, the incidence of adhesion formation was lower in both group 2 (p=0.001) and group 3 (p=0.001). The incidence of fibrosis was also lower in group 2 (p=0.016) and group 3 (p=0.063) compared to group 1. There was no significant difference between the histopathological fibrosis scores for the rats in group 2 and those in group 3 (p= 0.688). CONCLUSION: This study suggests that both honey and Seprafilm™ decrease the incidence of PIAAs in the rat cecal abrasion model. Although the mechanism of action is not clear, intraperitoneal administration of honey reduced PIAAs. The outcome of this study demonstrates that honey is as effective as Seprafilm™ in preventing PIAAs. PMID:19488596
Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma
NASA Astrophysics Data System (ADS)
Coulon, J. F.; Tournerie, N.; Maillard, H.
2013-10-01
Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic Csbnd O and Cdbnd O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.
Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang
2011-09-01
E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.
NASA Astrophysics Data System (ADS)
Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M.; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2015-01-01
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05906a
Integrative systems and synthetic biology of cell-matrix adhesion sites.
Zamir, Eli
2016-09-02
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Structural basis of host recognition and biofilm formation by Salmonella Saf pili
2017-01-01
Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation. PMID:29125121