Science.gov

Sample records for adhesion complex formation

  1. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Suresh, Anil K; Srijanto, Bernadeta R; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  2. Integrin-Associated Complexes Form Hierarchically with Variable Stoichiometry during Nascent Adhesion Formation

    PubMed Central

    Bachir, Alexia I.; Zareno, Jessica; Moissoglu, Konstadinos; Plow, Edward; Gratton, Enrico; Horwitz, Alan R.

    2014-01-01

    Summary Background A complex network of putative molecular interactions underlies the architecture and function of cell-matrix adhesions. Most of these interactions are implicated from co-immunoprecipitation studies using expressed components; but few have been demonstrated or characterized functionally in living cells. Results We introduce fluorescence fluctuation methods to determine, at high spatial and temporal resolution, ‘when’ and ‘where’ molecular complexes form and their stoichiometry in nascent adhesions (NAs). We focus on integrin-associated molecules implicated in integrin-activation and in the integrin-actin linkage in NAs and show that these molecules form integrin containing complexes hierarchically within the adhesion itself. Integrin and kindlin reside in a molecular complex as soon as adhesions are visible; talin, while also present early, associates with the integrin-kindlin complex only after NAs have formed and in response to myosin II activity. Furthermore, talin and vinculin association precedes the formation of the integrin-talin complex. Finally, α-actinin enters NAs periodically and in clusters that transiently associate with integrins. The absolute number and stoichiometry of these molecules varies among the molecules studied and changes as adhesions mature. Conclusions These observations suggest a working model for NA assembly, whereby transient α-actinin- integrin complexes help nucleate NAs within the lamellipodium. Subsequently integrin complexes containing kindlin, but not talin, emerge. Once NAs have formed, myosin II activity promotes talin association with the integrin-kindlin complex in a stoichiometry consistent with each talin molecule linking two integrin-kindlin complexes. PMID:25088556

  3. Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica

    PubMed Central

    Israelachvili, Jacob N.; Chen, Yunfei; Waite, J. Herbert

    2014-01-01

    The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH. Oxidation can lead to loss of adhesive function and undesired covalent cross-linking. Mussel foot protein 5 (Mfp-5), which contains ∼30 mole % Dopa, is a superb adhesive under reducing conditions but becomes nonadhesive after pH-induced oxidation. Here we report that the bidentate complexation of borate by Dopa to form a catecholato-boronate can be exploited to retard oxidation. Although exposure of Mfp-5 to neutral pH typically oxidizes Dopa, resulting in a>95% decrease in adhesion, inclusion of borate retards oxidation at the same pH. Remarkably, this Dopa-boronate complex dissociates upon contact with mica to allow for a reversible Dopa-mediated adhesion. The borate protection strategy allows for Dopa redox stability and maintained adhesive function in an otherwise oxidizing environment. PMID:25303409

  4. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    PubMed Central

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  5. Microbial adhesion and biofilm formation on microfiltration membranes: a detailed characterization using model organisms with increasing complexity.

    PubMed

    Vanysacker, L; Denis, C; Declerck, P; Piasecka, A; Vankelecom, I F J

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  6. Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of the csgD Gene

    PubMed Central

    Prigent-Combaret, Claire; Brombacher, Eva; Vidal, Olivier; Ambert, Arnaud; Lejeune, Philippe; Landini, Paolo; Dorel, Corinne

    2001-01-01

    The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the csgD promoter region and stimulating its transcription. The csgD gene encodes the transcription regulator CsgD, which in turn activates transcription of the csgBA operon encoding curli, extracellular structures involved in bacterial adhesion. Consistent with the role of the ompR gene as part of an osmolarity-sensing regulatory system, we also show that the formation of biofilm by E. coli is inhibited by increasing osmolarity in the growth medium. The ompR234 mutation counteracts adhesion inhibition by high medium osmolarity; we provide evidence that the ompR234 mutation promotes biofilm formation by strongly increasing the initial adhesion of bacteria to an abiotic surface. This increase in initial adhesion is stationary phase dependent, but it is negatively regulated by the stationary-phase-specific sigma factor RpoS. We propose that this negative regulation takes place via rpoS-dependent transcription of the transcription regulator cpxR; cpxR-mediated repression of csgB and csgD promoters is also triggered by osmolarity and by curli overproduction, in a feedback regulation loop. PMID:11717281

  7. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene.

    PubMed

    Prigent-Combaret, C; Brombacher, E; Vidal, O; Ambert, A; Lejeune, P; Landini, P; Dorel, C

    2001-12-01

    The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the csgD promoter region and stimulating its transcription. The csgD gene encodes the transcription regulator CsgD, which in turn activates transcription of the csgBA operon encoding curli, extracellular structures involved in bacterial adhesion. Consistent with the role of the ompR gene as part of an osmolarity-sensing regulatory system, we also show that the formation of biofilm by E. coli is inhibited by increasing osmolarity in the growth medium. The ompR234 mutation counteracts adhesion inhibition by high medium osmolarity; we provide evidence that the ompR234 mutation promotes biofilm formation by strongly increasing the initial adhesion of bacteria to an abiotic surface. This increase in initial adhesion is stationary phase dependent, but it is negatively regulated by the stationary-phase-specific sigma factor RpoS. We propose that this negative regulation takes place via rpoS-dependent transcription of the transcription regulator cpxR; cpxR-mediated repression of csgB and csgD promoters is also triggered by osmolarity and by curli overproduction, in a feedback regulation loop.

  8. Integrin-mediated adhesion complex

    PubMed Central

    Sebé-Pedrós, Arnau

    2010-01-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling. PMID:21057645

  9. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  10. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading.

    PubMed

    Levi, Laura; Toyooka, Tatsushi; Patarroyo, Manuel; Frisan, Teresa

    2015-01-01

    Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.

  11. Complex coacervates as a foundation for synthetic underwater adhesives.

    PubMed

    Stewart, Russell J; Wang, Ching Shuen; Shao, Hui

    2011-09-14

    Complex coacervation was proposed to play a role in the formation of the underwater bioadhesive of the Sandcastle worm (Phragmatopoma californica) based on the polyacidic and polybasic nature of the glue proteins and the balance of opposite charges at physiological pH. Morphological studies of the secretory system suggested that the natural process does not involve complex coacervation as commonly defined. The distinction may not be important because electrostatic interactions likely play an important role in the formation of the sandcastle glue. Complex coacervation has also been invoked in the formation of adhesive underwater silk fibers of caddisfly larvae and the adhesive plaques of mussels. A process similar to complex coacervation, that is, condensation and dehydration of biopolyelectrolytes through electrostatic associations, seems plausible for the caddisfly silk. This much is clear, the sandcastle glue complex coacervation model provided a valuable blueprint for the synthesis of a biomimetic, water-borne, underwater adhesive with demonstrated potential for repair of wet tissue.

  12. Strategies to Minimize Adhesion Formation After Surgery

    PubMed Central

    Lazarou, George; Mondesir, Carlene; Wei, Kai; Khullar, Poonan; Ogden, Lorna

    2011-01-01

    Objectives: To compare the potential for postoperative laparoscopic adhesion formation utilizing either monopolar cautery or ultrasonic energy and to determine whether there is added benefit with the addition of a suspension of hyaluronate/carboxymethylcellulose in saline versus saline alone. Methods: Injuries were induced in rabbits by using monopolar cautery on 1 uterine horn and adjacent sidewall and ultrasonic energy on the opposite. Hyaluronate/ carboxymethylcellulose or saline was added to every other animal. Autopsies were performed after 3 weeks. Clinical and pathologic scoring of adhesions was performed by blinded investigators. Results: A very significant difference occurred in pathologic adhesion scores favoring the ultrasonic scalpel when the animals were treated with saline. However, a borderline significant difference was found in pathologic scores favoring the ultrasonic scalpel compared to the monopolar cautery. There was no significant difference in clinical adhesion scores between the 2 modalities. No significant difference in either score was found with the addition of hyaluronate/carboxymethylcellulose or saline with either instrument. Conclusion: No benefit was found for adhesion prevention with hyaluronate/carboxymethylcellulose. Although no reduction was achieved in clinical adhesions, the ultrasonic scalpel resulted in fewer histologic signs of tissue inflammation in the early postoperative period, suggesting that further clinical adhesions might develop over time with cautery. PMID:21985723

  13. pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol-Boronate Complexation.

    PubMed

    Narkar, Ameya R; Barker, Brett; Clisch, Matthew; Jiang, Jingfeng; Lee, Bruce P

    2016-08-09

    A smart adhesive capable of binding to a wetted surface was prepared by copolymerizing dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (AAPBA). pH was used to control the oxidation state and the adhesive property of the catechol side chain of DMA and to trigger the catechol-boronate complexation. FTIR spectroscopy confirmed the formation of the complex at pH 9, which was not present at pH 3. The formation of the catechol-boronate complex increased the cross-linking density of the adhesive network. Most notably, the loss modulus values of the adhesive were more than an order of magnitude higher for adhesive incubated at pH 9 when compared to those measured at pH 3. This drastic increase in the viscous dissipation property is attributed to the introduction of reversible complexation into the adhesive network. Based on the Johnson Kendall Roberts (JKR) contact mechanics test, adhesive containing both DMA and AAPBA demonstrated strong interfacial binding properties (work of adhesion (Wadh) = 2000 mJ/m(2)) to borosilicate glass wetted with an acidic solution (pH 3). When the pH was increased to 9, Wadh values (180 mJ/m(2)) decreased by more than an order of magnitude. During successive contact cycles, the adhesive demonstrated the capability to transition reversibly between its adhesive and nonadhesive states with changing pH. Adhesive containing only DMA responded slowly to repeated changes in pH and became progressively oxidized without the protection of boronic acid. Although adhesive containing only AAPBA also demonstrated strong wet adhesion (Wadh ∼ 500 mJ/m(2)), its adhesive properties were not pH responsive. Both DMA and AAPBA are required to fabricate a smart adhesive with tunable and reversible adhesive properties.

  14. Bacterial formate hydrogenlyase complex

    PubMed Central

    McDowall, Jennifer S.; Murphy, Bonnie J.; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A.; Sargent, Frank

    2014-01-01

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts. PMID:25157147

  15. Integrin adhesions suppress syncytium formation in the Drosophila larval epidermis

    PubMed Central

    Wang, Yan; Antunes, Marco; Anderson, Aimee E.; Kadrmas, Julie L.; Jacinto, Antonio; Galko, Michael J.

    2015-01-01

    Summary Integrins are critical for barrier epithelial architecture. Integrin loss in vertebrate skin leads to blistering and wound healing defects. However, how Integrins and associated proteins maintain the regular morphology of epithelia is not well understood. We found that targeted knockdown of the integrin focal adhesion (FA) complex components βIntegrin, PINCH, and Integrin-linked kinase (ILK), caused formation of multinucleate epidermal cells within the Drosophila larval epidermis. This phenotype was specific to the Integrin FA complex and not due to secondary effects on polarity or junctional structures. The multinucleate cells resembled the syncytia caused by physical wounding. Live imaging of wound-induced syncytium formation in the pupal epidermis suggested direct membrane breakdown leading to cell-cell fusion and consequent mixing of cytoplasmic contents. Activation of Jun N-terminal kinase (JNK) signaling, which occurs upon wounding, also correlated with syncytium formation induced by PINCH knockdown. Further, ectopic JNK activation directly caused epidermal syncytium formation. No mode of syncytium formation including that induced by wounding, genetic loss-of FA-proteins, or local JNK hyperactivation, involved misregulation of mitosis or apoptosis. Finally, the mechanism of epidermal syncytium formation following JNK hyperactivation and wounding appeared to be direct disassembly of FA complexes. In conclusion, the loss of function phenotype of Integrin FA components in the larval epidermis resembles a wound. Integrin FA loss in mouse and human skin also causes a wound-like appearance. Our results reveal a novel and unexpected role for proper Integrin-based adhesion in suppressing larval epidermal cell-cell fusion– a role that may be conserved in other epithelia. PMID:26255846

  16. Nuclear Signaling from Cadherin Adhesion Complexes

    PubMed Central

    McCrea, Pierre D.; Maher, Meghan T.; Gottardi, Cara J.

    2015-01-01

    The arrival of multicellularity in evolution facilitated cell–cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of “outside-in” or “inside-out” signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure–function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell–cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell–cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis. PMID:25733140

  17. The Biotin/Avidin complex adhesion force

    NASA Astrophysics Data System (ADS)

    Balsera, Manel A.; Izrailev, Sergei; Stepaniants, Sergey; Oono, Yoshitsugu; Schulten, Klaus

    1997-03-01

    The vitamin Biotin and the protein avidin form one of the strongest non-covalent bonds between biological molecules. We have performed molecular and stochastic dynamic modeling of the unbinding of this complex(Izrailev et al., Biophysical Journal, In press). These simulations provide insight into the effect of particular residues and water on the tight binding of the system. With the aid of simple phenomenological models we have related qualitatively our results to Atomic Force Microscopy adhesion force measurements (E.-L. Florin, V. T. Moy and H. E. Gaub Science) 264:415-417 and kinetic dissociation experiments( A. Chilcotti and P. S. Stayton, J. Am. Chem. Soc.) 117:10622-10628. We will discuss the difficulties preventing a more quantitative understanding of the unbinding force and kinetics.

  18. Photoactivated Localization Microscopy (PALM) of Adhesion Complexes

    PubMed Central

    Shroff, Hari; White, Helen; Betzig, Eric

    2017-01-01

    Key to understanding a protein’s biological function is the accurate determination of its spatial distribution inside a cell. Although fluorescent protein markers allow the targeting of specific proteins with molecular precision, much of this information is lost when the resultant fusion proteins are imaged with conventional, diffraction-limited optics. In response, several imaging modalities that are capable of resolution below the diffraction limit (~200 nm) have emerged. Here, both single- and dual-color superresolution imaging of biological structures using photoactivated localization microscopy (PALM) are described. The examples discussed focus on adhesion complexes: dense, protein-filled assemblies that form at the interface between cells and their substrata. A particular emphasis is placed on the instrumentation and photoactivatable fluorescent protein (PA-FP) tags necessary to achieve PALM images at ~20 nm resolution in 5 to 30 min in fixed cells. PMID:23456603

  19. Periostin antisense oligonucleotide prevents adhesion formation after surgery in mice.

    PubMed

    Takai, Shinji; Yoshino, Masafumi; Takao, Kazumasa; Yoshikawa, Kazunori; Jin, Denan

    2017-02-09

    To study the role of periostin in adhesion formation, the effect of periostin antisense oligonucleotide (PAO) on adhesion formation was evaluated in mice. Under anesthesia, the serous membrane of the cecum was abraded, and the adhesion score and mRNA levels of periostin and its related factors were determined after surgery. Saline, 40 mg/kg of negative sense oligonucleotide (NSO), or 40 mg/kg of PAO were injected into the abdomen after surgery, and the adhesion score and mRNA levels were evaluated 14 days later. Filmy adhesion formation was observed 1 day after surgery, and the adhesion score increased gradually to 14 days. The mRNA levels of periostin, transforming growth factor (TGF)-β, and collagen I increased gradually from 3 days to 14 days. The adhesion score of PAO was significantly lower than of saline or NSO 14 days after surgery. The mRNA levels of periostin, TGF-β, and collagen I were also significantly attenuated by treatment with PAO compared with saline or NSO. Thus, these results demonstrated that the periostin mRNA level increased in the abraded cecum, and PAO prevented adhesion formation along with attenuation of the periostin mRNA level.

  20. High-performance mussel-inspired adhesives of reduced complexity

    PubMed Central

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273

  1. High-performance mussel-inspired adhesives of reduced complexity.

    PubMed

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  2. High-performance mussel-inspired adhesives of reduced complexity

    NASA Astrophysics Data System (ADS)

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-10-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (~50 mJ m-2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  3. Cell Adhesion in Epidermal Development and Barrier Formation

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2015-01-01

    Cell–cell adhesions are necessary for structural integrity and barrier formation of the epidermis. Here, we discuss insights from genetic and cell biological studies into the roles of individual cell–cell junctions and their composite proteins in regulating epidermal development and function. In addition to individual adhesive functions, we will discuss emerging ideas on mechanosensation/transduction of junctions in the epidermis, noncanonical roles for adhesion proteins, and crosstalk/interdependencies between the junctional systems. These studies have revealed that cell adhesion proteins are connected to many aspects of tissue physiology including growth control, differentiation, and inflammation. PMID:25733147

  4. Postsurgical intrapericardial adhesions: mechanisms of formation and prevention.

    PubMed

    Cannata, Aldo; Petrella, Duccio; Russo, Claudio Francesco; Bruschi, Giuseppe; Fratto, Pasquale; Gambacorta, Marcello; Martinelli, Luigi

    2013-05-01

    Postsurgical intrapericardial adhesions are still considered an unavoidable consequence of cardiothoracic operations. They increase the technical difficulty and the risk of reoperations. The pathogenesis of postsurgical adhesions is a multistep process, and the main key players are (1) loss of mesothelial cells, (2) accumulation of fibrin in areas devoid of mesothelial cells, (3) loss of normal pericardial fibrinolysis, and (4) local inflammation. Today, very promising methods to reduce adhesions are available for clinical use. This report reviews the process of formation of adhesions and the methods to prevent them, classified according to the mechanism of action.

  5. Mast cell mediators and peritoneal adhesion formation in the rat.

    PubMed

    Langer, J C; Liebman, S M; Monk, P K; Pelletier, G J

    1995-09-01

    We have previously shown that mast cell stabilization attenuates peritoneal adhesion formation in the rat. The present study investigated the mechanism of this protection. Adhesions were created in weanling rats using cecal scraping and application of 95% ethanol. Rats received specific blockers for the mast cell products histamine, serotonin (5HT), leukotriene D4, and platelet activating factor intraperitoneally 30 min before laparotomy and at the time of abdominal closure. Control animals received saline. Adhesions were assessed blindly 1 week later using a standardized scale. Adhesion formation was not affected by histamine blockade using combined mepyramine and ranitidine, 5-HT1 blockade using methysergide, 5-HT3 blockade using ondansetron, leukotriene D4 blockade using MK-571, or platelet activating factor blockade using WEB-2086. However, blockade of the 5-HT2 receptor using ketanserin resulted in significant dose-dependent attenuation of adhesions compared to saline. These data suggest that mast cells mediate peritoneal adhesion formation in the rat through release of serotonin acting on 5HT2 receptors. Further understanding of this process may lead to new strategies for the prevention of postoperative adhesions.

  6. The Cellular Biology of Flexor Tendon Adhesion Formation

    PubMed Central

    Wong, Jason K.F.; Lui, Yin H.; Kapacee, Zoher; Kadler, Karl E.; Ferguson, Mark W. J.; McGrouther, Duncan A.

    2009-01-01

    Intrasynovial flexor tendon injuries of the hand can frequently be complicated by tendon adhesions to the surrounding sheath, limiting finger function. We have developed a new tendon injury model in the mouse to investigate the three-dimensional cellular biology of intrasynovial flexor tendon healing and adhesion formation. We investigated the cell biology using markers for inflammation, proliferation, collagen synthesis, apoptosis, and vascularization/myofibroblasts. Quantitative immunohistochemical image analysis and three-dimensional reconstruction with cell mapping was performed on labeled serial sections. Flexor tendon adhesions were also assessed 21 days after wounding using transmission electron microscopy to examine the cell phenotypes in the wound. When the tendon has been immobilized, the mouse can form tendon adhesions in the flexor tendon sheath. The cell biology of tendon healing follows the classic wound healing response of inflammation, proliferation, synthesis, and apoptosis, but the greater activity occurs in the surrounding tissue. Cells that have multiple “fibripositors” and cells with cytoplasmic protrusions that contain multiple large and small diameter fibrils can be found in the wound during collagen synthesis. In conclusion, adhesion formation occurs due to scarring between two damaged surfaces. The mouse model for flexor tendon injury represents a new platform to study adhesion formation that is genetically tractable. PMID:19834058

  7. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding.

  8. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  9. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  10. Modulation of cell adhesion complexes by surface protein patterns.

    PubMed

    Pesen, Devrim; Haviland, David B

    2009-03-01

    Cell adhesion is an important process in several biological phenomena. To investigate the formation and organization of focal adhesions, we developed a patterning approach based on electron beam lithography. Nanodots (radius <1230 nm) and nanorings (inner radius <320 nm) of fibronectin (FN) were patterned on a K-Casein background. Intracellular vinculin immunofluorescence mirrored the FN nanopatterns. Atomic force microscopy showed that FN nanodots and nanorings organize the immediate cytoskeleton into straight fibrils and diverging fibril bundles, respectively. Our results suggest that a minimum of approximately 40 FN molecules is required for a cell to form a focal adhesion.

  11. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  12. Effect of Hypericum perforatum on intraperitoneal adhesion formation in rats

    PubMed Central

    Hızlı, Fatih; Köşüş, Aydın; Yılmaz, Saynur; Köşüş, Nermin; Haltaş, Hacer; Dede, Hülya; Kafalı, Hasan

    2013-01-01

    Introduction The aim of this study was to evaluate the efficacy of Hypericum perforatum for prevention of adhesion formation in rats. Material and methods Twenty-four female wistar rats underwent left uterine horn adhesion model. Rats were randomised into 4 groups. Group 1 (Control): Closure of abdominal incision without any agent administration. Group 2: Closure of incision after administration of intraperitoneal (i.p.) Ringer's lactate solution. Group 3: Closure of incision after administration of i.p. olive oil (diluent of H. perforatum). Group 4: Hypericum perforatum extract (Ecodab®) was administered i.p. before the closure of incision. Fourteen days later, relaparatomy was performed and surgical adhesion scores, inflammation and fibrosis scores were noted. Groups were compared according to these scores. Results There was statistical significant difference between ringer's lactate group and olive oil group according to surgical adhesion score (p = 0.009). However, groups were not different according to inflammation and fibrosis scores (p > 0.05). Conclusions Despite antiinflammatory, antioxidants and antimicrobial properties of H. perforatum, our results revealed no positive effect of H. perforatum on the prevention of intraperitoneal adhesion formation. PMID:24904678

  13. Complexity of formation in holography

    NASA Astrophysics Data System (ADS)

    Chapman, Shira; Marrochio, Hugo; Myers, Robert C.

    2017-01-01

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the `complexity of formation' [1, 2], i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d > 2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d = 2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  14. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Lee, Dong Woog; Ahn, B. Kollbe; Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2016-04-01

    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (~25 s) and robust underwater contact adhesion (Wad >= 2 J m-2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials.

  15. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model

    PubMed Central

    Zhang, Hui-Hui; Liao, Ni-Na; Luo, Jing-Wan; Sun, Yu-Long

    2017-01-01

    Background Adhesions frequently occur after abdominal surgery. Many anti-adhesion products have been used in clinic. However, the evidences are short for surgeons to reasonably choose the suitable anti-adhesion produces in clinical practice. This study provided such evidence by comparing the efficiency of five products to prevent abdominal adhesion formation in a rat model. Methods Fifty-six Sprague-Dawley rats were randomly divided into seven groups: sham-operation group, adhesion group, and five product groups (n = 8). The abdomens of rats were opened. The injuries were created on abdominal wall and cecum in the adhesion and product groups. The wounds on abdominal wall and cecum of rats in the adhesion group were not treated before the abdomens were closed. The wounds on abdominal wall and cecum of rats in the product groups were covered with anti-adhesion product: polylactic acid (PLA) film, Seprafilm®, medical polyethylene glycol berberine liquid (PEG), medical sodium hyaluronate gel (HA), or medical chitosan (Chitosan). Fourteen days after surgery, the adhesions were evaluated by incidence, severity, adhesion area on abdominal wall and adhesion breaking strength. Results The application of PLA film and Seprafilm® significantly reduced the incidence, severity, adhesion area and breaking strength of cecum-abdomen adhesion (P<0.05). HA, PEG and Chitosan failed to significantly reduce the cecum-abdomen adhesion (P>0.05). The statistical significances in the incidence and severity of abdomen-adipose adhesion between adhesion group and the product groups were not achieved. However, Seprafilm® was more effective to reduce abdomen-adipose adhesion than PLA film. Furthermore, it was found that the products tested in this study did not effectively reduce cecum-adipose adhesion. The application of PEG could result in abdomen-small intestine adhesion. Conclusion Based on the results of this study, the preference order of anti-adhesion products used to reduce

  16. Super-complexes of adhesion GPCRs and neural guidance receptors

    PubMed Central

    Jackson, Verity A.; Mehmood, Shahid; Chavent, Matthieu; Roversi, Pietro; Carrasquero, Maria; del Toro, Daniel; Seyit-Bremer, Goenuel; Ranaivoson, Fanomezana M.; Comoletti, Davide; Sansom, Mark S. P.; Robinson, Carol V.; Klein, Rüdiger; Seiradake, Elena

    2016-01-01

    Latrophilin adhesion-GPCRs (Lphn1–3 or ADGRL1–3) and Unc5 cell guidance receptors (Unc5A–D) interact with FLRT proteins (FLRT1–3), thereby promoting cell adhesion and repulsion, respectively. How the three proteins interact and function simultaneously is poorly understood. We show that Unc5D interacts with FLRT2 in cis, controlling cell adhesion in response to externally presented Lphn3. The ectodomains of the three proteins bind cooperatively. Crystal structures of the ternary complex formed by the extracellular domains reveal that Lphn3 dimerizes when bound to FLRT2:Unc5, resulting in a stoichiometry of 1:1:2 (FLRT2:Unc5D:Lphn3). This 1:1:2 complex further dimerizes to form a larger ‘super-complex' (2:2:4), using a previously undescribed binding motif in the Unc5D TSP1 domain. Molecular dynamics simulations, point-directed mutagenesis and mass spectrometry demonstrate the stability and molecular properties of these complexes. Our data exemplify how receptors increase their functional repertoire by forming different context-dependent higher-order complexes. PMID:27091502

  17. Super-complexes of adhesion GPCRs and neural guidance receptors

    NASA Astrophysics Data System (ADS)

    Jackson, Verity A.; Mehmood, Shahid; Chavent, Matthieu; Roversi, Pietro; Carrasquero, Maria; Del Toro, Daniel; Seyit-Bremer, Goenuel; Ranaivoson, Fanomezana M.; Comoletti, Davide; Sansom, Mark S. P.; Robinson, Carol V.; Klein, Rüdiger; Seiradake, Elena

    2016-04-01

    Latrophilin adhesion-GPCRs (Lphn1-3 or ADGRL1-3) and Unc5 cell guidance receptors (Unc5A-D) interact with FLRT proteins (FLRT1-3), thereby promoting cell adhesion and repulsion, respectively. How the three proteins interact and function simultaneously is poorly understood. We show that Unc5D interacts with FLRT2 in cis, controlling cell adhesion in response to externally presented Lphn3. The ectodomains of the three proteins bind cooperatively. Crystal structures of the ternary complex formed by the extracellular domains reveal that Lphn3 dimerizes when bound to FLRT2:Unc5, resulting in a stoichiometry of 1:1:2 (FLRT2:Unc5D:Lphn3). This 1:1:2 complex further dimerizes to form a larger `super-complex' (2:2:4), using a previously undescribed binding motif in the Unc5D TSP1 domain. Molecular dynamics simulations, point-directed mutagenesis and mass spectrometry demonstrate the stability and molecular properties of these complexes. Our data exemplify how receptors increase their functional repertoire by forming different context-dependent higher-order complexes.

  18. Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects

    NASA Astrophysics Data System (ADS)

    Kaur, Sarbjit

    Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation

  19. Interfacial energy of polypeptide complex coacervates measured via capillary adhesion.

    PubMed

    Priftis, Dimitrios; Farina, Robert; Tirrell, Matthew

    2012-06-12

    A systematic study of the interfacial energy (γ) of polypeptide complex coacervates in aqueous solution was performed using a surface forces apparatus (SFA). Poly(L-lysine hydrochloride) (PLys) and poly(L-glutamic acid sodium salt) (PGA) were investigated as a model pair of oppositely charged weak polyelectrolytes. These two synthetic polypeptides of natural amino acids have identical backbones and differ only in their charged side groups. All experiments were conducted using equal chain lengths of PLys and PGA in order to isolate and highlight effects of the interactions of the charged groups during complexation. Complex coacervates resulted from mixing very dilute aqueous salt solutions of PLys and PGA. Two phases in equilibrium evolved under the conditions used: a dense polymer-rich coacervate phase and a dilute polymer-deficient aqueous phase. Capillary adhesion, associated with a coacervate meniscus bridge between two mica surfaces, was measured upon the separation of the two surfaces. This adhesion enabled the determination of the γ at the aqueous/coacervate phase interface. Important experimental factors affecting these measurements were varied and are discussed, including the compression force (1.3-35.9 mN/m) and separation speed (2.4-33.2 nm/s). Physical parameters of the system, such as the salt concentration (100-600 mM) and polypeptide chain length (N = 30, 200, and 400) were also studied. The γ of these polypeptide coacervates was separately found to decrease with both increasing salt concentration and decreasing polypeptide chain length. In most of the above cases, γ measurements were found to be very low, <1 mJ/m(2). Biocompatible complex coacervates with low γ have a strong potential for applications in surface coatings, adhesives, and the encapsulation of a wide range of materials.

  20. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases

    PubMed Central

    1995-01-01

    Interaction of cells with extracellular matrix via integrin adhesion receptors plays an important role in a wide range of cellular: functions, for example cell growth, movement, and differentiation. Upon interaction with substrate, integrins cluster and associate with a variety of cytoplasmic proteins to form focal complexes and with the actin cytoskeleton. Although the intracellular signals induced by integrins are at present undefined, it is thought that they are mediated by proteins recruited to the focal complexes. It has been suggested, for example, that after recruitment to focal adhesions p125FAK can activate the ERK1/2 MAP kinase cascade. We have previously reported that members of the rho family of small GTPases can trigger the assembly of focal complexes when activated in cells. Using microinjection techniques, we have now examined the role of the extracellular matrix and of the two GTP-binding proteins, rac and rho, in the assembly of integrin complexes in both mouse and human fibroblasts. We find that the interaction of integrins with extracellular matrix alone is not sufficient to induce integrin clustering and focal complex formation. Similarly, activation of rho or rac by extracellular growth factors does not lead to focal complex formation in the absence of matrix. Focal complexes are only assembled in the presence of both matrix and functionally active members of the rho family. In agreement with this, the interaction of integrins with matrix in the absence of rho/rac activity is unable to activate the ERK1/2 kinases in Swiss 3T3 cells. In fact, ERK1/2 can be activated fully by growth factors in the absence of matrix and it seems unlikely, therefore, that the adhesion dependence of fibroblast growth is mediated through the ras/MAP kinase pathway. We conclude that extracellular matrix is not sufficient to trigger focal complex assembly and subsequent integrin-dependent signal transduction in the absence of functionally active members of the rho

  1. Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation

    PubMed Central

    Lee, Mark J.; Geller, Alexander M.; Bamford, Natalie C.; Liu, Hong; Gravelat, Fabrice N.; Snarr, Brendan D.; Le Mauff, François; Chabot, Joseé; Ralph, Benjamin; Ostapska, Hanna; Lehoux, Mélanie; Cerone, Robert P.; Baptista, Stephanie D.; Vinogradov, Evgeny; Filler, Scott G.; Howell, P. Lynne

    2016-01-01

    ABSTRACT The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-d-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species, Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation. PMID:27048799

  2. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  3. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  4. Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study.

    PubMed Central

    Kloboucek, A; Behrisch, A; Faix, J; Sackmann, E

    1999-01-01

    A model system to study the control of cell adhesion by receptor-mediated specific forces, universal interactions, and membrane elasticity is established. The plasma membrane is mimicked by reconstitution of homophilic receptor proteins into solid supported membranes and, together with lipopolymers, into giant vesicles with the polymers forming an artificial glycocalix. The homophilic cell adhesion molecule contact site A, a lipid-anchored glycoprotein from cells of the slime mold Dictyostelium discoideum, is used as receptor. The success of the reconstitution, the structure and the dynamics of the model membranes are studied by various techniques including film balance techniques, micro fluorescence, fluorescence recovery after photobleaching, electron microscopy, and phase contrast microscopy. The interaction of the functionalized giant vesicles with the supported bilayer is studied by reflection interference contrast microscopy, and the adhesion strength is evaluated quantitatively by a recently developed technique. At low receptor concentrations adhesion-induced receptor segregation in the membranes leads to decomposition of the contact zone between membranes into domains of strong (receptor-mediated) adhesion and regions of weak adhesion while continuous zones of strong adhesion form at high receptor densities. The adhesion strengths (measured in terms of the spreading pressure S) of the various states of adhesion are obtained locally by analysis of the vesicle contour near the contact line in terms of elastic boundary conditions of adhesion: the balance of tensions and moments. The spreading pressure of the weak adhesion zones is S approximately 10(-9) J/m(2) and is determined by the interplay of gravitation and undulation forces whereas the spreading pressure of the tight adhesion domains is of the order S approximately 10(-6) J/m(2). PMID:10512849

  5. Adhesion to fibronectin promotes the activation of the p125FAK/Zap‐70 complex in human T cells

    PubMed Central

    Bearz, A; Tell, G; Formisano, S; Merluzzi, S; Colombatti, A; Pucillo, C

    1999-01-01

    The β1 integrins are a family of heterodimeric adhesion receptors involved in cell‐to‐cell contacts and cell‐to‐extracellular matrix interactions. Through their adhesive role, integrins participate in transduction of outside/inside signals and contribute to trigger a multitude of cellular events such as differentiation, cell activation, and motility. The fibronectin integrin receptors, α4β1 and α5β1, can function as costimulatory molecules in T‐cell receptor (TCR)‐dependent T‐cell activation. In the current study the Jurkat T‐cell line was used as a model system to investigate the TCR‐independent role of cell adhesion to fibronectin in the activation of Zap‐70, a central molecule in the signalling events in T cells. Upon adhesion to plastic immobilized fibronectin but not to bovine serum albumin (BSA) the phosphorylation of p125FAK, a protein kinase that localizes to focal adhesion sites, was induced. Moreover, clustering of fibronectin receptors led to the detection of a p125FAK/Zap‐70 complex. Finally, while the complex between fak‐B, another protein kinase localized to focal adhesion sites, and Zap‐70 was detected in cells plated either on BSA or on fibronectin, the formation of the p125FAK/Zap‐70 complex appeared specifically induced following fibronectin‐mediated integrin clustering. These data suggest the existence of a high degree of specificity when the members of the β1 integrin family mediate signalling pathways in T cells. PMID:10594689

  6. Glutamate Receptor Interacting Protein 1 Mediates Platelet Adhesion and Thrombus Formation

    PubMed Central

    Modjeski, Kristina L.; Ture, Sara K.; Field, David J.; Cameron, Scott J.; Morrell, Craig N.

    2016-01-01

    Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major causes of morbidity and mortality worldwide. Because platelets are necessary for hemostasis and thrombosis, platelet directed therapies must balance inhibiting platelet function with bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein that localizes and organizes interacting proteins in other cells, such as neurons. We have investigated the role of GRIP1 in platelet function to determine its role as a molecular scaffold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimulation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet activation. However, in vivo platelet rolling velocity after endothelial stimulation was significantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots confirmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3. Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are necessary for normal platelet adhesion to a stimulated endothelium. PMID:27631377

  7. Assessment of adhesion formation after laparoscopic intraperitoneal implantation of Dynamesh IPOM mesh

    PubMed Central

    Jałyński, Marek; Piskorz, Łukasz; Brocki, Marian

    2013-01-01

    Introduction Formation of adhesions after laparoscopic hernia repair using the intra-peritoneal onlay mesh (IPOM) procedure can lead to intestinal obstruction or mesh erosion into intestinal lumen. The aims of this study included: measurement of adhesion formation with Dynamesh IPOM after laparoscopic intraperitoneal implantation, and assessment of the occurrence of isolated adhesions at the fastening sites of slowly absorbable sutures. Material and methods Twelve healthy pigs underwent laparoscopic implantation of 2 Dynamesh IPOM mesh fragments each, one was fastened with PDSII, and the other with Maxon sutures. An assessment of adhesion formation was carried out after 6 weeks and included an evaluation of surface area, hardness according to the Zhulke scale, and index values. The occurrence of isolated adhesions at slowly absorbable suture fixation points was also analyzed. Results Adhesions were noted in 83.3% of Dynamesh IPOM meshes. Adhesions covered on average 37.7% of the mesh surface with mean hardness 1.46 and index value 78.8. In groups fixed with PDS in comparison to Maxon sutures adhesions covered mean 31.6% vs. 42.5% (p = 0.62) of the mesh surface, mean hardness was 1.67 vs.1.25 (p = 0.34) and index 85.42 vs. 72.02 (p = 0.95). Conclusions The Dynamesh IPOM mesh, in spite of its anti-adhesive layer of PVDF, does not prevent the formation of adhesions. Adhesion hardness, surface area, and index values of the Dynamesh IPOM mesh are close to the mean values of these parameters for other commercially available 2-layer meshes. Slowly absorbable sutures used for fastening did not increase the risk of adhesion formation. PMID:23847671

  8. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

    PubMed Central

    Seo, Sungbaek; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2016-01-01

    Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing1 followed by fluid–fluid phase separation, such as coacervation2–5. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water–DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (~25 s) and robust underwater contact adhesion (Wad ≥ 2 J m−2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials. PMID:26779881

  9. Pattern Formation and Complexity Emergence

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2001-03-01

    Success of nonlinear modelling of pattern formation and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").

  10. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2010-10-01

    This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m(2) (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for

  11. Reduction of postsurgical adhesion formation with hydrogels synthesized by radiation

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Lee, Joon-Ho

    2005-07-01

    Biocompatible and biodegradable hydrogels based on carboxymethyl cellulose (CMC) and polyethyleneglycol (PEG) were prepared as physical barriers for preventing surgical adhesions. These interpolymeric hydrogels were synthesized by gamma irradiation crosslinking technique. A 1.5 cm × 1.5 cm of cecal serosa and an adjacent abdominal wall were abraded with bone burr until the serosal surface was disrupted and hemorrhagic but not perforated. The denuded cecum was covered with either CMC/PEG hydrogels or a solution from a CMC/PEG hydrogel. Control rat serosa was not covered. Two weeks later, the rats were sacrificed and the adhesion was scored on a 0-5 scale. Control rat showed a significantly higher incidence of adhesions than either the CMC/PEG hydrogels or a solution from the CMC/PEG hydrogel. In conclusion, these studies demonstrate that CMC/PEG hydrogels have a function of the prevention for an intra abdominal adhesion in a rat model.

  12. Formation, Removal, and Reformation of Surface Coatings on Various Metal Oxide Surfaces Inspired by Mussel Adhesives.

    PubMed

    Kang, Taegon; Oh, Dongyeop X; Heo, Jinhwa; Lee, Han-Koo; Choy, Seunghwan; Hawker, Craig J; Hwang, Dong Soo

    2015-11-11

    Mussels survive by strongly attaching to a variety of different surfaces, primarily subsurface rocks composed of metal oxides, through the formation of coordinative interactions driven by protein-based catechol repeating units contained within their adhesive secretions. From a chemistry perspective, catechols are known to form strong and reversible complexes with metal ions or metal oxides, with the binding affinity being dependent on the nature of the metal ion. As a result, catechol binding with metal oxides is reversible and can be broken in the presence of a free metal ion with a higher stability constant. It is proposed to exploit this competitive exchange in the design of a new strategy for the formation, removal, and reformation of surface coatings and self-assembled monolayers (SAM) based on catechols as the adhesive unit. In this study, catechol-functionalized tri(ethylene oxide) (TEO) was synthesized as a removable and recoverable self-assembled monolayer (SAM) for use on oxides surfaces. Attachment and detachment of these catechol derivatives on a variety of surfaces was shown to be reversible and controllable by exploiting the high stability constant of catechol to soluble metal ions, such as Fe(III). This tunable assembly based on catechol binding to metal oxides represents a new concept for reformable coatings with applications in fields ranging from friction/wettability control to biomolecular sensing and antifouling.

  13. Effect of melatonin in the prevention of postoperative pericardial adhesion formation.

    PubMed

    Saeidi, Mahmood; Sobhani, Roohollah; Movahedi, Minoo; Alsaeidi, Samira; Samani, Reza Eshraghi

    2009-07-01

    To evaluate the efficacy of melatonin in preventing postoperative pericardial adhesions, 12 single breed dogs were randomized equally into experimental (melatonin) and control groups. After ketamine anesthesia, a vertical midsternal incision was done and the parietal pericardium of the inferior site of the heart was opened vertically. To promote adhesion formation, abrasions were created on both parietal and visceral pericardial surfaces in an area of 2 cm2 with two vertically reciprocal movements of dry gauze. In the melatonin group, 5% ethanol plus 10 mg/kg melatonin in 10 ml NaCl and, in control group, 10 ml NaCl dilution vehicle containing 5% ethanol was instilled intra-pericardium on to the abrasion sites. After a 6-week recovery period, the animals were evaluated for grading of adhesion formation by an examiner blinded to the groups. The extent of adhesions was graded from 0 (no adhesion) to 3 (total involvement of the traumatized area). The results showed that adhesion scores were significantly lower in melatonin group (1.00+/-0.63) compared with controls (2.66+/-0.51); P=0.001. We conclude that melatonin administration effectively reduced postoperative pericardial adhesions in dogs. The use of melatonin in the prevention of pericardial adhesion formation in human subjects warrants further investigations.

  14. Friction and solid-solid adhesion on complex metallic alloys

    PubMed Central

    Dubois, Jean-Marie; Belin-Ferré, Esther

    2014-01-01

    The discovery in 1987 of stable quasicrystals in the Al–Cu–Fe system was soon exploited to patent specific coatings that showed reduced friction in ambient air against hard antagonists. Henceforth, it was possible to develop a number of applications, potential or commercially exploited to date, that will be alluded to in this topical review. A deeper understanding of the characteristics of complex metallic alloys (CMAs) may explain why material made of metals like Al, Cu and Fe offers reduced friction; low solid–solid adhesion came later. It is linked to the surface energy being significantly lower on those materials, in which translational symmetry has become a weak property, that is determined by the depth of the pseudo-gap at the Fermi energy. As a result, friction is anisotropic in CMAs that builds up according to the translation symmetry along one direction, but is aperiodic along the other two directions. A review is given in this article of the most salient data found along these lines during the past two decades or so. PMID:27877675

  15. Cytokine orchestration in post-operative peritoneal adhesion formation

    PubMed Central

    Cahill, Ronan A; Redmond, H Paul

    2008-01-01

    Peritoneal adhesions are a near inevitable occurrence after laparotomy and a major cause of both patient and physician misery. To date, clinical attempts at their amelioration have concentrated on manipulating the physical factors that affect their development despite a wealth of experimental data elucidating the molecular mechanisms that underlie their initiation, development and maturation. However, the advent of targeted, specific anti-cytokine agents as directed therapy for inflammatory and neoplastic conditions raises the prospect of a new era for anti-adhesion strategies. To harness this potential will require considerable cross-disciplinary collaboration and that surgeon-scientists propel themselves to the forefront of this emerging field. PMID:18756592

  16. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  17. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    NASA Astrophysics Data System (ADS)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  18. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    PubMed

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  19. Candida albicans Amphotericin B-Tolerant Persister Formation is Closely Related to Surface Adhesion.

    PubMed

    Sun, Jing; Li, Zhigang; Chu, Haoyue; Guo, Jing; Jiang, Guangshui; Qi, Qingguo

    2016-02-01

    Candida albicans persisters have so far been observed only in biofilm environment; the biofilm element(s) that trigger(s) persister formation are still unknown. In this study, we tried to further elucidate the possible relationship between C. albicans persisters and the early phases of biofilm formation, especially the surface adhesion phase. Three C. albicans strains were surveyed for the formation of persisters. We tested C. albicans persister formation dynamically at different time points during the process of adhesion and biofilm formation. The number of persister cells was determined based on an assessment of cell viability after amphotericin B treatment and colony-forming unit assay. None of the planktonic cultures contained persisters. Immediately following adhesion of C. albicans cells to the surface, persister cells emerged and the proportion of persisters reached a peak of 0.2-0.69 % in approximately 2-h biofilm. As the biofilm matured, the proportion of persisters decreased and was only 0.01-0.02 % by 24 h, while the number of persisters remained stable with no significant change. Persisters were not detected in the absence of an attachment surface which was pre-coated. Persisters were also absent in biofilms that were scraped to disrupt surface adhesion prior to amphotericin B treatment. These results indicate that C. albicans antifungal-tolerant persisters are produced mainly in surface adhesion phase and surface adhesion is required for the emergence and maintenance of C. albicans persisters.

  20. Effect of prosthetic material on adhesion formation after laparoscopic ventral hernia repair in a porcine model.

    PubMed

    Borrazzo, E C; Belmont, M F; Boffa, D; Fowler, D L

    2004-05-01

    Intraperitoneal placement of prosthetic mesh causes adhesion formation after laparoscopic incisional hernia repair. A prosthesis that prevents or reduces adhesion formation is desirable. In this study, 21 pigs were randomized to receive laparoscopic placement of plain polypropylene mesh (PPM), expanded polytetrafluoroethylene (ePTFE), or polypropylene coated on one side with a bioresorbable adhesion barrier (PPM/HA/CMC). The animals were sacrificed after 28 days and evaluated for adhesion formation. Mean area of adhesion formation was 14% (SD+/-15) in the PPM/HA/CMC group, 40% (SD+/-17) in the PPM group, and 41% (SD+/-39) in the ePTFE group. The difference between PPM/HA/CMC and PPM was significant ( P=0.013). A new visceral layer of mesothelium was present in seven out of seven PPM/HA/CMC cases, six out of seven PPM cases, and two out of seven ePTFE cases. Thus, laparoscopic placement of PPM/HA/CMC reduces adhesion formation compared to other mesh types used for laparoscopic ventral hernia repairs.

  1. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation.

    PubMed

    Tegtmeyer, Nicole; Hartig, Roland; Delahay, Robin M; Rohde, Manfred; Brandt, Sabine; Conradi, Jens; Takahashi, Seiichiro; Smolka, Adam J; Sewald, Norbert; Backert, Steffen

    2010-07-23

    Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor alpha(5)beta(1) and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin(-/-) knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.

  2. Interfacial pH during mussel adhesive plaque formation

    PubMed Central

    Rodriguez, Nadine R. Martinez; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2−3.3, which is well below the seawater pH of ~8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8. PMID:25875963

  3. Interfacial pH during mussel adhesive plaque formation.

    PubMed

    Martinez Rodriguez, Nadine R; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N; Waite, J Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8.

  4. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms.

  5. Biostability of the Proanthocyanidins-Dentin Complex and Adhesion Studies.

    PubMed

    Leme-Kraus, A A; Aydin, B; Vidal, C M P; Phansalkar, R M; Nam, J W; McAlpine, J; Pauli, G F; Chen, S; Bedran-Russo, A K

    2017-04-01

    Oligomeric proanthocyanidins (OPACs) are potent and renewable natural bioactives possible to be refined into chemically standardized mixtures for biological applications. Herein, we found that multiscale interactions of OPACs with the dentin matrix create tight biointerfaces with hydrophobic methacrylate adhesives on wet surfaces. An enriched mixture of OPACs, with a known phytochemical profile, was produced from grape seed crude extract ( Vitis vinifera; enriched grape seed extract [e-GSE]) and applied to dentin matrices to determine changes to the mechanical properties and biodegradability of the dentin matrix and favorable resin adhesion mechanisms. Methods included a 3-point flexural test, quantification of hydroxyproline (collagen solubilization), static and dynamic nanomechanical analyses, resin-dentin microtensile bond strength, and micropermeability at the adhesive interface. The e-GSE-modified dentin matrix exhibited remarkably low collagen solubilization and sustained the bulk elastic properties over 12 mo. Tan δ findings reveal a more elastic-like behavior of the e-GSE-modified dentin matrix, which was not affected by H-bond destabilization by urea. Dentin-methacrylate biointerfaces with robust and stable adhesion were created on e-GSE-primed dentin surfaces, leading to a dramatic decrease of the interfacial permeability. Standardized OPAC mixtures provide a new mechanism of adhesion to type I collagen-rich tissues that does not rely on hydrophilic monomers. The bioadhesion mechanism involves physicochemical modifications to the dentin matrix, reduced tissue biodegradation, and bridging to methacrylate resins.

  6. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  7. Cadherin-mediated adhesion regulates posterior body formation

    PubMed Central

    Harrington, Michael J; Hong, Elim; Fasanmi, Oluwafoyinsa; Brewster, Rachel

    2007-01-01

    Background The anterior-posterior axis of the vertebrate embryo undergoes a dramatic elongation during early development. Convergence and extension of the mesoderm, occurring during gastrulation, initiates the narrowing and lengthening of the embryo. However the lengthening of the axis continues during post-gastrula stages in the tailbud region, and is thought to involve convergent extension movements as well as other cell behaviors specific to posterior regions. Results We demonstrate here, using a semi-dominant N-cadherin allele, that members of the classical cadherin subfamily of cell-cell adhesion molecules are required for tailbud elongation in the zebrafish. In vivo imaging of cell behaviors suggests that the extension of posterior axial mesodermal cells is impaired in embryos that carry the semi-dominant N-cadherin allele. This defect most likely results from a general loss of cell-cell adhesion in the tailbud region. Consistent with these observations, N-cadherin is expressed throughout the tailbud during post-gastrulation stages. In addition, we show that N-cadherin interacts synergistically with vang-like 2, a member of the non-canonical Wnt signaling/planar cell polarity pathway, to mediate tail morphogenesis. Conclusion We provide the first evidence here that N-cadherin and other members of the classical cadherin subfamily function in parallel with the planar cell polarity pathway to shape the posterior axis during post-gastrulation stages. These findings further highlight the central role that adhesion molecules play in the cellular rearrangements that drive morphogenesis in vertebrates and identify classical cadherins as major contributors to tail development. PMID:18045497

  8. Spray formation with complex fluids

    NASA Astrophysics Data System (ADS)

    Lustig, S.; Rosen, M.

    2011-05-01

    Droplet formation through Faraday excitation has been tested in the low driving frequency limit. Kerosene was used to model liquid fuel with the addition of PIB in different proportions. All fluids were characterized in detail. The mechanisms of ejection were investigated to identify the relative influence of viscosity and surface tension. It was also possible to characterize the type of instability leading to the emission drop process.

  9. Adhesion formation after laparoscopic surgery: what do we know about the role of the peritoneal environment?

    PubMed Central

    Molinas, C.R.; Binda, M.M.; Manavella, G.D.; Koninckx, P.R.

    2010-01-01

    In spite of the approaches that have been proposed to reduce postoperative peritoneal adhesions, they remain a major clinical problem because of the associated intestinal obstruction, chronic pelvic pain, female infertility and difficulties at the time of reoperation. The pathogenesis of the process have been focused almost exclusively on the local events induced by the surgical trauma, and the strategies for adhesion prevention thus focused on barriers to separate surgically denuded areas. The important role of the peritoneal cavity environment only recently became apparent and is not yet incorporated in adhesion reducing strategies. Recent data demonstrate that, in the presence of a direct surgical trauma, the entire peritoneal environment is quantitatively the most important factor in adhesion formation and hence adhesion prevention after both open and laparoscopic surgery. Indeed mesothelial hypoxia (CO2 pneumoperitoneum) or hyperoxia (open surgery), desiccation and surgical manipulation have been identified as factors cumulatively enhancing adhesions. The clinical implication is especially relevant for laparoscopic surgery because the pneumoperitoneum, being a closed environment, can be easily conditioned. Although human studies are lacking, animal data indicate that peritoneal adhesions can be reduced by over 80% with a good surgical technique, with adequate pneumoperitoneum conditioning as adding 3-4% of oxygen to the CO2 pneumoperitoneum, prevention of desiccation and slight cooling. Adhesion prevention barriers remain additionally effective, although quantitatively less important. The relevance of all these strategies for adhesion prevention still have to be confirmed in humans, but since it seems that the peritoneal environment is quantitatively much more important than the surgical trauma, adhesion prevention research and strategies should be directed more to conditioning the peritoneal cavity than to the use of agents. PMID:25013705

  10. Metformin and atorvastatin reduce adhesion formation in a rat uterine horn model.

    PubMed

    Yilmaz, Bulent; Aksakal, Orhan; Gungor, Tayfun; Sirvan, Levent; Sut, Necdet; Kelekci, Sefa; Soysal, Sunullah; Mollamahmutoglu, Leyla

    2009-03-01

    The aim of the present study was to determine whether atorvastatin and metformin are effective in preventing adhesions in a rat uterine horn model. A total of 40 non-pregnant, female Wistar albino rats, weighing 180-210 g, were used as a model for post-operative adhesion formation. The rats were randomized into four groups after seven standard lesions were inflicted in each uterine horn and lower abdominal sidewall using bipolar cauterization. The rats were given atorvastatin 2.5 mg/kg/day, p.o. (10 rats), atorvastatin 30 mg/kg/day, p.o. (10 rats), metformin 50 mg/kg/day, p.o. (10 rats) and no treatment was applied in the control group (10 rats). The animals were killed 2 weeks later and adhesions were scored both clinically and pathologically by authors blinded to groups. One rat in the control group died before the end of the 2 week period. Total clinical adhesion scores regarding extent, severity and degree of adhesions and histopathological findings including inflammation and fibrosis were significantly lower in the metformin (P < 0.001 and P < 0.01, respectively) and atorvastatin 30 mg/kg/day (P < 0.001 and P < 0.01, respectively) groups when compared with control group. Metformin and atorvastatin are both effective for prevention of adhesion formation in a rat uterine horn model.

  11. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation in the rat model

    SciTech Connect

    Urman, B.; Gomel, V.; Jetha, N. )

    1991-09-01

    The aim of this study was to determine the effectiveness of hyaluronic acid solution in preventing intraperitoneal (IP) adhesions. The study design was prospective, randomized and blinded and involved 83 rats. Measured serosal injury was inflicted using a CO2 laser on the right uterine horn of the rat. Animals randomized to groups 1 and 2 received either 0.4% hyaluronic acid or its diluent phosphate-buffered saline (PBS) intraperitoneally before and after the injury. In groups 3 and 4, the same solutions were used only after the injury. Postoperative adhesions were assessed at second-look laparotomy. Histologic assessment of the fresh laser injury was carried out on uteri pretreated with hyaluronic acid, PBS, or nothing. Pretreatment with hyaluronic acid was associated with a significant reduction in postoperative adhesions and a significantly decreased crater depth. Hyaluronic acid appears to reduce postoperative IP adhesion formation by coating the serosal surfaces and decreasing the extent of initial tissue injury.

  12. Bacterial adhesion and biofilm formation over a substrate with micro printed oily patches

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Sheng, Jian

    2014-11-01

    Over the past few years, there has been a significant focus on the processes involved in biodegradation of crude oil. In prior studies, using soft lithography and surface functionalization, we have fabricated solid substrates with micro-scale chemical patterns, and applied them to studying the bacteria-surface interactions as well as the formation of biofilm over these micro-patterned surfaces. A strong correlation between biofilm morphology and substrate patterns was found. In our current work we investigate the bacterial adhesion and biofilm formation of hydrocarbon degrading bacteria on micro printed oily surfaces with different micro-scale textures. The oily patterns were formed by contact printing of crude oil on a glass substrate with PDMS stamps. The oil patterned surface is additionally combined with a microfluidics as its bottom substrate. This unique lab-on-a-chip device allows us to investigate the complex interactions microscopically and over a long time. Additionally, it allows us to conduct experiments to elucidate the dynamic interactions such as swimming, dispersion, attachment, detachment, and adsorption between bacteria and micro printed oily surfaces under flow conditions in-situ. The growth rates and morphology of bacterial colony and biofilm are also studied and reported.

  13. Hyaluronic acid membrane for reducing adhesion formation and reformation in the rat uterine horn.

    PubMed

    Yarali, H; Zahradka, B F; Gomel, V

    1994-09-01

    The efficacy of hyaluronic acid (HA) membrane in preventing or reducing intraperitoneal adhesion formation and reformation was evaluated in the rat uterine horn. Forty-seven Wistar rats were employed. Following a measured laser injury on the right uterine horn of each rat, HA membrane was applied to cover the site of injury in 20 (HA membrane group). No membrane was applied in another 20 (control group). The type and extent of adhesions were assessed at relaparotomy. Following microsurgical adhesiolysis at second-look laparotomy, the same animals were randomized to the HA membrane and control groups. The type and extent of adhesion reformation were evaluated at third-look laparotomy. Following a similar injury on the right uterine horn in another seven rats, HA membrane was applied on both uterine horns. A repeat laparotomy was performed three hours later to assess the status of the membrane. The type and extent of adhesion formation and reformation were comparable between the HA membrane and control groups. The HA membrane did not remain on the uterine horn and gelled rapidly. Hyaluronic acid membrane was ineffective in reducing adhesion formation and reformation in the rat uterine horn.

  14. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    SciTech Connect

    Li, Fengfeng; Ruan, Hongjiang; Fan, Cunyi; Zeng, Bingfang; Wang, Chunyang; Wang, Xiang

    2010-01-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  15. Mechanism of membrane tube formation induced by adhesive nanocomponents.

    PubMed

    Šarić, Anđela; Cacciuto, Angelo

    2012-11-02

    We report numerical simulations of membrane tubulation driven by large colloidal particles. Using Monte Carlo simulations we study how the process depends on particle size and binding strength, and present accurate free energy calculations to sort out how tube formation compares with the competing budding process. We find that tube formation is a result of the collective behavior of the particles adhering on the surface, and it occurs for binding strengths that are smaller than those required for budding. We also find that long linear aggregates of particles forming on the membrane surface act as nucleation seeds for tubulation by lowering the free energy barrier associated to the process.

  16. The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Wargenau, Andreas; Brandt, Ulrike; Rohde, Manfred; Dietrich, Sylvia; Kwade, Arno; Krull, Rainer; Fleissner, André

    2012-01-01

    Fungi grow on a great variety of organic and inorganic materials. Colony establishment and growth on solid surfaces require adhesion of spores and hyphae to the substrate, while cell-to-cell interactions among spores and/or hyphae are a prerequisite for the development of three-dimensional mycelial structures such as pellets or biofilms. Surface adherence has been described as a two-step process, comprised of the initial attachment of ungerminated conidia followed by further adhesion of the forming germ tubes and growing hyphae. In the present study, we analyzed the contribution of adhesion of ungerminated spores to pellet and biofilm formation in Aspergillus niger. Mutants deficient in melanin biosynthesis were constructed by the deletion of the alb1 gene, encoding a polyketide synthase essential for pigment biosynthesis. Δalb1 conidia have an altered surface structure and changed physicochemical surface properties. Spore aggregation in liquid culture as well as spore surface attachment differ between the wild type and the mutant in a pH-dependent manner. In liquid culture further pellet formation is unaffected by altered spore-spore interactions, indicating that germ tube and hyphal adherence can compensate for deficiencies in the initial step of spore attachment. In contrast, under conditions promoting adhesion of Δalb1 conidia to polymer surfaces the mutant forms more stable biofilms than the wild type, suggesting that initial spore adhesion supports sessile growth.

  17. Neuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling.

    PubMed

    Goel, Hira Lal; Pursell, Bryan; Standley, Clive; Fogarty, Kevin; Mercurio, Arthur M

    2012-01-15

    The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2(high) and NRP2(low) populations that differed in integrin expression and adhesion to laminin. Specifically, the NRP2(high) population adhered more avidly to laminin and expressed high levels of the α6β1 integrin than the NRP2(low) population. The NRP2(high) population formed numerous focal adhesions on laminin that were not seen in the NRP2(low) population. These results were substantiated using breast carcinoma cell lines that express NRP2 and α6β1 integrin. Depletion experiments revealed that adhesive strength on laminin but not collagen is dependent on NRP2, and that VEGF is needed for adhesion on laminin. A specific interaction between NRP2 and α6β1 integrin was detected by co-immunoprecipitation. NRP2 is necessary for focal adhesion formation on laminin and for the association of α6β1 integrin with the cytoskeleton. NRP2 also facilitates α6β1-integrin-mediated activation of FAK and Src. Unexpectedly, we discovered that NRP2 is located in focal adhesions on laminin. The mechanism by which NRP2 regulates the interaction of α6β1 integrin with laminin to form focal adhesions involves PKC activation. Together, our data reveal a new VEGF-NRP2 signaling pathway that activates the α6β1 integrin and enables it to form focal adhesions and signal. This pathway is important in the pathogenesis of breast cancer.

  18. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    PubMed Central

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  19. Biocompatibility of adhesive complex coacervates modeled after the Sandcastle glue of P. californica for craniofacial reconstruction

    PubMed Central

    Winslow, Brent D.; Shao, Hui; Stewart, Russell J.; Tresco, Patrick A.

    2011-01-01

    Craniofacial reconstruction would benefit from a degradable adhesive capable of holding bone fragments in three-dimensional alignment and gradually being replaced by new bone without loss of alignment or volume changes. Modeled after a natural adhesive secreted by the sandcastle worm, we studied the biocompatibility of adhesive complex coacervates in vitro and in vivo with two different rat calvarial models. We found that the adhesive was non-cytotoxic and supported the attachment, spreading, and migration of a commonly used osteoblastic cell line over the course of several days. In animal studies we found that the adhesive was capable of maintaining three-dimensional bone alignment in freely moving rats over a 12 week indwelling period. Histological evidence indicated that the adhesive was gradually resorbed and replaced by new bone that became lamellar across the defect without loss of alignment, changes in volume, or changes in the adjacent uninjured bone. The presence of inflammatory cells was consistent with what has been reported with other craniofacial fixation methods including metal plates, screws, tacks, calcium phosphate cements and cyanoacrylate adhesives. Collectively, the results suggest that the new bioadhesive formulation is degradable, osteoconductive and appears suitable for use in the reconstruction of craniofacial fractures. PMID:20950851

  20. Physical Model for Self-Organization of Actin Cytoskeleton and Adhesion Complexes at the Cell Front

    PubMed Central

    Shemesh, Tom; Bershadsky, Alexander D.; Kozlov, Michael M.

    2012-01-01

    Cell motion is driven by interplay between the actin cytoskeleton and the cell adhesions in the front part of the cell. The actin network segregates into lamellipodium and lamellum, whereas the adhesion complexes are characteristically distributed underneath the actin system. Here, we suggest a computational model for this characteristic organization of the actin-adhesion system. The model is based on the ability of the adhesion complexes to sense mechanical forces, the stick-slip character of the interaction between the adhesions and the moving actin network, and a hypothetical propensity of the actin network to disintegrate upon sufficiently strong stretching stresses. We identify numerically three possible types of system organization, all observed in living cells: two states in which the actin network exhibits segregation into lamellipodium and lamellum, whereas the cell edge either remains stationary or moves, and a state where the actin network does not undergo segregation. The model recovers the asynchronous fluctuations and outward bulging of the cell edge, and the dependence of the edge protrusion velocity on the rate of the nascent adhesion generation, the membrane tension, and the substrate rigidity. PMID:22768930

  1. STAR FORMATION ACROSS THE W3 COMPLEX

    SciTech Connect

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio; Megías, Guillermo D.; Lada, Elizabeth A.; Alves, Joáo F.

    2015-09-15

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

  2. Star Formation Across the W3 Complex

    NASA Astrophysics Data System (ADS)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Megías, Guillermo D.; Tapia, Mauricio; Lada, Elizabeth A.; Alves, Joáo F.

    2015-09-01

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

  3. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  4. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility

    PubMed Central

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  5. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  6. Drosophila vinculin is more harmful when hyperactive than absent, and can circumvent integrin to form adhesion complexes

    PubMed Central

    Maartens, Aidan P.; Wellmann, Jutta; Wictome, Emma; Klapholz, Benjamin; Green, Hannah

    2016-01-01

    ABSTRACT Vinculin is a highly conserved protein involved in cell adhesion and mechanotransduction, and both gain and loss of its activity causes defective cell behaviour. Here, we examine how altering vinculin activity perturbs integrin function within the context of Drosophila development. Whereas loss of vinculin produced relatively minor phenotypes, gain of vinculin activity, through a loss of head–tail autoinhibition, caused lethality. The minimal domain capable of inducing lethality is the talin-binding D1 domain, and this appears to require talin-binding activity, as lethality was suppressed by competition with single vinculin-binding sites from talin. Activated Drosophila vinculin triggered the formation of cytoplasmic adhesion complexes through the rod of talin, but independently of integrin. These complexes contain a subset of adhesion proteins but no longer link the membrane to actin. The negative effects of hyperactive vinculin were segregated into morphogenetic defects caused by its whole head domain and lethality caused by its D1 domain. These findings demonstrate the crucial importance of the tight control of the activity of vinculin. PMID:27737911

  7. Ultrastable cellulosome-adhesion complex tightens under load

    NASA Astrophysics Data System (ADS)

    Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.

    2014-12-01

    Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.

  8. Ubiquitin C-terminal hydrolase-L1 interacts with adhesion complexes and promotes cell migration, survival, and anchorage independent growth.

    PubMed

    Frisan, Teresa; Coppotelli, Giuseppe; Dryselius, Rikard; Masucci, Maria G

    2012-12-01

    Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme of unknown function that is highly expressed in neurons and overexpressed in several human cancers. UCH-L1 has been implicated in the regulation of phenotypic properties associated with malignant cell growth but the underlying mechanisms have not been elucidated. By comparing cells expressing catalytically active or inactive versions of UCH-L1, we found that the active enzyme enhances cell adhesion, spreading, and migration; inhibits anoikis; and promotes anchorage independent growth. UCH-L1 accumulates at the motile edge of the cell membrane during the initial phases of adhesion, colocalizes with focal adhesion kinase (FAK), p120-catenin, and vinculin, and enhances the formation of focal adhesions, which correlates with enhanced FAK activation. The involvement of UCH-L1 in the regulation of focal adhesions and adherens junctions is supported by coimmunoprecipitation with key components of these complexes, including FAK, paxillin, p120-catenin, β-catenin, and vinculin. UCH-L1 stabilizes focal adhesion signaling in the absence of adhesion, as assessed by reduced caspase-dependent cleavage of FAK following cell detachment and sustained activity of the AKT signaling pathway. These findings offer new insights on the molecular interactions through which the deubiquitinating enzyme regulates the survival, proliferation, and metastatic potential of malignant cells.

  9. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function.

    PubMed

    Dean, Camin; Dresbach, Thomas

    2006-01-01

    Cell adhesion represents the most direct way of coordinating synaptic connectivity in the brain. Recent evidence highlights the importance of a trans-synaptic interaction between postsynaptic neuroligins and presynaptic neurexins. These transmembrane molecules bind each other extracellularly to promote adhesion between dendrites and axons. This signals the recruitment of presynaptic and postsynaptic molecules to form a functional synapse. Remarkably, neuroligins alone can induce the formation of fully functional presynaptic terminals in contacting axons. Conversely, neurexins alone can induce postsynaptic differentiation and clustering of receptors in dendrites. Therefore, the neuroligin-neurexin interaction has the unique ability to act as a bi-directional trigger of synapse formation. Here, we review several recent studies that offer clues as to how these proteins form synapses and how they might function in the brain to establish and modify neuronal network properties and cognition.

  10. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material.

    PubMed

    Nguyen, Vi; Karunakaran, Esther; Collins, Gavin; Biggs, Catherine A

    2016-07-01

    The retention of selective biofilms of Methanosarcina species within anaerobic digesters could reduce start-up times and enhance the efficiency of the process in treating high-strength domestic sewage. The objective of the study was to examine the effect of the surface characteristics of six common polymer support materials on the initial adhesion of the model methanogen, Methanosarcina barkeri, and to assess the potential of these support materials as selective biofilm carriers. Results from both the initial adhesion tests and extended DLVO (xDLVO) model correlated with each other, with PVC (12% surface coverage/mm(2)), PTFE (6% surface coverage/mm(2)), and PP (6% surface coverage/mm(2)), shown to be the better performing support materials for initial adhesion, as well as subsequent biofilm formation by M. barkeri after 72h. Experimental results of these three support materials showed that the type of material strongly influenced the extent of adhesion from M. barkeri (p<0.0001), and the xDLVO model was able to explain the results in these environmental conditions. Therefore, DLVO physicochemical forces were found to be influential on the initial adhesion of M. barkeri. Scanning electron microscopy suggested that production of extracellular polymeric substances (EPS) from M. barkeri could facilitate further biofilm development. This study highlights the potential of using the xDLVO model to rapidly identify suitable materials for the selective adhesion of M. barkeri, which could be beneficial in both the start-up and long-term phases of anaerobic digestion.

  11. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    PubMed

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.

  12. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

    PubMed Central

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  13. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    PubMed

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-04-20

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.

  14. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens.

    PubMed

    Nakamura, Junko; Shigematsu, Satoshi; Yamauchi, Keishi; Takeda, Teiji; Yamazaki, Masanori; Kakizawa, Tomoko; Hashizume, Kiyoshi

    2008-10-03

    Migration and tube formation of endothelial cells are important in angiogenesis and require a coordinated response to the extra-cellular matrix (ECM) and growth factor. Since focal adhesion kinase (FAK) integrates signals from both ECM and growth factor, we investigated its role in angiogenesis. Type I and II collagens are fibril-forming collagens and stimulate human umbilical vein endothelial cells (HUVECs) to form tube structure. Although knockdown of FAK restrained cell motility and resulted in inhibition of tube formation, FAK degradation and tube formation occurred simultaneously after incubation with fibril-forming collagens. The compensation for the FAK degradation by a calpain inhibitor or transient over-expression of FAK resulted in disturbance of tube formation. These phenomena are specific to fibril-forming collagens and mediated via alpha2beta1 integrin. In conclusion, our data indicate that FAK is functioning in cell migration, but fibril-forming collagen-induced FAK degradation is necessary for endothelial tube formation.

  15. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.

    PubMed

    Singh, Ajay Vikram; Vyas, Varun; Patil, Rajendra; Sharma, Vimal; Scopelliti, Pasquale Emanuele; Bongiorno, Gero; Podestà, Alessandro; Lenardi, Cristina; Gade, Wasudev Namdev; Milani, Paolo

    2011-01-01

    Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological features. The

  16. Intrauterine Adhesions

    MedlinePlus

    ... adhesion formation are infections of the uterine lining (endometritis), removal of fibroids in the cavity of the ... to prevent adhesions from reforming. Hormonal treatment with estrogen and NSAIDs are frequently prescribed after surgery to ...

  17. Tunable Adsorption and Film Formation of Mussel Adhesive Protein by Potential Control.

    PubMed

    Zhang, Fan; Xie, Guoxin; Pan, Jinshan

    2017-01-23

    Mussel adhesive proteins are of great interest in many applications because of their outstanding adhesive property and film-forming ability. Understanding and controlling the film formation and its performance is crucial for the effective use of such proteins. In this study, we focus on the potential controlled film formation and compaction of one mussel adhesive protein, Mefp-1. The adsorption and film-forming behavior of Mefp-1 on a platinum (Pt) substrate under applied potentials were investigated by cyclic voltammetry, potential-controlled electrochemical impedance spectroscopy (EIS), and quartz crystal microbalance with dissipation monitoring (QCM-D). Moreover, microfriction measurements were performed to evaluate the mechanical properties of the Mefp-1 films formed at selected potentials. The results led to the conclusion that Mefp-1 adsorbs on the Pt substrate through both electrostatic and nonelectrostatic interactions and shows an effective blocking effect for the electroactive sites on the substrate. The properties of the adsorbed Mefp-1 film vary with the applied potential, and the compactness of the adsorbed Mefp-1 film can be reversibly tuned by the applied potential.

  18. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances.

  19. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation.

    PubMed

    Ruggeri, Z M

    2001-06-01

    The adhesive protein von Willebrand factor mediates the initiation and progression of thrombus formation at sites of vascular injury. von Willebrand factor is synthesized in endothelial cells and megakaryocytes as a very large polymer composed of identical subunits. In the plasma, it appears as a series of multimers of regularly decreasing molecular mass, from several thousand to 500 kDa. The size of circulating von Willebrand factor multimers is controlled by proteolytic cleavage carried out by a specific protease. The biological functions of von Willebrand factor are exerted through specific domains that interact with extracellular matrix components and cell membrane receptors to promote the initial tethering and adhesion of platelets to subendothelial surfaces, as well as platelet aggregation. Moreover, von Willebrand factor binds the procoagulant co-enzyme, factor VIII, contributing to its stability and, indirectly, to its function in the generation of fibrin. This chapter presents a review of current knowledge on the structure, biosynthesis and functions of von Willebrand factor.

  20. Pregnancy Outcome, and Adhesion Formation and Reformation after Laparoscopic Cystectomy of Ovarian Endmetriomas

    PubMed

    Gurgan; Yarali

    1996-08-01

    Unilateral or bilateral cystectomy for endometriomas was performed in 90 infertile women. Using a multipuncture technique, a cortical incision was made on the medial aspect of the ovary with sharp-tipped unipolar coagulation. Cystectomy was performed by stripping the cyst capsule from the normal ovarian cortex with the aid of atraumatic grasping forceps. If the capsule removal was incomplete due to technical difficulties, the remaining capsular fragments were vaporized with the carbon dioxide laser. Endometriosis implants elsewhere in the pelvis were vaporized and adhesions, if present, were lysed. The ovarian cortex was closed with a few interrupted 6-0 polyglactin sutures using extracorporeal knot technique. A second-look laparoscopy was performed in 25 patients to evaluate adhesion formation, reformation, postoperative crude pregnancy rates, and factors that would predict conception.

  1. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.

    PubMed

    Xu, Li-Chong; Wo, Yaqi; Meyerhoff, Mark E; Siedlecki, Christopher A

    2017-03-15

    In separate prior studies, physical topographic surface modification or nitric oxide (NO) release has been demonstrated to each be an effective approach to inhibit and control bacterial adhesion and biofilm formation on polymeric surfaces. Such approaches can prevent biomaterial-associated infection without causing the antibiotic resistance of the strain. In this work, both techniques were successfully integrated and applied to a polyurethane (PU) biomaterial surface that bears ordered pillar topographies (400/400nm and 500/500nm patterns) at the top surface and a S-nitroso-N-acetylpenicillamine (SNAP, NO donor) doped sub-layer in the middle, via a soft lithography two-stage replication process. Upon placing the SNAP textured PU films into PBS at 37°C, the decomposition of SNAP within polymer film initiates NO release with a lifetime of up to 10days at flux levels >0.5×10(-10)molmin(-1)cm(-2) for a textured polyurethane layer containing 15wt% SNAP. The textured surface reduces the accessible surface area and the opportunity of bacteria-surface interaction, while the NO release from the same surface further inhibits bacterial growth and biofilm formation. Such dual functionality surfaces are shown to provide a synergistic effect on inhibition of Staphylococcus epidermidis bacterial adhesion that is significantly greater than the inhibition of bacterial adhesion achieved by either single treatment approach alone. Longer term experiments to observe biofilm formation demonstrate that the SNAP doped-textured PU surface can inhibit the biofilm formation for >28d and provide a practical approach to improve the biocompatibility of current biomimetic biomaterials and thereby reduce the risk of pathogenic infection.

  2. Structure of Slitrk2–PTPδ complex reveals mechanisms for splicing-dependent trans-synaptic adhesion

    PubMed Central

    Yamagata, Atsushi; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Yoshida, Tomoyuki; Fukai, Shuya

    2015-01-01

    Selective binding between pre- and postsynaptic adhesion molecules can induce synaptic differentiation. Here we report the crystal structure of a synaptogenic trans-synaptic adhesion complex between Slit and Trk-like family member 2 (Slitrk2) and receptor protein tyrosine phosphatase (RPTP) δ. The structure and site-directed mutational analysis revealed the structural basis of splicing-dependent adhesion between Slitrks and type IIa RPTPs for inducing synaptic differentiation. PMID:25989451

  3. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  4. Aggregatibacter actinomycetemcomitans arcB influences hydrophobic properties, biofilm formation and adhesion to hydroxyapatite

    PubMed Central

    Longo, PL; Ota-Tsuzuki, C; Nunes, ACR; Fernandes, BL; Mintz, K; Fives-Taylor, P; Mayer, MPA

    2009-01-01

    The regulation of gene expression in the oral pathogen Aggregatibacter actinomycetemcomitans is still not fully elucidated. ArcAB is a two-component system which allows facultative anaerobic bacteria to sense various respiratory growth conditions and adapt their gene expression accordingly.This study investigated in A. actinomycetemcomitans the role of ArcB on the regulation of biofilm formation, adhesion to saliva coated hydroxyapatite (SHA) and the hydrophobic properties of the cell. These phenotypic traits were determined for an A. actinomycetemcomitans arcB deficient type and a wild type strain. Differences in hydrophobic properties were shown at early and late exponential growth phases under microaerobic incubation and at late exponential phase under anaerobiosis.The arcB mutant formed less biofilm than the wild type strain when grown under anaerobic incubation, but displayed higher biofilm formation activity under microaerobic conditions. The adherence to SHA was significantly lower in the mutant when compared with the wild type strain. These results suggest that the transmembrane sensor kinase ArcB, in A. actinomycetemcomitans, senses redox growth conditions and regulates the expression of surface components of the bacterial cell related to biofilm formation and adhesion to saliva coated surfaces. PMID:24031399

  5. Interactive formation control in complex environments.

    PubMed

    Henry, Joseph; Shum, Hubert P H; Komura, Taku

    2014-02-01

    The degrees of freedom of a crowd is much higher than that provided by a standard user input device. Typically, crowd-control systems require multiple passes to design crowd movements by specifying waypoints, and then defining character trajectories and crowd formation. Such multi-pass control would spoil the responsiveness and excitement of real-time control systems. In this paper, we propose a single-pass algorithm to control a crowd in complex environments. We observe that low-level details in crowd movement are related to interactions between characters and the environment, such as diverging/merging at cross points, or climbing over obstacles. Therefore, we simplify the problem by representing the crowd with a deformable mesh, and allow the user, via multitouch input, to specify high-level movements and formations that are important for context delivery. To help prevent congestion, our system dynamically reassigns characters in the formation by employing a mass transport solver to minimize their overall movement. The solver uses a cost function to evaluate the impact from the environment, including obstacles and areas affecting movement speed. Experimental results show realistic crowd movement created with minimal high-level user inputs. Our algorithm is particularly useful for real-time applications including strategy games and interactive animation creation.

  6. Interactive Formation Control in Complex Environments.

    PubMed

    Henry, Joseph; Shum, Hubert P H; Komura, Taku

    2013-08-13

    The degrees of freedom of a crowd is much higher than that provided by a standard user input device. Typically, crowd control systems require multiple passes to design crowd movements by specifying waypoints, and then defining character trajectories and crowd formation. Such multi-pass control would spoil the responsiveness and excitement of real-time control systems. In this paper, we propose a single-pass algorithm to control a crowd in complex environments. We observe that low level details in crowd movement are related to interactions between characters and the environment, such as diverging/merging at cross points, or climbing over obstacles. Therefore, we simplify the problem by representing the crowd with a deformable mesh, and allow the user, via multi-touch input, to specify high level movements and formations that are important for context delivery. To help prevent congestion, our system dynamically reassigns characters in the formation by employing a mass transport solver to minimise their overall movement. The solver uses a cost function to evaluate the impact from the environment, including obstacles and areas affecting movement speed. Experimental results show realistic crowd movement created with minimal high-level user inputs. Our algorithm is particularly useful for real-time applications including strategy games and interactive animation creation.

  7. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  8. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  9. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways

    SciTech Connect

    Pysher, Michele D. Chen, Qin M.; Vaillancourt, Richard R.

    2008-09-01

    Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As{sup 3+}) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As{sup 3+} exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.

  10. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring

    NASA Astrophysics Data System (ADS)

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton.

  11. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  12. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  13. PERP regulates enamel formation via effects on cell–cell adhesion and gene expression

    PubMed Central

    Jheon, Andrew H.; Mostowfi, Pasha; Snead, Malcolm L.; Ihrie, Rebecca A.; Sone, Eli; Pramparo, Tiziano; Attardi, Laura D.; Klein, Ophir D.

    2011-01-01

    Little is known about the role of cell–cell adhesion in the development of mineralized tissues. Here we report that PERP, a tetraspan membrane protein essential for epithelial integrity, regulates enamel formation. PERP is necessary for proper cell attachment and gene expression during tooth development, and its expression is controlled by P63, a master regulator of stratified epithelial development. During enamel formation, PERP is localized to the interface between the enamel-producing ameloblasts and the stratum intermedium (SI), a layer of cells subjacent to the ameloblasts. Perp-null mice display dramatic enamel defects, which are caused, in part, by the detachment of ameloblasts from the SI. Microarray analysis comparing gene expression in teeth of wild-type and Perp-null mice identified several differentially expressed genes during enamel formation. Analysis of these genes in ameloblast-derived LS8 cells upon knockdown of PERP confirmed the role for PERP in the regulation of gene expression. Together, our data show that PERP is necessary for the integrity of the ameloblast–SI interface and that a lack of Perp causes downregulation of genes that are required for proper enamel formation. PMID:21285247

  14. Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation.

    PubMed

    Santiago-Martínez, Edgardo; Soplop, Nadine H; Patel, Rajesh; Kramer, Sunita G

    2008-07-28

    During Drosophila melanogaster heart development, a lumen forms between apical surfaces of contralateral cardioblasts (CBs). We show that Slit and its receptor Roundabout (Robo) are required at CB apical domains for lumen formation. Mislocalization of Slit outside the apical domain causes ectopic lumen formation and the mislocalization of cell junction proteins, E-cadherin (E-Cad) and Enabled, without disrupting overall CB cell polarity. Ectopic lumen formation is suppressed in robo mutants, which indicates robo's requirement for this process. Genetic evidence suggests that Robo and Shotgun (Shg)/E-Cad function together in modulating CB adhesion. robo and shg/E-Cad transheterozygotes have lumen defects. In robo loss-of-function or shg/E-Cad gain-of-function embryos, lumen formation is blocked because of inappropriate CB adhesion and an accumulation of E-Cad at the apical membrane. In contrast, shg/E-Cad loss-of-function or robo gain-of-function blocks lumen formation due to a loss of CB adhesion. Our data show that Slit and Robo pathways function in lumen formation as a repulsive signal to antagonize E-Cad-mediated cell adhesion.

  15. A systemic review of randomized controlled studies about prevention with pharmacologic agents of adhesion formation in the rat uterine horn model

    PubMed Central

    Ulug, Pasa

    2015-01-01

    Introduction Evaluation of treatment attempts in postoperative adhesion formation is pivotal for the prevention of several morbidities including infertility, pelvic pain, bowel obstruction, and subsequent intraoperative complications. The purpose of this systemic review was to assess the literature on the rat uterine horn model for adhesion formation and treatment modalities to prevent adhesion in the most frequently used experimental animal model. Material and methods We performed a systemic review of publications from January 1st 2000 to December 31st 2013 via a PubMed search. A high number of agents were evaluated for the prevention of postoperative adhesion formation in the rat uterine horn model. Results According to most of the studies, adjuvants such as antiinflamatuars, antiestrogens, antioxidants were effective to prevent adhesion formation. Conclusions Prevention of adhesion formation is pivotal and numerous types of agents were described in the literature were summarized in this review. PMID:25995741

  16. Molecular orbital studies in oxidation: Sulfate formation and metal-metal oxide adhesion

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1985-01-01

    The chemical mechanisms for sulfate formation from sodium chloride and sulfur trioxide, which is a product of jet fuel combustion was determined. Molten sodium sulfate leads to hot corrosion of the protective oxide layers on turbine blades. How yttrium dopants in nidkel-aluminum alloys used in turbine blades reduce the spalling rate of protective alumina films and enhance their adhesion was also determined. Two other fulfate mechanisms were deduced and structure of carbon monoxide on a clean chronium and clean platinum-titanium alloys surfaces was determined. All studies were by use of the atom superposition and electron delocalization molecular orbital (ASED-MO) theory. Seven studies were completed. Their titles and abstracts are given.

  17. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    PubMed

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  18. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex

    PubMed Central

    Lee, Kwangkook; Zhong, Xiaofen; Gu, Shenyan; Kruel, Anna Magdalena; Dorner, Martin B.; Perry, Kay; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2014-01-01

    How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 Ångströms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of HA complex sequesters E-cadherin in the monomeric state thereby compromising the E-cadherin-mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly-produced components and demonstrated that abolishing either E-cadherin- or carbohydrate-binding of HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A. PMID:24948737

  19. Effect of carbodiimide-derivatized hyaluronic acid gelatin on preventing postsurgical intra-abdominal adhesion formation and promoting healing in a rat model.

    PubMed

    Yuan, Fang; Lin, Long-Xiang; Zhang, Hui-Hui; Huang, Dan; Sun, Yu-Long

    2016-05-01

    Adhesions often occur after abdominal surgery. It could cause chronic pelvic pain, intestinal obstruction, and infertility. A hydrogel biomaterial, carbodiimide-derivatized hyaluronic acid gelatin (cd-HA gelatin), has been successfully used to reduce adhesion formation after flexor tendon grafting. This study investigated the efficacy of cd-HA gelatin in preventing postsurgical peritoneal adhesions in a rat model. The surgical traumas were created on the underlying muscle of the abdominal wall and the serosal layer of the cecum. The wounds were covered with or without cd-HA gelatin. Animals were euthanized at day 14 after surgery. Adhesion formation was assessed with adhesion degree and adhesion breaking strength. The healing of abdominal wall was evaluated with biomechanical testing and histological analysis. The adhesions occurred in all rats (n = 12) without cd-HA gelatin treatment. The application of cd-HA gelatin significantly reduced the adhesion rate from 100% to 58%. The decrease of adhesion breaking strength also manifested that cd-HA gelatin could reduce postsurgical intra-abdominal adhesion formation. Moreover, it was found that cd-HA gelatin was a safe material and could promote tissue healing. The cd-HA gelatin hydrogel could reduce the formation of intra-abdominal adhesions without adversely effects on wound healing.

  20. On the Formation of "Hypercoordinated" Uranyl Complexes

    SciTech Connect

    Schoendorff, George E.; De Jong, Wibe A.; van Stipdonk, Michael J.; Gibson, John K.; Rios, Daniel; Gordon, Mark S.; Windus, Theresa L.

    2011-09-05

    Recent gas phase experimental studies suggest the presence of hypercoordinated uranyl complexes. Coordination of acetone (Ace) to uranyl to form hypercoordinated species is examined using density functional theory (DFT) with a range of functionals and second order perturbation theory (MP2). Complexes with up to eight acetones were studied. It is shown that no more than six acetones can bind directly to uranium and that the observed uranyl complexes are not hypercoordinated.

  1. Glycosylation Genes Expressed in Seam Cells Determine Complex Surface Properties and Bacterial Adhesion to the Cuticle of Caenorhabditis elegans

    PubMed Central

    Gravato-Nobre, Maria J.; Stroud, Dave; O'Rourke, Delia; Darby, Creg; Hodgkin, Jonathan

    2011-01-01

    The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property—contact recognition of hermaphrodites by males during mating—was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway. PMID:20980242

  2. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  3. Research of surface activating influence on formation of adhesion between gas-thermal coating and steel substrate

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Klimenov, V.; Zaitsev, K.

    2015-09-01

    Estimation of influence of physical and thermal activating on adhesion between steel substrates and thermal coatings has been performed. The substrates with surfaces obtained by and ultrasonic surface plastic deformation were used. To evaluate physical activating, preheating of the substrates to 600°C was performed. To evaluate the effect of thermal activating, the substrate surfaces after interfacial detachment were examined. Bonded areas on the substrate surfaces were measured by means of optical profilometry. The experiments have shown that surface physical activating is the main factor in formation of the adhesive bond between the coating and the substrate processed with the proposed methods.

  4. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    SciTech Connect

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  5. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology

    PubMed Central

    Gordon, V. D.; O’Halloran, T.J.; Shindell, O.

    2015-01-01

    Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development. PMID:25866854

  6. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    FRP1 in regulating spermiation via its effects on the FAK signaling and retention of nectin-3 adhesion complex at the apical ES.—Wong, E. W. P., Lee, W. M., Cheng, C. Y. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. PMID:23073828

  7. Cell division orientation is coupled to cell–cell adhesion by the E-cadherin/LGN complex

    PubMed Central

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell–cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell–cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is mediated by the evolutionarily conserved LGN/NuMA complex, which regulates cortical attachments of astral spindle microtubules. We show that LGN, which adopts a three-dimensional structure similar to cadherin-bound catenins, binds directly to the E-cadherin cytosolic tail and thereby localizes at cell–cell adhesions. On mitotic entry, NuMA is released from the nucleus and competes LGN from E-cadherin to locally form the LGN/NuMA complex. This mediates the stabilization of cortical associations of astral microtubules at cell–cell adhesions to orient the mitotic spindle. Our results show how E-cadherin instructs the assembly of the LGN/NuMA complex at cell–cell contacts, and define a mechanism that couples cell division orientation to intercellular adhesion. PMID:28045117

  8. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement

    PubMed Central

    Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080

  9. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement.

    PubMed

    Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by (31)P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

  10. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans.

    PubMed

    Raut, Jayant S; Shinde, Ravikumar B; Chauhan, Nitin M; Karuppayil, S Mohan

    2013-01-01

    Biofilm-related infections caused by Candida albicans and associated drug resistant micro-organisms are serious problems for immunocompromised populations. Molecules which can prevent or remove biofilms are needed. Twenty-eight terpenoids of plant origin were analysed for their activity against growth, virulence attributes, and biofilms of C. albicans. Eighteen molecules exhibited minimum inhibitory concentrations of <2 mg ml(-1) for planktonic growth. Selected molecules inhibited yeast to hyphal dimorphism at low concentrations (0.031-0.5 mg ml(-1)), while adhesion to a solid surface was prevented at 0.5-2 mg ml(-1). Treatment with 14 terpenoids resulted in significant (p < 0.05) inhibition of biofilm formation, and of these, linalool, nerol, isopulegol, menthol, carvone, α-thujone, and farnesol exhibited biofilm-specific activity. Eight terpenoids were identified as inhibitors of mature biofilms. This study demonstrated the antibiofilm potential of terpenoids, which need to be further explored as therapeutic strategy against biofilm associated infections of C. albicans.

  11. Macroporous condensed poly(tetra fluoro-ethylene). II. In vivo effect on adhesion formation and tissue integration.

    PubMed

    Voskerician, Gabriela; Rodriguez, Analiz; Gingras, Peter H

    2007-08-01

    This study investigated the in vivo correlation between construct parameters (surface area, pore size) and polymer chemistry in modulating mesh-intestinal adhesions and mesh-abdominal wall integration of condensed poly(tetra fluoro-ethylene) (cPTFE) in hernia repair. A defect created by excising a 2 cm circular section of the abdominal wall from a rat was repaired with cPTFE or either one of the following synthetic meshes: expanded PTFE (ePTFE), ePTFE + polypropylene (PP), PP or PP + oxidized regenerated cellulose (ORC). The intestinal adhesion and abdominal wall integration were studied quantitatively by measuring the pull-out force required to separate each mesh from the respective tissue at 1 and 3 months postimplantation. The hydrophobic, large pore meshes, such as cPTFE and ePTFE + PP led to reduced adhesions. Further, the presence of ORC contributed to reduction in adhesions of the more hydrophilic PP + ORC mesh. The large pore size, thinner meshes such as cPTFE and PP + ORC led to better tissue integration compared to the other meshes tested. Through hydrophobic chemistry, low profile, and increased pore size, cPTFE balances the rapid resolution of the inflammatory and wound healing response that resists adhesion formation, with efficient integration within the surrounding abdominal tissue.

  12. Structural determinants for the formation of sulfhemeprotein complexes

    PubMed Central

    Román-Morales, Elddie; Pietri, Ruth; Ramos-Santana, Brenda; Vinogradov, Serge N.; Lewis-Ballester, Ariel; López-Garriga, Juan

    2010-01-01

    Several hemoglobins were explored by UV-Vis and resonance Raman spectroscopy to define sulfheme complex formation. Evaluation of these proteins upon the reaction with H2O2 or O2 in the presence of H2S suggest: (a) the formation of the sulfheme derivate requires a HisE7 residue in the heme distal site with an adequate orientation to form an active ternary complex; (b) that the ternary complex intermediate involves the HisE7, the peroxo or ferryl species, and the H2S molecule. This moiety precedes and triggers the sulfheme formation. PMID:20732304

  13. Experimental model of posttraumatic syringomyelia: the role of adhesive arachnoiditis in syrinx formation.

    PubMed

    Cho, K H; Iwasaki, Y; Imamura, H; Hida, K; Abe, H

    1994-01-01

    An experimental model was devised to elucidate the role of spinal blockade in posttraumatic syringomyelia. Thirty-eight Japanese White rabbits, each weighing about 3 kg, were used in this study. The animals were divided into four groups: in Group 1, eight animals received traumatic injury only; in Group 2, 12 animals received traumatic injury following injection of 100 mg kaolin suspended in 1 cc normal saline solution into the subarachnoid space at the site of trauma; in Group 3, nine animals received traumatic injury following injection of 200 mg kaolin in 1 cc normal saline solution into the subarachnoid space at the site of trauma; and in Group 4, nine animals without traumatic injury received an injection of 200 mg kaolin in 1 cc normal saline solution into the subarachnoid space. The subjective criteria for syrinx formation were the presence of a definite round cyst having a smooth margin and an upper or lower extension of more than 2 cm from the injured site. Syrinx formation was seen in 12.5% (one of eight rabbits) in Group 1, 41.7% (five of 12 animals) in Group 2, 55.5% (five of nine rabbits) in Group 3 and 0% (none of nine animals) in Group 4 (p < 0.05). There was a tendency for the combined trauma/kaolin injection groups to be more prone to develop a syrinx. In the kaolin injection only group (Group 4), no animal showed a definite cyst or an extending cavity during the experimental period. The results suggest that kaolin enhances the extension of multiple small cavities that have already formed at the time of initial injury. The difference between the frequency of syrinx formation and the time of survival was statistically significant well beyond the 0.05% level. The overall difference, relating to the frequency of syrinx development, group, and duration of survival, was also statistically significant. In summary, subarachnoid block secondary to adhesive arachnoiditis is important in initiating the extension of the syringomyelia cavity.

  14. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis.

    PubMed

    Cerca, Nuno; Pier, Gerald B; Vilanova, Manuel; Oliveira, Rosário; Azeredo, Joana

    2005-05-01

    Staphylococcus epidermidis is now well established as a major nosocomial pathogen associated with infections of indwelling medical devices. The major virulence factor of these organisms is their ability to adhere to devices and form biofilms. However, it has not been established that adherence and biofilm formation are closely linked phenotypes for clinical isolates. In this study, the initial adhesion to different materials (acrylic and glass) of 9 clinical isolates of S. epidermidis, along with biofilm-positive and biofilm-negative control strains, was assayed using physico-chemical interactions to analyze the basis for bacterial adherence to the substratum. X-ray photo electron spectroscopy (XPS) analysis of the cell surface elemental composition was also performed in an attempt to find a relationship between chemical composition and adhesion capabilities. Biofilm formation on the two surfaces was evaluated by dry weight measurements. Human erythrocytes were used to evaluate the ability of S. epidermidis strains to cause hemagglutination, an indicator of the production of a poly-N-acetyl glucosamine cell surface polysaccharide also involved in biofilm formation. The clinical isolates exhibited different cell wall physico-chemical properties, resulting in differing abilities to adhere to surfaces. Adhesion to hydrophobic substrata for all strains occurred to a greater extent than that to hydrophilic surfaces. Bacterial cell hydrophobicity seemed to have little or no influence on adhesion. X-ray photoelectron spectroscopy analysis showed a high ratio of oxygen/carbon for all strains, which is a common characteristic of S. epidermidis species. No relevant relationship was found between XPS data and adhesion values. All strains forming biofilms were able to agglutinate erythrocytes. However, no direct relationship was found between the amount of biofilm formed and the initial adhesion extent. These results indicate that high levels of initial adherence do not

  15. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  16. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression

    PubMed Central

    2014-01-01

    Background Smokers are more prone to oral infections than are non-smokers. Cigarette smoke reaches the host cells but also microorganisms present in the oral cavity. The contact between cigarette smoke and oral bacteria promotes such oral diseases as periodontitis. Cigarette smoke can also modulate C. albicans activities that promote oral candidiasis. The goal of this study was to investigate the effect of cigarette smoke condensate on C. albicans adhesion, growth, and biofilm formation as well as the activation of EAP1, HWP1 and secreted aspartic protease 2. Results Cigarette smoke condensate (CSC) increased C. albicans adhesion and growth, as well as biofilm formation. These features may be supported by the activation of certain important genes. Using quantitative RT-PCR, we demonstrated that CSC-exposed C. albicans expressed high levels of EAP1, HWP1 and SAP2 mRNA and that this gene expression increased with increasing concentrations of CSC. Conclusion CSC induction of C. albicans adhesion, growth, and biofilm formation may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced oral diseases. PMID:24618025

  17. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation and reformation in the rat model

    SciTech Connect

    Urman, B.; Gomel, V. )

    1991-09-01

    The local application of 0.25% or 0.4% HA before the induction of a measured laser injury on the rat uterine horn was associated with a significant reduction (P less than 0.05) in postoperative IP adhesions when compared with the group of animals pretreated with the diluent vehicle PBS or received no pretreatment. However, 0.4% HA, when applied in a similar manner, was ineffective in reducing reformation of adhesions after microsurgical adhesiolysis.

  18. Positronium formation in solid transition metal losartanates complexes

    NASA Astrophysics Data System (ADS)

    de Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F.; da Silva, J. G.; Windmöller, D.; Marques-Netto, A.; Machado, J. C.; Magalhães, W. F.

    2013-10-01

    In this Letter, positron annihilation lifetime (PALS) measurements were performed in transition metal losartanates complexes, MT(Los)2, and in potassium losartanate, KLos, in order to built up insights about the positronium formation mechanism in molecular environment. A correlation was obtained between formation probability, I3, and the covalence of complexes, evaluated by molar electrical conductivity in dimethylformamide (DMF). Furthermore, some metallic ion properties, such as reduction potential and pauling electronegativity, were also correlated with I3. These results were analyzed in terms of the spur model and of the recently proposed mechanism, named cybotatic correlated system kinetic mechanism (CCSKM), which involves molecular excited states in positronium formation.

  19. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history.

  20. Glycoprotein Ib-IX-V Complex Transmits Cytoskeletal Forces That Enhance Platelet Adhesion.

    PubMed

    Feghhi, Shirin; Munday, Adam D; Tooley, Wes W; Rajsekar, Shreya; Fura, Adriane M; Kulman, John D; López, Jose A; Sniadecki, Nathan J

    2016-08-09

    Platelets bind to exposed vascular matrix at a wound site through a highly specialized surface receptor, glycoprotein (GP) Ib-IX-V complex, which recognizes von Willebrand factor (VWF) in the matrix. GPIb-IX-V is a catch bond for it becomes more stable as force is applied to it. After attaching to the wound site, platelets generate cytoskeletal forces to compact and reinforce the hemostatic plug. Here, we evaluated the role of the GPIb-IX-V complex in the transmission of cytoskeletal forces. We used arrays of flexible, silicone nanoposts to measure the contractility of individual platelets on VWF. We found that a significant proportion of cytoskeletal forces were transmitted to VWF through GPIb-IX-V, an unexpected finding given the widely held notion that platelet forces are transmitted exclusively through its integrins. In particular, we found that the interaction between GPIbα and the A1 domain of VWF mediates this force transmission. We also demonstrate that the binding interaction between GPIbα and filamin A is involved in force transmission. Furthermore, our studies suggest that cytoskeletal forces acting through GPIbα are involved in maintaining platelet adhesion when external forces are absent. Thus, the GPIb-IX-V/VWF bond is able to transmit force, and uses this force to strengthen the bond through a catch-bond mechanism. This finding expands our understanding of how platelets attach to sites of vascular injury, describing a new, to the best of our knowledge, mechanism in which the catch bonds of GPIb-IX-V/VWF can be supported by internal forces produced by cytoskeletal tension.

  1. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation.

    PubMed

    Zhu, Junmin; He, Ping; Lin, Lin; Jones, Derek R; Marchant, Roger E

    2012-03-12

    The extracellular matrix (ECM) is an attractive model for designing synthetic scaffolds with a desirable environment for tissue engineering. Here, we report on the synthesis of ECM-mimetic poly(ethylene glycol) (PEG) hydrogels for inducing endothelial cell (EC) adhesion and capillary-like network formation. A collagen type I-derived peptide GPQGIAGQ (GIA)-containing PEGDA (GIA-PEGDA) was synthesized with the collagenase-sensitive GIA sequence attached in the middle of the PEGDA chain, which was then copolymerized with RGD capped-PEG monoacrylate (RGD-PEGMA) to form biomimetic hydrogels. The hydrogels degraded in vitro with the rate dependent on the concentration of collagenase and also supported the adhesion of human umbilical vein ECs (HUVECs). Biomimetic RGD/GIA-PEGDA hydrogels with incorporation of 1% RGD-PEGDA into GIA-PEGDA hydrogels induced capillary-like organization when HUVECs were seeded on the hydrogel surface, while RGD/PEGDA and GIA-PEGDA hydrogels did not. These results indicate that both cell adhesion and biodegradability of scaffolds play important roles in the formation of capillary-like networks.

  2. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  3. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.

    PubMed

    Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

    2009-06-01

    In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

  4. Androgens inhibit tumor necrosis factor-α-induced cell adhesion and promote tube formation of human coronary artery endothelial cells.

    PubMed

    Liao, Chun-Hou; Lin, Feng-Yen; Wu, Yi-No; Chiang, Han-Sun

    2012-06-01

    Endothelial cells contribute to the function and integrity of the vascular wall, and a functional aberration may lead to atherogenesis. There is increasing evidence on the atheroprotective role of androgens. Therefore, we studied the effect of the androgens-testosterone and dihydrotestosterone-and estradiol on human coronary artery endothelial cell (HCAEC) function. We found by MTT assay that testosterone is not cytotoxic and enhances HCAEC proliferation. The effect of testosterone (10-50 nM), dihydrotestosterone (5-50 nM), and estradiol (0.1-0.4 nM) on the adhesion of tumor necrosis factor-α (TNF-α)-stimulated HCAECs was determined at different time points (12-96 h) by assessing their binding with human monocytic THP-1 cells. In addition, the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), was determined by ELISA and Western blot analysis. Both testosterone and dihydrotestosterone attenuated cell adhesion and the expression of VCAM-1 and ICAM-1 in a dose- and time-dependent manner. Furthermore, androgen treatment for a longer duration inhibited cell migration, as demonstrated by wound-healing assay, and promoted tube formation on a Matrigel. Western blot analysis demonstrated that the expression of phosphorylated endothelial nitric oxide synthase (eNOS) increased, whereas that of inducible nitric oxide synthase (iNOS) decreased following the 96-h steroid treatment of TNF-α-stimulated HCAECs. Our findings suggest that androgens modulate endothelial cell functions by suppressing the inflammatory process and enhancing wound-healing and regenerative angiogenesis, possibly through an androgen receptor (AR)-dependent mechanism.

  5. [Adhesion of corynebacterium diphtheriae: the role of surface structures and formation mechanism].

    PubMed

    Kharseeva, G G; Alieva, A A

    2014-01-01

    The paper is devoted to the study of surface structures including pili (fimbriae) 67-72p surface protein, DIP 1281 surface protein, lipoarabinomannan CdiLAM and their role in the adhesion and colonization of the mucous membrane of the throat by Corynebacterium diphtheriae. A description is offered for the main stages in the adhesion process of diphtheria causative agent and the ability of its adhesins to stimulate the effect of innate and acquired immunity factors. The paper stresses prospectiveness of the development of vaccines forming immunoprotection of the organism against adhesive activity of C. diphtheriae and also preventing their colonization and reproduction. That would facilitate a solution for the problem of diphtheria carrier state, which cannot be solved using the existing means of preventive vaccination.

  6. Investigation Of Adhesion Formation In New Stainless Steel Trim Spring Operated Pressure Relief Valves

    SciTech Connect

    Gross, Robert E.; Bukowski, Julia V.; Goble, William M.

    2013-04-16

    Examination of proof test data for new (not previously installed) stainless steel (SS) trim spring operated pressure relief valves (SOPRV) reveals that adhesions form between the seat and disc in about 46% of all such SOPRV. The forces needed to overcome these adhesions can be sufficiently large to cause the SOPRV to fail its proof test (FPT) prior to installation. Furthermore, a significant percentage of SOPRV which are found to FPT are also found to ''fail to open'' (FTO) meaning they would not relief excess pressure in the event of an overpressure event. The cases where adhesions result in FTO or FPT appear to be confined to SOPRV with diameters < 1 in and set pressures < 150 psig and the FTO are estimated to occur in 0.31% to 2.00% of this subpopulation of SS trim SOPRV. The reliability and safety implications of these finding for end-users who do not perform pre-installation testing of SOPRV are discussed.

  7. RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Fu, Changliang; Chen, Feng; Zeng, Panying; Wu, Chengxiang; Ye, Qichao; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-27

    Melanoma cell migration across vascular endothelial cells is an essential step of tumor metastasis. Here, we provide evidence that RacGAP1, a cytokinesis-related Rho GTPase-activating protein, contributed to this process. Depletion of RacGAP1 with RacGAP1-targeting siRNA or overexpression of RacGAP1 mutant (T249A) attenuated melanoma cell transendothelial migration and concomitant changes of adherens junctions. In addition, RacGAP1 promoted the activations of RhoA, FAK, paxillin and triggered focal adhesion formation and cytoskeletal rearrangement. By overexpressing FAK-related non-kinase (FRNK) in endothelium, we showed that RacGAP1 mediated endothelial barrier function loss and melanoma transmigration in a focal adhesion-dependent manner. These results suggest that endothelial RacGAP1 may play critical roles in pathogenic processes of cancer by regulating endothelial permeability.

  8. Specific maltose derivatives modulate the swarming motility of nonswarming mutant and inhibit bacterial adhesion and biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Shetye, Gauri S; Singh, Nischal; Jia, Changqing; Nguyen, Chan D K; Wang, Guirong; Luk, Yan-Yeung

    2014-07-07

    We have demonstrated that specific synthetic maltose derivatives activate the swarming motility of a Pseudomonas aeruginosa nonswarming mutant (rhlA) at low concentration, but inhibit it at high concentration. Although these molecules are not microbicidal, active maltose derivatives with bulky hydrocarbon groups inhibited bacterial adhesion, and exhibited biofilm inhibition and dispersion (IC50 ~20 μM and DC50 ~30 μM, respectively). Because the swarming motility of the rhlA mutant is abolished by the lack natural rhamnolipids, the swarming activation suggests that maltose derivatives are analogues of rhamnolipids. Together, these results suggest a new approach of controlling multiple bacterial activities (bacterial adhesion, biofilm formation, and swarming motility) by a set of disaccharide-based molecules.

  9. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.

    PubMed

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H

    2015-06-09

    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  10. Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: function in junctional complexes and leukocyte adhesion.

    PubMed

    Lamagna, Chrystelle; Meda, Paolo; Mandicourt, Guillaume; Brown, James; Gilbert, Robert J C; Jones, E Yvonne; Kiefer, Friedemann; Ruga, Pilar; Imhof, Beat A; Aurrand-Lions, Michel

    2005-10-01

    The junctional adhesion molecules (JAMs) have been recently described as interendothelial junctional molecules and as integrin ligands. Here we show that JAM-B and JAM-C undergo heterophilic interaction in cell-cell contacts and that JAM-C is recruited and stabilized in junctional complexes by JAM-B. In addition, soluble JAM-B dissociates soluble JAM-C homodimers to form JAM-B/JAM-C heterodimers. This suggests that the affinity of JAM-C monomers to form dimers is higher for JAM-B than for JAM-C. Using antibodies against JAM-C, the formation of JAM-B/JAM-C heterodimers can be abolished. This liberates JAM-C from its vascular binding partner JAM-B and makes it available on the apical side of vessels for interaction with its leukocyte counter-receptor alpha(M)beta2 integrin. We demonstrate that the modulation of JAM-C localization in junctional complexes is a new regulatory mechanism for alpha(M)beta2-dependent adhesion of leukocytes.

  11. The adhesion molecule KAL-1/anosmin-1 regulates neurite branching through a SAX-7/L1CAM–EGL-15/FGFR receptor complex

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Ramos-Ortiz, Gibram A.; Bülow, Hannes E.

    2015-01-01

    Summary Neurite branching is essential for correct assembly of neural circuits, yet remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann Syndrome regulates neurite branching through mechanisms largely unknown. Here we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system. PMID:26004184

  12. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    SciTech Connect

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  13. Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration

    PubMed Central

    Kai, FuiBoon; Fawcett, James P.; Duncan, Roy

    2015-01-01

    Synaptopodin-2 (Synpo2), an actin-binding protein and invasive cancer biomarker, induces formation of complex stress fiber networks in the cell body and promotes PC3 prostate cancer cell migration in response to serum stimulation. The role of these actin networks in enhanced cancer cell migration is unknown. Using time-course analysis and live cell imaging of mock- and Synpo2-transduced PC3 cells, we now show that Synpo2 induces assembly of actin fibers near the cell periphery and Arp2/3-dependent lamellipodia formation. Lamellipodia formed in a non-directional manner or repeatedly changed direction, explaining the enhanced chemokinetic activity of PC3 cells in response to serum stimulation. Myosin contraction promotes retrograde flow of the Synpo2-associated actin filaments at the leading edge and their merger with actin networks in the cell body. Enhanced PC3 cell migration correlates with Synpo2-induced formation of lamellipodia and immature focal adhesions (FAs), but is not dependent on myosin contraction or FA maturation. The previously reported correlation between Synpo2-induced stress fiber assembly and enhanced PC3 cell migration therefore reflects the role of Synpo2 as a newly identified regulator of actin bundle formation and nascent FA assembly near the leading cell edge. PMID:25883213

  14. Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells.

    PubMed

    Zaoui, Kossay; Honoré, Stéphane; Isnardon, Daniel; Braguer, Diane; Badache, Ali

    2008-11-03

    Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as alpha-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo-RhoA-mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.

  15. SDA, a DNA aptamer inhibiting E- and P-selectin mediated adhesion of cancer and leukemia cells, the first and pivotal step in transendothelial migration during metastasis formation.

    PubMed

    Faryammanesh, Rassa; Lange, Tobias; Magbanua, Eileen; Haas, Sina; Meyer, Cindy; Wicklein, Daniel; Schumacher, Udo; Hahn, Ulrich

    2014-01-01

    Endothelial (E-) and platelet (P-) selectin mediated adhesion of tumor cells to vascular endothelium is a pivotal step of hematogenous metastasis formation. Recent studies have demonstrated that selectin deficiency significantly reduces metastasis formation in vivo. We selected an E- and P-Selectin specific DNA Aptamer (SDA) via SELEX (Systematic Evolution of Ligands by EXponential enrichment) with a K(d) value of approximately 100 nM and the capability of inhibiting the interaction between selectin and its ligands. Employing human colorectal cancer (HT29) and leukemia (EOL-1) cell lines we could demonstrate an anti-adhesive effect for SDA in vitro. Under physiological shear stress conditions in a laminar flow adhesion assay, SDA inhibited dynamic tumor cell adhesion to immobilized E- or P-selectin. The stability of SDA for more than two hours allowed its application in cell-cell adhesion assays in cell culture medium. When adhesion of HT29 cells to TNFα-stimulated E-selectin presenting human pulmonary microvascular endothelial cells was analyzed, inhibition via SDA could be demonstrated as well. In conclusion, SDA is a potential new therapeutic agent that antagonizes selectin-mediated adhesion during metastasis formation in human malignancies.

  16. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation

    PubMed Central

    Lagares, David; Busnadiego, Oscar; García-Fernández, Rosa Ana; Kapoor, Mohit; Liu, Shangxi; Carter, David E.; Abraham, David; Shi-Wen, Xu; Carreira, Patricia; Fontaine T, Benjamin A; Shea, Barry S; Tager, Andrew M; Leask, Andrew; Lamas, Santiago; Rodríguez-Pascual, Fernando

    2011-01-01

    Objective Enhanced adhesive signaling including activation of the focal adhesion kinase (FAK) is a hallmark of fibroblasts from lung fibrosis patients, and FAK has been therefore hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. Methods FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor, PF-562,271, or with siRNA-mediated silencing of FAK, were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and the lungs were harvested for histological and biochemical analysis. Using endothelin-1 (ET-1) as stimulus, cell adhesion and contraction, as well as profibrotic gene expression were studied in fibroblasts isolated from wild type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild type and integrin β1-deficient fibroblasts. Results Increased FAK expression and activity are upregulated in fibroblast foci and remodeled vessels in lung fibrosis patients. Pharmacological or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by Jun N-terminal kinase activation through integrin β1/FAK signaling. Conclusion These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases. PMID:22492165

  17. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  18. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  19. Separation of distinct adhesion complexes and associated cytoskeleton by a micro-stencil-printing method.

    PubMed

    Caballero, David; Osmani, Naël; Georges-Labouesse, Elisabeth; Labouesse, Michel; Riveline, Daniel

    2012-01-01

    Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.

  20. Thermodynamics and kinetics of aqueous ferric phosphate complex formation

    SciTech Connect

    Wilhelmy, R.B.; Patel, R.C.; Matijevic, E.

    1985-09-25

    The equilibria and kinetics of complexation of iron(III) with phosphoric acid (at pH < 2) were studied at 25 and 50/sup 0/C at ionic strength ..mu.. = 2.5 M by using spectrophotometric and stopped-flow techniques. The results are consistent with the formation of two complexes, FeH/sub 2/PO/sub 4//sup 2 +/ and Fe(H/sub 2/PO/sub 4/)/sub 2//sup +/. The second species could only be detected by the analysis of kinetic data. The equilibrium constants, extinction coefficients, rate constants, and activation parameters for the formation of these complexes are given. A mechanism is proposed to account for the observed hydrogen ion dependency of the apparent forward rate constants. 35 references, 8 figures, 6 tables.

  1. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    PubMed

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-09-15

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand.

  2. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    PubMed Central

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  3. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation.

    PubMed

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M; Gil, Francisco J; Rodriguez, Daniel

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria-cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties.

  4. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  5. Multiple exposures to chlorhexidine and xylitol: adhesion and biofilm formation by Streptococcus mutans.

    PubMed

    Modesto, Adriana; Drake, David R

    2006-06-01

    Growing evidence from clinical studies suggests that mothers using xylitol gums or lozenges have decreased levels of Streptococcus mutans (SM) and do not transmit these cariogenic bacteria as readily to their children. To begin to determine mechanisms for these clinical findings and to explore potential synergism of antimicrobial combinations, we studied the effect of multiple exposures of chlorhexidine (CHX) combined with copper gluconate (CG) or zinc gluconate (ZG) followed by xylitol (XYL) on the ability of SM to adhere and form biofilms. Cell suspensions of SM were exposed two times to CHX; CG; CHX plus CG; ZG; and CHX plus ZG, and then four times to XYL. Control cells were exposed six times to water or XYL or received no treatment. For biofilm assessment, glass slides were inoculated with treated cells, and numbers of bacteria were enumerated after 48 hours of incubation. To assess the ability of SM to adhere, microtiter plate wells coated with primary S. sanguinis biofilms grown in sucrose were inoculated with treated SM, and adhesion was determined. Cells exposed to CHX-XYL combinations exhibited significant but transient inhibition of growth. The multiple-exposure regimen groups showed significant decreases in the ability of SM to form biofilms (P < 0.05). However, the CHX-XYL group exhibited a much greater effect than the other treatment groups (P < 0.001). Adhesion studies revealed that none of the multiple-exposure regimens had a significant effect on adhesion of SM to primary biofilms of S. sanguinis. We concluded that significant inhibition of SM growth and subsequent inability to grow as biofilms in the presence of sucrose occurs after a staggered exposure regimen to CHX initially and then to XYL. This may help explain the clinical data showing the decreased levels of SM in mothers treated with CHX and XYL.

  6. Formation of Complex Molecules via radiative association reactions

    NASA Astrophysics Data System (ADS)

    Acharyya, Kinsuk; Herbst, Eric

    2016-07-01

    The detection of increasing numbers of complex organic molecules in the various phases of star formation plays a key role since they follow the same chemical rules of carbon-based chemistry that are observed in our planet Earth. Many of these molecules are believed to be formed on the surfaces of grains, and can then be released to the gas phase when these grains are heated. This is evident when we observe a rich chemistry in hot core regions. However, recently complex organic molecules have also been observed in cold clouds. Therefore, it is necessary to re-examine various pathways for the formation of these molecules in the gas phase. In this presentation, I will discuss role of radiative association reactions in the formation of complex molecules in the gas phase and at low temperature. We will compare abundance of assorted molecules with and without new radiative association reactions and will show that the abundance of a few complex molecules such as HCOOCH3, CH3OCH3 etc. can go up due to introduction of these reactions, which can help to explain their observed abundances.

  7. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  8. Accelerating procelain formation by incorporating a complex additive

    SciTech Connect

    Maslennikova, G.N.; Dubovitskii, S.A.; Moroz, I.K.

    1986-05-01

    The authors studied the influence of a complex additive consisting of oxides of calcium, zinc, and magnesium on the formaton of porcelain. In order to achieve a more uniform distribution of the complex additive in the porcelain body it was incorporated in the form of water soluble salts-nitrates, which ensured comparability of results and excluded the effect of the different types of anions. The study of the main parameters of sintering (porosity, shrinkage, and mechanical strength) for the test bodies showed that they sinter at lower temperatures and attain zero porosity, maximum shrinkage, and mechanical strength. The most typical bodies indentified in this way were investigated by methods of complex differential thermal analysis and x-ray diffraction. Thus, the introduction of complex additives consisting of calcium, zinc, and magnesium oxides contributes to the earlier formation of porcelain. With the reduction of firing temperatures by 100/sup 0/C the authors observe an improvement in the basic properties of porcelain.

  9. Candida albicans adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory Melaleuca alternifolia (tea tree) essential oil.

    PubMed

    Sudjana, Aurelia N; Carson, Christine F; Carson, Kerry C; Riley, Thomas V; Hammer, Katherine A

    2012-11-01

    This study investigated the effects of the volatile terpene-rich oil from Melaleuca alternifolia (tea tree oil) on the formation of biofilms and the adhesion of C. albicans cells to both biotic and abiotic surfaces. Biofilm formation on polystyrene was significantly inhibited for 70% of the isolates at the lowest test concentration of 0.016% of tea tree oil (TTO) when quantified by XTT and 40% of isolates when measured by crystal violet staining. Adhesion to polystyrene, quantified by crystal violet staining, was significantly reduced for 3 isolates at 0.031%, 6 isolates at 0.062% and 0.125% and for all 7 isolates at 0.25% TTO. Reductions in adhesion were not due to loss of viability (at concentrations of ≤ 0.125%) or interactions between the TTO and polystyrene. Similarly, adhesion to buccal epithelial and HeLa cells was also significantly reduced in the presence of 0.016-0.062% TTO. Treatment with 0.125% TTO, but not 0.062%, decreased the cell surface hydrophobicity of C. albicans, indicating one potential mechanism by which adhesion may be reduced. These data demonstrate that sub-inhibitory TTO reduces the adhesion of C. albicans to both human cells and polystyrene, inhibits biofilm formation and decreases cell surface hydrophobicity.

  10. Impact of adhesive and photoactivation method on sealant integrity and polymer network formation.

    PubMed

    Borges, Boniek Castillo Dutra; Pereira, Fabrício Lopes da Rocha; Alonso, Roberta Caroline Bruschi; Braz, Rodivan; Montes, Marcos Antônio Japiassú Resende; Pinheiro, Isauremi Vieira de Assunção; Santos, Alex José Souza dos

    2012-01-01

    We evaluated the influence of photoactivation method and hydrophobic resin (HR) application on the marginal and internal adaptation, hardness (KHN), and crosslink density (CLD) of a resin-based fissure sealant. Model fissures were created in bovine enamel fragments (n = 10) and sealed using one of the following protocols: no adhesive system + photoactivation of the sealant using continuous light (CL), no adhesive system + photoactivation of the sealant using the soft-start method (SS), HR + CL, or HR + SS. Marginal and internal gaps and KHN were assessed after storage in water for 24 h. The CLD was indirectly assessed by repeating the KHN measurement after 24 h of immersion in 100% ethanol. There was no difference among the samples with regard to marginal or internal adaptation. The KHN and CLD were similar for samples cured using either photoactivation method. Use of a hydrophobic resin prior to placement of fissure sealants and curing the sealant using the soft-start method may not provide any positive influence on integrity or crosslink density.

  11. Photodynamic inactivation of fibroblasts and inhibition of Staphylococcus epidermidis adhesion and biofilm formation by toluidine blue O.

    PubMed

    Li, Xin; Liu, Zizhong; Liu, Houfang; Chen, Xi; Liu, Yue; Tan, Honglue

    2017-04-01

    Treating skin and soft tissue infections of severe limb traumas can be challenging. Crucial concerns focus on inhibiting biofilm formation by antibiotic‑resistant bacteria, and preventing scar formation by fibroblastic hyperproliferation. The local use of toluidine blue O (TBO)‑mediated photodynamic therapy (PDT) may be a promising strategy for treating such lesions. The present study used Staphylococcus epidermidis (strain ATCC 35984) to assess the effects of TBO‑PDT on bacterial adherence and biofilm formation, using confocal laser scanning microscopy (CLSM), tissue culture plating (TCP) and scanning electron microscopy (SEM). Primary human fibroblast cells were used to evaluate the cytotoxicity of TBO‑PDT using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and CLSM. Six different treatment groups were investigated: Medium only [tryptone soy broth (TSB) or Dulbecco's modified Eagle's medium (DMEM)]; red light control (light dose, 30 J/cm2); TBO group (50 mM TBO); TBO‑PDT1 (TBO irradiated with 10 J/cm2); TBO‑PDT2 (TBO irradiated with 20 J/cm2); and TBO‑PDT3 (TBO irradiated with 30 J/cm2). The results of the S. epidermidis adhesion assay indicated that the TSB, light and TBO groups exhibited significant bacterial adherence, compared with the TBO‑PDT groups. Analysis of biofilm formation revealed significant light dose‑dependent differences between the TBO‑PDT groups and the TSB, light, and TBO groups. Furthermore, SEM indicated fewer colony masses in the TBO‑PDT groups compared with the control groups. The MTT assay for fibroblastic cell toxicity demonstrated ~1.1, 4.6, 14.5, 29.7 and 43.4% reduction in optical density for the light, TBO, TBO‑PDT1, TBO‑PDT2 and TBO‑PDT3 groups, respectively, compared with the DMEM control group. There was no difference in toxicity between the light and control groups, however, there were significant differences among the TBO‑PDT groups. Finally

  12. Rosette: Understanding Star Formation in Molecular Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2010-09-01

    We propose Chandra imaging of three embedded clusters in the Rosette Molecular Cloud (RMC) complex. With complementary existing Spitzer and FLAMINGOS infrared surveys, the Chandra observation is critical for us to: (1) create a complete census of the young stars in the cloud; (2) study the spatial distribution of the young stars in different evolutionary stages within the RMC and the disk frequency in the embedded clusters; (3) construct X-ray Luminosity Function (XLF) and Initial Mass Function (IMF) for the clusters to examine XLF/IMF variations; (4) elucidate star formation history in this complex.

  13. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  14. Gel phase formation in dilute triblock copolyelectrolyte complexes

    PubMed Central

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-01-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics. PMID:28230046

  15. Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration.

    PubMed

    Astrinidis, Aristotelis; Cash, Timothy P; Hunter, Deborah S; Walker, Cheryl L; Chernoff, Jonathan; Henske, Elizabeth P

    2002-12-05

    Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome characterized by seizures, mental retardation, autism, and tumors of the brain, kidney, heart, retina, and skin. TSC is caused by mutations in either TSC1 or TSC2, both of which are tumor suppressor genes. Hamartin, the protein product of TSC1, was found to interact with the ezrin-radixin-moesin family of cytoskeletal proteins and to activate the small GTPase Rho. To determine whether tuberin, the TSC2 product, can also activate Rho, we stably expressed full-length human tuberin in two cell types: MDCK cells and ELT3 cells. ELT3 cells lack endogenous tuberin expression. We found that expression of human tuberin in both MDCK and ELT3 cells was associated with an increase in the amount of Rho-GTP, but not in Rac1-GTP or cdc42-GTP. Tuberin expression increased cell adhesion in both cell types, and decreased chemotactic cell migration in ELT3 cells. In MDCK cells, there was a decrease in the amount of total Focal Adhesion Kinase (FAK) and an increase in the fraction of phosphorylated FAK. These findings demonstrate for the first time that tuberin activates Rho and regulates cell adhesion and migration. Pathways involving Rho activation may have relevance to the clinical manifestations of TSC, including pulmonary lymphangioleiomyomatosis.

  16. Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions

    PubMed Central

    Stewart, Rachel M.; Zubek, Amanda E.; Rosowski, Kathryn A.; Schreiner, Sarah M.

    2015-01-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex allows cells to actively control nuclear position by coupling the nucleus to the cytoplasmic cytoskeleton. Nuclear position responds to the formation of intercellular adhesions through coordination with the cytoskeleton, but it is not known whether this response impacts adhesion function. In this paper, we demonstrate that the LINC complex component SUN2 contributes to the mechanical integrity of intercellular adhesions between mammalian epidermal keratinocytes. Mice deficient for Sun2 exhibited irregular hair follicle intercellular adhesions, defective follicle structure, and alopecia. Primary mouse keratinocytes lacking Sun2 displayed aberrant nuclear position in response to adhesion formation, altered desmosome distribution, and mechanically defective adhesions. This dysfunction appeared rooted in a failure of Sun2-null cells to reorganize their microtubule network to support coordinated intercellular adhesion. Together, these results suggest that cross talk between the nucleus, cytoskeleton, and intercellular adhesions is important for epidermal tissue integrity. PMID:25963820

  17. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells

    PubMed Central

    Pathak, Alokkumar; Zhao, Renyi; Huang, Jianhua; Stouffer, George A

    2008-01-01

    Background The use of abciximab (c7E3 Fab) or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC) are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived), c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1) activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK) activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC. PMID:19108709

  18. Demixing-stimulated lane formation in binary complex plasma

    SciTech Connect

    Du, C.-R.; Jiang, K.; Suetterlin, K. R.; Ivlev, A. V.; Morfill, G. E.

    2011-11-29

    Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify a critical value of the non-additivity parameter {Delta} for the crossover.

  19. The catalytic role of uranyl in formation of polycatechol complexes

    PubMed Central

    2011-01-01

    To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization. PMID:21396112

  20. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  1. Heat capacity contributions to the formation of inclusion complexes.

    PubMed

    Olvera, Angeles; Pérez-Casas, Silvia; Costas, Miguel

    2007-10-04

    An analysis scheme for the formation of the inclusion complexes in water is presented. It is exemplified for the case where the host is alpha-cyclodextrin and the guest is a linear alcohol (1-propanol to 1-octanol) or the isomers of 1-pentanol. Eight transfer isobaric heat capacities, DeltatCp, involving different initial and final states are evaluated at infinite dilution of the guest using both data determined in this work and from the literature. Apart from the usual definition for the inclusion heat capacity change, three inclusion transfers are used. The sign of each DeltatCp indicates if the transfer is an order-formation or an order-destruction process. From the DeltatCp data, the main contributions to the heat capacity of cyclodextrin complexation, namely, those due to dehydration of the hydrophobic section of the guest molecule, H-bond formation, formation of hydrophobic interactions, and release of water molecules from the cyclodextrin cavity, are estimated. The relative weight of each of these contributions to the DeltatCp values is discussed, providing a better characterization of the molecular recognition process involved in the inclusion phenomena.

  2. Identification of Haloferax volcanii Pilin N-Glycans with Diverse Roles in Pilus Biosynthesis, Adhesion, and Microcolony Formation.

    PubMed

    Esquivel, Rianne N; Schulze, Stefan; Xu, Rachel; Hippler, Michael; Pohlschroder, Mechthild

    2016-05-13

    N-Glycosylation is a post-translational modification common to all three domains of life. In many archaea, the oligosacharyltransferase (AglB)-dependent N-glycosylation of flagellins is required for flagella assembly. However, whether N-glycosylation is required for the assembly and/or function of the structurally related archaeal type IV pili is unknown. Here, we show that of six Haloferax volcanii adhesion pilins, PilA1 and PilA2, the most abundant pilins in pili of wild-type and ΔaglB strains, are modified under planktonic conditions in an AglB-dependent manner by the same pentasaccharide detected on H. volcanii flagellins. However, unlike wild-type cells, which have surfaces decorated with discrete pili and form a dispersed layer of cells on a plastic surface, ΔaglB cells have thick pili bundles and form microcolonies. Moreover, expressing PilA1, PilA2, or PilA6 in ΔpilA[1-6]ΔaglB stimulates microcolony formation compared with their expression in ΔpilA[1-6]. Conversely, expressing PilA3 or PilA4 in ΔpilA[1-6] cells results in strong surface adhesion, but not microcolony formation, and neither pilin stimulates surface adhesion in ΔpilA[1-6]ΔaglB cells. Although PilA4 assembles into pili in the ΔpilA[1-6]ΔaglB cells, these pili are, unlike wild-type pili, curled, perhaps rendering them non-functional. To our knowledge, this is the first demonstration of a differential effect of glycosylation on pilus assembly and function of paralogous pilins. The growth of wild-type cells in low salt media, a condition that decreases AglB glycosylation, also stimulates microcolony formation and inhibits motility, supporting our hypothesis that N-glycosylation plays an important role in regulating the transition between planktonic to sessile cell states as a response to stress.

  3. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots.

    PubMed

    Tran, Van-Tuan; Braus-Stromeyer, Susanna A; Kusch, Harald; Reusche, Michael; Kaever, Alexander; Kühn, Anika; Valerius, Oliver; Landesfeind, Manuel; Aßhauer, Kathrin; Tech, Maike; Hoff, Katharina; Pena-Centeno, Tonatiuh; Stanke, Mario; Lipka, Volker; Braus, Gerhard H

    2014-04-01

    Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.

  4. Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain.

    PubMed

    Miladi, Hanene; Mili, Donia; Ben Slama, Rihab; Zouari, Sami; Ammar, Emna; Bakhrouf, Amina

    2016-04-01

    Plant extracts, and their essential oils (EOs) are rich in a wide variety of secondary metabolites with antimicrobial properties. Our aim was to determine the bioactive compound in three mediterranean essential oils belonging to Lamiaceae family, Satureja montana L., Thymus vulgaris L. and Rosmarinus officinalis L., and to assess their antimicrobial, antibiofilm and anti-adhesive potentials against a foodborne pathogen Salmonella strain. The antibacterial activity of EOs and its biofilm inhibition potencies were investigated on 2 reference strains Salmonella typhimurium and 12 Salmonella spp. isolated from food. Biofilm inhibition were assessed using the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. The analytical data indicated that various monoterpene hydrocarbons and phenolic monoterpenes constitute the major components of the oils, but their concentrations varied greatly among the oils examined. Our results showed that S. montana L. and T. vulgaris L. essential oils possess remarkable anti biofilm, anti-adhesive and bactericidal properties, compared to R. officinalis EO. There is an indication that Rosmary EO might inhibit biofilm formation at higher concentrations. Therefore, the witer savory and thyme EOs represent a source of natural compounds that exhibit potentials for use in food systems to prevent the growth of foodborne bacteria and extend the shelf life of the processed food.

  5. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    PubMed

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  6. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment.

  7. Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway

    PubMed Central

    Sun, Hai-Jian; Zhao, Ming-Xia; Liu, Tong-Yan; Ren, Xing-Sheng; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1) and vascular cell adhesion molecule-1 (VCAM-1) in VSMCs. Silencing of ACAT-1 abolished the salusin-β-induced lipid accumulation, and silencing of VCAM-1 prevented the salusin-β-induced monocyte adhesion in VSMCs. Salusin-β caused p65-NFκB nuclear translocation and increased p65 occupancy at the ACAT-1 and VCAM-1 promoter. Inhibition of NFκB with Bay 11-7082 prevented the salusin-β-induced ACAT-1 and VCAM-1 upregulation, foam cell formation and monocyte adhesion in VSMCs. Scavenging ROS, inhibiting NADPH oxidase or knockdown of NOX2 abolished the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation and monocyte adhesion in VSMCs. Salusin-β increased miR155 expression, and knockdown of miR155 prevented the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation, monocyte adhesion and ROS production in VSMCs. These results indicate that salusin-β induces foam formation and monocyte adhesion via miR155/NOX2/NFκB-mediated ACAT-1 and VCAM-1 expressions in VSMCs. PMID:27004848

  8. Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway.

    PubMed

    Sun, Hai-Jian; Zhao, Ming-Xia; Liu, Tong-Yan; Ren, Xing-Sheng; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-03-23

    Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1) and vascular cell adhesion molecule-1 (VCAM-1) in VSMCs. Silencing of ACAT-1 abolished the salusin-β-induced lipid accumulation, and silencing of VCAM-1 prevented the salusin-β-induced monocyte adhesion in VSMCs. Salusin-β caused p65-NFκB nuclear translocation and increased p65 occupancy at the ACAT-1 and VCAM-1 promoter. Inhibition of NFκB with Bay 11-7082 prevented the salusin-β-induced ACAT-1 and VCAM-1 upregulation, foam cell formation and monocyte adhesion in VSMCs. Scavenging ROS, inhibiting NADPH oxidase or knockdown of NOX2 abolished the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation and monocyte adhesion in VSMCs. Salusin-β increased miR155 expression, and knockdown of miR155 prevented the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation, monocyte adhesion and ROS production in VSMCs. These results indicate that salusin-β induces foam formation and monocyte adhesion via miR155/NOX2/NFκB-mediated ACAT-1 and VCAM-1 expressions in VSMCs.

  9. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  10. Mercury(II) Penicillamine Complex Formation in Alkaline Aqueous Solution

    SciTech Connect

    Leung, B.O.; Jalilehvand, F.; Mah, V.

    2009-06-01

    The complex formation between mercury(II) and penicillamine (H{sub 2}Pen = 3,3'-dimethyl cysteine) in alkaline aqueous solutions (pH {approx}2) has been investigated with extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy. By varying the penicillamine concentration (C{sub H{sub 2}Pen} = 0.2--1.25 M) in {approx}0.1 M Hg(II) solutions, two coexisting major species [Hg(Pen){sub 2}]{sup 2-} and [Hg(Pen){sub 3}]{sub 4-} were characterized with mean Hg-S bond distances 2.34(2) and 2.44(2) {angstrom}, respectively. The [Hg(Pen){sub 2}]{sup 2-} complex with two deprotonated penicillamine ligands forms an almost linear S-Hg-S entity with two weak chelating Hg-N interactions at the mean Hg-N distance 2.52(2) {angstrom}. The same type of coordination is also found for the corresponding [Hg(Cys){sub 2}]{sup 2-} complex in alkaline aqueous solution with the mean bond distances Hg-S 2.34(2) {angstrom} and Hg-N 2.56(2) {angstrom}. The relative amounts of the [Hg(Pen){sub 2}]{sup 2-} and [Hg(Pen){sub 3}]{sup 4-} complexes were estimated by fitting linear combinations of the EXAFS oscillations to the experimental spectra. Also their {sup 199}Hg NMR chemical shifts were used to evaluate the complex formation, showing that the [Hg(Pen){sub 3}]{sup 4-} complex dominates already at moderate excess of the free ligand ([Pen{sup 2-}] > {approx} 0.1 M).

  11. Role of Aeromonas hydrophila flagella glycosylation in adhesion to Hep-2 cells, biofilm formation and immune stimulation.

    PubMed

    Merino, Susana; Wilhelms, Markus; Tomás, Juan M

    2014-11-28

    Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous heptasaccharide glycan. Two mutants with altered (light and strong) polar flagella glycosylation still able to produce flagella were previously obtained, as well as mutants lacking the O34-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. We compared these mutants, altogether with the wild type strain, in different studies to conclude that polar flagella glycosylation is extremely important for A. hydrophila adhesion to Hep-2 cells and biofilm formation. Furthermore, the polar flagella glycosylation is an important factor for the immune stimulation of IL-8 production via toll receptor 5 (TLR5).

  12. RhoA-mediated Phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions.

    PubMed

    Su, Wenjuan; Chardin, Pierre; Yamazaki, Masakazu; Kanaho, Yasunori; Du, Guangwei

    2006-04-01

    The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.

  13. Formation of a Ternary Complex for Selenocysteine Biosynthesis in Bacteria*

    PubMed Central

    Silva, Ivan R.; Serrão, Vitor H. B.; Manzine, Livia R.; Faim, Lívia M.; da Silva, Marco T. A.; Makki, Raphaela; Saidemberg, Daniel M.; Cornélio, Marinônio L.; Palma, Mário S.; Thiemann, Otavio H.

    2015-01-01

    The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNASec), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNASec complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNASec-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNASec-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds. PMID:26378233

  14. Effect of the Mode of Application of Cryopreserved Human Amniotic Membrane on Adhesion Formation after Abdomino-Pelvic Surgery in a Mouse Model

    PubMed Central

    Nassif, Joseph; Abbasi, Sehrish A.; Kechli, Mohamad Karim; Boutary, Suzan S.; Ghulmiyyah, Labib; Khalifeh, Ibrahim; Abou Ghaddara, Hussein; Nassar, Anwar H.

    2016-01-01

    Adhesions after abdomino-pelvic surgery are a cause of morbidity and reoperations. The use of human amniotic membrane (HAM) for adhesion prevention has given controversial results. The mode of administration of the amniotic membrane has not been well studied. This study assessed the efficacy of two modes of application of cryopreserved HAM, patch or fragmented in Lactated Ringer (LR) solution, for the prevention of pelvic adhesion formation postabdomino-pelvic surgery in a mice model. After a midline laparotomy incision, a small cautery lesion was done on each side of the abdominal wall peritoneum in mice. In Group A (control; n = 42), the abdomen was closed directly, Group B (n = 42) received 2.5 ml of LR prior to closure. In Groups C (n = 42) and D (n = 42), a 2 cm × 2 cm patch of HAM and another one fragmented and dispersed in 2.5 ml of LR were applied prior to closure, respectively. Two weeks later, a laparotomy was performed, and gross and pathological evaluation of adhesions, fibrosis, angiogenesis, and inflammation were conducted. Group D exhibited a significantly lower rate of gross adhesion formation. Fibrosis was significantly lowest in Group C as compared to the control. Group B had the lowest vascular formation in the adhesions. The use of HAM fragmented in LR solution is associated with a significantly lower incidence of postoperative adhesions in mice when compared to LR alone, HAM patch, or control. The mechanism of action of this reduction needs to be elucidated by future studies. PMID:27066485

  15. Effect of the Mode of Application of Cryopreserved Human Amniotic Membrane on Adhesion Formation after Abdomino-Pelvic Surgery in a Mouse Model.

    PubMed

    Nassif, Joseph; Abbasi, Sehrish A; Kechli, Mohamad Karim; Boutary, Suzan S; Ghulmiyyah, Labib; Khalifeh, Ibrahim; Abou Ghaddara, Hussein; Nassar, Anwar H

    2016-01-01

    Adhesions after abdomino-pelvic surgery are a cause of morbidity and reoperations. The use of human amniotic membrane (HAM) for adhesion prevention has given controversial results. The mode of administration of the amniotic membrane has not been well studied. This study assessed the efficacy of two modes of application of cryopreserved HAM, patch or fragmented in Lactated Ringer (LR) solution, for the prevention of pelvic adhesion formation postabdomino-pelvic surgery in a mice model. After a midline laparotomy incision, a small cautery lesion was done on each side of the abdominal wall peritoneum in mice. In Group A (control; n = 42), the abdomen was closed directly, Group B (n = 42) received 2.5 ml of LR prior to closure. In Groups C (n = 42) and D (n = 42), a 2 cm × 2 cm patch of HAM and another one fragmented and dispersed in 2.5 ml of LR were applied prior to closure, respectively. Two weeks later, a laparotomy was performed, and gross and pathological evaluation of adhesions, fibrosis, angiogenesis, and inflammation were conducted. Group D exhibited a significantly lower rate of gross adhesion formation. Fibrosis was significantly lowest in Group C as compared to the control. Group B had the lowest vascular formation in the adhesions. The use of HAM fragmented in LR solution is associated with a significantly lower incidence of postoperative adhesions in mice when compared to LR alone, HAM patch, or control. The mechanism of action of this reduction needs to be elucidated by future studies.

  16. The ribosome-associated complex antagonizes prion formation in yeast.

    PubMed

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  17. The ribosome-associated complex antagonizes prion formation in yeast

    PubMed Central

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    Abstract The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI+] prion – an alternative conformer of Sup35 protein – and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  18. Role of cell-cell adhesion complexes in embryonic stem cell biology.

    PubMed

    Pieters, Tim; van Roy, Frans

    2014-06-15

    Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. β-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of β-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.

  19. Simulations of photochemical smog formation in complex urban areas

    NASA Astrophysics Data System (ADS)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  20. Formation of gold mineralization in ultramafic alkalic magmatic complexes

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.; Sazonov, A. M.; Kononkova, N. N.

    2016-06-01

    Study of mineral inclusions within alluvial gold particles of the Guli Complex (East Siberia) and findings of lode gold in rocks of the same intrusion have demonstrated that gold mineralization occurs in interstitions of both early high-magnesium rocks (dunite) and later alkalic and carbonatite rocks. In dunite the native gold occurs in association with Fe-Ni sulfides (monosulfide solid solution, pentlandite, and heazlewoodite). Formation of the gold-bearing alloys took place under a low oxygen potential over a broad range of temperatures: from those close to 600°C down to below 400°C.

  1. Factors Leading to the Formation of Arc Cloud Complexes.

    DTIC Science & Technology

    1985-12-01

    I. M2i .16 MICROCnWY O TEST CHART NATIONAL BUREAU 0F STANDARDS-1963-A ils. ... TEXAS A&M UNIVERSITY DEPARTMENT OF R AOL mMETEOROLOGY FACTORS LEADING...PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKAFIT STUDENT AT: AREA & WORK UNIT NUMBERS Texas A&M Univ II. CONTROLLING...to an ACC. /0 FACTORS LEADING TO THE FORMATION OF ARC CLOUD COMPLEXES A Thesis by MARK JOHN WELSHINGER Submitted to the Graduate College of Texas A&M

  2. In vitro biofilm formation on the surface of resin-based dentine adhesives.

    PubMed

    Rolland, Sarah L; McCabe, John F; Robinson, Colin; Walls, Angus W G

    2006-06-01

    Prevention of root caries on exposed root surfaces in the aging population is a significant challenge. Bonding resins can be applied to exposed root surfaces as sealants; however, minimal data exists regarding biofilm formation on the surface of these resins. We hypothesized that an antibacterial dentine-bonding resin containing methacryloxydodecyl-pyridiniumbromide (MDPB) may reduce biofilm formation. Biofilms were produced in pooled stimulated natural whole saliva, supplemented with 1% sucrose, on the surface of 5 dentine-bonding resins (Clearfil SE, OptiBond Solo, Protect Bond, Protect Bond Primer, and Xeno III) using untreated root surfaces as controls. Biofilms were stained using the Live:Dead Baclight bacterial viability stain, viewed with confocal microscopy, and analyzed using ImageJ image-analysis software. Resin surfaces encouraged attachment of live bacteria compared with root surfaces. All resins showed similar bacterial colonization in sections adjacent to the resin surface, but in the central and outer portions of biofilms, Xeno III and Protect Bond Primer showed a viable bacterial load similar to that of the root surface. Fluoride-releasing resins (OptiBond Solo/Protect Bond) did not show reduced biofilm formation. Thus, antibacterial agents within the resins have a minimal effect on biofilm formation, particularly when directly adjacent to the root surface.

  3. Formative Assessment as Educational and Administrative Adhesive: Establishing an Elementary School Writing Center.

    ERIC Educational Resources Information Center

    Wilcox, Brad; Black, Sharon; Anstead, Marcia Howell

    1997-01-01

    Describes the collaboration between a university and an elementary school to establish a writing center at the elementary school, staffed by university students (preservice teachers). Describes the crucial role of ongoing formative assessment activity for both elementary students and the university preservice teachers. (SR)

  4. Redox reactions and complex formation of transplutonium elements in solutions

    SciTech Connect

    Krot, N.N.; Myasoedov, B.F.

    1986-01-01

    This paper gives a brief analysis of the kinetics and mechanism of a number of redox processes and the complex formation of transplutonium elements in unusual oxidation states. The composition and strength of complexes of TPE with various addends have been determined. The new experimental data on the oxidation potentials of americium and berkelium ions in solutions are cited in abbreviated form. It follows from the data that in phosphoric acid solutions, when the H/sub 3/PO/sub 4/ concentration is increased from 10 to 15 M, the oxidation potential of the couple Am(IV)-Am(III) decreases. The oxidation potentials of the couples Am(VI)-Am(V), Cm(V)-Cm(IV), and Bk(IV)Bk(III) are also presented.

  5. Cu(II) complex formation with xylitol in alkaline solutions.

    PubMed

    Norkus, Eugenijus; Vaiciūniene, Jūrate; Vuorinen, Tapani; Gaidamauskas, Ernestas; Reklaitis, Jonas; Jääskeläinen, Anna-Stiina; Crans, Debbie C

    2004-02-25

    The formation of four Cu(II)-xylitol complexes was observed in aqueous alkaline solutions (11.0< or =pH< or =14.0, I=1.0, 20 degrees C) by means of direct current polarography and VIS spectrophotometry. Mononuclear hydroxy complexes, CuXyl(OH)- (log beta=17.7 +/- 0.5), CuXyl(OH)2(2-) (log beta=20.2 +/- 0.3) and CuXyl2(OH)2(4-) (log beta=22.4 +/- 0.3), are formed at high ligand-to-metal ratios (L:M> or =10), whereas dinuclear complex Cu2Xyl (log beta=29.2 +/- 0.3) is the predominant species at low ligand-to-metal ratio (L:M=0.5). Diffusion coefficients and molar absorptivities of the complex species were determined. pH variable 13C NMR suggested that pKa values of xylitol are rather similar and equal to 13.8 +/- 0.2, 13.9 +/- 0.1 and 13.9 +/- 0.2 for OH-groups adjacent to (C-1,C-5), (C-3) and (C-2,C-4) carbon atoms, respectively.

  6. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  7. Thermodynamics for complex formation between palladium(ii) and oxalate.

    PubMed

    Pilný, Radomír; Lubal, Přemysl; Elding, Lars I

    2014-08-28

    Complex formation between [Pd(H2O)4](2+) and oxalate (ox = C2O4(2-)) has been studied spectrophoto-metrically in aqueous solution at variable temperature, ionic strength and pH. Thermodynamic parameters at 298.2 K and 1.00 mol dm(-3) HClO4 ionic medium for the complex formation [Pd(H2O)4](2+) + H2ox ⇄ [Pd(H2O)2(ox)] + 2H3O(+) with equilibrium constant K1,H (in mol dm(-3)) are log10K1,H = 3.38 ± 0.08, ΔH = -33 ± 3 kJ mol(-1), and ΔS = -48 ± 11 J K(-1) mol(-1), as determined from spectrophotometric equilibrium titrations at 15.0, 20.0, 25.0 and 31.0 °C. Thermodynamic overall stability constants β (in (mol dm(-3))(-n), n = 1,2) for [Pd(H2O)2(ox)] and [Pd(ox)2](2-) at zero ionic strength and 298.2 K, defined as the equilibrium constants for the reaction Pd(2+) + nox(2-) ⇄ [Pd(ox)n](2-2n) (water molecules omitted) are log10β = 9.04 ± 0.06 and log10β = 13.1 ± 0.3, respectively, calculated by use of Specific Ion Interaction Theory from spectrophotometric titrations with initial hydrogen ion concentrations of 1.00, 0.100 and 0.0100 mol dm(-3) and ionic strengths of 1.00, 2.00 or 3.00 mol dm(-3). The values derived together with literature data give estimated overall stability constants for Pd(ii) compounds such as [Pd(en)(ox)] and cis-[Pd(NH3)2Cl2], some of them analogs to Pt(ii) complexes used in cancer treatment. The palladium oxalato complexes are significantly more stable than palladium(ii) complexes with monodentate O-bonding ligands. A comparison between several different palladium complexes shows that different parameters contribute to the stability variations observed. These are discussed together with the so-called chelate effect.

  8. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    NASA Astrophysics Data System (ADS)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  9. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells.

    PubMed

    Barcus, Craig E; Keely, Patricia J; Eliceiri, Kevin W; Schuler, Linda A

    2016-07-26

    Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.

  10. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells

    PubMed Central

    Barcus, Craig E.; Keely, Patricia J.; Eliceiri, Kevin W.; Schuler, Linda A.

    2016-01-01

    Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas. PMID:27344177

  11. Preventive Effects of the Intestine Function Recovery Decoction, a Traditional Chinese Medicine, on Postoperative Intra-Abdominal Adhesion Formation in a Rat Model

    PubMed Central

    Zhou, Cancan; Jia, Pengbo; Jiang, Zhengdong; Chen, Ke; Wang, Guanghui; Wang, Kang; Wei, Guangbing

    2016-01-01

    The intestine function recovery decoction (IFRD) is a traditional Chinese medicine that has been used for the treatment of adhesive intestinal obstruction. In this study, the preventative effects and probable mechanism of the IFRD were investigated in a rat model. We randomly assigned rats to five groups: normal, model, control, low dose IFRD, and high dose IFRD. In the animal model, the caecum wall and parietal peritoneum were abraded to induce intra-abdominal adhesion formation. Seven days after surgery, adhesion scores were assessed using a visual scoring system, and histopathological samples were examined. The levels of serum interleukin-6 (IL-6) and transforming growth factor beta-1 (TGF-β1) were analysed by an enzyme-linked immunosorbent assay (ELISA). The results showed that a high dose of IFRD reduced the grade of intra-abdominal adhesion in rats. Furthermore, the grades of inflammation, fibrosis, and neovascularization in the high dose IFRD group were significantly lower than those in the control group. The results indicate that the IFRD can prevent intra-abdominal adhesion formation in a rat model. These data suggest that the IFRD may be an effective antiadhesion agent. PMID:28105058

  12. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  13. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  14. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region

    PubMed Central

    Moroco, Jamie A.; Baumgartner, Matthew P.; Rust, Heather L.; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S.; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the ‘DFG-out’ conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. PMID:25376742

  15. Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion.

    PubMed

    Fabrichny, Igor P; Leone, Philippe; Sulzenbacher, Gerlind; Comoletti, Davide; Miller, Meghan T; Taylor, Palmer; Bourne, Yves; Marchot, Pascale

    2007-12-20

    The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a beta-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an alpha/beta-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism.

  16. A complex postnatal mental health intervention: Australian translational formative evaluation.

    PubMed

    Rowe, Heather J; Wynter, Karen H; Burns, Joanna K; Fisher, Jane R W

    2016-01-07

    Reducing the burden of postnatal maternal mental health problems is an international public health priority. We developed What Were We Thinking (WWWT), a psychoeducation programme for primary postnatal health care that addresses known but neglected risks. We then demonstrated evidence of its effects in a before-and-after controlled study in preventing maternal postnatal mental health problems among women without a psychiatric history participating in the intervention compared to usual care (AOR 0.43; 95% CI 0.21, 0.89) when conducted by specialist nurses. Testing its effectiveness when implemented in routine primary care requires changes at practitioner, organizational and health system levels. This paper describes a programme of translational formative evaluation to inform the protocol for a cluster RCT. Following the UK Medical Research Council (MRC) Guidance for evaluating complex interventions, we conducted a translational formative evaluation using mixed methods. Collection and analysis of postnatal health service documents, semi-structured interviews, group discussions and an online survey were used to investigate service provision, consumers' needs and expectations, clinicians' attitudes and clinical practice, and the implications for health service delivery. Participants were expectant parents, health care providers, health service managers and government policy makers. Results documented current clinical practice, staff training needs, necessary service modifications to standardize advice to parents and include fathers, key priorities and drivers of government health policy, and informed a model of costs and expected health and social outcomes. Implementation of WWWT into routine postnatal care requires adjustments to clinical practice. Staff training, modifications to service opening hours and economic implications for the health system also need to be considered. The MRC Guidance for developing and evaluating complex interventions is a useful framework

  17. Investigation of the Composition and Formation Constant of Molecular Complexes

    PubMed Central

    Sahai, R.; Loper, G. L.; Lin, S. H.; Eyring, H.

    1974-01-01

    It has been the purpose of the present paper to investigate and explore the conditions under which the linear relation between Δ/CD0 and Δ in the Hanna-Ashbaugh-Foster-Fyfe equation for the evaluation of equilibrium constants holds, (CD0 is initial concentration of a donor and Δ is the observed chemical shift relative to the chemical shift of the acceptor) to obtain the equation representing the exact linear relation between Δ/CD0 and Δ, when the linear relation between Δ/CD0 and Δ holds, and to discuss how to use the Job method in nuclear magnetic resonance measurements to determine the stoichiometry of molecular complexes. We have found that the conventional belief that CD0 should always be chosen to be much greater than CA0 (initial concentration of acceptor) is not necessarily always true and the exact linear relation between Δ/CD0 and Δ is represented by the equation Δ/CD0 = K1Δ0/(1 + K1CA0) - K1Δ/(1 + K1CA0)2, where K1 is the formation constant of the complex. It is shown that in the Job method of nuclear magnetic resonance measurements one has to plot ΔCA0 against the mole fraction, and the mole fraction at the maximum should give us the composition of the complex. Theoretical results have been verified experimentally on the weak interaction between naphthalene and methyl iodide. PMID:16592155

  18. Cadmium(II) complex formation with cysteine and penicillamine.

    PubMed

    Jalilehvand, Farideh; Leung, Bonnie O; Mah, Vicky

    2009-07-06

    The complex formation between cadmium(II) and the ligands cysteine (H(2)Cys) and penicillamine (H(2)Pen = 3,3'-dimethylcysteine) in aqueous solutions, having C(Cd(II)) approximately 0.1 mol dm(-3) and C(H(2)L) = 0.2-2 mol dm(-3), was studied at pH = 7.5 and 11.0 by means of (113)Cd NMR and Cd K- and L(3)-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine molar ratios, the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52-2.54 and 2.27-2.35 A, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50-2.53 A, but with the Cd-(N/O) bond distances in a similar wide range, 2.28-2.33 A. For the molar ratio C(H(2)L)/C(Cd(II)) = 2, the (113)Cd chemical shifts, in the range 509-527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS(2)N(N/O) coordination geometry. With a large excess of cysteine (molar ratios C(H(2)Cys)/C(Cd(II)) >or= 10), complexes with CdS(4) coordination geometry dominate, consistent with the (113)Cd NMR chemical shifts, delta approximately 680 ppm at pH 7.5 and 636-658 ppm at pH 11.0, and their mean Cd-S distances were 2.53 +/- 0.02 A. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)(4)](n-), while at higher pH, the deprotonation of the amine groups promotes chelate formation. At pH 11.0, a minor amount of the [Cd(Cys)(3)](4-) complex with CdS(3)N coordination is formed. For the corresponding penicillamine solutions with molar ratios C(H(2)Pen)/C(Cd(II)) >or= 10, the (113)Cd NMR chemical shifts, delta approximately 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances, Cd-S 2.53 +/- 0.02 A and Cd-(N/O) 2.30-2.33 A, indicate that [Cd(penicillaminate)(3)](n-) complexes with chelating CdS(3)(N/O) coordination dominate already at pH 7.5 and become mixed with CdS(2)N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the

  19. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion.

    PubMed

    Zhang, Liudi; Casey, Brendan; Galanakis, Dennis K; Marmorat, Clement; Skoog, Shelby; Vorvolakos, Katherine; Simon, Marcia; Rafailovich, Miriam H

    2017-03-02

    Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry.

  20. Addition of surfactants in ozonated water cleaning for the suppression of functional group formation and particle adhesion on the SiO2 surface

    NASA Astrophysics Data System (ADS)

    Yang, Jahyun; Im, Kyungtaek; Lim, Sangwoo

    2011-04-01

    Various kinds of surfactants were added to a cleaning solution and deionized (DI) water, and their effect on the suppression of organic function group formation and particle adhesion to a SiO2 surface was analyzed using multi-internal reflection Fourier transform infrared spectroscopy. The results implied that attached organic functional groups are affected by the chemical structure of a surfactant in DI water. Furthermore, the addition of anionic glycolic acid ethoxylate 4-tert-butylphenyl ether (GAE4E) is the most effective in terms of preventing organic group attachment and particle adhesion to the SiO2 surface, whether it was added to the cleaning solution or post-cleaning rinse water, with or without polystyrene latex particles. Moreover, it was possible to completely prevent particle adhesion to the SiO2 surface with the proper addition of GAE4E in DIO3 solution.

  1. Dynamical complexity in the perception-based network formation model

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Moon, Eunyoung

    2016-12-01

    Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.

  2. Mapping the homotypic binding sites in CD31 and the role of CD31 adhesion in the formation of interendothelial cell contacts

    PubMed Central

    1995-01-01

    CD31 is a member of the immunoglobulin superfamily consisting of six Ig- related domains. It is constitutively expressed by platelets, monocytes, and some lymphocytes, but at tenfold higher levels on vascular endothelial cells. CD31 has both homotypic and heterotypic adhesive properties. We have mapped the homotypic binding sites using a deletion series of CD31-Fc chimeras and a panel of anti-CD31 monoclonal antibodies. An extensive surface of CD31 is involved in homotypic binding with domains 2 and 3 and domains 5 and 6 playing key roles. A model consistent with the experimental data is that CD31 on one cell binds to CD31 on an apposing cell in an antiparallel interdigitating mode requiring full alignment of the six domains of each molecule. In addition to establishing intercellular homotypic contacts. CD31 binding leads to augmented adhesion via beta 1 integrins. The positive cooperation between CD31 and beta 1 integrins can occur in heterologous primate cells (COS cells). The interaction is specific to both CD31 and beta 1 integrins. Neither intercellular adhesion molecule-1 (ICAM- 1)/leukocyte function-associated antigen-1 (LCAM-1) nor neural cell adhesion molecule (NCAM)/NCAM adhesion leads to recruitment of beta 1 integrin adhesion pathways. Establishment of CD31 contacts have effects on the growth and morphology of endothelial cells. CD31(D1-D6)Fc inhibits the growth of endothelial cells in culture. In addition, papain fragments of anti-CD31 antibodies (Fab fragments) disrupt interendothelial contact formation and monolayer integrity when intercellular contacts are being formed. The same reagents are without effect once these contacts have been established, suggesting that CD31- CD31 interactions are critically important only in the initial phases of intercellular adhesion. PMID:7534767

  3. Complex formation dynamics in a single-molecule electronic device

    PubMed Central

    Wen, Huimin; Li, Wengang; Chen, Jiewei; He, Gen; Li, Longhua; Olson, Mark A.; Sue, Andrew C.-H.; Stoddart, J. Fraser; Guo, Xuefeng

    2016-01-01

    Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications. PMID:28138528

  4. Formation of Cluster Complexes by Cluster-Cluster-Collisions

    NASA Astrophysics Data System (ADS)

    Ichihashi, Masahiko; Odaka, Hideho

    2015-03-01

    Multi-element clusters are interested in their chemical and physical properties, and it is expected that they are utilized as catalysts, for example. Their properties critically depend on the size, composition and atomic ordering, and it should be important to adjust the above parameters for their functionality. One of the ways to form a multi-element cluster is to employ a low-energy collision between clusters. Here, we show characteristic results obtained in the collision between a neutral Ar cluster and a size-selected Co cluster ion. Low-energy collision experiment was accomplished by using a newly developed merging-beam apparatus. Cobalt cluster ions were produced by laser ablation, and mass-selected. On the other hand, argon clusters were prepared by the supersonic expansion of Ar gas. Both cluster beams were merged together in an ion guide, and ionic cluster complexes were mass-analyzed. In the collision of Co2+ and ArN, Co2Arn+ (n = 1 - 30) were observed, and the total intensity of Co2Arn+ (n >= 1) is inversely proportional to the relative velocity between Co2+ and ArN. This suggests that the charge-induced dipole interaction between Co2+ and a neutral Ar cluster is dominant in the formation of the cluster complex, Co2+Arn.

  5. Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1.

    PubMed

    Diaz, Jorge; Aranda, Evelyn; Henriquez, Soledad; Quezada, Marisol; Espinoza, Estefanía; Bravo, Maria Loreto; Oliva, Bárbara; Lange, Soledad; Villalon, Manuel; Jones, Marius; Brosens, Jan J; Kato, Sumie; Cuello, Mauricio A; Knutson, Todd P; Lange, Carol A; Leyton, Lisette; Owen, Gareth I

    2012-08-01

    Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3  h and returning to basal levels at 18  h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.

  6. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex.

    PubMed

    Jambhekar, Sunil S; Breen, Philip

    2016-02-01

    Cyclodextrins are cyclic oligosaccharides that have been recognized as pharmaceutical adjuvants for the past 20 years. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. These noncovalent inclusion complexes offer a variety of advantages over the noncomplexed form of a drug. Cyclodextrins are primarily used to enhance the aqueous solubility, physical chemical stability, and bioavailability of drugs. Their other applications include preventing drug-drug interactions, converting liquid drugs into microcrystalline powders, minimizing gastrointestinal and ocular irritation, and reducing or eliminating unpleasant taste and smell. Here, we discuss the physical chemical properties of various cyclodextrins, including the effects of substitutions on these properties. Additionally, we report on the regulatory status of their use, commercial products containing cyclodextrins, toxicological considerations, and the forces involved in complex formation. We also highlight the types of complex formed and discuss the methods used to determine the types of complex present.

  7. Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex

    PubMed Central

    Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter

    2012-01-01

    Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260

  8. Influence of the monomer structure and electrochemical parameters on the formation of nanotubes with parahydrophobic properties (high water adhesion) by a templateless electropolymerization process.

    PubMed

    Darmanin, Thierry; Laugier, Jean-Pierre; Orange, François; Guittard, Frédéric

    2016-03-15

    Controlling the formation of surface nanostructures and nanotubes in particular is extremely important for various applications in electronic devices for energy systems, biosensing but also for the control of water adhesion. Here, we use a direct (without template) electropolymerization process to produce vertically aligned nanotubes. Different monomers are tested as well as different solvents, electrolytes and electrodeposition methods. We show that naphtho[2,3-b]thieno[3,4-e][1,4]dioxine (NaphDOT) is the best monomer to obtain these nanotubes while dichloromethane has to be used as solvent for their formation. The surfaces with nanotubes display both extremely high apparent contact angles (θ(w)=142.7°) and high water adhesion even if the nanotubes are made of intrinsically hydrophilic polymers and are not densely packed.

  9. Changes in protein structure at the interface accompanying complex formation

    PubMed Central

    Chakravarty, Devlina; Janin, Joël; Robert, Charles H.; Chakrabarti, Pinak

    2015-01-01

    Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein–Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial. PMID:26594372

  10. Changes in protein structure at the interface accompanying complex formation.

    PubMed

    Chakravarty, Devlina; Janin, Joël; Robert, Charles H; Chakrabarti, Pinak

    2015-11-01

    Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein-Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial.

  11. Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology.

    PubMed Central

    Hildreth, J E; Subramanium, A; Hampton, R A

    1997-01-01

    While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1. PMID:8995639

  12. Conformational Plasticity in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex

    SciTech Connect

    Cheng, Shouqiang; Seven, Alpay B.; Wang, Jing; Skiniotis, Georgios; Özkan, Engin

    2016-12-01

    Synaptic specificity is a defining property of neural networks. In the cerebellum, synapses between parallel fiber neurons and Purkinje cells are specified by the simultaneous interactions of secreted protein cerebellin with pre-synaptic neurexin and post-synaptic delta-type glutamate receptors (GluD). Here, we determined the crystal structures of the trimeric C1q-like domain of rat cerebellin-1, and the first complete ectodomain of a GluD, rat GluD2. Cerebellin binds to the LNS6 domain of α- and β-neurexin-1 through a high-affinity interaction that involves its highly flexible N-terminal domain. In contrast, we show that the interaction of cerebellin with isolated GluD2 ectodomain is low affinity, which is not simply an outcome of lost avidity when compared with binding with a tetrameric full-length receptor. Rather, high-affinity capture of cerebellin by post-synaptic terminals is likely controlled by long-distance regulation within this transsynaptic complex. Altogether, our results suggest unusual conformational flexibility within all components of the complex.

  13. Stereospecific formation of dinuclear vanadium(V) tartrato complexes.

    PubMed

    Gáliková, Jana; Schwendt, Peter; Tatiersky, Jozef; Tracey, Alan S; Zák, Zdirad

    2009-09-07

    The first dinuclear nonperoxido tartrato complexes of vanadium(V), (NMe(4))(2)[V(2)O(4)((2R,3R)-H(2)tart)(2)] x 6 H(2)O (1), (NMe(4))(2)[V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)] (2), (NEt(4))(2)[V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)] (3) (tart = tartrato(4-) = C(4)H(2)O(6)(4-)) have been prepared from water-ethanol medium and characterized by X-ray structure analysis and spectral methods. The formation of the complexes has been found to be stereospecific; the composition and structure of anions containing one or both enantiomers of the ligand are profoundly different. The structure of anions in 1-3 also differs significantly from the structure of other dinuclear vanadium(V) alpha-hydroxycarboxylato complexes, but, interestingly, the geometry of the [V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)](2-) ion resembles the structure of the [(VO)(2)((2R,3R)-tart)((2S,3S)-tart)](4-) ion which has a vanadium(IV) center. Using Raman and (51)V NMR spectroscopy the solvent dependent mutual transformations of [V(4)O(8)((2R,3R)-tart)(2)](4-) (V(4)L(2)-RR), [V(4)O(8)((2S,3S)-tart)(2)](4-) (V(4)L(2)-SS), [V(2)O(4)((2R,3R)-H(2)tart)(2)](2-) (V(2)L(2)-RR), [V(2)O(4)((2S,3S)-H(2)tart)(2)](2-) (V(2)L(2)-SS), and [V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)](2-) (V(2)L(2)-rac) have been established. In aqueous solution the following reactions take place; 2 V(2)L(2)-rac --> V(2)L(2)-RR + V(2)L(2)-SS followed by partial decomposition, V(2)L(2)-RR --> V(4)L(2)-RR + 2 L (V(2)L(2)-SS --> V(4)L(2)-SS + 2 L). On the other hand V(2)L(2)-rac is stable in CH(3)CN solution while V(2)L(2)-RR (V(2)L(2)-SS) decomposes into several species.

  14. Structural basis of complement membrane attack complex formation

    PubMed Central

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a ‘multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a ‘split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  15. Structural basis of complement membrane attack complex formation.

    PubMed

    Serna, Marina; Giles, Joanna L; Morgan, B Paul; Bubeck, Doryen

    2016-02-04

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a 'multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a 'split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.

  16. Efficacy and Safety of Sodium Hyaluronate with 1,4-Butanediol Diglycidyl Ether Compared to Sodium Carboxymethylcellulose in Preventing Adhesion Formation after Lumbar Discectomy

    PubMed Central

    Ji, Gyu Yeul; Oh, Chang Hyun; Moon, Byung Gwan; Yi, Seong; Han, In Bo; Heo, Dong Hwa; Kim, Ki-Tack; Kim, Keung Nyun

    2015-01-01

    Objective Epidural injection of hyaluronic acid may prevent adhesion formation after spine surgery, but the compounds used to stabilize hyaluronidase could interfere with its anti-adhesion effects. The present study was conducted as a clinical trial to evaluate the efficacy and safety of an experimental medical gel in preventing adhesion formation. Methods This study was designed as a multicenter, randomized, double-blind, and comparative controlled clinical trial with an observation period of 6 weeks. Subjects were randomly assigned into two groups: group A with sodium hyaluronate + 1,4-butanediol diglycidyl ether (BDDE) and group B with sodium hyaluronate + sodium carboxymethylcellulose (CMC). Visual analogue scale (VAS) of back and leg pain and the Oswestry disability index (ODI) and scar score ratings were assessed after surgery. Results Mean scar grade was 2.37±1.13 in group A and 2.75±0.97 in group B, a statistically significant difference (p=0.012). VAS of back and leg pain and ODI scores decreased significantly from baseline to 3 and 6 weeks postoperatively in both groups (p<0.001). However, VAS and ODI scores were not statistically different between groups A and B at baseline or at 3 and 6 weeks after operation (p>0.3). The number of adverse reactions related to the anti-adhesion gels was not statistically different (p=0.569), but subsequent analysis of nervous adverse reactions showed group B was superior with a statistically difference (p=0.027). Conclusion Sodium hyaluronate with BDDE demonstrated similar anti-adhesion properties to sodium hyaluronate with CMC. But, care should be used to nervous adverse reactions by using sodium hyaluronate with BDDE. PMID:26217381

  17. Adhesion properties of chain-forming ferrofluids.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2009-04-01

    Denser and highly magnetized ferrofluids exhibit several non-Newtonian behaviors attributed to the formation of magnetic particle chains. We investigate the rheological and adhesive properties during tensile deformation of a confined chain-forming ferrofluid subjected to a radial magnetic field. Both the magnetoviscous contribution to the viscosity and the adhesive force are derived analytically. The response of the system to changes in the length of the chains is examined under zero and nonzero shear circumstances. Our results indicate that the existence of chains has a significant impact on the adhesive strength as well as on the viscosity of the ferrofluid, allowing it to display both shear-thinning and shear-thickening regimes. These findings open up the possibility of monitoring complex rheological responses of such fluids with the assistance of applied magnetic fields, allowing a more accurate assessment of their adhesive properties.

  18. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation.

    PubMed

    Nandi, Animesh; Estess, Pila; Siegelman, Mark

    2004-04-01

    CD44 on activated T cells can initiate contact and mediate rolling on hyaluronan on endothelial cells. We have shown that the integrin VLA-4 is used preferentially over LFA-1 in conjunction with this rolling interaction for firm adhesion. Here, we show by coimmunoprecipitation and transfection studies that CD44 associates with VLA-4 but not LFA-1 on the plasma membrane of immune cells. Absence of the cytoplasmic portion of CD44 abrogates this coassociation and attendant firm adhesion. Moreover, in an in vivo model of lymphocyte homing, cells expressing only the truncated form of CD44 together with VLA-4 fail to traffic to an inflamed site, thereby defining a discrete biological role for the cytoplasmic domain. These studies demonstrate a molecular mechanism whereby coanchoring within a single bimolecular complex between a primary and secondary adhesion molecule regulates a cell's ability to firmly adhere, providing a fundamental alteration to the paradigm of leukocyte extravasation.

  19. From the Cover: Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa.

    PubMed

    Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael

    2009-06-16

    Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism.

  20. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition.

    PubMed

    Maksimov, P; Hermosilla, C; Kleinertz, S; Hirzmann, J; Taubert, A

    2016-05-01

    Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.

  1. Relipidated tissue factor linked to collagen surfaces potentiates platelet adhesion and fibrin formation in a microfluidic model of vessel injury

    PubMed Central

    Colace, Thomas V.; Jobson, Jennielle; Diamond, Scott L.

    2011-01-01

    Microfluidic devices allow for the controlled perfusion of human or mouse blood over defined prothrombotic surfaces at venous and arterial shear rates. To mimic in vivo injuries such a plaque rupture, the need exists to link lipidated tissue factor (TF) to surface bound collagen fibers. Recombinant TF was relipidated in liposomes of phosphatidylserine/phosphatidylcholine/biotin-linked phosphatidylethanolamine (20:79:1 PS:PC:bPE molar ratio). Collagen was patterned in a 250-micron wide stripe and labeled with biotinylated anti-collagen antibody which was then bound with streptavidin, allowing the subsequent capture of the TF liposomes. To verify and detect the TF liposome-collagen assembly, individual molecular complexes of TF-factor VIIa on collagen were visualized using the Proximity Ligation Assay (PLA) to produce discretely localized fluorescent events that were strictly dependent on the presence of factor VIIa and primary antibodies against TF or factor VIIa. Perfusion for 450 sec (wall shear rate, 200 s−1) of corn trypsin inhibitor (CTI, a factor XIIa inhibitor) treated whole blood over the stripe of TF-collagen enhanced platelet adhesion by 30 ± 8% (p < 0.001) and produced measurable fibrin (>50-fold increase) as compared to surfaces lacking TF. PS:PC:bPE liposomes lacking TF resulted in no enhancement of platelet deposition. Essentially no fibrin was formed during perfusion over collagen surfaces or collagen surfaces with liposomes lacking TF despite the robust platelet deposition, indicating a lack of kinetically significant platelet-borne tissue factor in healthy donor blood. This study demonstrates a reliable approach to link functionally-active TF to collagen for microfluidic thrombosis studies. PMID:21902184

  2. Silver(I) complex formation with cysteine, penicillamine, and glutathione.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Mah, Vicky; Parvez, Masood; Wu, Qiao

    2013-04-15

    The complex formation between silver(I) and cysteine (H2Cys), penicillamine (H2Pen), and glutathione (H3Glu) in alkaline aqueous solution was examined using extended X-ray absorption fine structure (EXAFS) and (109)Ag NMR spectroscopic techniques. The complexes formed in 0.1 mol dm(-3) Ag(I) solutions with cysteine and penicillamine were investigated for ligand/Ag(I) (L/Ag) mole ratios increasing from 2.0 to 10.0. For the series of cysteine solutions (pH 10-11) a mean Ag-S bond distance of 2.45 ± 0.02 Å consistently emerged, while for penicillamine (pH 9) the average Ag-S bond distance gradually increased from 2.40 to 2.44 ± 0.02 Å. EXAFS and (109)Ag NMR spectra of a concentrated Ag(I)-cysteine solution (C(Ag(I)) = 0.8 mol dm(-3), L/Ag = 2.2) showed a mean Ag-S bond distance of 2.47 ± 0.02 Å and δ((109)Ag) 1103 ppm, consistent with prevailing, partially oligomeric AgS3 coordinated species, while for penicillamine (C(Ag(I)) = 0.5 mol dm(-3), L/Ag = 2.0) the mean Ag-S bond distance of 2.40 ± 0.02 Å and δ((109)Ag) 922 ppm indicate that mononuclear AgS2 coordinated complexes dominate. For Ag(I)-glutathione solutions (C(Ag(I)) = 0.01 mol dm(-3), pH ∼11), mononuclear AgS2 coordinated species with a mean Ag-S bond distance of 2.36 ± 0.02 Å dominate for L/Ag mole ratios from 2.0 to 10.0. The crystal structure of the silver(I)-cysteine compound (NH4)Ag2(HCys)(Cys)·H2O (1) precipitating at pH ∼10 was solved and showed a layer structure with both AgS3 and AgS3N coordination to the cysteinate ligands. A redetermination of the crystal structure of Ag(HPen)·H2O (2) confirmed the proposed digonal AgS2 coordination environment to bridging thiolate sulfur atoms in polymeric intertwining chains forming a double helix. A survey of Ag-S bond distances for crystalline Ag(I) complexes with S-donor ligands in different AgS2, AgS2(O/N), and AgS3 coordination environments was used, together with a survey of (109)Ag NMR chemical shifts, to assist assignments of the Ag

  3. A novel method for rapid and reliable detection of complex vertebral malformation and bovine leukocyte adhesion deficiency in Holstein cattle

    PubMed Central

    2012-01-01

    Background Complex vertebral malformation (CVM) and bovine leukocyte adhesion deficiency (BLAD) are two autosomal recessive lethal genetic defects frequently occurring in Holstein cattle, identifiable by single nucleotide polymorphisms. The objective of this study is to develop a rapid and reliable genotyping assay to screen the active Holstein sires and determine the carrier frequency of CVM and BLAD in Chinese dairy cattle population. Results We developed real-time PCR-based assays for discrimination of wild-type and defective alleles, so that carriers can be detected. Only one step was required after the DNA extraction from the sample and time consumption was about 2 hours. A total of 587 Chinese Holstein bulls were assayed, and fifty-six CVM-carriers and eight BLAD-carriers were identified, corresponding to heterozygote carrier frequencies of 9.54% and 1.36%, respectively. The pedigree analysis showed that most of the carriers could be traced back to the common ancestry, Osborndale Ivanhoe for BLAD and Pennstate Ivanhoe Star for CVM. Conclusions These results demonstrate that real-time PCR is a simple, rapid and reliable assay for BLAD and CVM defective allele detection. The high frequency of the CVM allele suggests that implementing a routine testing system is necessary to gradually eradicate the deleterious gene from the Chinese Holstein population. PMID:22958243

  4. Formation of Gold(III) Alkyls from Gold Alkoxide Complexes

    PubMed Central

    2017-01-01

    The gold(III) methoxide complex (C∧N∧C)AuOMe (1) reacts with tris(p-tolyl)phosphine in benzene at room temperature under O abstraction to give the methylgold product (C∧N∧C)AuMe (2) together with O=P(p-tol)3 ((C∧N∧C) = [2,6-(C6H3tBu-4)2pyridine]2–). Calculations show that this reaction is energetically favorable (ΔG = −32.3 kcal mol–1). The side products in this reaction, the Au(II) complex [Au(C∧N∧C)]2 (3) and the phosphorane (p-tol)3P(OMe)2, suggest that at least two reaction pathways may operate, including one involving (C∧N∧C)Au• radicals. Attempts to model the reaction by DFT methods showed that PPh3 can approach 1 to give a near-linear Au–O–P arrangement, without phosphine coordination to gold. The analogous reaction of (C∧N∧C)AuOEt, on the other hand, gives exclusively a mixture of 3 and (p-tol)3P(OEt)2. Whereas the reaction of (C∧N∧C)AuOR (R = But, p-C6H4F) with P(p-tol)3 proceeds over a period of hours, compounds with R = CH2CF3, CH(CF3)2 react almost instantaneously, to give 3 and O=P(p-tol)3. In chlorinated solvents, treatment of the alkoxides (C∧N∧C)AuOR with phosphines generates [(C∧N∧C)Au(PR3)]Cl, via Cl abstraction from the solvent. Attempts to extend the synthesis of gold(III) alkoxides to allyl alcohols were unsuccessful; the reaction of (C∧N∧C)AuOH with an excess of CH2=CHCH2OH in toluene led instead to allyl alcohol isomerization to give a mixture of gold alkyls, (C∧N∧C)AuR′ (R′ = −CH2CH2CHO (10), −CH2CH(CH2OH)OCH2CH=CH2 (11)), while 2-methallyl alcohol affords R′ = CH2CH(Me)CHO (12). The crystal structure of 11 was determined. The formation of Au–C instead of the expected Au–O products is in line with the trend in metal–ligand bond dissociation energies for Au(III): M–H > M–C > M–O.

  5. Suitable in vitro Eimeria arloingi macromeront formation in host endothelial cells and modulation of adhesion molecule, cytokine and chemokine gene transcription.

    PubMed

    Silva, Liliana M R; Vila-Viçosa, Maria J M; Cortes, Helder C E; Taubert, Anja; Hermosilla, Carlos

    2015-01-01

    Eimeria arloingi infections can cause severe haemorrhagic enteritis in young goat kids, thereby leading to high economic losses in goat industry worldwide. We aimed to isolate a new E. arloingi strain and establish a suitable in vitro culture system for the first merogony. E. arloingi oocysts were collected from naturally infected goat kids in the province of Alentejo, Portugal. For the maintenance of E. arloingi (strain A), kids kept under strict parasite-free conditions were orally infected with 10(3) sporulated oocysts each. Further, a new excystation protocol was successfully established to obtain viable sporozoites for further in vitro development in primary bovine umbilical vein endothelial cells (BUVEC). Overall, E. arloingi first merogony was successfully accomplished in BUVEC leading to macromeront formation (up to 150 μm) and the release of fully developed merozoites I stages. Moreover, host endothelial cell-parasite interactions were investigated in order to determine the extent of modulation carried out by E. arloingi in BUVEC during the first merogony. Gene transcription of adhesion molecules (E-selectin, P-selectin, VCAM-1, ICAM-1) was enhanced in the first hours post-infection (p.i.) in E. arloingi-infected BUVEC. BUVEC activation due to invasion was also shown by increased chemokine (CXCL8, CCL2, CCL5), cytokine (GM-CSF) and COX-2 gene transcription. The new E. arloingi (strain A) will be useful for better comprehension of early host innate immune reactions against this parasite in vitro/in vivo as well as to further our investigations in the complex Eimeria-host endothelial cell interactions.

  6. Adeno-associated virus-2-mediated TGF-β1 microRNA transfection inhibits adhesion formation after digital flexor tendon injury.

    PubMed

    Wu, Y F; Mao, W F; Zhou, Y L; Wang, X T; Liu, P Y; Tang, J B

    2016-02-01

    Adhesion formation after digital flexor tendon injury greatly affects gliding function of the tendon, which is a major clinical complication after hand surgery. Transforming growth factor beta 1 (TGF-β1) has a critical role in adhesion formation during tendon healing. Persistent regulation of TGF-β1 through application of microRNA (miRNA) specifically inhibiting the function of TGF-β1 (TGF-β1-miRNA) holds promise for treatment of such a complication. Adeno-associated virus (AAV) was used to transfer TGF-β1-miRNA to the chicken digital flexor tendons, which had been injured and surgically repaired. Four doses of AAV2-TGF-β1-miRNA (2 × 10¹¹, 2 × 10¹⁰, 2 × 10⁹ and 2 × 10⁸ vector genomes (vg)) were used to determine the transfection efficiency. At postoperative 3 weeks, we found a positive correlation between the administered AAV2-TGF-β1-miRNA doses and transfection efficiency. The transfection rate ranged from 10% to 77% as the doses increased. Production of TGF-β1 protein in the tendons decreased on increasing vector dosage. When 2 × 10¹¹ and 2 × 10¹⁰) vg were injected into the tendon, gliding excursion of the repaired tendon and work of flexion of chicken toes were significantly increased and adhesion score decreased 6 and 8 weeks later, indicating the improvement of tendon gliding and decreases in adhesion formations. However, the ultimate strength of the tendons transfected at the dose of 2 × 10¹⁰ vg was 12-24% lower than that of the control tendons. The results of this study demonstrate that application of TGF-β1-miRNA had a mixed impact on tendon healing: adhesion around the tendon is reduced but strength of the tendon healing is adversely affected. Future studies should aim at maintaining the beneficial effects of reducing tendon adhesions, while eliminating the adverse effects of decreasing the healing strength.

  7. Biocompatible Adhesives

    DTIC Science & Technology

    1991-03-01

    pressure sensitive elastomer, polyisobutylene. with water soluble adhesives such as carboxy methyl ceiiulose, pectin and gelatin for adhesion to... cellulose and nylon films, were most often used in 180 peel adhesion tests on the adhesives. Films were cast on one substrate and the other was moistened...irritation. 4. Peel adhesion to hydrated cellulose , nylon and cotton cloth substrates was satisfactory. So too was the peel adhesion as a function of

  8. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  9. Simultaneous formation of fine and large-area electrode patterns using screen-offset printing and its application to the patterning on adhesive materials

    NASA Astrophysics Data System (ADS)

    Nomura, Ken-ichi; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Sato, Junya; Takahashi, Seiya; Nakajima, Shin-ichiro; Arai, Masahiro; Kurata, Yuji; Iwata, Shiro

    2016-03-01

    Additive-type printing techniques such as gravure-offset printing and screen printing are effective for low-cost and ecofriendly electrode pattern formation. Gravure-offset printing is effective for fine pattern formation with widths on the order of 10-20 µm, whereas screen printing is effective for the formation of large-area patterns. However, it is difficult to simultaneously form fine and large-area patterns using these printing techniques. In this study, we demonstrate that fine (minimum width of 15 µm) and medium- as well as large-area patterns can be formed simultaneously using our developed screen-offset printing technique, which is a combination of screen printing on a silicone blanket and transfer printing from the blanket to a substrate. Furthermore, we demonstrate the application of our method to printing on adhesive materials, which allows electrode formation without applying heat to the film substrate.

  10. Charge-transfer complex formation between o-chloranil and a series of polynuclear aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Chakraborty, Biswanath; Mukherjee, Asok K.; Seal, Bejoy K.

    2001-02-01

    The equilibrium constants, enthalpies and entropies of formation of molecular electron donor-acceptor (EDA) complexes of o-chloranil with a series of aromatic hydrocarbons have been determined spectrophotometrically. Spectroscopic and thermodynamic aspects of these complexes have been analysed.

  11. Reactions of a Dinitrogen Complex of Molybdenum: Formation of a Carbon-Nitrogen Bond.

    ERIC Educational Resources Information Center

    Busby, David C.; And Others

    1981-01-01

    Reports a procedure for the formation of alkyldiazenido complexes of molybdenum in the absence of dioxygen, suitable for inclusion in an advanced inorganic chemistry laboratory. Includes background information and experimental procedures for two complexes. (SK)

  12. Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation.

    PubMed

    Lee, Wai-Leng; Shyur, Lie-Fen

    2012-04-15

    We previously showed that deoxyelephantopin (DET), a plant sesquiterpene lactone, exhibits more profound suppression than paclitaxel (PTX) of lung metastasis of mammary adenocarcinoma TS/A cells in mice. Proteomics studies suggest that DET affects actin cytoskeletal protein networks and downregulates calpain-mediated proteolysis of several actin-associated proteins, whereas PTX mainly interferes with microtubule proteins. Here, DET was observed to significantly deregulate adhesion formation in TS/A cells, probably through inhibition of m-calpain activity. Epithelial growth factor (EGF)-mediated activation of Rho GTPase Rac1 and formation of lamellipodia in TS/A cells were remarkably suppressed by DET treatment. Further, DET impaired vesicular trafficking of EGF and induced protein carbonylation and formation of centrosomal aggregates in TS/A cells. DET-induced reactive oxygen species were observed to be the upstream stimulus for the formation of centrosomal ubiquitinated protein aggregates that might subsequently restrict cancer cell motility. PTX, however, caused dramatic morphological changes, interfered with microtubule networking, and moderately inhibited calpain-mediated cytoskeletal and focal adhesion protein cleavage in TS/A cells. This study provides novel mechanistic insights into the pharmacological action of DET against metastatic mammary cell migration and suggests that modulation of oxidative stress might be a potential strategy for treatment of metastatic breast cancer.

  13. Photochemical formation of complexed HNO in low temperature matrices

    NASA Astrophysics Data System (ADS)

    Müller, R. P.; Murata, S.; Huber, J. Robert

    1982-04-01

    The molecule HNO complexed to N-methylenemethylamine (H 2CNCH 3) was prepared by photolyzing N,N-dimethylnitrosamine [(CH 3) 2NNO] in low temperature matrices. The infrared absorptions of six isotopic such complexed HNO species were measured and assigned. Based on these results a complex between HNO and the amine involving a hydrogen bond is proposed. The bands associated with the hydrogen bond, NH out-of-plane bend and N…HN stretch, were assigned. The NH stretch vibrational band of HNO is blue-shifted by complexation and has a linewidth < 1 cm -1.

  14. Reduction of postoperative adhesion development.

    PubMed

    Diamond, Michael P

    2016-10-01

    Despite use of meticulous surgical techniques, and regardless of surgical access via laparotomy or laparoscopy, postoperative adhesions develop in the vast majority of women undergoing abdominopelvic surgery. Such adhesions represent not only adhesion reformation at sites of adhesiolysis, but also de novo adhesion formation at sites of surgical procedures. Application of antiadhesion adjuvants compliment the benefits of meticulous surgical techniques, providing an opportunity to further reduce postoperative adhesion development. Improved understanding of the pathophysiology of adhesion development and distinguishing variations in the molecular biologic mechanisms from adhesion-free peritoneal repair represent future opportunities to improve the reduction of postoperative adhesions. Optimization of the reduction of postoperative adhesions will likely require identification of unique, personalized approaches in each individual, representing interindividual variation in peritoneal repair processes.

  15. Characterization of the Cadherin–Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell–Cell Adhesion

    PubMed Central

    Clarke, Donald Nathaniel; Miller, Phillip W.; Lowe, Christopher J.; Weis, William I.; Nelson, William James

    2016-01-01

    The cadherin–catenin complex (CCC) mediates cell–cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis. We demonstrated that N. vectensis has a complete repertoire of cadherin–catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans. PMID:27189570

  16. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  17. Bacterial adhesion and biofilm formation on yttria-stabilized, tetragonal zirconia and titanium oral implant materials with low surface roughness - an in situ study.

    PubMed

    Al-Ahmad, Ali; Karygianni, Lamprini; Schulze Wartenhorst, Max; Bächle, Maria; Hellwig, Elmar; Follo, Marie; Vach, Kirstin; Han, Jung-Suk

    2016-04-19

    Bacterially-driven mucosal inflammation and the development of periimplantitis can lead to oral implant failure. In this study, initial bacterial adhesion after 2 h and biofilm formation after 1 day and 3 days were analyzed in situ on novel 3 mol% yttria-stabilized tetragonal zirconia polycrystal samples (Zr; 3Y-TZP), as well as on alumina and niobium co-doped yttria-stabilized tetragonal zirconia samples (Al-Zr; Al2O3/Y(Nb)-TZP). Pure titanium implant material (Ti) and bovine enamel slabs (BES) served as controls. The initially adherent oral bacteria were determined by DAPI-staining. Biofilm thickness, surface covering grade and content of oral streptococci within the biofilm were measured by fluorescence in situ hybridization. No significant differences between the ceramic and titanium surfaces were detectable for either initial bacterial adhesion or the oral streptococci content of the in situ biofilm. The values of oral biofilm thickness on the implant surfaces were almost doubled after three days compared to the first day of oral exposure. Nevertheless, the biofilm thickness values among the different implant surfaces and controls did not differ significantly for any time point of measurement after 1 day or 3 days of biofilm formation. Significant differences in the covering grade were only detected between day 1 and day 3 for each tested implant material group. The content of oral streptococci increased significantly in parallel with the increase of biofilm age from day 1 to day 3. In conclusion, oral implant zirconia surfaces with low surface roughness are comparable to titanium surfaces with regard to initial bacterial adhesion and biofilm formation.

  18. Protein conformation as a regulator of cell-matrix adhesion.

    PubMed

    Hytönen, Vesa P; Wehrle-Haller, Bernhard

    2014-04-14

    The dynamic regulation of cell-matrix adhesion is essential for tissue homeostasis and architecture, and thus numerous pathologies are linked to altered cell-extracellular matrix (ECM) interaction and ECM scaffold. The molecular machinery involved in cell-matrix adhesion is complex and involves both sensory and matrix-remodelling functions. In this review, we focus on how protein conformation controls the organization and dynamics of cell-matrix adhesion. The conformational changes in various adhesion machinery components are described, including examples from ECM as well as cytoplasmic proteins. The discussed mechanisms involved in the regulation of protein conformation include mechanical stress, post-translational modifications and allosteric ligand-binding. We emphasize the potential role of intrinsically disordered protein regions in these processes and discuss the role of protein networks and co-operative protein interactions in the formation and consolidation of cell-matrix adhesion and extracellular scaffolds.

  19. Formation and Stability of Manganese-Desferrioxamine B Complexes

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Sposito, G.

    2004-12-01

    Recent laboratory and field studies suggest that Mn(III) forms persistent aqueous complexes with high-affinity ligands, particularly those produced by microbes. Aqueous Mn(III) species thus may play a significant, as-yet largely unexplored role in biogeochemical processes. We determined stability constants for both Mn(II) and Mn(III) complexes with the common tri-hydroxamate siderophore, desferrioxamine B (DFOB). We found the thermodynamic stability constants of the species, MHDFOBx-2 [M = Mn(II), x = 2; M = Mn(III), x = 3] to be KMn(II) = 106.8 ± 0.1 and KMn(III) = 1029.2 ± 0.2 at 25° C. The Mn(III)HDFOB+ complex is stable for pH in the range 7.0 - 11.3, but at pH < 7.0, Mn(III)HDFOB+ decays by internal electron transfer, yielding oxidized DFOB products and Mn2+. For pH > 11.3, the complex decays by disproportionation, yielding Mn2+ and solid MnO2. The Mn(III)HDFOB+ complex may be formed by either the oxidation of aqueous Mn(II)-HDFOB complexes or the DFOB-promoted dissolution of solid manganese(III) oxides. The DFOB-promoted Mn(II) air-oxidation rate was found to be proportional to the concentration of Mn(II)-DFOB complexes. At pH > 6.5, the dissolution of manganite (γ -MnOOH) in the presence of DFOB is predominantly a non-reductive ligand-promoted reaction whose rate is proportional to the adsorbed surface concentration of DFOB. At pH < 6.5, Mn2+ is the dominant species resulting from manganite dissolution, thus implicating a reductive dissolution pathway. The results of this study have broad implications for the biogeochemical cycling of manganese, redox-active elements, and siderophores in natural waters and soils.

  20. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  1. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  2. Effects of chemical and enzymatic modifications on starch-linoleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2017-02-15

    This study investigated the complexation yield and physicochemical properties of soluble and insoluble starch complexes with linoleic acid when a β-amylase treatment was applied to acetylated and debranched potato starch. The degree of acetylation was generally higher in the soluble complexes than in the insoluble ones. The insoluble complexes from the acetylated starch displayed the V-type pattern, whereas, the soluble complexes displayed a mixture of either the A-/V-type or the B-/V-type pattern. Acetylation decreased onset and peak melting temperatures for the insoluble complexes, whereas no melting endotherm was observed in the soluble complexes. Acetylation substantially increased the amount of complexed linoleic acid in the insoluble complexes, but had little positive effect on the formation of the soluble complexes. The β-amylase treatment significantly increased the complexed linoleic content in both soluble and insoluble complexes for the low acetylated starch, but not for the high acetylated starch.

  3. Anodic Oxide Formation on Ti-6A1-4V in Chromic Acid for Adhesive Bonding.

    DTIC Science & Technology

    1984-03-01

    dispersion forces and acid-base interactions which include hydrogen bonding. Therefore, adhesion of polymers to metal surfaces can be enhanced by... surface forces . 2.4 ATTACHMENT SITE THEORY The "attachment site theory" proposed by Lewis and Natarajan[251 attempted to incorporate the existing...as shown in Figure 25a are in the order of 25- 50 nm. The crevice or depressed regions are Drobably a result of preferential etching of the beta phase

  4. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  5. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin.

    PubMed

    Galkina, Svetlana I; Sud'ina, Galina F; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na(+) and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl(-) efflux through chloride channels and Na(+) influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  6. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin

    SciTech Connect

    Galkina, Svetlana I. . E-mail: galkina@genebee.msu.su; Sud'ina, Galina F.; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na{sup +} and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl{sup -} efflux through chloride channels and Na{sup +} influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  7. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion.

    PubMed

    Rhee, Jinseol; Mahfooz, Najmus S; Arregui, Carlos; Lilien, Jack; Balsamo, Janne; VanBerkum, Mark F A

    2002-10-01

    The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of beta-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.

  8. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  9. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M.; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2015-01-01

    Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding

  10. Double dose plateletpheresis by continuous and intermittent flow devices increases platelet-neutrophil complex formation in healthy donors without noticeable neutrophil activation.

    PubMed

    Bilgin, Aynur Ugur; Karadogan, Ihsan; Yilmaz, Ferahnaz Gencay; Undar, Levent

    2007-02-01

    Several reports have demonstrated that during a single plateletpheresis procedure, platelets may form heterotypic aggregates which may predispose certain donors to thrombotic complications. In this study, changes in the expression of neutrophil adhesion molecules (CD11b/CD18, CD50/54, CD62L) and platelet-neutrophil complex (PNC) formation were investigated by a flow cytometric method in healthy donors following a double dose plateletpheresis (DDP) procedure. Our results show that DDP which are carried out by the Fresenius AS.TEC 204 and Haemonetics MCS+ cause a significant increase in PNC formation in donors. Additionally, the Fresenius AS.TEC 204 device caused a decrease in CD62L expression which is a sign of mild neutrophil activation. Although the clinical significance of these laboratory changes is not clear, the occurrence of neutrophil activation and increased PNC formation might predispose certain donors to thrombotic complications following DDP.

  11. The Formation and Thermochemical Properties of Multiligand Complexes

    DTIC Science & Technology

    1987-08-25

    complexes, binary solvent systems, mass spectrometry, chemi- , .. luminescence, thermochemistry , kinetics V BSTRACT (Continue on reverse if necessary and...Involving Sulfides and Phosphonates ...... I Thermochemistry of Multiligand Cluster Ions*..................... 6 II. BIBLIOGRAPHY...and to explore relationships with the thermochemistry of binary soutions in the condensed phase. The results of this research have formed the basis

  12. Dynamics of Research Team Formation in Complex Networks

    NASA Astrophysics Data System (ADS)

    Sun, Caihong; Wan, Yuzi; Chen, Yu

    Most organizations encourage the formation of teams to accomplish complicated tasks, and vice verse, effective teams could bring lots benefits and profits for organizations. Network structure plays an important role in forming teams. In this paper, we specifically study the dynamics of team formation in large research communities in which knowledge of individuals plays an important role on team performance and individual utility. An agent-based model is proposed, in which heterogeneous agents from research communities are described and empirically tested. Each agent has a knowledge endowment and a preference for both income and leisure. Agents provide a variable input (‘effort’) and their knowledge endowments to production. They could learn from others in their team and those who are not in their team but have private connections in community to adjust their own knowledge endowment. They are allowed to join other teams or work alone when it is welfare maximizing to do so. Various simulation experiments are conducted to examine the impacts of network topology, knowledge diffusion among community network, and team output sharing mechanisms on the dynamics of team formation.

  13. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  14. Complex Laparoscopic Myomectomy with Severe Adhesions Performed with Proper Preventive Measures and Power Morcellation Provides a Safe Choice in Certain Infertility Cases

    PubMed Central

    Alfaro-Alfaro, Jaime; Flores-Manzur, María de los Ángeles; Nevarez-Bernal, Roberto

    2016-01-01

    Laparoscopic myomectomy offers a real benefit to infertile patients with uterine fibroids and peritoneal adhesions. The procedure requires a skilled surgeon and laparoscopy technique to minimize adhesion formation and other proven benefits. Restrictions arise since this procedure requires power morcellation for fibroid tissue extraction. Two years ago, the Food and Drug Administration in the United States of America (FDA) issued the alert on power morcellation for uterine leiomyomas, addressing the risk of malignant cell spreading within the abdominal cavity (actual risk assessment from 1 in 360 to 1 in 7400 cases). We review a 30-year-old female, without previous gestations, hypermenorrhea, intermenstrual bleeding, and chronic pelvic pain. Transvaginal ultrasound reports multiple fibroids in the right portion of a bicornuate uterus. Relevant history includes open myomectomy 6 years before and a complicated appendectomy, developing peritonitis within a year. Laparoscopy revealed multiple adhesions blocking uterine access, a bicornuate uterus, and myomas in the expected site. Myomectomy was performed utilizing power morcellation with good results. FDA recommendations have diminished this procedure's selection, converting many to open variants. This particular case was technically challenging, requiring morcellation, and safety device deployment was impossible, yet the infertility issue was properly addressed. Patient evaluation, safety measures, and laparoscopy benefits may outweigh the risks in particular cases as this one. PMID:27668110

  15. Chemical complexity and star-formation in merging galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Heiderman, A.; Iono, D.; VIXENS Team

    2013-03-01

    When galaxies merge the resulting conditions are some of the most extreme found anywhere in nature. Large gas flows, shocks and active black holes all can affect the ISM. Nearby merging galaxies with strong starbursts are the only places where we can conduct detailed study of star formation in conditions that mimic those under which the majority of stars in the universe formed. Here we study molecular gas tracers in 8 galaxies selected from the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) survey. Each galaxy has also been observed using the integral field unit spectrograph VIRUS-P, allowing us to investigate the relation between the chemical state of the gas, star formation and total gas content. Full details can be found in Heiderman et al. (2011). Here we report on new results obtained from IRAM-30m/NRO-45m 3mm line surveys towards 14 positions in these 8 merging galaxies. We detect ≈ 25 different molecular transitions towards these objects, many which have never been observed in these galaxies before. Our measurements show that the mean fraction of dense gas increases in later-stage mergers (Fig. 1, left), as does the average optical depth of the gas. Molecular diagnostic diagrams (Fig. 1, right) show that molecular regions we probe are, in general, UV photon dominated. Triggered AGN activity, and/or cosmic ray ionisation (from SNe II in the starburst) are not yet energetically important in determining the state of the gas.

  16. Protein-free parallel triple-stranded DNA complex formation

    PubMed Central

    Shchyolkina, A. K.; Timofeev, E. N.; Lysov, Yu. P.; Florentiev, V. L.; Jovin, T. M.; Arndt-Jovin, D. J.

    2001-01-01

    A 14 nt DNA sequence 5′-AGAATGTGGCAAAG-3′ from the zinc finger repeat of the human KRAB zinc finger protein gene ZNF91 bearing the intercalator 2-methoxy,6-chloro,9-amino acridine (Acr) attached to the sugar–phosphate backbone in various positions has been shown to form a specific triple helix (triplex) with a 16 bp hairpin (intramolecular) or a two-stranded (intermolecular) duplex having the identical sequence in the same (parallel) orientation. Intramolecular targets with the identical sequence in the antiparallel orientation and a non-specific target sequence were tested as controls. Apparent binding constants for formation of the triplex were determined by quantitating electrophoretic band shifts. Binding of the single-stranded oligonucleotide probe sequence to the target led to an increase in the fluorescence anisotropy of acridine. The parallel orientation of the two identical sequence segments was confirmed by measurement of fluorescence resonance energy transfer between the acridine on the 5′-end of the probe strand as donor and BODIPY-Texas Red on the 3′-amino group of either strand of the target duplex as acceptor. There was full protection from OsO4-bipyridine modification of thymines in the probe strand of the triplex, in accordance with the presumed triplex formation, which excluded displacement of the homologous duplex strand by the probe–intercalator conjugate. The implications of these results for the existence of protein-independent parallel triplexes are discussed. PMID:11160932

  17. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  18. Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro

    PubMed Central

    2014-01-01

    Background Microbial biofilms have been associated with the development of chronic human infections and represent a clinical challenge given their increased antimicrobial tolerance. Staphylococcus aureus is a major human pathogen causing a diverse range of diseases, of which biofilms are often involved. Staphylococcal attachment and the formation of biofilms have been shown to be facilitated by host factors that accumulate on surfaces. To better understand how host factors enhance staphylococcal biofilm formation, we evaluated the effect of whole human plasma on biofilm formation in clinical isolates of S. aureus and the expression of seven microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) known to be involved in biofilm formation by quantitative real-time PCR. We also evaluated whether plasma augmented changes in S. aureus biofilm morphology and antimicrobial resistance. Results Exposure of clinical isolates of S. aureus to human plasma (10%) within media, and to a lesser extent when coated onto plates, significantly enhanced biofilm formation in all of the clinical isolates tested. Compared to biofilms grown under non-supplemented conditions, plasma-augmented biofilms displayed significant changes in both the biofilm phenotype and cell morphology as determined by confocal scanning laser microscopy (CLSM) and scanning electron microscopy (SEM), respectively. Exposure of bacteria to plasma resulted in a significant fold-increase in MSCRAMM expression in both a time and isolate-dependent manner. Additionally, plasma-augmented biofilms displayed an increased tolerance to vancomycin compared to biofilms grown in non-supplemented media. Conclusions Collectively, these studies support previous findings demonstrating a role for host factors in biofilm formation and provide further insight into how plasma, a preferred growth medium for staphylococcal biofilm formation enhances as well as augments other intrinsic properties of S. aureus biofilms

  19. Effect of pH on complex formation between debranched waxy rice starch and fatty acids.

    PubMed

    Yotsawimonwat, Songwut; Sriroth, Klanarong; Kaewvichit, Sayam; Piyachomkwan, Kaukoon; Jane, Jay-Lin; Sirithunyalug, Jakkapan

    2008-08-15

    Complex formations between debranched waxy rice starch (DBS) and fatty acids (FA) of different hydrocarbon chain lengths (8:0, 10:0, 12:0, 14:0, 16:0, and 18:0) were studied in an aqueous solution by measuring the blue colour stained with iodine. The objective of this study was to understand the effects of the solubility and hydrophobicity of guest molecules (FA) on the complex formation with DBS. Lauric acid (12:0) displayed the greatest complex forming ability with DBS by showing the least blue colour developed with iodine. The effect of pH (3-7) on the DBS/FA complex formation was evaluated by measuring the iodine-scanning spectra of the mixture. Short-chain FA (8:0) displayed less complex formation at pH>or=5, above the pK(a) of fatty acid (approximately 4.8), which suggested that the charge formation of the short-chain FA caused a lower partitioning of the FA into the hydrophobic cavity of the DBS single helix. On the contrary, FA of 10:0-18:0 displayed an increased complex formation at pH>5, which could be attributed to increased solubility of these longer-chain FA at a dissociated and ionized form. The hydrocarbon chain length of the FA had an important impact on the extent of the complex formation. A FA that had a shorter hydrocarbon chain was more soluble in an aqueous solution and more readily formed a complex with DBS. At pH 6 and 7 (above the pK(a)), 10:0 formed less inclusion complexes with DBS than did 12:0. Iodine-scanning spectra showed that the absorbances of all iodine-stained DBS/FA solutions at higher wavelength were substantially lower than that of the iodine-stained DBS alone, suggesting that FA preferentially formed inclusion complexes with DBS of longer chains.

  20. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  1. The formation and study of titanium, zirconium, and hafnium complexes

    NASA Technical Reports Server (NTRS)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  2. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium.

    PubMed

    Feng, Cheng; Latimer, Elspeth; Spence, Daniel; Al Hindawi, Aula M A A; Bullen, Shem; Boatwright, Adrian; Ellis, Andrew M; Yang, Shengfu

    2015-07-14

    Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets.

  3. Flow induced streamer formation in particle laden complex flows

    NASA Astrophysics Data System (ADS)

    Debnath, Nandini; Hassanpourfard, Mahtab; Ghosh, Ranajay; Trivedi, Japan; Thundat, Thomas; Kumar, Aloke

    2016-11-01

    We study the combined flow of a polyacrylamide (PAM)solution with polystyrene (PS) nanoparticles, through a microfluidic device containing an array of micropillars. The flow is characterized by a very low Reynolds number (Re<<1). We find that for exceeding a critical Weissenberg number (Wi >= 20), PS nanoparticles localize near pillar walls to form thin slender string-like structures, which we call 'streamers' due to their morphology. Post-formation, these streamers show significant viscous behavior for short observational time-scales, and at longer observational time scales elastic response dominates. Our abiotic streamers could provide a framework for understanding similar structures that often form in biological systems. PhD student, Department of Mechanical Engineering.

  4. Subcellular location for the formation of the retinol/retinol-binding protein complex in rat liver

    SciTech Connect

    Crumbaugh, L.M.; Green, E.L.; Smith, J.E.

    1986-03-01

    Retinol complexes with retinol-binding protein (RBP) within the hepatocyte, however the subcellular location where complex formation occurs has not previously been identified. A model similar to that of lipoproteins formation has been hypothesized. The authors have identified the initial site of retinol/RBP complex formation. Furthermore, the authors have elucidated the progression of the complex through the subcellular organelles. Intravenous injections of /sup 3/H-retinol suspended in Tween 40 were administered to vitamin A depleted rats. After intervals of 2, 3, 4, 5, 10, 15, 20, and 30 minutes the rat livers were removed and fractions enriched in rough and smooth microsomes and Golgi apparatus were prepared. Extracts of these subcellular fractions were chromatographed on Sephadex G-100. Simultaneous elution of /sup 3/H-retinol and immunoreactive RBP indicated the presence of the complex. The retinol/RBP complex was observed in rough microsomes 2 minute after the injection of /sup 3/H-retinal. The complex appeared subsequently in smooth microsomes and Golgi apparatus. The complex was first detected serum around 10 minutes after injection. Based on the data, they believe that the retinol/RBP complex formation occurs in rough microsomes.

  5. Carbon–heteroatom bond formation catalysed by organometallic complexes

    PubMed Central

    Hartwig, John F.

    2010-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future. PMID:18800130

  6. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    DOE PAGES

    Wang, Jun; McEntee, Monica; Tang, Wenjie; ...

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less

  7. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    SciTech Connect

    Wang, Jun; McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Baddorf, Arthur P.; Maksymovych, Petro; Yates, Jr, John T.

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Au adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.

  8. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  9. Microbanded manganese formations; protoliths in the Franciscan Complex, California

    USGS Publications Warehouse

    Huebner, J. Stephen; Flohr, Marta J.

    1990-01-01

    The Buckeye manganese deposit, 93 km southeast of San Francisco in the California Coast Ranges, preserves a geologic history that provides clues to the origin of numerous lenses of manganese carbonate, oxides, and silicates that occur with interbedded radiolarian chert and metashale of the Franciscan Complex. Compositionally and mineralogically laminated Mn-rich protoliths were deformed and dismembered, in a manner that mimics in smaller scale the deformation of the host complex, and then were incipiently metamorphosed at blueschistfacies conditions. Eight phases occur as almost monomineralic protoliths and mixtures: rhodochrosite, caryopilite, chlorite, gageite, taneyamalite, braunite, hausmannite, and laminated chert (quartz). Braunite, gageite, and some chlorite and caryopilite layers were deposited as gel-like materials; rhodochrosite, most caryopilite, and at least some hausmannite layers as lutites; and the chert as turbidites of radiolarian sand. Some gel-like materials are now preserved as transparent, sensibly isotropic relics of materials that fractured or shattered when deformed, creating curved surfaces. In contrast, the micrites flowed between the fragments of gel-like materials. The orebody and most of its constituent minerals have unusually Mn-rich compositions that are described by the system MnO-SiO2-O2-CO2-H2O. High values of Mn/Fe and U/Th, and low concentrations of Co, Cu, and Ni, distinguish the Buckeye deposit from many high-temperature hydrothermal deposits and hydrogenous or diagenetic manganese and ferromanganese nodules and pavements. This chemical signature suggests that ore deposition was related to fluids from the sediment column and seawater. Tungsten is associated exclusively with gageite, in concentrations as high as 80 parts per million. The source of the manganese is unknown; because basalts do not occur near the deposit, it was probably manganese leached from the sediment column by reducing solutions. Low concentrations of calcium

  10. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  11. An illustration of the complexity of continent formation

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    It was pointed out that a consensus may be emerging in crustal growth models, considering the clustering of most growth curves and their uncertainties. Curves most distant from this clustering represent models involving extensive recycling of continental material back into the mantle, but the author wondered if geochemical signatures for this would be recognizable considering the lack of evidence from seismic tomography for discrete mantle reservoirs, and the likelihood of core-mantle interaction based on recent high pressure experiments. Unreactivated Archean rocks represent only 2 percent of present continental area, and the author was uncomfortable about basing inferences on what the early Earth was like on such a small amount of information. He feels that the hypothesis of continental assembly that needs testing is that of banging together of island arcs, such as in Indonesia today. As an example of how complex this process can be, the author described the geology of the Caribbean arc system, which shows evidence for reversals of subduction polarity, numerous collisional events, and substantial strike-slip movements. It seemed unlikely to the author that Archean examples would have been less complicated.

  12. Factors leading to the formation of arc cloud complexes

    NASA Technical Reports Server (NTRS)

    Welshinger, Mark John; Brundidge, Kenneth C.

    1987-01-01

    A total of 12 mesoscale convective systems (MCSs) were investigated. The duration of the gust front, produced by each MCS, was used to classify the MCSs. Category 1 MCSs were defined as ones that produced a gust front and the gust front lasted for more than 6 h. There were 7 category 1 MCSs in the sample. Category 2 MCSs were defined as ones that produced a gust front and the gust front lasted for 6 h or less. There were 4 category 2 MCSs. The MCS of Case 12 was not categorized because the precipitation characteristics were similar to a squall line, rather than an MCS. All of the category 1 MCSs produced arc cloud complexes (ACCs), while only one of the category 2 MCSs produced an ACC. To determine if there were any differences in the characteristics between the MCSs of the two categories, composite analyses were accomplished. The analyses showed that there were significant differences in the characteristics of category 1 and 2 MCSs. Category 1 MCSs, on average, had higher thunderstorm heights, greater precipitation intensities, colder cloud top temperatures and produced larger magnitudes of surface divergence than category 2 MCSs.

  13. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  14. Interferogram formation in the presence of complex and large deformation

    USGS Publications Warehouse

    Yun, S.-H.; Zebker, H.; Segall, P.; Hooper, A.; Poland, M.

    2007-01-01

    Sierra Negra volcano in Isabela island, Gala??pagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a "rubber-sheeting" SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra. Copyright 2007 by the American Geophysical Union.

  15. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  16. Relativistic effect on enthalpy of formation for transition-metal complexes

    NASA Astrophysics Data System (ADS)

    Nakajima, Yuya; Seino, Junji; Nakai, Hiromi

    2017-04-01

    This Letter examines the enthalpy of formation for 12 transition metal diatomic molecules and 23 transition metal complexes from the viewpoint of effect of the relativistic effect by using the infinite-order Douglas-Kroll-Hess method with the local unitary transformation and three types of pseudopotentials for several levels of theory. The spin-orbit effect contribution to the enthalpy of formation is more than 10 kcal/mol for third transition metal complexes. Frozen orbital approximation at the outermost orbitals in pseudopotential methods shows a contribution to the enthalpy of formation that is more than two times larger than those of inner core orbitals.

  17. The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Kuchina, Yuliya A; Sokolan, Nina I

    2016-03-15

    The interaction of cationic polysaccharide chitosan and gelatin accompanied by the stoichiometric (bio)polyelectrolyte complexes formation has been studied by the methods of capillary viscometry, UV and FTIR spectroscopy and dispersion of light scattering. Complexes were formed in the aqueous phase, with pH being less than the isoelectric point of gelatin (pIgel). The particle size of the disperse phase increases along with the growth of the relative viscosity in comparison with sols of the individual components-polysaccharide and gelatin. Possible models and mechanism of (bio)polyelectrolyte complexes formation have been discussed. It was shown that the complex formation takes place not only due to the hydrogen bonds, but also due to the electrostatic interactions between the positively charged amino-groups of chitosan and negatively charged amino acid residues (glutamic Glu and aspartic Asp acids) of gelatin.

  18. [Contribution of enthalpy to the energetics of complex formation of aromatic ligands with DNA].

    PubMed

    Kostiukov, V V; Khomutova, N M; Evstigneev, M P

    2011-01-01

    The energy contributions of electrostatic, van der Waals interactions, hydrogen bonds, and interactions of charge transfer type to the enthalpy of complex formation of the double-stand DNA with the antitumor antibiotics daunomycin, nogalamycin, and novantron, as well as the mutagens ethidium bromide and proflavine have been calculated. According to the calculations, the van der Waals component (except for nogalamycin) is energetically favorable during complex formation of the antibiotics with DNA, and the contributions of H bonds and electrostatic interactions are unfavorable, with the probability of charge transfer in the complexes being low. It has been shown that the relatively low value of the experimental enthalpy of binding is the sum of components greater in absolute value and different in the sign, which is the cause of large errors in estimating the total enthalpy of complex formation of aromatic ligands with DNA.

  19. Suilysin-induced Platelet-Neutrophil Complexes Formation is Triggered by Pore Formation-dependent Calcium Influx

    PubMed Central

    Zhang, Shengwei; Zheng, Yuling; Chen, Shaolong; Huang, Shujing; Liu, Keke; Lv, Qingyu; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Platelet activation and platelet–neutrophil interactions have been found to be involved in inflammation, organ failure and soft-tissue necrosis in bacterial infections. Streptococcus suis, an emerging human pathogen, can cause streptococcal toxic-shock syndrome (STSS) similarly to Streptococcus pyogenes. Currently, S. suis–platelet interactions are poorly understood. Here, we found that suilysin (SLY), the S. suis cholesterol-dependent cytolysin (CDC), was the sole stimulus of S. suis that induced platelet-neutrophil complexes (PNC) formation. Furthermore, P-selectin released in α-granules mediated PNC formation. This process was triggered by the SLY-induced pore forming-dependent Ca2+ influx. Moreover, we demonstrated that the Ca2+ influx triggered an MLCK-dependent pathway playing critical roles in P-selectin activation and PNC formation, however, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signalling were not involved. Additionally, the “outside-in” signalling had a smaller effect on the SLY-induced P-selectin release and PNC formation. Interestingly, other CDCs including pneumolysin and streptolysin O have also been found to induce PNC formation in a pore forming-dependent Ca2+ influx manner. It is possible that the bacterial CDC-mediated PNC formation is a similar response mechanism used by a wide range of bacteria. These findings may provide useful insight for discovering potential therapeutic targets for S. suis-associated STSS. PMID:27830834

  20. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  1. CCN2/Connective Tissue Growth Factor Is Essential for Pericyte Adhesion and Endothelial Basement Membrane Formation during Angiogenesis

    PubMed Central

    Huang, Bau-Lin; van Handel, Ben; Hofmann, Jennifer J.; Chen, Tom T.; Choi, Aaron; Ong, Jessica R.; Benya, Paul D.; Mikkola, Hanna; Iruela-Arispe, M. Luisa; Lyons, Karen M.

    2012-01-01

    CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes. PMID:22363445

  2. Investigation of cu-BTA complex formation during Cu chemical mechanical planarization process

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Shima, Shohei; Hamada, Satomi; Park, Jin-Goo

    2016-10-01

    The effect of Cu surface conditions on Cu-BTA complex formation was investigated using contact angle, electrochemical impedance spectroscopy, spectroscopic ellipsometry and XPS measurements which is of interest to Cu Chemical Mechanical Planarization (CMP) process. During Cu CMP process BTA is widely used as a corrosion inhibitor, reacts with Cu and forms a strong Cu-BTA complex. Thus, it is very essential to remove Cu-BTA complex during post-Cu CMP cleaning process as Cu-BTA complex causes severe problems such as particle contamination and watermark due to its hydrophobic nature. In this report, the Cu-BTA complex formation at various Cu surfaces (as received, pure Cu and Cu oxide) was investigated in order to understand its adsorption reaction and develop effective post-Cu CMP cleaning process.

  3. Electrochemical detection of oligopeptides through the precolumn formation of biuret complexes.

    PubMed

    Tsai, H Y; Weber, S G

    1991-04-12

    The relatively slow kinetics of formation of the electroactive Cu(II)-peptide complexes from larger (greater than 6 amino acids) peptides requires relatively high temperature and long reaction times for a postcolumn reactor. The precolumn incubation of bradykinin, Tyr8-bradykinin and insulin A chain with biuret reagent for 20 min at 60 degrees C leads to the formation of biuret complexes which can be subjected to chromatography in acidic or basic eluents. These complexes are detected electrochemically with a sensitivity similar to the Cu(II)-(ala)3 complex (1 nC/pmol at 1.0 ml/min). The influence of the column-packing material on the electrochemical detector response of the Cu-peptide complexes has also been studied.

  4. Inhibitory effects of NAMI-A-like ruthenium complexes on prion neuropeptide fibril formation.

    PubMed

    Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; He, Lei; Du, Weihong

    2015-05-01

    Prion diseases are a group of infectious and fatal neurodegenerative disorders caused by the conformational conversion of a cellular prion protein (PrP) into its abnormal isoform PrP(Sc). PrP106-126 resembles PrP(Sc) in terms of physicochemical and biological characteristics and is used as a common model for the treatment of prion diseases. Inhibitory effects on fibril formation and neurotoxicity of the prion neuropeptide PrP106-126 have been investigated using metal complexes as potential inhibitors. Nevertheless, the binding mechanism between metal complexes and the peptide remains unclear. The present study is focused on the interaction of PrP106-126 with NAMI-A and NAMI-A-like ruthenium complexes, including KP418, KP1019, and KP1019-2. Results demonstrated that these ruthenium complexes could bind to PrP106-126 in a distinctive binding mode through electrostatic and hydrophobic interactions. NAMI-A-like ruthenium complexes can also effectively inhibit the aggregation and fibril formation of PrP106-126. The complex KP1019 demonstrated the optimal inhibitory ability upon peptide aggregation, and cytotoxicity because of its large aromatic ligand contribution. The studied complexes could also regulate the copper redox chemistry of PrP106-126 and effectually inhibit the formation of reactive oxygen species. Given these findings, ruthenium complexes with relatively low cellular toxicity may be used to develop potential pharmaceutical products against prion diseases.

  5. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  6. Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate.

    PubMed

    Li, Zhaofeng; Wang, Jian; Cheng, Li; Gu, Zhengbiao; Hong, Yan; Kowalczyk, Agnieszka

    2014-01-01

    Sodium dodecyl sulfate (SDS) was used to improve the performance of starch-based wood adhesive. The effects of SDS on shear strength, viscosity and storage stability were investigated. It was shown that, although the addition of 1.5-2% (dry starch basis) SDS resulted in a slight decrease in shear strength, the mobility and storage stability of adhesive were significantly enhanced. Possible mechanisms regarding specific action of SDS were discussed. It was proved, using blue value or differential scanning calorimetry (DSC) analysis, that the amylose-SDS complexes were formed in the adhesive. The complex formation or simple adsorption of SDS with starch molecules might hinder the aggregation of latex particles, as shown by scanning electron microscopy images, and inhibit starch retrogradation, as observed by DSC analysis. As a result, in the presence of SDS, the adhesive had higher mobility and storage stability, indicating that SDS could be used to prepare starch-based wood adhesives with high performance.

  7. Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex.

    PubMed

    Janssen, Bert J C; Gomes, Lucio; Koning, Roman I; Svergun, Dmitri I; Koster, Abraham J; Fritzinger, David C; Vogel, Carl-Wilhelm; Gros, Piet

    2009-08-19

    Immune protection by the complement system critically depends on assembly of C3 convertases on the surface of pathogens and altered host cells. These short-lived protease complexes are formed through pro-convertases, which for the alternative pathway consist of the complement component C3b and the pro-enzyme factor B (FB). Here, we present the crystal structure at 2.2-A resolution, small-angle X-ray scattering and electron microscopy (EM) data of the pro-convertase formed by human FB and cobra venom factor (CVF), a potent homologue of C3b that generates more stable convertases. FB is loaded onto CVF through its pro-peptide Ba segment by specific contacts, which explain the specificity for the homologous C3b over the native C3 and inactive products iC3b and C3c. The protease segment Bb binds the carboxy terminus of CVF through the metal-ion dependent adhesion site of the Von Willebrand factor A-type domain. A possible dynamic equilibrium between a 'loading' and 'activation' state of the pro-convertase may explain the observed difference between the crystal structure of CVFB and the EM structure of C3bB. These insights into formation of convertases provide a basis for further development of complement therapeutics.

  8. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  9. Effects of chemical and enzymatic modifications on starch-oleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2015-04-29

    The solubility of starch-inclusion complexes affects the digestibility and bioavailability of the included molecules. Acetylation with two degrees of substitution, 0.041 (low) and 0.091 (high), combined without or with a β-amylase treatment was employed to improve the yield and solubility of the inclusion complex between debranched potato starch and oleic acid. Both soluble and insoluble complexes were recovered and analyzed for their degree of acetylation, complexation yields, molecular size distributions, X-ray diffraction patterns, and thermal properties. Acetylation significantly increased the amount of recovered soluble complexes as well as the complexed oleic acid in both soluble and insoluble complexes. High-acetylated debranched-only starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low-acetylated starch with or without the β-amylase treatment resulted in the highest complexed oleic acid in the insoluble complexes (37.6-42.9 mg/g). All acetylated starches displayed the V-type X-ray pattern, and the melting temperature generally decreased with acetylation. The results indicate that starch acetylation with or without the β-amylase treatment can improve the formation and solubility of the starch-oleic acid complex.

  10. Control of cell fate by the formation of an architecturally complex bacterial community

    PubMed Central

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-01-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells. PMID:18381896

  11. Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2016-04-01

    Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.

  12. Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation.

    PubMed

    Ma, Benyu; Cao, Weipeng; Li, Wenxia; Gao, Chan; Qi, Zhen; Zhao, Yan; Du, Jun; Xue, Hua; Peng, Junya; Wen, Jun; Chen, Hua; Ning, Yuanheng; Huang, Lei; Zhang, Hong; Gao, Xiang; Yu, Li; Chen, Ye-Guang

    2014-08-01

    Autophagy is an intracellular degradation process to clear up aggregated proteins or aged and damaged organelles. The Beclin1-Vps34-Atg14L complex is essential for autophagosome formation. However, how the complex formation is regulated is unclear. Here, we show that Dapper1 (Dpr1) acts as a critical regulator of the Beclin1-Vps34-Atg14L complex to promote autophagy. Dpr1 ablation in the central nervous system results in motor coordination defect and accumulation of p62 and ubiquitinated proteins. Dpr1 increases autophagosome formation as indicated by elevated puncta formation of LC3, Atg14L and DFCP1 (Double FYVE-containing protein 1). Conversely, loss of Dpr1 impairs LC3 lipidation and causes p62/SQSTM1 accumulation. Dpr1 directly interacts with Beclin1 and Atg14L and enhances the Beclin1-Vps34 interaction and Vps34 activity. Together, our findings suggest that Dpr1 enhances the Atg14L-Beclin1-Vps34 complex formation to drive autophagy.

  13. Fur Represses Adhesion to, Invasion of, and Intracellular Bacterial Community Formation within Bladder Epithelial Cells and Motility in Uropathogenic Escherichia coli.

    PubMed

    Kurabayashi, Kumiko; Agata, Tomohiro; Asano, Hirofumi; Tomita, Haruyoshi; Hirakawa, Hidetada

    2016-11-01

    Uropathogenic Escherichia coli (UPEC) is a major pathogen that causes urinary tract infections (UTIs). This bacterium adheres to and invades the host cells in the bladder, where it forms biofilm-like polymicrobial structures termed intracellular bacterial communities (IBCs) that protect UPEC from antimicrobial agents and the host immune systems. Using genetic screening, we found that deletion of the fur gene, which encodes an iron-binding transcriptional repressor for iron uptake systems, elevated the expression of type I fimbriae and motility when UPEC was grown under iron-rich conditions, and it led to an increased number of UPEC cells adhering to and internalized in bladder epithelial cells. Consequently, the IBC colonies that the fur mutant formed in host cells were denser and larger than those formed by the wild-type parent strain. Fur is inactivated under iron-restricted conditions. When iron was depleted from the bacterial cultures, wild-type UPEC adhesion, invasion, and motility increased, similar to the case with the fur mutant. The purified Fur protein bound to regions upstream of fimA and flhD, which encode type I fimbriae and an activator of flagellar expression that contributes to motility, respectively. These results suggest that Fur is a repressor of fimA and flhD and that its repression is abolished under iron-depleted conditions. Based on our in vitro experiments, we conclude that UPEC adhesion, invasion, IBC formation, and motility are suppressed by Fur under iron-rich conditions but derepressed under iron-restricted conditions, such as in patients with UTIs.

  14. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  15. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  16. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed

    Pozharski, Edwin; MacDonald, Robert C

    2002-07-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction.

  17. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed Central

    Pozharski, Edwin; MacDonald, Robert C

    2002-01-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction. PMID:12080142

  18. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    PubMed Central

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  19. Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion

    PubMed Central

    Osaki, Takako; Fukutomi, Toshiyuki; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Hojo, Fuhito; Kamiya, Shigeru

    2016-01-01

    ABSTRACT Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pylori. IMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property

  20. Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion.

    PubMed

    Yonezawa, Hideo; Osaki, Takako; Fukutomi, Toshiyuki; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Hojo, Fuhito; Kamiya, Shigeru

    2017-03-15

    Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pyloriIMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property depends

  1. Role of complexes formation between drugs and penetration enhancers in transdermal delivery.

    PubMed

    Drakulić, Branko J; Juranić, Ivan O; Erić, Slavica; Zloh, Mire

    2008-11-03

    The use of chemical penetration enhancers (CPE) is growing due to their ability to improve drug delivery through the skin. A possible mechanism of penetration enhancement could involve the complex formation between drug and components in the pharmaceutical formulation, thus altering the physicochemical properties of the active substance. Here, modelling studies indicate that hydrocarbon and oxygen-containing terpenes (penetration enhancers) could form complexes with drugs. Satisfactory correlations have been obtained between the predicted molecular properties of enhancers and their enhancement effects.

  2. The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization.

    PubMed

    Hussain, Muzaffar; Steinbacher, Tim; Peters, Georg; Heilmann, Christine; Becker, Karsten

    2015-01-01

    Although it belongs to the group of coagulase-negative staphylococci, Staphylococcus lugdunensis has been known to cause aggressive courses of native and prosthetic valve infective endocarditis with high mortality similar to Staphylococcus aureus. In contrast to S. aureus, only little is known about the equipment of S. lugdunensis with virulence factors including adhesins and their role in mediating attachment to extracellular matrix and plasma proteins and host cells. In this study, we show that the multifunctional autolysin/adhesin AtlL of S. lugdunensis binds to the extracellular matrix and plasma proteins fibronectin, fibrinogen, and vitronectin as well as to human EA.hy926 endothelial cells. Furthermore, we demonstrate that AtlL also plays an important role in the internalization of S. lugdunensis by eukaryotic cells: The atlL-deficient mutant Mut17 adheres to and becomes internalized by eukaryotic cells to a lesser extent than the isogenic wild-type strain Sl253 and the complemented mutant Mut17 (pCUatlL) shows an increased internalization level in comparison to Mut17. Thus, surface localized AtlL that exhibits a broad binding spectrum also mediates the internalization of S. lugdunensis by eukaryotic cells. We therefore propose an internalization pathway for S. lugdunensis, in which AtlL plays a major role. Investigating the role of AtlL in biofilm formation of S. lugdunensis, Mut17 shows a significantly reduced ability for biofilm formation, which is restored in the complemented mutant. Thus, our data provide evidence for a significant role for AtlL in adherence and internalization processes as well as in biofilm formation of S. lugdunensis.

  3. Communication: Structure, formation, and equilibration of ensembles of Ag-S complexes on an Ag surface

    SciTech Connect

    Russell, Selena M.; Kim, Yousoo; Liu, Da-Jiang; Evans, J. W.; Thiel, P. A.

    2013-02-15

    We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.

  4. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins.

    PubMed

    Lim, Seonghye; Choi, Yoo Seong; Kang, Dong Gyun; Song, Young Hoon; Cha, Hyung Joon

    2010-05-01

    Marine mussels attach to substrates using adhesive proteins. It has been suggested that complex coacervation (liquid-liquid phase separation via concentration) might be involved in the highly condensed and non-water dispersed adhesion process of mussel adhesive proteins (MAPs). However, as purified natural MAPs are difficult to obtain, it has not been possible to experimentally validate the coacervation model. In the present work, we demonstrate complex coacervation in a system including recombinant MAPs and hyaluronic acid (HA). Our recombinant hybrid MAPs, fp-151 and fp-131, can be produced in large quantities, and are readily purified. We observed successful complex coacervation using cationic fp-151 or fp-131, and an anionic HA partner. Importantly, we found that highly condensed complex coacervates significantly increased the bulk adhesive strength of MAPs in both dry and wet environments. In addition, oil droplets were successfully engulfed using a MAP-based interfacial coacervation process, to form microencapsulated particles. Collectively, our results indicate that a complex coacervation system based on MAPs shows superior adhesive properties, combined with additional valuable features including liquid/liquid phase separation and appropriate viscoelasticity. Our microencapsulation system could be useful in the development of new adhesive biomaterials, including self-adhesive microencapsulated drug carriers, for use in biotechnological and biomedical applications.

  5. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni.

    PubMed

    Svensson, Sarah L; Pryjma, Mark; Gaynor, Erin C

    2014-01-01

    Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ΔcprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ΔcprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ΔcprS and flagellar mutations (ΔflhA, ΔpflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms.

  6. Quantum statistical vibrational entropy and enthalpy of formation of helium-vacancy complex in BCC W

    NASA Astrophysics Data System (ADS)

    Wen, Haohua; Woo, C. H.

    2016-12-01

    High-temperature advance-reactor design and operation require knowledge of in-reactor materials properties far from the thermal ground state. Temperature-dependence due to the effects of lattice vibrations is important to the understanding and formulation of atomic processes involved in irradiation-damage accumulation. In this paper, we concentrate on the formation of He-V complex. The free-energy change in this regard is derived via thermodynamic integration from the phase-space trajectories generated from MD simulations based on the quantum fluctuation-dissipation relation. The change of frequency distribution of vibration modes during the complex formation is properly accounted for, and the corresponding entropy change avoids the classical ln(T) divergence that violates the third law. The vibrational enthalpy and entropy of formation calculated this way have significant effects on the He kinetics during irradiation.

  7. Structure and kinetics of formation of catechol complexes of ferric soybean lipoxygenase-1

    SciTech Connect

    Nelson, M.J.; Brennan, B.A.; Chase, D.B. |

    1995-11-21

    Ferric soybean lipoxygenase forms stable complexes with 4-substituted catechols. The structure of the complex between the enzyme and 3,4-dihydroxybenzonitrile has been studied by resonance Raman, electron paramagnetic resonance, visible, and X-ray spectroscopies. It is a bidentate iron-catecholate complex with at least one water ligand. The kinetics of formation of complexes between lipoxygenase and 3,4-dihydroxybenzonitrile and 3,4-dihydroxyacetophenone have been studied by stopped-flow spectroscopy. The data are consistent with two kinetically distinct, reversible steps. The pH dependence of the first step suggests that the substrate for the reaction is the catechol monoanion. When these results are combined, plausible mechanisms for the complexation reaction are suggested. 51 refs., 12 figs., 2 tabs.

  8. Effect of entropy-packing fraction relation on the formation of complex metallic materials

    NASA Astrophysics Data System (ADS)

    Tourki Samaei, Arash; Mohammadi, Ehsan

    2015-09-01

    By combining a number of elements to form complex metallic materials without a base element, it was recently shown that one can obtain rather complex structures, including random solute solutions, multi-phased mixtures and amorphous structures with/without nano-precipitations. Compared to conventional metallic materials, these complex ones could show excellent mechanical and physical properties across a wide range of temperatures, therefore being a promising advanced material for high-temperature applications; however, designing these complex materials, at present, still lacks a unified physical approach but relies on the choice of a few metallurgical parameters, such as atomic size mismatch, heat of mixing and valence electron concentration. Here, we identify a physical mechanism through the optimization of the excess configurational entropy of mixing in the control of phase formation in these metallic materials. The theoretical framework herein established is expected to provide a new paradigm in pursuit of complex metallic materials with superior properties.

  9. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  10. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  11. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  12. Enhanced CO2 hydrate formation kinetic under organo-mineral complex environment

    NASA Astrophysics Data System (ADS)

    Kyung, D.; Lee, W.

    2012-12-01

    CO2 hydrate formation under marine sediments can be one of the feasible options to mitigate atmospheric concentration of CO2, main source of global warming. For the better application of CO2 sequestration via hydrate form under ocean, it is indispensable to understand the effects of marine environmental factors on hydrate formation kinetic and equilibrium. In this study, we investigated the effect of organo-mineral complex (i.e., Na-montmorillonite (Na-MMT) and glycine complex) on hydrate formation kinetic both experimentally and computationally. Organo-mineral complex suspension showed much more favorable hydrate formation kinetic (2-6 min) than pure water control (48-80 min). TEM image showed that glycine are well distributed and strongly adsorbed on Na-MMT surface and FT/IR results (i.e., increased frequency of N-H stretch) also proved that amine part of glycine can make strong hydrogen bonding with silicon atoms of Na-MMT. Molecular dynamics (MD) simulation was performed to fully understand the CO2 hydrate nucleation on the organo-mineral complex and its result showed that high concentration of CO2 molecules are located near Na-MMT surface and glycine attached on Na-MMT can attract water molecules to form intermediate hydrate structure. This one plays a key role in complete hydrate formation as nucleation seeds and can significantly enhance the hydrate formation kinetic. This fundamental knowledge could provide idea to select proper CO2 storage site under marine sediments and be applied to in-situ swapping technology to recover CH4 from deep sea gas hydrate deposits and sequester the CO2 to CH4 hydrate layer.

  13. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin.

    PubMed

    Garnero, Claudia; Chattah, Ana Karina; Longhi, Marcela

    2016-11-05

    The effect of the formation of supramolecular binary complexes with β-cyclodextrin and maltodextrin on the chemical and physical stability of the polymorphs I and II of furosemide was evaluated in solid state. The solid samples were placed under accelerated storage conditions and exposed to daylight into a stability chamber for a 6-month. Chemical stability was monitored by high performance liquid chromatography, while the physical stability was studied by solid state nuclear magnetic resonance, powder X-ray diffraction and scanning electron microscopy. Changes in the physical appearance of the samples were evaluated. The studies showed a significant stabilizing effect of β-cyclodextrin on furosemide form II. Our results suggest that the complex formation is a useful tool for improving the stability of furosemide polymorphs. These new complexes are promising candidates that can be used in the pharmaceutical industry for the preparation of alternative matrices that improve physicochemical properties.

  14. HCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation.

    PubMed

    Park, Jihye; Lammers, Fabienne; Herr, Winship; Song, Ji-Joon

    2012-10-23

    Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.

  15. Theoretical predictions of hydrolysis and complex formation of the heaviest elements

    NASA Astrophysics Data System (ADS)

    Pershina, V.

    2000-07-01

    In the presentation, investigations of hydrolysis and complex formation of group 4, 5 and 6 elements, including the transactinide elements 104, 105 and 106 are described. They were carried out on the basis of results of relativistic calculations of the electronic structure of various hydrated, hydrolyzed and complex compounds of these elements using the fully relativistic ab initio density functional method with the GGA approximation for the exchange-correlation potential. Predictions of equilibria of hydrolysis or complex formation reactions have been made using a model which enables determination of free energy changes of the reactions as changes in the ionic and covalent contributions to the binding molecular energy separately. Those contributions were calculated using the Mulliken analysis of the electronic density distribution.

  16. Geminin Inhibits a Late Step in the Formation of Human Pre-replicative Complexes*

    PubMed Central

    Wu, Min; Lu, Wenyan; Santos, Ruth E.; Frattini, Mark G.; Kelly, Thomas J.

    2014-01-01

    The initial step in initiation of eukaryotic DNA replication involves the assembly of pre-replicative complexes (pre-RCs) at origins of replication during the G1 phase of the cell cycle. In metazoans initiation is inhibited by the regulatory factor Geminin. We have purified the human pre-RC proteins, studied their interactions in vitro with each other and with origin DNA, and analyzed the effects of HsGeminin on formation of DNA-protein complexes. The formation of an initial complex containing the human origin recognition complex (HsORC), HsCdt1, HsCdc6, and origin DNA is cooperative, involving all possible binary interactions among the components. Maximal association of HsMCM2–7, a component of the replicative helicase, requires HsORC, HsCdc6, HsCdt1, and ATP, and is driven by interactions of HsCdt1 and HsCdc6 with multiple HsMCM2–7 subunits. Formation of stable complexes, resistant to high salt, requires ATP hydrolysis. In the absence of HsMCM proteins, HsGeminin inhibits the association of HsCdt1 with DNA or with HsORC-HsCdc6-DNA complexes. However, HsGeminin does not inhibit recruitment of HsMCM2–7 to DNA to form complexes containing all of the pre-RC proteins. In fact, HsGeminin itself is a component of such complexes, and interacts directly with the HsMcm3 and HsMcm5 subunits of HsMCM2–7, as well as with HsCdt1. Although HsGeminin does not prevent the initial formation of DNA-protein complexes containing the pre-RC proteins, it strongly inhibits the formation of stable pre-RCs that are resistant to high salt. We suggest that bound HsGeminin prevents transition of the pre-RC to a state that is competent for initiation of DNA replication. PMID:25231993

  17. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  18. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres

    SciTech Connect

    Mumper, R.J.; Jay, M.

    1992-10-15

    The complexation of lanthanides (Ln) with dicarbonyl compounds (acetylacetone, acac; ethyl acetoacetate; 3-ethyl-2,4-pentanedione; 2,4-hexanedione; 3-methyl-2,4-pentanedione; and diethyl malonate) was investigated using a potentiometric titration technique. The ability of a dicarbonyl compound to complex with the lanthanide elements was greatly dependent on its pK{sub a} and on the pH of the titrated solution. Selected lanthanide complexes (Ln complexes) were incorporated into spherical poly(L-lactic acid)(PLA) matrices and irradiated in a nuclear reactor with neutrons to produce short-lived high-energy {Beta}-particle-emitting radioisotopes. The lanthanides investigated (Ho, Dy, Sm, and La) were chosen on the basis of their physical and nuclear properties. A transition element (Re) was also studied. The small decrease in the ionic radii of the lanthanides with increasing atomic number led to (a) greater ability to extract and complex from an aqueous solution with complexing agents, (b) larger formation and stability constants for the Ln complexes, (c) increased solubility of the Ln complexes in chloroform, and (d) increase in the maximum percent incorporation of the stable lanthanides in PLA spheres. Ho(aca) was found to be the most promising candidate of the complexes studied on the basis of the above observations and due to the favorable physical properties of {sup 165}Ho and nuclear properties of {sup 166}Ho. 21 refs., 5 figs., 4 tabs.

  19. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  20. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  1. The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence

    PubMed Central

    Bom, Vinícius Leite Pedro; de Castro, Patrícia Alves; Winkelströter, Lizziane K.; Marine, Marçal; Hori, Juliana I.; Ramalho, Leandra Naira Zambelli; dos Reis, Thaila Fernanda; Goldman, Maria Helena S.; Brown, Neil Andrew; Rajendran, Ranjith; Ramage, Gordon; Walker, Louise A.; Munro, Carol A.; Rocha, Marina Campos; Malavazi, Iran; Hagiwara, Daisuke

    2015-01-01

    Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway. PMID:25911225

  2. The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence.

    PubMed

    Bom, Vinícius Leite Pedro; de Castro, Patrícia Alves; Winkelströter, Lizziane K; Marine, Marçal; Hori, Juliana I; Ramalho, Leandra Naira Zambelli; dos Reis, Thaila Fernanda; Goldman, Maria Helena S; Brown, Neil Andrew; Rajendran, Ranjith; Ramage, Gordon; Walker, Louise A; Munro, Carol A; Rocha, Marina Campos; Malavazi, Iran; Hagiwara, Daisuke; Goldman, Gustavo H

    2015-08-01

    Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.

  3. Use of a stainless steel washer platform to study Acinetobacter baumannii adhesion and biofilm formation on abiotic surfaces

    PubMed Central

    Orsinger-Jacobsen, Samantha J.; Patel, Shenan S.; Vellozzi, Ernestine M.; Gialanella, Phillip; Nimrichter, Leonardo; Miranda, Kildare

    2013-01-01

    Acinetobacter baumannii is a frequent cause of hospital-acquired pneumonia, and has recently increased in incidence as the causative agent of severe disease in troops wounded in Afghanistan and Iraq. Clinical approaches are limited since A. baumannii strains isolated from patients are extremely resistant to current antimicrobials. A. baumannii can survive desiccation and during outbreaks has been recovered from various sites in the patients’ environment. To better understand its prevalence in hospital settings, we used a stainless steel washer (SSW) platform to investigate A. baumannii biofilm formation on abiotic surfaces. Scanning electron microscopy demonstrated that A. baumannii forms strong biofilms on stainless steel surfaces. This platform was combined with a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay to observe the metabolic activity of bacterial cells, and to facilitate the manipulation and comparison of multiple A. baumannii clinical strains. A strong correlation between XTT and c.f.u. assays was demonstrated. To complement the cell viability assays, A. baumannii biofilm mass was measured by crystal violet staining. Furthermore, the effect of commonly used disinfectants and environmental stressors on A. baumannii biofilms and planktonic cells was compared and characterized. Biofilms on SSWs were significantly more resistant than their planktonic counterparts, providing additional evidence that may allow us to understand the high prevalence of this microbe in hospital settings. Our results validate that SSWs are a simple, versatile and innovative method to study A. baumannii biofilms in vitro. PMID:24025603

  4. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4

    PubMed Central

    Jaax, Miriam E.; Krauel, Krystin; Marschall, Thomas; Brandt, Sven; Gansler, Julia; Fürll, Birgitt; Appel, Bettina; Fischer, Silvia; Block, Stephan; Helm, Christiane A.; Müller, Sabine; Preissner, Klaus T.

    2013-01-01

    The tight electrostatic binding of the chemokine platelet factor 4 (PF4) to polyanions induces heparin-induced thrombocytopenia, a prothrombotic adverse drug reaction caused by immunoglobulin G directed against PF4/polyanion complexes. This study demonstrates that nucleic acids, including aptamers, also bind to PF4 and enhance PF4 binding to platelets. Systematic assessment of RNA and DNA constructs, as well as 4 aptamers of different lengths and secondary structures, revealed that increasing length and double-stranded segments of nucleic acids augment complex formation with PF4, while single nucleotides or single-stranded polyA or polyC constructs do not. Aptamers were shown by circular dichroism spectroscopy to induce structural changes in PF4 that resemble those induced by heparin. Moreover, heparin-induced anti-human–PF4/heparin antibodies cross-reacted with human PF4/nucleic acid and PF4/aptamer complexes, as shown by an enzyme immunoassay and a functional platelet activation assay. Finally, administration of PF4/44mer–DNA protein C aptamer complexes in mice induced anti–PF4/aptamer antibodies, which cross-reacted with murine PF4/heparin complexes. These data indicate that the formation of anti-PF4/heparin antibodies in postoperative patients may be augmented by PF4/nucleic acid complexes. Moreover, administration of therapeutic aptamers has the potential to induce anti-PF4/polyanion antibodies and a prothrombotic diathesis. PMID:23673861

  5. Experimental syringohydromyelia induced by adhesive arachnoiditis in the rabbit: changes in the blood-spinal cord barrier, neuroinflammatory foci, and syrinx formation.

    PubMed

    Kobayashi, Shigeru; Kato, Katsura; Rodríguez Guerrero, Alexander; Baba, Hisatoshi; Yoshizawa, Hidezo

    2012-06-10

    There are many histological examinations of syringohydromyelia in the literature. However, there has been very little experimental work on blood permeability in the spinal cord vessels and ultrastructural changes. We prepared an animal model of spinal adhesive arachnoiditis by injecting kaolin into the subarachnoid space at the eighth thoracic vertebra of rabbits. The animals were evaluated 4 months later. Of the 30 rabbits given kaolin injection into the cerebrospinal fluid, 23 showed complete circumferential obstruction. In the 7 animals with partial obstruction of the subarachnoid space, intramedullary changes were not observed. However, among the 23 animals showing complete obstruction of the subarachnoid space, dilatation of the central canal (hydromyelia) occurred in 21, and intramedullary syrinx (syringomyelia) was observed in 11. In animals with complete obstruction, fluorescence microscopy revealed intramedullary edema around the central canal, extending to the posterior columns. Electron microscopy of hydromyelia revealed a marked reduction of villi on the ependymal cells, separation of the ependymal cells, and cavitation of the subependymal layer. The dilated perivascular spaces indicate alterations of fluid exchange between the subarachnoid and extracellular spaces. Syringomyelia revealed that nerve fibers and nerve cells were exposed on the surface of the syrinx, and necrotic tissue was removed by macrophages to leave a syrinx. Both pathologies differ in their mechanism of development: hydromyelia is attributed to disturbed reflux of cerebrospinal fluid, while tissue necrosis due to disturbed intramedullary blood flow is considered to be involved in formation of the syrinx in syringomyelia.

  6. Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model.

    PubMed

    Mihu, Mircea Radu; Cabral, Vitor; Pattabhi, Rodney; Tar, Moses T; Davies, Kelvin P; Friedman, Adam J; Martinez, Luis R; Nosanchuk, Joshua D

    2017-01-01

    Staphylococcus aureus is frequently isolated in the setting of infections of indwelling medical devices, which are mediated by the microbe's ability to form biofilms on a variety of surfaces. Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in patients with prolonged hospitalizations. In this study, we demonstrate that sustained nitric oxide-releasing nanoparticles (NO-np) interfere with S. aureus adhesion and prevent biofilm formation on a rat central venous catheter (CVC) model of infection. Confocal and scanning electron microscopy showed that NO-np-treated staphylococcal biofilms displayed considerably reduced thicknesses and bacterial numbers compared to those of control biofilms in vitro and in vivo, respectively. Although both phenotypes, planktonic and biofilm-associated staphylococci, of multiple clinical strains were susceptible to NO-np, bacteria within biofilms were more resistant to killing than their planktonic counterparts. Furthermore, chitosan, a biopolymer found in the exoskeleton of crustaceans and structurally integrated into the nanoparticles, seems to add considerable antimicrobial activity to the technology. Our findings suggest promising development and translational potential of NO-np for use as a prophylactic or therapeutic against bacterial biofilms on CVCs and other medical devices.

  7. MOB1-YAP1/TAZ-NKX2.1 axis controls bronchioalveolar cell differentiation, adhesion and tumour formation.

    PubMed

    Otsubo, K; Goto, H; Nishio, M; Kawamura, K; Yanagi, S; Nishie, W; Sasaki, T; Maehama, T; Nishina, H; Mimori, K; Nakano, T; Shimizu, H; Mak, T W; Nakao, K; Nakanishi, Y; Suzuki, A

    2017-03-27

    Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway. These proteins, which coactivate LArge Tumour Suppressor homologue kinases, are also tumour suppressors. To investigate MOB1A/B's roles in normal physiology and lung cancer, we generated doxycycline (Dox)-inducible, bronchioalveolar epithelium-specific, null mutations of MOB1A/B in mice (SPC-rtTA/(tetO)7-Cre/Mob1a(flox/flox)/Mob1b(-/-); termed luMob1DKO mice). Most mutants (70%) receiving Dox in utero (luMob1DKO (E6.5-18.5) mice) died of hypoxia within 1 h post-birth. Their alveolar epithelial cells showed increased proliferation, impaired YAP1/TAZ-dependent differentiation and decreased surfactant protein production, all features characteristic of human respiratory distress syndrome. Intriguingly, mutant mice that received Dox postnatally (luMob1DKO (P21-41) mice) did not develop spontaneous lung adenocarcinomas, and urethane treatment-induced lung tumour formation was decreased (rather than increased). Lungs of luMob1DKO (P21-41) mice exhibited increased detachment of bronchiolar epithelial cells and decreased numbers of the bronchioalveolar stem cells thought to initiate lung adenocarcinomas. YAP1/TAZ-NKX2.1-dependent expression of collagen XVII, a key hemidesmosome component, was also reduced. Thus, a MOB1-YAP1/TAZ-NKX2.1 axis is essential for normal lung homeostasis and expression of the collagen XVII protein necessary for alveolar stem cell maintenance in the lung niche.Oncogene advance online publication, 27 March 2017; doi:10.1038/onc.2017.58.

  8. Complexes of triggered star formation in supergiant shell of Holmberg II

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Shchekinov, Yuri A.

    2017-01-01

    We report a detailed analysis of all regions of current star formation in the walls of the supergiant H I shell (SGS) in the galaxy Holmberg II based on observations with a scanning Fabry-Perot interferometer at the Russian 6-m telescope. We compare the structure and kinematics of ionized gas with that of atomic hydrogen and with the stellar population of the SGS. Our deep Hα images and archival images taken by the Hubble Space Telescope demonstrate that current star formation episodes are larger and more complicated than previously thought: they represent unified star-forming complexes with sizes of several hundred pc rather than `chains' of separate bright nebulae in the walls of the SGS. The fact that we are dealing with unified complexes is evidenced by identified faint shell-like structures of ionized and neutral gas which connect several distinct bright H II regions. Formation of such complexes is due to the feedback of stars with very inhomogeneous ambient gas in the walls of the SGS. The arguments supporting an idea about the triggering of star formation in SGS by the H I supershells collision are presented. We also found a faint ionized supershell inside the H I SGS expanding with a velocity of no greater than 10-15 km s-1. Five OB stars located inside the inner supershell are sufficient to account for its radiation, although a possibility of leakage of ionizing photons from bright H II regions is not ruled out as well.

  9. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.

  10. Formation Control With Size Scaling Via a Complex Laplacian-Based Approach.

    PubMed

    Han, Zhimin; Wang, Lili; Lin, Zhiyun; Zheng, Ronghao

    2016-10-01

    We consider the control of formations of a leader-follower network, where the objective is to steer a team of multiple mobile agents into a formation of variable size. We assume that the shape description of the formation is known to all the agents, which is captured by a complex-valued Laplacian associated with the sensing graph, but the size scaling of the formation is not known or only known to two agents, called the leaders in the network. A distributed linear control strategy is developed in this paper such that the agents converge to the desired formation shape, for which the size of the formation is determined by the two leaders. Moreover, in order to make all agents in a formation move with a common velocity, the distributed control law also incorporates a velocity consensus component, which is implemented with the help of a communication network that may, in general, be of different topology from the sensing graph. Both the setup of single-integrator kinematics and the one of double-integrator dynamics are addressed in the same framework except that the acceleration control in the double-integrator setup has an extra damping term.

  11. p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC.

    PubMed

    Mitsiou, Dimitra J; Stunnenberg, Hendrik G

    2003-09-01

    We have recently identified a novel basal transcription complex, TAC, that is present and active in embryonal carcinoma (EC) cells but not in other adult cells such as COS7. In the search for factors involved in TAC formation, we found that expression of the adenoviral 12S E1A oncoprotein abolishes TAC formation in EC cells. This effect of E1A depends on its N-terminal domain that is essential for cell differentiation and that targets the transcriptional coactivators p300 and PCAF. Expression of p300 lacking its major E1A interaction domain, CH3, restores TAC formation in the presence of E1A, in a bromodomain- and HAT domain-dependent manner. Consistently, the unprocessed TFIIAalphabeta precursor that is selectively assembled into TAC is acetylated preferentially compared with the processed subunits present in 'free' TFIIA. Intriguingly, expression of p300 in COS7 cells that do not contain detectable levels of TAC instigates formation of TAC from endogenous components. Our data suggest that p300 plays a role in formation of the TBP-TFIIA-containing basal transcription complex, TAC.

  12. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-01-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters (`star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster (`main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted onto the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2 - 5] × 105M⊙ can accrete more than 105M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical star cluster complexes can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  13. A QUANTITATIVE KINETIC SCHEME FOR 70S TRANSLATION INITIATION COMPLEX FORMATION

    PubMed Central

    Grigoriadou, Christina; Marzi, Stefano; Kirillov, Stanislas; Gualerzi, Claudio O.; Cooperman, Barry S.

    2007-01-01

    SUMMARY Association of the 30S initiation complex (30SIC) and the 50S ribosomal subunit, leading to formation of the 70S initiation complex (70SIC), is a critical step of the translation initiation pathway. The 70SIC contains initiator tRNA, fMet-tRNAfMet, bound in the P (peptidyl)-site in response to the AUG start codon. We have formulated a quantitative kinetic scheme for the formation of an active 70SIC from 30SIC and 50S subunits on the basis of parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light scattering, and changes in fluorescence intensities of fluorophore-labeled IF2 and fMet-tRNAfMet. According to this scheme, an initially formed labile 70S complex, which promotes rapid IF2-dependent GTP hydrolysis, either dissociates reversibly into 30S and 50S subunits or is converted to a more stable form, leading to 70SIC formation. The latter process takes place with intervening conformational changes of ribosome-bound IF2 and fMet-tRNAfMet, which are monitored by spectral changes of fluorescent derivatives of IF2 and fMet-tRNAfMet. The availability of such a scheme provides a useful framework for precisely elucidating the mechanisms by which substituting the nonhydrolyzable analogue GDPCP for GTP or adding thiostrepton inhibit formation of a productive 70SIC. GDPCP does not affect stable 70S formation, but perturbs fMet-tRNAfMet positioning in the P-site. In contrast, thiostrepton severely retards stable 70S formation, but allows normal binding of fMet-tRNAfMet(prf20) to the P-site. PMID:17868692

  14. A Reaction Method for Estimating Gibbs Energy and Enthalpy of Formation of Complex Minerals

    NASA Astrophysics Data System (ADS)

    Li, Ruibing; Zhang, Tingan; Liu, Yan; Kuang, Shibo

    2017-04-01

    New and updated thermodynamic data for simple binary compounds are readily available from both experimental measurements and theoretical calculations. Based on these available data, an approach is proposed to predict Gibbs energies and enthalpies of formation for complex minerals of metallurgical, chemical, and other industrial importance. The approach assumes that complex minerals are formed from binary composite oxides, which in turn, are formed from individual pure oxides. The validity of this approach is examined by comparing the calculated values of Gibbs energies and enthalpies against the experimentally measured ones reported in literature. The results show that for typical complex minerals with available experimental data, the calculated results exhibit an average residual of 0.51 pct for Gibbs energies and 0.52 pct for enthalpies, compared to the experimental results. This new approach thus correlates well with experimental approaches and can be applied to most of the complex minerals.

  15. The formation of molecular aggregates of sulfophthalocyanine in complexes with semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Dadadzhanov, D. R.; Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Baranov, A. V.

    2015-11-01

    In this study, complexes of CdSe/ZnS quantum dots and quantum rods with sulfophthalocyanine molecules have been formed. Analysis of spectral and luminescent properties of solutions of the complexes has revealed that an increase in the number of molecules per one nanocrystal in a mixed solution results in a noticeable decrease in the intensity of the luminescence of the quantum dots and quantum rods. In addition, it has been found that, upon an increase in the concentration of sulfophthalocyanine molecules, the absorption spectra of the samples in the region of their first absorption band have signs of formation of nonluminiscent aggregates of sulfophthalocyanine molecules. Analysis of the absorption spectra of the mixed solutions has made it possible to demonstrate that the complexes with the quantum rods have a content of the sulfophthalocyanine aggregates significantly lower than the complexes with the quantum dots.

  16. A Reaction Method for Estimating Gibbs Energy and Enthalpy of Formation of Complex Minerals

    NASA Astrophysics Data System (ADS)

    Li, Ruibing; Zhang, Tingan; Liu, Yan; Kuang, Shibo

    2017-01-01

    Abstract New and updated thermodynamic data for simple binary compounds are readily available from both experimental measurements and theoretical calculations. Based on these available data, an approach is proposed to predict Gibbs energies and enthalpies of formation for complex minerals of metallurgical, chemical, and other industrial importance. The approach assumes that complex minerals are formed from binary composite oxides, which in turn, are formed from individual pure oxides. The validity of this approach is examined by comparing the calculated values of Gibbs energies and enthalpies against the experimentally measured ones reported in literature. The results show that for typical complex minerals with available experimental data, the calculated results exhibit an average residual of 0.51 pct for Gibbs energies and 0.52 pct for enthalpies, compared to the experimental results. This new approach thus correlates well with experimental approaches and can be applied to most of the complex minerals.

  17. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation

    PubMed Central

    Ketela, Troy; Cowen, Leah E.

    2016-01-01

    Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and β-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans. PMID:27870871

  18. A ZIP6-ZIP10 heteromer controls NCAM1 phosphorylation and integration into focal adhesion complexes during epithelial-to-mesenchymal transition

    PubMed Central

    Brethour, Dylan; Mehrabian, Mohadeseh; Williams, Declan; Wang, Xinzhu; Ghodrati, Farinaz; Ehsani, Sepehr; Rubie, Elizabeth A.; Woodgett, James R.; Sevalle, Jean; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2017-01-01

    The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1. ZIP6 also interacts with ZIP10 and the two ZIP transporters exhibit interdependency during their expression. ZIP6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP, ZIP6 deficiency does not abolish polysialylation of NCAM1. Instead, ZIP6 mediates phosphorylation of NCAM1 on a cluster of cytosolic acceptor sites. Substrate consensus motif features and in vitro phosphorylation data point toward GSK3 as the kinase responsible, and interface mapping experiments identified histidine-rich cytoplasmic loops within the ZIP6/ZIP10 heteromer as a novel scaffold for GSK3 binding. Our data suggests that PrP and ZIP6 inherited the ability to interact with NCAM1 from their common ZIP ancestors but have since diverged to control distinct posttranslational modifications of NCAM1. PMID:28098160

  19. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    PubMed

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  20. Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation.

    PubMed

    Verhamme, Ingrid M; Bock, Paul E

    2008-09-19

    Binding of the fibrinolytic proteinase plasmin (Pm) to streptokinase (SK) in a tight stoichiometric complex transforms Pm into a potent proteolytic activator of plasminogen. SK binding to the catalytic domain of Pm, with a dissociation constant of 12 pm, is assisted by SK Lys(414) binding to a Pm kringle, which accounts for a 11-20-fold affinity decrease when Pm lysine binding sites are blocked by 6-aminohexanoic acid (6-AHA) or benzamidine. The pathway of SK.Pm catalytic complex formation was characterized by stopped-flow kinetics of SK and the Lys(414) deletion mutant (SKDeltaK414) binding to Pm labeled at the active site with 5-fluorescein ([5F]FFR-Pm) and the reverse reactions by competitive displacement of [5F]FFR-Pm with active site-blocked Pm. The rate constants for the biexponential fluorescence quenching caused by SK and SKDeltaK414 binding to [5F]FFR-Pm were saturable as a function of SK concentration, reporting encounter complex affinities of 62-110 nm in the absence of lysine analogs and 4900-6500 and 1430-2200 nm in the presence of 6-AHA and benzamidine, respectively. The encounter complex with SKDeltaK414 was approximately 10-fold weaker in the absence of lysine analogs but indistinguishable from that of native SK in the presence of 6-AHA and benzamidine. The studies delineate for the first time the sequence of molecular events in the formation of the SK.Pm catalytic complex and its regulation by kringle ligands. Analysis of the forward and reverse reactions supports a binding mechanism in which SK Lys(414) binding to a Pm kringle accompanies near-diffusion-limited encounter complex formation followed by two slower, tightening conformational changes.

  1. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase

    PubMed Central

    Costa, Kyle C.; Wong, Phoebe M.; Wang, Tiansong; Lie, Thomas J.; Dodsworth, Jeremy A.; Swanson, Ingrid; Burn, June A.; Hackett, Murray; Leigh, John A.

    2010-01-01

    In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579–591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F420-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H2 or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H2 via F420-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H2 as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F420-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H2, is closely integrated into the methanogenic pathway. PMID:20534465

  2. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    NASA Astrophysics Data System (ADS)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  3. Using chemical shifts to determine structural changes in proteins upon complex formation.

    PubMed

    Cavalli, Andrea; Montalvao, Rinaldo W; Vendruscolo, Michele

    2011-08-04

    Methods for determining protein structures using only chemical shift information are progressively becoming more accurate and reliable. A major problem, however, in the use of chemical shifts for the determination of the structures of protein complexes is that the changes in the chemical shifts upon binding tend to be rather limited and indeed often smaller than the standard errors made in the predictions of chemical shifts corresponding to given structures. We present a procedure that, despite this problem, enables one to use of chemical shifts to determine accurately the conformational changes that take place upon complex formation.

  4. Natural Underwater Adhesives.

    PubMed

    Stewart, Russell J; Ransom, Todd C; Hlady, Vladimir

    2011-06-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)(3) coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  5. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  6. Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions.

    PubMed

    Pallagi, Attila; Bajnóczi, Éva G; Canton, Sophie E; Bolin, Trudy; Peintler, Gábor; Kutus, Bence; Kele, Zoltán; Pálinkó, István; Sipos, Pál

    2014-06-17

    Alkaline solutions containing polyhydroxy carboxylates and Ca(II) are typical in cementitious radioactive waste repositories. Gluconate (Gluc(-)) is a structural and functional representative of these sugar carboxylates. In the current study, the structure and equilibria of complexes forming in such strongly alkaline solutions containing Ca(2+) and gluconate have been studied. It was found that Gluc(-) significantly increases the solubility of portlandite (Ca(OH)2(s)) under these conditions and Ca(2+) complexes of unexpectedly high stability are formed. The mononuclear (CaGluc(+) and [CaGlucOH](0)) complexes were found to be minor species, and predominant multinuclear complexes were identified. The formation of the neutral [Ca2Gluc(OH)3](0) (log β213 = 8.03) and [Ca3Gluc2(OH)4](0) (log β324 = 12.39) has been proven via H2/Pt-electrode potentiometric measurements and was confirmed via XAS, (1)H NMR, ESI-MS, conductometry, and freezing-point depression experiments. The binding sites of Gluc(-) were identified from multinuclear NMR measurements. Besides the carboxylate group, the O atoms on the second and third carbon atoms were proved to be the most probable sites for Ca(2+) binding. The suggested structure of the trinuclear complex was deduced from ab initio calculations. These observations are of relevance in the thermodynamic modeling of radioactive waste repositories, where the predominance of the binuclear Ca(2+) complex, which is a precursor of various high-stability ternary complexes with actinides, is demonstrated.

  7. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    SciTech Connect

    Fatimah, Is Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  8. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  9. Pattern formation based on complex coupling mechanism in dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Dong, Lifang; Wang, Yongjie; Zhang, Hao; Pan, Yuyang

    2016-08-01

    The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristics and even the formation mechanism of patterns in DBD.

  10. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia

    PubMed Central

    Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-01-01

    It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle. PMID:24769530

  11. Analysis of functional domains of the host cell factor involved in VP16 complex formation.

    PubMed

    Hughes, T A; La Boissière, S; O'Hare, P

    1999-06-04

    We present biochemical analyses of the regions of the host cell factor (HCF) involved in VP16 complex formation and in the association between the N- and C-terminal domains of HCF itself. We show that the kelch repeat region of HCF (residues 1-380) is sufficient for VP16 complex formation, but that residues C-terminal to the repeats (positions 381-450) interfere with this activity. However, these latter residues are required for the interaction between the N- and C-terminal regions of HCF. The extreme C-terminal region of HCF, corresponding to an area of strong conservation with a Caenorhabditis elegans homologue, is sufficient for interaction with the N-terminal region. These results are discussed with respect to possible differences in the roles of HCF in VP16 activity versus its normal cellular function.

  12. [Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].

    PubMed

    Kostiukov, V V

    2011-01-01

    The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.

  13. The standard enthalpies of combustion and formation of crystalline cobalt tetrakis(4-metoxyphenyl)porphin complex

    NASA Astrophysics Data System (ADS)

    Tarasov, R. P.; Volkov, A. V.; Bazanov, M. I.; Semeikin, A. S.

    2009-05-01

    The energy of combustion of cobalt tetrakis(4-metoxyphenyl)porphin was determined in an isothermic-shell liquid calorimeter with a stationary calorimetric bomb. The standard enthalpies of combustion and formation of the complex were calculated, -Δ c H o = 27334.06 ± 50.98 kJ/mol and Δf H o = 3062.90 ± 50.97 kJ/mol.

  14. Display format and highlight validity effects on search performance using complex visual displays

    NASA Technical Reports Server (NTRS)

    Donner, Kimberly A.; Mckay, Tim; O'Brien, Kevin M.; Rudisill, Marianne

    1991-01-01

    Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.

  15. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite.

    PubMed

    Sosso, Gabriele C; Li, Tianshu; Donadio, Davide; Tribello, Gareth A; Michaelides, Angelos

    2016-07-07

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed.

  16. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite

    PubMed Central

    2016-01-01

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363

  17. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility

    PubMed Central

    Pasch, Elisabeth; Link, Jana; Beck, Carolin; Scheuerle, Stefanie; Alsheimer, Manfred

    2015-01-01

    ABSTRACT LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility. PMID:26621829

  18. Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in vitro.

    PubMed

    Samuelsen, J T; Kopperud, H M; Holme, J A; Dragland, I S; Christensen, T; Dahl, J E

    2011-02-01

    Methacrylate monomers that are found to leach from cured resin-based dental materials induce biological effects in vitro. The underlying mechanisms have not been fully elucidated although involvement of increased cellular reactive oxygen species (ROS) and DNA-damage has been suggested. In this in vitro study we have elucidated the impact of a commonly used methacrylate monomer, HEMA, on the level and oxidation state of cellular glutathione, intracellular ROS level, as well as the formation of complex between HEMA and glutathione. HEMA exposure rapidly led to increased level of ROS and reduced level of GSH (reduced form of glutathione). Antioxidants effectively counteracted the ROS increase, but had no effect on the GSH depletion. No change in glutathione-disulphide (GSSG; oxidized form of glutathione) concentration was detected in the HEMA treated cells, showing that oxidation of glutathione was not responsible for the reduced GSH concentration. Further we demonstrated spontaneous formation of a complex between HEMA and GSH. In conclusion, we showed that exposure to HEMA led to drop in cellular glutathione level probably caused by complex formation with HEMA. A similar covalent binding of HEMA to macromolecules combined with increased level of cellular ROS due to lower levels of GSH is suggested to be important factors triggering the toxic response.

  19. True boundary for the formation of homoleptic transition-metal hydride complexes.

    PubMed

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Aoki, Katsutoshi; Orimo, Shin-ichi

    2015-05-04

    Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups 7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group 6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of σ-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest.

  20. Rapid formation of cell-particle complexes via dielectrophoretic manipulation for the detection of surface antigens.

    PubMed

    Horii, Takuma; Yamamoto, Masashi; Yasukawa, Tomoyuki; Mizutani, Fumio

    2014-11-15

    A rapid and simple method for the fabrication of the island patterns with particles and cells was applied to detect the presence of specific antigens on the cell surface. An upper interdigitated microband array (IDA) electrode was mounted on a lower substrate with the same design to fabricate a microfluidic-channel device for dielectrophoretic manipulation. The electrode grid structure was fabricated by rotating the upper template IDA by 90° relative to the lower IDA. A suspension of anti-CD33 modified particles and HL-60 cells was introduced into the channel. An AC electrical signal (typically 20 V peak-to-peak, 100 kHz) was then applied to the bands of the upper and lower IDAs, resulting in the formation of island patterns at the intersections with low electric fields. Immunoreactions between the antibodies immobilized on the accumulated particles and the CD33 present on the surface of the cells led to the formation of complexes comprising corresponding antigen-antibody pairs. Non-specific pairs accumulated at the intersection, which did not form complexes, were then dispersed after removal of the applied field. The time required for the detection of the formation/dispersion of the complexes is as short as 6 min in the present procedure. Furthermore, this novel cell binding assay does not require pretreatment such as target labeling or washing of the unbound cells.

  1. Massive Star Formation in the Cygnus-X DR15 Complex

    NASA Astrophysics Data System (ADS)

    Laws, Anna; Hora, Joseph L.; Zhang, Qizhou

    2017-01-01

    To unravel the mysteries of massive star formation it is necessary to observe Young Stellar Objects (YSOs) in a variety of environments and evolutionary stages. The Cygnus-X region, at a distance of 1.4kpc, is one of the closest massive star-forming complexes and so offers an excellent view of the earliest stages of massive stars and clusters. A key area in this complex is DR15, a cluster population with many intriguing objects including a molecular pillar and InfraRed Dark Cloud (IRDC) that is likely to host newly forming massive stars. Previous infrared studies incorporating data from Spitzer and Herschel have built catalogs of YSOs in the DR15 region, revealing its abundance of massive star formation. To improve on these catalogs and to probe the earliest stages of star formation, we have observed the region at high spatial resolution using the Submillimeter Array (SMA). The SMA data are more sensitive to objects in earlier evolutionary phases and provide additional constraints when modeling the Spectral Energy Distribution (SED) of each star, resulting in more accurate values for each star’s mass and accretion rate. The SMA data allow us to trace the particular YSOs that are actively accreting and drive molecular outflows, which influence the ISM and chemical trends across the region. DR15 offers an exciting chance to expand our understanding of the processes behind massive star formation.

  2. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.

    PubMed

    Fiedor, Leszek; Akahane, Junji; Koyama, Yasushi

    2004-12-28

    A simple reconstitution technique has been developed and then applied to prepare a series of light-harvesting antenna 1 (LH1) complexes with a programmed carotenoid composition, not available from native photosynthetic membranes. The complexes were reconstituted with different C(40) carotenoids, having two structural parameters variable: the functional side groups and the number of conjugated C-C double bonds, systematically increasing from 9 to 13. The complexes, differing only in the type of carotenoid, bound to an otherwise identical bacteriochlorophyll-polypeptide matrix, can serve as a unique model system in which the relationship between the carotenoid character and the functioning of pigment-protein complexes can be investigated. The reconstituted LH1 complexes resemble the native antenna, isolated from wild-type Rhodospirillum rubrum, but their coloration is entirely determined by carotenoid. Along with the increase in its conjugation size, the carotenoid absorption transitions gradually shift to the red. Thus, the extension of the conjugation size of the antenna carotenoids provides a mechanism for the spectral tuning of light harvesting in the visible part of the spectrum. The carotenoids in the reconstitution system promote the LH1 formation and seem to bind and transfer the excitation energy specifically only to a species with characteristically red-shifted absorption and emission maxima, apparently, due to a cooperative effect. Monitoring the LH1 formation by steady-state absorption and fluorescence spectroscopies reveals that in the presence of carotenoids it proceeds without spectrally resolved intermediates, leading directly to B880. The effect of the carotenoid is enhanced when the pigment contains the hydroxy or methoxy side groups, implying that, in parallel to hydrophobic interactions and pi-pi stacking, other interactions are also involved in the formation and stabilization of LH1.

  3. Formylglycinamide Ribonucleotide Amidotransferase from Thermotoga maritima: Structural Insights into Complex Formation

    SciTech Connect

    Morar, Mariya; Hoskins, Aaron A.; Stubbe, JoAnne; Ealick, Steven E.

    2008-10-02

    In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P{sub i}, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.

  4. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  5. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    SciTech Connect

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  6. Formation and Recondensation of Complex Organic Molecules During Protostellar Luminosity Outbursts

    NASA Technical Reports Server (NTRS)

    Taquet, Vianney; Wirstrom, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  7. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus.

    PubMed

    von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E; Bragas, Andrea V; Pietrasanta, Lía I

    2017-01-01

    The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.

  8. Structure of solvated Fe(CO)5: complex formation during solvation in alcohols.

    PubMed

    Lessing, Joshua; Li, Xiaodi; Lee, Taewoo; Rose-Petruck, Christoph G

    2008-03-20

    The equilibrium structure of iron pentacarbonyl, Fe(CO)5, solvated in various alcohols has been investigated by Fourier transform infrared (FTIR) measurements and density functional theory calculations. This system was studied because it is prototypical of a larger class of monometallic systems, which are electronically saturated but not sterically crowded. Upon solvation, the Fe(CO)5 is not just surrounded by a solvation shell. Instead, solute-solvent complexes are formed with the oxygen of the alcohol oriented toward an axial ligand of the Fe(CO)5 giving a formation energy on the order of -5 kJ/mol. This complexation is not a chemical reaction but rather a "preassembly" of the solute molecules with a single solvent molecule. For instance, at room temperature the interaction between Fe(CO)5 and ethanol results in 87% of all Fe(CO)5 molecules being complexated with a single ethanol molecule. This complexation was found in all the alcohol systems studied in this paper. The stability of these complexes was found to depend on the alcohol chain length and branching. The observed complexation mechanism is accompanied by an electron density shift from the complexed alcohol molecule toward Fe(CO)5 where it induces a dipole moment. The finding that Fe(CO)5 forms a complex with the hydroxyl group of a single solvent molecule might have significant implications for ligand substitution reactions. This implies that ligand substitution reactions do not have to proceed via a dissociative mechanism. Instead, the reaction might proceed through a concerted mechanism with the leaving CO simultaneously being replaced by the incoming alcohol that was complexed to Fe(CO)5 prior to the photoexcitation.

  9. [Regularities of formation of chlorophyll-human serum albumin functionally active complexes in the aqueous medium].

    PubMed

    Semichaevskiĭ, V D

    1975-01-01

    In the system with constant content of the chlorophyll a and increasing amounts of human serum albumin, dependence of pigment incorporation into the complex upon interaction of its aqueous associates with protein solutions was studied by applying the gel filtration on Sephadex G-75 and by measuring light scattering and rate of sensitized photoreduction of the methyl red by ascorbic-acid. The curves were obtained after extraction of the chlorophyll by acetone from dry pigment-protein films formed after desiccation of the aqueous systems. Sigmoid character of the above dependences, their linearization in Hill's coordinates and the value of cooperativity coefficient close to 2 testifies in favour of the cooperative character of the complex formation, two pigment molecules reacting with a single protein molecule. Measurement of adsorption isotherms and their treatment with use of the Brunauer-Emmett-Teller theory of polymolecular adsorption make it possible to evaluate the maximum molar ratio of the pigment to the protein in the complex (close to 2). The pigment-pigment interaction suggests that the chlorophyll molecules adsorbed on the protein are in the state of loosely packed dimers. Deaggregation of aqueus pigment associates by the protein in the course of complex formation results in a considerable increase of the protosensitizing chlorophyll activity.

  10. Spectrophotometric and spectrofluorimetric determination of certain diuretics through ternary complex formation with eosin and lead (II).

    PubMed

    Omar, Mahmoud A

    2010-01-01

    Simple and sensitive spectrophotometric and spectrofluorimetric methods have been developed for the determination of hydrochlorothiazide (I), indapamide (II) and xipamide(III) based on ternary complex formation with eosin and lead (II) in the presence of methylcellulose as surfactant. The methods do not involve solvent extraction. For spectrophotometric method, the ternary complex showed an absorption maximum at 543 nm. The factors affecting the formation of ternary complex were studied and optimized. The method obeys Beer's law over concentration range of 8-40 microg mL(-1). A fluorescence quenching method for the determination of the cited drugs by forming this ternary complex was also investigated for the purpose of enhancing the sensitivity of the determination. The analytical performance of both methods was fully validated, and the results were satisfactory. The methods have been successfully applied for the determination of the studied drugs in their pharmaceutical tablets and the results obtained ware in good agreement with those obtained by the reference method. Common excipients used as additives in tablets do not interfere with the proposed methods.

  11. Modifications of the acyl-d-alanyl-d-alanine terminus affecting complex-formation with vancomycin

    PubMed Central

    Nieto, M.; Perkins, H. R.

    1971-01-01

    Vancomycin forms complexes with peptides terminating in d-alanyl-d-alanine that are analogous to the biosynthetic precursors of bacterial mucopeptides. The specificity of complex-formation has been studied by means of many synthetic peptides, prepared by both solid-phase and conventional methods. The following conclusions can be drawn: (a) three amide linkages are required to form a stable complex; (b) the terminal carboxyl group must be free; (c) the carboxyl terminal and subterminal residues must be either glycine or of the d-configuration; (d) the size of the side chain in these residues greatly influences the affinity for vancomycin, a methyl group being the optimum in each case; (e) the nature of the side chain in the third and fourth residues has a smaller effect on complex-formation, but an l-configuration was somewhat better than a d-configuration in the third position. In addition to acyl-d-alanyl-d-alanine, other peptides that occur in bacterial cell walls will combine with vancomycin, although less strongly, e.g. acyl-d-alanyl-d-α-amino acid (where the terminal d-residue may form the cross-link in mucopeptide structure) and acyl-l-alanyl-d-glutamylglycine (a sequence found in the mucopeptide of Micrococcus lysodeikticus and related organisms). These results throw some light on the specificity of the uptake of vancomycin by living bacteria. PMID:5124386

  12. Perfluoroalkyl Cobalt(III) Fluoride and Bis(perfluoroalkyl) Complexes: Catalytic Fluorination and Selective Difluorocarbene Formation.

    PubMed

    Leclerc, Matthew C; Bayne, Julia M; Lee, Graham M; Gorelsky, Serge I; Vasiliu, Monica; Korobkov, Ilia; Harrison, Daniel J; Dixon, David A; Baker, R Tom

    2015-12-30

    Four perfluoroalkyl cobalt(III) fluoride complexes have been synthesized and characterized by elemental analysis, multinuclear NMR spectroscopy, X-ray crystallography, and powder X-ray diffraction. The remarkable cobalt fluoride (19)F NMR chemical shifts (-716 to -759 ppm) were studied computationally, and the contributing paramagnetic and diamagnetic factors were extracted. Additionally, the complexes were shown to be active in the catalytic fluorination of p-toluoyl chloride. Furthermore, two examples of cobalt(III) bis(perfluoroalkyl)complexes were synthesized and their reactivity studied. Interestingly, abstraction of a fluoride ion from these complexes led to selective formation of cobalt difluorocarbene complexes derived from the trifluoromethyl ligand. These electrophilic difluorocarbenes were shown to undergo insertion into the remaining perfluoroalkyl fragment, demonstrating the elongation of a perfluoroalkyl chain arising from a difluorocarbene insertion on a cobalt metal center. The reactions of both the fluoride and bis(perfluoroalkyl) complexes provide insight into the potential catalytic applications of these model systems to form small fluorinated molecules as well as fluoropolymers.

  13. Formation and antimicrobial activity of complexes of beta-cyclodextrin and some antimycotic imidazole derivatives.

    PubMed

    Van Doorne, H; Bosch, E H; Lerk, C F

    1988-04-22

    Complex formation between beta-cyclodextrin and six antimycotic imidazole derivatives has been studied. The solubility of all drugs was increased in the presence of beta-cyclodextrin. The smallest increase (approx. 5-fold) was observed for miconazol, and the largest increase (approx. 160-fold) was observed for bifonazol. Apparent 1:1-complex constants were measured and found to decrease in the order: bifonazol greater than ketoconazol greater than tioconazol greater than miconazol greater than itraconazol greater than clotrimazol. The complexes appeared to possess a low, if any, antimicrobial activity. Measurement of inhibition zone sizes, with four test organisms was used to study the release of the antimycotic drugs from topical preparations. The antimycotic drugs were more readily released from topical preparations containing beta-cyclodextrin than from the same vehicles without beta-cyclodextrin. The rationale of beta-cyclodextrin addition to antimycotic topical preparations is discussed.

  14. Nucleation and Growth of Integrin Adhesions

    PubMed Central

    Atilgan, Erdinç; Ovryn, Ben

    2009-01-01

    We present a model that provides a mechanistic understanding of the processes that govern the formation of the earliest integrin adhesions ex novo from an approximately planar plasma membrane. Using an analytic analysis of the free energy of a dynamically deformable membrane containing freely diffusing receptors molecules and long repeller molecules that inhibit integrins from binding with ligands on the extracellular matrix, we predict that a coalescence of polymerizing actin filaments can deform the membrane toward the extracellular matrix and facilitate integrin binding. Monte Carlo simulations of this system show that thermally induced membrane fluctuations can either zip-up and increase the radius of a nucleated adhesion or unzip and shrink an adhesion, but the fluctuations cannot bend the ventral membrane to nucleate an adhesion. To distinguish this integrin adhesion from more mature adhesions, we refer to this early adhesion as a nouveau adhesion. PMID:19413961

  15. Effects of formate binding on the quinone-iron electron acceptor complex of photosystem II.

    PubMed

    Sedoud, Arezki; Kastner, Lisa; Cox, Nicholas; El-Alaoui, Sabah; Kirilovsky, Diana; Rutherford, A William

    2011-02-01

    EPR was used to study the influence of formate on the electron acceptor side of photosystem II (PSII) from Thermosynechococcus elongatus. Two new EPR signals were found and characterized. The first is assigned to the semiquinone form of Q(B) interacting magnetically with a high spin, non-heme-iron (Fe²(+), S=2) when the native bicarbonate/carbonate ligand is replaced by formate. This assignment is based on several experimental observations, the most important of which were: (i) its presence in the dark in a significant fraction of centers, and (ii) the period-of-two variations in the concentration expected for Q(B)(•-) when PSII underwent a series of single-electron turnovers. This signal is similar but not identical to the well-know formate-modified EPR signal observed for the Q(A)(•-)Fe²(+) complex (W.F.J. Vermaas and A.W. Rutherford, FEBS Lett. 175 (1984) 243-248). The formate-modified signals from Q(A)(•-)Fe²(+) and Q(B)(•-)Fe²(+) are also similar to native semiquinone-iron signals (Q(A)(•-)Fe²(+)/Q(B)(•-)Fe²(+)) seen in purple bacterial reaction centers where a glutamate provides the carboxylate ligand to the iron. The second new signal was formed when Q(A)(•-) was generated in formate-inhibited PSII when the secondary acceptor was reduced by two electrons. While the signal is reminiscent of the formate-modified semiquinone-iron signals, it is broader and its main turning point has a major sub-peak at higher field. This new signal is attributed to the Q(A)(•-)Fe²(+) with formate bound but which is perturbed when Q(B) is fully reduced, most likely as Q(B)H₂ (or possibly Q(B)H(•-) or Q(B)(²•-)). Flash experiments on formate-inhibited PSII monitoring these new EPR signals indicate that the outcome of charge separation on the first two flashes is not greatly modified by formate. However on the third flash and subsequent flashes, the modified Q(A)(•-)Fe²(+)Q(B)H₂ signal is trapped in the EPR experiment and there is a marked

  16. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  17. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  18. Structural Complexities Influencing Biostratigraphic Interpretations of the Permian Nansen Formation type-section, Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hill, M.; Guest, B.

    2011-12-01

    The Carboniferous to Permian aged Nansen Formation is a cyclic carbonate shelf deposit and potential hydrocarbon reservoir. This formation is the thickest, most widespread carbonate sequence in the Sverdrup Basin. Deformed during the Eurekan Orogeny, the Nansen Fm. is topographically prominent and responsible for the rugged topography on Axel Heiburg and Ellesmere Island. The type-section for the Nansen Fm. is located on the north side of Hare Fiord, along Girty Creek. At this location there is an estimated stratigraphic thickness of 2 km. Due to easier access most of the stratigraphic work has been completed on nearby glacially exposed sections that traverse parallel to Girty Creek along glacial margins. Extensive biostratigraphy was completed on a glacier section to the west, however, in a glacier section to the east of Girty Creek, structural complexities appear to be repeating sections of the formation. Here, the Nansen formation is bounded by two regional reverse faults. This has produced duplex structures, with clearly exposed stacked horses, footwall synclines, and truncations. By projecting the structures observed along the eastern glacier section to the western glacier section that was used for biostratigraphic studies, it is clear that these structures would affect biostratigraphic interpretations. It was previously noted by biostratigraphers that thrust faults appear to be repeating sections of the Nansen formation. However by correlating all observed faults with the biostratigraphy, we can determine the extent to which the faulting has affected the interpretations, and whether all faults or stratigraphic repetitions are accounted for.

  19. Toward a Reduced Complexity Channel Resolving Model for Sedimentary Delta Formation

    NASA Astrophysics Data System (ADS)

    Liang, M.; Voller, V. R.; Edmonds, D. A.; Paola, C.

    2010-12-01

    Predicting styles of delta growth in restoration areas is a challenge as we try to restore impacted coastlines. Cellular and rule-based reduced complexity models offer a worthwhile means of uncovering key dynamics in delta morphodynamics without the need to fully solve the governing transport equations. In terms of modeling sedimentary delta building processes a critical ingredients is accounting for the formation and bifurcation of channels; phenomena that can be related to the formation of levees and mouth-bars. To that end, we have developed a reduced complexity model that uses a simplified shallow-water solver to study channel formation, mouth bar deposition, and delta development under different forcings. Under the assumption that the flow has a very low Froude Number (Fr2<<1), the inertia term is dropped out and only the gravitational term and friction term remain in the momentum equation. The coupled mass conservation equation becomes a non-linear diffusive equation, which is linearized by a Kirchhoff transformation. Directional diffusivity is added to this system to compensate the loss of inertia and promote spreading of the turbulent jet. We test the reduced model against flow over Gaussian-shaped bumps of various heights. Comparison of results from this model with results from a full scale commercial code (Delft3D) show a satisfactory agreement on the critical mouth bar height needed to divert flow around the bar. Based on the same diffusive equation, we develop a low-Froude water-routing method for reduced complexity morphodynamics models. The preliminary results show that the method is capable of producing reasonable channel forms and mouth bar formation, and provides a good starting point for development of a channel resolving delta building model.

  20. Ab initio study of the formation of vacancy and hydrogen-vacancy complexes in palladium and its hydride

    NASA Astrophysics Data System (ADS)

    Supryadkina, I. A.; Bazhanov, D. I.; Ilyushin, A. S.

    2014-01-01

    We report on the results of ab initio calculations of vacancy and hydrogen-vacancy complexes in palladium and palladium hydride. Comparative analysis of the energies of the formation of defect complexes in palladium and its hydride has revealed that the formation of vacancy clusters is easier in the palladium hydride structure. Investigation of hydrogen-vacancy complexes in bulk crystalline palladium has shown that a hydrogen atom and a vacancy interact to form a stable hydrogen-vacancy (H-Vac) defect complex with a binding energy of E b = -0.21 eV. To investigate the initial stage in the formation of hydrogen-vacancy complexes (H n -Vac m ), we consider the clusterization of defects into clusters containing H-Vac and H2-Vac complexes as a structural unit. It is found that hydrogen-vacancy complexes form 2D defect structures in palladium in the (100)-type planes.

  1. Complete stereocontrol in the synthesis of macrocyclic lanthanide complexes: direct formation of enantiopure systems for circularly polarised luminescence applications.

    PubMed

    Evans, Nicholas H; Carr, Rachel; Delbianco, Martina; Pal, Robert; Yufit, Dmitry S; Parker, David

    2013-11-28

    Mono-C-substitution of the 1,4,7-triazacyclononane ring induces formation of single enantiomers of Eu(III) complexes with nonadentate N6O3 ligands. The absolute configuration of each complex is determined by the stereogenicity of the C-substituent, revealed by comparison of the sign and sequence of CPL transitions for a series of complexes.

  2. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by

  3. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  4. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase.

    PubMed

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2-59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction.

  5. Cast adhesive polyelectrolyte complex particle films of unmodified or maltose-modified poly(ethyleneimine) and cellulose sulphate: fabrication, film stability and retarded release of zoledronate.

    PubMed

    Torger, Bernhard; Vehlow, David; Urban, Birgit; Salem, Samaa; Appelhans, Dietmar; Müller, Martin

    2013-12-01

    The bone therapeutic drug zoledronate (ZOL) was loaded at and released by polyelectrolyte complex (PEC) particle films composed of either pure poly(ethyleneimine) (PEI) or maltose-modified poly(ethyleneimine) (PEI-M) and oppositely charged cellulose sulfate attached to model germanium (Ge) substrates by solution casting. Dispersions of colloidally stable polyelectrolyte complex (PEC) particles in the size range 11-141 nm were obtained by mixing PEI or PEI-M, CS and ZOL in defined stoichiometric ratios. TRANS-FTIR spectroscopy was used to determine the stability of the PEC films against detachment, in-situ-ATR-FTIR spectroscopy for the ZOL loss in the PEC film and UV-VIS spectroscopy for the ZOL enrichment of the release medium. Films of casted ZOL/CS/PEI-M or ZOL/CS/PEI particles were stable in contact to water, while films of the pure drug (ZOL) and of the binary systems ZOL/PEI-M or ZOL/PEI were not stable against detachment. Retarded releases of ZOL from various PEC films compared to the pure drug film were observed. The molecular weight of PEI showed a considerable effect on the initial burst (IB) of ZOL. No significant effect of the maltose modification of PEI-25 K on IB could be found. Generally, after one day the ZOL release process was finished for all measured ZOL/PEC samples and residual amounts of 0-30% were obtained. Surface adhesive drug loaded PEC particles are promising drug delivery systems to supply and release a defined amount of bone therapeutics and to functionalize bone substitution materials.

  6. Revised nomenclature and stratigraphic relationships of the Fredericksburg Complex and Quantico Formation of the Virginia Piedmont

    USGS Publications Warehouse

    Pavlides, Louis

    1980-01-01

    The Fredericksburg Complex, in part a migmatitic terrane in northeast Virginia, is subdivided on the basis of lithology, as well as aeromagnetic and aeroradiometric data, into two metamorphic suites. These suites are separated by the northeast-trending Spotsylvania lineament, a rectilinear geophysical feature that is probably the trace of an old fault zone. East of the lineament, the Po River Metamorphic Suite, of Proterozoic Z and (or) early Paleozoic age, consists dominantly of biotite gneiss, generally augen gneiss, and lesser amounts of hornblende gneiss and mica schist. West of the Spotsylvania lineament is the Ta River Metamorphic Suite, composed mostly of amphibolite and amphibole gneiss. However, to the southwest, along its strike belt, the Ta River contains abundant biotite gneiss and mica schist. Both the Ta River and Po River contain abundant foliated granitoid and pegmatoid bodies as concordant tabular masses and as crosscutting dikes; these rocks are considered part of the Ta River and Po River Metamorphic Suites. The amphibolitic Holly Corner Gneiss is interpreted to be a western allochthonous equivalent of the Ta River. Both the Ta River and Holly Corner are considered to be coeval, eastern, distal facies of the Lower Cambrian(?) Chopawamsic Formation. The Paleozoic Falls Run Granite Gneiss intrudes the Ta River Metamorphic Suite and the Holly Corner Gneiss; locally the Falls Run is interpreted to have been transported westward with the Holly Corner after intrusion. The Quantico Formation, in the core of the Quantico-Columbia synclinorium, rests with angular unconformity along its northwest and southeast limbs, respectively, on the Chopawamsic Formation and the Ta River Metamorphic Suite. The Quantico Formation is assigned the same Late Ordovician age and similar stratigraphic position as the Arvonia Slate of the Arvonia syncline. The youngest rocks of the area are the granitoid and pegmatoid bodies of the Falmouth Intrusive Suite. They consist of

  7. Experimental studies of complex crater formation under cluster implantation of solids

    NASA Astrophysics Data System (ADS)

    Prasalovich, S.; Popok, V.; Persson, P.; Campbell, E. E. B.

    2005-10-01

    The results of a systematic study of surface defect formation after energetic Arn+ (n = 12, 22, 32, 54) and Xen+ (n = 4, 16) cluster ion implantation into silicon and sapphire are presented. Implantation energies vary from 3 to 18 keV/ion. Two cases of comparative studies are carried out: the same cluster species are implanted into two different substrates, i.e. Arn+ cluster ions into silicon and sapphire and two different cluster species Arn+ and Xen+ are implanted into the same kind of substrate (silicon). Atomic force, scanning electron and transmission electron microscopies (AFM, SEM and TEM) are used to study the implanted samples. The analysis reveals the formation of two types of surface erosion defects: simple and complex (with centrally positioned hillock) craters. It is found that the ratio of simple to complex crater formation as well as the hillock dimensions depend strongly on the cluster species, size and impact energy as well as on the type of substrate material. Qualitative models describing the two comparative cases of cluster implantation, the case of different cluster species and the case of different substrate materials, are proposed.

  8. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    SciTech Connect

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H.; Duvernay, F.; Chiavassa, T.

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  9. Carbon Dioxide Influence on the Thermal Formation of Complex Organic Molecules in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Duvernay, F.; Fray, N.; Bouilloud, M.; Chiavassa, T.; Cottin, H.

    2015-08-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H2O, NH3, CO2, H2CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  10. In vivo formation and binding of SeHg complexes to the erythrocyte surface.

    PubMed

    Cherdwongcharoensuk, Duangrudee; Oliveira, Maria João; Aguas, Artur Perez

    2010-08-01

    The in vivo dynamics of selenium (Se) and mercury (Hg) interaction was studied in mouse tissues using direct visualization of individual Se, Hg, and SeHg particles on the surface of circulating erythrocytes. This high-resolution detection of Se and Hg was obtained by scanning electron microscopy coupled to X-ray microanalysis. BALB/c mice were injected in the peritoneal cavity with Se and Hg salts, and the animals were sacrificed 3 min after the Hg injection. Only a minority (9%) of the metal dots seen on mouse liver erythrocytes were SeHg complexes when Se and Hg salts were mixed together before injection. In contrast, the majority (73%) of metal dots on liver erythrocytes were SeHg complexes if Se was injected at least 5 min before Hg injection. All metal dots on liver erythrocytes were of SeHg complexes if Se was injected 9 or 12 min before the Hg injection. We conclude that the formation of stable in vivo SeHg complexes requires preliminary interaction of Se with a putative serum factor before complexes between Se and Hg are formed and are bound to the erythrocyte cell surface.

  11. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair

    PubMed Central

    Moné, Martijn J.; Bernas, Tytus; Dinant, Christoffel; Goedvree, Feliks A.; Manders, Erik M. M.; Volker, Marcel; Houtsmuller, Adriaan B.; Hoeijmakers, Jan H. J.; Vermeulen, Wim; van Driel, Roel

    2004-01-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of ≈30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells. PMID:15520397

  12. Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi

    2016-03-01

    To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field.

  13. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate.

    PubMed

    Sun, Cuixia; Dai, Lei; Gao, Yanxiang

    2017-02-10

    The anti-solvent co-precipitation method was used to fabricate the zein-propylene glycol alginate (PGA) binary complex with different mass ratios of zein to PGA (20:1, 10:1, 5:1, 2:1 and 1:1) at pH 4.0. Results showed that attractive electrostatic interaction between zein and PGA occurred and negatively charged binary complex with large size and high turbidity was formed due to the charge neutralization. Hydrogen bonding and hydrophobic effects were involved in the interactions between zein and PGA, leading to the changed secondary structure and improved thermal stability of zein. Aggregates in the irregular shape with large size were obviously observed in the AFM images. PGA alone exhibited a fine filamentous network structure, while zein-PGA binary complex showed a rough branch-like pattern and the surface of "branch" was closely adsorbed by lots of spherical zein particles. Q in zein-PGA binary complex dispersions presented the improved photochemical and thermal stability. The potential mechanism of a two-step process was proposed to explain the formation of zein-PGA binary complexes.

  14. Presenilin and nicastrin regulate each other and determine amyloid β-peptide production via complex formation

    PubMed Central

    Edbauer, Dieter; Winkler, Edith; Haass, Christian; Steiner, Harald

    2002-01-01

    Amyloid β-peptide (Aβ) is generated by the consecutive cuts of two membrane-bound proteases. β-Secretase cuts at the N terminus of the Aβ domain, whereas γ-secretase mediates the C-terminal cut. Recent evidence suggests that the presenilin (PS) proteins, PS1 and PS2, may be γ-secretases. Because PSs principally exist as high molecular weight protein complexes, biologically active γ-secretases likely require other cofactors such as nicastrin (Nct) for their activities. Here we show that preferentially mature Nct forms a stable complex with PSs. Furthermore, we have down-regulated Nct levels by using a highly specific and efficient RNA interference approach. Very similar to a loss of PS function, down-regulation of Nct levels leads to a massive accumulation of the C-terminal fragments of the β-amyloid precursor protein. In addition, Aβ production was markedly reduced. Strikingly, down-regulation of Nct destabilized PS and strongly lowered levels of the high molecular weight PS1 complex. Interestingly, absence of the PS1 complex in PS1−/− cells was associated with a strong down-regulation of the levels of mature Nct, suggesting that binding to PS is required for trafficking of Nct through the secretory pathway. Based on these findings we conclude that Nct and PS regulate each other and determine γ-secretase function via complex formation. PMID:12048259

  15. Severe adhesive small bowel obstruction.

    PubMed

    Di Saverio, Salomone; Catena, Fausto; Kelly, Michael D; Tugnoli, Gregorio; Ansaloni, Luca

    2012-12-01

    Adhesive small bowel obstruction is a frequent cause of hospital admission. Water soluble contrast studies may have diagnostic and therapeutic value and avoid challenging demanding surgical operations, but if bowel ischemia is suspected, prompt surgical intervention is mandatory. A 58-year-old patient was operated for extensive adhesive small bowel obstruction after having had two previous laparotomies for colorectal surgery, and had a complex clinical course with multiple operations and several complications. Different strategies of management have been adopted, including non-operative management with the use of hyperosmolar water soluble contrast medium, multiple surgical procedures, total parenteral nutrition (TPN) support, and finally use of antiadherences icodextrin solution. After 2 years follow-up the patient was doing well without presenting recurrent episodes of adhesive small bowel obstruction. For patients admitted several times for adhesive small bowel obstruction, the relative risk of recurring obstruction increases in relation to the number of prior episodes. Several strategies for non-operative conservative management of adhesive small bowel obstruction have already addressed diagnostic and therapeutic value of hyperosmolar water soluble contrast. According to the most recent evidence-based guidelines, open surgery is the preferred method for surgical treatment of strangulating adhesive small bowel obstruction as well as after failed conservative management. Research interest and clinical evidence are increasing in adhesions prevention. Hyaluronic acid-carboxycellulose membrane and icodextrin may reduce incidence of adhesions.

  16. GTP binding controls complex formation by the human ROCO protein MASL1.

    PubMed

    Dihanich, Sybille; Civiero, Laura; Manzoni, Claudia; Mamais, Adamantios; Bandopadhyay, Rina; Greggio, Elisa; Lewis, Patrick A

    2014-01-01

    The human ROCO proteins are a family of multi-domain proteins sharing a conserved ROC-COR supra-domain. The family has four members: leucine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2), death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocytoma amplified sequences with leucine-rich tandem repeats 1 (MASL1). Previous studies of LRRK1/2 and DAPK1 have shown that the ROC (Ras of complex proteins) domain can bind and hydrolyse GTP, but the cellular consequences of this activity are still unclear. Here, the first biochemical characterization of MASL1 and the impact of GTP binding on MASL1 complex formation are reported. The results demonstrate that MASL1, similar to other ROCO proteins, can bind guanosine nucleotides via its ROC domain. Furthermore, MASL1 exists in two distinct cellular complexes associated with heat shock protein 60, and the formation of a low molecular weight pool of MASL1 is modulated by GTP binding. Finally, loss of GTP enhances MASL1 toxicity in cells. Taken together, these data point to a central role for the ROC/GTPase domain of MASL1 in the regulation of its cellular function.

  17. The plant cell cycle: Pre-Replication complex formation and controls.

    PubMed

    Brasil, Juliana Nogueira; Costa, Carinne N Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C G; Hemerly, Adriana S

    2017-03-16

    The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.

  18. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  19. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection.

    PubMed

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A

    1993-07-20

    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  20. Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex

    NASA Astrophysics Data System (ADS)

    Arzamastsev, A. A.; Arzamastseva, L. V.; Zhirova, A. M.; Glaznev, V. N.

    2013-09-01

    The paper presents the results of a study of the large Paleozoic ore-magmatic system in the northeastern Fennoscandian Shield comprising the Khibiny and Lovozero plutons, the Kurga intrusion, volcanic rocks, and numerous alkaline dike swarms. As follows from the results of deep drilling and 3D geophysical simulation, large bodies of rocks pertaining to the ultramafic alkaline complex occur at the lower level of the ore-magmatic system. Peridotite, pyroxenite, melilitolite, melteigite, and ijolite occupy more than 50 vol % of the volcanic-plutonic complex within the upper 15 km accessible to gravity exploration. The proposed model represents the ore-magmatic system as a conjugate network of mantle magmatic sources localized at different depth levels and periodically supplying the melts belonging to the two autonomous groups: (1) ultramafic alkaline rocks with carbonatites and (2) alkali syenites-peralkaline syenites, which were formed synchronously having a common system of outlet conduits. With allowance for the available isotopic datings and new geochronological evidence, the duration of complex formation beginning from supply of the first batches of melt into calderas and up to postmagmatic events, expressed in formation of late pegmatoids, was no less than 25 Ma.

  1. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    PubMed

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  2. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.

    PubMed

    Gong, Yu; de Jong, Wibe A; Gibson, John K

    2015-05-13

    Activation of the oxo bond of uranyl, UO2(2+), was achieved by collision induced dissociation (CID) of UO2(N3)Cl2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2(-) was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2(-) resulted in the loss of N2 to form UO(NO)Cl2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2(-) via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2(-) complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2(-) complex shows that the side-on bonded NO moiety can be considered as NO(3-), suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2(-) to form UO(NO)Cl2(-) and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2(-) and UO2Cl2(-). The observation of UO2Cl2(-) during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  3. Imprime PGG-Mediated Anti-Cancer Immune Activation Requires Immune Complex Formation

    PubMed Central

    Qiu, Xiaohong; Ottoson, Nadine R.; Walsh, Richard M.; Gorden, Keith B; Harrison, Ben; Maimonis, Peter J.; Leonardo, Steven M.; Ertelt, Kathleen E.; Danielson, Michael E.; Michel, Kyle S.; Nelson, Mariana; Graff, Jeremy R.; Patchen, Myra L.; Bose, Nandita

    2016-01-01

    Imprime PGG (Imprime), an intravenously-administered, soluble β-glucan, has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically, Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells, triggering a coordinated anti-cancer immune response. Herein, using whole blood from healthy human subjects, we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring, anti-β glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement, primarily via the classical complement pathway, and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa, eliciting phenotypic activation of, and enhanced chemokine production by, neutrophils and monocytes, enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly, these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together, these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy. PMID:27812183

  4. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions, and Coronal Holes in Their Causal Relation

    NASA Astrophysics Data System (ADS)

    Golubeva, E. M.; Mordvinov, A. V.

    2016-12-01

    The peculiar development of solar activity in the current cycle resulted in an asynchronous reversal of the Sun's polar fields. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand the processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope onboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory are analyzed here to study the causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the south polar coronal hole was formed from an ensemble of coronal holes that came into existence after the decay of multiple activity complexes observed during 2014.

  5. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes.

    PubMed

    Park, Miree; Lee, Youngeun; Jang, Hoon; Lee, Ok-Hee; Park, Sung-Won; Kim, Jae-Hwan; Hong, Kwonho; Song, Hyuk; Park, Se-Pill; Park, Yun-Yong; Ko, Jung Jae; Choi, Youngsok

    2016-02-12

    Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation.

  6. Isolation and Characterization of FORMATE/NI(CYCLAM)^{2+} Complexes with Cryogenic Ion Vibrational Predissociation

    NASA Astrophysics Data System (ADS)

    Wolk, Arron B.; Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.

    2013-06-01

    Transition metal-based organometallic catalysts are a promising means of converting CO_{2} to transportable fuels. Ni(cyclam)^{2+}(cyclam = 1,4,8,11-tetraazacyclotetradecane), a Ni^{II} complex ligated by four nitrogen centers, has shown promise as a catalyst selective for CO_{2} reduction in aqueous solutions. The cyclam ligand has four NH hydrogen bond donors that can adopt five conformations, each offering distinct binding motifs for coordination of CO_{2} close to the metal center. To probe the ligand conformation and the role of hydrogen bonding in adduct binding, we extract Ni(cyclam)^{2+} complexes with the formate anion and some of its analogs from solution using electrospray ionization, and characterize their structures using cryogenic ion vibrational predissociation spectroscopy. Using the signature vibrational features of the embedded carboxylate anion and the NH groups as reporters, we compare the binding motifs of oxalate, benzoate, and formate anions to the Ni(cyclam)^{2+} framework. Finally, we comment on possible routes to generate the singly charged Ni(cyclam)^{+} complex, a key intermediate that has been invoked in the catalytic CO_{2} reduction cycle, but has never been isolated through ion processing techniques.

  7. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes

    PubMed Central

    Park, Miree; Lee, Youngeun; Jang, Hoon; Lee, Ok-Hee; Park, Sung-Won; Kim, Jae-Hwan; Hong, Kwonho; Song, Hyuk; Park, Se-Pill; Park, Yun-Yong; Ko, Jung Jae; Choi, Youngsok

    2016-01-01

    Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation. PMID:26869299

  8. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    PubMed

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5.

  9. Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability.

    PubMed

    Kayaci, Fatma; Uyar, Tamer

    2011-11-09

    This study reports the formation of solid vanillin/cyclodextrin inclusion complexes (vanillin/CD ICs) with the aim to enhance the thermal stability and sustained release of vanillin by inclusion complexation. The solid vanillin/CD ICs with three types of CDs (α-CD, β-CD, and γ-CD) were prepared using the freeze-drying method; in addition, a coprecipitation method was also used in the case of γ-CD. The presence of vanillin in CD ICs was confirmed by FTIR and (1)H NMR studies. Moreover, (1)H NMR study elucidated that the complexation stoichiometry for both vanillin/β-CD IC and vanillin/γ-CD IC was a 1:1 molar ratio, whereas it was 0.625:1 for vanillin/α-CD IC. XRD studies have shown channel-type arrangement for CD molecules, and no diffraction peak for free vanillin was observed for vanillin/β-CD IC and vanillin/γ-CD IC, indicating that complete inclusion complexation was successfully achieved for these CD ICs. In the case of vanillin/α-CD IC, the sample was mostly amorphous and some uncomplexed vanillin was present, suggesting that α-CD was not very effective for complexation with vanillin compared to β-CD and γ-CD. Furthermore, DSC studies for vanillin/β-CD IC and vanillin/γ-CD IC have shown no melting point for vanillin, elucidating the true complex formation, whereas a melting point for vanillin was recorded for vanillin/α-CD IC, confirming the presence of some uncomplexed vanillin in this sample. TGA thermograms indicated that thermal evaporation/degradation of vanillin occurred over a much higher temperature range (150-300 °C) for vanillin/CD ICs samples when compared to pure vanillin (80-200 °C) or vanillin/CD physical mixtures, signifying that the thermal stability of vanillin was increased due to the inclusion complexation with CDs. Moreover, headspace GC-MS analyses indicated that the release of vanillin was sustained at higher temperatures in the case of vanillin/CD ICs due to the inclusion complexation when compared to vanillin

  10. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  11. Calcium l-tartrate complex formation in neutral and in hyperalkaline aqueous solutions.

    PubMed

    Gácsi, Attila; Kutus, Bence; Csendes, Zita; Faragó, Tünde; Peintler, Gábor; Pálinkó, István; Sipos, Pál

    2016-11-01

    The complex formation reaction between the l-tartrate (Tar(2-)) and calcium ions taking place in neutral and in hyperalkaline (pH > 13) aqueous solutions has been investigated. It was demonstrated that upon NaOH addition the solubility of the CaTar(s) precipitate significantly increases. Conductometric and freezing point depression measurements further confirmed that in this process water soluble species are formed as a result of a reaction between the CaTar(s) and the hydroxide ion (or, conversely, between Ca(OH)2(s) and the Tar(2-) ion). (13)C NMR spectroscopic measurements yielded the value of pK3 = 15.4 ± 0.2 for the proton dissociation of one of the alcoholic OH groups of Tar(2-) (at 25.0 °C and 4 M Na(Cl) ionic strength). Upon addition of calcium ions to an alkaline Tar(2-) solution, the (1)H NMR signal gradually broadened and the (13)C-satellite peaks split to two components, which also indicate complexation. From H2/Pt potentiometric titrations performed with solutions in the 13.6 ≤ pH ≤ 14.4 range, it was observed, that this complex formation is accompanied by a hydroxide ion consuming process. The titration curves can be best described via assuming the formation of the CaTarH-1(-)(aq) (lg β11-1 = -11.2 ± 0.1) and CaTarH-2(2-)(aq) (lg β11-2 = -25.3 ± 0.1) complexes. In hyperalkaline solutions, these two species account for more than 90-99% of the calcium ions present and the contribution of the other reasonable and well-established calcium-containing solution species is rather small. The possible structures of the above complexes have been modeled via ab initio calculations. The stoichiometries are consistent both with species containing coordinated alcoholate group(s) and with mixed Ca(ii)-hydroxo-tartrato complexes. From the data available at present, both types of structures can be considered as chemically reasonable.

  12. Adult Schistosoma mansoni worms positively modulate soluble egg antigen-induced inflammatory hepatic granuloma formation in vivo. Stereological analysis and immunophenotyping of extracellular matrix proteins, adhesion molecules, and chemokines.

    PubMed Central

    Jacobs, W.; Bogers, J.; Deelder, A.; Wéry, M.; Van Marck, E.

    1997-01-01

    Synchronized liver granulomas were induced by injecting Sepharose beads to which SEA soluble egg antigen (SEA) or the concanavalin A binding fraction of SEA had been coupled into a mesenteric vein in naive, single-sex (35 days) and bisexually (28 days) Schistosoma mansoni-infected and Plasmodium berghei-immunized mice. Stereological analysis revealed that peak granuloma formation was already reached 8 days after injection in single-sex infected mice compared with 16 days in naive animals. No difference in granuloma formation between naive and P. berghei-immunized animals and between unisexually and bisexually S. mansoni-infected mice was observed. This suggests that the positive immunomodulatory effect on the granulomogenesis is worm specific and not likely to be due to arousal of the immune system by unrelated factors, nor is it influenced by the gender or degree of maturation of female worms. At all stages in time, the concanavalin A binding-fraction-induced granulomas reached only 65 to 70% of the volume of SEA-induced granulomas. Immunophenotyping of extracellular matrix proteins around deposited heads revealed that fibronectin was the dominant extracellular matrix protein and that also type I and IV collagen and laminin were deposited. Temporal analysis of the expression of the adhesion molecules ICAM-1, LFA-1, VLA-4, and VLA-6 was performed. Morphological evidence is presented for the role of adhesion molecules in the initiation and maintenance of hepatic granuloma formation. The chemokine monocyte chemoattractant protein-1 was expressed in the granuloma and in hepatic artery branches. From these data, it is concluded that adult S. mansoni worms positively modulate schistosomal hepatic granuloma formation in vivo. Adhesion molecules and chemokines play important roles in schistosomal granuloma formation. Images Figure 1 Figure 2 Figure 3 PMID:9176396

  13. Complex Organic Molecules Formation in Space Through Gas Phase Reactions: A Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2017-02-01

    Chemistry in the interstellar medium (ISM) is capable of producing complex organic molecules (COMs) of great importance to astrobiology. Gas phase and grain surface chemistry almost certainly both contribute to COM formation. Amino acids as building blocks of proteins are some of the most interesting COMs. The simplest one, glycine, has been characterized in meteorites and comets and, its conclusive detection in the ISM seems to be highly plausible. In this work, we analyze the gas phase reaction of glycine and {{{CH}}5}+ to establish the role of this process in the formation of alanine or other COMs in the ISM. Formation of protonated α- and β-alanine in spite of being exothermic processes is not viable under interstellar conditions because the different paths leading to these isomers present net activation energies. Nevertheless, glycine can evolve to protonated 1-imide-2, 2-propanediol, protonated amino acetone, protonated hydroxyacetone, and protonated propionic acid. However, formation of acetic acid and protonated methylamine is also a favorable process and therefore will be a competitive channel with the evolution of glycine to COMs.

  14. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  15. New spectroscopic studies of plutonium (IV) nitrate complex formation in solution

    SciTech Connect

    Berg, J.M.; Veirs, D.K.; Vaughn, R.B.

    1997-06-01

    Spectrophotometric titrations of Pu(IV) with HNO{sub 3} were conducted in a series of aqueous HClO{sub 4} solutions ranging ionic strength from 2 to 19 mol/kg on the molality scale. The Pu f-f absorption spectra in the visible and near IR range were deconvoluted into spectra of Pu{sup 4+}(aq), Pu(NO{sub 3}){sup 3+} and Pu(NO{sub 3}){sub 2}{sup 2+} complexes and their formation constants as functions of ionic strength. When corrected for the incomplete dissociation of nitric acid, these formation constants exhibit smooth increases with ionic strength from 5 to 19 mol/kg.

  16. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Mielniczek-Brzóska, Ewa; Olszynski, Marcin

    2015-05-01

    Effect of trisodium citrate on the crystallization of struvite was studied. To evaluate such an effect an experiment of struvite growth from artificial urine was performed. The investigations are related to infectious urinary stones formation. The crystallization process was induced by the addition of aqueous ammonia solution to mimic the bacterial activity. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to struvite formation and decreases the growth efficiency of struvite. The inhibitory effect of trisodium citrate on the nucleation and growth of struvite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is related with the fact that trisodium citrate binds NH4 + and Mg2+ ions in the range of pH from 7 to 9.5 characteristic for struvite precipitation. The most important is the MgCit- complex whose concentration strongly depends on an increase in pH rather than on an increase in citrate concentrations.

  17. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  18. Chiral symmetry breaking in complex chemical systems during formation of life on earth

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Konstantinov, K. K.

    2015-09-01

    The chiral symmetry in complex chemical systems containing many amino acids and characterized by many similar chemical reactions (a situation corresponding to the formation of life on Earth) is considered. It is shown that effective averaging over similar reaction channels may lead to very weak effective enantioselectivity, which does not allow for chiral symmetry breaking in most known models. A class of models with simple and catalytic synthesis of one amino acid, the formation of peptides with a length reaching three, and the precipitation of one insoluble pair of materials is analyzed. It is proven that chiral symmetry breaking may occur in one possible version from an insoluble pair of materials even in the complete absence of catalytic synthesis of amino acid. It is shown that the presence of weakly enantioselective catalytic synthesis in a model significantly increases the number of possible versions in which chiral symmetry breaks.

  19. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains.

  20. Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces.

    PubMed

    Friedlander, Ronn S; Vogel, Nicolas; Aizenberg, Joanna

    2015-06-09

    Understanding the interfacial activity of bacteria is of critical importance due to the huge economic and public health implications associated with surface fouling and biofilm formation. The complexity of the process and difficulties of predicting microbial adhesion to novel materials demand study of the properties of specific bacterial surface features and their potential contribution to surface attachment. Here, we examine flagella, cell appendages primarily studied for their cell motility function, to elucidate their potential role in the surface adhesion of Escherichia coli-a model organism and potential pathogen. We use self-assembled monolayers (SAMs) of thiol-bearing molecules on gold films to generate surfaces of varying hydrophobicity, and measure adhesion of purified flagella using quartz crystal microbalance. We show that flagella adhere more extensively and bind more tightly to hydrophobic SAMs than to hydrophilic ones, and we propose a two-step vs a single-step adhesion mechanism that accounts for the observed dissipation and frequency changes for the two types of surfaces, respectively. Subsequently, study of the adhesion of wild-type and flagella knockout cells confirms that flagella improve adhesion to hydrophobic substrates, whereas cells lacking flagella do not show preferred affinity to hydrophobic substrates. Together, these properties bring about an interesting ability of cells with flagella to stabilize emulsions of aqueous culture and dodecane, not observed for cells lacking flagella. This work contributes to our overall understanding of nonspecific bacterial adhesion and confirms that flagella, beyond motility, may play an important role in surface adhesion.

  1. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  2. Interaction of ortho-Phospho-l-serine with Hydroxyapatite: Formation of a Surface Complex

    PubMed

    Misra

    1997-10-01

    ortho-Phospho-l-serine (H2Psi, where Psi represents the serinephosphato ion), a constituent of salivary proteins, seems to play an important role in the mineralization of teeth. To understand the basic mechanism of this interaction, the uptake of o-phospho-l-serine from relatively concentrated aqueous solutions (up to 100 mmol/L) onto synthetic hydroxyapatite was studied. Previous studies have shown that in the dilute concentration range (<12.5 mmol/L) the uptake followed a regular Langmuirian adsorption plot. At higher concentrations the uptake curve increased steeply, but no formation of a separate phase in the reacted apatite was discernible, either by optical or by scanning electron microscopy. The dissolution of apatite released phosphate and calcium ions into the solution in amounts linearly related to the uptake of serine with P/Psi = 1 and Ca/Psi = 2. The charge and mass balance of the reaction can be reconciled with the formation of the surface complex (shown within brackets):Ca10(OH)2(PO4)6 + 6H2Psi --> [Ca6(HPsi)2(HPO4)2(PO4)2] + 4Ca2+ + 2HPsi1- + 2Psi2- + 2H2PO1-4 + 2H2O.The formation of two other surface complexes is possible; however, the complex shown above probably disrupts the apatite lattice the least. Traces of CaPsi·H2O precipitate out from the filtrates of highly concentrated solutions after 6 days. Copyright 1997 Academic Press. Copyright 1997Academic Press

  3. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates.

    PubMed

    Ye, Mingming; Jiang, Rui; Zhao, Jin; Zhang, Juntao; Yuan, Xubo; Yuan, Xiaoyan

    2015-12-01

    Adhesives with catechol moieties have been widely investigated in recent years. However, actually how much catechol groups for these mussel bio-inspired adhesives, especially in their natural form under physiological condition, is appropriate to bond with organic substrates has not been studied intensively. This study blends ε-polylysine (PL), featuring laterally grafted catechols under physiological conditions (pH 7.4), with oxidized dextran to form a hydrogel in situ via the Schiff base without introducing small cytotoxic molecules as crosslinking agents. It finds that the amount of catechol groups imposes an obvious influence on gelation time, swelling behavior, and hydrogel morphology. Both the storage modulus and adhesion strength are found to increase first and decrease afterwards with an increase of pendent catechol content. Furthermore, catechol hydrogen interactions and the decrease in the crosslink density derived from the decrease of amino groups on PL are simultaneously found to affect the storage modulus. Meanwhile, multiple hydrogen-bonding interactions of catechol with amino, hydroxyl, and carboxyl groups, which are in abundance on the surface of tissue, are mainly found to provide an adhesive force. The study finds that with more catechol, there is a greater chance that the cohesive force will weaken, making the entire adhesion strength of the hydrogel decrease. Using a cytotoxicity test, the nontoxicity of the hydrogel towards the growth of L929 cells is proven, indicating that hydrogels have potential applications in soft tissue repair under natural physiological conditions.

  4. Effect of fat type in baked bread on amylose-lipid complex formation and glycaemic response.

    PubMed

    Lau, Evelyn; Zhou, Weibiao; Henry, Christiani Jeyakumar

    2016-06-01

    The formation of amylose-lipid complexes (ALC) had been associated with reduced starch digestibility. A few studies have directly characterised the extent of ALC formation with glycaemic response. The objectives of this study were to investigate the effect of using fats with varying degree of saturation and chain length on ALC formation as well as glycaemic and insulinaemic responses after consumption of bread. Healthy men consumed five test breads in a random order: control bread without any added fats (CTR) and breads baked with butter (BTR), coconut oil (COC), grapeseed oil (GRP) or olive oil (OLV). There was a significant difference in glycaemic response between the different test breads (P=0·002), primarily due to COC having a lower response than CTR (P=0·016), but no significant differences between fat types were observed. Insulinaemic response was not altered by the addition of fats/oils. Although BTR was more insulinotropic than GRP (P<0·05), postprandial β-cell function did not differ significantly. The complexing index (CI), a measure of ALC formation, was significantly higher for COC and OLV compared with BTR and GRP (P<0·05). CI was significantly negatively correlated with incremental AUC (IAUC) of change in blood glucose concentrations over time (IAUCglucose) (r -0·365, P=0·001). Linear regression analysis showed that CI explained 13·3 % of the variance and was a significant predictor of IAUCglucose (β=-1·265, P=0·001), but IAUCinsulin did not predict IAUCglucose. Our study indicated that a simple way to modulate glycaemic response in bread could lie in the choice of fats/oils, with coconut oil showing the greatest attenuation of glycaemic response.

  5. Formation of charge-transfer-complex in organic:metal oxides systems

    NASA Astrophysics Data System (ADS)

    Wu, S. P.; Kang, Y.; Liu, T. L.; Jin, Z. H.; Jiang, N.; Lu, Z. H.

    2013-04-01

    It is found that composite systems consisting of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) and molybdenum trioxide (MoO3) form an IR absorption band around 847 nm. It is also found that the vibrational modes of the CBP, as measured by Fourier Transform Infrared Spectroscopy, are quenched upon the formation of charge-transfer-complex (CTC) between CBP and MoO3. By examining several sets of organic:metal oxides systems, we discovered that the IR absorption band of the CTCs follow two distinct mechanisms depending on the nature and location of the HOMOs in the organic molecules.

  6. Peculiarities of latent inhibition formation in SHR rats in conditioned task of different complexity.

    PubMed

    Kostyunina, N V; Loskutova, L V

    2012-05-01

    Inhibition of attention to irrelevant stimuli was studied in SHR rats using latent inhibition test. Latent inhibition was formed in two types of conditioned tasks with different levels of complexity and stress. Passive and active avoidance conditioning was preceded by preexposure to conditioned stimulus consisting of 20 and 100 non-reinforced presentations, respectively. Control Wistar rats demonstrated successful formation of latent inhibition in both tasks. SHR rats showed different degree of disruption of latent inhibition depending on the type of behavioral task. We assume that learning defect in these animals in respect to both novel and preexposed conditioned stimuli is associated with the lack of behavioral inhibition.

  7. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media.

    PubMed

    De Stefano, Concetta; Milea, Demetrio; Pettignano, Alberto; Sammartano, Silvio

    2003-08-01

    The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0< I mol L(-1)< or =3) and at t=25 degrees C. The protonation of phytate proved strongly dependent on both ionic medium and ionic strength. The protonation constants obtained in alkali metal chlorides are considerably lower than the corresponding ones obtained in a previous paper in tetraethylammonium iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with j< or =7 and i< or =6, in the range 2.5< or =pH< or =10 (some measurements, at low ionic strength, were extended to pH=11). In particular, all the species formed are negatively charged: i+j-12=-5, -6. Very high formation percentages of M+-phytate species are observed in all the pH ranges investigated. The stability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.

  8. Preferential formation of the different hydrogen bonds and their effects in tetrahydrofuran and tetrahydropyran microhydrated complexes.

    PubMed

    Vallejos, Margarita M; Peruchena, Nélida M

    2012-04-26

    The role of cycloether-water (c-w) and water-water (w-w) hydrogen bonds (H-bonds) on the stability of the tetrahydrofuran THF/(H(2)O)(n) and the tetrahydropyran THP/(H(2)O)(n) complexes with n = 1-4 was investigated herein using the density functional and ab initio methods and the atoms in molecules theory. Geometry optimizations for these complexes were carried out with various possible initial guess structures. It was revealed that the major contributions of the mono and dihydrated complexes came from c-w H-bonds. A competition between c-w and w-w H-bonds contribution was observed for trihydrated complexes. For most of tetrahydrated complexes, the inter-water H-bonds provided the greatest contribution, whereas the c-w contributions were small but not negligible. It was confirmed that to produce a hydrophobic hydration of cycloethers, the C-H···O(w) H-bond should be associated with a network of H-bonds that connects both portions of the solute, through the formation of a bifunctional H-bond. A linear correlation is obtained for the sum of electron density at the bond critical points (ρ(b)) with the interaction energy (ΔE) and with the solute-solvent interaction energy (ΔE(s-w)) of the microhydrated complexes. In addition, a new way to estimate the energetic contribution as well as the preferential formation of the different H-bonds based completely on ρ(b) was found. Even more, it allows to differentiate the contribution from c-w interactions in both hydrophilic and hydrophobic contributions, it is therefore a useful tool for studying the hydration of large biomolecules. The analysis of the modifications in the atomic and group properties brought about by successive addition of H(2)O molecules allowed to pinpoint the atoms or molecular groups that undergo the greatest changes in electron population and energetic stabilization. It was identified that the remarkable stabilization of the water oxygen atoms is crucial for the stabilization of the complexes.

  9. Determination of absorptivity and formation constant of a chalcone association complex.

    PubMed

    Blanco, S E; Ferretti, F H

    1998-04-01

    A UV spectrometric method was developed to determine the molar absorptivity (epsilon(C)) and formation constant (K(c)) of the association complex of unsubstituted chalcone in cyclohexane, in the concentration range from 4.00.10(-4) to 2.00.10(-2) mol dm(-3). The thermodynamic and spectroscopic magnitudes such as K(c) and epsilon(C) contribute to the understanding of the physicochemical behavior of several alpha,beta-unsaturated carbonylic compounds, of low solubility in water, as it is the case of numerous flavonoids of chemical and biological importance. The studied association complex, formed by two chalcone molecules, is characterized by the constants epsilon(C) (300.8 nm)=4.98.10(4) dm(3) mol(-1) cm(-1) and K(c)=5.58.10(3). The method proposed is convenient for the study of solute-solute molecular associations particularly those due to dipole-dipole interactions.

  10. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  11. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel.

  12. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes.

    PubMed

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (U(VI)O2(2+)) coordinated by formate or acetate ligands. Anionic complexes containing U(VI)O2(2+) and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [U(VI)O2(O)(H)](-). Cationic species ultimately dissociate to make [U(VI)O2(OH)](+). Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to U(V)O2(+). Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [U(V)O2(O)](-). Loss of CH4 occurs by an intra-complex H(+) transfer process that leaves U(V)O2(+) coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [U(V)O2(O)](-). Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2. Graphical Abstract ᅟ.

  13. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation

    PubMed Central

    Montagnoli, Alessia; Fiore, Francesca; Eytan, Esther; Carrano, Andrea C.; Draetta, Giulio F.; Hershko, Avram; Pagano, Michele

    1999-01-01

    The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitin–proteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin–proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G1-enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G1 extracts. Furthermore, another p27 mutant [p27(CK−)] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor. PMID:10323868

  14. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  15. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    SciTech Connect

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  16. Fluids circulations during the formation of the Naxos Metamorphic Core Complex (Greece)

    NASA Astrophysics Data System (ADS)

    Vanderhaeghe, Olivier; Boiron, Marie-Christine; Siebenaller, Luc

    2015-04-01

    The island of Naxos, in the central part of the Cycladic Metamorphic Core Complex (Greece) represents a perfect example to address the evolution of fluid circulations during collapse of an orogenic belt. It displays a complex detachment system characterized by mylonites, cataclasites and high-angle normal faults which geometric relationships reflect rheological layering of the orogenic crust and its evolution during collapse. The chemistry of fluid inclusions determined by microthermometry, RAMAN spectroscopy, LA-ICPMS, and crush-leach combined with C and H isotopic signatures point to three distinct types of fluids, namely (i) a H2O-dominated fluid, (ii) a composite H2O-CO2 fluid, and (iii) a NaCl-rich fluid concentrated in metals. These different types of fluids are interpreted to reflect mixtures to various degrees among fluids generated by (i) condensation of clouds (meteoric aqueous fluid), (ii) dehydration and decarbonatation of metasedimentary rocks during metamorphism (metamorphic aqueous-carbonic fluid), and (iii) crystallization of granitic magmas (magmatic saline fluid with high metal contents). The distribution of fluids with respect to microstructures evidences the close link between deformation and fluid circulations at the mineral scale from intracristalline deformation to fracturing. The orientation of fluid inclusion planes, veins and alteration zones allows to identify the scale and geometry of the reservoir into which fluids are circulating and their evolution during the formation of the Metamorphic Core Complex. These data indicate that the orogenic crust is subdivided in two reservoirs separated by the ductile/fragile transition. Meteoric fluids circulate in the upper crust affected by brittle deformation whereas metamorphic and magmatic fluids circulate in relation to intracristalline ductile deformation affecting the lower crust. The geometry of these reservoirs evolves during the formation of the Naxos Metamorphic Core Complex as the

  17. Alpha-actinin-1 phosphorylation modulates pressure-induced colon cancer cell adhesion through regulation of focal adhesion kinase-Src interaction.

    PubMed

    Craig, David H; Haimovich, Beatrice; Basson, Marc D

    2007-12-01

    Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a beta(1)-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. alpha-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that alpha-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced alpha-actinin-1 and alpha-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of alpha-actinin-1, but not alpha-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated alpha-actinin-1 tyrosine phosphorylation and alpha-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for alpha-actinin-1 phosphorylation in the pressure response was investigated by expressing the alpha-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of alpha-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of alpha-actinin-1 eliminated the pressure-induced association of alpha-actinin-1 and Src with beta(1)-integrin receptor, as well as FAK-Src complex formation. These results suggest that alpha-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to beta(1)-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.

  18. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    PubMed

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-04

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  19. E-ring conformation has a key role in cleavable complex formation: homocamptothecin versus camptothecins

    NASA Astrophysics Data System (ADS)

    Chauvier, D.; Chourpa, I.; Maizieres, M.; Riou, J.-F.; Dauchez, M.; Alix, A. J. P.; Manfait, M.

    2003-06-01

    Homocamptothecin (hCPT) is a new camptothecin (CPT) derivative with a seven-membered β-hydroxylactone E-ring. This modification provides higher lactone stability and did not impair its activity against topoisomerase I (top1), but rather appears to improve it compared to CPT. Such lactone modification was unexpected regarding the previous structure-activity relationship data inside the CPT series, and may have crucial mechanistic implications in the ternary cleavable complex formation. In this study, the detailed characterization of the E-ring homologation and lactone/carboxylate conversion, self-aggregation, influence of pH and polarity of the molecular environment have been performed for hCPT by frequency-domain fluorescence. The real-time spectrofluorometry confirmed the enhanced stability of hCPT. We have also investigated the E-ring status of hCPT within the top1 ternary complex with DNA, and with top1 or DNA binary complexes. Unlike CPT, no modification of the (β-hydroxy-) lactone-carboxylate conversion rates was observed, suggesting that E-ring opening is not required for cleavable complex stabilization in presence of hCPT. Comparison of the two structures by molecular modeling revealed similar conformation and steric volumes between the β-hydroxylactone ring conformation of hCPT and the opened ring of CPT. The lack of hCPT E-ring opening was discussed in the light of these molecular modeling results.

  20. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    PubMed Central

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi

    2017-01-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143

  1. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-Ichi

    2017-03-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([Mo