Science.gov

Sample records for adhesion kinase fak

  1. The direct effect of Focal Adhesion Kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    PubMed Central

    2009-01-01

    Background Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible) system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD), and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p < 0.05) by FAKsiRNA. Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  2. Nanog Increases Focal Adhesion Kinase (FAK) Promoter Activity and Expression and Directly Binds to FAK Protein to Be Phosphorylated*

    PubMed Central

    Ho, Baotran; Olson, Gretchen; Figel, Sheila; Gelman, Irwin; Cance, William G.; Golubovskaya, Vita M.

    2012-01-01

    Nanog and FAK were shown to be overexpressed in cancer cells. In this report, the Nanog overexpression increased FAK expression in 293, SW480, and SW620 cancer cells. Nanog binds the FAK promoter and up-regulates its activity, whereas Nanog siRNA decreases FAK promoter activity and FAK mRNA. The FAK promoter contains four Nanog-binding sites. The site-directed mutagenesis of these sites significantly decreased up-regulation of FAK promoter activity by Nanog. EMSA showed the specific binding of Nanog to each of the four sites, and binding was confirmed by ChIP assay. Nanog directly binds the FAK protein by pulldown and immunoprecipitation assays, and proteins co-localize by confocal microscopy. Nanog binds the N-terminal domain of FAK. In addition, FAK directly phosphorylates Nanog in a dose-dependent manner by in vitro kinase assay and in cancer cells in vivo. The site-directed mutagenesis of Nanog tyrosines, Y35F and Y174F, blocked phosphorylation and binding by FAK. Moreover, overexpression of wild type Nanog increased filopodia/lamellipodia formation, whereas mutant Y35F and Y174F Nanog did not. The wild type Nanog increased cell invasion that was inhibited by the FAK inhibitor and increased by FAK more significantly than with the mutants Y35F and Y174F Nanog. Down-regulation of Nanog with siRNA decreased cell growth reversed by FAK overexpression. Thus, these data demonstrate the regulation of the FAK promoter by Nanog, the direct binding of the proteins, the phosphorylation of Nanog by FAK, and the effect of FAK and Nanog cross-regulation on cancer cell morphology, invasion, and growth that plays a significant role in carcinogenesis. PMID:22493428

  3. Prognostic Value of Focal Adhesion Kinase (FAK) in Human Solid Carcinomas: A Meta-Analysis

    PubMed Central

    Ma, Li-Li; Tseng, Yu-Jen; Zhao, Nai-Qing; Chen, Shi-Yao

    2016-01-01

    Background Recently, the number of reports on focal adhesion kinase (FAK) as a vital therapeutic target in solid carcinomas has increased; however, the prognostic role of FAK status remains poorly understood. This study aims to evaluate the prognostic effect of FAK by means of a meta-analysis. Methods We performed a systematic literature search in order to examine the correlation between expression of FAK and overall survival(OS). The hazard ratio (HR) of OS was used to measure survival. A random-effects model was used to pool study statistics. Sensitivity and publication bias analyses were also conducted. Results Thirty eligible studies involving 4702 patients were included. The median expression rate of FAK was 54%. Meta-analysis of the HRs demonstrated that high FAK expression was associated with worse OS (average HR = 2.073, 95%confidence interval[CI]:1.712–2.510, p = 0.000). Regarding cancer type, FAK was associated with worse OS in gastric cancer (HR = 2.646,95% CI:1.743–4.017, p = 0.000), hepatocellular carcinoma (HR = 1.788,95% CI:1.228–2.602, p = 0.002), ovarian cancer (HR = 1.815, 95% CI: 1.193–2.762, p = 0.005), endometrial cancer (HR = 4.149, 95% CI:2.832–6.079, p = 0.000), gliomas (HR = 2.650, 95% CI: 1.205–5.829, p = 0.015), and squamous cell carcinoma (HR = 1,696, 95% CI: 1.030–2.793, p = 0.038). No association was found between HR and disease staging according to our meta-regression analysis. Conclusions Our study shows that high expression of FAK is associated with a worse OS in patients with carcinomas, but the association between FAK and prognosis varies according to cancer type. The value of FAK status in clinical prognosis in cancer needs further research. PMID:27637100

  4. Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo

    PubMed Central

    Schumpert, Brenda; García, María Guadalupe; Wessel, Gary M.; Wordeman, Linda; Hille, Merrill B.

    2014-01-01

    Is focal adhesion kinase (FAK) needed for embryonic cleavage? FAK is expressed during early cleavage divisions of sea urchin embryos as determined by polyclonal antibodies to the Lytechinus variegatus protein. FAK is absent in eggs and zygotes and then cycles in abundance during the first cleavages after fertilization, and is maximal at anaphase. Such cycling is consistent with the occurrence of a destruction box in the N-terminal sequence of L. variegatus FAK and the behavior of cyclins in sea urchin eggs. To investigate whether FAK is needed during early cleavage, we interfered with its function by microinjecting eggs with FAK antisense morpholino oligonucleotides or with anti-FAK antibodies. Both treatments led to regression of the cleavage furrow. FAK knockdown with morpholino oligonucleotides or antibodies also resulted in an over-accumulation of endocytic vesicles. Thus, FAK could be restricting endocytosis or increasing exocytosis in localized areas important for abscission. FAK appears to be necessary for successful cleavage. These results are the first to document a functional role for FAK during embryonic cleavage. PMID:23313141

  5. Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression

    PubMed Central

    Ward, Kristy K.; Tancioni, Isabelle; Lawson, Christine; Miller, Nichol L.G.; Jean, Christine; Chen, Xiao Lei; Uryu, Sean; Kim, Josephine; Tarin, David; Stupack, Dwayne G.; Plaxe, Steven C.; Schlaepfer, David D.

    2013-01-01

    Recurrence and spread of ovarian cancer is the 5th leading cause of death for women in the United States. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase located on chromosome 8q24.3 (gene is Ptk2), a site commonly amplified in serous ovarian cancer. Elevated FAK mRNA levels in serous ovarian carcinoma are associated with decreased (logrank P = 0.0007, hazard ratio 1.43) patient overall survival, but how FAK functions in tumor progression remains undefined. We have isolated aggressive ovarian carcinoma cells termed ID8-IP after intraperitoneal (IP) growth of murine ID8 cells in C57Bl6 mice. Upon orthotopic implantation within the periovarian bursa space, ID8-IP cells exhibit greater tumor growth, local and distant metastasis, and elevated numbers of ascites-associated cells compared to parental ID8 cells. ID8-IP cells exhibit enhanced growth under non-adherent conditions with elevated FAK and c-Src tyrosine kinase activation compared to parental ID8 cells. In vitro, the small molecule FAK inhibitor (Pfizer, PF562,271, PF-271) at 0.1 uM selectively prevented anchorage-independent ID8-IP cell growth with the inhibition of FAK tyrosine (Y)397 but not c-Src Y416 phosphorylation. Oral PF-271 administration (30 mg/kg, twice daily) blocked FAK but not c-Src tyrosine phosphorylation in ID8-IP tumors. This was associated with decreased tumor size, prevention of peritoneal metastasis, reduced tumor-associated endothelial cell number, and increased tumor cell-associated apoptosis. FAK knockdown and re-expression assays showed that FAK activity selectively promoted anchorage-independent ID8-IP cell survival. These results support the continued evaluation of FAK inhibitors as a promising clinical treatment for ovarian cancer. PMID:23275034

  6. Conditional deletion of the focal adhesion kinase FAK alters remodeling of the blood-brain barrier in glioma

    PubMed Central

    Lee, Jisook; Borboa, Alexandra; Chun, Hyun Bae; Baird, Andrew; Eliceiri, Brian

    2010-01-01

    Gliomas generally infiltrate the surrounding normal brain parenchyma, a process associated with increased vascular permeability (VP) and dysregulation of the blood-brain barrier (BBB). However, the molecular mechanisms underlying glioma-induced VP in the brain remain poorly understood. Utilizing a conditional, endothelial-specific deletion of the focal adhesion kinase FAK in the mouse (FAK CKO), we show that FAK is critical for destabilization of the tumor endothelium in tumor-bearing mice, with mutant mice exhibiting a relatively stabilized vasculature to wild-type mice (FAK WT). Tumor vessels in the FAK CKO mice displayed reduced VP compared to FAK WT mice, resulting in reduced tumor growth. Additionally, FAK CKO mice displayed partial restoration of cell-cell junction proteins in the tumor vessels and astrocyte-endothelial interactions in tumors, revealing an additional role of astrocytes in mediating tumor-induced VP. Together, these results provide genetic evidence that FAK is a mediator of tumor-induced VP in the brain. Our findings may help understand how therapeutics might be used to regulate cell type-specific interactions to restore BBB structure/function in cancer and perhaps other pathological conditions. PMID:21159635

  7. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  8. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes.

    PubMed

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-11-26

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  9. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    PubMed Central

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  10. Focal adhesion kinase

    PubMed Central

    Stone, Rebecca L; Baggerly, Keith A; Armaiz-Pena, Guillermo N; Kang, Yu; Sanguino, Angela M; Thanapprapasr, Duangmani; Dalton, Heather J; Bottsford-Miller, Justin; Zand, Behrouz; Akbani, Rehan; Diao, Lixia; Nick, Alpa M; DeGeest, Koen; Lopez-Berestein, Gabriel; Coleman, Robert L; Lutgendorf, Susan; Sood, Anil K

    2014-01-01

    This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAKY397 were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P < 0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P < 0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P < 0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors. PMID:24755674

  11. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin.

    PubMed Central

    Kharbanda, S; Saleem, A; Yuan, Z; Emoto, Y; Prasad, K V; Kufe, D

    1995-01-01

    Macrophage colony-stimulating factor (M-CSF) is required for the growth and differentiation of mononuclear phagocytes. In the present studies using human monocytes, we show that M-CSF induces interaction of the Grb2 adaptor protein with the focal adhesion kinase pp125FAK. The results demonstrate that tyrosine-phosphorylated pp125FAK directly interacts with the SH2 domain of Grb2. The findings indicate that a pYENV site at Tyr-925 in pp125FAK is responsible for this interaction. We also demonstrate that the Grb2-FAK complex associates with the GTPase dynamin. Dynamin interacts with the SH3 domains of Grb2 and exhibits M-CSF-dependent tyrosine phosphorylation in association with pp125FAK. These findings suggest that M-CSF-induced signaling involves independent Grb2-mediated pathways, one leading to Ras activation and another involving pp125FAK and a GTPase implicated in receptor internalization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7597091

  12. Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion

    PubMed Central

    Heuslein, Joshua L.; Murrell, Kelsey P.; Leiphart, Ryan J.; Llewellyn, Ryan A.; Meisner, Joshua K.; Price, Richard J.

    2016-01-01

    Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK. PMID:27244251

  13. Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion

    NASA Astrophysics Data System (ADS)

    Heuslein, Joshua L.; Murrell, Kelsey P.; Leiphart, Ryan J.; Llewellyn, Ryan A.; Meisner, Joshua K.; Price, Richard J.

    2016-05-01

    Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.

  14. Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis

    PubMed Central

    2013-01-01

    Background Resistance to apoptosis is a major problem in ovarian cancer (OC) and correlates with poor prognosis. Osteoprotegerin (OPG) is a soluble secreted factor that acts as a decoy receptor for receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). OPG has been reported to attenuate TRAIL-induced apoptosis in a variety of cancer cells, including OC cells. OPG-mediated protection against TRAIL has been attributed to its decoy receptor function. However, OPG activates integrin/focal adhesion kinase (FAK) signaling in endothelial cells. In OC cells, activation of integrin/FAK signaling inhibits TRAIL-induced apoptosis. Based on these observations, we hypothesized that OPG could attenuate TRAIL-induced apoptosis in OC cells through integrin/FAK signaling. Methods In vitro experiments including immunoblots, colony formation assays, and apoptosis measurements were used to assess the effect of OPG on TRAIL-induced apoptosis. Results Exogenous OPG protected from TRAIL-induced apoptosis in a TRAIL binding-independent manner and OPG protection was αvβ3 and αvβ5 integrin/FAK signaling-dependent. Moreover, OPG-mediated activation of integrin/FAK signaling resulted in the activation of Akt. Inhibition of both integrin/FAK and Akt signaling significantly inhibited OPG-mediated attenuation of TRAIL-induced apoptosis. Although OPG also stimulated ERK1/2 phosphorylation, inhibition of ERK1/2 signaling did not significantly altered OPG protection. Conclusions Our studies provide evidence, for the first time, that OPG can attenuate TRAIL-induced apoptosis in a TRAIL binding-independent manner through the activation of integrin/FAK/Akt signaling in OC cells. PMID:24267510

  15. Altering FAK-Paxillin Interactions Reduces Adhesion, Migration and Invasion Processes

    PubMed Central

    Deramaudt, Thérèse B.; Dujardin, Denis; Noulet, Fanny; Martin, Sophie; Vauchelles, Romain; Takeda, Ken; Rondé, Philippe

    2014-01-01

    Focal adhesion kinase (FAK) plays an important role in signal transduction pathways initiated at sites of integrin-mediated cell adhesion to the extracellular matrix. Thus, FAK is involved in many aspects of the metastatic process including adhesion, migration and invasion. Recently, several small molecule inhibitors which target FAK catalytic activity have been developed by pharmaceutical companies. The current study was aimed at addressing whether inhibiting FAK targeting to focal adhesions (FA) represents an efficient alternative strategy to inhibit FAK downstream pathways. Using a mutagenesis approach to alter the targeting domain of FAK, we constructed a FAK mutant that fails to bind paxillin. Inhibiting FAK-paxillin interactions led to a complete loss of FAK localization at FAs together with reduced phosphorylation of FAK and FAK targets such as paxillin and p130Cas. This in turn resulted in altered FA dynamics and inhibition of cell adhesion, migration and invasion. Moreover, the migration properties of cells expressing the FAK mutant were reduced as compared to FAK-/- cells. This was correlated with a decrease in both phospho-Src and phospho-p130Cas levels at FAs. We conclude that targeting FAK-paxillin interactions is an efficient strategy to reduce FAK signalling and thus may represent a target for the development of new FAK inhibitors. PMID:24642576

  16. Activation of the lutropin/choriogonadotropin receptor (LHR) in MA-10 cells leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) by a pathway that involves Src family kinases*

    PubMed Central

    Mizutani, Tetsuya; Shiraishi, Koji; Welsh, Toni; Ascoli, Mario

    2006-01-01

    We show that activation of the endogenous or recombinant LHR in mouse Leydig tumor cells (MA-10 cells) leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) and one of its substrates (paxillin). Using specific antibodies to the five tyrosine residues of FAK that become phosphorylated we show that activation of the LHR increases the phosphorylation of Tyr576 and Tyr577 but it does not affect the phosphorylation of Tyr397, Tyr861 or Tyr925. Because FAK is a prominent substrate for the Src family of tyrosine kinases (SFKs) we tested for their involvement in the LHR-mediated phosphorylation of FAK-Tyr576. Src is not detectable in MA-10 cells, but two other prominent members of this family (Fyn and Yes) are present. The LHR-mediated phosphorylation of FAK-Tyr576 is readily inhibited by PP2 (a pharmacological inhibitor of SFKs) and by dominant-negative mutants of SKFs. Moreover, activation of the LHR in MA-10 cells results in the stimulation of the activity of Fyn and Yes and overexpression of either of these two tyrosine kinases enhances the LHR-mediate phosphorylation of FAK-Tyr576. Studies involving activation of other G protein-coupled receptors, overexpression of the different Gα subunits, and the use of second messenger analogs suggest that the LHR-induced phosphorylation of FAK-Tyr576 in MA-10 cells is mediated by SFKs, and that this family of kinases is, in turn, independently or cooperatively activated by the LHR-induced stimulation of Gs and Gq/11-mediated pathways. PMID:16293639

  17. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation.

    PubMed

    Ben-Mahdi, Meriem H; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; O'Dowd, Yvonne; El-Benna, Jamel; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  18. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation

    PubMed Central

    Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  19. Mitoxantrone targets the ATP-binding site of FAK, binds the FAK kinase domain and decreases FAK, Pyk-2, c-Src, and IGF-1R in vitro kinase activities.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Zheng, Min; Magis, Andrew; Ostrov, David; Cance, William G

    2013-05-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that is overexpressed in many types of tumors and plays a key role in cell adhesion, spreading, motility, proliferation, invasion, angiogenesis, and survival. Recently, FAK has been proposed as a target for cancer therapy, and we performed computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database to target the ATP-binding site of FAK, K454. More than 140,000 small molecule compounds were docked into the crystal structure of the kinase domain of FAK in 100 different orientations using DOCK5.1 that identified small molecule compounds, targeting the K454 site, called A-compounds. To find the therapeutic efficacy of these compounds, we examined the effect of twenty small molecule compounds on cell viability by MTT assays in different cancer cell lines. One compound, A18 (1,4-bis(diethylamino)-5,8- dihydroxy anthraquinon) was a mitoxantrone derivative and significantly decreased viability in most of the cells comparable to the to the level of FAK kinase inhibitors TAE-226 (Novartis, Inc) and PF-573,228 (Pfizer). The A18 compound specifically blocked autophosphorylation of FAK like TAE-226 and PF-228. ForteBio Octet Binding assay demonstrated that mitoxantrone (1,4-dihydroxy- 5,8-bis[2-(2-hydroxyethylamino) ethylamino] anthracene-9,10-dione directly binds the FAK-kinase domain. In addition, mitoxantrone significantly decreased the viability of breast cancer cells in a dose-dependent manner and inhibited the kinase activity of FAK and Y56/577 FAK phosphorylation at 10-20 μM. Mitoxantrone did not affect phosphorylation of EGFR, but decreased Pyk-2, c-Src, and IGF-1R kinase activities. The data demonstrate that mitoxantrone decreases cancer viability, binds FAK-Kinase domain, inhibits its kinase activity, and also inhibits in vitro kinase activities of Pyk-2 and IGF-1R. Thus, this novel function of the mitoxantrone drug can be critical for future development of anti

  20. FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion

    PubMed Central

    Deramaudt, Therese B.; Dujardin, Denis; Hamadi, Abdelkader; Noulet, Fanny; Kolli, Kaouther; De Mey, Jan; Takeda, Kenneth; Rondé, Philippe

    2011-01-01

     Cell migration is a highly complex process that requires the coordinated formation of membrane protrusion and focal adhesions (FAs). Focal adhesion kinase (FAK), a major signaling component of FAs, is involved in the disassembly process of FAs through phosphorylation and dephosphorylation of its tyrosine residues, but the role of such phosphorylations in nascent FA formation and turnover near the cell front and in cell protrusion is less well understood. In the present study, we demonstrate that, depending on the phosphorylation status of Tyr-925 residue, FAK modulates cell migration via two specific mechanisms. FAK−/− mouse embryonic fibroblasts (MEFs) expressing nonphosphorylatable Y925F-FAK show increased interactions between FAK and unphosphorylated paxillin, which lead to FA stabilization and thus decreased FA turnover and reduced cell migration. Conversely, MEFs expressing phosphomimetic Y925E-FAK display unchanged FA disassembly rates, show increase in phosphorylated paxillin in FAs, and exhibit increased formation of nascent FAs at the cell leading edges. Moreover, Y925E-FAK cells present enhanced cell protrusion together with activation of the p130CAS/Dock180/Rac1 signaling pathway. Together, our results demonstrate that phosphorylation of FAK at Tyr-925 is required for FAK-mediated cell migration and cell protrusion. PMID:21289086

  1. Cross-Correlated Fluctuation Analysis Reveals Phosphorylation-Regulated Paxillin-FAK Complexes in Nascent Adhesions

    PubMed Central

    Choi, Colin K.; Zareno, Jessica; Digman, Michelle A.; Gratton, Enrico; Horwitz, Alan Rick

    2011-01-01

    We used correlation methods to detect and quantify interactions between paxillin and focal adhesion kinase (FAK) in migrating cells. Cross-correlation raster-scan image correlation spectroscopy revealed that wild-type paxillin and the phosphorylation-inhibiting paxillin mutant Y31F-Y118F do not interact with FAK in the cytosol but a phosphomimetic mutant of paxillin, Y31E-Y118E, does. By extending cross-correlation number and brightness analysis to the total internal reflection fluorescence modality, we were able to show that tetramers of paxillin and FAK form complexes in nascent adhesions with a 1:1 stoichiometry ratio. The phosphomimetic mutations on paxillin increase the size of the complex and the assembly rate of nascent adhesions, suggesting that the physical molecular aggregation of paxillin and FAK regulates adhesion formation. In contrast, when phosphorylation is inhibited, the interaction decreases and the adhesions tend to elongate rather than turn over. These direct in vivo data show that the phosphorylation of paxillin is specific to adhesions and leads to localized complex formation with FAK to regulate the dynamics of nascent adhesions. PMID:21281572

  2. Focal adhesion kinase is involved in mechanosensing during fibroblast migration

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Hanks, S. K.; Wang, Y.

    2001-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.

  3. Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL

    PubMed Central

    Churchman, Michelle L.; Evans, Kathryn; Richmond, Jennifer; Robbins, Alissa; Jones, Luke; Shapiro, Irina M.; Pachter, Jonathan A.; Weaver, David T.; Houghton, Peter J.; Smith, Malcolm A.; Lock, Richard B.; Mullighan, Charles G.

    2016-01-01

    BCR-ABL1+ B progenitor acute lymphoblastic leukemia (Ph+ B-ALL) is an aggressive disease that frequently responds poorly to currently available therapies. Alterations in IKZF1, which encodes the lymphoid transcription factor Ikaros, are present in over 80% of Ph+ ALL and are associated with a stem cell–like phenotype, aberrant adhesion molecule expression and signaling, leukemic cell adhesion to the bone marrow stem cell niche, and poor outcome. Here, we show that FAK1 is upregulated in Ph+ B-ALL with further overexpression in IKZF1-altered cells and that the FAK inhibitor VS-4718 potently inhibits aberrant FAK signaling and leukemic cell adhesion, potentiating responsiveness to tyrosine kinase inhibitors, inducing cure in vivo. Thus, targeting FAK with VS-4718 is an attractive approach to overcome the deleterious effects of FAK overexpression in Ph+ B-ALL, particularly in abrogating the adhesive phenotype induced by Ikaros alterations, and warrants evaluation in clinical trials for Ph+ B-ALL, regardless of IKZF1 status. PMID:27123491

  4. Regulation of osteoclast structure and function by FAK family kinases

    PubMed Central

    Ray, Brianne J.; Thomas, Keena; Huang, Cynthia S.; Gutknecht, Michael F.; Botchwey, Edward A.; Bouton, Amy H.

    2012-01-01

    Osteoclasts are highly specialized cells that resorb bone and contribute to bone remodeling. Diseases such as osteoporosis and osteolytic bone metastasis occur when osteoclast-mediated bone resorption takes place in the absence of concurrent bone synthesis. Considerable effort has been placed on identifying molecules that regulate the bone resorption activity of osteoclasts. To this end, we investigated unique and overlapping functions of members of the FAK family (FAK and Pyk2) in osteoclast functions. With the use of a conditional knockout mouse model, in which FAK is selectively targeted for deletion in osteoclast precursors (FAKΔmyeloid), we found that loss of FAK resulted in reduced bone resorption by osteoclasts in vitro, coincident with impaired signaling through the CSF-1R. However, bone architecture appeared normal in FAKΔmyeloid mice, suggesting that Pyk2 might functionally compensate for reduced FAK levels in vivo. This was supported by data showing that podosome adhesion structures, which are essential for bone degradation, were significantly more impaired in osteoclasts when FAK and Pyk2 were reduced than when either molecule was depleted individually. We conclude that FAK contributes to cytokine signaling and bone resorption in osteoclasts and partially compensates for the absence of Pyk2 to maintain proper adhesion structures in these cells. PMID:22941736

  5. FAK kinase activity is required for the progression of c-Met/β-catenin-driven HCC

    PubMed Central

    Shang, Na; Arteaga, Maribel; Zaidi, Ali; Cotler, Scott J.; Breslin, Peter; Ding, Xianzhong; Kuo, Paul; Nishimura, Michael; Zhang, Jiwang; Qiu, Wei

    2016-01-01

    Background & Aims There is an urgent need to develop new and more effective therapeutic strategies and agents to treat hepatocellular carcinoma (HCC). We have recently found that deletion of Fak in hepatocytes before tumors form inhibits tumor development and prolongs survival of animals in a c-Met (MET)/β-catenin (CAT)-driven HCC mouse model. However, it has yet to be determined whether FAK expression in hepatocytes promotes MET/CAT-induced HCC progression after tumor initiation. In addition, it remains unclear whether FAK promotes HCC development through its kinase activity. Methods We generated hepatocyte-specific inducible Fak-deficient mice (Alb-creERT2; Fakflox/flox) to examine the role of FAK in HCC progression. We re-expressed wild-type and mutant FAK in Fak-deficient mice to determine FAK’s kinase activity in HCC development. We also examined the efficacy of a FAK kinase inhibitor PF-562271 on HCC inhibition. Results We found that deletion of Fak after tumors form significantly repressed MET/CAT-induced tumor progression. Ectopic FAK expression restored HCC formation in hepatocyte-specific Fak-deficient mice. However, overexpression of a FAK kinase-dead mutant led to reduced tumor load compared to mice which express wild-type FAK. Furthermore, PF-562271 significantly suppressed progression of MET/CAT-induced HCC. Conclusion Fak kinase activity is important for MET/CAT-induced HCC progression. Inhibiting FAK kinase activity provides a potential therapeutic strategy to treat HCC. PMID:27142958

  6. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer.

    PubMed

    Seong, Jihye; Ouyang, Mingxing; Kim, Taejin; Sun, Jie; Wen, Po-Chao; Lu, Shaoying; Zhuo, Yue; Llewellyn, Nicholas M; Schlaepfer, David D; Guan, Jun-Lin; Chien, Shu; Wang, Yingxiao

    2011-07-26

    Proper subcellular localization of focal adhesion kinase (FAK) is crucial for many cellular processes. It remains, however, unclear how FAK activity is regulated at subcellular compartments. To visualize the FAK activity at different membrane microdomains, we develop a fluorescence resonance energy transfer (FRET)-based FAK biosensor, and target it into or outside of detergent-resistant membrane (DRM) regions at the plasma membrane. Here we show that, on cell adhesion to extracellular matrix proteins or stimulation by platelet-derived growth factor (PDGF), the FRET responses of DRM-targeting FAK biosensor are stronger than that at non-DRM regions, suggesting that FAK activation can occur at DRM microdomains. Further experiments reveal that the PDGF-induced FAK activation is mediated and maintained by Src activity, whereas FAK activation on cell adhesion is independent of, and in fact essential for the Src activation. Therefore, FAK is activated at membrane microdomains with distinct activation mechanisms in response to different physiological stimuli.

  7. Essential role for focal adhesion kinase in regulating stress hematopoiesis

    PubMed Central

    Ramdas, Baskar; Hanneman, Philip; Martin, Joseph; Beggs, Hilary E.

    2010-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that has been extensively studied in fibroblasts; however its function in hematopoiesis remains an enigma. FAK is thought to be expressed in myeloid and erythroid progenitors, and its expression is enhanced in response to cytokines such as granu-locyte macrophage colony-stimulating factor. Furthermore, bone marrow cells cultured in granulocyte macrophage colony-stimulating factor show active migration and chemoattractant-induced polarization, which correlates with FAK induction. While loss of FAK in mice results in embryonic lethality, we have deleted FAK in the adult bone marrow. We show an essential role for FAK in regulating hemolytic, myelotoxic, as well as acute inflammatory stress responses in vivo. In vitro, loss of FAK in erythroid and myeloid progenitor's results in impaired cytokine induced growth and survival, as well as defects in the activation and expression of antiapoptotic proteins caspase 3 and Bcl-xL. Additionally, reduced migration and adhesion of myeloid cells on extracellular matrix proteins, as well as impaired activation of Rac GTPase is also observed in the absence of FAK. Our studies reveal an essential role for FAK in integrating growth/survival and adhesion based functions in myeloid and erythroid cells predominantly under conditions of stress. PMID:20664055

  8. Mechanism of Focal Adhesion Kinase Mechanosensing

    PubMed Central

    Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-01-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  9. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration.

    PubMed

    Wu, Chia-Ching; Su, Hsiao-Wen; Lee, Chen-Chen; Tang, Ming-Jer; Su, Fong-Chin

    2005-04-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (approximately 600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.

  10. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation

    PubMed Central

    Lagares, David; Busnadiego, Oscar; García-Fernández, Rosa Ana; Kapoor, Mohit; Liu, Shangxi; Carter, David E.; Abraham, David; Shi-Wen, Xu; Carreira, Patricia; Fontaine T, Benjamin A; Shea, Barry S; Tager, Andrew M; Leask, Andrew; Lamas, Santiago; Rodríguez-Pascual, Fernando

    2011-01-01

    Objective Enhanced adhesive signaling including activation of the focal adhesion kinase (FAK) is a hallmark of fibroblasts from lung fibrosis patients, and FAK has been therefore hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. Methods FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor, PF-562,271, or with siRNA-mediated silencing of FAK, were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and the lungs were harvested for histological and biochemical analysis. Using endothelin-1 (ET-1) as stimulus, cell adhesion and contraction, as well as profibrotic gene expression were studied in fibroblasts isolated from wild type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild type and integrin β1-deficient fibroblasts. Results Increased FAK expression and activity are upregulated in fibroblast foci and remodeled vessels in lung fibrosis patients. Pharmacological or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by Jun N-terminal kinase activation through integrin β1/FAK signaling. Conclusion These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases. PMID:22492165

  11. Crystal Structures of the FAK Kinase in Complex with TAE226 and Related bis-anilino Pyrimidine Inhibitors Reveal a Helical DFG Conformation

    SciTech Connect

    Lietha, D.; Eck, M

    2008-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase required for cell migration, proliferation and survival. FAK overexpression has been documented in diverse human cancers and is associated with a poor clinical outcome. Recently, a novel bis-anilino pyrimidine inhibitor, TAE226, was reported to efficiently inhibit FAK signaling, arrest tumor growth and invasion and prolong the life of mice with glioma or ovarian tumor implants. Here we describe the crystal structures of the FAK kinase bound to TAE226 and three related bis-anilino pyrimidine compounds. TAE226 induces a conformation of the N-terminal portion of the kinase activation loop that is only observed in FAK, but is distinct from the conformation in both the active and inactive states of the kinase. This conformation appears to require a glycine immediately N-terminal to the 'DFG motif', which adopts a helical conformation stabilized by interactions with TAE226. The presence of a glycine residue in this position contributes to the specificity of TAE226 and related compounds for FAK. Our work highlights the fact that kinases can access conformational space that is not necessarily utilized for their native catalytic regulation, and that such conformations can explain and be exploited for inhibitor specificity.

  12. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase

    PubMed Central

    Feng, Jun; Mertz, Blake

    2015-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through conformational change, and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2) are known to facilitate this process. PIP2 binding alters the autoinhibited conformation of the FERM and kinase domains and subsequently exposes the activation loop to phosphorylation. However, the detailed molecular mechanism of PIP2 binding and its role in FAK activation remain unclear. In this study, we conducted coarse-grained molecular dynamics simulations to investigate the binding of FAK to PIP2. Our simulations identified novel areas of basic residues in the kinase domain of FAK that potentially undergo transient binding to PIP2 through electrostatic attractions. Our investigation provides a molecular picture of PIP2-initiated FAK activation and introduces promising new pathways for future studies of FAK regulation. PMID:26186725

  13. Phosphorylation of Focal Adhesion Kinase at Tyr397 in Gastric Carcinomas and its Clinical Significance

    PubMed Central

    Lai, I-Rue; Chu, Pei-Yu; Lin, Hsiao-Sheng; Liou, Jun-Yang; Jan, Yee-Jee; Lee, Jen-Chieh; Shen, Tang-Long

    2010-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various cancers; however, it remains unclear how FAK participates in tumor malignancy in vivo. This study seeks to understand the role of FAK activation in gastric cancer progression. Using immunohistochemical staining and Western blotting, we found that pY397 FAK, an autophosphorylation site on FAK activation, was abundant in the cancerous tissues of 21 of 59 patients with gastric carcinomas. We attempted to correlate clinicopathological parameters, including histological types, TNM staging, and cancer recurrence, with the expression of FAK and pY397 FAK in cancerous tissues. Intriguingly, patients with higher levels of pY397 FAK displayed higher incidences of gastric cancer recurrence after surgery and poor 5-year recurrence-free survival. Furthermore, multivariate analyses showed that pY397 FAK was an independent predictor of gastric cancer recurrence. As a result, expression of pY397 FAK is a significant prognostic factor for the recurrence of gastric cancer. Additionally, in vitro studies showed that overexpression of Y397F, a dominant-negative mutant of FAK, in AGS human gastric carcinoma cells impaired cell migration, invasion, and proliferation compared with cells overexpressing wild-type FAK. Thus, activation of FAK through autophosphorylation at Tyr397 leads to the progression of gastric carcinomas by promoting cell migration, invasion, and proliferation. Collectively, our results have provided valuable insights for the development of novel diagnoses and therapeutic targets for gastric cancer treatments. PMID:20724588

  14. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes

    PubMed Central

    Goñi, Guillermina M.; Epifano, Carolina; Boskovic, Jasminka; Camacho-Artacho, Marta; Zhou, Jing; Bronowska, Agnieszka; Martín, M. Teresa; Eck, Michael J.; Kremer, Leonor; Gräter, Frauke; Gervasio, Francesco Luigi; Perez-Moreno, Mirna; Lietha, Daniel

    2014-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the players involved are known; however, mechanistically, FAK activation is not understood. Here, using a multidisciplinary approach, including biochemical, biophysical, structural, computational, and cell biology approaches, we provide a detailed view of a multistep activation mechanism of FAK initiated by phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Interestingly, the mechanism differs from canonical NRTK activation and is tailored to the dual catalytic and scaffolding function of FAK. We find PI(4,5)P2 induces clustering of FAK on the lipid bilayer by binding a basic region in the regulatory 4.1, ezrin, radixin, moesin homology (FERM) domain. In these clusters, PI(4,5)P2 induces a partially open FAK conformation where the autophosphorylation site is exposed, facilitating efficient autophosphorylation and subsequent Src recruitment. However, PI(4,5)P2 does not release autoinhibitory interactions; rather, Src phosphorylation of the activation loop in FAK results in release of the FERM/kinase tether and full catalytic activation. We propose that PI(4,5)P2 and its generation in focal adhesions by the enzyme phosphatidylinositol 4-phosphate 5-kinase type Iγ are important in linking integrin signaling to FAK activation. PMID:25049397

  15. Activity and Distribution of Paxillin, Focal Adhesion Kinase, and Cadherin Indicate Cooperative Roles during Zebrafish Morphogenesis

    PubMed Central

    Crawford, Bryan D.; Henry, Clarissa A.; Clason, Todd A.; Becker, Amanda L.; Hille, Merrill B.

    2003-01-01

    We investigated the focal adhesion proteins paxillin and Fak, and the cell-cell adhesion protein cadherin in developing zebrafish (Danio rerio) embryos. Cadherins are expressed in presomitic mesoderm where they delineate cells. The initiation of somite formation coincides with an increase in the phosphorylation of Fak, and the accumulation of Fak, phosphorylated Fak, paxillin, and fibronectin at nascent somite boundaries. In the notochord, cadherins are expressed on cells during intercalation, and phosphorylated Fak accumulates in circumferential rings where the notochord cells contact laminin in the perichordal sheath. Subsequently, changes in the orientations of collagen fibers in the sheath suggest that Fak-mediated adhesion allows longitudinal expansion of the notochord, but not lateral expansion, resulting in notochord elongation. Novel observations showed that focal adhesion kinase and paxillin concentrate at sites of cell-cell adhesion in the epithelial enveloping layer and may associate with actin cytoskeleton at epithelial junctions containing cadherins. Fak is phosphorylated at these epithelial junctions but is not phosphorylated on Tyr397, implicating a noncanonical mechanism of regulation. These data suggest that Fak and paxillin may function in the integration of cadherin-based and integrin-based cell adhesion during the morphogenesis of the early zebrafish embryo. PMID:12925747

  16. Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner.

    PubMed

    McGrail, Daniel J; Khambhati, Niti N; Qi, Mark X; Patel, Krishan S; Ravikumar, Nithin; Brandenburg, Chandler P; Dawson, Michelle R

    2015-04-17

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis.

  17. Divergent modulation of Rho‐kinase and Ca2+ influx pathways by Src family kinases and focal adhesion kinase in airway smooth muscle

    PubMed Central

    Shaifta, Yasin; Irechukwu, Nneka; Prieto‐Lloret, Jesus; MacKay, Charles E; Marchon, Keisha A; Ward, Jeremy P T

    2015-01-01

    Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease. PMID:26294392

  18. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    PubMed

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  19. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate

    PubMed Central

    Fonar, Yuri; Gutkovich, Yoni E.; Root, Heather; Malyarova, Anastasia; Aamar, Emil; Golubovskaya, Vita M.; Elias, Sarah; Elkouby, Yaniv M.; Frank, Dale

    2011-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior–posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK–Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells. PMID:21551070

  20. Interactions of the Protein-tyrosine Phosphatase-α with the Focal Adhesion Targeting Domain of Focal Adhesion Kinase Are Involved in Interleukin-1 Signaling in Fibroblasts*

    PubMed Central

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2014-01-01

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca2+ release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα. PMID:24821720

  1. Interactions of the protein-tyrosine phosphatase-α with the focal adhesion targeting domain of focal adhesion kinase are involved in interleukin-1 signaling in fibroblasts.

    PubMed

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P; McCulloch, Christopher A

    2014-06-27

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca(2+) release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα.

  2. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis.

    PubMed

    Zhang, J; Gao, Q; Zhou, Y; Dier, U; Hempel, N; Hochwald, S N

    2016-04-14

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.

  3. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    SciTech Connect

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  4. Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain.

    PubMed Central

    Xing, Z; Chen, H C; Nowlen, J K; Taylor, S J; Shalloway, D; Guan, J L

    1994-01-01

    The recently described focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To examine the mechanisms by which FAK relays signals from the membrane to the cell interior, we carried out a series of experiments to detect potential FAK interactions with proteins containing Src homology 2 (SH2) domains that are important intracellular signaling molecules. Using v-Src-transformed NIH3T3 cells, we showed that FAK was present in the immune-complex precipitated by anti-Src antibody, suggesting potential interaction of FAK with v-Src in vivo. We also showed potentially direct interaction of FAK with v-Src in vivo using the yeast two-hybrid system. Using recombinant FAK expressed in insect cells and bacterial fusion proteins containing Src SH2 domains, we showed direct binding of FAK to the Src SH2 domain but not to the SH3 domain in vitro. A kinase-defective mutant of FAK, which is not autophosphorylated, did not interact with the Src SH2 domain under the same conditions, suggesting the involvement of the FAK autophosphorylation sites. Treatment of FAK with a protein-tyrosine phosphatase decreased its binding to the Src SH2 domain, whereas autophosphorylation in vitro increased its binding. These results confirm the importance of FAK autophosphorylation sites in its interaction with SH2 domain-containing proteins. Taken together, these results suggest that FAK may mediate signal transduction events initiated on the cell surface by kinase activation and autophosphorylation that result in its binding to other key intracellular signaling molecules. Images PMID:8054685

  5. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  6. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions.

    PubMed

    Walkiewicz, Katarzyna W; Girault, Jean-Antoine; Arold, Stefan T

    2015-10-01

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner.

  7. Haematopoietic focal adhesion kinase deficiency alters haematopoietic homeostasis to drive tumour metastasis.

    PubMed

    Batista, Silvia; Maniati, Eleni; Reynolds, Louise E; Tavora, Bernardo; Lees, Delphine M; Fernandez, Isabelle; Elia, George; Casanovas, Oriol; Lo Celso, Cristina; Hagemann, Thorsten; Hodivala-Dilke, Kairbaan

    2014-01-01

    Metastasis is the main cause of cancer-related death and thus understanding the molecular and cellular mechanisms underlying this process is critical. Here, our data demonstrate, contrary to established dogma, that loss of haematopoietic-derived focal adhesion kinase (FAK) is sufficient to enhance tumour metastasis. Using both experimental and spontaneous metastasis models, we show that genetic ablation of haematopoietic FAK does not affect primary tumour growth but enhances the incidence of metastasis significantly. At a molecular level, haematopoietic FAK deletion results in an increase in PU-1 levels and decrease in GATA-1 levels causing a shift of hematopoietic homeostasis towards a myeloid commitment. The subsequent increase in circulating granulocyte number, with an increase in serum CXCL12 and granulocyte CXCR4 levels, was required for augmented metastasis in mice lacking haematopoietic FAK. Overall our findings provide a mechanism by which haematopoietic FAK controls cancer metastasis. PMID:25270220

  8. Generation of point-mutant FAK knockin mice.

    PubMed

    Tavora, B; Batista, S; Alexopoulou, A N; Kostourou, V; Fernandez, I; Robinson, S D; Lees, D M; Serrels, B; Hodivala-Dilke, K

    2014-11-01

    Focal adhesion kinase is a non-receptor protein tyrosine kinase with signaling functions downstream of integrins and growth factor receptors. In addition to its role in adhesion, migration, and proliferation it also has non-kinase scaffolding functions in the nucleus. Focal adhesion kinase (FAK) activation involves the following: (1) ligand bound growth factors or clustered integrins activate FAK kinase domain; (2) FAK autophosphorylates tyrosine (Y) 397; (3) Src binds pY397 and phosphorylates FAK at various other sites including Y861; (4) downstream signaling of activated FAK elicits changes in cellular behavior. Although many studies have demonstrated roles for the kinase domain, Y397 and Y861 sites, in vitro much less is known about their functions in vivo. Here, we report the generation of a series of FAK-mutant knockin mice where mutant FAK, either kinase dead, non-phosphorylatable mutants Y397F and Y861F, or mutant Y397E-containing a phosphomimetic site that results in a constitutive active Y397, can be expressed in a Cre inducible fashion driven by the ROSA26 promoter. In future studies, intercrossing these mice with FAKflox/flox mice and inducible cre-expressing mice will enable the in vivo study of mutant FAK function in the absence of endogenous FAK in a spatially and temporally regulated fashion within the whole organism. PMID:25242698

  9. Allosteric Regulation of Focal Adhesion Kinase by PIP2 and ATP

    PubMed Central

    Zhou, Jing; Bronowska, Agnieszka; Le Coq, Johanne; Lietha, Daniel; Gräter, Frauke

    2015-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that regulates cell signaling, proliferation, migration, and development. A major mechanism of regulation of FAK activity is an intramolecular autoinhibitory interaction between two of its domains—the catalytic and FERM domains. Upon cell adhesion to the extracellular matrix, FAK is being translocated toward focal adhesion sites and activated. Interactions of FAK with phosphoinositide phosphatidylinsositol-4,5-bis-phosphate (PIP2) are required to activate FAK. However, the molecular mechanism of the activation remains poorly understood. Recent fluorescence resonance energy transfer experiments revealed a closure of the FERM-kinase interface upon ATP binding, which is reversed upon additional binding of PIP2. Here, we addressed the allosteric regulation of FAK by performing all-atom molecular-dynamics simulations of a FAK fragment containing the catalytic and FERM domains, and comparing the dynamics in the absence or presence of ATP and PIP2. As a major conformational change, we observe a closing and opening motion upon ATP and additional PIP2 binding, respectively, in good agreement with the fluorescence resonance energy transfer experiments. To reveal how the binding of the regulatory PIP2 to the FERM F2 lobe is transduced to the very distant F1/N-lobe interface, we employed force distribution analysis. We identified a network of mainly charged residue-residue interactions spanning from the PIP2 binding site to the distant interface between the kinase and FERM domains, comprising candidate residues for mutagenesis to validate the predicted mechanism of FAK activation. PMID:25650936

  10. Focal Adhesion Kinase Is Involved in Rabies Virus Infection through Its Interaction with Viral Phosphoprotein P

    PubMed Central

    Fouquet, Baptiste; Nikolic, Jovan; Larrous, Florence; Bourhy, Hervé; Wirblich, Christoph

    2014-01-01

    ABSTRACT The rabies virus (RABV) phosphoprotein P is a multifunctional protein: it plays an essential role in viral transcription and replication, and in addition, RABV P has been identified as an interferon antagonist. Here, a yeast two-hybrid screen revealed that RABV P interacts with the focal adhesion kinase (FAK). The binding involved the 106-to-131 domain, corresponding to the dimerization domain of P and the C-terminal domain of FAK containing the proline-rich domains PRR2 and PRR3. The P-FAK interaction was confirmed in infected cells by coimmunoprecipitation and colocalization of FAK with P in Negri bodies. By alanine scanning, we identified a single mutation in the P protein that abolishes this interaction. The mutant virus containing a substitution of Ala for Arg in position 109 in P (P.R109A), which did not interact with FAK, is affected at a posttranscriptional step involving protein synthesis and viral RNA replication. Furthermore, FAK depletion inhibited viral protein expression in infected cells. This provides the first evidence of an interaction of RABV with FAK that positively regulates infection. IMPORTANCE Rabies virus exhibits a small genome that encodes a limited number of viral proteins. To maintain efficient virus replication, some of them are multifunctional, such as the phosphoprotein P. We and others have shown that P establishes complex networks of interactions with host cell components. These interactions have revealed much about the role of P and about host-pathogen interactions in infected cells. Here, we identified another cellular partner of P, the focal adhesion kinase (FAK). Our data shed light on the implication of FAK in RABV infection and provide evidence that P-FAK interaction has a proviral function. PMID:25410852

  11. Focal adhesion kinase antagonizes doxorubicin cardiotoxicity via p21(Cip1.).

    PubMed

    Cheng, Zhaokang; DiMichele, Laura A; Rojas, Mauricio; Vaziri, Cyrus; Mack, Christopher P; Taylor, Joan M

    2014-02-01

    Clinical application of potent anthracycline anticancer drugs, especially doxorubicin (DOX), is limited by a toxic cardiac side effect that is not fully understood and preventive strategies are yet to be established. Studies in genetically modified mice have demonstrated that focal adhesion kinase (FAK) plays a key role in regulating adaptive responses of the adult myocardium to pathological stimuli through activation of intracellular signaling cascades that facilitate cardiomyocyte growth and survival. The objective of this study was to determine if targeted myocardial FAK activation could protect the heart from DOX-induced de-compensation and to characterize the underlying mechanisms. To this end, mice with myocyte-restricted FAK knock-out (MFKO) or myocyte-specific expression of an active FAK variant (termed SuperFAK) were subjected to DOX treatment. FAK depletion enhanced susceptibility to DOX-induced myocyte apoptosis and cardiac dysfunction, while elevated FAK activity provided remarkable cardioprotection. Our mec6hanistic studies reveal a heretofore unappreciated role for the protective cyclin-dependent kinase inhibitor p21 in the repression of the pro-apoptotic BH3-only protein Bim and the maintenance of mitochondrial integrity and myocyte survival. DOX treatment induced proteasomal degradation of p21, which exacerbated mitochondrial dysfunction and cardiomyocyte apoptosis. FAK was both necessary and sufficient for maintaining p21 levels following DOX treatment and depletion of p21 compromised FAK-dependent protection from DOX. These findings identify p21 as a key determinant of DOX resistance downstream of FAK in cardiomyocytes and indicate that cardiac-restricted enhancement of the FAK/p21 signaling axis might be an effective strategy to preserve myocardial function in patients receiving anthracycline chemotherapy. PMID:24342076

  12. Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins.

    PubMed

    Seong, Jihye; Tajik, Arash; Sun, Jie; Guan, Jun-Lin; Humphries, Martin J; Craig, Susan E; Shekaran, Asha; García, Andrés J; Lu, Shaoying; Lin, Michael Z; Wang, Ning; Wang, Yingxiao

    2013-11-26

    Matrix mechanics controls cell fate by modulating the bonds between integrins and extracellular matrix (ECM) proteins. However, it remains unclear how fibronectin (FN), type 1 collagen, and their receptor integrin subtypes distinctly control force transmission to regulate focal adhesion kinase (FAK) activity, a crucial molecular signal governing cell adhesion/migration. Here we showed, using a genetically encoded FAK biosensor based on fluorescence resonance energy transfer, that FN-mediated FAK activation is dependent on the mechanical tension, which may expose its otherwise hidden FN synergy site to integrin α5. In sharp contrast, the ligation between the constitutively exposed binding motif of type 1 collagen and its receptor integrin α2 was surprisingly tension-independent to induce sufficient FAK activation. Although integrin α subunit determines mechanosensitivity, the ligation between α subunit and the ECM proteins converges at the integrin β1 activation to induce FAK activation. We further discovered that the interaction of the N-terminal protein 4.1/ezrin/redixin/moesin basic patch with phosphatidylinositol 4,5-biphosphate is crucial during cell adhesion to maintain the FAK activation from the inhibitory effect of nearby protein 4.1/ezrin/redixin/moesin acidic sites. Therefore, different ECM proteins either can transmit or can shield from mechanical forces to regulate cellular functions, with the accessibility of ECM binding motifs by their specific integrin α subunits determining the biophysical mechanisms of FAK activation during mechanotransduction.

  13. Inhibitory effects of Yangzheng Xiaoji on angiogenesis and the role of the focal adhesion kinase pathway.

    PubMed

    Jiang, Wen G; Ye, Lin; Ji, Ke; Frewer, Natasha; Ji, Jiafu; Mason, Malcolm D

    2012-11-01

    Angiogenesis is an essential event during the excessive growth and metastatic spread of solid tumours. Anti-angiogenic agents have become a new choice of therapy for patients with cancer. In the present study, we investigated the potential effect of Yangzheng Xiaoji, a traditional Chinese medicinal formula presently used in the treatment of several solid tumours including liver cancer and gastric cancer, on angiogenesis, in vitro. The human vascular endothelial cell line HECV was used. A Matrigel-based sandwich tubule formation assay was employed to assess in vitro angiogenesis, a colorimetric method for assessing in vitro cell growth. Electric cell-substrate impedance sensing (ECIS) was used to evaluate the adhesion and migration of endothelial cells. The effects on activation of focal adhesion kinase (FAK) were evaluated using western blotting and immunofluorescence methods. Yangzhen Xiaoji extract DME25 significantly inhibited tube formation (p=0.046 vs control). This was seen together with a concentration-dependent inhibition on cell-matrix adhesion and cellular migration. It was demonstrated that the focal adhesion kinase (FAK) inhibitor PF557328 had a significant synergistic effect on DME25-induced inhibition of cell adhesion, migration and tube formation. The study showed that DME25 inhibited the phosphorylation of FAK in endothelial cells. In conclusion, Yangzhen Xiaoji has a marked effect on angiogenesis, in vitro and that this effect is at least partly mediated by the focal adhesion kinase (FAK) pathway. PMID:22971748

  14. Endothelial FAK is required for tumour angiogenesis

    PubMed Central

    Tavora, Bernardo; Batista, Silvia; Reynolds, Louise E; Jadeja, Shalini; Robinson, Stephen; Kostourou, Vassiliki; Hart, Ian; Fruttiger, Marcus; Parsons, Maddy; Hodivala-Dilke, Kairbaan M

    2010-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a fundamental role in integrin and growth factor mediated signalling and is an important player in cell migration and proliferation, processes vital for angiogenesis. However, the role of FAK in adult pathological angiogenesis is unknown. We have generated endothelial-specific tamoxifen-inducible FAK knockout mice by crossing FAK-floxed (FAKfl/fl) mice with the platelet derived growth factor b (Pdgfb)-iCreER mice. Tamoxifen-treatment of Pdgfb-iCreER;FAKfl/fl mice results in FAK deletion in adult endothelial cells (ECs) without any adverse effects. Importantly however, endothelial FAK-deletion in adult mice inhibited tumour growth and reduced tumour angiogenesis. Furthermore, in in vivo angiogenic assays FAK deletion impairs vascular endothelial growth factor (VEGF)-induced neovascularization. In addition, in vitro deletion of FAK in ECs resulted in reduced VEGF-stimulated Akt phosphorylation and correlating reduced cellular proliferation as well as increased cell death. Our data suggest that FAK is required for adult pathological angiogenesis and validates FAK as a possible target for anti-angiogenic therapies. PMID:21154724

  15. Endothelial FAK is required for tumour angiogenesis.

    PubMed

    Tavora, Bernardo; Batista, Silvia; Reynolds, Louise E; Jadeja, Shalini; Robinson, Stephen; Kostourou, Vassiliki; Hart, Ian; Fruttiger, Marcus; Parsons, Maddy; Hodivala-Dilke, Kairbaan M

    2010-12-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a fundamental role in integrin and growth factor mediated signalling and is an important player in cell migration and proliferation, processes vital for angiogenesis. However, the role of FAK in adult pathological angiogenesis is unknown. We have generated endothelial-specific tamoxifen-inducible FAK knockout mice by crossing FAK-floxed (FAKfl/fl) mice with the platelet derived growth factor b (Pdgfb)-iCreER mice. Tamoxifen-treatment of Pdgfb-iCreER;FAKfl/fl mice results in FAK deletion in adult endothelial cells (ECs) without any adverse effects. Importantly however, endothelial FAK-deletion in adult mice inhibited tumour growth and reduced tumour angiogenesis. Furthermore, in in vivo angiogenic assays FAK deletion impairs vascular endothelial growth factor (VEGF)-induced neovascularization. In addition, in vitro deletion of FAK in ECs resulted in reduced VEGF-stimulated Akt phosphorylation and correlating reduced cellular proliferation as well as increased cell death. Our data suggest that FAK is required for adult pathological angiogenesis and validates FAK as a possible target for anti-angiogenic therapies.

  16. Focal adhesion kinase as a mechanotransducer during rapid brain growth of the chick embryo.

    PubMed

    Desmond, Mary E; Knepper, Janice E; DiBenedetto, Angela J; Malaugh, Elizabeth; Callejo, Sagrario; Carretero, Raquel; Alonso, Maria-Isabel; Gato, Angel

    2014-01-01

    Expansion of the hollow fluid-filled embryonic brain occurs by an increase in intraluminal pressure created by accumulation of cerebrospinal fluid (CSF). Experiments have shown a direct correlation between cavity pressure and cell proliferation within the neuroepithelium. These findings lead us to ask how mechanistically this might come about. Are there perhaps molecules on the luminal surface of the embryonic neuroepithelium, such as focal adhesion kinases (FAKs) known to respond to tension in other epithelial cells? Immunodetection using antibodies to total FAK and p-FAK was performed with subsequent confocal analysis of the pattern of their activation under normal intraluminal pressure and induced chronic pressure. Western analysis was also done to look at the amount of FAK expression, as well as its activation under these same conditions. Using immunolocalization, we have shown that FAK is present and activated on both apical and basolateral surfaces and within the cytoplasm of the neuroepithelial cells. This pattern changed profoundly when the neuroepithelium was under pressure. By Western blot, we have shown that FAK was upregulated and activated in the neuroepithelium of the embryos just after the neural tube becomes a closed pressurized system, with phosphorylation detected on the luminal instead of the basal surface, along with an increase in cell proliferation. Chronic hyper-pressure does not induce an increase in phosphorylation of FAK. In conclusion, here we show that neuroepithelial cells respond to intraluminal pressure via FAK phosphorylation on the luminal surface. PMID:24860993

  17. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Fluck, M.; Booth, F. W.

    2001-01-01

    This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.

  18. Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components.

    PubMed

    Klossner, Stephan; Li, Ruowei; Ruoss, Severin; Durieux, Anne-Cécile; Flück, Martin

    2013-09-15

    Costameres are mechanosensory sites of focal adhesion in the sarcolemma that reinforce the muscle-fiber composite and provide an anchor for myofibrillogenesis. We hypothesized that elevated content of the integrin-associated regulator of costamere turnover in culture, focal adhesion kinase (FAK), drives changes in costamere component content in antigravity muscle in a load-dependent way in correspondence with altered muscle weight. The content of FAK in soleus muscle being phosphorylated at autoregulatory tyrosine 397 (FAK-pY397) was increased after 20 s of stretch. FAK-pY397 content remained elevated after 24 h of stretch-overload due to upregulated FAK content. Overexpression of FAK in soleus muscle fibers by means of gene electrotransfer increased the β1-integrin (+56%) and meta-vinculin (+88%) content. α7-Integrin (P = 0.46) and γ-vinculin (P = 0.18) content was not altered after FAK overexpression. Co-overexpression of the FAK inhibitor FAK-related nonkinase (FRNK) reduced FAK-pY397 content by 33% and increased the percentage of fast-type fibers that arose in connection with hybrid fibers with gene transfer. Transplantation experiments confirmed the association of FRNK expression with slow-to-fast fiber transformation. Seven days of unloading blunted the elevation of FAK-pY397, β1-integrin, and meta-vinculin content with FAK overexpression, and this was reversed by 1 day of reloading. The results highlight that the expression of components for costameric attachment sites of myofibrils is under load- and fiber type-related control via FAK and its inhibitor FRNK.

  19. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells.

    PubMed

    Waters, Alicia M; Stafman, Laura L; Garner, Evan F; Mruthyunjayappa, Smitha; Stewart, Jerry E; Mroczek-Musulman, Elizabeth; Beierle, Elizabeth A

    2016-08-01

    Despite the tremendous advances in the treatment of childhood solid tumors, rhabdomyosarcoma (RMS) continues to provide a therapeutic challenge. Children with metastatic or relapsed disease have a disease-free survival rate under 30%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumorigenesis. Signaling pathways both upstream and downstream to FAK have been found to be important in sarcoma tumorigenesis, leading us to hypothesize that FAK would be present in RMS and would impact cellular survival. In the current study, we showed that FAK was present and phosphorylated in pediatric alveolar and embryonal RMS tumor specimens and cell lines. We also examined the effects of FAK inhibition upon two RMS cell lines utilizing parallel approaches including RNAi and small molecule inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Furthermore, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse RMS xenograft model. The findings from this study will help to further our understanding of the regulation of tumorigenesis in RMS and may provide desperately needed novel therapeutic strategies for these difficult-to-treat tumors. PMID:27567948

  20. Requirement of focal adhesion kinase in branching tubulogenesis.

    PubMed

    Wei, Wei-Chun; Kopec, Anna K; Tang, Ming-Jer

    2009-01-01

    We previously demonstrated that alpha3beta1 integrins are essential to hepatocyte growth factor (HGF)-independent branching tubulogenesis in Mardin-Darby Canine Kidney (MDCK) cells. However, the involvement of integrin downstream signaling molecules remains unclear. In the present study, we successfully isolated cell lines possessing different tubulogenic potentials from the MDCK cells; cyst clones (CA4, CA6) forming cystic structures when cultured in 0.3% type I collagen gel and mass clones (M610, M611, M612) forming aggregated masses. Cyst clones maintained cystic structure in 0.1% collagen gel, whereas mass clones spontaneously developed into tubules. Both clones exhibited various morphologies when cultured on a dish: cyst clones formed aggregated islands, while mass clones were more scattered and exhibited higher migration capacity. Among several focal adhesion machinery proteins examined, only the expression and phosphorylation level of focal adhesion kinase (FAK) in mass clones was higher than in cyst clones, while other proteins showed no obvious differences. However, overexpression of wild type FAK in CA6 cells did not facilitate branching tubule formation in 0.1% collagen gel. Targeted decrease in the expression level of FAK in M610 cells with the application of antisense cDNA resulted in a marked reduction of branching tubule formation in 0.1% collagen gel and showed a down-regulation of fibronectin assembly, which is known to promote tubulogenesis. In contrast, overexpression of wild type FAK in CA6 cells had no effect on fibronectin assembly. Taken together, our data demonstrates that FAK is required, but not sufficient for HGF-independent branching tubulogenesis in MDCK cells. PMID:19272169

  1. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights.

    PubMed

    Yoon, Hyunho; Dehart, Joshua P; Murphy, James M; Lim, Ssang-Taek Steve

    2015-02-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that regulates cellular adhesion, motility, proliferation and survival in various types of cells. Interestingly, FAK is activated and/or overexpressed in advanced cancers, and promotes cancer progression and metastasis. For this reason, FAK became a potential therapeutic target in cancer, and small molecule FAK inhibitors have been developed and are being tested in clinical phase trials. These inhibitors have demonstrated to be effective by inducing tumor cell apoptosis in addition to reducing metastasis and angiogenesis. Furthermore, several genetic FAK mouse models have made advancements in understanding the specific role of FAK both in tumors and in the tumor environment. In this review, we discuss FAK inhibitors as well as genetic mouse models to provide mechanistic insights into FAK signaling and its potential in cancer therapy.

  2. Phosphoproteomic profiling identifies focal adhesion kinase as a mediator of docetaxel resistance in castrate-resistant prostate cancer.

    PubMed

    Lee, Brian Y; Hochgräfe, Falko; Lin, Hui-Ming; Castillo, Lesley; Wu, Jianmin; Raftery, Mark J; Martin Shreeve, S; Horvath, Lisa G; Daly, Roger J

    2014-01-01

    Docetaxel remains the standard-of-care for men diagnosed with metastatic castrate-resistant prostate cancer (CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype. Using quantitative mass spectrometry-based phosphoproteomics, we identified that metastatic docetaxel-resistant prostate cancer cell lines (DU145-Rx and PC3-Rx) exhibit increased phosphorylation of focal adhesion kinase (FAK) on Y397 and Y576, in comparison with parental controls (DU145 and PC3, respectively). Bioinformatic analyses identified perturbations in pathways regulating focal adhesions and the actin cytoskeleton and in protein-protein interaction networks related to these pathways in docetaxel-resistant cells. Treatment with the FAK tyrosine kinase inhibitor (TKI) PF-00562271 reduced FAK phosphorylation in the resistant cells, but did not affect cell viability or Akt phosphorylation. Docetaxel administration reduced FAK and Akt phosphorylation, whereas cotreatment with PF-00562271 and docetaxel resulted in an additive attenuation of FAK and Akt phosphorylation and overcame the chemoresistant phenotype. The enhanced efficacy of cotreatment was due to increased autophagic cell death, rather than apoptosis. These data strongly support that enhanced FAK activation mediates chemoresistance in CRPC, and identify a potential clinical niche for FAK TKIs, where coadministration with docetaxel may be used in patients with CRPC to overcome chemoresistance. PMID:24194567

  3. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    PubMed Central

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  4. In-situ coupling between kinase activities and protein dynamics within single focal adhesions.

    PubMed

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  5. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  6. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-01-01

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  7. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  8. LRRK2 Inhibits FAK Activity by Promoting FERM-mediated Autoinhibition of FAK and Recruiting the Tyrosine Phosphatase, SHP-2

    PubMed Central

    Choi, Insup; Byun, Ji-won; Park, Sang Myun; Jou, Ilo

    2016-01-01

    Mutation of leucine-rich repeat kinase 2 (LRRK2) causes an autosomal dominant and late-onset familial Parkinson's disease (PD). Recently, we reported that LRRK2 directly binds to and phosphorylates the threonine 474 (T474)-containing Thr-X-Arg(Lys) (TXR) motif of focal adhesion kinase (FAK), thereby inhibiting the phosphorylation of FAK at tyrosine (Y) 397 residue (pY397-FAK), which is a marker of its activation. Mechanistically, however, it remained unclear how T474-FAK phosphorylation suppressed FAK activation. Here, we report that T474-FAK phosphorylation could inhibit FAK activation via at least two different mechanisms. First, T474 phosphorylation appears to induce a conformational change of FAK, enabling its N-terminal FERM domain to autoinhibit Y397 phosphorylation. This is supported by the observation that the levels of pY397-FAK were increased by deletion of the FERM domain and/or mutation of the FERM domain to prevent its interaction with the kinase domain of FAK. Second, pT474-FAK appears to recruit SHP-2, which is a phosphatase responsible for dephosphorylating pY397-FAK. We found that mutation of T474 into glutamate (T474E-FAK) to mimic phosphorylation induced more strong interaction with SHP-2 than WT-FAK, and that pharmacological inhibition of SHP-2 with NSC-87877 rescued the level of pY397 in HEK293T cells. These results collectively show that LRRK2 suppresses FAK activation through diverse mechanisms that include the promotion of autoinhibition and/or the recruitment of phosphatases, such as SHP-2. PMID:27790061

  9. Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions

    PubMed Central

    Neuhofer, Wolfgang; Küper, Christoph; Lichtnekert, Julia; Holzapfel, Konstantin; Rupanagudi, Khader V.; Fraek, Maria-Luisa; Bartels, Helmut; Beck, Franz-Xaver

    2014-01-01

    TonEBP/NFAT5 is a major regulator of the urinary concentrating process and is essential for the osmoadaptation of renal medullary cells. Focal adhesion kinase (FAK) is a mechanosensitive non-receptor protein tyrosine kinase expressed abundantly in the renal medulla. Since osmotic stress causes cell shrinkage, the present study investigated the contribution of FAK on TonEBP/NFAT5 activation. Osmotic stress induced time-dependent activation of FAK as evidenced by phosphorylation at Tyr-397, and furosemide reduces FAK Tyr-397 phosphorylation in the rat renal medulla. Both pharmacological inhibition of FAK and siRNA-mediated knockdown of FAK drastically reduced TonEBP/NFAT5 transcriptional activity and target gene expression in HEK293 cells. This effect was not mediated by impaired nuclear translocation or by reduced transactivating activity of TonEBP/NFAT5. However, TonEBP/NFAT5 abundance under hypertonic conditions was diminished by 50% by FAK inhibition or siRNA knockdown of FAK. FAK inhibition only marginally reduced transcription of the TonEBP/NFAT5 gene. Rather, TonEBP/NFAT5 mRNA stability was diminished significantly by FAK inhibition, which correlated with reduced reporter activity of the TonEBP/NFAT5 mRNA 3′ untranslated region (3′-UTR). In conclusion, FAK is a major regulator of TonEBP/NFAT5 activity by increasing its abundance via stabilization of the mRNA. This in turn, depends on the presence of the TonEBP/NFAT5 3′-UTR. PMID:24772088

  10. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis

    PubMed Central

    Zhang, Jianliang; Gao, Qile; Zhou, Ying; Dier, Usawadee; Hempel, Nadine; Hochwald, Steven N.

    2015-01-01

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability, and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC. PMID:26119934

  11. The cysteine-cluster motif of c-Yes, Lyn and FAK as a suppressive module for the kinases.

    PubMed

    Rahman, Mohammad Aminur; Senga, Takeshi; Oo, Myat Lin; Hasegawa, Hitoki; Biswas, Md Helal Uddin; Mon, Naing Naing; Huang, Pengyu; Ito, Satoko; Yamamoto, Tadashi; Hamaguchi, Michinari

    2008-04-01

    The Src family of non-receptor protein tyrosine kinases plays a critical role in the progression of human cancers so that the development of its specific inhibitors is important as a therapeutic tool. We previously reported that cysteine residues in the cysteine-cluster (CC) motif of v-Src were critical for the kinase inactivation by the SH-alkylating agents such as N-(9-acridinyl) maleimide (NAM), whereas other cysteine residues were dispensable. We found similar CC-motifs in other Src-family kinases and a non-Src-family kinase, FAK. In this study, we explored the function of the CC-motif in Yes, Lyn and FAK. While Src has four cysteines in the CC-motif, c-Yes and Lyn have three and two of the four cysteines, respectively. Two conserved cysteines of the Src family kinases, corresponding to Cys487 and Cys498 of Src, were essential for the resistance to the inactivation of the kinase activity by NAM, whereas the first cysteine of c-Yes, which is absent in Lyn, was less important. FAK has similar CC-motifs with two cysteines and both cysteines were again essential for the resistance to the inactivation of the kinase activity by NAM. Taken together, modification of cysteine residues of the CC-motif causes a repressor effect on the catalytic activity of the Src family kinases and FAK.

  12. Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers.

    PubMed

    Basuroy, Shyamali; Dunagan, Mitzi; Sheth, Parimal; Seth, Ankur; Rao, R K

    2010-07-01

    Recent studies showed that c-Src and phosphatidylinositol 3 (PI3) kinase mediate the oxidative stress-induced disruption of tight junctions in Caco-2 cell monolayers. The present study evaluated the roles of PI3 kinase and Src kinase in the oxidative stress-induced activation of focal adhesion kinase (FAK) and acceleration of cell migration. Oxidative stress, induced by xanthine and xanthine oxidase system, rapidly increased phosphorylation of FAK on Y397, Y925, and Y577 in the detergent-insoluble and soluble fractions and increased its tyrosine kinase activity. The PI3 kinase inhibitors, wortmannin and LY294002, and the Src kinase inhibitor, 4-amino-5[chlorophyll]-7-[t-butyl]pyrazolo[3-4-d]pyrimidine, attenuated tyrosine phosphorylation of FAK. Oxidative stress induced phosphorylation of c-Src on Y418 by a PI3 kinase-dependent mechanism, whereas oxidative stress-induced activation of PI3 kinase was independent of Src kinase activity. Hydrogen peroxide accelerated Caco-2 cell migration in a concentration-dependent manner. Promotion of cell migration by hydrogen peroxide was attenuated by LY294002 and PP2. Reduced expression of FAK by siRNA attenuated hydrogen peroxide-induced acceleration of cell migration. The expression of constitutively active c-Src(Y527F) enhanced cell migration, whereas the expression of dominant negative c-Src(K296R/Y528F) attenuated hydrogen peroxide-induced stimulation of cell migration. Oxidative stress-induced activation of c-Src and FAK was associated with a rapid increase in the tyrosine phosphorylation and the levels of paxillin and p130(CAS) in actin-rich, detergent-insoluble fractions. This study shows that oxidative stress activates FAK and accelerates cell migration in an intestinal epithelium by a PI3 kinase- and Src kinase-dependent mechanism. PMID:20378826

  13. FAK-heterozygous mice display enhanced tumour angiogenesis

    PubMed Central

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E.; Lees, Delphine M.; Baker, Marianne; Jones, Dylan T.; Tavora, Bernardo; Ramjaun, Antoine R.; Birdsey, Graeme M.; Robinson, Stephen D.; Parsons, Maddy; Randi, Anna M.; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis. PMID:23799510

  14. Two Kinase Family Dramas

    PubMed Central

    Leonard, Thomas A.; Hurley, James H.

    2007-01-01

    In this issue, Lietha and colleagues (2007) report the structure of focal adhesion kinase (FAK) and reveal how FAK maintains an autoinhibited state. Together with the structure of another tyrosine kinase, ZAP-70 (Deindl et al., 2007), this work highlights the diversity of mechanisms that nature has evolved within the kinase superfamily to regulate their activity through autoinhibition. PMID:17574014

  15. Correlation between matrix metalloproteinase expression and activation of the focal adhesion kinase signaling pathway in herpes stromal keratitis

    PubMed Central

    CAO, TING; XING, YIQIAO; YANG, YANNING; MEI, HAIFENG

    2014-01-01

    The present study aimed to investigate the correlation between matrix metalloproteinase-2 (MMP-2) expression and activation of the focal adhesion kinase (FAK) signaling pathway in herpes stromal keratitis (HSK). The cornea of 24 BALB/c mice was infected with herpes simplex virus type 1 (HSV-1) to construct a model of HSK. Six additional mice served as negative controls. Immunohistochemical staining was used to detect FAK expression levels. Human corneal epithelial (HCE) cells cultured in vitro were infected with HSV-1 and the expression levels of MMP-2, FAK and phosphorylated-FAK (p-FAK) in HCE cells were detected using reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry at 2, 20 and 40 h following infection. In the HSK rat model, the corneal epithelial cells appeared deranged and the number of neutrophils and FAK-positive cells was significantly increased compared with that of the negative control group (P<0.05). Repeated measures analysis of variance of RT-PCR showed no significant differences in MMP-2 and FAK mRNA expression levels in the infected cells at various time points, and no significant differences between infected cells and the negative control group were observed. There was no interaction between groups and time points. Pairwise comparisons showed that MMP-2 and FAK mRNA expression levels were significantly increased in virus-infected cells compared with those of the control group. Over time, MMP-2 and FAK mRNA expression levels did not differ significantly in virus-infected cells or in control cells. Western blot analysis indicated no significant differences in p-FAK, FAK and MMP-2 expression levels between the infected and control cells at 2 h (P>0.05). Infected cells showed a significant increase in MMP-2 and p-FAK expression levels than that of the control cells at 20 and 40 h (P<0.05). p-FAK, FAK and MMP-2 expression levels in virus-infected cells at 2 h differed significantly from those at 20

  16. FAK is required for c-Met/β-catenin-driven hepatocarcinogenesis

    PubMed Central

    Shang, Na; Arteaga, Maribel; Zaidi, Ali; Stauffer, Jimmy; Cotler, Scott J.; Zeleznik-Le, Nancy; Zhang, Jiwang; Qiu, Wei

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide and most patients with HCC have limited treatment options. Focal Adhesion Kinase (FAK) is overexpressed in many HCC specimens, offering a potential target for HCC treatment. However, the role of FAK in hepatocarcinogenesis remains elusive. Establishing whether FAK expression plays a role in HCC development is necessary to determine whether it is a viable therapeutic target. In this study, we generated mice with hepatocyte-specific deletion of Fak and investigated the role of Fak in an oncogenic (c-MET/β-catenin, MET/CAT)-driven HCC model. We found that deletion of Fak in hepatocytes did not affect morphology, proliferation or apoptosis. However, Fak deficiency significantly repressed MET/CAT-induced tumor development and prolonged survival of animals with MET/CAT-induced HCC. In mouse livers and HCC cell lines, Fak was activated by MET, which induced the activation of Akt/Erk and up-regulated Cyclin D1 and tumor cell proliferation. CAT enhanced MET-stimulated FAK activation and synergistically induced the activation of the AKT/ERK-Cyclin D1 signaling pathway in a FAK kinase-dependent manner. In addition, FAK was required for CAT-induced Cyclin D1 expression in a kinase-independent fashion. Conclusion Fak is required for c-Met/β-catenin-driven hepatocarcinogenesis. Inhibition of FAK provides a potential strategy to treat HCC. PMID:25163657

  17. Design, synthesis, and biological evaluation of novel FAK scaffold inhibitors targeting the FAK-VEGFR3 protein-protein interaction.

    PubMed

    Gogate, Priyanka N; Ethirajan, Manivannan; Kurenova, Elena V; Magis, Andrew T; Pandey, Ravindra K; Cance, William G

    2014-06-10

    Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor 3 (VEGFR3) are tyrosine kinases, which function as key modulators of survival and metastasis signals in cancer cells. Previously, we reported that small molecule chlorpyramine hydrochloride (C4) specifically targets the interaction between FAK and VEGFR3 and exhibits anti-tumor efficacy. In this study, we designed and synthesized a series of 1 (C4) analogs on the basis of structure activity relationship and molecular modeling. The resulting new compounds were evaluated for their binding to the FAT domain of FAK and anti-cancer activity. Amongst all tested analogs, compound 29 augmented anti-proliferative activity in multiple cancer cell lines with stronger binding to the FAT domain of FAK and disrupted the FAK-VEGFR3 interaction. In conclusion, we hope that this work will contribute to further studies of more potent and selective FAK-VEGFR3 protein-protein interaction inhibitors.

  18. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer

    SciTech Connect

    Planas-Silva, Maricarmen D. . E-mail: mcplanas@psu.edu; Bruggeman, Richard D.; Grenko, Ronald T.; Stanley Smith, J.

    2006-03-03

    The non-receptor tyrosine kinases c-Src and focal adhesion kinase (Fak) mediate signal transduction pathways that regulate cell proliferation, survival, invasion, and metastasis. Here, we investigated whether c-Src and Fak are activated during progression of hormone-dependent breast cancer. Maximally active c-Src was overexpressed in a subset of tamoxifen-resistant variants and in metastases of recurrent hormone-treated breast cancer. Active Fak was also frequently observed in these tumors. We also show that estrogen receptor (ER) can bind to Fak and that estrogen can modulate Fak autophosphorylation supporting a cross-talk between these two pathways. Inhibition of c-Src activity blocked proliferation of all tamoxifen-resistant variants, suggesting that inhibitors of c-Src-Fak activity may delay or prevent progression and metastasis of ER-positive tumors. These studies also raise the possibility that fully active forms of c-Src and Fak in breast tumors may be biomarkers to predict tamoxifen resistance and/or risk of recurrence in ER-positive breast cancer.

  19. Antitumour effects of Yangzheng Xiaoji in human osteosarcoma: the pivotal role of focal adhesion kinase signalling.

    PubMed

    Jiang, Wen G; Ye, Lin; Ji, Ke; Ruge, Fiona; Wu, Yiling; Gao, Yong; Ji, Jiafu; Mason, Malcolm D

    2013-09-01

    The present study examined, in vitro and in vivo, the potential antitumour effects of Yangzheng Xiaoji (YZXJ), a traditional Chinese medical formula used in cancer treatment, on osteosarcoma, a tumour type recently found to be sensitive to YZXJ. The human osteosarcoma cell line MG63 was used in cell-matrix adhesion and cell growth assays. The same cell line was used in an in vivo tumour model by establishing subcutaneous osteosarcoma xenografts. Oral and intraperitoneal routes were used to deliver the YZXJ extract. The effect of YZXJ on the activation of focal adhesion kinase (FAK) and paxillin was evaluated by immunofluorescence methods. It was found that YZXJ exhibited a significant inhibitory effect on cell-matrix adhesion as demonstrated by a cell-based assay and electric cell-substrate impedance sensing (ECIS) analysis. The effect was observed together with a reduction in phospho-FAK and phospho-paxillin in the cells when treated with YZXJ. In the in vivo tumour model, YZXJ was found to significantly inhibit the growth of osteosarcoma with a sustained effect observed when YZXJ was delivered intraperitoneally. YZXJ sensitized cells to the effect of FAK inhibitor in vitro and in vivo. It is concluded that Yangzheng Xiaoji plays a significant role in cell-matrix adhesion and tumour growth, likely by inhibiting the activation of the FAK pathway. The therapeutic role of Yangzheng Xiaoji in osteosarcoma warrants further investigation. PMID:23828123

  20. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  1. Identification of methyl violet 2B as a novel blocker of focal adhesion kinase signaling pathway in cancer cells

    SciTech Connect

    Kim, Hwan; Kim, Nam Doo; Lee, Jiyeon; Han, Gyoonhee; Sim, Taebo

    2013-07-26

    Highlights: •FAK signaling cascade in cancer cells is profoundly inhibited by methyl violet 2B. •Methyl violet 2B identified by virtual screening is a novel allosteric FAK inhibitor. •Methyl violet 2B possesses extremely high kinase selectivity. •Methyl violet 2B suppresses strongly the proliferation of cancer cells. •Methyl violet 2B inhibits focal adhesion, invasion and migration of cancer cells. -- Abstract: The focal adhesion kinase (FAK) signaling cascade in cancer cells was profoundly inhibited by methyl violet 2B identified with the structure-based virtual screening. Methyl violet 2B was shown to be a non-competitive inhibitor of full-length FAK enzyme vs. ATP. It turned out that methyl violet 2B possesses extremely high kinase selectivity in biochemical kinase profiling using a large panel of kinases. Anti-proliferative activity measurement against several different cancer cells and Western blot analysis showed that this substance is capable of suppressing significantly the proliferation of cancer cells and is able to strongly block FAK/AKT/MAPK signaling pathways in a dose dependent manner at low nanomolar concentration. Especially, phosphorylation of Tyr925-FAK that is required for full activation of FAK was nearly completely suppressed even with 1 nM of methyl violet 2B in A375P cancer cells. To the best of our knowledge, it has never been reported that methyl violet possesses anti-cancer effects. Moreover, methyl violet 2B significantly inhibited FER kinase phosphorylation that activates FAK in cell. In addition, methyl violet 2B was found to induce cell apoptosis and to exhibit strong inhibitory effects on the focal adhesion, invasion, and migration of A375P cancer cells at low nanomolar concentrations. Taken together, these results show that methyl violet 2B is a novel, potent and selective blocker of FAK signaling cascade, which displays strong anti-proliferative activities against a variety of human cancer cells and suppresses adhesion

  2. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment.

  3. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment. PMID:20354780

  4. FAK Forms a Complex with MEF2 to Couple Biomechanical Signaling to Transcription in Cardiomyocytes.

    PubMed

    Cardoso, Alisson Campos; Pereira, Ana Helena Macedo; Ambrosio, Andre Luis Berteli; Consonni, Silvio Roberto; Rocha de Oliveira, Renata; Bajgelman, Marcio Chain; Dias, Sandra Martha Gomes; Franchini, Kleber Gomes

    2016-08-01

    Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease. PMID:27427476

  5. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.

    PubMed

    Wangpu, Xiongzhi; Lu, Jiaoyang; Xi, Ruxing; Yue, Fei; Sahni, Sumit; Park, Kyung Chan; Menezes, Sharleen; Huang, Michael L H; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2016-05-01

    Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway. PMID:26895766

  6. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D.

    PubMed Central

    Ouwens, D M; Mikkers, H M; van der Zon, G C; Stein-Gerlach, M; Ullrich, A; Maassen, J A

    1996-01-01

    Insulin stimulation of fibroblasts rapidly induces the tyrosine dephosphorylation of proteins of 68 kDa and 125 kDa, in addition to the tyrosine phosphorylation of the insulin receptor beta-chain, insulin receptor substrates 1 and 2, and Shc. Using specific antibodies, the 68 kDa and 125 kDa proteins were identified as paxillin and focal adhesion kinase (pp125FAK) respectively. We have examined whether dephosphorylation of paxillin and pp125FAK requires interaction of the cells with the extracellular matrix. For this, cells were grown on poly(L-lysine) plates, and the tyrosine phosphorylation of pp125FAK and paxillin was increased by addition of lysophosphatidic acid. Under these conditions, insulin still induced the complete dephosphorylation of pp125FAK and paxillin, indicating that this process can occur independently of the interaction of integrins with extracellular matrix proteins. We also studied whether dephosphorylation of pp125FAK and paxillin results from the action of a phosphotyrosine phosphatase. It was found that phenylarsine oxide, a phosphotyrosine phosphatase inhibitor, prevented the insulin-induced dephosphorylation of pp125FAK and paxillin. Furthermore, this insulin-induced dephosphorylation was also impaired in cells expressing a dominant-negative mutant of phosphotyrosine phosphatase 1D (PTP 1D). Thus we have identified paxillin as a target for dephosphorylation by insulin. In addition, we have obtained evidence that the insulin-mediated dephosphorylation of paxillin and pp125FAK requires active PTP 1D. PMID:8809054

  7. Targeting FAK in human cancer: from finding to first clinical trials.

    PubMed

    Golubovskaya, Vita M

    2014-01-01

    It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research. PMID:24389213

  8. Endothelial FAK as a therapeutic target in disease.

    PubMed

    Infusino, Giovanni A; Jacobson, Jeffrey R

    2012-01-01

    Focal adhesions (FA) are important mediators of endothelial cytoskeletal interactions with the extracellular matrix (ECM) via transmembrane receptors, integrins and integrin-associated intracellular proteins. This communication is essential for a variety of cell processes including EC barrier regulation and is mediated by the non-receptor protein tyrosine kinase, focal adhesion kinase (FAK). As FA mediate the basic response of EC to a variety of stimuli and FAK is essential to these responses, the idea of targeting EC FAK as a therapeutic strategy for an assortment of diseases is highly promising. In particular, inhibition of FAK could prove beneficial in a variety of cancers via effects on EC proliferation and angiogenesis, in acute lung injury (ALI) via the attenuation of lung vascular permeability, and in rheumatoid arthritis via reductions in synovial angiogenesis. In addition, there are potential therapeutic benefits of FAK inhibition in cardiovascular disease and diabetic nephropathy as well. Several drugs that target EC FAK are now in existence and include agents currently under investigation in preclinical models as well as drugs that are readily available such as the sphingolipid analog FTY720 and statins. As the role of EC FAK in the pathogenesis of a variety of diseases continues to be explored and new insights are revealed, drug targeting of FAK will continue to be an important area of investigation and may ultimately lead to highly novel and effective strategies to treat these diseases.

  9. Focal Adhesion Kinase Directly Interacts with TSC2 Through Its FAT Domain and Regulates Cell Proliferation in Cashmere Goat Fetal Fibroblasts.

    PubMed

    Zheng, Xu; Bao, Wenlei; Yang, Jiaofu; Zhang, Tao; Sun, Dongsheng; Liang, Yan; Li, Shuyu; Wang, Yanfeng; Feng, Xue; Hao, Huifang; Wang, Zhigang

    2016-09-01

    Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor tyrosine kinase that senses a variety of extracellular signals, such as growth factors and integrins, to control the process of cell proliferation and metabolism. We cloned three goat FAK transcript variants (KM655805, KM658268, and KM658269) that encode 1052, 1006, and 962 amino-acid residue proteins. Bioinformatics analysis indicated that the putative FAK protein contains an FERM domain, a PTK domain, two Proline-rich regions, and a focal adhesion-targeting (FAT) domain. All the three transcript variants of FAK were detected in seven different goat tissues, and variant 1 had the most accumulation whereas variant 2 and variant 3 had lower accumulation. Treatment of goat fetal fibroblasts (GFbs) with a specific FAK inhibitor, TAE226, inhibited cell proliferation (p < 0.05) and induced damage to the cell morphology in a dose- and time-dependent manner. Further research demonstrated that FAK directly interacted with TSC2 (Tuberous sclerosis 2) tuberin domain through its C-terminus, which contains the complete FAT domain. In conclusion, our results indicated that FAK may be widely expressed in Cashmere goat tissues and its products participate in the mammalian target of rapamycin signaling pathway and cell proliferation through a direct interaction with TSC2 in GFBs. PMID:27380318

  10. Fenretinide Perturbs Focal Adhesion Kinase in Premalignant and Malignant Human Oral Keratinocytes. Fenretinide’s chemopreventive mechanisms include ECM interactions

    PubMed Central

    Han, Byungdo B.; Li, Suyang; Tong, Meng; Holpuch, Andrew S.; Spinney, Richard; Wang, Daren; Border, Michael B.; Liu, Zhongfa; Sarode, Sachin; Pei, Ping; Schwendeman, Steven; Mallery, Susan R.

    2015-01-01

    The membrane-associated protein, focal adhesion kinase (FAK), modulates cell-extracellular matrix interactions and also conveys pro-survival and proliferative signals. Notably, increased intraepithelial FAK levels accompany transformation of premalignant oral intraepithelial neoplasia (OIN) to oral squamous cell carcinoma (OSCC). OIN chemoprevention is a patient-centric, optimal strategy to prevent OSCC’s co-morbidities and mortality. The cancer chemopreventive and synthetic vitamin A derivative, fenretinide, has demonstrated protein-binding capacities e.g. mTOR and retinol binding protein interactions. These studies employed a continuum of human oral keratinocytes (normal-HPV E6/E7-transduced-OSCC) to assess potential fenretinide-FAK drug protein interactions and functional consequences on cellular growth regulation and motility. Molecular modeling studies demonstrated fenretinide has ~200-fold greater binding affinity relative to the natural ligand (ATP) at FAK’s kinase domain. Fenretinide also shows intermediate binding at FAK’s FERM domain and interacts at the ATP-binding site of the closest FAK analogue, Pyk2. Fenretinide significantly suppressed proliferation via induction of apoptosis and G2/M cell cycle blockade. Fenretinide-treated cells also demonstrated F-actin disruption, significant inhibition of both directed migration and invasion of a synthetic basement membrane, and decreased phosphorylation of growth-promoting kinases. A commercially available FAK inhibitor did not suppress cell invasion. Notably, while FAK’s FERM domain directs cell invasion, FAK inhibitors target the kinase domain. In addition, FAK-specific siRNA treated cells showed an intermediate cell migration capacity; data which suggest co-contribution of the established migrating-enhancing Pyk2. Our data imply that fenretinide is uniquely capable of disrupting FAK’s and Pyk2’s pro-survival and mobility-enhancing effects and further extend fenretinide’s chemopreventive

  11. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    SciTech Connect

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H.

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  12. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells.

    PubMed

    Webber, Philip J; Park, Chanhee; Qui, Min; Ramalingam, Suresh S; Khuri, Fadlo R; Fu, Haian; Du, Yuhong

    2015-01-01

    Discovery of effective drug combinations is a promising strategy to improve patient survival. This study explores the impact of heat shock protein 90 (Hsp90) inhibition in combination with focal adhesion kinase (FAK) inhibitor on the growth of non-small cell lung cancer cells (NSCLC cells). Our data show that 17-N-Allylamino-17-demethoxygeldanamycin (17-AAG), a well-studied Hsp90 inhibitor, synergized with FAK inhibitor, PF-573228, on the growth inhibition of NSCLC cells. This combination effect was confirmed using additional chemically distinct Hsp90 inhibitor, STA-9090, which is currently undergoing phase 3 clinical evaluation. Co-treatment of NSCLC cells with Hsp90 and FAK inhibitors significantly enhanced the inhibition on long-term colony formation compared to that with single agent. Inhibition of FAK exacerbated the G2 cell cycle arrest and annexin-V apoptotic staining induced by 17-AAG. Further mechanistic studies revealed that the combination of Hsp90 and FAK inhibitors reduced the activity of canonical proliferative and survival Akt-mTOR signaling, and increased pro-apoptotic caspase activation. Interestingly, FAK inhibition alone induced feedback activation of pro-survival Erk signaling, which was abrogated by co-treatment with Hsp90 inhibitors. Both Hsp90 and FAK inhibitors are undergoing clinical evaluation. Our studies suggest the tandem of Hsp90 and FAK inhibitors may provide an effective treatment option for NSCLC patients.

  13. The Chlamydia Effector TarP Mimics the Mammalian Leucine-Aspartic Acid Motif of Paxillin to Subvert the Focal Adhesion Kinase during Invasion*

    PubMed Central

    Thwaites, Tristan; Nogueira, Ana T.; Campeotto, Ivan; Silva, Ana P.; Grieshaber, Scott S.; Carabeo, Rey A.

    2014-01-01

    Host cell signal transduction pathways are often targets of bacterial pathogens, especially during the process of invasion when robust actin remodeling is required. We demonstrate that the host cell focal adhesion kinase (FAK) was necessary for the invasion by the obligate intracellular pathogen Chlamydia caviae. Bacterial adhesion triggered the transient recruitment of FAK to the plasma membrane to mediate a Cdc42- and Arp2/3-dependent actin assembly. FAK recruitment was via binding to a domain within the virulence factor TarP that mimicked the LD2 motif of the FAK binding partner paxillin. Importantly, bacterial two-hybrid and quantitative imaging assays revealed a similar level of interaction between paxillin-LD2 and TarP-LD. The conserved leucine residues within the L(D/E)XLLXXL motif were essential to the recruitment of FAK, Cdc42, p34Arc, and actin to the plasma membrane. In the absence of FAK, TarP-LD-mediated F-actin assembly was reduced, highlighting the functional relevance of this interaction. Together, the data indicate that a prokaryotic version of the paxillin LD2 domain targets the FAK signaling pathway, with TarP representing the first example of an LD-containing Type III virulence effector. PMID:25193659

  14. Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes.

    PubMed

    Wei, Hongguang; Vander Heide, Richard S

    2008-08-01

    Heat stress (HS)-induced cardioprotection is associated with increased paxillin localization to the membrane fraction of neonatal rat ventricular myocytes (NRVM). The purpose of this study was 1) to examine the subcellular signaling pathways activated by HS; 2) to determine whether myocardial stress organizes and activates an integrated survival pathway; and 3) to investigate potential downstream cytoprotective proteins activated by HS. After HS, NRVM were subjected to chemical inhibitors (CI) designed to simulate ischemia by inhibiting both glycolysis and mitochondrial respiration. Protein kinase B (AKT) expression (wild type) was increased selectively with an adenoviral vector. Cell signaling was analyzed with Western blot analysis, while oncosis/apoptosis was assayed by measuring Trypan blue exclusion and/or terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. HS increased phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 but did not adversely affect the viability of NRVM before CI. HS increased association between FAK and phosphatidylinositol 3-kinase as well as causing a significant increase in AKT activity. Increased expression of wild-type AKT protected myocytes from both oncotic and apoptotic cell death. Increased expression of a FAK inhibitor, FRNK, reduced AKT phosphorylation in response to HS both at time 0 and after 10 min of CI compared with myocytes expressing empty virus. We conclude that myocardial stress activates cytoskeleton-based signaling pathways that are associated with protection from lethal cell injury.

  15. FAK signaling in human cancer as a target for therapeutics.

    PubMed

    Lee, Brian Y; Timpson, Paul; Horvath, Lisa G; Daly, Roger J

    2015-02-01

    Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.

  16. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.

    PubMed

    Bellance, Catherine; Khan, Junaid A; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-05-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl-amino)-phenyl-17β-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.

  17. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes

    PubMed Central

    Bellance, Catherine; Khan, Junaid A.; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-01-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(–) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl­amino)­phenyl-17β-hydroxy-17-(1-propynyl)­estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes. PMID:23485561

  18. Somatic mutational analysis of FAK in breast cancer: A novel gain-of-function mutation due to deletion of exon 33

    SciTech Connect

    Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling; Chen, Chang-Qiang; Gu, Zhi-Dong; Ni, Pei-Hua; Zheng, Xin-Min; Fan, Qi-Shi

    2014-01-10

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introduced into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.

  19. FAK competes for Src to promote migration against invasion in melanoma cells

    PubMed Central

    Kolli-Bouhafs, K; Sick, E; Noulet, F; Gies, J-P; De Mey, J; Rondé, P

    2014-01-01

    Melanoma is one of the most deadly cancers because of its high propensity to metastasis, a process that requires migration and invasion of tumor cells driven by the regulated formation of adhesives structures like focal adhesions (FAs) and invasive structures like invadopodia. FAK, the major kinase of FAs, has been implicated in many cellular processes, including migration and invasion. In this study, we investigated the role of FAK in the regulation of invasion. We report that suppression of FAK in B16F10 melanoma cells led to increased invadopodia formation and invasion through Matrigel, but impaired migration. These effects are rescued by FAK WT but not by FAKY397F reexpression. Invadopodia formation requires local Src activation downstream of FAK and in a FAK phosphorylation-dependant manner. FAK deletion correlates with increased phosphorylation of Tks-5 (tyrosine kinase substrate with five SH3 domain) and reactive oxygen species production. In conclusion, our data show that FAK is able to mediate opposite effects on cell migration and invasion. Accordingly, beneficial effects of FAK inhibition are context dependent and may depend on the cell response to environmental cues and/or on the primary or secondary changes that melanoma experienced through the invasion cycle. PMID:25118939

  20. FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy

    PubMed Central

    Shang, Na; Arteaga, Maribel; Chitsike, Lennox; Wang, Fang; Viswakarma, Navin; Breslin, Peter; Qiu, Wei

    2016-01-01

    Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx. Conclusion: Our data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation. PMID:27677358

  1. Conditional Knockout of Myocyte Focal Adhesion Kinase Abrogates Ischemic Preconditioning in Adult Murine Hearts

    PubMed Central

    Perricone, Adam J.; Bivona, Benjamin J.; Jackson, Fannie R.; Vander Heide, Richard S.

    2013-01-01

    Background Our laboratory has previously demonstrated the importance of a cytoskeletal‐based survival signaling pathway using in vitro models of ischemia/reperfusion (IR). However, the importance of this pathway in mediating stress‐elicited survival signaling in vivo is unknown. Methods and Results The essential cytoskeletal signaling pathway member focal adhesion kinase (FAK) was selectively deleted in adult cardiac myocytes using a tamoxifen‐inducible Cre‐Lox system (α‐MHC‐MerCreMer). Polymerase chain reaction (PCR) and Western blot were performed to confirm FAK knockout (KO). All mice were subjected to a 40‐minute coronary occlusion followed by 24 hours of reperfusion. Ischemic preconditioning (IP) was performed using a standard protocol. Control groups included wild‐type (WT) and tamoxifen‐treated α‐MHC‐MerCreMer+/−/FAKWT/WT (experimental control) mice. Infarct size was expressed as a percentage of the risk region. In WT mice IP significantly enhanced the expression of activated/phosphorylated FAK by 36.3% compared to WT mice subjected to a sham experimental protocol (P≤0.05; n=6 hearts [sham], n=4 hearts [IP]). IP significantly reduced infarct size in both WT and experimental control mice (43.7% versus 19.8%; P≤0.001; 44.7% versus 17.5%; P≤0.001, respectively). No difference in infarct size was observed between preconditioned FAK KO and nonpreconditioned controls (37.1% versus 43.7% versus 44.7%; FAK KO versus WT versus experimental control; P=NS). IP elicited a 67.2%/88.8% increase in activated phosphatidylinositol‐3‐kinase (PI3K) p85/activated Akt expression in WT mice, but failed to enhance the expression of either in preconditioned FAK KO mice. Conclusions Our results indicate that FAK is an essential mediator of IP‐elicited cardioprotection and provide further support for the hypothesis that cytoskeletal‐based signaling is an important component of stress‐elicited survival signaling. PMID:24080910

  2. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    PubMed Central

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. PMID:27041993

  3. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction.

    PubMed

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin-focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.

  4. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    PubMed

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear.

  5. Inhibition of osteopontin reduce the cardiac myofibrosis in dilated cardiomyopathy via focal adhesion kinase mediated signaling pathway

    PubMed Central

    Zhao, Hui; Wang, Wei; Zhang, Jie; Liang, Tuo; Fan, Guang-Pu; Wang, Zhi-Wei; Zhang, Pei-De; Wang, Xu; Zhang, Jing

    2016-01-01

    Background: Osteopontin (OPN) is a pleiotropic cytokine, which has been shown to a close relationship with cardiac fibrosis. Overexpression of OPN in cardiomyocytes induces dilated cardiomyopathy (DCM). This research is to study whether inhibition of OPN could reduce myocardial remodelling in DCM, and if this process is focal adhesion kinase (FAK) dependent, which is recently found an important signal molecule in fibrosis. Method: Eight-week-old cTnTR141W transgenic mouse of DCM were injected with OPN-shRNA in left ventricular free wall, which could inhibit the OPN expression. Six weeks later, echocardiographic examinations were performed to test left ventricle function and heart tissues were harvested to test the quality of FAK by western blot and severity of fibrosis by masson staining. Human cardiac fibroblast was administrated with OPN, and FAK inhibition by PP2 was treated 2 h before OPN was given. Expression of α-SMA and collagen-I were tested by western blot and real-time PCR assay. Results: OPN-shRNA group has a relatively high ejection fraction (EF), fractional shortening (FS), LV free wall thickness and a less sever cardiac fibrosis. In vitro, OPN could increase collagen-I and α-SMA expression, and this process can be inhibited by FAK inhibitor. Conclusion: Inhibition of OPN could reduce the LV remodeling and dysfunction in DCM mice, which may attribute to the suppression of collagen-I secretion in fibroblast through a FAK/Akt dependent pathway. PMID:27725847

  6. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways

    SciTech Connect

    Pysher, Michele D. Chen, Qin M.; Vaillancourt, Richard R.

    2008-09-01

    Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As{sup 3+}) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As{sup 3+} exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.

  7. Exploring the interaction between human focal adhesion kinase and inhibitors: a molecular dynamic simulation and free energy calculations.

    PubMed

    Zhan, Jiu-Yu; Zhang, Ji-Long; Wang, Yan; Li, Ye; Zhang, Hong-Xing; Zheng, Qing-Chuan

    2016-11-01

    Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.

  8. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase

    PubMed Central

    Choi, Insup; Kim, Beomsue; Byun, Ji-Won; Baik, Sung Hoon; Huh, Yun Hyun; Kim, Jong-Hyeon; Mook-Jung, Inhee; Song, Woo Keun; Shin, Joo-Ho; Seo, Hyemyung; Suh, Young Ho; Jou, Ilo; Park, Sang Myun; Kang, Ho Chul; Joe, Eun-Hye

    2015-01-01

    In response to brain injury, microglia rapidly extend processes that isolate lesion sites and protect the brain from further injury. Here we report that microglia carrying a pathogenic mutation in the Parkinson's disease (PD)-associated gene, G2019S-LRRK2 (GS-Tg microglia), show retarded ADP-induced motility and delayed isolation of injury, compared with non-Tg microglia. Conversely, LRRK2 knockdown microglia are highly motile compared with control cells. In our functional assays, LRRK2 binds to focal adhesion kinase (FAK) and phosphorylates its Thr–X–Arg/Lys (TXR/K) motif(s), eventually attenuating FAK activity marked by decreased pY397 phosphorylation (pY397). GS-LRRK2 decreases the levels of pY397 in the brain, microglia and HEK cells. In addition, treatment with an inhibitor of LRRK2 kinase restores pY397 levels, decreased pTXR levels and rescued motility of GS-Tg microglia. These results collectively suggest that G2019S mutation of LRRK2 may contribute to the development of PD by inhibiting microglial response to brain injury. PMID:26365310

  9. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction

    PubMed Central

    Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael

    2015-01-01

    Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072

  10. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of s

  11. Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signaling.

    PubMed

    Walker, Heather A; Whitelock, John M; Garl, Pamela J; Nemenoff, Raphael A; Stenmark, Kurt R; Weiser-Evans, Mary C M

    2003-05-01

    We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.

  12. CD99 inhibits CD98-mediated β1 integrin signaling through SHP2-mediated FAK dephosphorylation.

    PubMed

    Lee, Kyoung Jin; Yoo, Yeon Ho; Kim, Min Seo; Yadav, Birendra Kumar; Kim, Yuri; Lim, Dongyoung; Hwangbo, Cheol; Moon, Ki Won; Kim, Daejoong; Jeoung, Dooil; Lee, Hansoo; Lee, Jeong-Hyung; Hahn, Jang-Hee

    2015-08-15

    The human CD99 protein is a 32-kDa type I transmembrane glycoprotein, while CD98 is a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein. It has been previously shown that CD99 and CD98 oppositely regulate β1 integrin signaling, though the mechanisms by which this regulation occurs are not known. Our results revealed that antibody-mediated crosslinking of CD98 induced FAK phosphorylation at Y397 and facilitated the formation of the protein kinase Cα (PKCα)-syntenin-focal adhesion kinase (FAK), focal adhesions (FAs), and IPP-Akt1-syntenin complex, which mediates β1 integrin signaling. In contrast, crosslinking of CD99 disrupted the formation of the PKCα-syntenin-FAK complex as well as FA via FAK dephosphorylation. The CD99-induced dephosphorylation of FAK was apparently mediated by the recruitment of Src homology region 2 domain-containing phosphatase-2 (SHP2) to the plasma membrane and subsequent activation of its phosphatase activity. Further consequences of the activation of SHP2 included the disruption of FAK-talin and talin-β1 integrin interactions and attenuation in the formation of the IPP-Akt1-syntenin complex at the plasma membrane, which resulted in reduced cell-ECM adhesion. This report uncovers the molecular mechanisms underlying the inverse regulation of β1 integrin signaling by CD99 and CD98 and may provide a novel therapeutic approach to treat inflammation and cancer.

  13. PYK2 is an adhesion kinase in macrophages, localized in podosomes and activated by beta(2)-integrin ligation.

    PubMed

    Duong, L T; Rodan, G A

    2000-11-01

    Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration. PMID:11056520

  14. β Integrins Mediate FAK Y397 Autophosphorylation of Resistance Arteries during Eutrophic Inward Remodeling in Hypertension

    PubMed Central

    Heerkens, Egidius H.J; Quinn, Lisa; Withers, Sarah B; Heagerty, Anthony M

    2014-01-01

    Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, this process was completed and accompanied by a significant increase in FAK phosphorylation compared with normotensive control animals. Phosphorylated (p)FAK Y397 was coimmunoprecipitated with both β1- and β3-integrin-specific antibodies. In contrast, only a fraction (<10-fold) was coprecipitated with the β3 integrin subunit in control vessels. Inhibition of eutrophic remodeling by cRGDfV treatment of TGR(mRen2)27 rats resulted in the development of smooth-muscle-cell hypertrophy and a significant further enhancement of FAK Y397 phosphorylation, but this time with exclusive coassociation of pFAK Y397 with integrin β1. We established that phosphorylation of FAK Y397 with association with β1 and β3 integrins occurs with pressure-induced eutrophic remodeling. Inhibiting this process leads to an adaptive hypertrophic vascular response induced by a distinct β1-mediated FAK phosphorylation pattern. PMID:25300309

  15. Knockdown of FAK inhibits the invasion and metastasis of Tca‑8113 cells in vitro.

    PubMed

    Xiao, Wenbo; Jiang, Mingxin; Li, Hongdan; Li, Chunshan; Su, Rongjian; Huang, Keqiang

    2013-08-01

    Tongue cancer originating on the surface of the tongue is most commonly squamous cell carcinoma, which has a higher invasive ability and a lower survival rate compared with other forms of tongue cancer. Notably, tongue squamous cell carcinomas metastasize into lymph nodes at early stages. Focal adhesion kinase (FAK) is an important protein tyrosine kinase involved in invasion and metastasis of cancer cells. In the present study, the role of FAK in the invasion and metastasis of tongue cancer was evaluated and the underlying mechanisms involved in this process were explored. FAK knockdown was performed using shRNA in the tongue cancer cell line, Tca‑8113, and the invasion and metastasis potentials were analyzed using wound healing and transwell assays, respectively. Cytoskeletal arrangement was detected by fluorescence using TRITC‑conjugated phalloidin staining. The activity of matrix metalloproteinase (MMP)‑2 and ‑9 was examined by gelatin zymography. Paxillin distribution was observed by immunofluorescence. The levels of E‑cadherin, N‑cadherin, MMP‑2 and ‑9, and c‑Jun N‑terminal kinase (JNK) was detected by western blot analysis. Wound healing and transwell assays demonstrated that FAK knockdown inhibited the invasion and metastasis of Tca‑8113 cells. Further analysis revealed that FAK knockdown caused the rearrangement of the cytoskeleton and decreased the activity of MMP‑2 and ‑9. Immunofluorescence analysis revealed that downregulation of FAK induced the relocalization of paxillin. Paxillin accumulated as dots and patches at the cell membrane in control cells. By contrast, in FAK knockdown cells, paxillin was distributed homogeneously in the cytoplasm. Western blot analysis revealed that FAK knockdown inhibited epithelial-mesenchymal transition (EMT) and decreased levels of MMP‑2 and ‑9, and p‑JNK. Knockdown of FAK inhibits the invasion and metastasis of Tca‑8113 by decreasing MMP‑2 and ‑9 activities and led to the

  16. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity

    PubMed Central

    1994-01-01

    The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is

  17. Modulation of cell spreading and migration by pp125FAK phosphorylation.

    PubMed Central

    Sankar, S.; Mahooti-Brooks, N.; Hu, G.; Madri, J. A.

    1995-01-01

    We provide evidence for both matrix-dependent and pp60v-src tyrosine kinase-dependent modulation of cell migration via tyrosine phosphorylation of pp125FAK, a focal adhesion kinase, thought to be involved in integrin-mediated signaling. Enhanced pp125FAK tyrosine phosphorylation and cell spreading was associated with decreased migration. Cells plated on type I collagen were less spread and exhibited lower levels of pp125FAK tyrosine phosphorylation and faster migration rates compared with cells on fibronectin that were well spread, which exhibited enhanced levels of pp125FAK tyrosine phosphorylation and slower migration rates. Inside-out signaling via expression of pp60v-src or its kinase-negative mutant caused a decrease in cell migration by changing the extent of pp125FAK tyrosine phosphorylation to above or below the levels obtained with control cells plated on fibronectin. Hence, pp125FAK tyrosine phosphorylation appears to play a role in the signaling cascade pathway involved in regulation of extracellular matrix-modulated, integrin-mediated cell migration. Images Figure 1 Figure 2 Figure 3 PMID:7677174

  18. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    PubMed

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.

  19. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase.

    PubMed

    Bateman, Nicholas W; Sun, Mai; Hood, Brian L; Flint, Melanie S; Conrads, Thomas P

    2010-10-01

    Breast cancer is a highly heterogeneous disease, an observation that underscores the importance of elucidating conserved molecular characteristics, such as gene and protein expression, across breast cancer cell types toward providing a greater understanding of context-specific features central to this disease. Motivated by the goal of defining central biological themes across breast cancer cell subtypes, we conducted a global proteomic analysis of three breast cancer cell lines, MCF7, SK-BR-3, and MDA-MB-231, and compared these to a model of nontransformed mammary cells (MCF10A). Our results demonstrate modulation of proteins localized to the extracellular matrix, plasma membrane, and nucleus, along with coordinate decreases in proteins that regulate "cell spreading," a cellular event previously shown to be dysregulated in transformed cells. Protein interaction network analysis revealed the clustering of focal adhesion kinase (FAK), a fundamental regulator of cell spreading, with several proteins identified as mutually, differentially abundant across breast cancer cell lines that impact expression and activity of FAK, such as neprilysin and keratin 19. These analyses provide insights into conservation of protein expression across breast cancer cell subtypes, a subset of which warrants further investigation for their roles in the regulation of cell spreading and FAK in breast cancer.

  20. FAK inhibition disrupts a β5 integrin signaling axis controlling anchorage-independent ovarian carcinoma growth

    PubMed Central

    Tancioni, Isabelle; Uryu, Sean; Sulzmaier, Florian J.; Shah, Nina R.; Lawson, Christine; Miller, Nichol L.G.; Jean, Christine; Chen, Xiao Lei; Ward, Kristy K.; Schlaepfer, David D.

    2014-01-01

    Ovarian cancer ascites fluid contains matrix proteins that can impact tumor growth via integrin receptor binding. In human ovarian tumor tissue arrays, we find that activation of the cytoplasmic focal adhesion (FAK) tyrosine kinase parallels increased tumor stage, β5 integrin, and osteopontin (OPN) matrix staining. Elevated OPN, β5 integrin, and FAK mRNA levels are associated with decreased serous ovarian cancer patient survival. FAK remains active within ovarian cancer cells grown as spheroids, and anchorage-independent growth analyses of seven ovarian carcinoma cell lines identified sensitive (HEY, OVCAR8) and resistant (SKOV3-IP, OVCAR10) cells to 0.1 μM FAK inhibitor (VS-4718, formerly PND-1186) treatment. VS-4718 promoted HEY and OVCAR8 G0/G1 cell cycle arrest followed by cell death whereas growth of SKOV3-IP and OVCAR10 cells were resistant to 1.0 μM VS-4718. In HEY cells, genetic or pharmacological FAK inhibition prevented tumor growth in mice with corresponding reductions in β5 integrin and OPN expression. β5 knockdown reduced HEY cell growth in soft agar, tumor growth in mice, and both FAK Y397 phosphorylation and OPN expression in spheroids. FAK inhibitor resistant (SKOV3-IP, OVCAR10) cells exhibited anchorage-independent Akt S473 phosphorylation and expression of membrane-targeted and active Akt in sensitive cells (HEY, OVCAR8) increased growth but did not create a FAK inhibitor resistant phenotype. These results link OPN, β5 integrin, and FAK in promoting ovarian tumor progression.β5 integrin expression may serve as a biomarker for serous ovarian carcinoma cells that possess active FAK signaling. PMID:24899686

  1. MGr1-Ag/37LRP induces cell adhesion-mediated drug resistance through FAK/PI3K and MAPK pathway in gastric cancer

    PubMed Central

    Sun, Li; Liu, Lili; Liu, Xiangqiang; Wang, Yafang; Li, Mengbin; Yao, Liping; Yang, Jianjun; Ji, Genlin; Guo, Changcun; Pan, Yanglin; Liang, Shuhui; Wang, Biaoluo; Ding, Jie; Zhang, Hongwei; Shi, Yongquan

    2014-01-01

    It is well known that tumor microenvironment plays a vital role in drug resistance and cell adhesion-mediated drug resistance (CAM-DR), a form of de novo drug resistance. In our previous study, we reported that MGr1-Ag/37LRP ligation-induced adhesion participated in protecting gastric cancer cells from a number of apoptotic stimuli caused by chemotherapeutic drugs. Further study suggested that MGr1-Ag could prompt CAM-DR through interaction with laminin. However, the MGr1-Ag-initiated intracellular signal transduction pathway is still unknown. In this study, our experimental results showed that gastric cancer MDR cell lines mediated CAM-DR through upregulation of Bcl-2 by MGr1-Ag interaction with laminin. Further study found that, as a receptor of ECM components, MGr1-Ag/37LRP may activate the downstream signal pathway PI3K/AKT and MAPK/ERK through interaction with phosphorylated FAK. Moreover, the sensitivity to chemotherapeutic drugs could be significantly enhanced by inhibiting MGr1-Ag/37LRP expression through mAbs, siRNA, and antisense oligonucleotide. According to these results, we concluded that the FAK/PI3K and MAPK signal pathway plays an important role in MGr1-Ag-mediated CAM-DR in gastric cancer. MGr1-Ag/37LRP might be a potential effective reversal target to MDR in gastric cancer. PMID:24703465

  2. Changes in focal adhesion kinase expression in rats with collagen-induced arthritis and efficacy of intervention with disease modifying anti-rheumatic drugs alone or in combination.

    PubMed

    Gao, Hui-Ying; Luo, Jing; Li, Xiao-Feng; Lv, Qian; Wen, Hong-Yan; Song, Qing-Zhen; Zhao, Wen-Peng; Zhao, Xiang-Cong; Zhang, Ting-Ting; Zhang, Si-Yu; Zhi, Jian-Ming

    2015-01-01

    Focal adhesion kinase (FAK) is known to promote the proliferation, migration and survival of synovial cells and plays an important role in the occurrence, development and pathological process of rheumatoid arthritis (RA). The aim of the present study was to observe FAK changes in synovial cells of rats with collagen-induced arthritis (CIA) and after intervention with disease modifying anti-rheumatic drugs (DMARDs) alone or in combination in a CIA female SD rat model induced by collagen type II. The rats were randomized to 8 groups: normal control group, CIA model control group, methotrexate (MTX, 0.9 mg/kg/w) group, cyclophosphamide (CTX, 24 mg/kg/3 w) group, leflunomide (LEF, 1.2 mg/kg/d) group, MTX + CTX group, LEF + CTX group, and MTX + LEF group. They were intervened with DMARDs alone or in combination for six weeks. The experiment lasted a total of 9 weeks in vivo. Articular inflammation was measured during the process of drug intervention in terms of the degree of swelling degree in the right hind foot using a venire caliper. All animals were sacrificed by breaking the neck after 9 weeks. Then, the ankle was fixed, decalcified, embedded, and HE stained, and prepared into slices to observe pathological changes in the synovial tissue. FAK expression in synovial cells was assayed by immunohistochemistry and the mean optical density (OD) value was measured using the HPIAS-2000 image analysis system. It was found that FAK expression was negative in normal control group, positive in CIA model control group, and decreased in the three DMARD combination treatment groups significantly as compared with that in the three single-drug groups (P < 0.05). FAK expression in LEF + CTX group or MTX + CTX group decreased more significantly than that in MTX + LEF group (P < 0.05), and there was no statistically significant difference between LEF + CTX and MTX + CTX groups. The arthritis index and pathological change in the synovial tissue in LEF + CTX group or MTX + CTX group

  3. An EGFR/Src-dependent β4 integrin/FAK complex contributes to malignancy of breast cancer

    PubMed Central

    Tai, Yu-Ling; Chu, Pei-Yu; Lai, I-Rue; Wang, Ming-Yang; Tseng, Hui-Yuan; Guan, Jun-Lin; Liou, Jun-Yang; Shen, Tang-Long

    2015-01-01

    β4 integrin and focal adhesion kinase (FAK) are often associated with a poor prognosis in cancer patients, and their signaling events have recently been linked to malignant outcomes. Here, we demonstrate, for the first time, physical and functional interactions between β4 integrin and FAK that influence breast cancer malignancy. An amino-terminal linker within FAK is essential for its binding with the cytodomain of β4 integrin. Moreover, EGFR/Src-signaling triggers the tyrosine phosphorylation of β4 integrin, which, in turn, recruits FAK to β4 integrin and leads to FAK activation and signaling. Upon disruption of the β4 integrin/FAK complex, tumorigenesis and metastasis in triple-negative breast cancer were markedly reduced. Importantly, the concomitant overexpression of β4 integrin and FAK significantly correlates with malignant potential in patients with triple-negative breast cancer. This study describes a pro-metastatic EGFR/Src-dependent β4 integrin/FAK complex that is involved in breast cancer malignancy and is a novel therapeutic target for triple-negative breast cancer. PMID:26549523

  4. Plasma Membrane-Associated pY397FAK Is a Marker of Cytotrophoblast Invasion in Vivo and in Vitro

    PubMed Central

    Ilić, Duško; Genbačev, Olga; Jin, Fang; Caceres, Eduardo; Almeida, Eduardo A. C.; Bellingard-Dubouchaud, Valérie; Schaefer, Erik M.; Damsky, Caroline H.; Fisher, Susan J.

    2001-01-01

    During human pregnancy specialized placental cells of fetal origin, termed cytotrophoblasts, invade the uterus and its blood vessels. This tumor-like process anchors the conceptus to the mother and diverts the flow of uterine blood to the placenta. Previously, we showed that the expression of molecules with important functional roles, including a number of extracellular matrix integrin receptors, is precisely modulated during cytotrophoblast invasion in situ. Here we exploited this observation to study the role of the focal adhesion kinase (FAK), which transduces signals from the extracellular matrix and recruits additional signaling proteins to focal adhesions. Immunolocalization studies on tissue sections showed that FAK is expressed by cytotrophoblasts in all stages of differentiation. Because extracellular matrix-induced integrin clustering results in FAK (auto)phosphorylation on tyrosine 397 (Y397FAK), we also localized this form of the molecule. Immunolocalization experiments detected Y397FAK in a subset of cytotrophoblasts near the surface of the uterine wall. To assess the functional relevance of this observation, we used an adenovirus strategy to inhibit cytotrophoblast expression of FAK as the cells differentiated along the invasive pathway in vitro. Compared to control cells transduced with a wild-type virus, cytotrophoblasts that expressed antisense FAK exhibited a striking reduction in their ability to invade an extracellular matrix substrate. When cytotrophoblast differentiation was compromised (hypoxia in vitro, preeclampsia in vivo), Y397FAK levels associated with the plasma membrane were strikingly lower, although total FAK levels did not change. Together our results suggest that (auto)phosphorylation of Y397 on FAK is a critical component of the signaling pathway that mediates cytotrophoblast migration/invasion. PMID:11438458

  5. Paxillin binding to the alpha 4 integrin subunit stimulates LFA-1 (integrin alpha L beta 2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2.

    PubMed

    Rose, David M; Liu, Shouchun; Woodside, Darren G; Han, Jaewon; Schlaepfer, David D; Ginsberg, Mark H

    2003-06-15

    Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1). PMID:12794117

  6. New insights into FAK function and regulation during spermatogenesis

    PubMed Central

    Gungor-Ordueri, N. Ece; Mruk, Dolores D.; Wan, Hin-ting; Wong, Elissa W.P.; Celik-Ozenci, Ciler; Lie, Pearl P.Y.; Cheng, C. Yan

    2014-01-01

    Summary Germ cell transport across the seminiferous epithelium during the epithelial cycle is crucial to spermatogenesis, although molecular mechanism(s) that regulate these events remain unknown. Studies have shown that spatiotemporal expression of crucial regulatory proteins during the epithelial cycle represents an efficient and physiologically important mechanism to regulate spermatogenesis without involving de novo synthesis of proteins and/or expression of genes. Herein, we critically review the role of focal adhesion kinase (FAK) in coordinating the transport of spermatids and preleptotene spermatocytes across the epithelium and the blood-testis barrier (BTB), respectively, along the apical ectoplasmic specialization (ES) – blood-testis barrier – basement membrane (BM) functional axis during spermatogenesis. In the testis, p-FAK-Tyr397 and p-FAKTyr407 are spatiotemporally expressed during the epithelial cycle at the actin-rich anchoring junction known as ES, regulating cell adhesion at the Sertolispermatid (apical ES) and Sertoli cell-cell (basal ES) interface. Phosphorylated forms of FAK exert their effects by regulating the homeostasis of F-actin at the ES, mediated via their effects on actin polymerization so that microfilaments are efficiently re-organized, such as from their “bundled” to “de-bundled/branched” configuration and vice versa during the epithelial cycle to facilitate the transport of: (i) spermatids across the epithelium, and (ii) preleptotene spermatocytes across the BTB. In summary, p-FAK-Tyr407 and p-FAK-Tyr397 are important regulators of spermatogenesis which serve as molecular switches that turn “on” and “off” adhesion function at the apical ES and the basal ES/BTB, mediated via their spatiotemporal expression during the epithelial cycle. A hypothetical model depicting the role of these two molecular switches is also proposed. PMID:24578181

  7. Identification of FAK substrate peptides via colorimetric screening of a one-bead one-peptide combinatorial library.

    PubMed

    Witucki, Laurie A; Borowicz, Lauren Sanford; Pedley, Anthony M; Curtis-Fisk, Jaime; Kuszpit, Elizabeth Girnys

    2015-04-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is associated with regulating cellular functions such as cell adhesion and migration and has emerged as an important target for cancer research. Short peptide substrates that are selectively and efficiently phosphorylated by FAK have not been previously identified and tested. Here we report the synthesis and screening of a one-bead one-peptide combinatorial library to identify novel substrates for FAK. Using a solid-phase colorimetric antibody tagging detection platform, the peptide beads phosphorylated by FAK were sequenced via Edman degradation and then validated through radioisotope kinetic studies with [γ-(32)P] ATP to derive Michaelis-Menton constants. The combination of results gathered from both colorimetric and radioisotope kinase assays led to the rational design of a second generation of FAK peptide substrates. Out of all the potential peptide substrates evaluated, the most active was GDYVEFKKK with a K(M)  = 92 μM and a Vmax  = 1920 nmol/min/mg. Peptide substrates discovered within this study may be useful diagnostic tools for future kinase investigations and may lead to novel therapeutic agents.

  8. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  9. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    SciTech Connect

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  10. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction.

    PubMed Central

    Girault, J. A.; Labesse, G.; Mornon, J. P.; Callebaut, I.

    1998-01-01

    The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:9990861

  11. Analyses of merlin/NF2 connection to FAK inhibitor responsiveness in serous ovarian cancer

    PubMed Central

    Shah, Nina R.; Tancioni, Isabelle; Ward, Kristy K.; Lawson, Christine; Chen, Xiao Lei; Jean, Christine; Sulzmaier, Florian J.; Uryu, Sean; Miller, Nichol L.G.; Connolly, Denise C.; Schlaepfer, David D.

    2014-01-01

    Objective Focal adhesion kinase (FAK) is overexpressed in serous ovarian cancer. Loss of merlin, a product of the neurofibromatosis 2 tumor suppressor gene, is being evaluated as a biomarker for FAK inhibitor sensitivity in mesothelioma. Connections between merlin and FAK in ovarian cancer remain undefined. Methods Nine human and two murine ovarian cancer cell lines were analyzed for growth in the presence of a small molecule FAK inhibitor (PF-271, 0.1 to 1 μM) for 72 h. Merlin was evaluated by immunoblotting and immunostaining of a human ovarian tumor tissue array. Growth of cells was analyzed in an orthotopic tumor model and evaluated in vitro after stable shRNA-mediated merlin knockdown. Results Greater than 50% inhibition of OVCAR8, HEY and ID8-IP ovarian carcinoma cell growth occurred with 0.1 μM PF-271 in anchorage-independent (p<0.001) but not in adherent culture conditions. PF-271-mediated reduction in FAK Y397 phosphorylation occurred independently of growth inhibition. Suspended growth of OVCAR3, OVCAR10, IGROV1, IGROV1-IP, SKOV3, SKOV3-IP, A2780, and 5009-MOVCAR was not affected by 0.1 μM PF-271. Merlin expression did not correlate with serous ovarian tumor grade or stage. PF-271 (30 mg/kg, BID) did not inhibit 5009-MOVCAR tumor growth and merlin knockdown in SKOV3-IP and OVCAR10 cells did not alter suspended cell growth upon PF-271 addition. Conclusions Differential responsiveness to FAK inhibitor treatment were observed. Intrinsic low merlin protein levels correlated with PF-271-mediated anchorage-independent growth inhibition, but reduction in merlin expression did not induce sensitivity to FAK inhibition. Merlin levels may be useful for patient stratification in FAK inhibitor trials. PMID:24786638

  12. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells.

    PubMed

    Rasmussen, Line Jee Hartmann; Müller, Helene Steenkær Holm; Jørgensen, Bente; Pedersen, Stine Falsig; Hoffmann, Else Kay

    2015-01-15

    The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process. PMID:25377086

  13. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets.

    PubMed

    Alenkvist, Ida; Dyachok, Oleg; Tian, Geng; Li, Jia; Mehrabanfar, Saba; Jin, Yang; Birnir, Bryndis; Tengholm, Anders; Welsh, Michael

    2014-12-01

    The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.

  14. A Small Physiological Electric Field Mediated Responses of Extravillous Trophoblasts Derived from HTR8/SVneo Cells: Involvement of Activation of Focal Adhesion Kinase Signaling

    PubMed Central

    Zhang, Juan; Ren, Rongmei; Luo, Xuefeng; Fan, Ping; Liu, Xinghui; Liang, Shanshan; Ma, Lei; Yu, Ping; Bai, Huai

    2014-01-01

    Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF)-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF) on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo) were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK) phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells. PMID:24643246

  15. Quantitative relationship among integrin-ligand binding, adhesion, and signaling via focal adhesion kinase and extracellular signal-regulated kinase 2.

    PubMed

    Asthagiri, A R; Nelson, C M; Horwitz, A F; Lauffenburger, D A

    1999-09-17

    ERK2. These measures of FAK and ERK2 activity were found to correlate with short term cell-substratum adhesivity, indicating that signaling via FAK and ERK2 is proportional to the number of integrin-fibronectin bonds. PMID:10480927

  16. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal

    PubMed Central

    Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L.; Hansen, Jean M.; Dalton, Heather J.; Stone, Rebecca L.; Cho, Min Soon; Nick, Alpa M.; Nagaraja, Archana S.; Gutschner, Tony; Gharpure, Kshipra M.; Mangala, Lingegowda S.; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N.; Wu, Sherry Y.; Pecot, Chad V.; Burns, Alan R.; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K.

    2016-01-01

    Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management. PMID:27064283

  17. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes.

    PubMed

    Wu, Ching-Shuang; Lan, Cheng-Che E; Chiou, Min-Hsi; Yu, Hsin-Su

    2006-01-01

    Vitiligo is an acquired pigmentary disorder characterized by depigmentation of skin and hair. Melanocyte migration is an important event in re-pigmentation of vitiligo. We have demonstrated that narrow-band ultraviolet B (UVB) irradiation stimulated cultured keratinocytes to release a significant amount of basic fibroblast growth factor (bFGF). Furthermore, narrow-band UVB enhanced migration of melanocytes via increased expression of phosphorylated focal adhesion kinase (p125(FAK)) on melanocytes. The aim of this study was to investigate the effect of recombinant human bFGF (rhbFGF) on melanocyte migration. The relationship between the expression of p125(FAK) and melanocyte migration induced by rhbFGF was also studied. Our results demonstrated that rhbFGF significantly enhanced migration of melanocytes and p125(FAK) expression on melanocytes. Herbimycin A, a potent p125(FAK) inhibitor, effectively abolished rhbFGF-induced melanocyte migration. The combined results indicated that p125(FAK) plays an important role in the signal transduction pathway of melanocyte migration induced by bFGF.

  18. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    PubMed

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  19. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells.

    PubMed

    Chatterji, Tanushree; Varkaris, Andreas S; Parikh, Nila U; Song, Jian H; Cheng, Chien-Jui; Schweppe, Rebecca E; Alexander, Stephanie; Davis, John W; Troncoso, Patricia; Friedl, Peter; Kuang, Jian; Lin, Sue-Hwa; Gallick, Gary E

    2015-04-30

    To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.

  20. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells.

    PubMed

    Taliaferro-Smith, LaTonia; Oberlick, Elaine; Liu, Tongrui; McGlothen, Tanisha; Alcaide, Tiffanie; Tobin, Rachel; Donnelly, Siobhan; Commander, Rachel; Kline, Erik; Nagaraju, Ganji Purnachandra; Havel, Lauren; Marcus, Adam; Nahta, Rita; O'Regan, Ruth

    2015-03-10

    Triple negative breast cancer (TNBC) is a highly metastatic disease that currently lacks effective prevention and treatment strategies. The insulin-like growth factor 1 receptor (IGF1R) and focal adhesion kinase (FAK) signaling pathways function in numerous developmental processes, and alterations in both are linked with a number of common pathological diseases. Overexpression of IGF1R and FAK are closely associated with metastatic breast tumors. The present study investigated the interrelationship between IGF1R and FAK signaling in regulating the malignant properties of TNBC cells. Using small hairpin RNA (shRNA)-mediated IGF1R silencing methods, we showed that IGF1R is essential for sustaining mesenchymal morphologies of TNBC cells and modulates the expression of EMT-related markers. We further showed that IGF1R overexpression promotes migratory and invasive behaviors of TNBC cell lines. Most importantly, IGF1R-driven migration and invasion is predominantly mediated by FAK activation and can be suppressed using pharmacological inhibitors of FAK. Our findings in TNBC cells demonstrate a novel role of the IGF1R/FAK signaling pathway in regulating critical processes involved in the metastatic cascade. These results may improve the current understanding of the basic molecular mechanisms of TNBC metastasis and provide a strong rationale for co-targeting of IGF1R and FAK as therapy for mesenchymal TNBCs. PMID:25749031

  1. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer

    PubMed Central

    Howe, Grant A.; Xiao, Bin; Zhao, Huijun; Al-Zahrani, Khalid N.; Hasim, Mohamed S.; Villeneuve, James; Sekhon, Harmanjatinder S.; Goss, Glenwood D.; Sabourin, Luc A.; Dimitroulakos, Jim; Addison, Christina L.

    2016-01-01

    Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly

  2. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells.

    PubMed

    Kim, Han Ie; Lee, Hyun-Sung; Kim, Tae Hyun; Lee, Ju-Seog; Lee, Seung-Taek; Lee, Seo-Jin

    2015-12-15

    Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.

  3. Cordycepin suppresses integrin/FAK signaling and epithelial-mesenchymal transition in hepatocellular carcinoma.

    PubMed

    Yao, Wen-Ling; Ko, Bor-Sheng; Liu, Tzu-An; Liang, Shu-Man; Liu, Chia-Chia; Lu, Yi-Jhu; Tzean, Shean-Shong; Shen, Tang-Long; Liou, Jun-Yang

    2014-01-01

    Cordycepin, also known as 3-deoxyadenosine, is an analogue of adenosine extracted from the traditional Chinese medicine "Dong Chong Xia Cao". Cordycepin is an active small molecular weight compound and is implicated in modulating multiple physiological functions including immune activation, anti-aging and anti-tumor effects. Several studies have indicated that cordycepin suppresses tumor progression. However, the signaling pathways involved in cordycepin regulating cancer cell motility, invasiveness and epithelial-mesenchymal transition (EMT) remain unclear. In this study, we found that cordycepin inhibits hepatocellular carcinoma (HCC) cell proliferation and migration/invasion. Treatment of cordycepin results in the increasing expression of epithelial marker, Ecadherin while no significant effect was found on N-cadherin α-catenin and β-catenin. Furthermore, although the expression of focal adhesion kinase (FAK) was slightly reduced, the level of phosphorylated FAK was significantly reduced by the treatment of cordycepin. In addition, cordycepin significantly suppresses the expression of integrin α3, integrin α6 and integrin β1 which are crucial interacting partners of FAK in regulating the focal adhesion complex. These results suggest cordycepin may contribute to EMT, antimigration/ invasion and growth inhibitory effects of HCC by suppressing E-cadherin and integrin/FAK signaling. Thus, cordycepin is a potential therapeutic or supplementary agent for preventing HCC tumor progression. PMID:23855336

  4. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility

    PubMed Central

    Subauste, M. Cecilia; Pertz, Olivier; Adamson, Eileen D.; Turner, Christopher E.; Junger, Sachiko; Hahn, Klaus M.

    2004-01-01

    Cells lacking vinculin are highly metastatic and motile. The reasons for this finding have remained unclear. Both enhanced survival and motility are critical to metastasis. Here, we show that vinculin null (vin−/−) cells and cells expressing a vinculin Y822F mutant have increased survival due to up-regulated activity of extracellular signal–regulated kinase (ERK). This increase is shown to result from vinculin's modulation of paxillin–FAK interactions. A vinculin fragment (amino acids 811–1066) containing the paxillin binding site restored apoptosis and suppressed ERK activity in vin−/− cells. Both vinY822F and vin−/− cells exhibit increased interaction between paxillin and focal adhesion kinase (FAK) and increased paxillin and FAK phosphorylation. Transfection with paxillin Y31FY118F dominant-negative mutant in these cells inhibits ERK activation and restores apoptosis. The enhanced motility of vin−/− and vinY822F cells is also shown to be due to a similar mechanism. Thus, vinculin regulates survival and motility via ERK by controlling the accessibility of paxillin for FAK interaction. PMID:15138291

  5. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

    PubMed

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben

    2014-11-20

    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.

  6. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53-/- cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53+/+ cells but not in p53-/- cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach.

  7. Mediation of the migration of endothelial cells and fibroblasts on polyurethane nanocomposites by the activation of integrin-focal adhesion kinase signaling.

    PubMed

    Hung, Huey-Shan; Chu, Mei-Yun; Lin, Chien-Hsun; Wu, Chia-Ching; Hsu, Shan-hui

    2012-01-01

    Model surfaces of polyurethane-gold nanocomposites (PU-Au) were used to examine cell behavior on nanophase-segregated materials. Previously we showed that endothelial cell (EC) migration on these materials was modulated by the PI3K/Akt/eNOS pathway. The present study, investigated the expressions of alpha5/beta3 (α5β3) integrin, focal adhesion kinase (FAK), and other downstream signal molecules such as the Rho family and matrix metalloproteinases 2 (MMP-2) induced by the materials in two different cells, that is bovine arterial endothelial cells (BAEC) and human skin fibroblasts (HSF). Both cells proliferated better on the more phase-separated PU-Au 43.5 ppm than on the less phase-separated controls (PU and PU-Au 174 ppm). On PU-Au 43.5 ppm, BAEC compared to HSF had denser actin fibers and were more extended. BAEC became rounded with Y-27632 treatment and shrunk with LY294002 treatment. Treatment by inhibitors only caused slight changes in HSF. The migration distance of BAEC on PU-Au 43.5 ppm was greater than that of HSF, and was significantly reduced by LY294002 or Y-27632 but not SU-1498. The expressions of p-FAK, p-RhoA, p-Rac/Cdc42, MMP2, and α5β3 integrin induced by PU-Au 43.5 ppm were more pronounced in BAEC versus HSF. Further enhancement in MMP2 and α5β3 integrin expressions by FAK-GFP transfection was more remarkable for cells on PU-Au 43.5 ppm. Our findings suggested that the integrin α5β3/FAK pathway may be induced by nanophase-separated materials in both ECs and fibroblasts to promote their proliferation/migration, while the crosstalk between the PI3K/Akt/eNOS pathway and FAK/Rho-GTPase activation may account for the greater effect in ECs than in fibroblasts.

  8. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness

    PubMed Central

    Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K.; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J.; Weaver, Valerie M.

    2016-01-01

    Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence. PMID:26975850

  9. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness.

    PubMed

    Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J; Weaver, Valerie M; Hinck, Lindsay

    2016-03-14

    Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence. PMID:26975850

  10. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness.

    PubMed

    Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J; Weaver, Valerie M; Hinck, Lindsay

    2016-03-14

    Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence.

  11. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  12. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes.

    PubMed

    Cheng, Kai; Xia, Peng; Lin, Qiang; Shen, Shihao; Gao, Mingxia; Ren, Shasha; Li, Xueping

    2014-07-01

    The effect of low-intensity pulsed ultrasound (LIPUS) on extracellular matrix (ECM) production via modulation of the integrin/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been investigated in previous studies in normal chondrocytes, but not in osteoarthritis (OA). Therefore, we investigated the LIPUS-induced integrin β1/FAK/PI3K/Akt mechanochemical transduction pathway in a single study in rabbit OA chondrocytes. Normal and OA chondrocytes were exposed to LIPUS, and mRNA and protein expression of cartilage, metalloproteinases and integrin-FAK-PI3K/Akt signal pathway-related genes was determined by quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Compared with levels in normal chondrocytes, expression levels of ECM-related genes were significantly lower in OA chondrocytes and those of metalloproteinase-related genes were significantly higher. In addition, integrin β1 gene expression and the phosphorylation of FAK, PI3K and Akt were significantly higher in OA chondrocytes. The expression of all tested genes was significantly increased except for that of metalloproteinase, which was significantly decreased in the LIPUS-treated OA group compared to the untreated OA group. LIPUS may affect the integrin-FAK-PI3K/Akt mechanochemical transduction pathway and alter ECM production by OA chondrocytes. Our findings will aid the future development of a treatment or even cure for OA.

  13. Imatinib and Nilotinib increase glioblastoma cell invasion via Abl-independent stimulation of p130Cas and FAK signalling

    PubMed Central

    Frolov, Antonina; Evans, Ian M.; Li, Ningning; Sidlauskas, Kastytis; Paliashvili, Ketevan; Lockwood, Nicola; Barrett, Angela; Brandner, Sebastian; Zachary, Ian C.; Frankel, Paul

    2016-01-01

    Imatinib was the first targeted tyrosine kinase inhibitor to be approved for clinical use, and remains first-line therapy for Philadelphia chromosome (Ph+)-positive chronic myelogenous leukaemia. We show that treatment of human glioblastoma multiforme (GBM) tumour cells with imatinib and the closely-related drug, nilotinib, strikingly increases tyrosine phosphorylation of p130Cas, focal adhesion kinase (FAK) and the downstream adaptor protein paxillin (PXN), resulting in enhanced cell migration and invasion. Imatinib and nilotinib-induced tyrosine phosphorylation was dependent on expression of p130Cas and FAK activity and was independent of known imatinib targets including Abl, platelet derived growth factor receptor beta (PDGFRβ) and the collagen receptor DDR1. Imatinib and nilotinib treatment increased two dimensional cell migration and three dimensional radial spheroid invasion in collagen. In addition, silencing of p130Cas and inhibition of FAK activity both strongly reduced imatinib and nilotinib stimulated invasion. Importantly, imatinib and nilotinib increased tyrosine phosphorylation of p130Cas, FAK, PXN and radial spheroid invasion in stem cell lines isolated from human glioma biopsies. These findings identify a novel mechanism of action in GBM cells for two well established front line therapies for cancer resulting in enhanced tumour cell motility. PMID:27293031

  14. FAK-Mediated Mechanotransduction in Skeletal Regeneration

    PubMed Central

    Currey, Jennifer A.; Brunski, John; Helms, Jill A.

    2007-01-01

    The majority of cells are equipped to detect and decipher physical stimuli, and then react to these stimuli in a cell type-specific manner. Ultimately, these cellular behaviors are synchronized to produce a tissue response, but how this is achieved remains enigmatic. Here, we investigated the genetic basis for mechanotransduction using the bone marrow as a model system. We found that physical stimuli produced a pattern of principal strain that precisely corresponded to the site-specific expression of sox9 and runx2, two transcription factors required for the commitment of stem cells to a skeletogenic lineage, and the arrangement and orientation of newly deposited type I collagen fibrils. To gain insights into the genetic basis for skeletal mechanotransduction we conditionally inactivated focal adhesion kinase (FAK), an intracellular component of the integrin signaling pathway. By doing so we abolished the mechanically induced osteogenic response and thus identified a critical genetic component of the molecular machinery required for mechanotransduction. Our data provide a new framework in which to consider how physical forces and molecular signals are synchronized during the program of skeletal regeneration. PMID:17460757

  15. Evolving Therapies and FAK Inhibitors for the Treatment of Cancer

    PubMed Central

    Dunn, Kelli Bullard; Heffler, Melissa; Golubovskaya, Vita

    2012-01-01

    Despite advances in medical and surgical therapy, cancer kills more than half a million people in the United States annually, and the majority of these patients succumb to metastatic disease. The traditional approach to treating systemic disease has been the use of cytotoxic chemotherapy. However, chemotherapy is rarely curative and toxicity is often dose limiting. In addition, the effects of chemotherapy are nonspecific, targeting both malignant and normal tissues. As a result, recent efforts increasingly have focused on developing agents that target specific molecules in tumor cells in order to both improve efficacy and limit toxicity. This review summarizes the history and current use of targeted molecular therapy for cancer, with a special emphasis on recently developed inhibitors of Focal Adhesion Kinase (FAK). PMID:21291406

  16. Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo

    SciTech Connect

    Kurio, Naito; Shimo, Tsuyoshi; Fukazawa, Takuya; Takaoka, Munenori; Okui, Tatsuo; Hassan, Nur Mohammad Monsur; Honami, Tatsuki; Hatakeyama, Shinji; Ikeda, Masahiko; Naomoto, Yoshio; Sasaki, Akira

    2011-05-01

    Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr{sup 397} inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor {kappa} B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.

  17. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase

    PubMed Central

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-01-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. PMID:26282580

  18. Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue.

    PubMed

    Ding, Lei; Wang, Liyong; Sui, Leiming; Zhao, Huanying; Xu, Xiaoxue; Li, Tengyan; Wang, Xiaonan; Li, Wenjing; Zhou, Ping; Kong, Lu

    2016-08-01

    The claudin family of proteins is integral to the structure and function of tight junctions. The role of claudin-7 (Cldn-7, CLDN7) in regulating the integrin/focal adhesion kinase (FAK)/ERK signaling pathway remains poorly understood. Therefore, we investigated differences in gene expression, primarily focusing on CLDN7 and integrin/FAK/ERK signaling pathway genes, between colon cancer and adjacent normal tissues. Quantitative real-time reverse transcription-PCR and immunohistochemistry were utilized to verify the results of mRNA and protein expression, respectively. In silico analysis was used to predict co-regulation between Cldn-7 and integrin/FAK/ERK signaling pathway components, and the STRING database was used to analyze protein-protein interaction pairs among these proteins. Meta-analysis of expression microarrays in The Cancer Genome Atlas (TCGA) database was used to identify significant correlations between Cldn-7 and components of predicted genes in the integrin/FAK/ERK signaling pathway. Our results showed marked cancer stage-specific decreases in the protein expression of Cldn-7, Gelsolin, MAPK1 and MAPK3 in colon cancer samples, and the observed changes for all proteins except Cldn-7 were in agreement with changes in the corresponding mRNA levels. Cldn-7 might indirectly regulate MAPK3 via KRT8 due to KRT8 co-expression with MAPK3 or CLDN7. Our bioinformatics methods supported the hypothesis that Cldn-7 does not directly regulate any genes in the integrin/FAK/ERK signaling pathway. These factors may participate in a common network that regulates cancer progression in which the MAPK pathway serves as the central node.

  19. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion

    PubMed Central

    Dart, Anna E.; Box, Gary M.; Court, William; Gale, Madeline E.; Brown, John P.; Pinder, Sarah E.; Eccles, Suzanne A.

    2015-01-01

    P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration. PMID:26598620

  20. MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma.

    PubMed

    Chen, Jing-Song; Li, Hua-Shu; Huang, Jiong-Qiang; Dong, Shi-Hao; Huang, Zhi-Jie; Yi, Wei; Zhan, Gao-Fang; Feng, Ju-Tao; Sun, Jian-Cong; Huang, Xiao-Hui

    2016-05-28

    Some microRNAs (miRNAs) have been implicated in hepatocellular carcinoma (HCC) development and progression. However, the roles and mechanisms of several miRNAs in HCC remain poorly understood. Here, we report that miR-379-5p, which is down-regulated in HCC tissues and cell lines, is associated with advanced TNM stage and metastasis in HCC. The ectopic overexpression of miR-379-5p inhibited HCC cell migration, invasion, epithelial-to-mesenchymal transition (EMT) and metastasis both in vitro and in vivo. Conversely, miR-379 knockdown increased migration, invasion and EMT in HCC cells. Moreover, miR-379-5p exerted this function by directly targeting focal adhesion kinase (FAK) 3'-UTR and repressing FAK expression, thus leading to suppression of AKT signaling. Furthermore, the tumor suppressive effects of miR-379-5p in HCC cells were reversed by activating AKT signaling or restoring FAK expression. In clinical samples of HCC, miR-379-5p negatively correlated with FAK, which was up-regulated in HCC. Taken together, our findings highlight the important role of miR-379-5p in regulating the EMT and metastasis of HCC by targeting FAK/AKT signaling, suggesting that miR-379-5p may represent a novel potential therapeutic target and prognostic marker for HCC. PMID:26944318

  1. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration.

  2. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration. PMID:27400149

  3. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar

    PubMed Central

    Su, Linlin; Li, Xiaodong; Wu, Xue; Hui, Bo; Han, Shichao; Gao, Jianxin; Li, Yan; Shi, Jihong; Zhu, Huayu; Zhao, Bin; Hu, Dahai

    2016-01-01

    Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy. PMID:27181267

  4. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    SciTech Connect

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li; Jiaojie, Zhou; Xiaoyi, Yan; Xiujun, Cai

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  5. 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway

    PubMed Central

    Pang, Xiufeng; Zhang, Li; Lai, Li; Chen, Jing; Wu, Yuanyuan; Yi, Zhengfang; Zhang, Jian; Qu, Weijing; Aggarwal, Bharat B.; Liu, Mingyao

    2011-01-01

    Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1′-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth. PMID:21427164

  6. 1'-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway.

    PubMed

    Pang, Xiufeng; Zhang, Li; Lai, Li; Chen, Jing; Wu, Yuanyuan; Yi, Zhengfang; Zhang, Jian; Qu, Weijing; Aggarwal, Bharat B; Liu, Mingyao

    2011-06-01

    Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1'-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth.

  7. Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network.

    PubMed

    Yang, Jiajia; Hou, Yixuan; Zhou, Mingli; Wen, Siyang; Zhou, Jian; Xu, Liyun; Tang, Xi; Du, Yan-e; Hu, Ping; Liu, Manran

    2016-02-01

    Twist, a highly conserved basic Helix-Loop-Helix transcription factor, functions as a major regulator of epithelial-mesenchymal transition (EMT) and tumor metastasis. In different cell models, signaling pathways such as TGF-β, MAPK/ERK, WNT, AKT, JAK/STAT, Notch, and P53 have also been shown to play key roles in the EMT process, yet little is known about the signaling pathways regulated by Twist in tumor cells. Using iTRAQ-labeling combined with 2D LC-MS/MS analysis, we identified 194 proteins with significant changes of expression in MCF10A-Twist cells. These proteins reportedly play roles in EMT, cell junction organization, cell adhesion, and cell migration and invasion. ECM-receptor interaction, MAPK, PI3K/AKT, P53 and WNT signaling were found to be aberrantly activated in MCF10A-Twist cells. Ingenuity Pathways Analysis showed that integrin β1 (ITGB1) acts as a core regulator in linking integrin-linked kinase (ILK), Focal-adhesion kinase (FAK), MAPK/ERK, PI3K/AKT, and WNT signaling. Increased Twist and ITGB1 are associated with breast tumor progression. Twist transcriptionally regulates ITGB1 expression. Over-expression of ITGB1 or Twist in MCF10A led to EMT, activation of FAK/ILK, MAPK/ERK, PI3K/AKT, and WNT signaling. Knockdown of Twist or ITGB1 in BT549 and Hs578T cells decreased activity of FAK, ILK, and their downstream signaling, thus specifically impeding EMT and cell invasion. Knocking down ILK or inhibiting FAK, MAPK/ERK, or PI3K/AKT signaling also suppressed Twist-driven EMT and cell invasion. Thus, the Twist-ITGB1-FAK/ILK pathway and their downstream signaling network dictate the Twist-induced EMT process in human mammary epithelial cells and breast cancer cells. PMID:26693891

  8. Abl tyrosine kinases modulate cadherin-dependent adhesion upstream and downstream of Rho family GTPases.

    PubMed

    Zandy, Nicole L; Pendergast, Ann Marie

    2008-02-15

    Formation and dissolution of intercellular adhesions are processes of paramount importance during tissue morphogenesis and for pathological conditions such as tumor metastasis. Cadherin-mediated intercellular adhesion requires dynamic regulation of the actin cytoskeleton. The pathways that link cadherin signaling to cytoskeletal regulation remain poorly defined. We have recently uncovered a novel role for the Abl family of tyrosine kinases linking cadherin-mediated adhesion to actin dynamics via the regulation of Rho family GTPases. Abl kinases are activated by cadherin engagement, localize to cell-cell junctions and are required for the formation of adherens junctions. Notably, we showed that Abl kinases are required for Rac activation during formation of adherens junctions, and also regulate a Rho-ROCK-myosin signaling pathway that is required for the maintenance of intercellular adhesion. Here we show that Abl kinases regulate the formation and strengthening of adherens junctions downstream of active Rac, and that Abl tyrosine kinases are components of a positive feed-back loop that employs the Crk/CrkL adaptor proteins to promote the formation and maturation of adherens junctions.

  9. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ

    PubMed Central

    Durand, Nisha; Bastea, Ligia I.; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-01-01

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process. PMID:27775029

  10. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  11. PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion

    PubMed Central

    Wells, Claire M.; Whale, Andrew D.; Parsons, Maddy; Masters, John R. W.; Jones, Gareth E.

    2010-01-01

    Hepatocyte growth factor (HGF) is associated with tumour progression and increases the invasiveness of prostate carcinoma cells. Migration and invasion require coordinated reorganisation of the actin cytoskeleton and regulation of cell-adhesion dynamics. Rho-family GTPases orchestrate both of these cellular processes. p21-activated kinase 4 (PAK4), a specific effector of the Rho GTPase Cdc42, is activated by HGF, and we have previously shown that activated PAK4 induces a loss of both actin stress fibres and focal adhesions. We now report that DU145 human prostate cancer cells with reduced levels of PAK4 expression are unable to successfully migrate in response to HGF, have prominent actin stress fibres, and an increase in the size and number of focal adhesions. Moreover, these cells have a concomitant reduction in cell-adhesion turnover rates. We find that PAK4 is localised at focal adhesions, is immunoprecipitated with paxillin and phosphorylates paxillin on serine 272. Furthermore, we demonstrate that PAK4 can regulate RhoA activity via GEF-H1. Our results suggest that PAK4 is a pluripotent kinase that can regulate both actin cytoskeletal rearrangement and focal-adhesion dynamics. PMID:20406887

  12. Interleukin-6 Induces Vascular Endothelial Growth Factor-C Expression via Src-FAK-STAT3 Signaling in Lymphatic Endothelial Cells

    PubMed Central

    Huang, Shiu-Wen; Ou, George; Hsu, Ya-Fen; Hsu, Ming-Jen

    2016-01-01

    Elevated serum interleukin-6 (IL-6) levels correlates with tumor grade and poor prognosis in cancer patients. IL-6 has been shown to promote tumor lymphangiogenesis through vascular endothelial growth factor-C (VEGF-C) induction in tumor cells. We recently showed that IL-6 also induced VEGF-C expression in lymphatic endothelial cells (LECs). However, the signaling mechanisms involved in IL-6-induces VEGF-C induction in LECs remain incompletely understood. In this study, we explored the causal role of focal adhesion kinase (FAK) in inducing VEGF-C expression in IL-6-stimulated murine LECs (SV-LECs). FAK signaling blockade by NSC 667249 (a FAK inhibitor) attenuated IL-6-induced VEGF-C expression and VEGF-C promoter-luciferase activities. IL-6’s enhancing effects of increasing FAK, ERK1/2, p38MAPK, C/EBPβ, p65 and STAT3 phosphorylation as well as C/EBPβ-, κB- and STAT3-luciferase activities were reduced in the presence of NSC 667249. STAT3 knockdown by STAT3 siRNA abrogated IL-6’s actions in elevating VEGF-C mRNA and protein levels. Moreover, Src-FAK signaling blockade reduced IL-6’s enhancing effects of increasing STAT3 binding to the VEGF-C promoter region, cell migration and endothelial tube formation of SV-LECs. Together these results suggest that IL-6 increases VEGF-C induction and lymphangiogenesis may involve, at least in part, Src-FAK-STAT3 cascade in LECs. PMID:27383632

  13. A FAK-Cas-Rac-Lamellipodin Signaling Module Transduces Extracellular Matrix Stiffness into Mechanosensitive Cell Cycling

    PubMed Central

    Bae, Yong Ho; Mui, Keeley L.; Hsu, Bernadette Y.; Liu, Shu-Lin; Cretu, Alexandra; Razinia, Ziba; Xu, Tina; Puré, Ellen; Assoian, Richard K.

    2015-01-01

    Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased abundance of the cell cycle protein cyclin D1, and promoted S phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is not only important in controlling cellular migration, but also for regulating the cell cycle in response to mechanical signals. PMID:24939893

  14. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling.

    PubMed

    Bae, Yong Ho; Mui, Keeley L; Hsu, Bernadette Y; Liu, Shu-Lin; Cretu, Alexandra; Razinia, Ziba; Xu, Tina; Puré, Ellen; Assoian, Richard K

    2014-06-17

    Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.

  15. Role of phosphoinositide 3-kinase in adhesion of platelets to fibrinogen stimulated by cancer procoagulant.

    PubMed

    Olas, B; Wachowicz, B; Mielicki, W P

    2001-11-01

    Cancer procoagulant, cysteine proteinase (CP; EC 3.4.22.26) activates factor X and functions in the absence of factor VII. CP may also change the platelet function. It induces an increase of platelet adhesion to collagen and fibrinogen. Using wortmannin--the inhibitor of phosphoinositide 3-kinase (PI 3-K)--we studied the role of this enzyme in the action of cancer procoagulant on blood platelet adhesion in vitro. Wortmannin (25, 50 and 100 nM, 30 min, 37 degrees C) caused a reduction of platelet adhesion to fibrinogen (P<0.01) when blood platelets were stimulated by both 0.2 U/ml thrombin (IC(50)approximately 75 nM) and by 1 microM ADP (IC(50)approximately 60 nM). We observed that after CP treatment the adhesion of thrombin-activated and ADP-stimulated platelets to fibrinogen was augmented. The potentiated by CP adhesion of activated platelets to fibrinogen was reduced after preincubation of platelets with wortmannin (50 nM, 30 min, 37 degrees C). We conclude that in adhesion of platelets to fibrinogen stimulated by CP PI 3-K take place.

  16. Time-resolved fluorescence resonance energy transfer as a versatile tool in the development of homogeneous cellular kinase assays.

    PubMed

    Saville, Lisa; Spais, Chrysanthe; Mason, Jennifer L; Albom, Mark S; Murthy, Seetha; Meyer, Sheryl L; Ator, Mark A; Angeles, Thelma S; Husten, Jean

    2012-12-01

    Homogeneous cellular assays can streamline product detection in the drug discovery process. One commercially available assay employing time-resolved fluorescence resonance energy transfer (TR-FRET) that detects phosphorylated products was used to evaluate inhibitors of the receptor tyrosine kinase AXL in a cell line expressing an AXL-green fluorescent protein fusion protein. This TR-FRET assay was modified to evaluate the phosphorylation state of the AXL family member MER in a cell line expressing MER with a V5 tag by adding a fluorescein-labeled anti-V5 antibody. This homogeneous cellular assay was further modified to evaluate the nonreceptor tyrosine kinase focal adhesion kinase (FAK) in cell lines that expressed an untagged kinase by the inclusion of a commercially available anti-FAK antibody conjugated with an acceptor dye. The methods described here can be further adapted for TR-FRET detection of other cellular kinase activities.

  17. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer.

    PubMed

    Chen, Chun-Chieh; Sureshbabul, Munisamy; Chen, Huei-Wen; Lin, Yu-Shuang; Lee, Jen-Yi; Hong, Qi-Sheng; Yang, Ya-Chien; Yu, Sung-Liang

    2013-01-01

    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells. PMID:23970932

  18. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway

    PubMed Central

    2014-01-01

    Background Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. Results FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCϒ, NWASP, ARP2/3, and ROCK had no influence this. Conclusions FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies. PMID:24885257

  19. TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling.

    PubMed

    Park, Sang-A; Kim, Min-Jin; Park, So-Yeon; Kim, Jung-Shin; Lim, Woosung; Nam, Jeong-Seok; Yhong Sheen, Yhun

    2015-01-01

    Transforming growth factor-β (TGF-β) signaling plays a key role in progression and metastasis of HCC. This study was undertaken to gain the proof of concept of a small-molecule inhibitor of TGF-β type I receptor kinase, EW-7197 as a potent anti-cancer therapy for HCC. We identified tissue inhibitors of metalloproteinases-1 (TIMP-1) as one of the secreted proteins of hepatic stellate cells (HSCs) and a key mediator of TGF-β-mediated crosstalk between HSCs and HCC cells. TGF-β signaling led to increased expression of TIMP-1, which activates focal adhesion kinase (FAK) signaling via its interaction with CD63. Inhibition of TGF-β signaling using EW-7197 significantly attenuated the progression and intrahepatic metastasis of HCC in an SK-HEP1-Luc orthotopic-xenograft mouse model. In addition, EW-7197 inhibited TGF-β-stimulated TIMP-1 secretion by HSCs as well as the TIMP-1-induced proliferation, motility, and survival of HCC cells. Further, EW-7197 interrupted TGF-β-mediated epithelial-to-mesenchymal transition and Akt signaling, leading to significant reductions in the motility and anchorage-independent growth of HCC cells. In conclusion, we found that TIMP-1 mediates TGF-β-regulated crosstalk between HSCs and HCC cells via FAK signaling. In addition, EW-7197 demonstrates potent in vivo anti-cancer therapeutic activity and may be a potential new anti-cancer drug of choice to treat patients with liver cancer. PMID:26549110

  20. Restoration of TRAIL-induced apoptosis in resistant human pancreatic cancer cells by a novel FAK inhibitor, PH11.

    PubMed

    Dao, P; Smith, N; Scott-Algara, D; Garbay, C; Herbeuval, J P; Chen, H

    2015-04-28

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) emerges as one of the most-promising experimental cancer therapeutic drugs and is currently being tested in clinical trials. However, both intrinsic and acquired resistance of human cancer cells to TRAIL-induced apoptosis poses a huge problem in establishing clinically efficient TRAIL therapies. To assess the regulation of TRAIL-resistance in human pancreatic cancer cells, we studied the TRAIL resistant pancreatic cell line PANC-1. We show that treatment with PH11, a novel Focal Adhesion Kinase (FAK) inhibitor in association with TRAIL rapidly induces apoptosis in TRAIL-resistant PANC-1 cells, but not in normal human fibroblast cells. To explain sensitization, we showed that PH11 restores TRAIL apoptotic pathway in PANC-1 cells through down-regulation of c-FLIP via inhibition of FAK and the phosphatidylinositol-3 kinase (PI3K)/AKT pathways. These findings suggest that this combined treatment may offer an attractive therapeutic strategy for safely and efficiently treating pancreatic cancer. PMID:25684663

  1. Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway.

    PubMed

    Peng, Liang; Ran, Yu-Liang; Hu, Hai; Yu, Long; Liu, Qian; Zhou, Zhuan; Sun, Yue-Min; Sun, Li-Chao; Pan, Jian; Sun, Li-Xin; Zhao, Ping; Yang, Zhi-Hua

    2009-10-01

    The purpose of this study was to investigate invasion- and metastasis-related genes in gastric cancer. To this end, we used the transwell system to select a highly invasive subcell line from minimally invasive parent cells and compared gene expression in paired cell lines with high- and low-invasive potentials. Lysyl oxidase-like 2 (LOXL2) was overexpressed in the highly invasive subcell line. Immunohistochemical analysis revealed that LOXL2 expression was markedly increased in carcinoma relative to normal epithelia, and this overexpression in primary tumor was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Moreover, LOXL2 expression was further increased in lymph node metastases compared with primary cancer tissues. RNA interference-mediated knockdown and ectopic expression of LOXL2 showed that LOXL2 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo. Subsequent mechanistic studies showed that LOXL2 could activate both the Snail/E-cadherin and Src kinase/Focal adhesion kinase (Src/FAK) pathways. However, secreted LOXL2 induced gastric tumor cell invasion and metastasis exclusively via the Src/FAK pathway. Expression correlation analysis in gastric carcinoma tissues also revealed that LOXL2 promoted invasion via the Src/FAK pathway but not the Snail/E-cadherin pathway. We then evaluated secreted LOXL2 as a target for gastric carcinoma treatment and found that an antibody against LOXL2 significantly inhibited tumor growth and metastasis. Overall, our data revealed that LOXL2 overexpression, a frequent event in gastric carcinoma progression, contributes to tumor cell invasion and metastasis, and LOXL2 may be a therapeutic target for preventing and treating metastases.

  2. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Yi-Chieh; Cheng, Tsan-Hwang; Lee, Jung-Shin; Chen, Jiun-Hwan; Liao, Yi-Chen; Fong, Yao; Wu, Cheng-Hsun; Shih, Yuan-Wei

    2011-01-01

    Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.

  3. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    SciTech Connect

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the FAK-ERK1

  4. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  5. LKB1 kinase-dependent and -independent defects disrupt polarity and adhesion signaling to drive collagen remodeling during invasion

    PubMed Central

    Konen, Jessica; Wilkinson, Scott; Lee, Byoungkoo; Fu, Haian; Zhou, Wei; Jiang, Yi; Marcus, Adam I.

    2016-01-01

    LKB1 is a serine/threonine kinase and a commonly mutated gene in lung adenocarcinoma. The majority of LKB1 mutations are truncations that disrupt its kinase activity and remove its C-terminal domain (CTD). Because LKB1 inactivation drives cancer metastasis in mice and leads to aberrant cell invasion in vitro, we sought to determine how compromised LKB1 function affects lung cancer cell polarity and invasion. Using three-dimensional models, we show that LKB1 kinase activity is essential for focal adhesion kinase–mediated cell adhesion and subsequent collagen remodeling but not cell polarity. Instead, cell polarity is overseen by the kinase-independent function of its CTD and more specifically its farnesylation. This occurs through a mesenchymal-amoeboid morphological switch that signals through the Rho-GTPase RhoA. These data suggest that a combination of kinase-dependent and -independent defects by LKB1 inactivation creates a uniquely invasive cell with aberrant polarity and adhesion signaling that drives invasion into the microenvironment. PMID:26864623

  6. IL-12 and IL-18 induce MAP kinase-dependent adhesion of T cells to extracellular matrix components.

    PubMed

    Ariel, Amiram; Novick, Daniela; Rubinstein, Menachem; Dinarello, Charles A; Lider, Ofer; Hershkoviz, Rami

    2002-07-01

    Cytokines and chemokines play an essential role in recruiting leukocytes from the circulation to the peripheral sites of inflammation by modulating cellular interactions with endothelial cell ligands and extracellular matrix (ECM). Herein, we examined regulation of T cell adhesion to ECM ligands by two major proinflammatory cytokines, interleukin (IL)-12 and IL-18. IL-12 and IL-18 induced T cell adhesion to fibronectin (FN) and hyaluronic acid at low (pM) concentrations that were mediated by specific adhesion molecules expressed on the T cell surface, namely, beta(1) integrins and CD44, respectively. The induction of adhesion by IL-12 and IL-18 was inhibited by extracellular signal-regulated kinase and p38 mitogen-activated protein kinase inhibitors (PD098059 and SB203580, respectively). In contrast, IL-12- and IL-18-induced interferon-gamma (INF-gamma) secretion from T cells was inhibited by SB203580, but not by PD098059. It is interesting that low concentrations of IL-12 and IL-18 induced T cell adhesion to FN in a synergistic manner. Thus, in addition to the regulation of late inflammatory functions such as INF-gamma production, IL-12 and IL-18, alone or in combination, regulate early inflammatory events such as T cell adhesion to inflamed sites. PMID:12101280

  7. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  8. Plasminogen activator inhibitor-1 regulates infiltration of macrophages into melanoma via phosphorylation of FAK-Tyr⁹²⁵.

    PubMed

    Thapa, Bikash; Koo, Bon-Hun; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-08-01

    Tumor-infiltrating macrophages are potential candidates for cancer immunotherapy. However, the detailed molecular mechanism underlying macrophage infiltration into tumors is poorly understood. Based on our previous finding that plasminogen activator inhibitor-1 (PAI-1) enhances vitronectin-dependent migration of macrophages, we investigated the potential role of PAI-1 in macrophage invasion into melanoma. Experimental evidence obtained from spheroid confrontation assay clearly showed that PAI-1 overexpression significantly enhanced the invasion of RAW 264.7 cells into B16F10 melanoma. We further demonstrated that PAI-1 induces phosphorylation of focal adhesion kinase (FAK) at Tyr(925), which, in turn, mediated the invasion of macrophages into the melanoma. This work further illustrates that low-density lipoprotein receptor related-protein 1 (LRP1) is essential for PAI-1-mediated FAK phosphorylation and macrophage invasion into melanoma. In conclusion, our study demonstrates a novel role of PAI-1 in macrophage invasion into melanoma and provides insights into the underlying molecular mechanism.

  9. The Small Molecule Chloropyramine Hydrochloride (C4) Targets the Binding Site of Focal Adhesion Kinase and Vascular Endothelial Growth Factor Receptor 3 and Suppresses Breast Cancer Growth in vivo

    PubMed Central

    Kurenova, Elena V.; Hunt, Darell L.; He, Dihua; Magis, Andrew T.; Ostrov, David A.; Cance, William G.

    2009-01-01

    FAK is a tyrosine kinase that functions as a key orchestrator of signals leading to invasion and metastasis. Since FAK interacts directly with a number of critical proteins involved in survival signaling in tumor cells, we hypothesized that targeting a key protein-protein interface with drug-like small molecules was a feasible strategy for inhibiting tumor growth. In this study, we targeted the protein-protein interface between FAK and VEGFR-3 and identified compound C4 (chloropyramine hydrochloride) as a drug capable of 1) inhibiting the biochemical function of VEGFR-3 and FAK, 2) inhibiting proliferation of a diverse set of cancer cell types in vitro, and 3) reducing tumor growth in vivo. Chloropyramine hydrochloride reduced tumor growth as a single agent, while concomitant administration with doxorubicin had a pronounced synergistic effect. Our data demonstrate that the FAK-VEGFR-3 interaction can be targeted by small drug-like molecules and this interaction can provide the basis for highly-specific novel cancer therapeutics. PMID:19610651

  10. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics.

    PubMed

    Michalski, John-Paul; Cummings, Sarah E; O'Meara, Ryan W; Kothary, Rashmi

    2016-02-01

    Integrin-linked kinase (ILK), a focal adhesion protein, brokers the link between cytoskeleton, cell membrane, and extracellular environment. Here, we demonstrate a role for ILK in laminin-2-mediated adhesion in primary murine oligodendrocytes (OLs) - with ILK loss leading to severe defects in process branching and outgrowth. These defects were partially recovered when the ILK-depleted OLs were instead grown on the non-integrin-activating substrate poly-l-lysine. Intriguingly, ILK loss on the neutral poly-l-lysine substrate led to swelling at the tips of OL processes, which we identified as enlarged growth cones. Employing the bloated ILK-depleted growth cones as template, we demonstrate the appearance of distinct cytoskeletal domains within OL growth cones bearing classic neuronal growth cone architecture. Further, microtubule organization was severely perturbed following ILK loss, with centripetal microtubule looping and failure to bundle occurring in a laminin-2-independent manner. Together, our work highlights differences in specific aspects of OL biology as driven by laminin-2-dependent or independent ILK governed mechanisms. We also reinforce the idea of OLs as growth cone bearing cells and describe the neuronal-like cytoskeleton therein. Finally, we demonstrate a role for ILK in OL growth cone maturation through microtubule regulation, the loss of which translates to decreased process length and myelin production capacity. We describe herein how different substrates fundamentally alter the oligodendrocyte's response to loss of integrin-linked kinase (ILK). On laminin-2 (Ln-2), ILK-depleted oligodendrocytes appear stunted and malformed, while on the non-integrin-activating substrate PLL branching and membrane formation are restored. We also reinforce the idea of oligodendrocytes as growth cone-bearing cells, detailing the growth cone's cytoskeletal architecture. Strikingly, loss of ILK on poly-l-lysine leads to growth cone swelling, the structure's size and

  11. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  12. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  13. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells.

    PubMed

    You, Dewen; Xin, Junping; Volk, Andrew; Wei, Wei; Schmidt, Rachel; Scurti, Gina; Nand, Sucha; Breuer, Eun-Kyoung; Kuo, Paul C; Breslin, Peter; Kini, Ameet R; Nishimura, Michael I; Zeleznik-Le, Nancy J; Zhang, Jiwang

    2015-03-31

    Mutations and inactivation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) are observed in 15%-25% of cases of human T cell acute lymphoblastic leukemia (T-ALL). Pten deletion induces myeloproliferative disorders (MPDs), acute myeloid leukemia (AML), and/or T-ALL in mice. Previous studies attributed Pten-loss-related hematopoietic defects and leukemogenesis to excessive activation of phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling. Although inhibition of this signal dramatically suppresses the growth of PTEN-null T-ALL cells in vitro, treatment with inhibitors of this pathway does not cause a complete remission in vivo. Here, we report that focal adhesion kinase (Fak), a protein substrate of Pten, also contributes to T-ALL development in Pten-null mice. Inactivation of the FAK signaling pathway by either genetic or pharmacologic methods significantly sensitizes both murine and human PTEN-null T-ALL cells to PI3K/AKT/mTOR inhibition when cultured in vitro on feeder layer cells or a matrix and in vivo. PMID:25801032

  14. Inhibition of transforming growth factor-β-activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis

    PubMed Central

    Ray, D M; Myers, P H; Painter, J T; Hoenerhoff, M J; Olden, K; Roberts, J D

    2012-01-01

    Background: Tumour cell metastasis involves cell adhesion and invasion, processes that depend on signal transduction, which can be influenced by the tumour microenvironment. N-6 polyunsaturated fatty acids, found both in the diet and in response to inflammatory responses, are important components of this microenvironment. Methods: We used short hairpin RNA (shRNA) knockdown of TGF-β-activated kinase-1 (TAK1) in human tumour cells to examine its involvement in fatty acid-stimulated cell adhesion and invasion in vitro. An in vivo model of metastasis was developed in which cells, stably expressing firefly luciferase and either a control shRNA or a TAK1-specific shRNA, were injected into the mammary fat pads of mice fed diets, rich in n-6 polyunsaturated fatty acids. Tumour growth and spontaneous metastasis were monitored with in vivo and in situ imaging of bioluminescence. Results: Arachidonic acid activated TAK1 and downstream kinases in MDA-MB-435 breast cancer cells and led to increased adhesion and invasion. Knockdown of TAK1 blocked this activation and inhibited both cell adhesion and invasion in vitro. Tumour growth at the site of injection was not affected by TAK1 knockdown, but both the incidence and extent of metastasis to the lung were significantly reduced in mice injected with TAK1 knockdown cells compared with mice carrying control tumour cells. Conclusion: These data demonstrate the importance of TAK1 signalling in tumour metastasis in vivo and suggest an opportunity for antimetastatic therapies. PMID:22644295

  15. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins

    PubMed Central

    Lopez-Sanchez, Inmaculada; Kalogriopoulos, Nicholas; Lo, I-Chung; Kabir, Firooz; Midde, Krishna K.; Wang, Honghui; Ghosh, Pradipta

    2015-01-01

    GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell–ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression. PMID:26446841

  16. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins.

    PubMed

    Lopez-Sanchez, Inmaculada; Kalogriopoulos, Nicholas; Lo, I-Chung; Kabir, Firooz; Midde, Krishna K; Wang, Honghui; Ghosh, Pradipta

    2015-12-01

    GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell-ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression.

  17. Differential requirement of protein tyrosine kinases and protein kinase C in the regulation of T cell locomotion in three-dimensional collagen matrices.

    PubMed

    Entschladen, F; Niggemann, B; Zänker, K S; Friedl, P

    1997-10-01

    Locomotion of T lymphocytes within three-dimensional collagen matrices is regulated via different signaling states of the cells. Purified human CD4+ and CD8+ T cells developed a spontaneously locomoting subpopulation of about 25% of the whole population immediately after incorporation into a three-dimensional collagen matrix analyzed by time-lapse videomicroscopy. This spontaneous locomotion was accompanied by enhanced tyrosine phosphorylation of the focal adhesion kinase (FAK). Inhibition of protein tyrosine kinase (PTK) activity using genistein significantly reduced the spontaneous locomotory activity. This reduction was overcome by subsequent activation of protein kinase C (PKC) using PMA, which led to a persistent increase of locomotory activity to more than 60% of the cells. Thus, the PKC-driven type of locomotion was independent of PTK activity, whereas spontaneous locomotion was not altered by inhibition of PKC activity using calphostin C or inhibition of the serine/ threonine phosphatases pp1 and pp2A using okadaic acid. We presume that PTK activity, especially tyrosine phosphorylation of FAK, is decisively involved in the regulation of spontaneous T lymphocyte locomotion, which is independent of PKC activity. In contrast, PKC-driven locomotion is independent of tyrosine phosphorylation events, indicating that T lymphocyte locomotion is regulated by more than one signal transduction pathway. Furthermore, confocal microscopy analysis of phosphotyrosine residues, FAK, and PKC revealed an exclusive cellular distribution of these components, suggesting a regulation of T lymphocyte locomotion different from migration models developed for other cell types, which refer to a colocalization of FAK and PKC in focal adhesions.

  18. Cyclic stretch reduces myofibrillar protein synthesis despite increases in FAK and anabolic signalling in L6 cells

    PubMed Central

    Atherton, P J; Szewczyk, N J; Selby, A; Rankin, D; Hillier, K; Smith, K; Rennie, M J; Loughna, P T

    2009-01-01

    Muscle protein synthesis is increased after exercise, but evidence is now accruing that during muscular activity it is suppressed. In life, muscles are subjected to shortening forces due to contraction, but may also be subject to stretching forces during lengthening. It would be biologically inefficient if contraction and stretch have different effects on muscle protein turnover, but little is known about the metabolic effects of stretch. To investigate this, we assessed myofibrillar and sarcoplasmic protein synthesis (MPS, SPS, respectively) by incorporation of [1-13C]proline (using gas chromatography–mass spectrometry) and anabolic signalling (by phospho-immunoblotting and kinase assays) in cultured L6 skeletal muscle cells during 30 min of cyclic stretch and over 30 min intervals for up to 120 min afterwards. SPS was unaffected, whereas MPS was suppressed by 40 ± 0.03% during stretch, before returning to basal rates by 90–20 min afterwards. Paradoxically, stretch stimulated anabolic signalling with peak values after 2–30 min: e.g. focal adhesion kinase (FAK Tyr576/577; +28 ± 6%), protein kinase B activity (Akt; +113 ± 31%), p70S6K1 (ribosomal S6 kinase Thr389; 25 ± 5%), 4E binding protein 1 (4EBP1 Thr37/46; 14 ± 3%), eukaryotic elongation factor 2 (eEF2 Thr56; −47 ± 4%), extracellular regulated protein kinase 1/2 (ERK1/2 Tyr202/204; +65%± 9%), eukaryotic initiation factor 2α (eIF2α Ser51; −20 ± 5%, P < 0.05) and eukaryotic initiation factor 4E (eIF4E Ser209; +33 ± 10%, P < 0.05). After stretch, except for Akt activity, stimulatory phosphorylations were sustained: e.g. FAK (+26 ± 11%) for ≥30 min, eEF2 for ≥60 min (peak −45 ± 4%), 4EBP1 for ≥90 min (+33 ± 5%), and p70S6K1 remained elevated throughout (peak +64 ± 7%). Adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was unchanged throughout. We report for the first time that acute cyclic stretch specifically suppresses MPS, despite increases in activity

  19. N-Ethylmaleimide-sensitive Factor Attachment Protein α (αSNAP) Regulates Matrix Adhesion and Integrin Processing in Human Epithelial Cells*

    PubMed Central

    Naydenov, Nayden G.; Feygin, Alex; Wang, Lifu; Ivanov, Andrei I.

    2014-01-01

    Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of β1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates β1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells. PMID:24311785

  20. Identification of Fer tyrosine kinase localized on microtubules as a platelet endothelial cell adhesion molecule-1 phosphorylating kinase in vascular endothelial cells.

    PubMed

    Kogata, Naoko; Masuda, Michitaka; Kamioka, Yuji; Yamagishi, Akiko; Endo, Akira; Okada, Masato; Mochizuki, Naoki

    2003-09-01

    Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phosphorylated PECAM-1 at the immunoreceptor tyrosine-based inhibitory motif. Notably, Fer induced tyrosine phosphorylation of SHP-2, which is known to bind to the immunoreceptor tyrosine-based inhibitory motif of PECAM-1, and Fer also induced tyrosine phosphorylation of Gab1 (Grb2-associated binder-1). Engagement-dependent PECAM-1 phosphorylation was inhibited by the overexpression of a kinase-inactive mutant of Fer, suggesting that Fer is responsible for the tyrosine phosphorylation upon PECAM-1 engagement. Furthermore, by using green fluorescent protein-tagged Fer and a time-lapse fluorescent microscope, we found that Fer localized at microtubules in polarized and motile vascular endothelial cells. Fer was dynamically associated with growing microtubules in the direction of cell-cell contacts, where p120catenin, which is known to associate with Fer, colocalized with PECAM-1. These results suggest that Fer localized on microtubules may play an important role in phosphorylation of PECAM-1, possibly through its association with p120catenin at nascent cell-cell contacts. PMID:12972546

  1. Paxillin, a novel controller in the signaling of estrogen to FAK/N-WASP/Arp2/3 complex in breast cancer cells.

    PubMed

    Shortrede, Jorge Eduardo; Uzair, Ivonne Denise; Neira, Flavia Judith; Flamini, Marina Inés; Sanchez, Angel Matías

    2016-07-15

    Breast cancer is the major cause of cancer-related death in women. Its treatment is particularly difficult when metastasis occurs. The ability of cancer cells to move and invade the surrounding environment is the basis of local and distant metastasis. Cancer cells are able to remodel the actin cytoskeleton, which requires the recruitment of numerous structural and regulatory proteins that modulate actin filaments dynamics, including Paxillin or the Neural Wiskott-Aldrich Syndrome Protein (N-WASP). We show that 17-β estradiol (E2) induces phosphorylation of Paxillin and its translocation toward membrane sites where focal adhesion complexes are assembled. This cascade is triggered by a Gαi1/Gβ protein-dependent signaling of estrogen receptor α (ERα) to c-Src, focal adhesion kinase (FAK) and Paxillin. Within this complex, activated Paxillin recruits the small GTPase Cdc42, which triggers N-WASP phosphorylation. This results in the redistribution of Arp2/3 complexes at sites where membrane structures related to cell movement are formed. Recruitment of Paxillin, Cdc42 and N-WASP is necessary for cell adhesion, migration and invasion induced by E2 in breast cancer cells. In parallel, we investigated whether Raloxifene (RAL), a selective estrogen receptor modulator (SERMs), could inhibit or revert the effects of E2 in breast cancer cell movement. We found that, in the presence of E2, RAL acts as an ER antagonist and displays an inhibitory effect on estrogen-promoted cell adhesion and migration via FAK/Paxillin/N-WASP. Our findings identify an original mechanism through which estrogen regulates breast cancer cell motility and invasion via Paxillin. These results may have clinical relevance for the development of new therapeutic strategies for cancer treatment. PMID:27095481

  2. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways

    PubMed Central

    Cheng, Hsin-Lin; Lin, Chiao-Wen; Yang, Jia-Sin; Hsieh, Ming-Ju; Yang, Shun-Fa; Lu, Ko-Hsiu

    2016-01-01

    Zoledronate is a standard treatment for preventing skeletal complications of osteoporosis and some types of cancer associated with bone metastases, but we little know whether the effect of zoledronate on metastasis of osteosarcoma. Here, we investigated the inhibitory effects of zoledronate on cell viability, motility, migration and invasion of 4 osteosarcoma cell lines (Saos2, MG-63, HOS and U2OS) by affecting cell morphology, epithelial-mesenchymal transition (EMT) and cytoskeletal organization as well as induction of E-cadherin and reduction of N-cadherin with activation of transcription factors Slug and Twist, especially in U2OS cells. Zoledronate decreased JNK and p38 phosphorylation and upper streams of focal adhesion kinase (FAK) and Src to suppress the motility, invasiveness and migration of U2OS cells. In addition to zoledronate-inhibited Rho A and Cdc42 membrane translocation and GTPγS activities, the anti-metastatic effects in U2OS cells including inhibition of adhesion were reversed by geranylgeraniol, but not farnesol. In conclusion, Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cell-matrix and cell-cell interactions, migration potential, the invasive activity, and the adhesive ability by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. PMID:26848867

  3. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways.

    PubMed

    Cheng, Hsin-Lin; Lin, Chiao-Wen; Yang, Jia-Sin; Hsieh, Ming-Ju; Yang, Shun-Fa; Lu, Ko-Hsiu

    2016-03-01

    Zoledronate is a standard treatment for preventing skeletal complications of osteoporosis and some types of cancer associated with bone metastases, but we little know whether the effect of zoledronate on metastasis of osteosarcoma. Here, we investigated the inhibitory effects of zoledronate on cell viability, motility, migration and invasion of 4 osteosarcoma cell lines (Saos2, MG-63, HOS and U2OS) by affecting cell morphology, epithelial-mesenchymal transition (EMT) and cytoskeletal organization as well as induction of E-cadherin and reduction of N-cadherin with activation of transcription factors Slug and Twist, especially in U2OS cells. Zoledronate decreased JNK and p38 phosphorylation and upper streams of focal adhesion kinase (FAK) and Src to suppress the motility, invasiveness and migration of U2OS cells. In addition to zoledronate-inhibited Rho A and Cdc42 membrane translocation and GTPγS activities, the anti-metastatic effects in U2OS cells including inhibition of adhesion were reversed by geranylgeraniol, but not farnesol. In conclusion, Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cell-matrix and cell-cell interactions, migration potential, the invasive activity, and the adhesive ability by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. PMID:26848867

  4. FAK inhibition with small molecule inhibitor Y15 decreases viability, clonogenicity, and cell attachment in thyroid cancer cell lines and synergizes with targeted therapeutics

    PubMed Central

    O'Brien, Shalana; Golubovskaya, Vita M.; Conroy, Jeffrey; Liu, Song; Wang, Dan; Liu, Biao; Cance, William G.

    2014-01-01

    Focal adhesion kinase (FAK) is up-regulated in thyroid cancer and small molecule FAK scaffolding inhibitor, Y15, was shown to decrease cancer growth in vitro and in vivo. We sought to test the effectiveness of Y15 in thyroid cancer cell lines, profile gene expression with Y15 compared with clinical trial FAK inhibitor PF-04554878, and use Y15 in novel drug combinations. Cell viability was decreased in a dose dependent manner in four thyroid cancer cell lines with Y15 and with higher doses in PF-04554878. Y397 FAK and total FAK were decreased with Y15 and decreased less with PF-04554878. Detachment and necrosis were increased in a dose-dependent manner in all cell lines with Y15. Clonogenicity was decreased in a dose-dependent manner for both Y15 and PF-04554878. We compared gene profiles between papillary thyroid cell lines, TPC1, BCPAP and K1, and 380, 109, and 74 genes were significantly >2-fold changed with Y15 treatment, respectively. Common up-regulated genes were involved in apoptosis, cell cycle, transcription and heat shock; down-regulated genes were involved in cell cycle, cell-to-cell interactions, and cancer stem cell markers. We also compared gene profiles of TT cells treated with Y15 versus PF-04554878. Y15 caused 144 genes to change over 4 fold and PF-04554878 caused 208 gene changes >4-fold (p<0.05). Among genes changed 4 fold, 11 were shared between the treatments, including those involved in metabolism, cell cycle, migration and transcription. Y15 demonstrated synergy with PF-04554878 in TT cells and also synergy with Cabozantinib, Sorafenib, Pazopanib, and strong synergy with Sunitinib in resistant K1 cells. This report revealed the biological effect of Y15 inhibitor, detected the unique and common gene signature profiles in response to Y15 in 4 different thyroid cancer cell lines, demonstrated differential response changes with Y15 and PF-04554878 treatment, and showed the synergy of Y15 with PF-04554878, Cabozantinib, Sorafenib, Pazopanib, and

  5. Suppression of MMP-9 and FAK expression by pomolic acid via blocking of NF-κB/ERK/mTOR signaling pathways in growth factor-stimulated human breast cancer cells.

    PubMed

    Park, Ji-Hyun; Cho, Yoon Young; Yoon, Seong Woo; Park, Byoungduck

    2016-09-01

    The expression of matrix metalloproteinase-9 (MMP-9) and the phosphorylation of focal adhesion kinase (FAK) have been implicated in the invasion, metastasis and cell motility of cancer cells. It is considered that epidermal growth factor (EGF) may increase cell motility, an event involved in cancer cell invasion and metastasis. Pomolic acid (PA), an active triterpenoid from Euscaphis japonica, is known to inhibit the proliferation of a variety of cancer cells, but the effect of PA on the invasiveness of cancer cells is largely unknown. In this study, we first determined the molecular mechanism by which PA inhibits the migratory and invasive abilities of highly metastatic MDA-MB‑231 cells. Transwell invasion, wound-healing assay and F-actin reorganization showed that PA significantly inhibits the EGF-induced invasion, migration and cell motility by reducing expression of MMP-9 and FAK phosphorylation. In particular, PA potently suppressed the phosphorylation of nuclear factor (NF)-κB, extraceullar signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, PA treatment inhibited the DNA binding activity of NF-κB and activator protein (AP)-1, which is known to mediate the expression of EGFR and MMP-9. These results suggest that PA may be a potential therapeutic candidate for treatment of breast cancer metastasis. PMID:27573547

  6. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth.

    PubMed

    Giannoni, Elisa; Buricchi, Francesca; Raugei, Giovanni; Ramponi, Giampietro; Chiarugi, Paola

    2005-08-01

    Src tyrosine kinases are central components of adhesive responses and are required for cell spreading onto the extracellular matrix. Among other intracellular messengers elicited by integrin ligation are reactive oxygen species, which act as synergistic mediators of cytoskeleton rearrangement and cell spreading. We report that after integrin ligation, the tyrosine kinase Src is oxidized and activated. Src displays an early activation phase, concurrent with focal adhesion formation and driven mainly by Tyr527 dephosphorylation, and a late phase, concomitant with reactive oxygen species production, cell spreading, and integrin-elicited kinase oxidation. In addition, our results suggest that reactive oxygen species are key mediators of in vitro and in vivo v-Src tumorigenic properties, as both antioxidant treatments and the oxidant-insensitive C245A and C487A Src mutants greatly decrease invasivity, serum-independent and anchorage-independent growth, and tumor onset. Therefore we propose that, in addition to the known phosphorylation/dephosphorylation circuitry, redox regulation of Src activity is required during both cell attachment to the extracellular matrix and tumorigenesis.

  7. alpha2-Adrenoceptor stimulation promotes actin polymerization and focal adhesion in 3T3F442A and BFC-1beta preadipocytes.

    PubMed

    Bétuing, S; Daviaud, D; Valet, P; Bouloumié, A; Lafontan, M; Saulnier-Blache, J S

    1996-12-01

    We previously demonstrated that in white fat cell precursors alpha2-adrenoceptor stimulation lead to the phosphorylation of p44 and p42 mitogen-activated protein kinases and an increase in cell number. Regulation of cell adhesion and cell cytoskeleton plays a crucial role in the control of cell growth by various growth factors. Here, we report that in mouse 3T3F442A preadipocytes expressing 2500 fmol/mg protein of the human alpha2C10-adrenoceptor (alpha2AF2 cells), alpha2-adrenergic stimulation rapidly restored the spreading of cells previously retracted by serum withdrawal. This effect was pertussis toxin sensitive and was blocked by pretreatment of the cells with dihydrocytochalasin B (a blocker of actin polymerization), genistein (a tyrosine kinase inhibitor), or agents that increase cell cAMP content. Spreading was accompanied by cell membrane ruffling, formation of lamelipodia and filipodia, appearance of focal adhesion plaques, and induction of actin stress fibers. alpha2-Adrenergic stimulation also lead to a rapid Gi- and actin-dependent tyrosine phosphorylation of the pp125 focal adhesion kinase (FAK) as well as of the p42 and p44 mitogen-activated protein kinases. alpha2-Adrenergic-dependent spreading and FAK and mitogen-activated protein kinase phosphorylation were also observed in 3T3F442A preadipocytes permanently expressing 20 fmol/mg protein of the human alpha2C10-adrenoceptor (alpha2AF3 cells) as well as in BFC-1beta preadipocytes, which constitutively express 25 fmol/mg protein of mouse alpha2A-adrenoceptors. In BFC-1beta preadipocytes, alpha2-adrenergic-dependent spreading and pp125FAK phosphorylation were counteracted by beta-adrenergic stimulation. Our results suggest that alpha2-adrenergic control of actin polymerization and focal adhesion assembly could play a crucial role in the regulation of preadipocyte growth by the sympathetic nervous system.

  8. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  9. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  10. Quantification of Myocyte Chemotaxis: A Role for FAK in Regulating Directional Motility

    PubMed Central

    Zajac, Britni; Hakim, Zeenat S.; Cameron, Morgan V.; Smithies, Oliver; Taylor, Joan M.

    2015-01-01

    Formation of a fully functional four-chambered heart involves an intricate and complex series of events that includes precise spatial–temporal regulation of cell specification, proliferation, and migration. The formation of the ventricular septum during mid-gestation ensures the unidirectional flow of blood, and is necessary for postnatal viability. Notably, a majority of all congenital malformations of the cardiovascular system in humans involve septal abnormalities which afflict 1 out of 100 newborn children in the United States. Thus, a clear understanding of the precise mechanisms involved in this morphogenetic event will undoubtedly reveal important therapeutic targets. The final step in valvuloseptal morphogenesis occurs, in part, by directed movement of flanking myocytes into the cushion mesenchyme. In order to identify the molecular mechanisms that regulate this critical myocyte function, we have developed two in vitro methodologies; a transwell assay to assess population changes in motility and a single-cell tracking assay to identify signals that drive the coordinated movement of these cells. These methods have proven effective to identify focal adhesion kinase (FAK) as an intracellular component that is critical for myocyte chemotaxis. PMID:22222526

  11. USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells.

    PubMed

    Ning, Zhen; Wang, Aman; Liang, Jinxiao; Xie, Yunpeng; Liu, Jiwei; Yan, Qiu; Wang, Zhongyu

    2014-10-01

    Epithelial-mesenchymal transition (EMT) contributes to the occurrence and development of tumors, particularly to the promotion of tumor invasion and metastasis. As a newly discovered ubiquitin hydrolase family member, USP22 plays a key role in the malignant transformation of tumors and the regulation of the cell cycle. However, recent studies on USP22 have primarily focused on its role in cell cycle regulation, and the potential mechanism underlying the promotion of tumor invasion and metastasis by abnormal USP22 expression has not been reported. Our studies revealed that the overexpression of USP22 in PANC-1 cells promoted Ezrin redistribution and phosphorylation and cytoskeletal remodeling, upregulated expression of the transcription factors Snail and ZEB1 to promote EMT, and increased cellular invasion and migration. In contrast, blockade of USP22 expression resulted in the opposite effects. In addition, the focal adhesion kinase (FAK) signaling pathway was shown to play a key role in the process of EMT induction in PANC-1 cells by USP22. Thus, the present study suggests that USP22 acts as a regulatory protein for EMT in pancreatic cancer, which may provide a new approach for the targeted therapy of pancreatic cancer. PMID:25070659

  12. Estrogen-Dependent Uterine Secretion of Osteopontin Activates Blastocyst Adhesion Competence

    PubMed Central

    Egashira, Mahiro; Bai, Rulan; Nomura, Nana; Nomura, Shintaro; Hirota, Yasushi; Sakurai, Toshihiro; Imakawa, Kazuhiko

    2012-01-01

    Embryo implantation is a highly orchestrated process that involves blastocyst-uterine interactions. This process is confined to a defined interval during gestation referred to as the “window of embryo implantation receptivity”. In mice this receptive period is controlled by ovarian estrogen and involves a coordination of blastocyst adhesion competence and uterine receptivity. Mechanisms coordinating the acquisition of blastocyst adhesion competence and uterine receptivity are largely unknown. Here, we show that ovarian estrogen indirectly regulates blastocyst adhesion competence. Acquisition of blastocyst adhesion competence was attributed to integrin activation (e.g. formation of adhesion complexes) rather than de novo integrin synthesis. Osteopontin (OPN) was identified as an estrogen-dependent uterine endometrial gland secretory factor responsible for activating blastocyst adhesion competence. Increased adhesion complex assembly in OPN-treated blastocysts was mediated through focal adhesion kinase (FAK)- and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways. These findings define for the first time specific regulatory components of an estrogen-dependent pathway coordinating blastocyst adhesion competence and uterine receptivity. PMID:23152823

  13. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration

    PubMed Central

    Villari, Giulia; Jayo, Asier; Zanet, Jennifer; Fitch, Briana; Serrels, Bryan; Frame, Margaret; Stramer, Brian M.; Goult, Benjamin T.; Parsons, Maddy

    2015-01-01

    ABSTRACT Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin–microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease. PMID:26542021

  14. Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes.

    PubMed

    Shin, Hyunjun; Lee, Mi Nam; Choung, Jin Seung; Kim, Sanghee; Choi, Byung Hyune; Noh, Minsoo; Shin, Jennifer H

    2016-08-01

    The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661891

  15. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Broussard, Tyler C.; Bose, Jeffrey L.; Rosch, Jason W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus. PMID:25002480

  16. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  17. The enhanced characteristics of osteoblast adhesion to porous Zinc-TiO2 coating prepared by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxiang; Gu, Beibei; Zhang, Wenjie; Kan, Guangyu; Sun, Junying

    2012-06-01

    Zinc-incorporated TiO2 coating (Zn-TiO2) was prepared on titanium (Ti) plate by plasma electrolytic oxidation (PEO) technique in the Ca, P, Zn-containing electrolyte. The surface topography, phase and element composition of the coatings were characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectrometer, respectively. Osteoblast-like MC3T3-E1 cell adhesion on Ti, TiO2 and Zn-TiO2 surfaces was evaluated and its possible signal transduction pathway involved was confirmed by the sequential gene expressions of integrin β1, α1, α3 and α5, focal adhesion kinase (FAK), and extracellular regulated kinases (ERK, including ERK1 and ERK2). The obtained results showed that Zn was successfully incorporated into the porous TiO2 coating, which did not alter apparently its surface topography and phase composition. The adhesion of MC3T3-E1 cells on Zn-incorporated TiO2 coating was significantly enhanced compared with that on the Zn-free TiO2 coating and pure Ti plate. In addition, the enhanced cell adhesion on Zn-TiO2 coating may be mediated by integrin (subunits β1 and α5) binding and subsequent signal transduction pathway (involving FAK and ERK1). The present work suggests that the Zn-incorporated porous TiO2 coating produced by PEO technique is promising as a candidate for orthopedic implant applications.

  18. Roles of syndecan-4 and relative kinases in dorsal root ganglion neuron adhesion and mechanotransduction.

    PubMed

    Lin, Tzu-Jou; Lu, Kung-Wen; Chen, Wei-Hsin; Cheng, Chao-Min; Lin, Yi-Wen

    2015-04-10

    Mechanical stimuli elicit a biological response and initiate complex physiological processes, including neural feedback schemes associated with senses such as pain, vibration, touch, and hearing. The syndecans (SDCs), a group of adhesion receptors, can modulate adhesion and organize the extracellular matrix (ECM). In this study, we cultured dorsal root ganglia (DRG) on controlled polydimethylsiloxane (PDMS) substrates coated with poly-l-lysine (poly) or fibronectin (FN) to investigate cell adhesion and mechanotransduction mechanisms by mechanical stretching on PDMS using DRG neurons. Our results demonstrated that neuronal density, neurite length, and neurite branching were lower in the PDMS group and could be further reversed through activating SDC-4 by FN. The expression of the SDC-4 pathway decreased but with increased pPKCα in the PDMS-poly group. After mechanical stretching, pPKCα-FAKpTyr397-pERK1/2 expression was increased in both poly- and FN-coated PDMS. These results indicate that SDC4-pPKCα-FAKpTyr397-pERK1/2 may play a crucial role in DRG adhesion and mechanotransduction. PMID:25757361

  19. Glycogen synthase kinase 3β dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy.

    PubMed

    Xu, Weiwei; Ge, Yan; Liu, Zhihong; Gong, Rujun

    2014-10-01

    Aberrant focal adhesion turnover is centrally involved in podocyte actin cytoskeleton disorganization and foot process effacement. The structural and dynamic integrity of focal adhesions is orchestrated by multiple cell signaling molecules, including glycogen synthase kinase 3β (GSK3β), a multitasking kinase lately identified as a mediator of kidney injury. However, the role of GSK3β in podocytopathy remains obscure. In doxorubicin (Adriamycin)-injured podocytes, lithium, a GSK3β inhibitor and neuroprotective mood stabilizer, obliterated the accelerated focal adhesion turnover, rectified podocyte hypermotility, and restored actin cytoskeleton integrity. Mechanistically, lithium counteracted the doxorubicin-elicited GSK3β overactivity and the hyperphosphorylation and overactivation of paxillin, a focal adhesion-associated adaptor protein. Moreover, forced expression of a dominant negative kinase dead mutant of GSK3β highly mimicked, whereas ectopic expression of a constitutively active GSK3β mutant abolished, the effect of lithium in doxorubicin-injured podocytes, suggesting that the effect of lithium is mediated, at least in part, through inhibition of GSK3β. Furthermore, paxillin interacted with GSK3β and served as its substrate. In mice with doxorubicin nephropathy, a single low dose of lithium ameliorated proteinuria and glomerulosclerosis. Consistently, lithium therapy abrogated GSK3β overactivity, blunted paxillin hyperphosphorylation, and reinstated actin cytoskeleton integrity in glomeruli associated with an early attenuation of podocyte foot process effacement. Thus, GSK3β-modulated focal adhesion dynamics might serve as a novel therapeutic target for podocytopathy.

  20. Fusicoccin A, a Phytotoxic Carbotricyclic Diterpene Glucoside of Fungal Origin, Reduces Proliferation and Invasion of Glioblastoma Cells by Targeting Multiple Tyrosine Kinases1

    PubMed Central

    Bury, Marina; Andolfi, Anna; Rogister, Bernard; Cimmino, Alessio; Mégalizzi, Véronique; Mathieu, Véronique; Feron, Olivier; Evidente, Antonio; Kiss, Robert

    2013-01-01

    Glioblastoma multiforme (GBM) is a deadly cancer that possesses an intrinsic resistance to pro-apoptotic insults, such as conventional chemotherapy and radiotherapy, and diffusely invades the brain parenchyma, which renders it elusive to total surgical resection. We found that fusicoccin A, a fungal metabolite from Fusicoccum amygdali, decreased the proliferation and migration of human GBM cell lines in vitro, including several cell lines that exhibit varying degrees of resistance to pro-apoptotic stimuli. The data demonstrate that fusicoccin A inhibits GBM cell proliferation by decreasing growth rates and increasing the duration of cell division and also decreases two-dimensional (measured by quantitative video microscopy) and three-dimensional (measured by Boyden chamber assays) migration. These effects of fusicoccin A treatment translated into structural changes in actin cytoskeletal organization and a loss of GBM cell adhesion. Therefore, fusicoccin A exerts cytostatic effects but low cytotoxic effects (as demonstrated by flow cytometry). These cytostatic effects can partly be explained by the fact that fusicoccin inhibits the activities of a dozen kinases, including focal adhesion kinase (FAK), that have been implicated in cell proliferation and migration. Overexpression of FAK, a nonreceptor protein tyrosine kinase, directly correlates with the invasive phenotype of aggressive human gliomas because FAK promotes cell proliferation and migration. Fusicoccin A led to the down-regulation of FAK tyrosine phosphorylation, which occurred in both normoxic and hypoxic GBM cell culture conditions. In conclusion, the current study identifies a novel compound that could be used as a chemical template for generating cytostatic compounds designed to combat GBM. PMID:23544164

  1. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  2. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  3. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  4. Focal Adhesion Kinase Signaling Mediated the Enhancement of Osteogenesis of Human Mesenchymal Stem Cells Induced by Extracorporeal Shockwave.

    PubMed

    Hu, Jun; Liao, Haojie; Ma, Zebin; Chen, Hongjiang; Huang, Zhonglian; Zhang, Yuantao; Yu, Menglei; Chen, Youbin; Xu, Jiankun

    2016-01-01

    Extracorporeal shockwave (ESW) has been shown of great potential in promoting the osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but it is unknown whether this osteogenic promotion effect can also be achieved in other MSCs (i.e., tendon-derived stem cells (TDSCs) and adipose-derived stem cells (ADSCs)). In the current study, we aimed not only to compare the osteogenic effects of BMSCs induced by ESW to those of TDSCs and ADSCs; but also to investigate the underlying mechanisms. We show here that ESW (0.16 mj/mm(2)) significantly promoted the osteogenic differentiation in all the tested types of MSCs, accompanied with the downregulation of miR-138, but the activation of FAK, ERK1/2, and RUNX2. The enhancement of osteogenesis in these MSCs was consistently abolished when the cells were pretreated with one of the following conditions: overexpression of miR-138, FAK knockdown using specific siRNA, and U0126, implying that all of these elements are indispensable for mediating the effect of ESW. Moreover, our study provides converging genetic and molecular evidence that the miR-138-FAK-ERK1/2-RUNX2 machinery can be generally activated in ESW-preconditioned MSCs, suggesting that ESW may be a promising therapeutic strategy for the enhancement of osteogenesis of MSCs, regardless of their origins.

  5. Focal Adhesion Kinase Signaling Mediated the Enhancement of Osteogenesis of Human Mesenchymal Stem Cells Induced by Extracorporeal Shockwave

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Liao, Haojie; Ma, Zebin; Chen, Hongjiang; Huang, Zhonglian; Zhang, Yuantao; Yu, Menglei; Chen, Youbin; Xu, Jiankun

    2016-02-01

    Extracorporeal shockwave (ESW) has been shown of great potential in promoting the osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but it is unknown whether this osteogenic promotion effect can also be achieved in other MSCs (i.e., tendon-derived stem cells (TDSCs) and adipose-derived stem cells (ADSCs)). In the current study, we aimed not only to compare the osteogenic effects of BMSCs induced by ESW to those of TDSCs and ADSCs; but also to investigate the underlying mechanisms. We show here that ESW (0.16 mj/mm2) significantly promoted the osteogenic differentiation in all the tested types of MSCs, accompanied with the downregulation of miR-138, but the activation of FAK, ERK1/2, and RUNX2. The enhancement of osteogenesis in these MSCs was consistently abolished when the cells were pretreated with one of the following conditions: overexpression of miR-138, FAK knockdown using specific siRNA, and U0126, implying that all of these elements are indispensable for mediating the effect of ESW. Moreover, our study provides converging genetic and molecular evidence that the miR-138-FAK-ERK1/2-RUNX2 machinery can be generally activated in ESW-preconditioned MSCs, suggesting that ESW may be a promising therapeutic strategy for the enhancement of osteogenesis of MSCs, regardless of their origins.

  6. Focal Adhesion Kinase Signaling Mediated the Enhancement of Osteogenesis of Human Mesenchymal Stem Cells Induced by Extracorporeal Shockwave

    PubMed Central

    Hu, Jun; Liao, Haojie; Ma, Zebin; Chen, Hongjiang; Huang, Zhonglian; Zhang, Yuantao; Yu, Menglei; Chen, Youbin; Xu, Jiankun

    2016-01-01

    Extracorporeal shockwave (ESW) has been shown of great potential in promoting the osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but it is unknown whether this osteogenic promotion effect can also be achieved in other MSCs (i.e., tendon-derived stem cells (TDSCs) and adipose-derived stem cells (ADSCs)). In the current study, we aimed not only to compare the osteogenic effects of BMSCs induced by ESW to those of TDSCs and ADSCs; but also to investigate the underlying mechanisms. We show here that ESW (0.16 mj/mm2) significantly promoted the osteogenic differentiation in all the tested types of MSCs, accompanied with the downregulation of miR-138, but the activation of FAK, ERK1/2, and RUNX2. The enhancement of osteogenesis in these MSCs was consistently abolished when the cells were pretreated with one of the following conditions: overexpression of miR-138, FAK knockdown using specific siRNA, and U0126, implying that all of these elements are indispensable for mediating the effect of ESW. Moreover, our study provides converging genetic and molecular evidence that the miR-138-FAK-ERK1/2-RUNX2 machinery can be generally activated in ESW-preconditioned MSCs, suggesting that ESW may be a promising therapeutic strategy for the enhancement of osteogenesis of MSCs, regardless of their origins. PMID:26863924

  7. The new InsP3Kinase inhibitor BIP-4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells.

    PubMed

    Schröder, Dominik; Tödter, Klaus; Gonzalez, Beatriz; Franco-Echevarría, Elsa; Rohaly, Gabor; Blecher, Christine; Lin, Hong-Ying; Mayr, Georg W; Windhorst, Sabine

    2015-07-15

    As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells.

  8. The Tyrosine Kinase Pyk2 Contributes to Complement-Mediated Phagocytosis in Murine Macrophages.

    PubMed

    Paone, Christoph; Rodrigues, Natalie; Ittner, Ella; Santos, Carina; Buntru, Alexander; Hauck, Christof R

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family and is mainly expressed in neuronal and hematopoietic cells. As FAK family members are involved in signaling connections downstream of integrins, we studied the role of Pyk2 in complement-receptor 3 (CR3, also known as Mac-1, integrin αMβ2, CD11b/CD18)-mediated phagocytosis, a key process in innate immunity. Using 3 independent approaches, we observed that Pyk2 contributes to CR3-dependent phagocytosis by RAW 264.7 macrophages, but is dispensable for Fcγ receptor (FcγR)-mediated uptake. Reduction of Pyk2 expression levels via siRNA, the pharmacological inhibition of Pyk2 kinase activity as well as macrophage treatment with a cell permeable TAT fusion protein containing the C-terminus of Pyk2 (TAT-PRNK) significantly impaired CR3-mediated phagocytosis without affecting FcγR-mediated uptake. In addition, Pyk2 was strongly recruited to complement opsonized Escherichia coli and the pharmacological inhibition of Pyk2 significantly decreased uptake of the bacteria. Finally, CRISPR/Cas-mediated disruption of the pyk2 gene in RAW 264.7 macrophages confirmed the role of this protein tyrosine kinase in CR3-mediated phagocytosis. Together, our data demonstrate that Pyk2 selectively contributes to the coordination of phagocytosis-promoting signals downstream of CR3, but is dispensable for FcγR-mediated phagocytosis.

  9. Redox Modulation of FAK Controls Melanoma Survival - Role of NOX4

    PubMed Central

    Ribeiro-Pereira, Cristiane; Moraes, João Alfredo; Souza, Mariele de Jesus; Laurindo, Francisco R.; Arruda, Maria Augusta; Barja-Fidalgo, Christina

    2014-01-01

    Studies have demonstrated that reactive oxygen species (ROS) generated by NADPH oxidase are essential for melanoma proliferation and survival. However, the mechanisms by which NADPH oxidase regulates these effects are still unclear. In this work, we investigate the role of NADPH oxidase-derived ROS in the signaling events that coordinate melanoma cell survival. Using the highly metastatic human melanoma cell line MV3, we observed that pharmacological NADPH oxidase inhibition reduced melanoma viability and induced dramatic cellular shape changes. These effects were accompanied by actin cytoskeleton rearrangement, diminished FAKY397 phosphorylation, and decrease of FAK-actin and FAK-cSrc association, indicating disassembly of focal adhesion processes, a phenomenon that often results in anoikis. Accordingly, NADPH oxidase inhibition also enhanced hypodiploid DNA content, and caspase-3 activation, suggesting activation of the apoptotic machinery. NOX4 is likely to be involved in these effects, since silencing of NOX4 significantly inhibited basal ROS production, reduced FAKY397 phosphorylation and decreased tumor cell viability. Altogether, the results suggest that intracellular ROS generated by the NADPH oxidase, most likely NOX4, transmits cell survival signals on melanoma cells through the FAK pathway, maintaining adhesion contacts and cell viability. PMID:24911159

  10. Adenovirus E4 Open Reading Frame 4–Induced Apoptosis Involves Dysregulation of Src Family Kinases

    PubMed Central

    Lavoie, Josée N.; Champagne, Claudia; Gingras, Marie-Claude; Robert, Amélie

    2000-01-01

    The adenoviral early region 4 open reading frame 4 (E4orf4) death factor induces p53-independent apoptosis in many cell types and appears to kill selectively transformed cells. Here we show that expression of E4orf4 in transformed epithelial cells results in early caspase-independent membrane blebbing, associated with changes in the organization of focal adhesions and actin cytoskeleton. Evidence that E4orf4 can associate with and modulate Src family kinase activity, inhibiting Src-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin while increasing phosphorylation of cortactin and some other cellular proteins, is presented. Furthermore, E4orf4 dramatically inhibited the ability of FAK and c-src to cooperate in induction of tyrosine phosphorylation of cellular substrates, suggesting that E4orf4 can interfere with the formation of a signaling complex at focal adhesion sites. Consistent with a functional role for E4orf4–Src interaction, overexpression of activated c-src dramatically potentiated E4orf4-induced membrane blebbing and apoptosis, whereas kinase dead c-src constructs inhibited E4orf4 effects on cell morphology and death. Moreover treatment of E4orf4-expressing cells with PP2, a selective Src kinase inhibitor, led to inhibition of E4orf4-dependent membrane blebbing and later to a marked decrease in E4orf4-induced nuclear condensation. Taken together, these observations indicate that expression of adenovirus 2 E4orf4 can initiate caspase-independent extranuclear manifestations of apoptosis through a modulation of Src family kinases and that these are involved in signaling E4orf4-dependent apoptosis. This study also suggests that Src family kinases are likely to play a role in the cytoplasmic execution of apoptotic programs. PMID:10973994

  11. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3

    PubMed Central

    Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-01-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618

  12. Pinocembrin suppresses TGF-β1-induced epithelial-mesenchymal transition and metastasis of human Y-79 retinoblastoma cells through inactivating αvβ3 integrin/FAK/p38α signaling pathway

    PubMed Central

    2014-01-01

    Background Pinocembrin is the most abundant flavonoid in propolis. In this study, we investigated the antimetastatic effect of pinocembrin on TGF-β1-induced epithelial-mesenchymal transition (EMT) and metastasis of human Y-79 retinoblastoma cells. Results Firstly, the results showed that pinocembrin significantly suppresses the TGF-β1-induced abilities of the invasion and migration of Y-79 cells under non-cytotoxic concentration. Pinocembrin decreased TGF-β1-induced expression of vimentin, N-cadherin, αv and β3 integrin in Y-79 cells. Molecular data also showed pinocembrin inhibits the activation of focal adhesion kinase (FAK) and p38α signal involved in the downregulation of enzyme activities, protein and messenger RNA levels of matrix metalloproteinase-2/9 (MMP-2/-9) induced by TGF-β1. Next, pinocembrin also strongly inhibited the degradation of inhibitor of kappaBα (IκBα) and the nuclear levels of nuclear factor kappa B (NF-κB). Also, a dose-dependent inhibition on the binding ability of NF-κB was further observed under pinocembrin treatment. Conclusions Presented results indicated that pinocembrin inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) and metastasis of Y-79 cells by inactivating the αvβ3 integrin/FAK/p38α signaling pathway. Thus, our findings point to the anticancer potential of pinocembrin against retinoblastoma cells. PMID:25949790

  13. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition.

    PubMed

    Wilson, Catherine; Nicholes, Katrina; Bustos, Daisy; Lin, Eva; Song, Qinghua; Stephan, Jean-Philippe; Kirkpatrick, Donald S; Settleman, Jeff

    2014-09-15

    Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, "EGFR-addicted" cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erlotinib-resistant cells, we performed a small molecule screen of ~200 established anti-cancer agents using the EGFR mutant NSCLC HCC827 cell line and a corresponding mesenchymal derivative line. The mesenchymal cells were more resistant to most tested agents; however, a small number of agents showed selective growth inhibitory activity against the mesenchymal cells, with the most potent being the Abl/Src inhibitor, dasatinib. Analysis of the tyrosine phospho-proteome revealed several Src/FAK pathway kinases that were differentially phosphorylated in the mesenchymal cells, and RNAi depletion of the core Src/FAK pathway components in these mesenchymal cells caused apoptosis. These findings reveal a novel role for Src/FAK pathway kinases in drug resistance and identify dasatinib as a potential therapeutic for treatment of erlotinib resistance associated with EMT. PMID:25193862

  14. Frutalin, a galactose-binding lectin, induces chemotaxis and rearrangement of actin cytoskeleton in human neutrophils: involvement of tyrosine kinase and phosphoinositide 3-kinase.

    PubMed

    Brando-Lima, Aline C; Saldanha-Gama, Roberta F; Henriques, Maria das Graças M O; Monteiro-Moreira, Ana C O; Moreira, Renato A; Barja-Fidalgo, Christina

    2005-10-15

    Several lectin-like molecules have been shown as potent activators of leukocytes. Galactose-binding lectins are of special interest since they could interact with several endogenous molecules involved in the innate and specific immune responses. The effects of Frutalin (FTL), an alpha-D-galactose (Gal)-binding plant lectin, on the modulation of neutrophil (PMN) functions were investigated. FTL induced a dose-dependent PMN migration in mice pleural cavity. Moreover, FTL was also a potent direct chemotactic for human PMN, in vitro, and triggered oxidative burst in these cells. These effects were accompanied by a rearrangement of the actin cytoskeleton dynamic, activation of tyrosine kinase (TK) pathways, increase in focal adhesion kinase (FAK) phosphorylation, and its subsequent association to phosphoinositide3-kinase (PI3K). All those effects were inhibited in the presence of Gal, suggesting specific carbohydrate recognition for FTL effects. The activations of TK and PI3K pathways are essential events for FTL-induced chemotaxis, since inhibitors of these pathways, genistein and LY294002, inhibited neutrophil migration in vitro. The data indicate that sugar-protein interactions between a soluble lectin and galacto-components on neutrophil surface trigger the TK pathway, inducing FAK and PI3K activation, interfering with cell motility and oxidative response.

  15. Integrin-Matrix Clusters Form Podosome-like Adhesions in the Absence of Traction Forces

    PubMed Central

    Yu, Cheng-han; Rafiq, Nisha Bte Mohd; Krishnasamy, Anitha; Hartman, Kevin L.; Jones, Gareth E.; Bershadsky, Alexander D.; Sheetz, Michael P.

    2013-01-01

    Summary Matrix-activated integrins can form different adhesion structures. We report that nontransformed fibroblasts develop podosome-like adhesions when spread on fluid Arg-Gly-Asp peptide (RGD)-lipid surfaces, whereas they habitually form focal adhesions on rigid RGD glass surfaces. Similar to classic macrophage podosomes, the podosome-like adhesions are protrusive and characterized by doughnut-shaped RGD rings that surround characteristic core components including F-actin, N-WASP, and Arp2/Arp3. Furthermore, there are 18 podosome markers in these adhesions, though they lack matrix metalloproteinases that characterize invadopodia and podosomes of Src-transformed cells. When nontransformed cells develop force on integrin-RGD clusters by pulling RGD lipids to prefabricated rigid barriers (metal lines spaced by 1–2 μm), these podosomes fail to form and instead form focal adhesions. The formation of podosomes on fluid surfaces is mediated by local activation of phosphoinositide 3-kinase (PI3K) and the production of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) in a FAK/PYK2-dependent manner. Enrichment of PIP3 precedes N-WASP activation and the recruitment of RhoA-GAP ARAP3. We propose that adhesion structures can be modulated by traction force development and that production of PIP3 stimulates podosome formation and subsequent RhoA downregulation in the absence of traction force. PMID:24290759

  16. Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κB signaling.

    PubMed

    Dia, Vermont P; Gonzalez de Mejia, Elvira

    2011-12-27

    The effect of lunasin on colon cancer metastasis was studied using three human colon cancer cell lines in vitro and a liver metastasis model of colon cancer in vivo. Lunasin bound with α5β1 integrin and internalized into the nucleus of KM12L4 human colon cancer cells. Lunasin (10 μM) inhibited the activation of focal adhesion kinase (FAK) by 28%, 39% and 60% in RKO, HCT-116 and KM12L4 human colon cancer cells, respectively. Lunasin caused an increase in the expression of the inhibitor of kappa B alpha (IκB-α), a decrease in nuclear p50 NF-κB and a reduction in the migration of cancer cells. Lunasin (4 mg/kg bw) inhibited metastasis and potentiated the effect of oxaliplatin by reducing the expression of proliferating cell nuclear antigen. Liver metastatic nodules were reduced from 28 (PBS) to 14 (lunasin, P = 0.047) while combination of lunasin and oxaliplatin to 5 (P = 0.004). The tumor burden was reduced from 0.13 (PBS) to 0.10 (lunasin, P = 0.039) to 0.04 (lunasin + oxaliplatin, P < 0.0001). Moreover, lunasin potentiated the effect of oxaliplatin in modifying expression of proteins involved in apoptosis and metastasis including Bax, Bcl-2, IKK-α and p-p65. Lunasin inhibited metastasis of human colon cancer cells by direct binding with α5β1 integrin suppressing FAK/ERK/NF-κB signaling, and potentiated the effect of oxaliplatin in preventing the outgrowth of metastasis.

  17. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer

    PubMed Central

    Thakur, Ravi; Trivedi, Rachana; Rastogi, Namrata; Singh, Manisha; Mishra, Durga Prasad

    2015-01-01

    Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard inhibitors revealed that STAT3 inhibition affected CSCs properties more significantly than FAK or Src inhibition. We observed a significant decrease in cell migration upon FAK and Src inhibition and decrease in invasion upon inhibition of STAT3, FAK and Src. Combined inhibition of STAT3 with Src or FAK reduced the mammosphere formation, migration and invasion more significantly than the individual inhibitions. These observations indicated that the anti-breast cancer properties of Shk are due to its potential to inhibit multiple signaling proteins. Shk also reduced the activation and expression of STAT3, FAK and Src in vivo and reduced tumorigenicity, growth and metastasis of 4T1 cells. Collectively, this study underscores the translational relevance of using a single inhibitor (Shk) for compromising multiple tumor-associated signaling pathways to check cancer metastasis and stem cell load. PMID:25973915

  18. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer.

    PubMed

    Thakur, Ravi; Trivedi, Rachana; Rastogi, Namrata; Singh, Manisha; Mishra, Durga Prasad

    2015-01-01

    Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard inhibitors revealed that STAT3 inhibition affected CSCs properties more significantly than FAK or Src inhibition. We observed a significant decrease in cell migration upon FAK and Src inhibition and decrease in invasion upon inhibition of STAT3, FAK and Src. Combined inhibition of STAT3 with Src or FAK reduced the mammosphere formation, migration and invasion more significantly than the individual inhibitions. These observations indicated that the anti-breast cancer properties of Shk are due to its potential to inhibit multiple signaling proteins. Shk also reduced the activation and expression of STAT3, FAK and Src in vivo and reduced tumorigenicity, growth and metastasis of 4T1 cells. Collectively, this study underscores the translational relevance of using a single inhibitor (Shk) for compromising multiple tumor-associated signaling pathways to check cancer metastasis and stem cell load. PMID:25973915

  19. The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells

    PubMed Central

    Fiorcari, Stefania; Brown, Wells S.; McIntyre, Bradley W.; Estrov, Zeev; Maffei, Rossana; O’Brien, Susan; Sivina, Mariela; Hoellenriegel, Julia; Wierda, William G.; Keating, Michael J.; Ding, Wei; Kay, Neil E.; Lannutti, Brian J.; Marasca, Roberto; Burger, Jan A.

    2013-01-01

    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3Kδ) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNFα-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood. PMID:24376763

  20. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  1. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings

    PubMed Central

    Zhou, Jianhong; Han, Yong; Lu, Shemin

    2014-01-01

    The process in which nanostructured surfaces mediate cell adhesion is not well understood, and may be indirect (via protein adsorption) or direct. We prepared Sr-doped hydroxyapatite (Sr1-HA) 3D nanorods (with interrod spacing of 67.3±3.8, 95.7±4.2, and 136.8±8.7 nm) and 2D nanogranulate patterned coatings on titanium. Employing the coatings under the same surface chemistry and roughness, we investigated the indirect/direct role of Sr1-HA nanotopographies in the regulation of osteoblast adhesion in both serum-free and serum-containing Dulbecco’s Modified Eagle/Ham’s Medium. The results reveal that the number of adherent cells, cell-secreted anchoring proteins (fibronectin, vitronectin, and collagen), vinculin and focal adhesion kinase (FAK) denoted focal adhesion (FA) contact, and gene expression of vinculin, FAK, and integrin subunits (α2, α5, αv, β1, and β3), undergo significant changes in the inter-nanorod spacing and dimensionality of Sr1-HA nanotopographies in the absence of serum; they are significantly enhanced on the <96 nm spaced nanorods and more pronounced with decreasing interrod spacing. However, they are inhibited on the >96 nm spaced nanorods compared to nanogranulated 2D topography. Although the adsorption of fibronectin and vitronectin from serum are higher on 136.8±8.7 nm spaced nanorod patterned topography than nanogranulated topography, cell adhesion is inhibited on the former compared to the latter in the presence of serum, further suggesting that reduced cell adhesion is independent of protein adsorption. It is clearly indicated that 3D nanotopography can directly modulate cell adhesion by regulating integrins, which subsequently mediate anchoring proteins’ secretion and FA formation rather than via protein adsorption. PMID:24634585

  2. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings.

    PubMed

    Zhou, Jianhong; Han, Yong; Lu, Shemin

    2014-01-01

    The process in which nanostructured surfaces mediate cell adhesion is not well understood, and may be indirect (via protein adsorption) or direct. We prepared Sr-doped hydroxyapatite (Sr1-HA) 3D nanorods (with interrod spacing of 67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and 2D nanogranulate patterned coatings on titanium. Employing the coatings under the same surface chemistry and roughness, we investigated the indirect/direct role of Sr1-HA nanotopographies in the regulation of osteoblast adhesion in both serum-free and serum-containing Dulbecco's Modified Eagle/Ham's Medium. The results reveal that the number of adherent cells, cell-secreted anchoring proteins (fibronectin, vitronectin, and collagen), vinculin and focal adhesion kinase (FAK) denoted focal adhesion (FA) contact, and gene expression of vinculin, FAK, and integrin subunits (α2, α5, αv, β1, and β3), undergo significant changes in the inter-nanorod spacing and dimensionality of Sr1-HA nanotopographies in the absence of serum; they are significantly enhanced on the <96 nm spaced nanorods and more pronounced with decreasing interrod spacing. However, they are inhibited on the >96 nm spaced nanorods compared to nanogranulated 2D topography. Although the adsorption of fibronectin and vitronectin from serum are higher on 136.8 ± 8.7 nm spaced nanorod patterned topography than nanogranulated topography, cell adhesion is inhibited on the former compared to the latter in the presence of serum, further suggesting that reduced cell adhesion is independent of protein adsorption. It is clearly indicated that 3D nanotopography can directly modulate cell adhesion by regulating integrins, which subsequently mediate anchoring proteins' secretion and FA formation rather than via protein adsorption. PMID:24634585

  3. Heparin regulates B6FS cell motility through a FAK/actin cytoskeleton axis

    PubMed Central

    Voudouri, Kallirroi; Nikitovic, Dragana; Berdiaki, Aikaterini; Papachristou, Dionysios J.; Tsiaoussis, John; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Tzanakakis, George N.

    2016-01-01

    Soft tissue sarcomas are rare, heterogeneous tumors of mesenchymal origin with an aggressive behavior. Heparin is a mixture of heavily sulfated, linear glycosaminoglycan (GAG) chains, which participate in the regulation of various cell biological functions. Heparin is considered to have significant anticancer capabilities, although the mechanisms involved have not been fully defined. In the present study, the effects of unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) on B6FS fibrosarcoma cell motility were examined. Both preparations of heparin were shown to both enhance B6FS cell adhesion (p<0.01 and p<0.05), and migration (p<0.05), the maximal effect being evident at the concentration of 10 µg/ml. The utilization of FAK-deficient cells demonstrated that the participation of FAK was obligatory for heparin-dependent fibrosarcoma cell adhesion (p<0.05). The results of confocal microscopy indicated that heparin was taken up by the B6FS cells, and that UFH and LMWH induced F-actin polymerization. Heparitinase digestion demonstrated that the endogenous heparan sulfate (HS) chains did not affect the motility of the B6FS cells (p>0.05, not significant). In conclusion, both UFH and LMWH, through a FAK/actin cytoskeleton axis, promoted the adhesion and migration of B6FS fibrosarcoma cells. Thus, our findings indicate that the responsiveness of fibrosarcoma cells to the exogenous heparin/HS content of the cancer microenvironment may play a role in their ability to become mobile and metastasize. PMID:27572115

  4. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.

    PubMed Central

    Khwaja, A; Rodriguez-Viciana, P; Wennström, S; Warne, P H; Downward, J

    1997-01-01

    Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells. PMID:9184223

  5. Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation.

    PubMed

    Lin, Tung-Yi; Hsu, Hsien-Yeh

    2016-06-01

    We recently reported that recombinant Ling Zhi-8 (rLZ-8), a medicinal mushroom Ganoderma lucidum recombinant protein, effectively prevents lung cancer cells proliferation in vivo mice model. In our current study, we demonstrated that rLZ-8 suppressed tumor metastasis and increased the survival rate in Lewis lung carcinoma cell-bearing mice. The epithelial to mesenchymal transition (EMT) process is regarded as the critical event in tumor metastasis. Herein, we showed that rLZ-8 effectively induced changes in EMT by interfering with cell adhesion and focal adhesion kinase (FAK) functions in lung cancer cells. Slug, a transcription factor, represses E-cadherin transcription and is regarded as a critical event in EMT and tumor metastasis. Functional studies revealed that downregulation of Slug as a result of rLZ-8-induced FAK inactivation enhanced E-cadherin expression and repressed cancer cell mobility. Moreover, we found that rLZ-8 enhanced the ubiquitination proteasome pathway (UPP)-mediated degradation of Slug in CL1-5 cells. Mechanistically, we demonstrated that rLZ-8 promoted the interaction between MDM2 and Slug, resulting in Slug degradation; however, MDM2-shRNA abolished rLZ-8-enhanced Slug degradation. This study is the first to determine anti-metastatic activity of rLZ-8 and its potential mechanism, with how the regulation of EMT and cell mobility is via the negative modulation of FAK, and thereby leading to the ubiquitination and degradation of Slug. Our findings suggest that the targets of FAK play a key role in metastasis. Moreover, rLZ-8 may be useful as a chemotherapeutic agent for treating lung cancer. PMID:26992741

  6. Augmentation of RANTES-induced extracellular signal-regulated kinase mediated signaling and T cell adhesion by elastase-treated fibronectin.

    PubMed

    Brill, A; Hershkoviz, R; Vaday, G G; Chowers, Y; Lider, O

    2001-06-15

    T cells migrating across extracellular matrix (ECM) barriers toward their target, the inflammatory site, should respond to chemoattractant cytokines and to the degradation of ECM by specific enzymes. In this study, we examined the effects of RANTES and ECM proteins treated with human leukocyte elastase on T cell activation and adhesion to the ECM. We found that human peripheral blood T cells briefly suspended with RANTES (0.1-100 ng/ml) had increased phosphorylation of their intracellular extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase involved in the activation of several intracellular downstream effector molecules implicated in cell adhesion and migration. Consequently, a small portion (12-20%) of the responding cells adhered to fibronectin (FN). However, when the T cells were exposed to RANTES in the presence of native immobilized FN, laminin, or collagen type I, ERK phosphorylation was partially inhibited, suggesting that this form of the ECM proteins can down-regulate RANTES-induced intracellular signaling. In contrast, when the T cells were exposed to RANTES in the presence of elastase-treated immobilized FN, but not to elastase-treated laminin, ERK phosphorylation was markedly increased. Furthermore, a large percentage (30%) of RANTES-activated T cells adhered to the enzymatically treated FN in a beta1 integrin-dependent fashion. Thus, while migrating along chemotactic gradients within the ECM, T cells can adapt their adhesive performance according to the level of cleavage induced by enzymes to the matrix. PMID:11390457

  7. In vivo epidermal migration requires focal adhesion targeting of ACF7

    DOE PAGESBeta

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G.; Gou, Xuewen; Lee, Philbert; Liu, Han; Lyu, Wanqing; Tang, Wei -Jen; Chen, Shao -Yu; Yang, Feng; et al

    2016-05-24

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essentialmore » for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Altogether, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.« less

  8. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    PubMed Central

    Wang, Hsian-Yu; Hsu, Min-Kung; Wang, Kai-Hsuan; Tseng, Ching-Ping; Chen, Feng-Chi; Hsu, John T-A

    2016-01-01

    Background Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC) patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs. Results Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits cell adhesion-related response and greatly enhances the cell-killing effects of EGFR TKI (gefitinib for the PC9 cells; afatinib for the H1975 cells) in NSCLC cells, which would otherwise escape the TKI-induced apoptosis. Conclusion Results from this study indicate that NSCLC cells can employ the adhesion response as a survival pathway to survive under EGFR-targeted therapy. Simultaneous targeting of EGFR signaling and adhesion pathways would further boost the efficacy of EGFR-targeted therapy in NSCLC. PMID:27284246

  9. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells.

    PubMed

    Vultur, Adina; Buettner, Ralf; Kowolik, Claudia; Liang, Wei; Smith, David; Boschelli, Frank; Jove, Richard

    2008-05-01

    Src family kinase activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective Src family kinase inhibitor, on human cancer cells derived from breast cancer patients to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of approximately 250 nmol/L, which was also the IC50 for inhibition of cellular Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), and Crk-associated substrate (p130Cas), with an IC50 similar to inhibition of cellular Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer.

  10. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  11. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  12. Roles of phosphatidylinositol 3-kinase and NF-kappaB in human cytomegalovirus-mediated monocyte diapedesis and adhesion: strategy for viral persistence.

    PubMed

    Smith, M Shane; Bivins-Smith, Elizabeth R; Tilley, A Michael; Bentz, Gretchen L; Chan, Gary; Minard, Jessica; Yurochko, Andrew D

    2007-07-01

    Infected peripheral blood monocytes are proposed to play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to tissues, a critical step in the establishment of HCMV persistence and the development of HCMV-associated diseases. We recently provided evidence for a unique strategy involved in viral dissemination: HCMV infection of primary human monocytes promotes their transendothelial migration and differentiation into proinflammatory macrophages permissive for the replication of the original input virus. To decipher the mechanism of hematogenous spread, we focused on the viral dysregulation of early cellular processes involved in transendothelial migration. Here, we present evidence that both phosphatidylinositol 3-kinase [PI(3)K] and NF-kappaB activities were crucial for the HCMV induction of monocyte motility and firm adhesion to endothelial cells. We found that the beta(1) integrins, the beta(2) integrins, intracellular adhesion molecule 1 (ICAM-1), and ICAM-3 were upregulated following HCMV infection and that they played a key role in the firm adhesion of infected monocytes to the endothelium. The viral regulation of adhesion molecule expression is complex, with PI(3)K and NF-kappaB affecting the expression of each adhesion molecule at different stages of the expression cascade. Our data demonstrate key roles for PI(3)K and NF-kappaB signaling in the HCMV-induced cellular changes in monocytes and identify the biological rationale for the activation of these pathways in infected monocytes, which together suggest a mechanism for how HCMV promotes viral spread to and persistence within host organs.

  13. Protein tyrosine kinase 6 promotes ERBB2-induced mammary gland tumorigenesis in the mouse.

    PubMed

    Peng, M; Ball-Kell, S M; Tyner, A L

    2015-01-01

    Protein tyrosine kinase 6 (PTK6) expression, activation, and amplification of the PTK6 gene have been reported in ERBB2/HER2-positive mammary gland cancers. To explore contributions of PTK6 to mammary gland tumorigenesis promoted by activated ERBB2, we crossed Ptk6-/- mice with the mouse mammary tumor virus-ERBB2 transgenic mouse line expressing activated ERBB2 and characterized tumor development and progression. ERBB2-induced tumorigenesis was significantly delayed and diminished in mice lacking PTK6. PTK6 expression was induced in the mammary glands of ERBB2 transgenic mice before tumor development and correlated with activation of signal transducer and activator of transcription 3 (STAT3) and increased proliferation. Disruption of PTK6 impaired STAT3 activation and proliferation. Phosphorylation of the PTK6 substrates focal adhesion kinase (FAK) and breast cancer anti-estrogen resistance 1 (BCAR1; p130CAS) was decreased in Ptk6-/- mammary gland tumors. Reduced numbers of metastases were detected in the lungs of Ptk6-/- mice expressing activated ERBB2, compared with wild-type ERBB2 transgenic mice. PTK6 activation was detected at the edges of ERBB2-positive tumors. These data support roles for PTK6 in both ERBB2-induced mammary gland tumor initiation and metastasis, and identify STAT3, FAK, and BCAR1 as physiologically relevant PTK6 substrates in breast cancer. Including PTK6 inhibitors as part of a treatment regimen could have distinct benefits in ERBB2/HER2-positive breast cancers.

  14. Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance

    PubMed Central

    Sakamoto, Shinichi; McCann, Richard O.; Dhir, Rajiv; Kyprianou, Natasha

    2010-01-01

    Talin1 is a focal adhesion complex protein that regulates integrin interactions with the extracellular matrix (ECM). This study investigated the significance of talin1 in prostate cancer progression to metastasis in vitro and in vivo. Talin1 overexpression enhanced prostate cancer cell adhesion, migration and invasion by activating survival signals and conferring resistance to anoikis. ShRNA-mediated talin1 loss led to a significant suppression of prostate cancer cell migration and transendothelial invasion in vitro and a significant inhibition of prostate cancer metastasis in vivo. Talin1 regulated cell survival signals via phosphorylation of focal adhesion complex proteins such as focal adhesion kinase (FAK) and Src, and downstream activation of AKT. Targeting AKT activation led to a significant reduction of talin1-mediated prostate cancer cell invasion. Furthermore, talin1 immunoreactivity directly correlated with prostate tumor progression to metastasis in the TRAMP mouse model. Talin1 profiling in human prostate specimens revealed a significantly higher expression of cytoplasmic talin1 in metastatic tissue compared to primary prostate tumors (P<0.0001). These findings suggest: (a) a therapeutic significance of disrupting talin1 signaling/focal adhesion interactions in targeting metastatic prostate cancer and (b) a potential value for talin1 as a marker of tumor progression to metastasis. PMID:20160039

  15. Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and beta1 integrin receptors.

    PubMed

    Smith, Julie A; Samayawardhena, Lionel A; Craig, Andrew W B

    2010-03-01

    Activation of Kit receptor protein-tyrosine kinase (PTK) by its ligand Stem Cell Factor (SCF) is required for the development of mast cells, and for the regulation of mast cell proliferation, migration and modulation of inflammatory mediator release. Recent studies have implicated the non-receptor PTK Fps/Fes (hereafter referred to as Fes) in signaling downstream of oncogenic Kit, however, the potential role of Fes in regulating Kit signaling is not well defined. In this study, we show that SCF induces transient tyrosine phosphorylation of wild-type Fes as well as kinase-dead Fes in bone marrow-derived mast cells (BMMCs). The latter finding implicates an upstream kinase acting on Fes, which we identified as Fyn PTK. SCF treatment of BMMCs promoted recruitment of Fes to Kit, potentially via direct interaction of the Fes SH2 domain with phosphorylated Kit. While Fes was not required for SCF-induced signaling to Akt and Erk kinases, Fes-deficient (fes-/-) BMMCs displayed a defect in sustained p38 kinase activation, compared to control cells. SCF-treated Fes-deficient BMMCs also displayed elevated beta1 integrin-mediated cell adhesion and spreading on fibronectin, compared to control cells, and a reduction in cell polarization at later times of SCF treatment. Restoring Fes expression in fes-/- BMMCs by retroviral transduction was sufficient to rescue cell spreading and polarization defects. Interestingly, SCF-induced chemotaxis of BMMCs was also defective in Fes-deficient BMMCs, and restored in Fes-rescue BMMCs. Overall, these results implicate Fes in regulating cross-talk between Kit and beta1 integrins to promote cytoskeletal reorganization and motility of mast cells.

  16. Insights into the Utility of the Focal Adhesion Scaffolding Proteins in the Anaerobic Fungus Orpinomyces sp. C1A

    PubMed Central

    Calkins, Shelby; Youssef, Noha H.

    2016-01-01

    Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all metazoan cells and function as stable sites of tight adhesion between the extracellular matrix (ECM) and the cell’s cytoskeleton. FAs consist of anchor membrane protein (integrins), scaffolding proteins (e.g. α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP complex (e.g. integrin-linked kinase, α-parvin, and PINCH), and signaling kinases (e.g. focal adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion machineries are present in genomes of all multicellular Metazoa; incomplete machineries were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal fungal lineages, and amoebozoan representatives. Since a complete FA machinery is required for functioning, the putative role, if any, of these incomplete FA machineries is currently unclear. We sought to examine the expression patterns of FA-associated genes in the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth conditions and at different developmental stages. Strain C1A lacks clear homologues of integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding proteins, and the IPP complex proteins. We developed a protocol for synchronizing growth of C1A cultures, allowing for the collection and mRNA extraction from flagellated spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of strain C1A. We demonstrate that the genes encoding the FA scaffolding proteins α-actinin, talin, paxillin, and vinculin are indeed transcribed under all growth conditions, and at all developmental stages of growth. Further, analysis of the observed transcriptional patterns suggests the putative involvement of these components in alternative non-adhesion-specific functions, such as hyphal tip growth during germination and flagellar assembly during zoosporogenesis. Based on these results

  17. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  18. NOV/CCN3 induces adhesion of muscle skeletal cells and cooperates with FGF2 and IGF-1 to promote proliferation and survival.

    PubMed

    Lafont, Jerôme; Thibout, Hélène; Dubois, Catherine; Laurent, Maryvonne; Martinerie, Cécile

    2005-01-01

    During mammalian development, expression of the Nephroblastoma overexpressed gene (NOV/CCN3) is tightly regulated in skeletal muscles. Ex vivo, ectopic expression of NOV blocks myogenic differentiation. NOV also supports endothelial cell adhesion and angiogenesis through interactions with integrins. Integrins play fundamental roles during myogenesis. In this study, we show that NOV mediates adhesion and spreading of myoblasts. Myoblasts adhesion to NOV does not require proteoglycans and is dependent on integrin beta1, whereas spreading involves another RGD-sensitive integrin. The C-Terminal part of NOV as well as full-length is able to support adhesion of myoblasts; in addition, both increase focal-adhesion kinase (FAK) phosphorylation. Furthermore, NOV is an adhesive substrate that, combined with FGF2 or IGF-1, promotes cell specific proliferation and survival, respectively, in a better way than fibronectin. Taken together, these results identify NOV as an adhesion substrate for myoblasts which, in concert with growth factors, could play a role in the physiology of muscle cells.

  19. Mitogen-Activated Protein Kinase Phosphorylation of Splicing Factor 45 (SPF45) Regulates SPF45 Alternative Splicing Site Utilization, Proliferation, and Cell Adhesion

    PubMed Central

    Al-Ayoubi, Adnan M.; Zheng, Hui; Liu, Yuying; Bai, Tao

    2012-01-01

    The regulation of alternative mRNA splicing factors by extracellular cues and signal transduction cascades is poorly understood. Using an engineered extracellular signal-regulated kinase 2 (ERK2) that can utilize ATP analogs, we have identified the alternative mRNA splicing factor 45 (SPF45), which is overexpressed in cancer, as a novel coimmunoprecipitating ERK2 substrate. ERK2 phosphorylated SPF45 on Thr71 and Ser222 in vitro and in cells in response to H-RasV12, B-RAF-V600E, and activated MEK1. Jun N-terminal kinase 1 (JNK1) and p38α also phosphorylated SPF45 in vitro and associated with SPF45 in cells. SPF45 was differentially phosphorylated in cells by all three mitogen-activated protein (MAP) kinases in response to phorbol myristate acid (PMA), H2O2, UV, and anisomycin stimulation. ERK and p38 activation decreased SPF45-dependent exon 6 exclusion from fas mRNA in a minigene assay in cells. Stable overexpression of SPF45 in SKOV-3 cells dramatically inhibited cell proliferation in a phosphorylation-dependent manner through inhibition of ErbB2 expression. SPF45 overexpression also induced EDA inclusion into fibronectin transcripts and fibronectin expression in a phosphorylation-dependent and -independent manner, respectively, specifically affecting cellular adhesion to a fibronectin matrix. These data identify SPF45 as the first splicing factor regulated by multiple MAP kinase pathways and show effects of both SPF45 overexpression and phosphorylation. PMID:22615491

  20. Crystal Structures of Free and Ligand-Bound Focal Adhesion Targeting Domain of Pyk2

    SciTech Connect

    Lulo, J.; Yuzawa, S; Schlessinger, J

    2009-01-01

    Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the a1a4 and a2a3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.

  1. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  2. JUNCTIONAL COMPLEX AND FOCAL ADHESION REARRANGEMENT MEDIATES PULMONARY ENDOTHELIAL BARRIER ENHANCEMENT BY FTY720 S-PHOSPHONATE

    PubMed Central

    Wang, Lichun; Bittman, Robert; Garcia, Joe G.N.; Dudek, Steven M.

    2015-01-01

    Rationale Modulation of pulmonary vascular barrier function is an important clinical goal given the devastating effects of vascular leak in acute lung injury (ALI). We previously demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine 1-phosphate (S1P) and FTY720, has more potent pulmonary barrier protective effects than these agents in vitro and in mouse models of ALI. Tys preserves expression of the barrier-promoting S1P1 receptor (S1PR1), whereas S1P and FTY720 induce its ubiquitination and degradation. Here we further characterize the novel barrier promoting effects of Tys in cultured human pulmonary endothelial cells (EC). Methods/Results : In human lung EC, Tys significantly increased peripheral redistribution of adherens junction proteins VE-cadherin and β-catenin and tight junction protein ZO-1. Inhibition of VE-cadherin with blocking antibody significantly attenuated Tys-induced transendothelial resistance (TER) elevation, while ZO-1 siRNA partially inhibited this elevation. Tys significantly increased focal adhesion formation and phosphorylation of focal adhesion kinase (FAK). Pharmacologic inhibition of FAK significantly attenuated Tys-induced TER elevation. Tys significantly increased phosphorylation and peripheral redistribution of the actin-binding protein, cortactin, while cortactin siRNA partially attenuated Tys-induced TER elevation. Although Tys significantly increased phosphorylation of Akt and GSK3β, neither PI3 kinase nor GSK3β inhibition altered Tys-induced TER elevation. Tys significantly increased Rac1 activity, while inhibition of Rac1 activity significantly attenuated Tys-induced VE-cadherin redistribution and TER elevation. Conclusion Junctional complex, focal adhesion rearrangement and Rac1 activation play critical roles in Tys-mediated barrier protection in pulmonary EC. These results provide mechanistic insights into the effects of this potential ALI therapy. PMID:25862132

  3. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells.

    PubMed

    Nowicki, Theodore S; Zhao, Hong; Darzynkiewicz, Zbigniew; Moscatello, Augustine; Shin, Edward; Schantz, Stimson; Tiwari, Raj K; Geliebter, Jan

    2011-01-01

    Papillary thyroid carcinoma (PTC) is the most common endocrine and thyroid malignancy.  The urokinase plasminogen activator receptor (uPAR) plays an important role in cancer pathogenesis, including breakdown of the extracellular matrix, invasion, and metastasis.  Additionally, there is increasing evidence that uPAR also promotes tumorigenesis via the modulation of multiple signaling pathways.  BRAFV600E, the most common initial genetic mutation in PTC, leads to ERK1/2 hyperphosphorylation, which has been shown in numerous cancers to induce uPAR.  Treatment of the BRAFV600E-positive PTC cell line, BCPAP, with the MEK/ERK inhibitor U0126 reduced uPAR RNA levels by 90%.  siRNA-mediated down-regulation of uPAR in BCPAP cells resulted in greatly decreased activity in the focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway.  This phenomenon was concurrent with drastically reduced proliferation rates and decreased clonigenic survival, as well as demonstrated senescence-associated nuclear morphology and induction of b-galactosidase activity. uPAR-knockdown BCPAP cells also displayed greatly reduced migration and invasion rates, as well as a complete loss of the cells' ability to augment their invasiveness following plasminogen supplementation. Taken together, these data provide new evidence of a novel role for uPAR induction (as a consequence of constitutive ERK1/2 activation) as a central component in PTC pathogenesis, and highlight the potential of uPAR as a therapeutic target. PMID:21191179

  4. PGE2 inhibition of TGF-β1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling

    PubMed Central

    Thomas, Peedikayil E.; Peters-Golden, Marc; White, Eric S.; Thannickal, Victor J.; Moore, Bethany B.

    2010-01-01

    Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-β1 (TGF-β1) is a well-known inducer of myofibroblast differentiation. TGF-β1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E2 (PGE2) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE2 does so by interfering with TGF-β1 signaling is unknown. Thus we examined the effects of PGE2 in the presence and absence of TGF-β1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE2 does not interfere with TGF-β1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE2 has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE2 treatment diminishes TGF-β1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE2 stimulation alone do not always mirror the effects of PGE2 in the presence of TGF-β1, indicating that the context for EP2 signaling is different in the presence of TGF-β1. Taken together, our results demonstrate that PGE2 has the potential to limit TGF-β1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways. PMID:17557799

  5. Integrin-mediated osteoblastic adhesion on a porous manganese-incorporated TiO2 coating prepared by plasma electrolytic oxidation.

    PubMed

    Zhang, Zhenxiang; Gu, Beibei; Zhu, Wei; Zhu, Lixian

    2013-09-01

    This study was conducted to evaluate the bioactivity of manganese-incorporated TiO2 (Mn-TiO2) coating prepared on titanium (Ti) plate by plasma electrolytic oxidation (PEO) technique in Ca-, P- and Mn-containing electrolytes. The surface topography, phase and element compositions of the coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS), respectively. The adhesion of osteoblast-like MG63 cells onto Ti, TiO2 and Mn-TiO2 surfaces was evaluated, and the signal transduction pathway involved was confirmed by the sequential expression of the genes for integrins β1, β3, α1 and α3, focal adhesion kinase (FAK), and the extracellular regulated kinases (ERKs), including ERK1 and ERK2. The results obtained indicated that Mn was successfully incorporated into the porous nanostructured TiO2 coating, and did not alter the surface topography or the phase composition of the coating. The adhesion of the MG63 cells onto the Mn-incorporated TiO2 coating was significantly enhanced compared with that on the Mn-free TiO2 coating and the pure Ti plates. In addition, the enhanced cell adhesion on the Mn-TiO2 coatings may have been mediated by the binding of the integrin subunits, β1 and α1, and the subsequent signal transduction pathway, involving FAK and ERK2. The study indicated that the novel Mn-TiO2 coating has potential for orthopedic implant applications, and that further investigations are required.

  6. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

    PubMed Central

    Taneja, Nilay; Fenix, Aidan M.; Rathbun, Lindsay; Millis, Bryan A.; Tyska, Matthew J.; Hehnly, Heidi; Burnette, Dylan T.

    2016-01-01

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis. PMID:27432211

  7. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  8. A Novel Basal Body Protein That Is a Polo-like Kinase Substrate Is Required for Basal Body Segregation and Flagellum Adhesion in Trypanosoma brucei.

    PubMed

    Hu, Huiqing; Zhou, Qing; Li, Ziyin

    2015-10-01

    The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.

  9. A synthetic isoflavone, DCMF, promotes human keratinocyte migration by activating Src/FAK signaling pathway.

    PubMed

    Sophors, Phorl; Kim, Young Mee; Seo, Ga Young; Huh, Jung-Sik; Lim, Yoongho; Koh, Dong Soo; Cho, Moonjae

    2016-04-01

    Flavonoids are plant secondary compounds with various pharmacological properties. We previously showed that one flavonoid, trimethoxyisoflavone (TMF), could promote wound healing by inducing keratinocyte migration. Here, we screened TMF derivatives for enhanced activity and identified one compound, 2',6 Dichloro-7-methoxyisoflavone (DCMF), as most effective at promoting migration in a scratch wound assay. Using the HaCaT keratinocyte cell line, we found DCMF treatment induced phosphorylation of both FAK and Src, and increased keratinocyte migration. DCMF-induced Src kinase could promote activation of ERK, AKT, and p38 signaling pathways, and DCMF-induced secretion of matrix metalloproteinase (MMP)-2 and MMP-9 and partial epithelial-mesenchymal transition (EMT), whereas Src inhibition abolished DCMF-induced EMT. Using an in vivo excisional wound model, we observed improved wound closure and re-epithelialization in DCMF-treated mice, as compared to controls. Collectively, our data demonstrate that DCMF induces cell migration and promotes wound healing through activation of Src/FAK, ERK, AKT, and p38 MAPK signaling. PMID:26923073

  10. Reinforcement of epithelial cell adhesion to basement membrane by a bacterial pathogen as a new infectious stratagem.

    PubMed

    Kim, Minsoo; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2010-01-01

    The intestinal epithelium undergoes a rapid turnover in addition to rapid exfoliation in response to bacterial infection, thus acting as an intrinsic defense against microbial intruders. It has long been questioned how mucosal pathogens can circumvent the intestinal defense systems. Our recent discovery of a bacterial ploy used by Shigella provided us with fresh insight. Shigella delivers OspE via the type III secretion system during multiplication within epithelial cells. This effector protein reinforces epithelial adherence to the basement membrane by interacting with integrin-linked kinase (ILK), a unique intracellular Ser/Thr kinase that links the cell-adhesion receptors, integrin, and growth factors to the actin cytoskeleton. The interaction between OspE and ILK increased formation of focal adhesions (FAs) and surface levels of b1-integrin, while suppressing phosphorylation of FAK and paxillin, thus suppressing rapid turnover of FAs, reducing cell motility and promoting cell adhesion to extracellular matrix. The impact of this OspE-ILK interplay was demonstrated both in vitro and in vivo by infecting polarized epithelial cell monolayers and guinea pig colons with Shigella possessing or lacking the ospE gene. The findings thus establish a new class of virulence-associated factors, and provide new insight into the functioning of the intestinal barrier and bacterial strategies for circumventing it. PMID:21178415

  11. Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association.

    PubMed

    Pagès, F; Ragueneau, M; Klasen, S; Battifora, M; Couez, D; Sweet, R; Truneh, A; Ward, S G; Olive, D

    1996-04-19

    Through the interaction with its ligands, CD80/B7-1 and CD86/B7-2 or B70, the human CD28 molecule plays a major functional role as a costimulator of T cells along with the CD3-TcR complex. We and others have previously reported that phosphatidylinositol 3-kinase inducibly associates with CD28. This association is mediated by the SH2 domains of the p85 adaptor subunit interacting with a cytoplasmic YMNM consensus motif present in CD28 at position 173-176. Disruption of this binding site by site-directed mutagenesis abolishes CD28-induced activation events in a murine T-cell hybridoma transfected with human CD28 gene. Here we show that the last 10 residues of the intracytoplasmic domain of CD28 (residues 193-202) are required for its costimulatory function. These residues are involved in interleukin-2 secretion, p85 binding, and CD28-associated phosphatidylinositol 3-kinase activity. In contrast, the CD28/CD8O interaction is unaffected by this deletion, as is the induction of other second messengers such as the rise in intracellular calcium and tyrosine phosphorylation of CD28-specific substrates. Furthermore, we also demonstrate that, within these residues, the tyrosine at position 200 is involved in p85 binding, probably together with the short proline-rich motif present between residues 190 and 194 (PYAPP).

  12. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway

    PubMed Central

    Ku, Chung-Yu; Wang, Ying-Ren; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2015-01-01

    Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC. PMID:25978354

  13. Zinc oxide nanoparticles-induced intercellular adhesion molecule 1 expression requires Rac1/Cdc42, mixed lineage kinase 3, and c-Jun N-terminal kinase activation in endothelial cells.

    PubMed

    Li, Ching-Hao; Liao, Po-Lin; Shyu, Ming-Kwang; Liu, Chen-Wei; Kao, Chen-Chieh; Huang, Shih-Hsuan; Cheng, Yu-Wen; Kang, Jaw-Jou

    2012-03-01

    The explosive development of nanotechnology has caused an increase in unintended biohazards in humans and in the ecosystem. Similar to particulate matter, nanoparticles (NPs) are strongly correlated with the increase in incidences of cardiovascular diseases, yet the mechanisms behind this correlation remain unclear. Within the testing concentrations of 0.1-10 μg/ml, which did not cause a marked drop in cell viability, zinc oxide NPs (ZnO-NPs) induced intercellular adhesion molecule-1 (ICAM-1) messenger RNA, and protein expression in both concentration- and time-dependent manner in treated human umbilical vein endothelial cells (HUVECs). ZnO-NPs treatment cause the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1)/cell division control protein 42 homolog (Cdc42) and protein accumulation of mixed lineage kinase 3 (MLK3), followed by c-Jun N-terminal kinase (JNK) and transcription factor c-Jun activation. Induction of ICAM-1 and phosphorylation of JNK and c-Jun could be inhibited by either JNK inhibitor SP600125 or Rac guanosine triphosphatase inhibitor NSC23766 pretreatment. In addition, pretreatment with NSC23766 significantly reduced MLK3 accumulation, suggesting the involvement of Rac1/Cdc42-MLK3-JNK-c-Jun signaling in the regulation of ZnO-NPs-induced ICAM-1 expression, whereas these signaling factors were not activated in zinc oxide microparticles (ZnO-MPs)-treated HUVECs. The increase of ICAM-1 expression on ZnO-NPs-treated HUVECs enables leukocytes to adhere and has been identified as an indicator of vascular inflammation. Our data are essential for safety evaluation of the clinical usage of ZnO-NPs in daily supplements, cosmetics, and biomedicines.

  14. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment

    PubMed Central

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S.; Romaguera, Jorge; McCarty, Nami

    2016-01-01

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  15. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment.

    PubMed

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S; Romaguera, Jorge; McCarty, Nami

    2016-03-22

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  16. Gene therapy for canine leukocyte adhesion deficiency with lentiviral vectors using the murine stem cell virus and human phosphoglycerate kinase promoters.

    PubMed

    Hunter, Michael J; Zhao, Huifen; Tuschong, Laura M; Bauer, Thomas R; Burkholder, Tanya H; Persons, Derek A; Hickstein, Dennis D

    2011-06-01

    Children with leukocyte adhesion deficiency type 1 (LAD-1) and dogs with canine LAD (CLAD) develop life-threatening bacterial infections due to mutations in the leukocyte integrin CD18. Here, we compared the human phosphoglycerate kinase (hPGK) promoter to the murine stem cell virus (MSCV) promoter/enhancer in a self-inactivating HIV-1-derived lentiviral vector to treat animals with CLAD. Four CLAD dogs were infused with CD34(+) cells transduced with the hPGK vector, and two CLAD dogs received MSCV vector-transduced CD34(+) cells. Infusions were preceded by a nonmyeloablative dose of 200 cGy total body irradiation. Comparable numbers of transduced cells were infused in each group of animals. Only one of four CLAD animals treated with the hPGK-cCD18 vector had reversal of CLAD, whereas both MSCV-cCD18 vector-treated dogs had reversal of the phenotype. Correction of CLAD depends both upon the percentage of CD18(+) myeloid cells and the level of expression of CD18 on individual myeloid cells. In this regard, the hPGK promoter directed low levels of expression of CD18 on neutrophils compared to the MSCV promoter, likely contributing to the suboptimal clinical outcome with the hPGK vector. PMID:21275758

  17. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways.

    PubMed

    Yi, Young-Su; Baek, Kwang-Soo; Cho, Jae Youl

    2014-06-01

    L1 cell adhesion molecule (L1CAM) is highly expressed in various types of cancer cells and has been implicated in the control of cell proliferation and motility. Recently, L1CAM was reported to induce the motility of melanoma cells, but the mechanism of this induction remains poorly understood. In this study, we investigated the molecular mechanisms by which L1CAM induces the motility of melanoma cells. Unlike other types of cancer cells, B16F10 melanoma cells highly expressed L1CAM at both the RNA and protein levels, and the expression of L1CAM induced AP-1 activity. In accordance to AP-1 activation, MAPK signaling pathways were activated by L1CAM. Inhibition of L1CAM expression by L1CAM-specific siRNA suppressed the activation of MAPKs such as ERK and p38. However, no significant change was observed in JNK activation. As expected, upstream MAP2K, MKK3/6, MAP3K, and TAK1 were also deactivated by the inhibition of L1CAM expression. L1CAM induced the motility of B16F10 cells. Inhibition of L1CAM expression suppressed migration and invasion of B16F10 cells, but no suppressive effect was observed on their proliferation and anti-apoptotic resistance. Treatment of B16F10 cells with U0126, an ERK inhibitor, or SB203580, a p38 inhibitor, suppressed the migration and invasion abilities of B16F10 cells. Taken together, our results suggest that L1CAM induces the motility of B16F10 melanoma cells via the activation of MAPK pathways. This finding provides a more detailed molecular mechanism of L1CAM-mediated induction of melanoma cell motility. PMID:24974583

  18. [Effects of PTK787 on cell proliferation and expression of fak mRNA in K562].

    PubMed

    Di, Xiao-Hua; Chen, Ri-Ling; Liu, Xiao-Li; Tian, Chuan; Guo, Ya-Nan

    2010-06-01

    The aim of this study was to investigate the effects of tyrosine kinase inhibitor PTK787 on cell proliferation, cell cycle and the expression of fak mRNA of human chronic myeloid leukemia (CML) cell line K562, and to explore the mechanism of PTK787 against acute myeloid leukemia. The MTT method was used to detect the effects of PTK787 in various concentrations and at different time points on proliferation of K562 cells; the flow cytometry was used to determine the effects of PTK787 in different concentrations on cell cycle of K562 cells; the RT-PCR was used to assay the expression of fak mRNA in K562 cells treated with PTK787 for 48 hours. The results showed that along with increasing of the concentration and prolonging of time, the inhibitory rate of PTK787 on K562 proliferation was gradually enhanced. The comparison between various concentration groups at same time or comparison between various time groups in same concentration showed significant differences (p < 0.05), in which the effect of 320 micromol/L PTK787 on cells was strongest, while the continuous increase of PTK787 concentration or prolong of action time did not enhance the inhibitory rate on K562 proliferation. With increasing of drug concentration, the cell proportion in G(1) phase gradually increased, the cell proportion in S phase gradually decreased, the comparison between various groups revealed significant differences (p < 0.05), however the continuous increase of drug concentration from 160 micromol/L did not obviously change the cell proportion in phases of cell cycle. With increasing of drug concentration, the expression of fak mRNA in K562 cells gradually reduced with significant differences between various groups (p < 0.05), but with continuous increase of drug concentration from 160 micromol/L, the effect of PTK787 on the expression of fak mRNA in K562 cells also did not obviously change. It is concluded that the PTK787 shows effect of anti-leukemia cells through inhibiting transformation

  19. Manganese-induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src.

    PubMed

    Dormond, Olivier; Ponsonnet, Lionel; Hasmim, Meriem; Foletti, Alessandro; Rüegg, Curzio

    2004-07-01

    Integrin activity is controlled by changes in affinity (i.e. ligand binding) and avidity (i.e. receptor clustering). Little is known, however, about the effect of affinity maturation on integrin avidity and on the associated signaling pathways. To study the effect of affinity maturation on integrin avidity, we stimulated human umbilical vein endothelial cells (HUVEC) with MnCl(2) to increase integrin affinity and monitored clustering of beta 1 and beta 3 integrins. In unstimulated HUVEC, beta 1 integrins were present in fibrillar adhesions, while alpha V beta 3 was detected in peripheral focal adhesions. Clustered beta 1 and beta 3 integrins expressed high affinity/ligand-induced binding site (LIBS) epitopes. MnCl(2)-stimulation promoted focal adhesion and actin stress fiber formation at the basal surface of the cells, and strongly enhanced mAb LM609 staining and expression of beta 3 high affinity/LIBS epitopes at focal adhesions. MnCl(2)-induced alpha V beta 3 clustering was blocked by a soluble RGD peptide, by wortmannin and LY294002, two pharmacological inhibitors of phosphatidylinositol 3-kinase (PI 3-K), and by over-expressing a dominant negative PI 3-K mutant protein. Conversely, over-expression of active PI 3-K and pharmacological inhibiton of Src with PP2 and CGP77675, enhanced basal and manganese-induced alpha V beta 3 clustering. Transient increased phosphorylation of protein kinase B/Akt, a direct target of PI 3K, occurred upon manganese stimulation. MnCl(2) did not alter beta 1 integrin distribution or beta1 high-affinity/LIBS epitope expression. Based on these results, we conclude that MnCl(2)-induced alpha V beta 3 integrin affinity maturation stimulates focal adhesion and actin stress fiber formation, and promotes recruitment of high affinity alpha V beta 3 to focal adhesions. Affinity-modulated alpha V beta 3 clustering requires PI3-K signaling and is negatively regulate by Src.

  20. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  1. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    PubMed Central

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  2. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    SciTech Connect

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia; Wang, Xudong

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI.

  3. Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains

    PubMed Central

    Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    ABSTRACT The nuclear transport of paxillin appears to be crucial for paxillin function but the mechanism of transport remains unclear. Here, we show that the nuclear transport of paxillin is regulated by focal adhesion turnover and the presence of FAT domains. Focal adhesion turnover was controlled using triangular or circular fibronectin islands. Circular islands caused higher focal adhesion turnover and increased the nuclear transport of paxillin relative to triangular islands. Mutating several residues of paxillin had no effect on its nuclear transport, suggesting that the process is controlled by multiple domains. Knocking out FAK (also known as PTK2) and vinculin caused an increase in nuclear paxillin. This could be reversed by rescue with wild-type FAK but not by FAK with a mutated FAT domain, which inhibits paxillin binding. Expressing just the FAT domain of FAK not only brought down nuclear levels of paxillin but also caused a large immobile fraction of paxillin to be present at focal adhesions, as demonstrated by fluorescence recovery after photobleaching (FRAP) studies. Taken together, focal adhesion turnover and FAT domains regulate the nuclear localization of paxillin, suggesting a possible role for transcriptional control, through paxillin, by focal adhesions. PMID:27068537

  4. Protein Tyrosine Kinase 6 Regulates UVB-Induced Signaling and Tumorigenesis in Mouse Skin.

    PubMed

    Chastkofsky, Michael I; Bie, Wenjun; Ball-Kell, Susan M; He, Yu-Ying; Tyner, Angela L

    2015-10-01

    Protein tyrosine kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the epithelial linings of the gastrointestinal tract and the skin, where it is expressed in nondividing differentiated cells. We found that PTK6 expression increases in the epidermis following UVB treatment. To evaluate the roles of PTK6 in the skin following UVB-induced damage, we exposed back skin of Ptk6 +/+ and Ptk6 -/- SENCAR mice to incremental doses of UVB for 30 weeks. Wild-type mice were more sensitive to UVB and exhibited increased inflammation and greater activation of signal transducer and activator of transcription-3 (STAT3) than Ptk6-/- mice. Disruption of Ptk6 did not have an impact on proliferation, although PTK6 was expressed and activated in basal epithelial cells in wild-type mice following UVB treatment. However, wild-type mice exhibited shortened tumor latency and increased tumor load compared with Ptk6-/- mice, and STAT3 activation was increased in these tumors. PTK6 activation was detected in UVB-induced tumors, and this correlated with increased activating phosphorylation of focal adhesion kinase (FAK) and breast cancer anti-estrogen resistance 1 (BCAR1). Activation of PTK6 was also detected in human squamous cell carcinomas of the skin. Although PTK6 has roles in normal differentiation, it also contributes to UVB-induced injury and tumorigenesis in vivo. PMID:25938342

  5. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation

    PubMed Central

    Leung, Hoi-Wing; Zhao, Si-Meng; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara Bik-San

    2015-01-01

    Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer. PMID:26592552

  6. Mulberry water extracts inhibit atherosclerosis through suppression of the integrin-β₃/focal adhesion kinase complex and downregulation of nuclear factor κB signaling in vivo and in vitro.

    PubMed

    Chan, Kuei-Chuan; Ho, Hsieh-Hsun; Lin, Ming-Cheng; Yen, Chi-Hua; Huang, Chien-Ning; Huang, Hui-Pei; Wang, Chau-Jong

    2014-10-01

    Previous studies have shown that mulberry water extracts (MWEs), which contain polyphenolic compounds, have an antiatherosclerotic effect in vivo and in vitro through stimulating apoptosis of vascular smooth muscle cells (VSMCs). Histological analysis was performed on atherosclerotic lesions from high-cholesterol diet (HCD)-fed rabbits after treatment with 0.5-1% MWEs for 10 weeks. Immunohistochemistry showed that the expressions of SMA, Ras, and matrix metalloproteinase-2 in the VSMCs were dose-dependently inhibited after MWE treatment. The antimigratory effects of MWEs on A7r5 VSMCs were assessed by western blot analysis of migration-related proteins, visualization of F-actin cytoskeleton, and reverse transcription polymerase chain reaction. The results showed that MWEs inhibited VSMC migration through reducing interactions of the integrin-β3/focal adhesion kinase complex, alterations of the cytoskeleton, and downregulation of glycogen synthase kinase 3β/nuclear factor κB signaling. Taken together, MWEs inhibited HCD-induced rabbit atherogenesis through blocking VSMC migration via reducing interactions of integrin-β3 and focal adhesion kinase and downregulating migration-related proteins.

  7. Rapid actions of plasma membrane estrogen receptors regulate motility of mouse embryonic stem cells through a profilin-1/cofilin-1-directed kinase signaling pathway.

    PubMed

    Yun, Seung Pil; Ryu, Jung Min; Kim, Mi Ok; Park, Jae Hong; Han, Ho Jae

    2012-08-01

    Long-term estrogen actions are vital for driving cell growth, but more recent evidence suggests that estrogen mediates more rapid cellular effects. However, the function of estradiol-17β (E(2))-BSA in mouse embryonic stem cells has not been reported. Therefore, we examined the role of E(2)-BSA in mouse embryonic stem cell motility and its related signal pathways. E(2)-BSA (10(-8) m) significantly increased motility after 24 h incubation and increased filamentous (F)-actin expression; these effects were inhibited by the estrogen receptor antagonist ICI 182,780, indicating that E(2)-BSA bound membrane estrogen receptors and initiated a signal. E(2)-BSA increased c-Src and focal adhesion kinase (FAK) phosphorylation, which was attenuated by ICI 182,780. The E(2)-BSA-induced increase in epidermal growth factor receptor (EGFR) phosphorylation was inhibited by Src inhibitor PP2. As a downstream signal molecule, E(2)-BSA activated cdc42 and increased formation of a complex with the neural Wiskott-Aldrich syndrome protein (N-WASP)/cdc42/transducer of cdc42-dependent actin assembly-1 (TOCA-1), which was inhibited by FAK small interfering RNA (siRNA) and EGFR inhibitor AG 1478. In addition, E(2)-BSA increased profilin-1 expression and cofilin-1 phosphorylation, which was blocked by cdc42 siRNA. Subsequently, E(2)-BSA induced an increase in F-actin expression, and cell motility was inhibited by each signal pathway-related siRNA molecule or inhibitors but not by cofilin-1 siRNA. A combined treatment of cofilin-1 siRNA and E(2)-BSA increased F-actin expression and cell motility more than that of E(2)-BSA alone. These data demonstrate that E(2)-BSA stimulated motility by interacting with profilin-1/cofilin-1 and F-actin through FAK- and c-Src/EGFR transactivation-dependent N-WASP/cdc42/TOCA-1 complex.

  8. A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures.

    PubMed Central

    Harden, N; Lee, J; Loh, H Y; Ong, Y M; Tan, I; Leung, T; Manser, E; Lim, L

    1996-01-01

    Changes in cell morphology are essential in the development of a multicellular organism. The regulation of the cytoskeleton by the Rho subfamily of small GTP-binding proteins is an important determinant of cell shape. The Rho subfamily has been shown to participate in a variety of morphogenetic processes during Drosophila melanogaster development. We describe here a Drosophila homolog, DPAK, of the serine/threonine kinase PAK, a protein which is a target of the Rho subfamily proteins Rac and Cdc42. Rac, Cdc42, and PAK have previously been implicated in signaling by c-Jun amino-terminal kinases. DPAK bound to activated (GTP-bound) Drosophila Rac (DRacA) and Drosophila Cdc42. Similarities in the distributions of DPAK, integrin, and phosphotyrosine suggested an association of DPAK with focal adhesions and Cdc42- and Rac-induced focal adhesion-like focal complexes. DPAK was elevated in the leading edge of epidermal cells, whose morphological changes drive dorsal closure of the embryo. We have previously shown that the accumulation of cytoskeletal elements initiating cell shape changes in these cells could be inhibited by expression of a dominant-negative DRacA transgene. We show that leading-edge epidermal cells flanking segment borders, which express particularly large amounts of DPAK, undergo transient losses of cytoskeletal structures during dorsal closure. We propose that DPAK may be regulating the cytoskeleton through its association with focal adhesions and focal complexes and may be participating with DRacA in a c-Jun amino-terminal kinase signaling pathway recently demonstrated to be required for dorsal closure. PMID:8628256

  9. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    PubMed Central

    2010-01-01

    Background Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. Methods The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Results Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Conclusions Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents. PMID:20939933

  10. Activation of the FAK/PI3K pathway is crucial for AURKA-induced epithelial-mesenchymal transition in laryngeal cancer.

    PubMed

    Yang, Liyun; Zhou, Quan; Chen, Xuehua; Su, Liping; Liu, Bingya; Zhang, Hao

    2016-08-01

    Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors, and the main cause of death is metastasis. Overexpression of aurora kinase A (AURKA) plays an important role in the metastasis of LSCC. However, the mechanism by which AURKA promotes the metastasis of LSCC is poorly understood. Recent accumulating evidence indicates that epithelial-mesenchymal transition (EMT) may be one of the mechanisms of tumor metastasis. In the present study, we studied whether AURKA may induce EMT to promote the metastasis of LSCC. CCK-8 and plate colony-formation assays were carried out to show that AURKA significantly promoted the proliferation of Hep2 cells. Immunofluorescence staining and western blotting showed that EMT-related proteins changed in a time-dependent manner along with the alteration of AURKA, with decreased expression of N-cadherin, vimentin and slug and increased expression of E-cadherin. Additionally, downregulation of the expression of AURKA inhibited FAK/PI3K pathway activity. Inhibition of the FAK/PI3K pathway caused less mesenchymal-like characteristics and reduced the mobility, migration and invasion of Hep2 cells. In conclusion, AURKA may induce EMT to promote metastasis via activation of the FAK/PI3K pathway in LSCC. Those regulatory factors may present new diagnostic biomarkers and potential therapeutic targets for LSCC. PMID:27373675

  11. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies. PMID:27280255

  12. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies.

  13. EGFR/MEK/ERK/CDK5-dependent integrin-independent FAK phosphorylated on serine 732 contributes to microtubule depolymerization and mitosis in tumor cells.

    PubMed

    Rea, K; Sensi, M; Anichini, A; Canevari, S; Tomassetti, A

    2013-01-01

    FAK is a non-receptor tyrosine kinase contributing to migration and proliferation downstream of integrin and/or growth factor receptor signaling of normal and malignant cells. In addition to well-characterized tyrosine phosphorylations, FAK is phosphorylated on several serines, whose role is not yet clarified. We observed that phosphorylated FAK on serine 732 (P-FAKSer732) is present at variable levels in vitro, in several melanoma, ovarian and thyroid tumor cell lines and in vivo, in tumor cells present in fresh ovarian cancer ascites. In vitro P-FAKSer732 was barely detectable during interphase while its levels strongly increased in mitotic cells upon activation of the EGFR/MEK/ERK axis in an integrin-independent manner. P-FAKSer732 presence was crucial for the maintenance of the proliferation rate and its levels were inversely related to the levels of acetylated α-tubulin. P-FAKSer732 localized at the microtubules (MTs) of the spindle, biochemically associated with MTs and contributed to MT depolymerization. The lack of the phosphorylation on Ser732 as well as the inhibition of CDK5 activity by roscovitine impaired mitotic spindle assembly and correct chromosome alignment during mitosis. We also identified, for the first time, that the EGF-dependent EGFR activation led to increased P-FAKSer732 and polymerized MTs. Our data shed light on the multifunctional roles of FAK in neoplastic cells, being involved not only in integrin-dependent migratory signaling but also in integrin-independent MT dynamics and mitosis control. These findings provide a new potential target for inhibiting the growth of tumor cells in which the EGFR/MEK/ERK/CDK5 pathway is active. PMID:24091658

  14. Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica.

    PubMed

    Dowd, Georgina C; Bhalla, Manmeet; Kean, Bernard; Thomas, Rowan; Ireton, Keith

    2016-06-01

    Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes.

  15. Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica.

    PubMed

    Dowd, Georgina C; Bhalla, Manmeet; Kean, Bernard; Thomas, Rowan; Ireton, Keith

    2016-06-01

    Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes. PMID:27068087

  16. The tumor suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways

    PubMed Central

    Badgwell, Donna B.; Lu, Zhen; Le, Kim; Gao, Fengqin; Yang, Maojie; Suh, Grace K.; Bao, Jia-Ju; Das, Partha; Andreeff, Michael; Chen, Wenting; Yu, Yinhua; Ahmed, Ahmed Ashour; Liao, Warren S.-L.; Bast, Robert C.

    2011-01-01

    Ovarian cancers migrate and metastasize over the surface of the peritoneal cavity. Consequently, dysregulation of mechanisms that limit cell migration may be particularly important in the pathogenesis of the disease. ARHI is an imprinted tumor suppressor gene that is down regulated in >60% of ovarian cancers and its loss is associated with decreased progression-free survival. ARHI encodes a 26 kDa GTPase with homology to Ras. In contrast to Ras, ARHI inhibits cell growth, but whether it also regulates cell motility has not been previously studied Here we report that re-expression of ARHI decreases motility of IL-6- and EGF-stimulated SKOv3 and Hey ovarian cancer cells, inhibiting both chemotaxis and haptotaxis. ARHI binds and sequesters Stat3 in the cytoplasm, preventing its translocation to the nucleus and localization in focal adhesion complexes. Stat3 siRNA or the JAK2 inhibitor AG490 produced similar inhibition of motility. However, the combination of ARHI expression with Stat3 knockdown or inhibition produced greatest inhibition in ovarian cancer cell migration, consistent with Stat3-dependent and Stat3-independent mechanisms. Consistent with two distinct signaling pathways, knockdown of Stat3 selectively inhibited IL-6-stimulated migration, whereas knockdown of FAK preferentially inhibited EGF-stimulated migration. In EGF-stimulated ovarian cancer cells, re-expression of ARHI inhibited FAKY397 and SrcY416 phosphorylation, disrupted focal adhesions, and blocked FAK-mediated RhoA signaling, resulting in decreased levels of GTP-RhoA. Re-expression of ARHI also disrupted formation of actin stress fibers in a FAK- and RhoA-dependent manner. Thus, ARHI plays a critical and previously uncharacterized role in regulation of ovarian cancer cell migration, exerting inhibitory effects on two distinct signaling pathways. PMID:21643014

  17. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion

    PubMed Central

    Hoskin, Victoria; Szeto, Alvin; Ghaffari, Abdi; Greer, Peter A.; Côté, Graham P.; Elliott, Bruce E.

    2015-01-01

    Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis. PMID:26246600

  18. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion.

    PubMed

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-10-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.

  19. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    PubMed Central

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  20. AND-34/BCAR3 Regulates Adhesion-Dependent p130Cas Serine Phosphorylation and Breast Cancer Cell Growth Pattern

    PubMed Central

    Makkinje, Anthony; Near, Richard I.; Infusini, Giuseppe; Borre, Pierre Vanden; Bloom, Alexander; Cai, Dongpo; Costello, Catherine E.; Lerner, Adam

    2009-01-01

    NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS PAGE while NSP-1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype. PMID:19454314

  1. Ninjurin1 inhibits colitis-mediated colon cancer development and growth by suppression of macrophage infiltration through repression of FAK signaling

    PubMed Central

    Kang, Ju-Hee; Hwang, Jong-Ik; Seong, Je Kyung; Lee, Sang-Jin; Jeon, Sejin; Oh, Goo Taeg

    2016-01-01

    Macrophage infiltration promotes tumorigenesis. However, the macrophage infiltration regulatory molecules have not been fully determined. Nerve injury-induced protein 1 (ninjurin1) is a homophilic cell surface adhesion molecule that plays an important role in cell migration and attachment. Although ninjurin1 is believed to play a role in several malignancies, it is unclear whether ninjurin1 expression contributes to cancer progression. We used transgenic mice (tg mice) that overexpressed ninjurin1 on macrophages. We subjected ninjurin1 tg mice to a well-known mouse model of colitis-associated colon cancer in which animals are treated with azoxymethane (AOM) and dextran sulfate sodium (DSS). After AOM and DSS treatment, ninjurin1 tg mice developed fewer and smaller tumors compared with wild-type (wt) mice. Ninjurin1 tg mice also showed reduced infiltration of macrophages and suppressed angiogenesis in the tumor mass. We therefore explored whether ninjurin1 decreases macrophage migration into the tumor sites. After adoptive transfer to tumor-bearing recipients, wild type and ninjurin1 tg mice's peritoneal macrophages were freshly isolated and labeled with carboxyfluorescein succinimidyl ester (CFSE). As expected, compared with that of wt type macrophages, tumor infiltration of ninjurin1-overexpressing macrophages was significantly decreased. We also found that ninjurin1 overexpression suppressed FAK activity. In addition, knockdown of ninjurin1 enhanced FAK activity and migration activity of RAW264.7 cells. Ninjurin1 overexpression on macrophage inhibits tumor growth by suppression of macrophage infiltration through repression of FAK signaling. Ninjurin1 is a key regulator molecule for macrophage migration and Tumor-associated macrophages (TAM) mediated tumorigenesis in vivo. PMID:27127177

  2. Dual targeting of EphA2 and FAK in ovarian carcinoma

    PubMed Central

    Shahzad, Mian M.K.; Lu, Chunhua; Lee, Jeong-Won; Stone, Rebecca L.; Mitra, Rahul; Mangala, Lingegowda S.; Lu, Yiling; Baggerly, Keith A.; Danes, Christopher G.; Nick, Alpa M.; Halder, Jyotsnabaran; Kim, Hye-Sun; Vivas-Mejia, Pablo; Landen, Charles N.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Sood, Anil K.

    2009-01-01

    EphA2 gene silencing has been shown to result in anti-tumor efficacy. Here we considered whether silencing additional targets downstream of EphA2 would further enhance the therapeutic effect. EphA2 targeted siRNA was tested in combination with either FAK or Src targeted siRNA using DOPC nanoliposomes in orthotopic models of ovarian carcinoma. The effects of therapy were determined by changes in tumor weight, proliferation (Ki-67), and microvessel density (CD31). In our initial in vivo study, EphA2 plus FAK silencing resulted in the greatest reduction in tumor growth (by 73%, p < 0.005) as compared to control siRNA alone. In the SKOV3ip1 and HeyA8 ovarian cancer models, EphA2 siRNA-DOPC treatment resulted in a 50 to 67% decrease in tumor growth (p < 0.02, for both), and FAK siRNA-DOPC resulted in a 61 to 62% decrease in tumor growth (p < 0.009, p < 0.05, respectively). EphA2 plus FAK siRNA-DOPC treatment resulted in a significant reduction (SKOV3ip1: 76%, p < 0.007, HeyA8: 90%, p < 0.003) in tumor growth compared to control siRNA-DOPC. Combination treatment with EphA2 + FAK siRNA-DOPC resulted in significant decreases in tumor cell proliferation (p < 0.001) and microvessel density compared to control siRNA-DOPC (80%; p < 0.001), or the monotherapy groups (p values <0.001). These data suggest that the anti-tumor efficacy of in vivo EphA2 targeting is enhanced in combination with FAK silencing. Dual targeting of EphA2 and FAK may have therapeutic implications for ovarian cancer management. PMID:19395869

  3. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules.

    PubMed

    Sancho, Veronica; Nuche-Berenguer, Bernardo; Jensen, R T

    2012-08-01

    For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.

  4. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.

    PubMed

    Vymětalová, Ladislava; Havlíček, Libor; Šturc, Antonín; Skrášková, Zuzana; Jorda, Radek; Pospíšil, Tomáš; Strnad, Miroslav; Kryštof, Vladimír

    2016-03-01

    A series of 5-substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidine derivatives was synthesized and evaluated for their cyclin-dependent kinase (CDK) inhibition activity. The most potent compounds contained various hydroxyalkylamines at the 5 position and possessed low nanomolar IC50 values for CDK2 and CDK5. Preliminary profiling of one of the most active compounds on a panel of 50 protein kinases revealed its high selectivity for CDKs. The compounds arrested cells in S and G2/M phases, and induced apoptosis in various cancer cell lines. Significant dephosphorylation of the C-terminus of RNA polymerase II and focal adhesion kinase (FAK), well-established substrates of CDKs, has been found in treated cells. Cleavage of PARP-1, down-regulation of Mcl-1 and activation of caspases correlated well with CDK inhibition and confirmed apoptosis as the primary type of cell death induced in cancer cells treated with the compounds in vitro. A comparison of known purine-based CDK inhibitor CR8 with its pyrazolo[4,3-d]pyrimidine bioisosteres confirmed that the novel compounds are more potent in cellular assays than purines. Therefore, pyrazolo[4,3-d]pyrimidine may emerge as a novel scaffold in medicinal chemistry and as a source of potent CDK inhibitors. PMID:26851505

  5. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1.

    PubMed

    Terada, Yoshio; Ueda, Satoko; Hamada, Kazu; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kosuke; Taniguchi, Yoshinori; Kagawa, Toru; Horino, Taro; Takao, Toshihiro

    2012-02-01

    Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. To determine the signaling pathway of aldosterone in relation to fibrosis and inflammation in mesangial cells, we investigated the effects of aldosterone on expression and activation of serum- and glucocorticoid-inducible protein kinase-1 (SGK1), the activation of nuclear factor-kappa B (NF-κB activation, and the expressions of intercellular adhesion molecule-1 (ICAM-1) and connective tissue growth factor (CTGF). Aldosterone stimulated SGK1 expression, phosphorylation (Ser-256), and kinase activity. The increments of phosphorylation and expression of SGK1 induced by aldosterone were inhibited by mineralocorticoid receptor (MR) inhibitor (eplerenone). Aldosterone stimulated NF-κB activity measured by NF-κB responsive elements, luciferase assay, and the levels of inhibitor of kappa B (IκB) phosphorylation. This aldosterone-induced activation of NF-κB was inhibited by the transfection of dominant-negative SGK1. Furthermore, aldosterone augmented the promoter activities and protein expressions of ICAM-1 and CTGF. The effects of aldosterone on ICAM-1 and CTGF promoter activities and protein expressions were inhibited by the transfection of dominant-negative SGK1 and dominant-negative IκBα. We also found that the MR antagonist significantly ameliorated the glomerular injury and enhancements in SGK1, ICAM-1, and CTGF expressions induced by 1% sodium chloride and aldosterone in vivo. In conclusion, our findings suggest that aldosterone stimulates ICAM-1 and CTGF transcription via activation of SGK1 and NF-κB, which may be involved in the progression of aldosterone-induced mesangial fibrosis and inflammation. MR antagonists may serve as useful therapeutic targets for the treatment of glomerular inflammatory disease.

  6. Adhesion of ZAP-70+ chronic lymphocytic leukemia cells to stromal cells is enhanced by cytokines and blocked by inhibitors of the PI3-kinase pathway.

    PubMed

    Lafarge, Sandrine T; Johnston, James B; Gibson, Spencer B; Marshall, Aaron J

    2014-01-01

    CLL cell survival and proliferation is enhanced through direct contact with supporting cells present in lymphoid tissues. PI3Ks are critical signal transduction enzymes controlling B cell survival and activation. PI3K inhibitors have entered clinical trials and show promising therapeutic activity; however, it is unclear whether PI3K inhibitor drugs differentially affect ZAP-70 positive versus negative CLL cells or target specific microenvironmental interactions. Here we provide evidence that CD40L+IL-4, IL-8 or IL-6 enhance adhesion to stromal cells, with IL-6 showing a selective effect on ZAP-70 positive cells. Stimulatory effects of IL-8 or IL-6 are fully reversed by PI3K inhibition, while the effects of CD40L+IL-4 are partially reversed. While CD40L+IL-4 is the only stimulation increasing CLL cell survival for all patient groups, IL-6 protects ZAP-70 positive cells from cell death induced by PI3K inhibition. Altogether, our results indicate that targeting the PI3K pathway can reverse protective CLL-microenvironment interactions in both ZAP-70 positive and negative CLL despite their differences in cytokine responsiveness.

  7. Overexpressed Down Syndrome Cell Adhesion Molecule (DSCAM) Deregulates P21-Activated Kinase (PAK) Activity in an In Vitro Neuronal Model of Down Syndrome: Consequences on Cell Process Formation and Extension.

    PubMed

    Pérez-Núñez, Ramón; Barraza, Natalia; Gonzalez-Jamett, Arlek; Cárdenas, Ana Maria; Barnier, Jean-Vianney; Caviedes, Pablo

    2016-07-01

    In humans, Down syndrome (DS) is caused by the presence of an extra copy of autosome 21. The most striking finding in DS patients is intellectual disability and the onset of Alzheimer's disease (AD)-like neuropathology in adulthood. Gene overdose is most likely to underlie both developmental impairments, as well as altered neuronal function in DS. Lately, the disruption of cellular signaling and regulatory pathways has been implicated in DS pathophysiology, and many of such pathways may represent common targets for diverse DS-related genes, which could in turn represent attractive therapeutical targets. In this regard, one DS-related gene Down Syndrome Cell Adhesion Molecule (DSCAM), has important functions in neuronal proliferation, maturation, and synaptogenesis. p21-associated kinases (PAKs) appear as a most interesting possibility for study, as DSCAM is known to regulate the PAKs pathway. Hence, in DS, overexpressed DSCAM could deregulate PAKs activity and affect signaling pathways that regulate synaptic plasticity such as dendritic spine dynamics and axon guidance and growth. In the present work, we used an immortalized cell line derived from the cerebral cortex of an animal model of DS such as the trisomy 16 (Ts16) fetal mouse (named CTb), and a similar cell line established from a normal littermate (named CNh), to study the effect of DSCAM in the PAKs pathway. The present study shows that DSCAM is overexpressed in CTb cells by approximately twofold, compared to CNh cells. Congruently, PAK1, as well as its downstream effectors LIMK and cofilin, stay phosphorylated for longer periods after DSCAM activation in the CTb cells, leading to an altered actin dynamics, expressed as an increased basal F/G ratio and reduced neurite growth, in the trisomic condition. The present work presents the correlation between DSCAM gene overexpression and a dysregulation of the PAK pathway, resulting in altered morphological parameters of neuronal plasticity in the trisomic cell

  8. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay

    PubMed Central

    White, Jennell; Lancelot, Moira; Sarnaik, Sharada; Hines, Patrick

    2015-01-01

    Abstract Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60–120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow. PMID:24898561

  9. The Microarray Gene Profiling Analysis of Glioblastoma Cancer Cells Reveals Genes Affected by FAK Inhibitor Y15 and Combination of Y15 and Temozolomide

    PubMed Central

    Huang, Grace; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Qiang, Hu; Golubovskaya, Vita

    2013-01-01

    Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (p<0.05). Moreover, DBTRG and U87 cells treated with Y15 changed expression of 1332 and 462 genes more than 1.5 fold, p<0.05, respectively and had 237 common genes affected by Y15. The common genes up-regulated by Y15 included GADD45A, HSPA6 (heat-shock 70); DUSP1, DUSP 5 (dual-phosphatase 5); CDKN1A (p21) and common down-regulated genes included kinesins, such as KIF11, 14, 20A, 20B; topoisomerase II, TOP2A; cyclin F; cell cycle protein: BUB1; PARP1, POLA1. In addition, we detected genes affected by temozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy. PMID:23387973

  10. CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry in gastric cancer via FAK signaling.

    PubMed

    Zang, Mingde; Zhang, Yunqiang; Zhang, Baogui; Hu, Lei; Li, Jianfang; Fan, Zhiyuan; Wang, Hexiao; Su, Liping; Zhu, Zhenggang; Li, Chen; Yan, Chao; Gu, Qinlong; Liu, Bingya; Yan, Min

    2015-05-01

    CEACAM6 is a member of glycosylphosphatidylinositol-linked immunoglobulin superfamily that is implicated in a variety of human cancers. In our previous study, we reported that CEACAM6 was overexpressed in gastric cancer tissues and promoted cancer metastasis. The purpose of this study is to determine the role of CEACAM6 in tumor angiogenesis and mimicry formation. We found that overexpressed CEACAM6 promoted tubule formation dependent on HUVEC cells and vasculogenic mimicry formation of gastric cancer cells; opposing results were achieved in CEACAM6-silenced groups. Moreover, we found that mosaic vessels formed by HUVEC cells and gastric cancer cells were observed in vitro by 3D-culture assay. Overexpressed CEACAM6 in gastric cancer cells promoted tumor growth, VEGF expression and vasculogenic mimicry structures formation in vivo. In accordance with these observations, we found that phosphorylation of FAK and phosphorylation of paxillin were up-regulated in CEACAM6-overexpressing gastric cancer cells, and FAK inhibitor Y15 could reduce tubule and vasculogenic mimicry formation. These findings suggest that CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry formation via FAK signaling in gastric cancer and CEACAM6 may be a new target for cancer anti-vascular treatment.

  11. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  12. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    PubMed

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  13. The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL

    PubMed Central

    Ungewiss, Christin; Rizvi, Zain H.; Roybal, Jonathon D.; Peng, David H.; Gold, Kathryn A.; Shin, Dong-Hoon; Creighton, Chad J.; Gibbons, Don L.

    2016-01-01

    Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis. PMID:26728244

  14. The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL.

    PubMed

    Ungewiss, Christin; Rizvi, Zain H; Roybal, Jonathon D; Peng, David H; Gold, Kathryn A; Shin, Dong-Hoon; Creighton, Chad J; Gibbons, Don L

    2016-01-01

    Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis. PMID:26728244

  15. A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery.

    PubMed

    Thiyagarajan, Varadharajan; Lin, Shi-Xiang; Lee, Chia-Hung; Weng, Ching-Feng

    2016-05-01

    16-Hydroxy-cleroda-3,13-dien-16,15-olide (HCD) which is extracted from a medicinal plant, Polyalthia longifolia, was shown to exhibit anticancer activity through apoptosis and FAK inhibition in our previous study. To improve its solubility and efficacy, a novel HCD delivery system using copper-substituted mesoporous silica nanoparticles (MSNs) was designed as a delivery vehicle, and the outer surfaces of MSNs were further coated with enteric polymers to prevent the drug from leaching in the stomach acid. All the data regarding synthesis and physical characterization, including Zeta potential, FT-IR spectra, N2 adsorption-desorption isotherms (BET), drug loading, powder X-ray diffraction, Thermo gravimetric analysis (TGA), Transmission electron microscopy (TEM), and Scanning electron microscopy (SEM) were well characterized. The non-coated MSN-HCD exposed to acidic pH (1.2) showed a rapid degradation of the drug, whereas the enteric-coated samples presented a sustained release profile in the gastrointestinal pHs. Cell cytotoxicity was further confirmed by the MTT-C6 Glioma cell line, in vitro. When compared with the control and pure HCD, the MSN-HCD revealed a potential anti-proliferation effect via the synergistic effect of the drug and the MSN vehicle. Additionally, this MSN-HCD had the effect of increasing the reactive oxygen species (ROS) levels and altered the Mitochondria membrane potential (MMP) in C6 cell line. The in vivo anti-tumor efficacy of enteric-coated MSN-HCD was evaluated by C6 Glioma bearing xenograft nude mice, and enteric-coated MSN-HCD clearly exhibited the greatest anti-glioma activity, as compared to the pure HCD and the untreated control. In terms of the effective treatment of brain glioma, this study provides conclusive evidence of the successful development of the anti-cancer agent HCD conjugated with enteric-coated MSN as a delivery control mechanism with enhanced dissolution characteristics. PMID:26851441

  16. Bisphenol A Induces Migration through a GPER-, FAK-, Src-, and ERK2-Dependent Pathway in MDA-MB-231 Breast Cancer Cells.

    PubMed

    Castillo Sanchez, Rocio; Gomez, Rocio; Perez Salazar, Eduardo

    2016-03-21

    Bisphenol A (BPA) is an industrial synthetic chemical utilized in the production of numerous products including food and beverage containers. Humans are exposed to BPA during ingestion of contaminated water and food because it can leach from polycarbonate containers, beverage cans, and epoxy resins. BPA has been related with the development of several diseases including breast cancer. However, the signal transduction pathways mediated by BPA and its role as a promoter of migration and invasion in breast cancer cells remain to be investigated. Here, we demonstrate that BPA promotes migration, invasion, and an increase in the number of focal contacts in MDA-MB-231 breast cancer cells. Moreover, MDA-MB-231 cells express GPER, and BPA promotes migration through a GPER-dependent pathway. BPA also induces activation of FAK, Src, and ERK2, whereas migration induced by BPA requires the activity of these kinases. In addition, BPA induces an increase on AP-1- and NFκB-DNA binding activity through an Src- and ERK2-dependent pathway. In conclusion, our findings demonstrate, that BPA induces the activation of signal transduction pathways, which mediate migration, AP-1/NFκB-DNA binding activity, and an invasion process in MDA-MB-231 breast cancer cells. PMID:26914403

  17. SRPX2 promotes cell migration and invasion via FAK dependent pathway in pancreatic cancer.

    PubMed

    Gao, Zhenyuan; Zhang, Jingjing; Bi, Minghong; Han, Xiao; Han, Zhengquan; Wang, Hongya; Ou, Yimei

    2015-01-01

    Sushi repeat-containing protein, X-linked 2, abbreviated as SRPX2, is a candidate downstream target protein for E2A-HLF and involved in disorders of language cortex and cognition. Recent studies have demonstrated that elevated SRPX2 exhibits crucial roles in gastric cancer, however, underlying clinical significance and biological function of SRPX2 in pancreatic ductal adenocarcinoma (PDAC), remains unclear. Data from Oncomine database showed that higher SRPX2 expression is more commonly observed in PDAC compared with normal pancreatic duct, similar results were also found in 12 matched PDAC tissue samples, 7 PDAC cell lines and a tissue microarray containing 81 PDAC specimens as demonstrated by real-time quantitative PCR and immunohistochemistry, respectively. Besides, higher SRPX2 expression was closely correlated with advanced TNM stage. Silencing of endogenous SRPX2 expression reduced abilities of cell migration and invasion of PDAC cells. Further studies revealed that SRPX2 expression in PDAC tissues significantly correlated with the phosphorylation levels of FAK, indicating that FAK dependent pathway may be account for the effect of SRPX2 on cell migration and invasion in PDAC. Collectively, this study reveals that frequently elevated SRPX2 contributes to cell migration and invasion in PDAC and SRPX2-related pathways might be a potential therapeutic target for PDAC. PMID:26191169

  18. Adhesion rings surround invadopodia and promote maturation

    PubMed Central

    Branch, Kevin M.; Hoshino, Daisuke; Weaver, Alissa M.

    2012-01-01

    Summary Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM). At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD) of integrin-linked kinase (ILK) reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes. PMID:23213464

  19. FAK/PYK2 promotes the Wnt/β-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β

    PubMed Central

    Gao, Chenxi; Chen, Guangming; Kuan, Shih-Fan; Zhang, Dennis Han; Schlaepfer, David D; Hu, Jing

    2015-01-01

    Aberrant activation of Wnt/β-catenin signaling plays an unequivocal role in colorectal cancer, but identification of effective Wnt inhibitors for use in cancer remains a tremendous challenge. New insights into the regulation of this pathway could reveal new therapeutic point of intervention, therefore are greatly needed. Here we report a novel FAK/PYK2/GSK3βY216/β-catenin regulation axis: FAK and PYK2, elevated in adenomas in APCmin/+ mice and in human colorectal cancer tissues, functioned redundantly to promote the Wnt/β-catenin pathway by phosphorylating GSK3βY216 to reinforce pathway output—β-catenin accumulation and intestinal tumorigenesis. We previously showed that Wnt-induced β-catenin accumulation requires Wnt-induced GSK3β/β-TrCP interaction; the current study revealed that phosphorylation of GSK3βY216 was a molecular determinant of GSK3β recruitment of β-TrCP. Pharmacological inhibition of FAK/PYK2 suppressed adenoma formation in APCmin/+ mice accompanied with reduced intestinal levels of phospho-GSK3βY216 and β-catenin, indicating that FAK/PYK2/GSK3βY216 axis is critical for the activation of Wnt/β-catenin signaling in APC driven intestinal tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.10072.001 PMID:26274564

  20. IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small Cell Lung Cancer Cells

    PubMed Central

    Lu, Haibo; Wang, Li; Gao, Wen; Meng, Jieru; Dai, Bingbing; Wu, Shuhong; Minna, John; Roth, Jack A.; Hofstetter, Wayne L.; Swisher, Stephen G.; Fang, Bingliang

    2013-01-01

    IGFBP2 expression is increased in various types of cancers, including in a subset of lung cancer patients. Because IGFBP2 is involved in signal transduction of some critical cancer related pathways, we analyzed the association between IGFBP2 and response to pathway-targeted agents in seven human non–small cell lung cancer (NSCLC) cell lines. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) showed that four of the seven NSCLC cell lines analyzed expressed high levels of IGFBP2, while the remaining three had barely detectable IGFBP2. Susceptibilities of those seven cell lines to nine anticancer agents targeting to IGF1R, Src, FAK, MEK, and AKT were determined by dose-dependent cell viability assay. The results showed that high IGFBP2 levels were associated with resistance to dasatinib, and to a lesser degree to sacaratinib, but not to other agents. Ectopic IGFBP2 overexpression or knockdown revealed that changing IGFBP2 expression levels reversed dasatinib susceptibility phenotype, suggesting a causal relationship between IGFBP2 expression and dasatinib resistance. Molecular characterization revealed that FAK activation was associated with increased IGFBP2 expression and partially contributed to IGFBP2-mediated dasatinib resistance. Treatment with a combination of dasatinib and FAK inhibitor led to enhanced antitumor activity in IGFBP2-overexpressing and dasatinib-resistant NSCLC cells in vitro and in vivo. Our results demonstrated that the IGFBP2/FAK pathway is causally associated with dasatinib resistance and may be used as biomarkers for identification of dasatinib responders among lung cancer patients. Simultaneous targeting on Src and FAK will likely improve the therapeutic efficacy of dasatinib for treatment of lung cancer. PMID:24130049

  1. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    PubMed

    Kim, Jiyeon; Moon, Seong-Hee; Kim, Bum Tae; Chae, Chong Hak; Lee, Joo Yun; Kim, Seong Hwan

    2014-01-01

    Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis. PMID:25337707

  2. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  3. Basic fibroblast growth factor promotes melanocyte migration via activating PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways.

    PubMed

    Shi, Hongxue; Lin, Beibei; Huang, Yan; Wu, Jiang; Zhang, Hongyu; Lin, Cai; Wang, Zhouguang; Zhu, Jingjing; Zhao, Yingzhen; Fu, Xiaobing; Lou, Zhencai; Li, Xiaokun; Xiao, Jian

    2016-09-01

    Vitiligo is a depigmentation disorder characterized by loss of functional melanocytes of the skin epidermis. The pathogenesis of vitiligo remains elusive. The purpose of this study is to investigate the effects of basic fibroblast growth factor (bFGF) on melanocyte migration, including its biochemical mechanism using transwell assay in vitro. We found that melanocyte treated with bFGF showed a significant increase in migration and cytoskeletal rearrangement. These changes were associated with increased activation of PI3K/Akt, Rac1, FAK, JNK, and ERK. Likewise, reduction of PI3K/Akt, Rac1, FAK, JNK, and ERK activity using selective inhibitors or siRNA was associated with impediment of bFGF-induced melanocyte migration. In addition, activity of Rac1, FAK, and JNK was reduced in cells in which PI3K/Akt was inhibited, activity of FAK and JNK was reduced in cells in which the Rac1 was inhibited, and activity of JNK was reduced in cells in which the FAK was inhibited. Collectively, these data demonstrate that bFGF facilitated melanocyte migration via PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. © 2016 IUBMB Life, 68(9):735-747, 2016. PMID:27350596

  4. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  5. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  6. MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism

    PubMed Central

    Chugh, Seema; Rachagani, Satyanarayana; Lakshmanan, Imayavaramban; Gupta, Suprit; Seshacharyulu, Parthasarathy; Smith, Lynette M.; Ponnusamy, Moorthy P.; Batra, Surinder K.

    2016-01-01

    MUC16, a heavily glycosylated type-I transmembrane mucin is overexpressed in several cancers including pancreatic ductal adenocarcinoma (PDAC). Previously, we have shown that MUC16 is significantly overexpressed in human PDAC tissues. However, the functional consequences and its role in PDAC is poorly understood. Here, we show that MUC16 knockdown decreases PDAC cell proliferation, colony formation and migration in vitro. Also, MUC16 knockdown decreases the tumor formation and metastasis in orthotopic xenograft mouse model. Mechanistically, immunoprecipitation and immunofluorescence analyses confirms MUC16 interaction with galectin-3 and mesothelin in PDAC cells. Adhesion assay displayed decreased cell attachment of MUC16 knockdown cells with recombinant galectin-1 and galectin-3 protein. Further, CRISPR/Cas9-mediated MUC16 knockout cells show decreased tumor-associated carbohydrate antigens (T and Tn) in PDAC cells. Importantly, carbohydrate antigens were decreased in the region that corresponds to MUC16 and suggests for the decreased MUC16-galectin interactions. Co-immunoprecipitation also revealed a novel interaction between MUC16 and FAK in PDAC cells. Interestingly, we observed decreased expression of mesenchymal and increased expression of epithelial markers in MUC16-silenced cells. Additionally, MUC16 loss showed a decreased FAK-mediated Akt and ERK/MAPK activation. Altogether, these findings suggest that MUC16-focal adhesion signaling may play a critical role in facilitating PDAC growth and metastasis. PMID:27382435

  7. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis.

    PubMed

    Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-08-01

    Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. PMID:27210504

  8. Neuregulin Facilitates Nerve Regeneration by Speeding Schwann Cell Migration via ErbB2/3-Dependent FAK Pathway

    PubMed Central

    Chang, Hung-Ming; Shyu, Ming-Kwang; Tseng, Guo-Fang; Liu, Chiung-Hui; Chang, Hung-Shuo; Lan, Chyn-Tair; Hsu, Wen-Ming; Liao, Wen-Chieh

    2013-01-01

    Background Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. Methodology and Principal Findings Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2±5.0%, 336.8±3.0%, and 80.0±5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. Conclusions As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI. PMID:23301073

  9. Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer.

    PubMed

    Aponte, Margarita; Jiang, Wei; Lakkis, Montaha; Li, Ming-Jiang; Edwards, Dale; Albitar, Lina; Vitonis, Allison; Mok, Samuel C; Cramer, Daniel W; Ye, Bin

    2008-07-15

    Among the proinflammatory mediators, platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a major primary and secondary messenger involved in intracellular and extracellular communication. Evidence suggests that PAF plays a significant role in oncogenic transformation, tumor growth, angiogenesis, and metastasis. However, PAF, with its receptor (PAFR) and their downstream signaling targets, has not been thoroughly studied in cancer. Here, we characterized the PAFR expression pattern in 4 normal human ovarian surface epithelial (HOSE) cell lines, 13 ovarian cancer cell lines, paraffin blocks (n = 84), and tissue microarrays (n = 230) from patients with ovarian cancer. Overexpression of PAFR was found in most nonmucinous types of ovarian cancer but not in HOSE and mucinous cancer cells. Correspondingly, PAF significantly induced cell proliferation and invasion only in PAFR-positive cells (i.e., OVCA429 and OVCA432), but not in PAFR-negative ovarian cells (HOSE and mucinous RMUG-L). The dependency of cell proliferation and invasion on PAFR was further confirmed using PAFR-specific small interfering RNA gene silencing probes, antibodies against PAFR and PAFR antagonist, ginkgolide B. Using quantitative multiplex phospho-antibody array technology, we found that tyrosine phosphorylation of EGFR/Src/FAK/paxillin was coordinately activated by PAF treatment, which was correlated with the activation of phosphatidylinositol 3-kinase and cyclin D1 as markers for cell proliferation, as well as matrix metalloproteinase 2 and 9 for invasion. Specific tyrosine Src inhibitor (PP2) reversibly blocked PAF-activated cancer cell proliferation and invasion. We suggest that PAFR is an essential upstream target of Src and other signal pathways to control the PAF-mediated cancer progression.

  10. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  11. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    PubMed Central

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-01-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway. PMID:26932297

  12. C3G forms complexes with Bcr-Abl and p38α MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion

    PubMed Central

    2013-01-01

    Background Previous studies by our group and others have shown that C3G interacts with Bcr-Abl through its SH3-b domain. Results In this work we show that C3G and Bcr-Abl form complexes with the focal adhesion (FA) proteins CrkL, p130Cas, Cbl and Abi1 through SH3/SH3-b interactions. The association between C3G and Bcr-Abl decreased upon Abi1 or p130Cas knock-down in K562 cells, which suggests that Abi1 and p130Cas are essential partners in this interaction. On the other hand, C3G, Abi1 or Cbl knock-down impaired adhesion to fibronectin, while p130Cas silencing enhanced it. C3G, Cbl and p130Cas-SH3-b domains interact directly with common proteins involved in the regulation of cell adhesion and migration. Immunoprecipitation and immunofluorescence studies revealed that C3G form complexes with the FA proteins paxillin and FAK and their phosphorylated forms. Additionally, C3G, Abi1, Cbl and p130Cas regulate the expression and phosphorylation of paxillin and FAK. p38α MAPK also participates in the regulation of adhesion in chronic myeloid leukemia cells. It interacts with C3G, CrkL, FAK and paxillin and regulates the expression of paxillin, CrkL and α5 integrin, as well as paxillin phosphorylation. Moreover, double knock-down of C3G/p38α decreased adhesion to fibronectin, similarly to the single silencing of one of these genes, either C3G or p38α. These suggest that C3G and p38α MAPK are acting through a common pathway to regulate cell adhesion in K562 cells, as previously described for the regulation of apoptosis. Conclusions Our results indicate that C3G-p38αMAPK pathway regulates K562 cell adhesion through the interaction with FA proteins and Bcr-Abl, modulating the formation of different protein complexes at FA. PMID:23343344

  13. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Multifunctional Abl kinases in health and disease.

    PubMed

    Khatri, Aaditya; Wang, Jun; Pendergast, Ann Marie

    2016-01-01

    The Abelson tyrosine kinases were initially identified as drivers of leukemia in mice and humans. The Abl family kinases Abl1 and Abl2 regulate diverse cellular processes during development and normal homeostasis, and their functions are subverted during inflammation, cancer and other pathologies. Abl kinases can be activated by multiple stimuli leading to cytoskeletal reorganization required for cell morphogenesis, motility, adhesion and polarity. Depending on the cellular context, Abl kinases regulate cell survival and proliferation. Emerging data support important roles for Abl kinases in pathologies linked to inflammation. Among these are neurodegenerative diseases and inflammatory pathologies. Unexpectedly, Abl kinases have also been identified as important players in mammalian host cells during microbial pathogenesis. Thus, the use of Abl kinase inhibitors might prove to be effective in the treatment of pathologies beyond leukemia and solid tumors. In this Cell Science at a Glance article and in the accompanying poster, we highlight the emerging roles of Abl kinases in the regulation of cellular processes in normal cells and diverse pathologies ranging from cancer to microbial pathogenesis.

  15. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  16. Pervanadate-induced adhesion of CD4+ T cell to fibronectin is associated with tyrosine phosphorylation of paxillin.

    PubMed

    Miron, S; Kachalsky, S G; Hershkoviz, R; Lider, O

    1997-09-01

    The initial stages of T cell activation involve tyrosine protein kinase-mediated intracellular signaling events. Integrin-mediated adhesion of CD4+ T lymphocytes to extracellular matrix glycoproteins, such as fibronectin, is an activation-dependent process. The involvement of tyrosine protein kinases in the adhesion of CD4+ T cells to fibronectin was examined using pervanadate, a protein-tyrosine phosphatase inhibitor. Pervanadate induced the adhesion of human CD4+ T cells to immobilized fibronectin in a beta1 integrin-mediated fashion, and adhesion was associated with an increase of protein tyrosine phosphorylation. Tyrosine protein kinase inhibitors abrogated both T cell adhesion and intracellular protein tyrosine phosphorylation. Participation of cytoskeletal proteins in the pervanadate-induced T cell adhesion was indicated because cytoskeleton disruption by cytochalasin B inhibited cell adhesion to fibronectin. We demonstrate that the cytoskeletal protein paxillin underwent time-dependent tyrosine phosphorylation simultaneously with pervanadate-induced T cell adhesion to fibronectin. Tyrosine phosphorylation of paxillin was related to cell adhesion, since pretreatment of T cells with cytochalasin B abrogated both adhesion and phosphorylation. This study demonstrates a correlation between activation of protein tyrosine kinases, tyrosine phosphorylation of paxillin, and integrin-mediated T cell adhesion to extracellular matrix glycoproteins. PMID:9307082

  17. Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons.

    PubMed

    Sumita, Kazutaka; Sato, Yuji; Iida, Junko; Kawata, Akira; Hamano, Mamiko; Hirabayashi, Susumu; Ohno, Kikuo; Peles, Elior; Hata, Yutaka

    2007-01-01

    Synaptic scaffolding molecule (S-SCAM) is a synaptic protein, which harbors five or six PSD-95/Discs large/ZO-1 (PDZ), a guanylate kinase and two WW domains. It interacts with NMDA receptor subunits, neuroligin and beta-catenin, and is involved in the accumulation of neuroligin at excitatory synapses. In this study, we have demonstrated S-SCAM is localized at inhibitory synapses in rat primary cultured hippocampal neurons. We have identified beta-dystroglycan (beta-DG) as a binding partner for S-SCAM at inhibitory synapses. WW domains of S-SCAM bind to three sequences of beta-DG. We have also revealed that S-SCAM can interact with neuroligin 2, which is known to be exclusively localized at inhibitory synapses. The WW domains and the second PDZ domain of S-SCAM are involved in the interaction with neuroligin 2. Beta-DG, neuroligin 2 and S-SCAM form a tripartite complex in vitro. Neuroligin 2 is detected in the immunoprecipitates by anti-beta-DG antibody from rat brain. S-SCAM, beta-DG and neuroligin 2 are partially co-localized in rat hippocampal neurons. These data suggest that S-SCAM is associated with beta-DG and neuroligin 2 at inhibitory synapses, and functions as a linker between the dystrophin glycoprotein complex and the neurexin-neuroligin complex.

  18. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  19. Targeting Tyrosine Kinases and Autophagy in Prostate Cancer

    PubMed Central

    2010-01-01

    Tyrosine kinases play significant roles in tumor progression and therapy resistance. Inhibitors of tyrosine kinases are on the forefront of targeted therapy. For prostate cancer, tyrosine kinases play an additional role in the development of castration-resistant disease state, the most troubling aspect of prostate cancinogenesis which presently defies any effective treatment. Among the 30 or so tyrosine kinases expressed in a typical prostate cancer cell, nearly one third of them have been implicated in prostate carcinogenesis. Interestingly, most of them channel signals through a trio of non-receptor tyrosine kinases, Src/Etk/FAK, referred here as Src tyrosine kinase complex. This complex has been shown to play a significant role in the aberrant activation of androgen receptor (AR) mediated by growth factors (e.g., epidermal growth factor (EGF)), cytokines (interleukin (IL)-6), chemokines (IL-8), and neurokines (gastrin-releasing peptide). These factors are induced and released from the prostate cancer to the stromal cells upon androgen withdrawal. The Src kinase complex has the ability to phosphorylate androgen receptor, resulting in the nuclear translocation and stabilization of un-liganded androgen receptor. Indeed, tyrosine kinase inhibitors targeting Src can inhibit androgen-independent growth of prostate cancer cells in vitro and in preclinical xenograft model. While effective in inducing growth arrest and inhibiting metastasis of castration-resistant tumors, Src inhibitors rarely induce a significant level of apoptosis. This is also reflected by the general ineffectiveness of tyrosine kinase inhibitors as monotherapy in clinical trials. One of the underlying causes of apoptosis resistance is “autophagy,” which is induced by tyrosine kinase inhibitors and by androgen withdrawal. Autophagy is a self-digesting process to regenerate energy by removal of long-lived proteins and retired organelles to provide a survival mechanism to cells encountering stresses

  20. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells

    PubMed Central

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F.; Mayol, Xavier; Cano, Amparo; Hernández-Muáoz, Inmaculada

    2014-01-01

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy. PMID:24742605

  1. The CXCL10/CXCR3 axis promotes cardiac microvascular endothelial cell migration via the p38/FAK pathway in a proliferation-independent manner.

    PubMed

    Xia, Jing-Bo; Mao, Cheng-Zhou; Chen, Zhuo-Ying; Liu, Guang-Hui; Wu, Hai-Yan; Zhou, Deng-Cheng; Park, Kyu-Sang; Zhao, Hui; Kim, Soo-Ki; Cai, Dong-Qing; Qi, Xu-Feng

    2016-04-01

    CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.

  2. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  3. Prolactin-Stimulated Activation of ERK1/2 Mitogen-Activated Protein Kinases is Controlled by PI3-Kinase/Rac/PAK Signaling Pathway in Breast Cancer Cells

    PubMed Central

    Aksamitiene, Edita; Achanta, Sirisha; Kolch, Walter; Kholodenko, Boris N.; Hoek, Jan B.; Kiyatkin, Anatoly

    2011-01-01

    There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer. In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells. Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells. PMID:21726627

  4. Neuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling.

    PubMed

    Goel, Hira Lal; Pursell, Bryan; Standley, Clive; Fogarty, Kevin; Mercurio, Arthur M

    2012-01-15

    The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2(high) and NRP2(low) populations that differed in integrin expression and adhesion to laminin. Specifically, the NRP2(high) population adhered more avidly to laminin and expressed high levels of the α6β1 integrin than the NRP2(low) population. The NRP2(high) population formed numerous focal adhesions on laminin that were not seen in the NRP2(low) population. These results were substantiated using breast carcinoma cell lines that express NRP2 and α6β1 integrin. Depletion experiments revealed that adhesive strength on laminin but not collagen is dependent on NRP2, and that VEGF is needed for adhesion on laminin. A specific interaction between NRP2 and α6β1 integrin was detected by co-immunoprecipitation. NRP2 is necessary for focal adhesion formation on laminin and for the association of α6β1 integrin with the cytoskeleton. NRP2 also facilitates α6β1-integrin-mediated activation of FAK and Src. Unexpectedly, we discovered that NRP2 is located in focal adhesions on laminin. The mechanism by which NRP2 regulates the interaction of α6β1 integrin with laminin to form focal adhesions involves PKC activation. Together, our data reveal a new VEGF-NRP2 signaling pathway that activates the α6β1 integrin and enables it to form focal adhesions and signal. This pathway is important in the pathogenesis of breast cancer.

  5. Platelet adhesion signalling and the regulation of thrombus formation.

    PubMed

    Gibbins, Jonathan M

    2004-07-15

    Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis. PMID:15252124

  6. Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties.

    PubMed

    Steelant, Wim F; Kawakami, Yasushi; Ito, Akihiro; Handa, Kazuko; Bruyneel, Erik A; Mareel, Marc; Hakomori, Senitiroh

    2002-10-30

    Two human mammary carcinoma cell variants, MCF-7/AZ and MCF-7/6, show the same composition in their glycosphingolipid-enriched microdomain (GEM) with regard to globo-series structures Gb3, Gb4, Gb5, monosialyl-Gb5, GM2, and cSrc and FAK. Both variants are non-invasive into collagen gel layer, and showed similar motility in wound migration assay. Whereas invasiveness and motility of MCF-7/AZ cells were enhanced greatly by treatment with mAb RM1 directed to monosialyl-Gb5, the same RM1 treatment had no effect on MCF-7/6. cSrc and FAK of MCF-7/AZ, but not MCF-7/6, were activated by RM1 treatment. Thus, malignancy of MCF-7 is highly dependent on monosialyl-Gb5, and its activation of cSrc and FAK in GEM. PMID:12401210

  7. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  8. Gecko adhesion: evolutionary nanotechnology.

    PubMed

    Autumn, Kellar; Gravish, Nick

    2008-05-13

    If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.

  9. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  10. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample. PMID:22397643

  11. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  12. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  13. Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer

    PubMed Central

    Chung, I-Hsiao; Chen, Cheng-Yi; Lin, Yang-Hsiang; Chi, Hsiang-Cheng; Huang, Ya-Hui; Tai, Pei-Ju; Liao, Chia-Jung; Tsai, Chung-Ying; Lin, Syuan-Ling; Wu, Meng-Han; Chen, Ching-Ying; Lin, Kwang-Huei

    2015-01-01

    The thyroid hormone, 3,3′,5-triiodo-L-thyronine (T3), regulates cell growth, development and differentiation via interactions with thyroid hormone receptors (TR), but the mechanisms underlying T3-mediated modulation of cancer progression are currently unclear. Lipocalin 2 (LCN2), a tumor-associated protein, is overexpressed in a variety of cancer types. Oligonucleotide microarray, coupled with proteomic analysis, has revealed that LCN2 is positively regulated by T3/TR. However, the physiological role and pathway of T3-mediated regulation of LCN2 in hepatocellular carcinogenesis remain to be characterized. Upregulation of LCN2 after T3 stimulation was observed in a time- and dose-dependent manner. Additionally, TRE on the LCN2 promoter was identified at positions −1444/−1427. Overexpression of LCN2 enhanced tumor cell migration and invasion, and conversely, its knockdown suppressed migration and invasion, both in vitro and in vivo. LCN2-induced migration occurred through activation of the Met/FAK cascade. LCN2 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively correlated with TRα levels. Both TRα and LCN2 showed similar expression patterns in relation to survival rate, tumor grade, tumor stage and vascular invasion. Our findings collectively support a potential role of T3/TR in cancer progression through regulation of LCN2 via the Met/FAK cascade. LCN2 may thus be effectively utilized as a novel marker and therapeutic target in HCC. PMID:25940797

  14. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    SciTech Connect

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  15. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly.

    PubMed

    Horton, Edward R; Byron, Adam; Askari, Janet A; Ng, Daniel H J; Millon-Frémillon, Angélique; Robertson, Joseph; Koper, Ewa J; Paul, Nikki R; Warwood, Stacey; Knight, David; Humphries, Jonathan D; Humphries, Martin J

    2015-12-01

    Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this data set reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome is likely to represent a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community. PMID:26479319

  16. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly

    PubMed Central

    Askari, Janet A.; Ng, Daniel H. J.; Millon-Frémillon, Angélique; Robertson, Joseph; Koper, Ewa J.; Paul, Nikki R.; Warwood, Stacey; Knight, David; Humphries, Jonathan D.; Humphries, Martin J.

    2015-01-01

    Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is currently lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this dataset reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome likely represents a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community. PMID:26479319

  17. Neuron adhesion and strengthening

    NASA Astrophysics Data System (ADS)

    Rocha, Aracely; Jian, Kuihuan; Ko, Gladys; Liang, Hong

    2010-07-01

    Understanding the neuron/material adhesion is important for neuron stimulation and growth. The current challenges remain in the lack of precision of measuring techniques and understanding the behavior of neuron. Here, we report a fluid shear method to investigate adhesion at the neuron/poly-D-lysine interface. In this study, the adhesion of 12-day-old chick embryo-retina neurons cultured on poly-D-lysine coated glass coverslips was measured via parallel disk rotational flow. The shear stress experienced by the cells increases with the disk radius. There is a critical point along the radius (Rc) where the stress experienced by the neurons equals their adhesion. The measured Rc can be used to calculate the neuron adhesion. Our results demonstrate that neurons adhered to the poly-D-lysine had a strain hardening effect. The adhesive shear stress of the neuron-material increased with applied shear (τa). When the τa reached or exceeded the value of 40 dyn/cm2, the adhesion remained constant at approximately 30 dyn/cm2. The present work allowed us not only to quantify the adhesive strength and force but also to evaluate the value of strain hardening at the neuron/poly-D-lysine interface.

  18. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  19. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  20. Transformation and pp60v-src autophosphorylation correlate with SHC-GRB2 complex formation in rat and chicken cells expressing host-range and kinase-active, transformation-defective alleles of v-src.

    PubMed Central

    Verderame, M F; Guan, J L; Woods Ignatoski, K M

    1995-01-01

    The biochemical properties of several pp60v-src substrates believed to participate in src-mediated transformation were examined in cells expressing a kinase-active, transformation-defective v-src allele (v-src-F172 delta/Y416F) and its parental allele, v-src-F172 delta, a host-range--dependent allele that transforms chicken cells to a fusiform morphology, but does not transform rat cells. Because pp60v-src-F172 delta is dependent on autophosphorylation for transforming ability, these alleles provide a unique opportunity to examine the role of pp60v-src autophosphorylation in regulating substrate interactions. Increased pp125FAK tyrosine phosphorylation and high levels of pp60v-src-associated phosphotidylinositol-3' kinase activity were detected specifically in chicken cells exhibiting round, refractile transformation but not in cells transformed to a fusiform morphology. Increased pp125FAK kinase activity, but not increased pp125FAK tyrosine-phosphorylation correlated with pp60v-src autophosphorylation and increased anchorage-independent growth. Thus, pp125FAK and PI3'K may participate in morphological transformation by v-src. Furthermore, association of phosphorylated SHC with the adapter GRB2 correlated with increased anchorage-independent growth (and autophosphorylation) in both rat and chicken cells independent of the morphological phenotype induced. Therefore, host-range dependence for transformation may be regulated through association of SHC with GRB2, thus implicating SHC as a crucial substrate for src-dependent transformation. Images PMID:7579711

  1. Adhesives in larynx repair.

    PubMed

    Lyons, M B; Lyons, G D; Webster, D; Wheeler, V R

    1989-04-01

    Guinea pig laryngeal fractures were used as a model to compare the ease of application and effectiveness of the fibrinogen-adhesive system with the ease of application and effectiveness of cyanoacrylate glue and control fractures stinted with contralateral gelatin film. Seven fibrin adhesive-treated and two cyanoacrylate glue-treated guinea pigs were perfused after 60 and 35 days, respectively. The larynges were serial sectioned, and the wound sites were compared. The fibrinogen adhesive system was easier to dispense than cyanoacrylate glue, did not require a completely dry surface, and stabilized within 3 minutes. Cartilage segment alignment with focal, complete fracture healing and symmetrical chondrocyte proliferation were seen in fibrogen adhesive-stinted larynges. In the cyanoacrylate glue-treated larynges, there was no alignment and minimal, asymmetrical chondrocyte proliferation. Gelatin film-stinted controls exhibited similar features. Thus, fibrogen adhesive was easier to apply and more effectively bound laryngeal fractures than cyanoacrylate glue or gelatin film.

  2. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  3. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  4. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  5. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  6. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  7. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  8. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain

    PubMed Central

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer. PMID:25629974

  9. Elucidation of the Roles of the Src kinases in pancreatic acinar cell signaling

    PubMed Central

    Nuche-Berenguer, Bernardo; Moreno, Paola; Jensen, R. T.

    2014-01-01

    Recent studies report the Src-Family kinases(SFK’s) are important in a number of physiological and pathophysiological responses of pancreatic acinar cells(pancreatitis, growth, apoptosis), however, the role of SFKs in various signaling cascades important in mediating these cell functions is either not investigated or unclear. To address this we investigated the action of SFKs in these signaling cascades in rat pancreatic acini by modulating SFK activity using three methods:Adenovirus-induced expression of an inactive dominant-negative CSK(Dn-CSK-Advirus) or Wild-Type CSK(Wt-CSK-Advirus), which activate or inhibit SFK, respectively or using the chemical inhibitor, PP2, with its inactive control, PP3. CCK(0.3,100 nM) and TPA(1 µM) activated SFK and altered the activation of FAK proteins(PYK2, p125 FAK), adaptor proteins(p130CAS, paxillin), MAPK (p42/44, JNK, p38), Shc, PKC(PKD, MARCKS), Akt but not GSK3-β. Changes in SFK activity by using the three methods of altering SFK activity affected CCK/TPAs activation of SFK, PYK2, p125 FAK, p130CAS, Shc, paxillin, Akt but not p42/44, JNK, p38, PKC(PKD, MARCKS) or GSK3-β. With chemical inhibition the active SFK inhibitor, PP2, but not the inactive control analogue, PP3, showed these effects. For all stimulated changes pre-incubation with both adenoviruses showed similar effects to chemical inhibition of SFK activity. In conclusion, using three different approaches to altering Src activity allowed us to define fully for the first time the roles of SFKs in acinar cell signaling. Our results show that in pancreatic acinar cells, SFKs play a much wider role than previously reported in activating a number of important cellular signaling cascades shown to be important in mediating both acinar cell physiological and pathophysiological responses. PMID:25079913

  10. The Y’s that bind: negative regulators of Src family kinase activity in platelets

    PubMed Central

    NEWMAN, D. K.

    2015-01-01

    Summary Members of the Src family of protein tyrosine kinases play important roles in platelet adhesion, activation, and aggregation. The purpose of this review is to summarize current knowledge regarding how Src family kinase activity is regulated in general, to describe what is known about mechanisms underlying SFK activation in platelets, and to discuss platelet proteins that contribute to SFK inactivation, particularly those that use phosphotyrosine-containing sequences to recruit phosphatases and kinases to sites of SFK activity. PMID:19630799

  11. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  12. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  13. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  14. Induction of focal adhesions and motility in Drosophila S2 cells.

    PubMed

    Ribeiro, Susana A; D'Ambrosio, Michael V; Vale, Ronald D

    2014-12-01

    Focal adhesions are dynamic structures that interact with the extracellular matrix on the cell exterior and actin filaments on the cell interior, enabling cells to adhere and crawl along surfaces. We describe a system for inducing the formation of focal adhesions in normally non-ECM-adherent, nonmotile Drosophila S2 cells. These focal adhesions contain the expected molecular markers such as talin, vinculin, and p130Cas, and they require talin for their formation. The S2 cells with induced focal adhesions also display a nonpolarized form of motility on vitronectin-coated substrates. Consistent with findings in mammalian cells, the degree of motility can be tuned by changing the stiffness of the substrate and was increased after the depletion of PAK3, a p21-activated kinase. A subset of nonmotile, nonpolarized cells also exhibited focal adhesions that rapidly assembled and disassembled around the cell perimeter. Such cooperative and dynamic fluctuations of focal adhesions were decreased by RNA interference (RNAi) depletion of myosin II and focal adhesion kinase, suggesting that this behavior requires force and focal adhesion maturation. These results demonstrate that S2 cells, a cell line that is well studied for cytoskeletal dynamics and readily amenable to protein manipulation by RNAi, can be used to study the assembly and dynamics of focal adhesions and mechanosensitive cell motility.

  15. Mechanosensing through focal adhesion-anchored intermediate filaments.

    PubMed

    Gregor, Martin; Osmanagic-Myers, Selma; Burgstaller, Gerald; Wolfram, Michael; Fischer, Irmgard; Walko, Gernot; Resch, Guenter P; Jörgl, Almut; Herrmann, Harald; Wiche, Gerhard

    2014-02-01

    Integrin-based mechanotransduction involves a complex focal adhesion (FA)-associated machinery that is able to detect and respond to forces exerted either through components of the extracellular matrix or the intracellular contractile actomyosin network. Here, we show a hitherto unrecognized regulatory role of vimentin intermediate filaments (IFs) in this process. By studying fibroblasts in which vimentin IFs were decoupled from FAs, either because of vimentin deficiency (V0) or loss of vimentin network anchorage due to deficiency in the cytolinker protein plectin (P0), we demonstrate attenuated activation of the major mechanosensor molecule FAK and its downstream targets Src, ERK1/2, and p38, as well as an up-regulation of the compensatory feedback loop acting on RhoA and myosin light chain. In line with these findings, we show strongly reduced FA turnover rates in P0 fibroblasts combined with impaired directional migration, formation of protrusions, and up-regulation of "stretched" high-affinity integrin complexes. By exploiting tension-independent conditions, we were able to mechanistically link these defects to diminished cytoskeletal tension in both P0 and V0 cells. Our data provide important new insights into molecular mechanisms underlying cytoskeleton-regulated mechanosensing, a feature that is fundamental for controlled cell movement and tumor progression.

  16. Dry adhesives with sensing features

    NASA Astrophysics Data System (ADS)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  17. Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: the role of focal adhesion maturation.

    PubMed

    Cassidy, John W; Roberts, Jemma N; Smith, Carol-Anne; Robertson, Mary; White, Kate; Biggs, Manus J; Oreffo, Richard O C; Dalby, Matthew J

    2014-02-01

    The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopedic devices. In this study, the FDA-approved plastic polycaprolactone was embossed with nanometric grooves and the response of primary and immortalized osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 μm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion; they formed more focal complexes and lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalized cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin-mediated FAK activation. PMID:24252447

  18. Asymmetric Tyrosine Kinase Arrangements in Activation or Autophosphorylation of Receptor Tyrosine Kinases

    SciTech Connect

    J Bae; J Schlessinger

    2011-12-31

    Receptor tyrosine kinases (RTKs) play important roles in the control of many cellular processes including cell proliferation, cell adhesion, angiogenesis, and apoptosis. Ligand-induced dimerization of RTKs leads to autophosphorylation and activation of RTKs. Structural studies have shown that while isolated ectodomains of several RTKs form symmetric dimers the isolated cytoplasmic kinase domains of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) form asymmetric dimers during their activation. Binding of one kinase molecule of EGFR to a second kinase molecule asymmetrically leads to stimulation of kinase activity and enhanced autophosphorylation. Furthermore, the structures of the kinase domain of FGFR1 and FGFR2 reveal the formation of asymmetric interfaces in the processes of autophosphorylation at their specific phosphotyrosine (pY) sites. Disruption of asymmetric dimer interface of EGFR leads to reduction in enzymatic activity and drastic reduction of autophosphorylation of FGFRs in ligandstimulated live cells. These studies demonstrate that asymmetric dimer formation is as a common phenomenon critical for activation and autophosphorylation of RTKs.

  19. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  20. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution

    PubMed Central

    Elineni, Kranthi Kumar; Gallant, Nathan D.

    2011-01-01

    Cell adhesion to extracellular matrices is a tightly regulated process that involves the complex interplay between biochemical and mechanical events at the cell-adhesive interface. Previous work established the spatiotemporal contributions of adhesive components to adhesion strength and identified a nonlinear dependence on cell spreading. This study was designed to investigate the regulation of cell-adhesion strength by the size and position of focal adhesions (FA). The cell-adhesive interface was engineered to direct FA assembly to the periphery of the cell-spreading area to delineate the cell-adhesive area from the cell-spreading area. It was observed that redistributing the same adhesive area over a larger cell-spreading area significantly enhanced cell-adhesion strength, but only up to a threshold area. Moreover, the size of the peripheral FAs, which was interpreted as an adhesive patch, did not directly govern the adhesion strength. Interestingly, this is in contrast to the previously reported functional role of FAs in regulating cellular traction where sizes of the peripheral FAs play a critical role. These findings demonstrate, to our knowledge for the first time, that two spatial regimes in cell-spreading area exist that uniquely govern the structure-function role of FAs in regulating cell-adhesion strength. PMID:22208188

  1. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  2. Regulation of Embryonic Cell Adhesion by the Prion Protein

    PubMed Central

    Schrock, Yvonne; Geiss, Corinna; Luncz, Lydia; Thomanetz, Venus; Stuermer, Claudia A. O

    2009-01-01

    Prion proteins (PrPs) are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1) mediates Ca+2-independent homophilic cell adhesion and signaling; and (2) modulates Ca+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin–based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development. PMID:19278297

  3. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  4. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  5. Endothelial PI 3-kinase activity regulates lymphocyte diapedesis.

    PubMed

    Nakhaei-Nejad, Maryam; Hussain, Amer M; Zhang, Qiu-Xia; Murray, Allan G

    2007-12-01

    Lymphocyte recruitment to sites of inflammation involves a bidirectional series of cues between the endothelial cell (EC) and the leukocyte that culminate in lymphocyte migration into the tissue. Remodeling of the EC F-actin cytoskeleton has been observed after leukocyte adhesion, but the signals to the EC remain poorly defined. We studied the dependence of peripheral blood lymphocyte transendothelial migration (TEM) through an EC monolayer in vitro on EC phosphatidylinositol 3-kinase (PI 3-kinase) activity. Lymphocytes were perfused over cytokine-activated EC using a parallel-plate laminar flow chamber. Inhibition of EC PI 3-kinase activity using LY-294002 or wortmannin decreased lymphocyte TEM (48 +/- 6 or 34 +/- 7%, respectively, vs. control; mean +/- SE; P < 0.05). Similarly, EC knockdown of the p85alpha regulatory subunit of PI 3-kinase decreased lymphocyte transmigration. Treatment of EC with jasplakinolide to inhibit EC F-actin remodeling also decreased lymphocyte TEM to 24 +/- 10% vs. control (P < 0.05). EC PI 3-kinase inhibition did not change the strength of lymphocyte adhesion to the EC or formation of the EC "docking structure" after intercellular adhesion molecule-1 ligation, whereas this was inhibited by jasplakinolide treatment. A similar fraction of lymphocytes migrated on control or LY-294002-treated EC and localized to interendothelial junctions. However, lymphocytes failed to extend processes below the level of vascular endothelial (VE)-cadherin on LY-294002-treated EC. Together these observations indicate that EC PI 3-kinase activity and F-actin remodeling are required during lymphocyte diapedesis and identify a PI 3-kinase-dependent step following initial separation of the VE-cadherin barrier.

  6. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  7. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  8. Role of non-receptor protein kinases in spermatid transport during spermatogenesis*

    PubMed Central

    Wan, H. T.; Mruk, Dolores D.; Tang, Elizabeth I.; Xiao, Xiang; Cheng, Yan-ho; Wong, Elissa W.P.; Wong, Chris K. C.; Cheng, C. Yan

    2014-01-01

    Non-receptor protein tyrosine kinases are cytoplasmic kinases that activate proteins by phosphorylating target protein tyrosine residues, in turn affecting multiple functions in eukaryotic cells. Herein, we focus on the role of non-receptor protein tyrosine kinases, most notably, FAK, c-Yes and c-Src, in the transport of spermatids across the seminiferous epithelium during spermatogenesis. Since spermatids, which are formed from spermatocytes via meiosis, are immotile haploid cells, they must be transported by Sertoli cells across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Without the timely transport of spermatids across the epithelium, the release of sperms at spermiation fails to occur, leading to infertility. Thus, the molecular event pertinent to spermatid transport is crucial to spermatogenesis. Herein, we provide a critical discussion based on recent findings in the field. We also provide a hypothetical model on spermatid transport, and the role of non-receptor protein tyrosine kinases in this event. We also highlight areas of research that deserve attention by investigators in the field. PMID:24727349

  9. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  10. Prokaryotic Diacylglycerol Kinase and Undecaprenol Kinase

    PubMed Central

    Van Horn, Wade D.; Sanders, Charles R.

    2013-01-01

    Prokaryotic diacylglycerol kinase (DAGK) and undecaprenol kinase (UDPK) are the lone members of a family of multispan membrane enzymes that are very small, lack relationships to any other family of proteins—including water soluble kinases, and that exhibit an unusual structure and active site architecture. Escherichia coli DAGK plays an important role in recycling diacylglycerol produced as a byproduct of biosynthesis of molecules located in the periplasmic space. UDPK seems to play an analogous role in Gram-positive bacteria, where its importance is evident by the fact that UDPK is essential for biofilm formation by the oral pathogen Streptococcus mutans. DAGK has also long served as a model system for studies of membrane protein biocatalysis, folding, stability, and structure. This review explores our current understanding of the microbial physiology, enzymology, structural biology, and folding of the prokaryotic diacylglycerol kinase family, which is based on over 40 years of studies. PMID:22224599

  11. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  12. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  13. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  14. CD68(+)HLA-DR(+) M1-like macrophages promote motility of HCC cells via NF-κB/FAK pathway.

    PubMed

    Wang, Hao; Wang, Xianteng; Li, Xia; Fan, Yuchen; Li, Guosheng; Guo, Chun; Zhu, Faliang; Zhang, Lining; Shi, Yongyu

    2014-04-01

    TAM is a prominent component of inflammatory microenvironment, presenting M1 and M2 polarized states in HCC. The objective of this study is to investigate the relationship between M1-polarized macrophages and metastasis in HCC. We used immunohistochemical double-staining method to inspect the infiltration of CD68(+)HLA-DR(+) M1-like macrophages in HCC tissues. The M1-polarized macrophage was derived from THP-1 cell treated by LPS and IFN-γ in vitro. Transwell migration assay was used to evaluate whether the M1-polarized macrophage enhanced motility of HCC cells in the presence or absence of NF-κB inhibitor Bay 11-7802. The activation of NF-κB and FAK signaling pathways was examined by Western blot assay. Our results showed that the density of CD68(+)HLA-DR(+) TAM in the HCC with metastasis is significantly higher than that in the HCC without metastasis. Moreover, the conditioned medium from the M1 macrophages promote the migration of HCC cells and induced the activation of NF-κB and FAK signaling. The promoted migration of HCC cells was abrogated by the Bay 11-7802, as well as the activation of NF-κB and FAK pathway. Our findings implied a pro-metastatic role of M1-like TAM in HCC.

  15. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  16. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  17. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  18. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  19. Calreticulin modulates cell adhesiveness via regulation of vinculin expression

    PubMed Central

    1996-01-01

    Calreticulin is an ubiquitous and highly conserved high capacity Ca(2+)- binding protein that plays a major role in Ca2+ storage within the lumen of the ER. Here, using L fibroblast cell lines expressing different levels of calreticulin, we show that calreticulin plays a role in the control of cell adhesiveness via regulation of expression of vinculin, a cytoskeletal protein essential for cell-substratum and cell-cell attachments. Both vinculin protein and mRNA levels are increased in cells overexpressing calreticulin and are downregulated in cells expressing reduced level of calreticulin. Abundance of actin, talin, alpha 5 and beta 1 integrins, pp125 focal adhesion kinase, and alpha-catenin is not affected by the differential calreticulin expression. Overexpression of calreticulin increases both cell- substratum and cell-cell adhesiveness of L fibroblasts that, most surprisingly, establish vinculin-rich cell-cell junctions. Upregulation of calreticulin also affects adhesion-dependent phenomena such as cell motility (which decreases) and cell spreading (which increases). Downregulation of calreticulin brings about inverse effects. Cell adhesiveness is Ca2+ regulated. The level of calreticulin expression, however, has no effect on either the resting cytoplasmic Ca2+ concentration or the magnitude of FGF-induced Ca2+ transients. Calreticulin, however, participates in Ca2+ homeostasis as its level of expression affects cell viability at low concentrations of extracellular Ca2+. Consequently, we infer that it is not the Ca2+ storage function of calreticulin that affects cell adhesiveness. Neither endogenous calreticulin nor overexpressed green fluorescent protein-calreticulin construct can be detected outside of the ER. Since all of the adhesion-related effects of differential calreticulin expression can be explained by its regulation of vinculin expression, we conclude that it is the ER-resident calreticulin that affects cellular adhesiveness. PMID:8991101

  20. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  1. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice.

    PubMed

    Jadav, Rathan S; Kumar, Dharmika; Buwa, Natasha; Ganguli, Shubhra; Thampatty, Sitalakshmi R; Balasubramanian, Nagaraj; Bhandari, Rashna

    2016-08-01

    Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO

  2. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice.

    PubMed

    Jadav, Rathan S; Kumar, Dharmika; Buwa, Natasha; Ganguli, Shubhra; Thampatty, Sitalakshmi R; Balasubramanian, Nagaraj; Bhandari, Rashna

    2016-08-01

    Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO

  3. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    SciTech Connect

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.; Cunningham, David; Griffor, Matt; Bonnette, Peter C.; Wang, Hong; Chrunyk, Boris A.; Aspnes, Gary E.; Walker, Daniel P.; Brosius, Arthur D.; Buckbinder, Leonard; Pfizer

    2009-05-21

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.

  4. Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product.

    PubMed

    Bernbom, Nete; Ng, Yoke Yin; Paludan-Müller, Christine; Gram, Lone

    2009-09-15

    Fermentation of raw fish is a common process in Asia for improvement of shelf life and safety, however, little is known about the survival of pathogenic bacteria in these products. Raw fish may be contaminated with Salmonella and Vibrio species. The purpose of this study was to determine survival and potential growth of Salmonella enterica serovar Weltevreden, S. enterica serovar Enteritidis, Vibrio cholerae and V. parahaemolyticus as influenced by the preservation parameters (sodium chloride, garlic and lactic acid) present in the Thai fermented fish product som-fak. The inhibitory effects of sodium chloride (0-4%), garlic (0-10%) and lactic acid (pH levels as in som-fak) were measured in modified brain heart infusion (BHI) broth at 30 degrees C. All bacteria were inhibited by 8-10% sodium chloride. Salmonella grew in all concentrations of garlic whereas Vibrio spp. were inhibited by 1.0-1.5%. Lactic acid was inhibitory at levels above 1.5%. The combinations of sodium chloride, lactic acid and garlic showed a distinct hurdle effect in the broth system. Neither S. Enteritidis, V. cholerae nor V. parahaemolyticus grew in garlic (0.5-1%), regardless of the level of sodium chloride (0.5-4% (w/v)), when lactic acid (0.5-2%) was present. S. Weltevreden was the least inhibited of the four bacteria and grew in the combination of 0.5% garlic and 0.5% lactic acid regardless of the NaCl level (0.5-4% (w/v)). Som-fak with 0 to 10% garlic or 2% glucose was inoculated with either (i) 10(3) CFU/g Salmonella Weltevreden, (ii) 10(6) CFU/g garlic fermenting Lactobacillus plantarum strain 509 or (iii) a combination of the two strains and stored at 30 degrees C. The Salmonella count increased to >10(8) CFU/g (>10(6) CFU/g for 10% garlic) in all types of som-fak inoculated with S. Weltevreden within the first day. Only a combination of at least 6% garlic and L. plantarum 509 was enough to prevent growth of the inoculated Salmonella whereas adding the Lactobacillus strain alone or in

  5. Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling

    PubMed Central

    Macha, Muzafar A.; Rachagani, Satyanarayana; Gupta, Suprit; Pai, Priya; Ponnusamy, Moorthy P.; Batra, Surinder K.; Jain, Maneesh

    2013-01-01

    Inadequate efficacy, high toxicity and drug resistance associated with existing chemotherapeutic agents mandate a need for novel therapeutic strategies for highly aggressive pancreatic cancer (PC). Guggulsterone (GS) exhibits potent anti-proliferative effects against various cancer cells and has emerged as an attractive candidate for use in complementary or preventive cancer therapies. However, the knowledge regarding the therapeutic potential of GS in PC is still limited and needs to be explored. We studied the effect of GS on PC cell growth, motility and invasion and elucidated the molecular mechanisms associated with its anti-tumor effects. Treatment of Capan1 and CD18/HPAF PC cells with GS resulted in dose- and time-dependent growth inhibition and decreased colony formation. Further, GS treatment induced apoptosis and cell cycle arrest as assessed by Annexin-V assay and FACS analysis. Increased apoptosis following GS treatment was accompanied with Bad dephosphorylation and its translocation to the mitochondria, increased Caspase-3 activation, decreased Cyclin D1, Bcl-2 and xIAP expression. Additionally, GS treatment decreased motility and invasion of PC cells by disrupting cytoskeletal organization, inhibiting activation of FAK and Src signaling and decreased MMP9 expression. More importantly, GS treatment decreased mucin MUC4 expression in Capan1 and CD18/HPAF cells through transcriptional regulation by inhibiting Jak/STAT pathway. In conclusion, our results support the utility of GS as a potential therapeutic agent for lethal PC. PMID:23920124

  6. PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling.

    PubMed

    Gao, Hui; Zhong, Feng; Xie, Jing; Peng, Jianjun; Han, Zhiwu

    2016-01-01

    Pituitary tumor transforming gene (PTTG) is a novel oncogene that is expressed at higher level in most of the tumors. PTTG overexpression correlates with lymph node infiltration and a higher degree of tumor recurrence in breast cancer. However, the cellular functions and precise signals elicited by PTTG in breast cancer are not fully understood. Here, we established a breast cancer cell line which stably overexpressed PTTG. In vitro experiments showed that overexpression of PTTG in MCF-7 cells was associated with enhanced cell migration and invasion as well as EMT. Our results also demonstrated that PTTG overexpression correlated with elevated EMMPRIN level, which mediated the enhanced cell migration, invasion and EMT. Moreover, our findings suggested that PTTG enhances metastatic potential of breast cancer cells by inducing EMMPRIN through activating FAK/Akt/mTOR pathway. Our findings may lead to a better understanding of the biological effect of PTTG and provide mechanistic insights for developing potential therapeutic strategies for inhibiting the invasion and metastasis of breast cancer. PMID:27186413

  7. Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling.

    PubMed

    Macha, Muzafar A; Rachagani, Satyanarayana; Gupta, Suprit; Pai, Priya; Ponnusamy, Moorthy P; Batra, Surinder K; Jain, Maneesh

    2013-12-01

    Inadequate efficacy, high toxicity and drug resistance associated with existing chemotherapeutic agents mandate a need for novel therapeutic strategies for highly aggressive Pancreatic Cancer (PC). Guggulsterone (GS) exhibits potent anti-proliferative effects against various cancer cells and has emerged as an attractive candidate for use in complementary or preventive cancer therapies. However, the knowledge regarding the therapeutic potential of GS in PC is still limited and needs to be explored. We studied the effect of GS on PC cell growth, motility and invasion and elucidated the molecular mechanisms associated with its anti-tumor effects. Treatment of Capan1 and CD18/HPAF PC cells with GS resulted in dose- and time-dependent growth inhibition and decreased colony formation. Further, GS treatment induced apoptosis and cell cycle arrest as assessed by Annexin-V assay and FACS analysis. Increased apoptosis following GS treatment was accompanied with Bad dephosphorylation and its translocation to the mitochondria, increased Caspase-3 activation, decreased Cyclin D1, Bcl-2 and xIAP expression. Additionally, GS treatment decreased motility and invasion of PC cells by disrupting cytoskeletal organization, inhibiting activation of FAK and Src signaling and decreased MMP9 expression. More importantly, GS treatment decreased mucin MUC4 expression in Capan1 and CD18/HPAF cells through transcriptional regulation by inhibiting Jak/STAT pathway. In conclusion, our results support the utility of GS as a potential therapeutic agent for lethal PC. PMID:23920124

  8. The Secretory Pathway Kinases

    PubMed Central

    Sreelatha, Anju; Kinch, Lisa N.; Tagliabracci, Vincent S.

    2015-01-01

    Protein phosphorylation is a nearly universal post-translation modification involved in a plethora of cellular events. Even though phosphorylation of extracellular proteins had been observed, the identity of the kinases that phosphorylate secreted proteins remained a mystery until recently. Advances in genome sequencing and genetic studies have paved the way for the discovery of a new class of kinases that localize within the endoplasmic reticulum, Golgi apparatus and the extracellular space. These novel kinases phosphorylate proteins and proteoglycans in the secretory pathway and appear to regulate various extracellular processes. Mutations in these kinases cause human disease, thus underscoring the biological importance of phosphorylation within the secretory pathway. PMID:25862977

  9. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  10. Osteopontin involvement in integrin-mediated cell signaling and regulation of expression of alkaline phosphatase during early differentiation of UMR cells.

    PubMed

    Liu, Y K; Uemura, T; Nemoto, A; Yabe, T; Fujii, N; Ushida, T; Tateishi, T

    1997-12-22

    To clarify the function of osteopontin in osteoblast differentiation, we have examined the signal transduction pathway in an osteoblastic cell line (UMR106-6) bound to osteopontin, fibronectin, vitronectin and collagen type I surfaces. This was done by investigating the production and autophosphorylation of focal adhesion kinase (FAK) and the expression of alkaline phosphatase (ALP) at the transcription level. Results suggest that osteopontin was not only responsible for the autophosphorylation of FAK but regulated the expression of ALP, which was strongly correlated with FAK activity. These results suggest that osteopontin might act as a trigger in the early differentiation of osteoblasts.

  11. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  12. The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 {alpha}3 chain is crucial for integrin {alpha}3{beta}1 binding and cell adhesion

    SciTech Connect

    Kim, Jin-Man; Park, Won Ho; Min, Byung-Moo . E-mail: bmmin@snu.ac.kr

    2005-03-10

    Laminin-5 regulates various cellular functions, including cell adhesion, spreading, and motility. Here, we expressed the five human laminin {alpha}3 chain globular (LG) domains as monomeric, soluble fusion proteins, and examined their biological functions and signaling. Recombinant LG3 (rLG3) protein, unlike rLG1, rLG2, rLG4, and rLG5, played roles in cell adhesion, spreading, and integrin {alpha}3{beta}1 binding. More significantly, we identified a novel motif (PPFLMLLKGSTR) in the LG3 domain that is crucial for these responses. Studies with the synthetic peptides delineated the PPFLMLLKGSTR peptide within LG3 domain as a major site for both integrin {alpha}3{beta}1 binding and cell adhesion. Substitution mutation experiments suggest that the Arg residue is important for these activities. rLG3 protein- and PPFLMLLKGSTR peptide-induced keratinocyte adhesion triggered cell signaling through FAK phosphorylation at tyrosine-397 and -577. To our knowledge, this is the first report demonstrating that the PPFLMLLKGSTR peptide within the LG3 domain is a novel motif that is capable of supporting integrin {alpha}3{beta}1-dependent cell adhesion and spreading.

  13. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  14. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  15. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  16. FES kinase participates in KIT-ligand induced chemotaxis

    SciTech Connect

    Voisset, Edwige; Lopez, Sophie; Chaix, Amandine; Vita, Marina; George, Coralie; Dubreuil, Patrice; De Sepulveda, Paulo

    2010-02-26

    FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.

  17. FES kinase participates in KIT-ligand induced chemotaxis.

    PubMed

    Voisset, Edwige; Lopez, Sophie; Chaix, Amandine; Vita, Marina; George, Coralie; Dubreuil, Patrice; De Sepulveda, Paulo

    2010-02-26

    FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.

  18. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  19. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis

    PubMed Central

    Hascoet, Pauline; Chesnel, Franck; Le Goff, Cathy; Le Goff, Xavier; Arlot-Bonnemains, Yannick

    2015-01-01

    Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis. PMID:26579493

  20. Uptake of Marasmius oreades agglutinin disrupts integrin-dependent cell adhesion

    PubMed Central

    Juillot, Samuel; Cott, Catherine; Madl, Josef; Claudinon, Julie; van der Velden, Niels Sebastiaan Johannes; Künzler, Markus; Thuenauer, Roland; Römer, Winfried

    2016-01-01

    Background Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. Methods Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. Results In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of β1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. Conclusion Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. General significance After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity. PMID:26546712

  1. Nuclear Signaling from Cadherin Adhesion Complexes

    PubMed Central

    McCrea, Pierre D.; Maher, Meghan T.; Gottardi, Cara J.

    2015-01-01

    The arrival of multicellularity in evolution facilitated cell–cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of “outside-in” or “inside-out” signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure–function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell–cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell–cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis. PMID:25733140

  2. The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver.

    PubMed

    Reinehr, Roland; Sommerfeld, Annika; Häussinger, Dieter

    2013-04-01

    The Src family kinases Yes, Fyn, and c-Src play a pivotal role in regulating diverse liver functions such as bile flow, proteolysis, apoptosis, and proliferation and are regulated by anisoosmotic cell volume changes, death receptor ligands, and bile acids. For example, cell swelling leads to an integrin-sensed and focal adhesion kinase-mediated activation of c-Src-triggering choleresis, proteolysis inhibition, regulatory volume decrease via p38MAPK and proliferation via the activation of the epidermal growth factor receptor and extracellular regulated kinases 1 and 2. In contrast, hepatocyte shrinkage generates an almost instantaneous oxidative stress response that triggers the activation of c-Jun N-terminal kinase and the Src family kinases Fyn and Yes. Whereas Fyn activation mediates cholestasis, Yes triggers CD95 activation and apoptosis. This review will discuss the role of Src family kinases in the regulation of liver function with emphasis on their role in osmo-signaling and bile acid signaling.

  3. Tropomyosin Tm5NM1 Spatially Restricts Src Kinase Activity through Perturbation of Rab11 Vesicle Trafficking

    PubMed Central

    Bach, Cuc T.; Murray, Rachael Z.; Owen, Dylan; Gaus, Kat

    2014-01-01

    In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules. PMID:25288639

  4. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  5. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    PubMed Central

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  6. [Adhesive cutaneous pharmaceutical forms].

    PubMed

    Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G

    1989-01-01

    The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.

  7. Puerperal endometritis and intrauterine adhesions.

    PubMed

    Polishuk, W Z; Anteby, S O; Weinstein, D

    1975-08-01

    The role of puerperal endometritis in intrauterine adhesion formation was studied by hysterography in 171 women who had cesarean sections. Of 28 patients who developed significant endometritis, only one developed intracervical adhesions. In the control group of 143 cases, there was also only one such case. Endometritis alone apparently does not play a significant role in intrauterine and endocervical adhesion formation. The possible role of placental fibroblasts in preventing endometrial regeneration is discussed. PMID:1158622

  8. Adhesion properties of gecko setae

    NASA Astrophysics Data System (ADS)

    Hill, Ginel; Peattie, Anne; Daniels, Roxanne; Full, Robert; Kenny, Thomas

    2005-03-01

    Millions of keratin hairs on gecko feet, called setae, act as a spectacular dry adhesive. Each seta branches into hundreds of smaller fibers that terminate in spatula-shaped ends. Morphological differences between the setae from different gecko species are suspected to affect both single-seta and whole-animal adhesion properties. Single-seta adhesive force measurements made using a MEMS piezoresistive cantilever capable of two-axis measurements are presented.

  9. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation.

    PubMed

    Herzog, Birger; Pellet-Many, Caroline; Britton, Gary; Hartzoulakis, Basil; Zachary, Ian C

    2011-08-01

    In endothelial cells, neuropilin-1 (NRP1) binds vascular endothelial growth factor (VEGF)-A and is thought to act as a coreceptor for kinase insert domain-containing receptor (KDR) by associating with KDR and enhancing VEGF signaling. Here we report mutations in the NRP1 b1 domain (Y297A and D320A), which result in complete loss of VEGF binding. Overexpression of Y297A and D320A NRP1 in human umbilical vein endothelial cells reduced high-affinity VEGF binding and migration toward a VEGF gradient, and markedly inhibited VEGF-induced angiogenesis in a coculture cell model. The Y297A NRP1 mutant also disrupted complexation between NRP1 and KDR and decreased VEGF-dependent phosphorylation of focal adhesion kinase at Tyr407, but had little effect on other signaling pathways. Y297A NRP1, however, heterodimerized with wild-type NRP1 and NRP2 indicating that nonbinding NRP1 mutants can act in a dominant-negative manner through formation of NRP1 dimers with reduced binding affinity for VEGF. These findings indicate that VEGF binding to NRP1 has specific effects on endothelial cell signaling and is important for endothelial cell migration and angiogenesis mediated via complex formation between NRP1 and KDR and increased signaling to focal adhesions. Identification of key residues essential for VEGF binding and biological functions provides the basis for a rational design of antagonists of VEGF binding to NRP1.

  10. Topographically Tuning Polymer Adhesion

    NASA Astrophysics Data System (ADS)

    Crosby, Alfred

    2003-03-01

    Nature often uses geometry on micro and nano length scales to systematically tailor performance in multivariable environments. A great example, which has received much attention recently, is the foot of a gecko. The gecko's foot is covered with hundreds of thousands of "hair"-like protrusions which dictate a gecko's precise control of adhesion through van der Waals forces.(1) In our research, we fabricate controlled structures ranging from the nano to micro length scales on elastomeric surfaces. Our initial results are based on the topography of spherical caps and high-aspect ratio posts that decorate the surface of polydimethylsiloxane layers. Based on initial calculations, we demonstrate how the aspect ratio and inter-feature spacing greatly affects the near-surface compliance, thus impacting the processes of interface formation. The density and shape of the features are also shown to enhance the prevention of interfacial failure. These results are relevant for the refinement of the soft lithography processing technique, the development of smart adhesives, and the fabrication of bonding sites for biological implants. (1) Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny,T.W.; Fearing, R.; Full, R.J. Nature 2000, 405, 681-685.

  11. Principles of adhesion.

    PubMed

    Baier, R E

    1992-01-01

    Understanding interfacial phenomena has been of direct relevance and practical benefit to extending the use of dental adhesives. Both surface physics, which describes properties of the inorganic materials' interfacial zones from their actual phase boundaries toward the bulk phases of the solids, and surface chemistry, which describes phenomena at the solid/biological interface and beyond it into the variable organic environment, have been important. High-energy materials include solids that are very hard, have high melting points, strong intermolecular forces, and basically crystalline structures, such as dental enamel. Low-energy materials, such as dentinal collagen, salivary films, and the organic resins of restorative materials, are softer, lower melting, and have weaker intermolecular forces, poorer crystallinity, and surface energies generally less than 100 ergs/cm. It has been a properly renewed emphasis on wetting of dental surfaces and their modification by primer coats, displacing or mixing with water and adsorbed proteinaceous films, that has promoted the success of many recently developed fourth-generation dentin adhesives. Their improved wettability for biological phases correlates directly with their better infiltration and anchoring of composites.

  12. Analysis and testing of adhesive bonds

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Bennett, S. J.; Devries, K. L.

    1977-01-01

    An adhesive fracture mechanics approach is described with reference to the identification and design of the best tests for evaluating a given adhesive, the definition of the most meaningful fundamental parameters by which adhesives might be characterized, and the application of these parameters to the design of joints and to the prediction of their performance. Topics include standard adhesive test techniques, the theory of adhesive fracture, and adhesive fracture energy tests. Analytical methods and computer techniques for adhesive bonding, chemical and physical aspects of adhesive fracture, and specific applications and aspects of adhesive fracture mechanics are discussed.

  13. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility. PMID:21680396

  14. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility.

  15. Lipid Raft Is Required for PSGL-1 Ligation Induced HL-60 Cell Adhesion on ICAM-1

    PubMed Central

    Xu, Tingshuang; Liu, Wenai; Luo, Jixian; Li, Chunfeng; Ba, Xueqing; Ampah, Khamal Kwesi; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2013-01-01

    P-selectin glycoprotein ligand-1 (PSGL-1) and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD), we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation) to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion. PMID:24312591

  16. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  17. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  18. Stretchable, adhesion-tunable dry adhesive by surface wrinkling.

    PubMed

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (approximately 10.8 N/cm(2)) and shear adhesion (approximately 14.7 N/cm(2)) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of approximately 3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of approximately 0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment.

  19. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions.

    PubMed

    Woods, Anita; Wang, Guoyan; Beier, Frank

    2007-10-01

    Chondrocyte differentiation is a multi-step process characterized by successive changes in cell morphology and gene expression. In addition to tight regulation by numerous soluble factors, these processes are controlled by adhesive events. During the early phase of the chondrocyte life cycle, cell-cell adhesion through molecules such as N-cadherin and neural cell adhesion molecule (N-CAM) is required for differentiation of mesenchymal precursor cells to chondrocytes. At later stages, for example in growth plate chondrocytes, adhesion signaling from extracellular matrix (ECM) proteins through integrins and other ECM receptors such as the discoidin domain receptor (DDR) 2 (a collagen receptor) and Annexin V is necessary for normal chondrocyte proliferation and hypertrophy. Cell-matrix interactions are also important for chondrogenesis, for example through the activity of CD44, a receptor for Hyaluronan and collagens. The roles of several signaling molecules involved in adhesive signaling, such as integrin-linked kinase (ILK) and Rho GTPases, during chondrocyte differentiation are beginning to be understood, and the actin cytoskeleton has been identified as a common target of these adhesive pathways. Complete elucidation of the pathways connecting adhesion receptors to downstream effectors and the mechanisms integrating adhesion signaling with growth factor- and hormone-induced pathways is required for a better understanding of physiological and pathological skeletal development.

  20. Fire-Retardant Epoxy Adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.

    1982-01-01

    Phosphorus-containing epoxy is fire-retardant and translucent. Intended as adhesive for laminated plastic sheets, new material bonds well to titanium dioxide-filled plastic film, which ordinarily shows little surface interaction with adhesives. Fire retardancy has been demonstrated, and smoke density is low enough to avoid smoke obscuration.

  1. Platelet adhesiveness in diabetes mellitus

    PubMed Central

    Shaw, S.; Pegrum, G. D.; Wolff, Sylvia; Ashton, W. L.

    1967-01-01

    Platelet adhesiveness has been assessed on whole blood from a series of 34 diabetics and 50 control subjects using adenosine diphosphate (A.D.P.) and by adherence to glass microspherules (ballotini). Using both techniques it was possible to demonstrate a significant increase in platelet adhesiveness in the diabetic patients. PMID:5614070

  2. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  3. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  4. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  5. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  6. Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability.

    PubMed

    Gutsaeva, Diana R; Montero-Huerta, Pedro; Parkerson, James B; Yerigenahally, Shobha D; Ikuta, Tohru; Head, C Alvin

    2014-03-20

    The molecular mechanisms by which nitric oxide (NO) bioavailability modulates the clinical expression of sickle cell disease (SCD) remain elusive. We investigated the effect of hypoxia and NO bioavailability on sickle red blood cell (sRBC) adhesion using mice deficient for endothelial NO synthase (eNOS) because their NO metabolite levels are similar to those of SCD mice but without hypoxemia. Whereas sRBC adhesion to endothelial cells in eNOS-deficient mice was synergistically upregulated at the onset of hypoxia, leukocyte adhesion was unaffected. Restoring NO metabolite levels to physiological levels markedly reduced sRBC adhesion to levels seen under normoxia. These results indicate that sRBC adherence to endothelial cells increases in response to hypoxia prior to leukocyte adherence, and that low NO bioavailability synergistically upregulates sRBC adhesion under hypoxia. Although multiple adhesion molecules mediate sRBC adhesion, we found a central role for P-selectin in sRBC adhesion. Hypoxia and low NO bioavailability upregulated P-selectin expression in endothelial cells in an additive manner through p38 kinase pathways. These results demonstrate novel cellular and signaling mechanisms that regulate sRBC adhesion under hypoxia and low NO bioavailability. Importantly, these findings point us toward new molecular targets to inhibit cell adhesion in SCD.

  7. The ubiquitous neural cell adhesion molecule (N-CAM).

    PubMed

    Weledji, Elroy P; Assob, Jules C

    2014-09-01

    Adhesi