Science.gov

Sample records for adhesion migration invasion

  1. Altering FAK-Paxillin Interactions Reduces Adhesion, Migration and Invasion Processes

    PubMed Central

    Deramaudt, Thérèse B.; Dujardin, Denis; Noulet, Fanny; Martin, Sophie; Vauchelles, Romain; Takeda, Ken; Rondé, Philippe

    2014-01-01

    Focal adhesion kinase (FAK) plays an important role in signal transduction pathways initiated at sites of integrin-mediated cell adhesion to the extracellular matrix. Thus, FAK is involved in many aspects of the metastatic process including adhesion, migration and invasion. Recently, several small molecule inhibitors which target FAK catalytic activity have been developed by pharmaceutical companies. The current study was aimed at addressing whether inhibiting FAK targeting to focal adhesions (FA) represents an efficient alternative strategy to inhibit FAK downstream pathways. Using a mutagenesis approach to alter the targeting domain of FAK, we constructed a FAK mutant that fails to bind paxillin. Inhibiting FAK-paxillin interactions led to a complete loss of FAK localization at FAs together with reduced phosphorylation of FAK and FAK targets such as paxillin and p130Cas. This in turn resulted in altered FA dynamics and inhibition of cell adhesion, migration and invasion. Moreover, the migration properties of cells expressing the FAK mutant were reduced as compared to FAK-/- cells. This was correlated with a decrease in both phospho-Src and phospho-p130Cas levels at FAs. We conclude that targeting FAK-paxillin interactions is an efficient strategy to reduce FAK signalling and thus may represent a target for the development of new FAK inhibitors. PMID:24642576

  2. Rab'ing tumor cell migration and invasion: focal adhesion disassembly driven by Rab5.

    PubMed

    Torres, Vicente A

    2014-01-01

    The small GTPase Rab5 has been extensively studied in the context of endocytic trafficking because it is critical in the regulation of early endosome dynamics. In addition to this canonical role, evidence obtained in recent years implicates Rab5 in the regulation of cell migration. This novel role of Rab5 is based not only on an indirect relationship between cell migration and endosomal trafficking as separate processes, but also on the direct regulation of signaling proteins implicated in cell migration. However, the precise mechanisms underlying this connection have remained elusive. Recent studies have shown that the activation of Rab5 is a critical event for maintaining the dynamics of focal adhesions, which is fundamental in regulating not only cell migration but also tumor cell invasion.

  3. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    PubMed

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant'Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  4. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  5. Connexin 32 and its derived homotypic gap junctional intercellular communication inhibit the migration and invasion of transfected HeLa cells via enhancement of intercellular adhesion.

    PubMed

    Yang, Jie; Liu, Bing; Wang, Qin; Yuan, Dongdong; Hong, Xiaoting; Yang, Yan; Tao, Liang

    2011-01-01

    The effects of connexin (Cx) and its derived homotypic gap junctional intercellular communication (GJIC) between tumor cells on the invasion of metastatic cancers and the underlying mechanisms remain unclear. In this study, we investigated the influence of Cx32 and the homotypic GJIC mediated by this Cx on the migration, invasion and intercellular adhesion of transfected HeLa cells. The expression of Cx32 significantly increased cell adhesion and inhibited migration and invasion. The inhibition of GJIC by oleamide, a widely used GJIC inhibitor, reduced the enhanced adhesion and partly reversed the decreased migration and invasion that had been induced by Cx32 expression. Blockage of the p38 and extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase (ERK1/2 MAPKs) pathways using their specific inhibitors attenuated the effects of Cx32, but not those of GJIC, on cell adhesion, migration and invasion. These results indicate that the homotypic GJIC mediated by Cx32, as well as the Cx itself, inhibit cell migration and invasion, most likely through the elevation of intercellular adhesion. The suppressive effect of Cx32 on the migration and invasion of cancer cells, but not that of its derived homotypic GJIC, partly depends on the activation of the p38 and the ERK1/2 MAPKs pathways.

  6. PRL-3 engages the focal adhesion pathway in triple-negative breast cancer cells to alter actin structure and substrate adhesion properties critical for cell migration and invasion.

    PubMed

    Gari, Hamid H; DeGala, Gregory D; Ray, Rahul; Lucia, M Scott; Lambert, James R

    2016-10-01

    Triple-negative breast cancers (TNBCs) are among the most aggressive cancers characterized by a high propensity to invade, metastasize and relapse. We previously reported that the TNBC-specific inhibitor, AMPI-109, significantly impairs the ability of TNBC cells to migrate and invade by reducing levels of the metastasis-promoting phosphatase, PRL-3. Here, we examined the mechanisms by which AMPI-109 and loss of PRL-3 impede cell migration and invasion. AMPI-109 treatment or knock down of PRL-3 expression were associated with deactivation of Src and ERK signaling and concomitant downregulation of RhoA and Rac1/2/3 GTPase protein levels. These cellular changes led to rearranged filamentous actin networks necessary for cell migration and invasion. Conversely, overexpression of PRL-3 promoted TNBC cell invasion by upregulating matrix metalloproteinase 10, which resulted in increased TNBC cell adherence to, and degradation of, the major basement membrane component laminin. Our data demonstrate that PRL-3 engages the focal adhesion pathway in TNBC cells as a key mechanism for promoting TNBC cell migration and invasion. Collectively, these data suggest that blocking PRL-3 activity may be an effective method for reducing the metastatic potential of TNBC cells.

  7. Effects of laver extracts on adhesion, invasion, and migration in SK-Hep1 human hepatoma cancer cells.

    PubMed

    Do Thi, Nhuan; Hwang, Eun-Sun

    2014-01-01

    The laver (Porphyra tenera), red seaweed, has been reported to have anticancer activity, but little is known about its molecular mechanisms of action. The objective of this study was to determine the effects of laver extract on cancer cell proliferation, invasion, and metastasis in SK-Hep1 cells using migration and invasion assays. We also investigated the relationship of MMP-2/-9 and TIMP-1/-2 expression at both the protein and gene level in SK-Hep1 human hepatoma carcinoma cells after laver extract treatment. Laver extract inhibited cancer cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, laver extract showed 19.6 and 27.2% inhibition of cancer cell at 200 and 400 μg/mL, respectively, compared to the control. The mRNA levels of both MMP-2 and MMP-9 were down-regulated by laver extract treatment in a dose-dependent manner. Laver extract, at 400 μg/mL, was inhibited by MMP-2 and MMP-9 expressions by 70.1 and 77.0%, respectively. An inverse relationship in the mRNA contents of MMP-2/-9 and TIMP-1/-2 expressions in SK-Hep1 cells was found by laver extract treatment. Our results demonstrate antimetastatic properties of laver extract in inhibiting the adhesion, invasion, and migration of SK-Hep1 human hepatoma cancer cells. PMID:25036133

  8. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    SciTech Connect

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  9. Effect of junctional adhesion molecule-2 expression on cell growth, invasion and migration in human colorectal cancer

    PubMed Central

    ZHAO, HUISHAN; YU, HEFEN; MARTIN, TRACEY A.; ZHANG, YUXIANG; CHEN, GANG; JIANG, WEN G.

    2016-01-01

    The junctional adhesion molecule (JAMs) family belongs to the immunoglobulin subfamily involved in the formation of tight junctions (TJ) in both endothelial and epithelial cells. Aberrant expression of JAM-2 is associated with cancer progression but little work has been carried out in discovering how this affects changes in cell behaviour. The present study aimed to examine the expression of JAM-2 in human colon cancer specimens and cell lines and its role in the development of colon cancer. JAM-2 expression in human colon cancer specimens (normal, n=75; cancer, n=94) and cell lines was analysed using quantitative real-time PCR and conventional RT-PCR. Colon cancer cells were stably transfected with a mammalian expression vector to overexpress JAM-2-Flag. The effect on growth, adhesion and migration following overexpression of JAM-2 was then investigated using in vitro models. TJ function was assessed using a trans-epithelial resistance assay (TER, with an EVOM voltammeter). JAM-2 was lowly expressed in colon cancer cells such as RKO, HT115. JAM-2 overexpression in RKO cells (RKO-JAM-2) and HT115 cells (HT115-JAM-2) showed retarded adhesion (P<0.05). An in vivo tumour model showed that RKO-JAM-2 had significantly reduced growth (P<0.05), invasion (P<0.05) and migration (P<0.05) as well as in HT115-JAM-2, except on proliferation and migration. Expression of JAM-2 resulted in a significant increase in TER and decrease in permeability of polarized monolayers (P<0.05). Further analysis of JAM-2 transcript levels against clinical aspects demonstrated that the decreasing JAM-2 expression correlated to disease progression, metastasis and poor survival. Taken together, JAM-2 may function as a putative tumour suppressor in the progression and metastasis of colorectal cancer. PMID:26782073

  10. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells.

    PubMed

    Al-Menhali, Afnan; Al-Rumaihi, Aisha; Al-Mohammed, Hana; Al-Mazrooey, Hana; Al-Shamlan, Maryam; AlJassim, Meaad; Al-Korbi, Noof; Eid, Ali Hussein

    2015-01-01

    Colorectal cancer (CRC) remains one of the most common malignancies and a leading cause of cancer-related deaths. Its prognosis remains poor for patients with several grades of this disease. This underscores the need for alternative modalities, such as herbal medicines, to treat this disease. A commonly used plant that appears to be of high medicinal value is Thymus vulgaris L. However, the effects of this plant on the malignant behavior of human CRC cells remains poorly investigated. This study was undertaken to determine the anticancer efficacy of T. vulgaris extract (TVE) in CRC cells. Our results show that TVE inhibits proliferation in a concentration- and time-dependent fashion. This decreased proliferation was concomitant with increased apoptotic cell death as evidenced by increased caspase3/7 activity. Moreover, TVE also decreased adhesion to fibronectin in a concentration-dependent manner. The migratory and invasive capacities of HCT116 cells were significantly inhibited by TVE. Taken together, these data suggest that the TVE inhibits malignant phenotype of colon cancer cells. Therefore, T. vulgaris could have an anticancer effect and that some of its bioactive compounds may prove to be effective treatment modalities for human CRC.

  11. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    PubMed Central

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  12. In-depth Characterization of the Secretome of Colorectal Cancer Metastatic Cells Identifies Key Proteins in Cell Adhesion, Migration, and Invasion*

    PubMed Central

    Barderas, Rodrigo; Mendes, Marta; Torres, Sofia; Bartolomé, Rubén A.; López-Lucendo, María; Villar-Vázquez, Roi; Peláez-García, Alberto; Fuente, Eduardo; Bonilla, Félix; Casal, J. Ignacio

    2013-01-01

    Liver metastasis in colorectal cancer is the major cause of cancer-related deaths. To identify and characterize proteins associated with colon cancer metastasis, we have compared the conditioned serum-free medium of highly metastatic KM12SM colorectal cancer cells with the parental, poorly metastatic KM12C cells using quantitative stable isotope labeling by amino acids in cell culture (SILAC) analyses on a linear ion trap-Orbitrap Velos mass spectrometer. In total, 1337 proteins were simultaneously identified in SILAC forward and reverse experiments. For quantification, 1098 proteins were selected in both experiments, with 155 proteins showing >1.5-fold change. About 52% of these proteins were secreted directly or using alternative secretion pathways. GDF15, S100A8/A9, and SERPINI1 showed capacity to discriminate cancer serum samples from healthy controls using ELISAs. In silico analyses of deregulated proteins in the secretome of metastatic cells showed a major abundance of proteins involved in cell adhesion, migration, and invasion. To characterize the tumorigenic and metastatic properties of some top up- and down-regulated proteins, we used siRNA silencing and antibody blocking. Knockdown expression of NEO1, SERPINI1, and PODXL showed a significant effect on cellular adhesion. Silencing or blocking experiments with SOSTDC1, CTSS, EFNA3, CD137L/TNFSF9, ZG16B, and Midkine caused a significant decrease in migration and invasion of highly metastatic cells. In addition, silencing of SOSTDC1, EFNA3, and CD137L/TNFSF9 reduced liver colonization capacity of KM12SM cells. Finally, the panel of six proteins involved in invasion showed association with poor prognosis and overall survival after dataset analysis of gene alterations. In summary, we have defined a collection of proteins that are relevant for understanding the mechanisms underlying adhesion, migration, invasion, and metastasis in colorectal cancer. PMID:23443137

  13. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis.

  14. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis. PMID:25193465

  15. Antcin K, an Active Triterpenoid from the Fruiting Bodies of Basswood-Cultivated Antrodia cinnamomea, Inhibits Metastasis via Suppression of Integrin-Mediated Adhesion, Migration, and Invasion in Human Hepatoma Cells.

    PubMed

    Huang, Ya-Ling; Chu, Yung-Lin; Ho, Chi-Tang; Chung, Jing-Gung; Lai, Chiao-I; Su, Yu-Cheng; Kuo, Yueh-Hsiung; Sheen, Lee-Yan

    2015-05-13

    Previous research demonstrated that the ethyl acetate extract from Antrodia cinnamomea suppresses the invasive potential of human breast and hepatoma cells, but the effective compounds are not identified. The main bioactive compounds of A. cinnamomea are ergostane-type triterpenoids, and the content of antcin K is the highest. The objective of this study was to evaluate the antimetastatic activity and mechanisms of antcin K purified from the fruiting body of basswood-cultivated A. cinnamomea on human liver cancer Hep 3B cells. The results showed that adhesion, migration, and invasion of Hep 3B cells were effectively inhibited by antcin K within 24 h of treatment. Antcin K not only reduced the protein expression and activity of MMP-2 and MMP-9 but also down-regulated vimentin and up-regulated E-cadherin in Hep 3B cells. In depth investigation for the molecular mechanism revealed that antcin K could reduce the protein expression of integrin β1, β3, α5, and αv and suppress phosphorylation of FAK, Src, PI3K, AKT, MEK, ERK, and JNK. These results suggested that antcin K was able to inhibit the metastasis of human hepatoma cells through suppression of integrin-mediated adhesion, migration, and invasion. Coupled with these findings, antcin K has a good potential to reduce the risk of liver cancer metastasis. PMID:25911944

  16. Epithelia migration: A spatiotemporal interplay between contraction and adhesion

    PubMed Central

    Rubinstein, Boris; Pinto, Inês Mendes

    2015-01-01

    Epithelial tissues represent 60% of the cells that form the human body and where more than 90% of all cancers derived. Epithelia transformation and migration involve altered cell contractile mechanics powered by an actomyosin-based cytoskeleton and influenced by cell-cell and cell-extracellular matrix interactions. A balance between contractile and adhesive forces regulates a large number of cellular and tissue properties crucial for epithelia migration and tumorigenesis. In this review, the forces driving normal epithelia transformation into highly motile and invasive cells and tissues will be discussed. PMID:26176587

  17. Migration of adhesive glioma cells: Front propagation and fingering

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Katakowski, Mark; Charteris, Nicholas; Jiang, Feng; Chopp, Michael

    2012-07-01

    We investigate the migration of glioma cells as a front propagation phenomenon both theoretically (by using both discrete lattice modeling and a continuum approach) and experimentally. For small effective strength of cell-cell adhesion q, the front velocity does not depend on q. When q exceeds a critical threshold, a fingeringlike front propagation is observed due to cluster formation in the invasive zone. We show that the experiments correspond to the transient regime, before the regime of front propagation is established. We performed an additional experiment on cell migration. A detailed comparison with experimental observations showed that the theory correctly predicts the maximal migration distance but underestimates the migration of the main mass of cells.

  18. Nucleophosmin Mutants Promote Adhesion, Migration and Invasion of Human Leukemia THP-1 Cells through MMPs Up-regulation via Ras/ERK MAPK Signaling

    PubMed Central

    Xian, Jingrong; Shao, Huiyuan; Chen, Xianchun; Zhang, Shuaishuai; Quan, Jing; Zou, Qin; Jin, Hongjun; Zhang, Ling

    2016-01-01

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis. PMID:26884713

  19. CD44-mediated Adhesion to Hyaluronic Acid Contributes to Mechanosensing and Invasive Motility

    PubMed Central

    Kim, Yushan; Kumar, Sanjay

    2014-01-01

    The high molecular weight glycosaminoglycan, hyaluronic acid (HA), makes up a significant portion of the brain extracellular matrix (ECM). Glioblastoma multiforme (GBM), a highly invasive brain tumor, is associated with aberrant HA secretion, tissue stiffening, and overexpression of the HA receptor CD44. Here, transcriptomic analysis, engineered materials, and measurements of adhesion, migration, and invasion were used to investigate how HA/CD44 ligation contributes to the mechanosensing and invasive motility of GBM tumor cells, both intrinsically and in the context of RGD/integrin adhesion. Analysis of transcriptomic data from The Cancer Genome Atlas (TCGA) reveals up-regulation of transcripts associated with HA/CD44 adhesion. CD44 suppression in culture reduces cell adhesion to HA on short time scales (0.5h post-incubation) even if RGD is present, whereas maximal adhesion on longer time scales (3h) requires both CD44 and integrins. Moreover, time-lapse imaging demonstrates that cell adhesive structures formed during migration on bare HA matrices are more short-lived than cellular protrusions formed on surfaces containing RGD. Interestingly, adhesion and migration speed were dependent on HA hydrogel stiffness, implying that CD44-based signaling is intrinsically mechanosensitive. Finally, CD44 expression paired with an HA-rich microenvironment maximized three-dimensional invasion, whereas CD44 suppression or abundant integrin-based adhesion limited it. These findings demonstrate that CD44 transduces HA-based stiffness cues, temporally precedes integrin-based adhesion maturation, and facilitates invasion. PMID:24962319

  20. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  1. Dynamic cell adhesion and migration on nanoscale grooved substrates.

    PubMed

    Lamers, E; te Riet, J; Domanski, M; Luttge, R; Figdor, C G; Gardeniers, J G E; Walboomers, X F; Jansen, J A

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells, and thus achieve an enhanced wound healing response around an implantable material. Therefore, the aim of this study was to evaluate how MC3T3-E1 osteoblast initial adhesion and directional migration are influenced by nanogrooves with pitches ranging from 150 nm up to 1000 nm. In this study, we used a multi-patterned substrate with five different groove patterns and a smooth area with either a concentric or radial orientation. Initial cell adhesion measurements after 10 s were performed using atomic force spectroscopy-assisted single-cell force spectroscopy, and demonstrated that nascent cell adhesion was highly induced by a 600 nm pitch and reduced by a 150 nm pitch. Addition of RGD peptide significantly reduced adhesion, indicating that integrins and cell adhesive proteins (e.g. fibronectin or vitronectin) are key factors in specific cell adhesion on nanogrooved substrates. Also, cell migration was highly dependent on the groove pitch; the highest directional migration parallel to the grooves was observed on a 600 nm pitch, whereas a 150 nm pitch restrained directional cell migration. From this study, we conclude that grooves with a pitch of 600 nm may be favourable to enhance fast wound closure, thereby promoting tissue regeneration.

  2. Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance

    PubMed Central

    Sakamoto, Shinichi; McCann, Richard O.; Dhir, Rajiv; Kyprianou, Natasha

    2010-01-01

    Talin1 is a focal adhesion complex protein that regulates integrin interactions with the extracellular matrix (ECM). This study investigated the significance of talin1 in prostate cancer progression to metastasis in vitro and in vivo. Talin1 overexpression enhanced prostate cancer cell adhesion, migration and invasion by activating survival signals and conferring resistance to anoikis. ShRNA-mediated talin1 loss led to a significant suppression of prostate cancer cell migration and transendothelial invasion in vitro and a significant inhibition of prostate cancer metastasis in vivo. Talin1 regulated cell survival signals via phosphorylation of focal adhesion complex proteins such as focal adhesion kinase (FAK) and Src, and downstream activation of AKT. Targeting AKT activation led to a significant reduction of talin1-mediated prostate cancer cell invasion. Furthermore, talin1 immunoreactivity directly correlated with prostate tumor progression to metastasis in the TRAMP mouse model. Talin1 profiling in human prostate specimens revealed a significantly higher expression of cytoplasmic talin1 in metastatic tissue compared to primary prostate tumors (P<0.0001). These findings suggest: (a) a therapeutic significance of disrupting talin1 signaling/focal adhesion interactions in targeting metastatic prostate cancer and (b) a potential value for talin1 as a marker of tumor progression to metastasis. PMID:20160039

  3. FAK competes for Src to promote migration against invasion in melanoma cells

    PubMed Central

    Kolli-Bouhafs, K; Sick, E; Noulet, F; Gies, J-P; De Mey, J; Rondé, P

    2014-01-01

    Melanoma is one of the most deadly cancers because of its high propensity to metastasis, a process that requires migration and invasion of tumor cells driven by the regulated formation of adhesives structures like focal adhesions (FAs) and invasive structures like invadopodia. FAK, the major kinase of FAs, has been implicated in many cellular processes, including migration and invasion. In this study, we investigated the role of FAK in the regulation of invasion. We report that suppression of FAK in B16F10 melanoma cells led to increased invadopodia formation and invasion through Matrigel, but impaired migration. These effects are rescued by FAK WT but not by FAKY397F reexpression. Invadopodia formation requires local Src activation downstream of FAK and in a FAK phosphorylation-dependant manner. FAK deletion correlates with increased phosphorylation of Tks-5 (tyrosine kinase substrate with five SH3 domain) and reactive oxygen species production. In conclusion, our data show that FAK is able to mediate opposite effects on cell migration and invasion. Accordingly, beneficial effects of FAK inhibition are context dependent and may depend on the cell response to environmental cues and/or on the primary or secondary changes that melanoma experienced through the invasion cycle. PMID:25118939

  4. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. PMID:26727165

  5. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    SciTech Connect

    Wang, Jing; Liao, Qian-jin; Zhang, Yi; Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng; Zhang, Qiong-yu; Xiao, Ling

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  6. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    PubMed

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.

  7. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis

    PubMed Central

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F.G.; Torres, Vicente A.

    2016-01-01

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis. PMID:27121131

  8. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    PubMed

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis. PMID:27121131

  9. Focal adhesion kinase is involved in mechanosensing during fibroblast migration

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Hanks, S. K.; Wang, Y.

    2001-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.

  10. Coordination of contractility, adhesion and flow in migrating Physarum amoebae

    PubMed Central

    Lewis, Owen L.; Zhang, Shun; Guy, Robert D.; del Álamo, Juan C.

    2015-01-01

    This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration. PMID:25904525

  11. Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells.

    PubMed

    Seol, Ho Jun; Chang, Jong Hee; Yamamoto, Junkoh; Romagnuolo, Rocco; Suh, Youngchul; Weeks, Adrienne; Agnihotri, Sameer; Smith, Christian A; Rutka, James T

    2012-09-01

    The malignant glioma is the most common primary human brain tumor, and its migration and invasiveness away from the primary tumor mass are considered a leading cause of tumor recurrence and treatment failure. Recently, gene expression profiling revealed that the transmembrane glycoprotein CD99 is more highly expressed in malignant glioma than in normal brain. Although its function is not completely understood, CD99 is implicated in cell adhesion and migration in a variety of different cell types. CD99 has wild-type and splice variant isoforms. Previous studies have shown that wild-type CD99 may be an oncosuppressor in some tumors, distinct from the role of the splice variant isoform. In this study, our data reveal that only wild-type CD99 is expressed in human glioma cells and tissues. Using a tissue microarray, we validated that gliomas demonstrate higher expression of CD99 compared with nonneoplastic brain. To assess the role of CD99 in glioma migration and invasion, we inhibited CD99 expression by siRNA and demonstrated decreased glioma migration and invasion. In contrast, when CD99 was overexpressed in glioma cells, we observed enhancement of cell migration and invasiveness. An orthotopic brain tumor model demonstrates that CD99 overexpression significantly increases invasiveness and decreases survival rate. Interestingly, Rac activity was decreased and Rho activity was increased in CD99 overexpressing glioma cells, and the proportion of amoeboid cells to mesenchymal cells was significantly increased. Taken together, our findings suggest that CD99 may play an important role in the migration and invasion of human gliomas independent of Akt, ERK, or JNK signaling pathways. Moreover, CD99 might be involved in amoeboid-mesenchymal transition in glioma migration. CD99 may be an important future target to inhibit migration and invasion, especially in CD99-expressing gliomas. PMID:23486730

  12. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells

    PubMed Central

    Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C

    2012-01-01

    BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973

  13. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion.

    PubMed

    Naus, Christian C; Aftab, Qurratulain; Sin, Wun Chey

    2016-02-01

    Cell migration is critical for cell differentiation, tissue formation and organ development. Several mechanisms come to play in the process of cell migration, orchestrating changes in cell polarity, adhesion, process extension and motility. Recent findings have shown that gap junctions, and specifically connexin43 (Cx43), can play a significant role in these processes, impacting adhesion and cytoskeletal rearrangements. Thus Cx43 within a cell regulates its motility and migration via intracellular signaling. Furthermore, Cx43 in the host cells can impact the degree of cellular migration through that tissue. Similarities in these connexin-based processes account for both neural progenitor migration in the developing brain, and for glioma cell invasion in the mature brain. In both cases, Cx43 in the tissue ("soil") in which cells ("seeds") exist facilitates their migration and, for glioma cells, tissue invasion. Cx43 mediates these effects through channel- and non-channel-dependent mechanisms which have similarities in both paradigms of cell migration. This provides insight into developmental processes and pathological situations, as well as possible therapeutic approaches regarding specific functional domains of gap junction proteins.

  14. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    SciTech Connect

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-09-15

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.

  15. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis.

    PubMed

    Hazan, R B; Phillips, G R; Qiao, R F; Norton, L; Aaronson, S A

    2000-02-21

    E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell-cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin-mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findings have raised the possibility that N-cadherin contributes to the invasive phenotype. To determine whether N-cadherin promotes invasion and metastasis, we transfected a weakly metastatic and E-cadherin-expressing breast cancer cell line, MCF-7, with N-cadherin and analyzed the effects on cell migration, invasion, and metastasis. Transfected cells expressed both E- and N-cadherin and exhibited homotypic cell adhesion from both molecules. In vitro, N-cadherin-expressing cells migrated more efficiently, showed an increased invasion of Matrigel, and adhered more efficiently to monolayers of endothelial cells. All cells produced low levels of the matrix metalloproteinase MMP-9, which was dramatically upregulated by treatment with FGF-2 only in N-cadherin-expressing cells. Migration and invasion of Matrigel were also greatly enhanced by this treatment. When injected into the mammary fat pad of nude mice, N-cadherin-expressing cells, but not control MCF-7 cells, metastasized widely to the liver, pancreas, salivary gland, omentum, lung, lymph nodes, and lumbar spinal muscle. The expression of both E- and N-cadherin was maintained both in the primary tumors and metastatic lesions. These results demonstrate that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-cadherin. The increase in MMP-9 production by N-cadherin-expressing cells in response to a growth factor may endow them with a greater ability to penetrate matrix protein

  16. dysfusion Transcriptional Control of Drosophila Tracheal Migration, Adhesion, and Fusion

    PubMed Central

    Jiang, Lan; Crews, Stephen T.

    2006-01-01

    The Drosophila dysfusion basic-helix-loop-helix-PAS transcription factor gene is expressed in specialized fusion cells that reside at the tips of migrating tracheal branches. dysfusion mutants were isolated, and genetic analysis of live embryos revealed that mutant tracheal branches migrate to close proximity but fail to recognize and adhere to each other. Misexpression of dysfusion throughout the trachea further indicated that dysfusion has the ability to both inhibit cell migration and promote ectopic tracheal fusion. Nineteen genes whose expression either increases or decreases in fusion cells during development were analyzed in dysfusion mutant embryos. dysfusion upregulates the levels of four genes, including the shotgun cell adhesion protein gene and the zona pellucida family transmembrane protein gene, CG13196. Misexpression experiments with CG13196 result in ectopic tracheal fusion events, suggesting that it also encodes a cell adhesion protein. Another target gene of dysfusion is members only, which inhibits protein nuclear export and influences tracheal fusion. dysfusion also indirectly downregulates protein levels of Trachealess, an important regulator of tracheal development. These results indicate that fusion cells undergo dynamic changes in gene expression as they switch from migratory to fusion modes and that dysfusion regulates a discrete, but important, set of these genes. PMID:16914738

  17. The thioredoxin system in breast cancer cell invasion and migration.

    PubMed

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  18. The thioredoxin system in breast cancer cell invasion and migration.

    PubMed

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  19. The thioredoxin system in breast cancer cell invasion and migration

    PubMed Central

    Bhatia, Maneet; McGrath, Kelly L.; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M.; Clarke, Frank M.; Tonissen, Kathryn F.

    2015-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  20. Physical Biology in Cancer. 4. Physical cues guide tumor cell adhesion and migration

    PubMed Central

    Stroka, Kimberly M.

    2013-01-01

    As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients. PMID:24133064

  1. Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion

    PubMed Central

    Roselli, Séverine; Pundavela, Jay; Demont, Yohann; Faulkner, Sam; Keene, Sheridan; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M.; Hondermarck, Hubert

    2015-01-01

    The neuronal membrane protein sortilin has been reported in a few cancer cell lines, but its expression and impact in human tumors is unclear. In this study, sortilin was analyzed by immunohistochemistry in a series of 318 clinically annotated breast cancers and 53 normal breast tissues. Sortilin was detected in epithelial cells, with increased levels in cancers, as compared to normal tissues (p = 0.0088). It was found in 79% of invasive ductal carcinomas and 54% of invasive lobular carcinomas (p < 0.0001). There was an association between sortilin expression and lymph node involvement (p = 0.0093), suggesting a relationship with metastatic potential. In cell culture, sortilin levels were higher in cancer cell lines compared to non-tumorigenic breast epithelial cells and siRNA knockdown of sortilin inhibited cancer cell adhesion, while proliferation and apoptosis were not affected. Breast cancer cell migration and invasion were also inhibited by sortilin knockdown, with a decrease in focal adhesion kinase and SRC phosphorylation. In conclusion, sortilin participates in breast tumor aggressiveness and may constitute a new therapeutic target against tumor cell invasion. PMID:25871389

  2. Advanced Glycation End-Products Enhance Lung Cancer Cell Invasion and Migration.

    PubMed

    Hsia, Te-Chun; Yin, Mei-Chin; Mong, Mei-Chin

    2016-01-01

    Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added into cells. Proliferation, invasion and migration were measured. CML or pentosidine at 4-16 μmol/L promoted invasion and migration in both cell lines, and increased the production of reactive oxygen species, tumor necrosis factor-α, interleukin-6 and transforming growth factor-β1. CML or pentosidine at 2-16 μmol/L up-regulated the protein expression of AGE receptor, p47(phox), intercellular adhesion molecule-1 and fibronectin in test NSCLC cells. Matrix metalloproteinase-2 protein expression in A549 and Calu-6 cells was increased by CML or pentosidine at 4-16 μmol/L. These two AGEs at 2-16 μmol/L enhanced nuclear factor κ-B (NF-κ B) p65 protein expression and p38 phosphorylation in A549 cells. However, CML or pentosidine at 4-16 μmol/L up-regulated NF-κB p65 and p-p38 protein expression in Calu-6 cells. These findings suggest that CML and pentosidine, by promoting the invasion, migration and production of associated factors, benefit NSCLC metastasis. PMID:27517907

  3. Advanced Glycation End-Products Enhance Lung Cancer Cell Invasion and Migration

    PubMed Central

    Hsia, Te-Chun; Yin, Mei-Chin; Mong, Mei-Chin

    2016-01-01

    Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added into cells. Proliferation, invasion and migration were measured. CML or pentosidine at 4–16 μmol/L promoted invasion and migration in both cell lines, and increased the production of reactive oxygen species, tumor necrosis factor-α, interleukin-6 and transforming growth factor-β1. CML or pentosidine at 2–16 μmol/L up-regulated the protein expression of AGE receptor, p47phox, intercellular adhesion molecule-1 and fibronectin in test NSCLC cells. Matrix metalloproteinase-2 protein expression in A549 and Calu-6 cells was increased by CML or pentosidine at 4–16 μmol/L. These two AGEs at 2–16 μmol/L enhanced nuclear factor κ-B (NF-κ B) p65 protein expression and p38 phosphorylation in A549 cells. However, CML or pentosidine at 4–16 μmol/L up-regulated NF-κB p65 and p-p38 protein expression in Calu-6 cells. These findings suggest that CML and pentosidine, by promoting the invasion, migration and production of associated factors, benefit NSCLC metastasis. PMID:27517907

  4. Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells.

    PubMed

    Buettner, Ralf; Mesa, Tania; Vultur, Adina; Lee, Frank; Jove, Richard

    2008-11-01

    Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.

  5. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix.

    PubMed Central

    Henke, C A; Roongta, U; Mickelson, D J; Knutson, J R; McCarthy, J B

    1996-01-01

    Microvascular endothelial cell invasion into the fibrin provisional matrix is an integral component of angiogenesis during wound repair. Cell surface receptors which interact with extracellular matrix proteins participate in cell migration and invasion. Malignant cells use CD44-related chondroitin sulfate proteoglycan (CSPG) as a matrix receptor to mediate migration and invasion. In this study, we examine whether cell surface CSPG can mediate similar events in nonmalignant wound microvascular endothelial cells or whether use of CSPG for migration and invasion is a property largely restricted to malignant cells. After inhibiting CSPG synthesis with p-nitrophenyl beta-d xylopyranoside (beta-d xyloside), wound microvascular endothelial cells were capable of attaching and spreading on the surface of a fibrin gel; however, their ability to invade the fibrin matrix was virtually eliminated. To begin to examine the mechanism by which endothelial cells use CSPG to invade fibrin matrices, cell adhesion and migration on fibrinogen was examined. Endothelial cell adhesion and migration on fibrinogen were inhibited by both beta-d xyloside and after cleavage of chondroitin sulfate from the core protein by chondroitinase ABC. We have determined that wound microvascular endothelial cells express the majority of their proteoglycan as CSPG and that the CSPG core protein is immunologically related to CD44. PCR studies show that these cells express both the "standard" (CD44H) isoform and an isoform containing the variably spliced exon V3. In addition, anti-CD44 antibody blocks endothelial cell migration on fibrinogen. Affinity chromatography studies reveal that partially purified microvascular endothelial cell CSPG binds fibrinogen. These findings suggest that CD44-related CSPG, a molecule implicated in the invasive behavior of tumor cells, is capable of binding fibrinogen/fibrin, thereby mediating endothelial cell migration and invasion into the fibrin provisional matrix during wound

  6. Slit2/Robo1 signaling in glioma migration and invasion.

    PubMed

    Xu, Yun; Li, Wen-Liang; Fu, Li; Gu, Feng; Ma, Yong-Jie

    2010-12-01

    Slit2/Robo1 is a conserved ligand-receptor system, which greatly affects the distribution, migration, axon guidance and branching of neuron cells. Slit2 and its transmembrane receptor Robo1 have different distribution patterns in gliomas. The expression of Slit2 is at very low levels in pilocytic astrocytoma, fibrillary astrocytoma and glioblastoma, while Robo1 is highly expressed in different grades of gliomas at both mRNA and protein levels. Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Although the specific mechanisms of tumor-suppressive effect of Slit2/Robo1 have not been elucidated, it has been proved that Slit2/Robo1 signaling inhibits glioma cell migration and invasion by inactivation of Cdc42-GTP. With the research development on the molecular mechanisms of Slit2/Robo1 signaling in glioma invasion and migration, Slit2/Robo1 signaling may become a potential target for glioma prevention and treatment.

  7. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  8. [Advances of the Role of Ezrin in Migration and Invasion of Breast Cancer Cells].

    PubMed

    Long, Zhi-Yuan; Wang, Ting-Huai

    2016-02-01

    Ezrin, also known as cytovillin or vilin 2, is one of the members of ERM (Ezrin/Radixin/Moesin) protein family. Ezrin, which is a tyrosine kinase substrate, functions to bridge membrane proteins and the actin cytoskeleton. Recent studies have demonstrated that Ezrin regulates the proliferation, apoptosis, adhesion, invasion, metastasis and angiogenesis of breast cancer cells. These processes are not only associated with changes in expression level and subcellular localization of Ezrin itself, but also influenced by alteration in microenvironment of primary breast cancer cells. The regulation of Ezrin in mammary carcinoma cells involves interactions among signaling pathways mediated by adhesion molecules (CD44, ICAM, E-cadherin) and the tyrosine kinase growth factors, Epidermal Growth Factor (EGF), and Platelet-derived Growth Factor (PDGF) and their receptors. The determination of the functions and mechanism(s) of action of Ezrin in the migration and invasion of breast cancer cells will provide new information on the basic mechanisms of metastasis of breast cancer cells and has the potential to identify a novel drug target for the prevention and treatment of breast cancer. This article addresses the role of Ezrin in the migration and invasion of breast cancer cells. PMID:27424401

  9. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration.

    PubMed

    Wu, Chia-Ching; Su, Hsiao-Wen; Lee, Chen-Chen; Tang, Ming-Jer; Su, Fong-Chin

    2005-04-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (approximately 600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.

  10. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration.

  11. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration. PMID:27400149

  12. VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells

    SciTech Connect

    Li, Fanni; Li, Chenglin; Zhang, Haiwei; Lu, Zhijian; Li, Zhiyu; You, Qidong; Lu, Na; Guo, Qinglong

    2012-06-01

    It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.

  13. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  14. Simvastatin disrupts cytoskeleton and decreases cardiac fibroblast adhesion, migration and viability.

    PubMed

    Copaja, Miguel; Venegas, Daniel; Aranguiz, Pablo; Canales, Jimena; Vivar, Raul; Avalos, Yennifer; Garcia, Lorena; Chiong, Mario; Olmedo, Ivonne; Catalán, Mabel; Leyton, Lisette; Lavandero, Sergio; Díaz-Araya, Guillermo

    2012-03-29

    Statins reduce the isoprenoids farnesyl and geranylgeranyl pyrophosphate, essential intermediates, which control a diversity of cellular events such as cytoskeleton integrity, adhesion, migration and viability. Cardiac fibroblasts are the major non-myocyte cell constituent in the normal heart, and play a key role in the maintenance of extracellular matrix. The effects of simvastatin on cardiac fibroblast processes previously mentioned remain unknown. Our aims were to investigate the effects of simvastatin on cytoskeleton structure and focal adhesion complex assembly and their relationships with cell adhesion, migration and viability in cultured cardiac fibroblasts. To this end, cells were treated with simvastatin for 24 h and changes in actin cytoskeleton, levels of vimentin and paxillin as well as their subcellular localization were analyzed by Western blot and immunocytochemistry, respectively. Cell adhesion to plastic or collagen coated dishes, migration in Transwell chambers, and cell viability were analyzed after simvastatin treatment. Our results show that simvastatin disrupts actin cytoskeleton and focal adhesion complex evaluated by phalloidin stain and immunocytochemistry for paxillin and vinculin. All these effects occurred by a cholesterol synthesis-independent mechanism. Simvastatin decreased cell adhesion, migration and viability in a concentration-dependent manner. Finally, simvastatin decreased angiotensin II-induced phospho-paxillin levels and cell adhesion. We concluded that simvastatin disrupts cytoskeleton integrity and focal adhesion complex assembly in cultured cardiac fibroblasts by a cholesterol-independent mechanism and consequently decreases cell migration, adhesion and viability. PMID:22306966

  15. Knockdown of Legumain Suppresses Cervical Cancer Cell Migration and Invasion.

    PubMed

    Meng, Fei; Liu, Wei

    2016-01-01

    Cervical cancer is the second leading type of cancer in women living in less developed countries. The pathological and molecular mechanisms of cervical cancer are not comprehensively known. Though legumain has been found to be highly expressed in various types of solid tumors, its expression and biological function in cervical cancer remain unknown. In this study, we aimed to investigate legumain expression and functions in cervical cancer. We found that legumain was highly expressed in cervical cancer cells. When knocked down, legumain expression in HeLa and SiHa cells significantly reduced its migration and invasion abilities compared with control cells. Furthermore, legumain silencing suppressed the activation of matrix metalloproteases (MMP2 and MMP3) in cervical cancer cells. This study indicates that legumain might play an important role in cervical cancer cell migration and invasion. Legumain might be a potential therapeutic target for cervical cancer therapy.

  16. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling.

    PubMed

    Kwon, Gyoo Taik; Cho, Han Jin; Chung, Won-Yoon; Park, Kwang-Kyun; Moon, Aree; Park, Jung Han Yoon

    2009-09-01

    Isoliquiritigenin (ISL, 4,2',4'-trihydroxychalcone), which is found in licorice, shallot and bean sprouts, is a potent antioxidant with anti-inflammatory and anti-carcinogenic effects. The purpose of this study was to investigate the effects of ISL treatment on the migration, invasion and adhesion characteristics of DU145 human prostate cancer cells. DU145 cells were cultured in the presence of 0-20 micromol/L ISL with or without 10 microg/L epidermal growth factor (EGF). ISL inhibited basal and EGF-induced cell migration, invasion and adhesion dose dependently. ISL decreased EGF-induced secretion of urokinase-type plasminogen activator (uPA), matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and vascular endothelial growth factor (VEGF), but increased TIMP-2 secretion in a concentration-dependent manner. In addition, ISL decreased the protein levels of integrin-alpha2, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), and mRNA levels of uPA, MMP-9, VEGF, ICAM and integrin-alpha2. Furthermore, basal and EGF-induced activator protein (AP)-1 binding activity and phosphorylation of Jun N-terminal kinase (JNK), c-Jun and Akt were decreased after ISL treatment. However, phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase was not altered. The JNK inhibitor SP600125 inhibited basal and EGF-induced secretion of uPA, VEGF, MMP-9 and TIMP-1, as well as AP-1 DNA binding activity and cell migration. These results provide evidence for the role of ISL as a potent antimetastatic agent, which can markedly inhibit the metastatic and invasive capacity of prostate cancer cells. The inhibition of JNK/AP-1 signaling may be one of the mechanisms by which ISL inhibits cancer cell invasion and migration. PMID:18824345

  17. SENP1 regulates cell migration and invasion in neuroblastoma.

    PubMed

    Xiang-Ming, Yan; Zhi-Qiang, Xu; Ting, Zhang; Jian, Wang; Jian, Pan; Li-Qun, Yuan; Ming-Cui, Fu; Hong-Liang, Xia; Xu, Cao; Yun, Zhou

    2016-05-01

    Neuroblastoma (NB) is an embryonic solid tumor derived from precursor cells of the sympathetic nervous system, and accounts for 11% of childhood cancers and around 15% of cancer deaths in children. SUMOylation and deSUMOylation are dynamic mechanisms regulating a spectrum of protein activities. The SUMO proteases (SENP) remove SUMO conjugate from proteins, and their expression is deregulated in diverse cancers. However, nothing is known about the role of SENPs in NBL. In the present study, we found that SENP1 expression was significantly high in metastatic NB tissues compared with primary NB tissues. Overexpression of SENP1 promoted NB cells migration and invasion. Inhibition of SENP1 could significantly suppress NB cell migration and invasion. Moreover, we found that SENP1 could regulate the expression of CDH1, MMP9, and MMP2. In summary, the data presented here indicate a significant role of SENP1 in the regulation of cell migration and invasion in NB and suppress SENP1 expression as promising candidates for novel treatment strategies of NB.

  18. Recombinant disintegrin domain of human ADAM9 inhibits migration and invasion of DU145 prostate tumor cells

    PubMed Central

    Martin, Ana Carolina Baptista Moreno; Cardoso, Ana Carolina Ferreira; Selistre-de-Araujo, Heloisa Sobreiro; Cominetti, Márcia Regina

    2015-01-01

    One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer. PMID:26211476

  19. Nuclear stiffening inhibits migration of invasive melanoma cells

    PubMed Central

    Ribeiro, Alexandre J.S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals. Melanoma cells, both WM35 and Lu1205, both show reduced nuclear deformability and reduced cell invasion with the expression of Δ50 lamin A. These studies suggest that cellular aging including expression of Δ50 lamin A and nuclear stiffening may reduce the potential for metastatic cancer migration. Thus, the pathway of cancer metastasis may be kept in check by mechanical factors in addition to known chemical pathway regulation. PMID:25544862

  20. Intermediate filaments in cell migration and invasion: the unusual suspects.

    PubMed

    Leduc, Cécile; Etienne-Manneville, Sandrine

    2015-02-01

    Cell migration is a multistep process which relies on the coordination of cytoskeletal structures in space and time. While the roles of actin and microtubules have been investigated in great details, the lack of inhibitors and visualizing tools and the large number of proteins forming intermediate filaments (IFs) have delayed the characterization of IF functions during migration. However, a large body of evidence has progressively pointed to changes in IF composition as an important parameter in the regulation of cell migratory properties both during development and tumor invasion. More recent in-depth analyses show that IFs are dynamically reorganized to participate, together with microfilaments and microtubules, to the key steps leading to cell migration.

  1. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.

    PubMed

    Liu, Yan-Jun; Le Berre, Maël; Lautenschlaeger, Franziska; Maiuri, Paolo; Callan-Jones, Andrew; Heuzé, Mélina; Takaki, Tohru; Voituriez, Raphaël; Piel, Matthieu

    2015-02-12

    The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.

  2. S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer.

    PubMed

    Hsu, Ya-Ling; Hung, Jen-Yu; Liang, Yung-Yu; Lin, Yi-Shiuan; Tsai, Ming-Ju; Chou, Shah-Hwa; Lu, Chi-Yu; Kuo, Po-Lin

    2015-10-01

    S100P, a Ca2+ binding protein, has been shown to be overexpressed in various cancers. However, its functional character in lung cancer remains largely unknown. In this study, we show that S100P increases cancer migration, invasion and metastasis in lung cancer cells. Ectopic expression of S100P increases migration, invasion and EMT in less invasive CL1-0 lung cancer cells. Conversely, knockdown of S100P suppressed migration and invasion, and caused a reversion of EMT in highly invasive lung cancer cells. These effects were transduced by increasing the interaction of S100P with integrin α7, which activated focal adhesion kinase (FAK) and AKT. Blocking FAK significantly decreased S100P-induced migration by decreasing Src and AKT activation, whereas inhibiting AKT reduced S100P upregulation on ZEB1 expression. Further study has indicated that S100P knockdown prevents the spread of highly metastatic human lung cancer in animal models. This study therefore suggests that S100P represents a critical activator of lung cancer metastasis. Detection and targeted treatment of S100P-expressing cancer is an attractive therapeutic strategy in treating lung cancer. PMID:26320193

  3. Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer.

    PubMed

    Henry, C E; Llamosas, E; Djordjevic, A; Hacker, N F; Ford, C E

    2016-01-01

    Ovarian cancer survival remains poor despite recent advances in our understanding of genetic profiles. Unfortunately, the majority of ovarian cancer patients have recurrent disease after chemotherapy and lack other treatment options. Wnt signalling has been extensively implicated in cancer progression and chemoresistance. Therefore, we investigated the previously described Wnt receptors ROR1 and ROR2 as regulators of epithelial-to-mesenchymal transition (EMT) in a clinically relevant cell line model. The parental A2780- and cisplatin-resistant A2780-cis cell lines were used as a model of ovarian cancer chemoresistance. Proliferation, adhesion, migration and invasion were measured after transient overexpression of ROR1 and ROR2 in the parental A2780 cell line, and silencing of ROR1 and ROR2 in the A2780-cis cell line. Here we show that ROR1 and ROR2 expression is increased in A2780-cis cells, alongside β-catenin-independent Wnt targets. Knockdown of ROR1 and ROR2 significantly inhibited cell migration and invasion and simultaneous knockdown of ROR1 and ROR2 significantly sensitised cells to cisplatin, whilereas ROR overexpression in the parental cell line increased cell invasion. Therefore, ROR1 and ROR2 have the potential as novel drug targets in metastatic and recurrent ovarian cancer patients. PMID:27239958

  4. The role of drebrin in glioma migration and invasion

    SciTech Connect

    Terakawa, Yuzo; Agnihotri, Sameer; Golbourn, Brian; Nadi, Mustafa; Sabha, Nesrin; Smith, Christian A.; Croul, Sidney E.; Rutka, James T.

    2013-02-15

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.

  5. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  6. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  7. Mechanics in Mechanosensitivity of Cell Adhesion and its Roles in Cell Migration

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; He, Shijie; Ji, Baohua

    2012-12-01

    Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.

  8. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  9. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  10. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  11. Adhesion molecules involved in hepoxilin A3-mediated neutrophil transepithelial migration

    PubMed Central

    Hurley, B P; Sin, A; McCormick, B A

    2008-01-01

    A common feature underlying active states of inflammation is the migration of neutrophils (PMNs) from the circulation and across a number of tissue barriers in response to chemoattractant stimuli. Although our group has recently established a discreet role for the PMN chemoattractant, hepoxilin A3 (HXA3) in the process of PMN recruitment, very little is known regarding the interaction of HXA3 with PMNs. To characterize further the event of HXA3-induced PMN transepithelial migration, we sought to determine the adhesion molecules required for migration across different epithelial surfaces (T84 intestinal and A549 airway cells) relative to two well-studied PMN chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 (LTB4). Our findings reveal that the adhesion interaction profile of PMN transepithelial migration in response to HXA3 differs from the adhesion interaction profile exhibited by the structurally related eicosanoid LTB4. Furthermore, unique to PMN transepithelial migration induced by gradients of HXA3 was the critical dependency of all four major surface adhesion molecules examined (i.e. CD18, CD47, CD44 and CD55). Our results suggest that the particular chemoattractant gradient imposed, as well as the type of epithelial cell monolayer, each plays a role in determining the adhesion molecules involved in transepithelial migration. Given the complexities of these interactions, our findings are important to consider with respect to adhesion molecules that may be targeted for potential drug development. PMID:18005361

  12. Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma

    PubMed Central

    Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula

    2015-01-01

    Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF

  13. The Heterotrimeric Laminin Coiled-Coil Domain Exerts Anti-Adhesive Effects and Induces a Pro-Invasive Phenotype

    PubMed Central

    Santos-Valle, Patricia; Guijarro-Muñoz, Irene; Cuesta, Ángel M.; Alonso-Camino, Vanesa; Villate, Maider; Álvarez-Cienfuegos, Ana; Blanco, Francisco J.; Sanz, Laura; Álvarez-Vallina, Luis

    2012-01-01

    Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling. PMID:22723936

  14. Ena drives invasive macrophage migration in Drosophila embryos.

    PubMed

    Tucker, Philippa K; Evans, Iwan R; Wood, Will

    2011-01-01

    It is seldom the primary tumour that proves fatal in cancer, with metastasis the fundamental pathological process for disease progression. Upregulation of Mena, a member of the evolutionarily conserved Ena/VASP family of actin cytoskeletal regulators, promotes metastasis and invasive motility of breast cancer cells in vivo. To complement in vitro studies of Ena/VASP function in fibroblasts, we manipulated levels of Ena, the Drosophila homologue of Mena, in migrating embryonic macrophages (haemocytes). Consistent with data from fibroblasts in vitro, Ena localises to regions of actin dynamics within migrating haemocytes, stimulates lamellipodial dynamics and positively regulates the number and length of filopodia. However, whereas Ena overexpression in fibroblasts reduces migration speeds, overexpressing Ena in haemocytes leads to a dramatic increase in migration speeds, more closely resembling the increased motility of breast cancer cells that overexpress Mena. We provide evidence that this key difference is due to spatial constraints imposed on cells within the three-dimensional environment of the embryo; this might explain how Mena can be used to promote aggressive migratory behaviour during cancer progression.

  15. Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions.

    PubMed

    Kowalewski, Jacob M; Shafqat-Abbasi, Hamdah; Jafari-Mamaghani, Mehrdad; Endrias Ganebo, Bereket; Gong, Xiaowei; Strömblad, Staffan; Lock, John G

    2015-01-01

    Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed "membrane dynamics"). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often non-linear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future.

  16. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  17. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins.

    PubMed

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine

    2012-03-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.

  18. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins

    PubMed Central

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.

    2012-01-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499

  19. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  20. Pleiotrophin exerts its migration and invasion effect through the neuropilin-1 pathway.

    PubMed

    Elahouel, Rania; Blanc, Charly; Carpentier, Gilles; Frechault, Sophie; Cascone, Ilaria; Destouches, Damien; Delbé, Jean; Courty, José; Hamma-Kourbali, Yamina

    2015-08-01

    Pleiotrophin (PTN) is a pleiotropic growth factor that exhibits angiogenic properties and is involved in tumor growth and metastasis. Although it has been shown that PTN is expressed in tumor cells, few studies have investigated its receptors and their involvement in cell migration and invasion. Neuropilin-1 (NRP-1) is a receptor for multiple growth factors that mediates cell motility and plays an important role in angiogenesis and tumor progression. Here we provide evidence for the first time that NRP-1 is crucial for biological activities of PTN. We found that PTN interacted directly with NRP-1 through its thrombospondin type-I repeat domains. Importantly, binding of PTN to NRP-1 stimulated the internalization and recycling of NRP-1 at the cell surface. Invalidation of NRP-1 by RNA interference in human carcinoma cells inhibited PTN-induced intracellular signaling of the serine-threonine kinase, mitogen-activated protein MAP kinase, and focal adhesion kinase pathways. Accordingly, NRP-1 silencing or blocking by antibody inhibited PTN-induced human umbilical vein endothelial cell migration and tumor cell invasion. These results suggest that NRP-1/PTN interaction provides a novel mechanism for controlling the response of endothelial and tumoral cells to PTN and may explain, at least in part, how PTN contributes to tumor angiogenesis and cancer progression. PMID:26408254

  1. Topographic cell instructive patterns to control cell adhesion, polarization and migration

    PubMed Central

    Ventre, Maurizio; Natale, Carlo Fortunato; Rianna, Carmela; Netti, Paolo Antonio

    2014-01-01

    Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry. PMID:25253035

  2. Arachidonic Acid Randomizes Endothelial Cell Motion and Regulates Adhesion and Migration

    PubMed Central

    Rossen, Ninna Struck; Hansen, Anker Jon; Selhuber-Unkel, Christine; Oddershede, Lene Broeng

    2011-01-01

    Cell adhesion and migration are essential for the evolution, organization, and repair of living organisms. An example of a combination of these processes is the formation of new blood vessels (angiogenesis), which is mediated by a directed migration and adhesion of endothelial cells (ECs). Angiogenesis is an essential part of wound healing and a prerequisite of cancerous tumor growth. We investigated the effect of the amphiphilic compound arachidonic acid (AA) on EC adhesion and migration by combining live cell imaging with biophysical analysis methods. AA significantly influenced both EC adhesion and migration, in either a stimulating or inhibiting fashion depending on AA concentration. The temporal evolution of cell adhesion area was well described by a two-phase model. In the first phase, the spreading dynamics were independent of AA concentration. In the latter phase, the spreading dynamics increased at low AA concentrations and decreased at high AA concentrations. AA also affected EC migration; though the instantaneous speed of individual cells remained independent of AA concentration, the individual cells lost their sense of direction upon addition of AA, thus giving rise to an overall decrease in the collective motion of a confluent EC monolayer into vacant space. Addition of AA also caused ECs to become more elongated, this possibly being related to incorporation of AA in the EC membrane thus mediating a change in the viscosity of the membrane. Hence, AA is a promising non-receptor specific regulator of wound healing and angiogenesis. PMID:21966453

  3. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration

    PubMed Central

    Villari, Giulia; Jayo, Asier; Zanet, Jennifer; Fitch, Briana; Serrels, Bryan; Frame, Margaret; Stramer, Brian M.; Goult, Benjamin T.; Parsons, Maddy

    2015-01-01

    ABSTRACT Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin–microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease. PMID:26542021

  4. Role of ErbB Receptors in Cancer Cell Migration and Invasion.

    PubMed

    Appert-Collin, Aline; Hubert, Pierre; Crémel, Gérard; Bennasroune, Amar

    2015-01-01

    Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival) by binding to and activating cell-surface receptors with intrinsic protein kinase activity named receptor tyrosine kinases (RTKs). About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1), ErbB2 (neu, HER2), ErbB3 (HER3) and ErbB4 (HER4). ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix (ECM) components. Recent findings indicate that ECM components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation. PMID:26635612

  5. Role of ErbB Receptors in Cancer Cell Migration and Invasion

    PubMed Central

    Appert-Collin, Aline; Hubert, Pierre; Crémel, Gérard; Bennasroune, Amar

    2015-01-01

    Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival) by binding to and activating cell-surface receptors with intrinsic protein kinase activity named receptor tyrosine kinases (RTKs). About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1), ErbB2 (neu, HER2), ErbB3 (HER3) and ErbB4 (HER4). ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix (ECM) components. Recent findings indicate that ECM components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation. PMID:26635612

  6. Controlling cell migration and adhesion into a scaffold by external electric currents.

    PubMed

    Jaatinen, Leena; Vörös, Janos; Hyttinen, Jari

    2015-08-01

    Fabrication of more complex tissue-engineered structures, resembling the tissues and organs in vivo requires combining more than one cell type within the same construct. This can be achieved by designing and fabricating complex scaffolds with asymmetric properties but controlled arrangement of cells within the scaffold could also be realized by using electric current. External electric currents are able to modify cell adhesion, orientation and migration and this can be used for influencing cell location within a scaffold. In this paper we studied the effect of an electric current on cell migration and adhesion into a three-dimensional scaffold through a conductive mesh.

  7. AFM studied the effect of celastrol on β1 integrin-mediated HUVEC adhesion and migration.

    PubMed

    Ke, Changhong; Jin, Hua; Cai, Jiye

    2013-01-01

    Integrin-mediated human umbilical vein endothelial cells (HUVECs) adhesion to the extracellular matrix plays a fundamental role in tumor-induced angiogenesis. Celastrol, a traditional Chinese medicine plant, has possessed anticancer and suppressed angiogenesis activities. Here, the mechanism underling the antiangiogenesis capacity of celastrol was investigated by exploring the effect of celastrol on β1(CD29) integrin-mediated cell adhesion and migration. Flow cytometry results showed that the HUVECs highly expressed CD29 and cell adhesion assay indicated that celastrol specifically inhibited the adhesion of HUVECs to fibronectin (FN) without affecting nonspecific adhesion to poly-L-lysine (PLL). After cell FN adhesion being inhibited, the cell surface nanoscale structure and adhesion force were detected by atomic force microscope (AFM). High-resolution imaging revealed that cell morphology and ultrastructure changed a lot after being treated with celastrol. The membrane average roughness (Ra) and the major forces were decreased from 31.34 ± 4.56 nm, 519.60 ± 82.86 pN of 0 μg/ml celastrol to 18.47 ± 6.53 nm, 417.79 ± 53.35 pN of 4.0 μg/ml celastrol, 10.54 ± 2.85 nm, 258.95 ± 38.98 pN of 8.0 μg/ml celastrol, respectively. Accompanying with the decrease of adhesion force, the actin cytoskeleton in the cells was obviously disturbed by the celastrol. All of these changes influenced the migration of HUVECs from the wound-healing migration assay. Taken together, our results suggest that celastrol can be as an inhibitor of HUVEC adhesion to FN. This work provides a novel approach to inhibition of tumor angiogenesis and tumor growth. PMID:23239560

  8. Endocytosis Regulates Cell Soma Translocation and the Distribution of Adhesion Proteins in Migrating Neurons

    PubMed Central

    Shieh, Jennifer C.; Schaar, Bruce T.; Srinivasan, Karpagam; Brodsky, Frances M.; McConnell, Susan K.

    2011-01-01

    Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons. PMID:21445347

  9. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  10. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  11. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion.

    PubMed

    Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F G; Torres, Vicente A

    2014-06-01

    Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion.

  12. Modulation of p75 neurotrophin receptor under hypoxic conditions induces migration and invasion of C6 glioma cells.

    PubMed

    Wang, Ting-Chung; Luo, Sheng-Jie; Lin, Chun-Liang; Chang, Pey-Jium; Chen, Miao-Fen

    2015-01-01

    p75 neurotrophin receptor (p75NTR) has been reported to play important roles in various cancer types. However, the exact mechanism of tumorigenesis involving p75NTR is unknown. In this study, we investigated the relationship between the expression of p75NTR in malignant glioma and the impact on tumor cell migration and invasion. p75NTR and hypoxia-inducible factor-1α (HIF-1α) expression was down-regulated by short-hairpin RNA and up-regulated with expression vectors. By immunohistochemical staining and Western blot analysis, we found that p75NTR was expressed in both human and rat malignant gliomas. Knockdown of p75NTR increased the expression of vimentin, vascular endothelial growth factor, Matrix metalloproteinase 9, and TWIST, and enhanced the invasion and migration abilities assessed by transwell assay in the C6 tumor cells. Inverse expressions of p75NTR and HIF-1α were detected in glioma cell lines under hypoxic conditions, while increased HIF-1α significantly downregulated the expression of p75NTR, suggesting a HIF-1α-p75NTR-EMT pathway that may regulate glioma cells invasion and migration. Downregulation of p75NTR increased phosphorylation of Src, focal adhesion kinase (FAK) and paxillin. Knockdown of p75NTR also dysregulated β-catenin-mediated cell junctions, and up-regulated the expressions of fibronectin and L1CAM in the cell-cell junctions, thus suggesting that p75NTR knockdown contributed to a more aggressive migration phenotype via FAK signaling pathway. Our studies suggested that modulation of p75NTR under hypoxic condition could enhance C6 cells migration and invasion by induction of EMT, and activation of the FAK pathway. The HIF-1α-p75NTR-EMT axis may play a central role in glioma tumorigenesis. PMID:25527128

  13. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity.

    PubMed

    Zhang, G; Miura, Y; Yagasaki, K

    2000-10-31

    To determine the actions of tea components on the invasion of a rat ascites hepatoma cell line of AH109A and to understand their modes of action, the cancer cells were co-cultured with a rat mesentery-derived mesothelial cell monolayer in the presence of tea components. The synergistic effects of (-)-epicatechin (EC) with (-)-epigallocatechin gallate (EGCG) on AH109A invasion were demonstrated. Further study showed that 10 microM of EGCG or theaflavins, or 2.5 microM of ethylenediaminetetra-acetic (EDTA) entirely abolished the increase in AH109A adhesion and invasion stimulated by reactive oxygen species (ROS) from the hypoxanthine-xanthine oxidase system. Our results suggest that (.)OH(-)- and other ROS-scavenging activity of EGCG and theaflavins may be responsible for the inhibition of (.)OH(-)- and related ROS-potentiated AH109A adhesion and invasion to the cultured rat mesothelial cell monolayer. PMID:10996728

  14. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.

    PubMed

    Bellance, Catherine; Khan, Junaid A; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-05-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl-amino)-phenyl-17β-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.

  15. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes

    PubMed Central

    Bellance, Catherine; Khan, Junaid A.; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-01-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(–) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl­amino)­phenyl-17β-hydroxy-17-(1-propynyl)­estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes. PMID:23485561

  16. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration

    PubMed Central

    Braiman, Alex; Isakov, Noah

    2015-01-01

    Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites. PMID:26500649

  17. In vivo epidermal migration requires focal adhesion targeting of ACF7

    DOE PAGES

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G.; Gou, Xuewen; Lee, Philbert; Liu, Han; Lyu, Wanqing; Tang, Wei -Jen; Chen, Shao -Yu; Yang, Feng; et al

    2016-05-24

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essentialmore » for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Altogether, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.« less

  18. Thymosin β4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/β-catenin signaling pathway

    SciTech Connect

    Piao, Zhengri; Hong, Chang-Soo; Jung, Mi-Ran; Choi, Chan; Park, Young-Kyu

    2014-09-26

    Highlights: • Tβ4 is overexpressed in human colorectal cancer cells. • The overexpression of Tβ4 is correlated with stage of colorectal cancer. • Tβ4 stimulates cell adhesion, invasion, migration and EMT. • Tβ4 activates the ILK/AKT/β-catenin signaling pathway. - Abstract: Thymosin β4 (Tβ4) is a 43-amino-acid peptide involved in many biological processes. However, the precise molecular signaling mechanism(s) of Tβ4 in cell invasion and migration remain unclear. In this study, we show that Tβ4 was significantly overexpressed in colorectal cancer tissues compared to adjacent normal tissues and high levels of Tβ4 were correlated with stage of colorectal cancer, and that Tβ4 expression was associated with morphogenesis and EMT. Tβ4-upregulated cancer cells showed increased adhesion, invasion and migration activity, whereas Tβ4-downregulated cells showed decreased activities. We also demonstrated that Tβ4 interacts with ILK, which promoted the phosphorylation and activation of AKT, the phosphorylation and inactivation of GSK3β, the expression and nuclear localization of β-catenin, and integrin receptor activation. These results suggest that Tβ4 is an important regulator of the ILK/AKT/β-catenin/Integrin signaling cascade to induce cell invasion and migration in colorectal cancer cells, and is a potential target for cancer treatment.

  19. CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes.

    PubMed Central

    Knutson, J R; Iida, J; Fields, G B; McCarthy, J B

    1996-01-01

    Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion

  20. Mathematical model for the effects of adhesion and mechanics on cell migration speed.

    PubMed Central

    DiMilla, P A; Barbee, K; Lauffenburger, D A

    1991-01-01

    Migration of mammalian blood and tissue cells over adhesive surfaces is apparently mediated by specific reversible reactions between cell membrane adhesion receptors and complementary ligands attached to the substratum. Although in a number of systems these receptors and ligand molecules have been isolated and identified, a theory capable of predicting the effects of their properties on cell migration behavior currently does not exist. We present a simple mathematical model for elucidating the dependence of cell speed on adhesion-receptor/ligand binding and cell mechanical properties. Our model can be applied to propose answers to questions such as: does an optimal adhesiveness exist for cell movement? How might changes in receptor and ligand density and/or affinity affect the rate of migration? Can cell rheological properties influence movement speed? This model incorporates cytoskeletal force generation, cell polarization, and dynamic adhesion as requirements for persistent cell movement. A critical feature is the proposed existence of an asymmetry in some cell adhesion-receptor property, correlated with cell polarity. We consider two major alternative mechanisms underlying this asymmetry: (a) a spatial distribution of adhesion-receptor number due to polarized endocytic trafficking and (b) a spatial variation in adhesion-receptor/ligand bond strength. Applying a viscoelastic-solid model for cell mechanics allows us to represent one-dimensional locomotion with a system of differential equations describing cell deformation and displacement along with adhesion-receptor dynamics. In this paper, we solve these equations under the simplifying assumption that receptor dynamics are at a quasi-steady state relative to cell locomotion. Thus, our results are strictly valid for sufficiently slow cell movement, as typically observed for tissue cells such as fibroblasts. Numerical examples relevant to experimental systems are provided. Our results predict how cell speed might

  1. N-Glycans influence the in vitro adhesive and invasive behaviour of three metastatic cell lines.

    PubMed

    Bironaite, D; Nesland, J M; Dalen, H; Risberg, B; Bryne, M

    2000-01-01

    Alterations in cellular glycosylation may play a key role in metastatic behaviour of tumour cells. We studied three metastatic cell lines, LOX (malignant melanoma), FEMX (malignant melanoma) and MA-11 (mammary carcinoma). These cell lines have a very different metastatic behaviour in vivo, and different glycans have been postulated to be partly responsible for these differences. To further investigate the functional role of carbohydrates, these three cell lines have been treated with tunicamycin, an inhibitor of the biosynthesis of N-glycans and benzyl- alpha-N-acetylgalactosamine (benzyl-alpha-GalNAc; BnGalNAc), an inhibitor of mature O-linked glycans. Various in vitro adhesion and invasion assays were undertaken for functional studies. Tunicamycin significantly inhibited adhesion to laminin, but only slightly affected cell adhesion to collagen IV. The same compound significantly decreased cellular invasiveness through a Matrigel invasion chamber. Moreover, tunicamycin reduced homotypic aggregation of cells. BnGalNAc had generally little effect on cell behaviour in in vitro assay. The effects of the inhibitors were, however, to some extent cell line-specific. We conclude that N-glycans, but probably not mature O-glycans have important in vitro functions in cell adhesion to laminin, cell invasion through Matrigel and cellular aggregation in the studied cell lines. These results support the view that carbohydrates are functionally involved in several steps of the metastatic process. PMID:10754467

  2. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation

    PubMed Central

    Leung, Hoi-Wing; Zhao, Si-Meng; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara Bik-San

    2015-01-01

    Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer. PMID:26592552

  3. TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression.

    PubMed

    Zhang, Naiwen; Bi, Xiaojun; Zeng, Yu; Zhu, Yuyan; Zhang, Zhe; Liu, Yang; Wang, Jianfeng; Li, Xuejie; Bi, Jianbin; Kong, Chuize

    2016-08-01

    Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that is reported to regulate cellular motility and invasive capability during tumor progression. Fascin1, an actin-bundling protein, increases cell motility, migration and adhesion. To investigate the function of TGF-β1 and test whether fascin1 is an important mediator of the tumor response to TGF-β1 in bladder carcinoma cells, real-time RT-PCR and western blot analysis were used to test changes in fascin1 expression after TGF-β1 (10 ng/ml) treatment in T24 and BIU87 cells. Small interfering RNA (siRNA) technique was performed to silence fascin1. Cell viability and biological behavior changes were evaluated by cell growth (MTT), wound-healing and Matrigel invasion assays. In the present study, we found that the mRNA and protein levels of fascin1 in the T24 and BIU87 cells were significantly increased after 10 ng/ml TGF-β1 treatment (p<0.05). The proliferation of T24 cells (p=0.005) was also significantly increased, while no significant change was observed in BIU87 cells (p=0.318). In addition, the migratory and invasive potential of the two cell lines were promoted. Furthermore, we successfully silenced fascin1, and observed that fascin1 siRNA significantly attenuated the migration and invasiveness induced by TGF-β1. The findings suggested that TGF-β1 can promote invasion and migration of T24 and BIU87 bladder carcinoma cells, and the increase in fascin1 expression may be the key point of this impact of TGF-β1.

  4. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  5. Non-muscle myosin II takes centre stage in cell adhesion and migration

    PubMed Central

    Vicente-Manzanares, Miguel; Ma, Xuefei; Adelstein, Robert S.; Horwitz, Alan Rick

    2010-01-01

    Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases. PMID:19851336

  6. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells.

    PubMed

    Vultur, Adina; Buettner, Ralf; Kowolik, Claudia; Liang, Wei; Smith, David; Boschelli, Frank; Jove, Richard

    2008-05-01

    Src family kinase activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective Src family kinase inhibitor, on human cancer cells derived from breast cancer patients to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of approximately 250 nmol/L, which was also the IC50 for inhibition of cellular Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), and Crk-associated substrate (p130Cas), with an IC50 similar to inhibition of cellular Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer.

  7. Inhibition of cell migration and invasion mediated by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor.

    PubMed

    Barras, D; Lorusso, G; Rüegg, C; Widmann, C

    2014-10-30

    TAT-RasGAP(317-326), a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP(317-326). In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP(317-326) to promote cell adherence and inhibit migration. These results show that TAT-RasGAP(317-326), besides its ability to favor tumor cell death, hampers cell migration and invasion.

  8. CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia

    PubMed Central

    1996-01-01

    Transepithelial migration of neutrophils (PMN) is a defining characteristic of active inflammatory states of mucosal surfaces. The process of PMN transepithelial migration, while dependent on the neutrophil beta 2 integrin CD11b/CD18, remains poorly understood. In these studies, we define a monoclonal antibody, C5/D5, raised against epithelial membrane preparations, which markedly inhibits PMN migration across polarized monolayers of the human intestinal epithelial cell line T84 in a bidirectional fashion. In T84 cells, the antigen defined by C5/D5 is upregulated by epithelial exposure to IFN-gamma, and represents a membrane glycoprotein of approximately 60 kD that is expressed on the basolateral membrane. While transepithelial migration of PMN was markedly inhibited by either C5/D5 IgG or C5/D5 Fab fragments, the antibody failed to inhibit both adhesion of PMN to T84 monolayers and adhesion of isolated T84 cells to the purified PMN integrin, CD11b/CD18. Thus, epithelial-PMN interactions blocked by C5/D5 appear to be downstream from initial CD11b/CD18-mediated adhesion of PMN to epithelial cells. Purification, microsequence analysis, and cross-blotting experiments indicate that the C5/D5 antigen represents CD47, a previously cloned integral membrane glycoprotein with homology to the immunoglobulin superfamily. Expression of the CD47 epitope was confirmed on PMN and was also localized to the basolateral membrane of normal human colonic epithelial cells. While C5/D5 IgG inhibited PMN migration even in the absence of epithelial, preincubation of T84 monolayers with C5/D5 IgG followed by antibody washout also resulted in inhibition of transmigration. These results suggest the presence of both neutrophil and epithelial components to CD47-mediated transepithelial migration. Thus, CD47 represents a potential new therapeutic target for downregulating active inflammatory disease of mucosal surfaces. PMID:8636220

  9. MicroRNA-34c Suppresses Breast Cancer Migration and Invasion by Targeting GIT1

    PubMed Central

    Tao, Wei-Yang; Wang, Chun-Yang; Sun, Yong-Hui; Su, Yong-Hui; Pang, Da; Zhang, Guo-Qiang

    2016-01-01

    Abnormal expression of microRNAs plays important role in tumor metastasis. Migration and invasion of cancer cells accord for the metastasis and deterioration of breast cancer. However, the regulatory role of microRNAs in the invasion and migration of breast cancer cells has not completely understood yet. Here we found that microRNA-34c (miR-34c) was significantly downregulated in metastatic tissue of breast cancer. In vitro study showed that miR-34c negatively regulated GIT1 protein expression by binding to the 3'UTR of GIT1 mRNA. Consistently, GIT1 protein expression was found upregulated significantly in metastatic breast cancer. Moreover, miR-34c overexpression suppressed the expression of GIT1 protein, and this effect was restored by AMO-miR-34c in breast cancer cells. Overexpression of miR-34c suppressed cell migration and invasion in both MCF-7 and MDA-MD-231 breast cancer cells. Furthermore, knockdown of endogenous GIT1 expression reduced the migration and invasion of both two breast cancer cells. Collectively, miR-34c downregulation in breast cancer cells resulted in the upregulation of GIT1, which in turn enhanced the migration and invasion of breast cancer. This study highlights molecular mechanism of migration and invasion of breast cancer cells.

  10. [Gd@C82(OH)22]n nanoparticles inhibit the migration and adhesion of glioblastoma cells

    PubMed Central

    WANG, JING; GU, FENG; DING, TING; LIU, XIAOLI; XING, GENGMEI; ZHAO, YULIANG; ZHANG, NING; MA, YONGJIE

    2010-01-01

    In our previous study, [Gd@C82(OH)22]n, a fullerene-based nanoparticle, exhibited potent anti-tumor effects in mouse tumor-bearing models without detectable toxicity. The mechanism involved in the anti-tumor effect exerted by [Gd@C82(OH)22]n remains to be elucidated. This study found that glioblastoma cells treated with [Gd@C82(OH)22]n nanoparticles showed a significant impairment in migration and adhesion by cell chemotaxis, scratch and adhesion assays in vitro. Furthermore, our data showed that the key proteins, CD40 and ICAM-1, were involved in the inhibition of adhesion in the [Gd@C82(OH)22]n nanoparticle-treated glioblastoma cells. Thus, our study suggests that the [Gd@C82(OH)22]n nanoparticle is a new potential anti-tumor effector and a therapeutic component for malignant glioblastoma infiltration. PMID:22966378

  11. Protein Kinase A Activity and Anchoring Are Required for Ovarian Cancer Cell Migration and Invasion

    PubMed Central

    McKenzie, Andrew J.; Campbell, Shirley L.; Howe, Alan K.

    2011-01-01

    Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show – for the first time – that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis. PMID:22028904

  12. Role of Periostin in Adhesion and Migration of Bone Remodeling Cells

    PubMed Central

    Cobo, Teresa; Viloria, Cristina G.; Solares, Laura; Fontanil, Tania; González-Chamorro, Elena; De Carlos, Félix; Cobo, Juan; Cal, Santiago; Obaya, Alvaro J.

    2016-01-01

    Periostin is an extracellular matrix protein highly expressed in collagen-rich tissues subjected to continuous mechanical stress. Functionally, periostin is involved in tissue remodeling and its altered function is associated to numerous pathological processes. In orthodontics, periostin plays key roles in the maintenance of dental tissues and it is mainly expressed in those areas where tension or pressing forces are taking place. In this regard, high expression of periostin is essential to promote migration and proliferation of periodontal ligament fibroblasts. However little is known about the participation of periostin in migration and adhesion processes of bone remodeling cells. In this work we employ the mouse pre-osteoblastic MC3T3-E1 and the macrophage-like RAW 264.7 cell lines to overexpress periostin and perform different cell-based assays to study changes in cell behavior. Our data indicate that periostin overexpression not only increases adhesion capacity of MC3T3-E1 cells to different matrix proteins but also hampers their migratory capacity. Changes on RNA expression profile of MC3T3-E1 cells upon periostin overexpression have been also analyzed, highlighting the alteration of genes implicated in processes such as cell migration, adhesion or bone metabolism but not in bone differentiation. Overall, our work provides new evidence on the impact of periostin in osteoblasts physiology. PMID:26809067

  13. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma.

    PubMed

    Kinoshita, Takashi; Hanazawa, Toyoyuki; Nohata, Nijiro; Kikkawa, Naoko; Enokida, Hideki; Yoshino, Hirofumi; Yamasaki, Takeshi; Hidaka, Hideo; Nakagawa, Masayuki; Okamoto, Yoshitaka; Seki, Naohiko

    2012-11-01

    Recent our microRNA (miRNA) expression signature revealed that expression of microRNA-218 (miR-218) was reduced in cancer tissues, suggesting a candidate of tumor suppressor in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the functional significance of miR-218 and its mediated moleculer pathways in HNSCC. Restoration of miR-218 in cancer cells led to significant inhibition of cell migration and invasion activities in HNSCC cell lines (FaDu and SAS). Genome-wide gene expression analysis of miR-218 transfectants and in silico database analysis showed that focal adhesion pathway was a promising candidate of miR-218 target pathways. The laminins are an important and biologically active part of the basal lamina, the function of that are various such as influencing cell differentiation, migration and adhesion as well as proliferation and cell survival. Interestingly, all components of laminin-332 (LAMA3, LAMB3 and LAMC2) are listed on the candidate genes in focal adhesion pathway. Furthermore, we focused on LAMB3 which has a miR-218 target site and gene expression studies and luciferase reporter assays showed that LAMB3 was directly regulated by miR-218. Silencing study of LAMB3 demonstrated significant inhibition of cell migration and invasion. In clinical specimens with HNSCC, the expression levels of laminin-332 were significantly upregulated in cancer tissues compared to adjacent non-cancerous tissues. Our analysis data showed that tumor suppressive miR-218 contributes to cancer cell migration and invasion through regulating focal adhesion pathway, especially laminin-332. Tumor suppressive miRNA-mediated novel cancer pathways provide new insights into the potential mechanisms of HNSCC oncogenesis. PMID:23159910

  14. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    SciTech Connect

    Jiang, Feng; Zhao, Hongxi; Wang, Li; Guo, Xinyu; Wang, Xiaohong; Yin, Guowu; Hu, Yunsheng; Li, Yi; Yao, Yuanqing

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  15. Matrikine and matricellular regulators of EGF receptor signaling on cancer cell migration and invasion.

    PubMed

    Grahovac, Jelena; Wells, Alan

    2014-01-01

    Cancer invasion is a complex process requiring, among other events, extensive remodeling of the extracellular matrix including deposition of pro-migratory and pro-proliferative moieties. In recent years, it has been described that while invading through matrices cancer cells can change shape and adapt their migration strategies depending on the microenvironmental context. Although intracellular signaling pathways governing the mesenchymal to amoeboid migration shift and vice versa have been mostly elucidated, the extracellular signals promoting these shifts are largely unknown. In this review, we summarize findings that point to matrikines that bind specifically to the EGF receptor as matricellular molecules that enable cancer cell migrational plasticity and promote invasion.

  16. Sticky situations: recent advances in control of cell adhesion during neuronal migration.

    PubMed

    Solecki, David J

    2012-10-01

    The migration of neurons along glial fibers from a germinal zone (GZ) to their final laminar positions is essential for morphogenesis of the developing brain; aberrations in this process are linked to profound neurodevelopmental and cognitive disorders. During this critical morphogenic movement, neurons must navigate complex migration paths, propelling their cell bodies through the dense cellular environment of the developing nervous system to their final destinations. It is not understood how neurons can successfully migrate along their glial guides through the myriad processes and cell bodies of neighboring neurons. Although much progress has been made in understanding the substrates (Fishell G, Hatten ME: Astrotactin provides a receptor system for CNS neuronal migration. Development 1991, 113:755; Elias LA, Wang DD, Kriegstein AR: Gap junction adhesion is necessary for radial migration in the neocortex. Nature 2007, 448:901; Anton ES, Kreidberg JA, Rakic P: Distinct functions of alpha3 and alpha. (v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 1999, 22:277; Anton ES, Marchionni MA, Lee KF, Rakic P: Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997, 124:3501), guidance mechanisms (Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A: Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 2002, 129:3147; Zhou P, et al.: Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 2007, 55:53; Renaud J, et al.: Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat Neurosci 2008, 11:440), cytoskeletal elements (Schaar BT, McConnell SK: Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 2005, 102:13652; Tsai JW, Bremner KH, Vallee RB: Dual subcellular roles for LIS1

  17. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion

    PubMed Central

    Deng, Huayun; Zhang, Jishen; Li, Shichang; Wei, Haifeng; Yang, Cheng; Xu, Leqin; Jin, Rongrong; Li, Zhenxi; Zhou, Wang; Ding, JianDong; Chu, Jianjun; Jia, Lianshun; Jia, Qi; Tan, Chengjun; Liu, Mingyao; Xiao, Jianru

    2015-01-01

    We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and Real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity. PMID:26090868

  18. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion.

    PubMed

    Cai, Xiaopan; Luo, Jian; Yang, Xinghai; Deng, Huayun; Zhang, Jishen; Li, Shichang; Wei, Haifeng; Yang, Cheng; Xu, Leqin; Jin, Rongrong; Li, Zhenxi; Zhou, Wang; Ding, JianDong; Chu, Jianjun; Jia, Lianshun; Jia, Qi; Tan, Chengjun; Liu, Mingyao; Xiao, Jianru

    2015-09-01

    We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity. PMID:26090868

  19. Neural cell adhesion molecule modulates mesenchymal stromal cell migration via activation of MAPK/ERK signaling.

    PubMed

    Shi, Yu; Xia, Yin-Yan; Wang, Lei; Liu, Rui; Khoo, King-Shung; Feng, Zhi-Wei

    2012-10-15

    Mesenchymal Stromal Cells (MSCs) represent promising tools for cellular therapy owing to their multipotentiality and ability to localize to injured, inflamed sites and tumor. Various approaches to manipulate expression of MSC surface markers, including adhesion molecules and chemokine receptors, have been explored to enhance homing of MSCs. Recently, Neural Cell Adhesion Molecule (NCAM) has been found to be expressed on MSCs yet its function remains largely elusive. Herein, we show that bone marrow-derived MSCs from NCAM deficient mice exhibit defective migratory ability and significantly impaired adipogenic and osteogenic differentiation potential. We further explore the mechanism governing NCAM mediated migration of MSCs by showing the interplay between NCAM and Fibroblast Growth Factor Receptor (FGFR) induces activation of MAPK/ERK signaling, thereby the migration of MSCs. In addition, re-expression of NCAM180, but not NCAM140, could restore the defective MAPK/ERK signaling thereby the migration of NCAM deficient MSCs. Finally, we demonstrate that NCAM180 expression level could be manipulated by pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α treatment. Overall, our data reveal the vital function of NCAM in MSCs migration and differentiation thus raising the possibility of manipulating NCAM expression to enhance homing and therapeutic potential of MSCs in cellular therapy.

  20. Rectal organ culture as a model for the investigation of bacterial adhesion and invasion.

    PubMed Central

    Dickinson, R J; Branch, W J; Warren, R E; Neale, G

    1984-01-01

    A system was developed for the in vitro culture of human rectal mucosa. Its viability was proved by histological appearances and by metabolic studies. Biopsy samples were cultured in the presence of appropriate bacteria isolated from the faeces of patients with ulcerative colitis or with dysenteric illnesses. Attempts to show adhesion of bacteria to the mucosa or invasion of the cultured tissue failed. Problems with the use of this model are discussed. Images PMID:6373834

  1. Sialylation of Integrin beta1 is Involved in Radiation-Induced Adhesion and Migration in Human Colon Cancer Cells

    SciTech Connect

    Lee, Minyoung; Lee, Hae-June; Seo, Woo Duck; Park, Ki Hun; Lee, Yun-Sil

    2010-04-15

    Purpose: Previously, we reported that radiation-induced ST6 Gal I gene expression was responsible for an increase of integrin beta1 sialylation. In this study, we have further investigated the function of radiation-mediated integrin beta1 sialylation in colon cancer cells. Methods and Materials: We performed Western blotting and lectin affinity assay to analyze the expression and level of sialylated integrin beta1. After exposure to ionizing radiation (IR), adhesion and migration of cells were measured by in vitro adhesion and migration assay. Results: IR increased sialylation of integrin beta1 responsible for its increased protein stability and adhesion and migration of colon cancer cells. However, for cells with an N-glycosylation site mutant of integrin beta1 located on the I-like domain (Mu3), these effects were dramatically inhibited. In addition, integrin beta1-mediated radioresistance was not observed in cells containing this mutant. When sialylation of integrin beta1 was targeted with a sulfonamide chalcone compound, inhibition of radiation-induced sialylation of integrin beta1 and inhibition of radiation-induced adhesion and migration occurred. Conclusion: The increase of integrin beta1 sialylation by ST6 Gal I is critically involved in radiation-mediated adhesion and migration of colon cancer cells. From these findings, integrin beta1 sialylation may be a novel target for overcoming radiation-induced survival, especially radiation-induced adhesion and migration.

  2. PEGylated human plasma fibronectin is proteolytically stable, supports cell adhesion, cell migration, focal adhesion assembly, and fibronectin fibrillogenesis.

    PubMed

    Zhang, Chen; Hekmatfar, Sogol; Ramanathan, Anand; Karuri, Nancy W

    2013-01-01

    Delayed wound healing in many chronic wounds has been linked to the degradation of fibronectin (FN) by abnormally high protease levels. We sought to develop a proteolytically stable and functionally active form of FN. For this purpose, we conjugated 3.35 kDa polyethylene glycol diacrylate (PEGDA) to human plasma fibronectin (HPFN). Conjugation of PEGDA to HPFN or HPFN PEGylation was characterized by an increase of approximately 16 kDa in the average molecular weight of PEGylated HPFN compared to native HPFN in SDS-PAGE gels. PEGylated HPFN was more resistant to α chymotrypsin or neutrophil elastase digestion than native HPFN: after 30 min incubation with α chymotrypsin, 56 and 90% of native and PEGylated HPFN respectively remained intact. PEGylated HPFN and native HPFN supported NIH 3T3 mouse fibroblast adhesion and spreading, migration and focal adhesion formation in a similar manner. Fluorescence microscopy showed that both native and PEGylated HPFN in the culture media were assembled into extracellular matrix (ECM) fibrils. Interestingly, when coated on surfaces, native but not PEGylated HPFN was assembled into the ECM of fibroblasts. The proteolytically stable PEGylated HPFN developed herein could be used to replenish FN levels in the chronic wound bed and promote tissue repair.

  3. Inhibition by Tyroserleutide (YSL) on the Invasion and Adhesion of the Mouse Melanoma Cell

    PubMed Central

    Yao, Zhi; Che, Xu-chun; Lu, Rong; Zheng, Min-na; Zhu, Zhi-feng; Li, Jin-ping; Jian, Xu; Shi, Lin-xi; Liu, Jun-yan; Gao, Wen-yuan

    2007-01-01

    Tyroserleutide (YSL) is an active, low-molecular-weight polypeptide, comprised of three amino acids, that has shown antitumor effects on human hepatocarcinoma BEL-7402 in vitro and in vivo. In this study, we evaluated the inhibition of YSL on invasion and adhesion of the mouse B16-F10 melanoma cell line by injecting B16-F10 cells into the tail veins of C57BL/6 mice to establish an experimental lung metastasis model. YSL inhibited B16-F10 cell metastasis to lung, reducing the number and area of metastasis lesions. When we treated B16-F10 cells with YSL (0.01, 0.1, 1, 10, or 100 μg/mL) in vitro, we found that YSL inhibited the proliferation of B16-F10 cells with a 28.11% rate of inhibition. YSL significantly decreased the adhesiveness of B16-F10 cells to Matrigel with a 29.15% inhibition rate; YSL also significantly inhibited the invasion of B16-F10 cells, producing an inhibition of 35.31%. By analyses with Western blot and real-time RT-PCR, we found that YSL markedly inhibited the expression of ICAM-1 in B16-F10 cells. These data suggest that YSL inhibits the growth, invasion, and adhesion of B16-F10 cells. PMID:17515953

  4. Pancreatic Cancer Cell Glycosylation Regulates Cell Adhesion and Invasion through the Modulation of α2β1 Integrin and E-Cadherin Function

    PubMed Central

    Bassagañas, Sònia; Carvalho, Sandra; Dias, Ana M.; Pérez-Garay, Marta; Ortiz, M. Rosa; Figueras, Joan; Reis, Celso A.; Pinho, Salomé S.; Peracaula, Rosa

    2014-01-01

    In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion. PMID:24878505

  5. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Yi-Chieh; Cheng, Tsan-Hwang; Lee, Jung-Shin; Chen, Jiun-Hwan; Liao, Yi-Chen; Fong, Yao; Wu, Cheng-Hsun; Shih, Yuan-Wei

    2011-01-01

    Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.

  6. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells.

    PubMed

    Catalano, Myriam; D'Alessandro, Giuseppina; Lepore, Francesca; Corazzari, Marco; Caldarola, Sara; Valacca, Cristina; Faienza, Fiorella; Esposito, Vincenzo; Limatola, Cristina; Cecconi, Francesco; Di Bartolomeo, Sabrina

    2015-10-01

    Cell migration and invasion are highly regulated processes involved in both physiological and pathological conditions. Here we show that autophagy modulation regulates the migration and invasion capabilities of glioblastoma (GBM) cells. We observed that during autophagy occurrence, obtained by nutrient deprivation or by pharmacological inhibition of the mTOR complexes, GBM migration and chemokine-mediated invasion were both impaired. We also observed that SNAIL and SLUG, two master regulators of the epithelial-mesenchymal transition (EMT process), were down-regulated upon autophagy stimulation and, as a consequence, we found a transcriptional and translational up-regulation of N- and R-cadherins. Conversely, in BECLIN 1-silenced GBM cells, an increased migration capability and an up-regulation of SNAIL and SLUG was observed, with a resulting decrease in N- and R-cadherin mRNAs. ATG5 and ATG7 down-regulation also resulted in an increased migration and invasion of GBM cells combined to an up-regulation of the two EMT regulators. Finally, experiments performed in primary GBM cells from patients largely confirmed the results obtained in established cell cultures. Overall, our results indicate that autophagy modulation triggers a molecular switch from a mesenchymal phenotype to an epithelial-like one in GBM cellular models. Since the aggressiveness and lethality of GBM is defined by local invasion and resistance to chemotherapy, we believe that our evidence provides a further rationale for including autophagy/mTOR-based targets in the current therapeutical regimen of GBM patients. PMID:26022108

  7. MiR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer.

    PubMed

    Chen, Cai-Ping; Sun, Zong-Lin; Lu, Xiang; Wu, Wan-Xin; Guo, Wen-Li; Lu, Jian-Ju; Han, Chao; Huang, Jian-Qi; Fang, Ying

    2016-02-01

    Breast cancer is one of the most common malignant tumors among females, and can seriously affect the physical and mental health and even threaten the lives of women. Recently, research has demonstrated that microRNAs (miRNAs), as a new method of regulation, have been shown to have oncogenic and tumor‑suppressive functions in human breast cancer. Detection of their expression may lead to the identification of novel markers for breast cancer. In the present study, we firstly detected miR‑340 expression and found lower expression of miR‑340 in 6 human breast cancer cell lines by using RT‑qPCR. Then by using wound healing assay and Transwell migration and invasion experiments, we focused on the role of miR-340 in the regulation of tumor cell migration and invasion, exploring the relationship between them. The results revealed that induction of miR‑340 expression was able to suppress tumor cell migration and invasion, whereas knockdown of miR‑340 expression promoted breast cancer cell migration and invasion. At the gene level, MYO10 (myosin X), as a direct miR‑340 target gene, mediated the cell migration and invasion. Finally, we verified our research further at the tissue specimen level and in animal experiments. In brief, miR‑340 plays an important role in breast cancer progression. Thus, miR‑340 may be further explored as a novel biomarker for breast cancer metastasis and prognosis, and potentially a therapeutic target.

  8. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis.

    PubMed

    Xing, R; Jin, Y; Sun, L; Yang, L; Li, C; Li, Z; Liu, X; Zhao, J

    2016-05-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial fibroblast hyperplasia and bone erosion. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA pathogenesis through aggressive migration and matrix invasion, and certain proinflammatory cytokines may affect synoviocyte invasion. Whether interleukin (IL)-21 influences this process remains controversial. Here, we evaluated the potential regulatory effect of IL-21 on the migration, invasion and matrix metalloproteinase (MMP) expression in RA-FLS. We found that IL-21 promoted the migration, invasion and MMP (MMP-2, MMP-3, MMP-9, MMP-13) production in RA-FLS. Moreover, IL-21 induced activation of the phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways, and blockage of these pathways [PI3K/protein kinase B (AKT) inhibitor LY294002, STAT-3 inhibitor STA-21 and ERK1/2 inhibitor PD98059] attenuated IL-21-induced migration and secretion of MMP-3 and MMP-9. In conclusion, our results suggest that IL-21 promotes migration and invasion of RA-FLS. Therefore, therapeutic strategies targeting IL-21 might be effective for the treatment of RA.

  9. Correlation between substratum roughness and wettability, cell adhesion, and cell migration.

    PubMed

    Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F

    1997-07-01

    Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.

  10. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment

    PubMed Central

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S.; Romaguera, Jorge; McCarty, Nami

    2016-01-01

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  11. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment.

    PubMed

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S; Romaguera, Jorge; McCarty, Nami

    2016-03-22

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  12. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-01-01

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future. PMID:27007357

  13. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    PubMed Central

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  14. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour.

    PubMed

    Fokkelman, Michiel; Balcıoğlu, Hayri E; Klip, Janna E; Yan, Kuan; Verbeek, Fons J; Danen, Erik H J; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  15. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    SciTech Connect

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  16. Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells

    SciTech Connect

    Shatz, Maria; Lustig, Gila; Reich, Reuven; Liscovitch, Mordechai

    2010-06-10

    Caveolin-1 is an essential protein constituent of caveolae. Accumulating evidence indicates that caveolin-1 may act as a positive regulator of cancer progression. In this study, we investigated the function of caveolin-1 in human lung cancer cells. Caveolin-1 knockdown inhibited cell proliferation and reduced focal adhesion kinase (Fak) phosphorylation. Matrix invasion and cell migration as well as expression and activity of matrix metalloproteases were attenuated following caveolin-1 RNAi-mediated knockdown or overexpression of Y14F and P132L mutants, demonstrating dominant-negative activity of these mutants. Time-lapse fluorescence microscopy revealed that caveolin-1 and its mutants P132L and Y14F are localized to the trailing edge of migrating cells during both random and directed cell movement, implying an active role of caveolin-1 in the migration process. Suppression of caveolin-1 function greatly elevated the percentage of H1299 cells exhibiting focal adhesions. In addition, cell aggregation was increased by wild type caveolin-1 and attenuated by both P132L and Y14F mutants. Overexpression of wild type caveolin-1 increased caveolae density, however, P132L and Y14F mutants did not affect caveolae formation, suggesting that in this respect that the mutants do not act in a dominant negative manner, and that effects of caveolin-1 on caveolae and cell invasion, migration, focal adhesion and aggregation, are separable. Our data provide novel mechanistic insights into the role of caveolin-1 in cell motility, invasiveness and aggregation, therefore, expanding our understanding of the tumor-promoting activities of caveolin-1 in advanced-stage cancer.

  17. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway. PMID:26299938

  18. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    PubMed

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  19. Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A

    PubMed Central

    Ingold, Esther; vom Berg-Maurer, Colette M.; Burckhardt, Christoph J.; Lehnherr, André; Rieder, Philip; Keller, Philip J.; Stelzer, Ernst H.; Greber, Urs F.; Neuhauss, Stephan C. F.; Gesemann, Matthias

    2015-01-01

    ABSTRACT The formation of functional neuronal circuits relies on accurate migration and proper axonal outgrowth of neuronal precursors. On the route to their targets migrating cells and growing axons depend on both, directional information from neurotropic cues and adhesive interactions mediated via extracellular matrix molecules or neighbouring cells. The inactivation of guidance cues or the interference with cell adhesion can cause severe defects in neuronal migration and axon guidance. In this study we have analyzed the function of the MAM domain containing glycosylphosphatidylinositol anchor 2A (MDGA2A) protein in zebrafish cranial motoneuron development. MDGA2A is prominently expressed in distinct clusters of cranial motoneurons, especially in the ones of the trigeminal and facial nerves. Analyses of MDGA2A knockdown embryos by light sheet and confocal microscopy revealed impaired migration and aberrant axonal outgrowth of these neurons; suggesting that adhesive interactions mediated by MDGA2A are required for the proper arrangement and outgrowth of cranial motoneuron subtypes. PMID:25572423

  20. Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe

    PubMed Central

    Brunetti, Jlenia; Depau, Lorenzo; Falciani, Chiara; Gentile, Mariangela; Mandarini, Elisabetta; Riolo, Giulia; Lupetti, Pietro; Pini, Alessandro; Bracci, Luisa

    2016-01-01

    The tetra-branched peptide NT4 selectively binds to different human cancer cells and tissues. NT4 specifically binds to sulfated glycosaminoglycans on cancer cell membranes. Since sulfated glycosaminoglycans are involved in cancer cell interaction with the extracellular matrix, we evaluated the effect of NT4 on cancer cell adhesion and migration. We demonstrated here that the branched peptide NT4 binds sulfated glycosaminoglycans with high affinity and with preferential binding to heparan sulfate. NT4 inhibits cancer cell adhesion and migration on different proteins, without modifying cancer cell morphology or their ability to produce protrusions, but dramatically affecting the directionality and polarity of cell movement. Results obtained by taking advantage of the selective targeting of glycosaminoglycans chains by NT4, provide insights into the role of heparan sulfate proteoglycans in cancer cell adhesion and migration and suggest a determinant role of sulfated glycosaminoglycans in the control of cancer cell directional migration. PMID:27255651

  1. Vanadium(IV) complexes inhibit adhesion, migration and colony formation of UMR106 osteosarcoma cells.

    PubMed

    Molinuevo, María S; Cortizo, Ana M; Etcheverry, Susana B

    2008-04-01

    Vanadium is a trace element widely distributed in the environment. In vertebrates it is mainly stored in bone tissue. The unique cellular environment in the bone and the variety of interactions that mediate cancer metastasis determine that certain types of cancer, such as breast and prostate cancer, preferentially metastize in the skeleton. Since this effect usually signifies serious morbidity and grave prognosis there is an increasing interest in the development of new treatments for this pathology. The present work shows that vanadium complexes can inhibit some parameters related to cancer metastasis such as cell adhesion, migration and clonogenicity. We have also investigated the role of protein kinase A in these processes.

  2. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness

    PubMed Central

    Lautscham, Lena A.; Kämmerer, Christoph; Lange, Janina R.; Kolb, Thorsten; Mark, Christoph; Schilling, Achim; Strissel, Pamela L.; Strick, Reiner; Gluth, Caroline; Rowat, Amy C.; Metzner, Claus; Fabry, Ben

    2015-01-01

    In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. PMID:26331248

  3. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion

    PubMed Central

    Mehrabani, Vahedah; Churchill, Lucas; Pasdar, Manijeh

    2016-01-01

    Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53. PMID:27058623

  4. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion.

    PubMed

    Alaee, Mahsa; Padda, Amarjot; Mehrabani, Vahedah; Churchill, Lucas; Pasdar, Manijeh

    2016-05-01

    Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53.

  5. PTK6 Promotes Cancer Migration and Invasion in Pancreatic Cancer Cells Dependent on ERK Signaling

    PubMed Central

    Ono, Hiroaki; Basson, Marc D.; Ito, Hiromichi

    2014-01-01

    Protein Tyrosine Kinase 6 (PTK6) is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each). In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05). Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer. PMID:24788754

  6. Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration.

    PubMed

    Rabiej, Verena K; Pflanzner, Thorsten; Wagner, Timo; Goetze, Kristina; Storck, Steffen E; Eble, Johannes A; Weggen, Sascha; Mueller-Klieser, Wolfgang; Pietrzik, Claus U

    2016-01-01

    The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration.

  7. Transgelin promotes migration and invasion of cancer stem cells.

    PubMed

    Lee, Eun-Kyung; Han, Gi-Yeon; Park, Hye Won; Song, Yeo-Ju; Kim, Chan-Wha

    2010-10-01

    Recent studies have suggested the existence of a small subset of cancer cells called cancer stem cells (CSCs), which possess the ability to initiate malignancies, promote tumor formation, drive metastasis, and evade conventional chemotherapies. Elucidation of the specific signaling pathway and mechanism underlying the action of CSCs might improve the efficacy of cancer treatments. In this study, we analyzed differentially expressed proteins between tumerigenic and nontumorigenic cells isolated from the human hepatocellular carcinoma (HCC) cell line, Huh7, via proteomic analysis to identify proteins correlated with specific features of CSCs. The expression level of Transgelin was 25-fold higher in tumorigenic cells than nontumorigenic cells. Similar results were also observed in tumorigenic cells derived from colorectal adenocarcinoma and prostate carcinoma. More importantly, the elevated levels of Transgelin significantly increased the invasiveness of tumorigenic cells, whereas reduced levels decreased the invasive potential. Moreover, in tumors derived from Huh7-induced xenografts, Transgelin was also co-expressed with CXCR4, which is responsible for tumor invasion. Taken together, these results indicate that the metastatic potential of CSCs arises from highly expressed Transgelin.

  8. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    SciTech Connect

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  9. Persistent cell migration and adhesion rely on retrograde transport of β(1) integrin.

    PubMed

    Shafaq-Zadah, Massiullah; Gomes-Santos, Carina S; Bardin, Sabine; Maiuri, Paolo; Maurin, Mathieu; Iranzo, Julian; Gautreau, Alexis; Lamaze, Christophe; Caswell, Patrick; Goud, Bruno; Johannes, Ludger

    2016-01-01

    Integrins have key functions in cell adhesion and migration. How integrins are dynamically relocalized to the leading edge in highly polarized migratory cells has remained unexplored. Here, we demonstrate that β1 integrin (known as PAT-3 in Caenorhabditis elegans), but not β3, is transported from the plasma membrane to the trans-Golgi network, to be resecreted in a polarized manner. This retrograde trafficking is restricted to the non-ligand-bound conformation of β1 integrin. Retrograde trafficking inhibition abrogates several β1-integrin-specific functions such as cell adhesion in early embryonic development of mice, and persistent cell migration in the developing posterior gonad arm of C. elegans. Our results establish a paradigm according to which retrograde trafficking, and not endosomal recycling, is the key driver for β1 integrin function in highly polarized cells. These data more generally suggest that the retrograde route is used to relocalize plasma membrane machinery from previous sites of function to the leading edge of migratory cells.

  10. Persistent cell migration and adhesion rely on retrograde transport of β(1) integrin.

    PubMed

    Shafaq-Zadah, Massiullah; Gomes-Santos, Carina S; Bardin, Sabine; Maiuri, Paolo; Maurin, Mathieu; Iranzo, Julian; Gautreau, Alexis; Lamaze, Christophe; Caswell, Patrick; Goud, Bruno; Johannes, Ludger

    2016-01-01

    Integrins have key functions in cell adhesion and migration. How integrins are dynamically relocalized to the leading edge in highly polarized migratory cells has remained unexplored. Here, we demonstrate that β1 integrin (known as PAT-3 in Caenorhabditis elegans), but not β3, is transported from the plasma membrane to the trans-Golgi network, to be resecreted in a polarized manner. This retrograde trafficking is restricted to the non-ligand-bound conformation of β1 integrin. Retrograde trafficking inhibition abrogates several β1-integrin-specific functions such as cell adhesion in early embryonic development of mice, and persistent cell migration in the developing posterior gonad arm of C. elegans. Our results establish a paradigm according to which retrograde trafficking, and not endosomal recycling, is the key driver for β1 integrin function in highly polarized cells. These data more generally suggest that the retrograde route is used to relocalize plasma membrane machinery from previous sites of function to the leading edge of migratory cells. PMID:26641717

  11. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation.

    PubMed

    Chen, Shilei; Du, Changhong; Shen, Mingqiang; Zhao, Gaomei; Xu, Yang; Yang, Ke; Wang, Xinmiao; Li, Fengju; Zeng, Dongfeng; Chen, Fang; Wang, Song; Chen, Mo; Wang, Cheng; He, Ting; Wang, Fengchao; Wang, Aiping; Cheng, Tianmin; Su, Yongping; Zhao, Jinghong; Wang, Junping

    2016-02-25

    The effect of sympathetic stimulation on thrombopoiesis is not well understood. Here, we demonstrate that both continual noise and exhaustive exercise elevate peripheral platelet levels in normal and splenectomized mice, but not in dopamine β-hydroxylase-deficient (Dbh(-/-)) mice that lack norepinephrine (NE) and epinephrine (EPI). Further investigation demonstrates that sympathetic stimulation via NE or EPI injection markedly promotes platelet recovery in mice with thrombocytopenia induced by 6.0 Gy of total-body irradiation and in mice that received bone marrow transplants after 10.0 Gy of lethal irradiation. Unfavorably, sympathetic stress-stimulated thrombopoiesis may also contribute to the pathogenesis of atherosclerosis by increasing both the amount and activity of platelets in apolipoprotein E-deficient (ApoE(-/-)) mice. In vitro studies reveal that both NE and EPI promote megakaryocyte adhesion, migration, and proplatelet formation (PPF) in addition to the expansion of CD34(+) cells, thereby facilitating platelet production. It is found that α2-adrenoceptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation is involved in NE- and EPI-induced megakaryocyte adhesion and migration, and PPF is regulated by ERK1/2 activation-mediated RhoA GTPase signaling. Our data deeply characterize the role of sympathetic stimulation in the regulation of thrombopoiesis and reevaluate its physiopathological implications. PMID:26644453

  12. Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration

    PubMed Central

    Kostyak, John C.; Naik, Meghna U.

    2012-01-01

    Megakaryocytes are large, polyploid cells that produce platelets. We have previously reported that calcium- and integrin-binding protein 1 (CIB1) regulates endomitosis in Dami cells. To further characterize the role of CIB1 in megakaryopoiesis, we used a Cib1−/− mouse model. Cib1−/− mice have more platelets and BM megakaryocytes than wild-type (WT) controls (P < .05). Furthermore, subsequent analysis of megakaryocyte-CFU production revealed an increase with Cib1 deletion compared with WT (P < .05). In addition, BM from Cib1−/− mice, cultured with thrombopoietin (TPO) for 24 hours, produced more highly polyploid megakaryocytes than WT BM (P < .05). Subsequent analysis of TPO signaling revealed enhanced Akt and ERK1/2 phosphorylation, whereas FAKY925 phosphorylation was reduced in Cib1−/− megakaryocytes treated with TPO. Conversely, platelet recovery in Cib1−/− mice after platelet depletion was attenuated compared with WT (P < .05). This could be the result of impaired adhesion and migration, as adhesion to fibrinogen and fibronectin and migration toward an SDF-1α gradient were reduced in Cib1−/− megakaryocytes compared with WT (P < .05). In addition, Cib1−/− megakaryocytes formed fewer proplatelets compared with WT (P < .05), when plated on fibrinogen. These data suggest that CIB1 plays a dual role in megakaryopoiesis, initially by negatively regulating TPO signaling and later by augmenting proplatelet production. PMID:22128142

  13. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance.

    PubMed

    Martinez, Jessica S; Schlenoff, Joseph B; Keller, Thomas C S

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as 'leader' cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as 'follower' cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces

  14. Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression

    PubMed Central

    Koetsier, Jennifer L.; Amargo, Evangeline V.; Todorović, Viktor; Green, Kathleen J.; Godsel, Lisa M.

    2014-01-01

    Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell–cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ~30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ~2× larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, β4 and β1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing β1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of β1 integrin and RhoA in integrating cell–cell and cell–substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis. PMID:23884246

  15. Small heat shock proteins in cellular adhesion and migration: evidence from Plasmodium genetics.

    PubMed

    Montagna, Georgina N; Matuschewski, Kai; Buscaglia, Carlos A

    2012-01-01

    Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.

  16. Adhesive and invasive capacities of Edwardsiella tarda isolated from South American sea lion.

    PubMed

    Fernández, Araceli; Villanueva, María Paz; González, Mario; Fernández, Fabiola; Latif, Fadua; Flores, Sandra Nonier; Fernández, Heriberto

    2014-01-01

    Edwarsiella tarda is a zoonotic bacterium that can be isolated from humans, animals and the environment. Although E. tarda is primarily considered a fish pathogen, it is the only species of its genus considered to be pathogenic for humans as well. A survey of zoonotic intestinal bacteria in fresh feces from South American sea lions (SASL) Otaria flavescens, reported E. tarda as the most frequently isolated species. In this study, we used HEp-2 cells to establish in vitro the adherence and invasive ability of 17 E. tarda strains isolated from SASL fecal material. All the strains were able to adhere and invade HEp-2 cells with adhesion and invasion percentages ranging from 56 to 100% and 21 to 74%, respectively. Despite the expression of these pathogenic factors, further investigation is needed to determine whether this bacterium could play a role as primary pathogen for this and other species of pinnipeds. PMID:25477948

  17. miR-1 Inhibits Cell Growth, Migration, and Invasion by Targeting VEGFA in Osteosarcoma Cells

    PubMed Central

    Niu, Junjie; Guo, Qiaoge; Niu, Dongju; Liu, Bo

    2016-01-01

    microRNAs (miRNAs) are small noncoding RNAs and have been shown to play a crucial role in the osteosarcoma (OS) tumorigenesis and progression. VEGFA is a key regulator of angiogenesis and plays an important role in regulation of tumor metastasis. The objective of this study was to determine whether VEGFA was involved in miR-1-mediated suppression of proliferation, migration, and invasion of OS cells. The expression levels of miR-1 were significantly lower in OS tumor tissues than those in adjacent normal tissues and in SAOS-2 and U2OS cell lines compared to a normal osteoblast (NHOst) cell line. VEGFA was upregulated in OS tumor tissues and SAOS-2 and U2OS cell lines. The results of CCK-8 assay and transwell assay showed that miR-1 acted as a tumor suppressor by inhibiting cell proliferation, migration, and invasion in U2OS cells. Dual luciferase reporter assay demonstrated that VEGFA was a direct and functional target gene of miR-1. miR-1 directly inhibits the protein expression of VEGFA via its 3′-UTR. Knockdown of VEGFA by siRNA inhibited proliferation, migration, and invasion of U2OS cells. Our study suggested the potential inhibitory function of miR-1 in OS cell proliferation, migration, and invasion via inhibiting VEGFA. PMID:27777493

  18. Comparison of an ELISA assay for the detection of adhesive/invasive Neospora caninum tachyzoites.

    PubMed

    Pereira, Luiz Miguel; Yatsuda, Ana Patrícia

    2014-03-01

    Neospora caninum belongs to the phylum Apicomplexa, the causative agent of neosporosis, which leads to economic impacts on cattle production. A common feature among apicomplexan parasites is the invasive process driven mostly by the parasite. As a first evaluation of candidate molecules that play a possible role by interfering in this invasive process, the in vitro invasion assay is a fast and direct way to screen future agonists or antagonists. This work involved the development of a new cell culture ELISA and transient β-galactosidase activity applied to the semi-quantitative detection of N. caninum in Vero cell culture. Cell culture ELISA is based on histochemistry and immunology, resulting in a colorimetric reaction. The β-galactosidase activity was obtained by the transient transfection of the lacZ gene under control of RPS13 promoter of N. caninum. These methods were used to evaluate the effects of temperature (37°C and 85°C) on the invasion and adhesion of tachyzoites. The three tested methods (real time PCR, β-galactosidase activity and ELISA) showed a similar pattern, indicating that different methods may be complementary. PMID:24728359

  19. Resistin-Like Molecule-β Promotes Invasion and Migration of Gastric Carcinoma Cells

    PubMed Central

    Jiang, Rui; Zhao, Chunming; Wang, Xinyu; Wang, Shengxi; Sun, Xiaogang; Tian, Yang; Song, Wei

    2016-01-01

    Background Resistin-like molecule-β (RELMβ) is a novel secretory protein from intestinal goblet cells and participates in epithelial differentiation, tumor occurrence, and immune response. RELMβ is absent in normal gastric mucosa but is abundantly expressed in gastric carcinoma tissues, and is correlated with tumor invasion and metastasis. Epithelial-mesenchymal transition (EMT) is an important mechanism governing tumor cell invasion. This study thus investigated the modulation of RELMβ in gastric cancer metastasis and its correlation with EMT. Material/Methods We used RELMβ-low expression AGS cell line of gastric cancer and normal mucosa cell line GES1 as in vitro models, on which RELMβ0-expressing vector was transfected. The invasion and migration of cells were quantified by Transwell assay. EMT-related protein including E-cadherin, N-cadherin, Snail, and Vimentin were detected by Western blotting in transfected AGS cells. Results RELMβ transfection significantly potentiated invasion and migration abilities of AGS cells, whose RELMβ protein level was significantly elevated compared to those in untransfected AGS or GES1 cells. After RELMβ transfection, EMT-related proteins, including N-cadherin, Snail, and Vimentin levels, were elevated, but E-cadherin expression was depressed. Conclusions RELMβ-overexpression can facilitate invasion and migration of gastric carcinoma cells and it increases the expression of EMT-related proteins, such as N-cadherin, Snail, Vimentin, but decreases E-cadherin level, thus promoting the progression of EMT. PMID:27001185

  20. FOXO3a promotes gastric cancer cell migration and invasion through the induction of cathepsin L

    PubMed Central

    Zhang, Wen; Yuan, Wei; Zhao, Naiqing; Li, Qian; Cui, Yuehong; Wang, Yan; Li, Wei; Sun, Yihong; Liu, Tianshu

    2016-01-01

    Forkhead box O3A (FOXO3a) is an important transcription factor involved in various human cancers. However, the role of FOXO3a in regulating the invasion and metastasis of gastric cancer cells has not been clarified. Here, we report that FOXO3a overexpression promoted migration and invasion of gastric cancer cells by upregulating cathepsin L. FOXO3a knockdown suppressed migration and invasion and also downregulated cathepsin L expression in gastric cancer cells. Silencing cathepsin L in these cells suppressed FOXO3a overexpression-induced cell migration and invasion. Mechanistic studies revealed that FOXO3a increased cathepsin L promoter activation, and cathepsin L overexpression repressed E-cadherin expression, causing gastric cancer cells to undergo epithelial-mesenchymal transition (EMT). Our data reveal a previously unexplored function of FOXO3a in gastric cancer invasion by regulating proteins involved in extracellular matrix (ECM) degradation and EMT. We suggest that FOXO3a may be of prognostic value and a potential therapeutic target in blocking tumor metastasis. PMID:27127880

  1. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  2. Progesterone promotes cell migration, invasion and cofilin activation in human astrocytoma cells.

    PubMed

    Piña-Medina, Ana Gabriela; Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Cerbón, Marco; Camacho-Arroyo, Ignacio

    2016-01-01

    Astrocytomas are the most common and aggressive primary brain tumors in humans. Invasiveness of these tumors has been attributed in part to deregulation of cell motility-dependent cytoskeletal dynamics that involves actin-binding proteins such as cofilin. Progesterone (P4) has been found to induce migration and invasion of cells derived from breast cancer and endothelium. However, the role of P4 in migration and invasion of astrocytoma cells as well as its effects on astrocytomas cytoskeleton remodeling is not known. In this work we evaluated these aspects in D54 and U251 cells derived from human astrocytomas from the highest degree of malignancy (grade IV, glioblastoma). Our results showed that in scratch-wound assays P4 increased the number of D54 and U251 cells migrating from 3 to 48 h. Both RU486, a P4 receptor (PR) antagonist, and an oligonucleotide antisense against PR significantly blocked P4 effects. Transwell assays showed that P4 significantly increased the number of invasive cells at 24h. As in the case of migration, this effect was blocked by RU486. Finally, by Western blotting, an increase in the cofilin/p-cofilin ratio at 15 and 30 min and a decrease at 30 and 60 min in U251 and D54 cells, respectively, was observed after P4, P4+RU486 and RU486 treatments. These data suggest that P4 increases human astrocytoma cells migration and invasion through its intracellular receptor, and that cofilin activation by P4 is independent of PR action. PMID:26639431

  3. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells.

    PubMed

    Liu, Wei; Kou, Bo; Ma, Zhen-Kun; Tang, Xiao-Shuang; Lv, Chuan; Ye, Min; Chen, Jia-Qi; Li, Lei; Wang, Xin-Yang; He, Da-Lin

    2015-01-01

    Tetrandrine (TET), a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose) polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC-3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting. PMID:25677131

  4. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells

    PubMed Central

    Liu, Wei; Kou, Bo; Ma, Zhen-Kun; Tang, Xiao-Shuang; Lv, Chuan; Ye, Min; Chen, Jia-Qi; Li, Lei; Wang, Xin-Yang; He, Da-Lin

    2015-01-01

    Tetrandrine (TET), a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose) polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC–3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting. PMID:25677131

  5. Loss of GATA3 in bladder cancer promotes cell migration and invasion.

    PubMed

    Li, Yi; Ishiguro, Hitoshi; Kawahara, Takashi; Kashiwagi, Eiji; Izumi, Koji; Miyamoto, Hiroshi

    2014-04-01

    The transcription factor GATA3 is known as a breast tumor suppressor as well as a urothelial marker, and its loss is often seen in high-grade invasive bladder cancer. Nonetheless, GATA3 functions in bladder cancer cells remain largely unknown. In this study, we assessed the effects of GATA3 silencing via RNA interference on cell migration, invasion, and proliferation of bladder cancer. GATA3 expression was downregulated in all four bladder cancer lines examined, compared with a non-neoplastic urothelial line SVHUC. Knockdown of GATA3 in the bladder cancer lines (5637, TCC-SUP, J82) resulted in promotion of cell migration and invasion as well as increases in the expression of their related molecules, such as vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9, and the activity of MMP-2 and MMP-9. GATA3 loss was also associated with an increasing level of a mesenchymal marker N-cadherin and a decreasing level of an epithelial marker β-catenin. Consistent with these findings, enforced expression of GATA3 in UMUC3 inhibited cell migration and invasion. However, GATA3 showed marginal effects on bladder cancer cell viability and the expression of cell cycle- or apoptosis-related molecules. Additionally, in contrast to bladder cancer lines, no significant effects of GATA3 silencing on cell migration were seen in SVHUC. These findings suggest that GATA3 plays an important role in the prevention of bladder cancer progression and metastasis by inhibiting cell migration and invasion as well as epithelial-to-mesenchymal transition.

  6. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  7. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion

    PubMed Central

    Ko, Panseon; Kim, Daehwan; You, Eunae; Jung, Jangho; Oh, Somi; Kim, Jaehyun; Lee, Kwang-Ho; Rhee, Sangmyung

    2016-01-01

    Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression. PMID:26877098

  8. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  9. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines

    PubMed Central

    Brockmeyer, Phillipp; Hemmerlein, Bernhard

    2016-01-01

    Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer.

  10. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines

    PubMed Central

    Brockmeyer, Phillipp; Hemmerlein, Bernhard

    2016-01-01

    Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer. PMID:27602104

  11. Down-regulation of the cancer/testis antigen 45 (CT45) is associated with altered tumor cell morphology, adhesion and migration

    PubMed Central

    2013-01-01

    Background Due to their restricted expression in male germ cells and certain tumors, cancer/testis (CT) antigens are regarded as promising targets for tumor therapy. CT45 is a recently identified nuclear CT antigen that was associated with a severe disease score in Hodgkin’s lymphoma and poor prognosis in multiple myeloma. As for many CT antigens, the biological function of CT45 in developing germ cells and in tumor cells is largely unknown. Methods CT45 expression was down-regulated in CT45-positive Hodgkin’s lymphoma (L428), fibrosarcoma (HT1080) and myeloma (U266B1) cells using RNA interference. An efficient CT45 knock-down was confirmed by immunofluorescence staining and/or Western blotting. These cellular systems allowed us to analyze the impact of CT45 down-regulation on proliferation, cell cycle progression, morphology, adhesion, migration and invasive capacity of tumor cells. Results Reduced levels of CT45 did not coincide with changes in cell cycle progression or proliferation. However, we observed alterations in cell adherence, morphology and migration/invasion after CT45 down-regulation. Significant changes in the distribution of cytoskeleton-associated proteins were detected by confocal imaging. Changes in cell adherence were recorded in real-time using the xCelligence system with control and siRNA-treated cells. Altered migratory and invasive capacity of CT45 siRNA-treated cells were visualized in 3D migration and invasion assays. Moreover, we found that CT45 down-regulation altered the level of the heterogeneous nuclear ribonucleoprotein syncrip (hnRNP-Q1) which is known to be involved in the control of focal adhesion formation and cell motility. Conclusions Providing first evidence of a cell biological function of CT45, we suggest that this cancer/testis antigen is involved in the modulation of cell morphology, cell adherence and cell motility. Enhanced motility and/or invasiveness of CT45-positive cells could contribute to the more severe

  12. MIGRESIVES: a research project on migration from adhesives in food-packaging materials in support of European legislation and standardization.

    PubMed

    Störmer, A; Franz, R

    2009-12-01

    Most food packages and food-contact materials are manufactured using adhesives. The European Union regulates all food-contact materials, as their constituents may not contaminate food and endanger consumers' health. In contrast to plastics which are regulated by positive lists of authorized ingredients, adhesives have not yet a specific regulation. The MIGRESIVES project aimed to elaborate a scientific global risk-assessment approach to meet current general European Union regulatory requirements and as a basis for future specific European Union legislation as well as to provide the industry, especially small and medium-sized enterprises, a tool to ensure that migration from adhesives is in compliance with the regulatory requirements. The idea was to demonstrate that consumers' exposure to chemicals released by adhesives is in many cases below levels of concern. Technical/scientific knowledge from industry and research institutes will be merged into a collective research endeavour gathering all stakeholders. The major milestones are (1) the classification of adhesives according to chemistry and uses, (2) the test strategies based on physico-chemical behaviour of adhesives, (3) modelling migration/exposure from adhesives, (4) providing guidelines to integrate the risk-assessment approach into the daily life of companies, (5) the feasibility of applying the toxicological approach from the European Union BIOSAFEPAPER project, and (6) extensive training/education to small and medium-sized enterprises (SMEs) and large dissemination for general adoption of the concept in Europe.

  13. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells

    SciTech Connect

    Komiya, Eriko; Ohnuma, Kei; Yamazaki, Hiroto; Hatano, Ryo; Iwata, Satoshi; Okamoto, Toshihiro; Dang, Nam H.; Morimoto, Chikao

    2014-05-16

    Highlights: • CD26-expressing MPM cells upregulate production of periostin. • The intracytoplasmic region of CD26 mediates the upregulation of periostin. • CD26 expression leads to nuclear translocation of Twist1 via phosphorylation of Src. • Secreted periostin enhances migration and invasion of MPM cells. - Abstract: Malignant pleural mesothelioma (MPM) is an aggressive malignancy arising from mesothelial lining of pleura. It is generally associated with a history of asbestos exposure and has a very poor prognosis, partly due to the lack of a precise understanding of the molecular mechanisms associated with its malignant behavior. In the present study, we expanded on our previous studies on the enhanced motility and increased CD26 expression in MPM cells, with a particular focus on integrin adhesion molecules. We found that expression of CD26 upregulates periostin secretion by MPM cells, leading to enhanced MPM cell migratory and invasive activity. Moreover, we showed that upregulation of periostin expression results from the nuclear translocation of the basic helix-loop-helix transcription factor Twist1, a process that is mediated by CD26-associated activation of Src phosphorylation. While providing new and profound insights into the molecular mechanisms involved in MPM biology, these findings may also lead to the development of novel therapeutic strategies for MPM.

  14. Loss of GM130 in breast cancer cells and its effects on cell migration, invasion and polarity.

    PubMed

    Baschieri, Francesco; Uetz-von Allmen, Edith; Legler, Daniel F; Farhan, Hesso

    2015-01-01

    Spatially distinct pools of the small GTPase Cdc42 were observed, but the major focus of research so far has been to investigate its signaling at the plasma membrane. We recently showed that the Golgi pool of Cdc42 is relevant for cell polarity and that it is regulated by GM130, a Golgi matrix protein. Loss of GM130 abrogated cell polarity and consistent with the notion that polarity is frequently impaired in cancer, we found that GM130 is downregulated in colorectal cancer. Whether the loss of GM130 solely affects polarity, or whether it affects other processes relevant for tumorigenesis remains unclear. In a panel of breast cancer cells lines, we investigated the consequences of GM130 depletion on traits of relevance for tumor progression, such as survival, proliferation, adhesion, migration and invasion. We show that cellular assays that depend on polarity, such as chemotaxis and wound scratch assays, are only of limited use to investigate the role of polarity modulators in cancer. Depletion of GM130 increases cellular velocity and increases the invasiveness of breast cancer cells, therefore supporting the view that alterations of polarity contribute to tumor progression.

  15. Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration.

    PubMed Central

    Kuntz, R M; Saltzman, W M

    1997-01-01

    Polymorphonuclear leukocyte (PMN) migration through tissue extracellular space is an essential step in the inflammatory response, but little is known about the factors influencing PMN migration through gels of extracellular matrix (ECM). In this study, PMN migration within reconstituted gels containing collagen type I or collagen type I supplemented with laminin, fibronectin, or heparin was measured by quantitative direct visualization, resulting in a random motility coefficient (mum a quantitative index for rate of cell dispersion) for the migrating cell population. The random motility coefficient in unsupplemented collagen (0.4 mg/ml) gels was approximately 9 x 10(-9) cm2/s. Supplementing gels with heparin or fibronectin produced a significant decrease in mu, even at the lowest concentrations studied (1 microgram/ml fibronectin or 0.4 microgram/ml heparin). At least 100 micrograms/ml of laminin, or 20% of the total gel protein, was required to produce a similar decrease in mu. Scanning electron microscopy revealed two different gel morphologies: laminin or fibronectin appeared to coat the 150-nm collagen fibers whereas heparin appeared to induce fiber bundle formation and, therefore, larger interstitial spaces. The decrease in mu observed in heparin-supplemented gels correlated with the increased mesh size of the fiber network, but the difference observed in mu for fibronectin- and laminin-supplemented gels did not correlate with either mesh size or the mechanical properties of the gel, as determined by rheological measurements. However, PMNs adhered to fibronectin-coated surfaces in greater numbers than to collagen- or laminin-coated surfaces, suggesting that changes in cell adhesion to protein fibers can also produce significant changes in cell motility within an ECM gel. Images FIGURE 2 FIGURE 3 FIGURE 9 PMID:9138592

  16. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    PubMed

    Liu, Yan-fei; Yang, Aijun; Liu, Wei; Wang, Chenyu; Wang, Min; Zhang, Lihan; Wang, Dongcang; Dong, Jing-fei; Li, Min

    2015-01-01

    Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2), which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression. PMID:25700270

  17. Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells.

    PubMed

    Sung, Ho Joong; Kim, Yoonseo; Kang, Hyereen; Sull, Jae Woong; Kim, Yoon Suk; Jang, Sung-Wuk; Ko, Jesang

    2012-02-01

    The antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) is implicated in migration and invasion of metastatic tumors. However, the molecular mechanism underlying the effect of Trolox on metastatic cancer cells is not known. We found that a non-cytotoxic dose of Trolox decreased phorbol 12-myristate 13-acetate (PMA)-induced invasion and migration of both A549 and HeLa cancer cells. We also found that Trolox suppressed both the expression and the proteolytic activity of matrix metalloproteinase-9 (MMP-9), and that the promoter activity of PMA-induced MMP-9 was inhibited by Trolox. Our results show that Trolox inhibits the transcriptional activity of MMP-9 by suppression of NF-κB transactivation. These results indicate that Trolox inhibits NF-κB-mediated MMP-9 expression, leading to the suppression of migration and invasion in lung and cervical cancer cells. Trolox is a potential agent for clinical use in preventing the invasion and metastasis of human malignant lung and cervical cancers.

  18. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion

    PubMed Central

    Chen, Wen-Liang; Barszczyk, Andrew; Turlova, Ekaterina; Deurloo, Marielle; Liu, Baosong; Yang, Burton B.; Rutka, James T.; Feng, Zhong-Ping; Sun, Hong-Shuo

    2015-01-01

    Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels. PMID:25965832

  19. Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion

    PubMed Central

    Cyr-Depauw, Chanèle; Northey, Jason J.; Tabariès, Sébastien; Annis, Matthew G.; Dong, Zhifeng; Cory, Sean; Hallett, Michael; Rennhack, Jonathan P.; Andrechek, Eran R.

    2016-01-01

    ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling. PMID:26976638

  20. Proton beam irradiation stimulates migration and invasion of human U87 malignant glioma cells

    PubMed Central

    Zaboronok, Alexander; Isobe, Tomonori; Yamamoto, Tetsuya; Sato, Eisuke; Takada, Kenta; Sakae, Takeji; Tsurushima, Hideo; Matsumura, Akira

    2014-01-01

    Migration and invasion of malignant glioma play a major role in tumor progression and can be increased by low doses of gamma or X-ray irradiation, especially when the migrated tumor cells are located at a distance from the main tumor mass or postoperative cavity and are irradiated in fractions. We studied the influence of proton beam irradiation on migration and invasion of human U87 malignant glioma (U87MG) cells. Irradiation at 4 and 8 Gy increased cell migration by 9.8% (±4, P = 0.032) and 11.6% (±6.6, P = 0.031) and invasion by 45.1% (±16.5, P = 0.04) and 40.5% (±12.7, P = 0.041), respectively. After irradiation at 2 and 16 Gy, cell motility did not differ from that at 0 Gy. We determined that an increase in proton beam irradiation dose to over 16 Gy might provide tumor growth control, although additional specific treatment might be necessary to prevent the potentially increased motility of glioma cells during proton beam therapy. PMID:24187331

  1. Chinese herbal formula QHF inhibits liver cancer cell invasion and migration

    PubMed Central

    CHEN, TAO; WANG, QUAN; LI, YUNXIAO; HUANG, HEFEI; HU, WEI

    2016-01-01

    The aim of the present study was to observe the effects of the Chinese herbal formula QHF (Q, Qingrejiedu; H, Huoxuehuayu; and F, Fuzhengguben) on the migration and invasion of hepatocellular carcinoma (HCC) HepG2 cells and to elucidate the potential molecular mechanisms involved. HepG2 cells were treated with various concentrations of QHF, and scratch and Transwell® migration assays were used to qualitatively analyze differences in the migration and invasion activity of these cells. Extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) inhibitors were subsequently introduced in order to study the association between QHF and the invasion of HepG2 cells. The protein expression levels of the mitogen-activated protein kinase (MAPK) signaling pathway in HepG2 cells in the presence and absence of QHF were additionally determined using western blot analysis. The results showed that QHF significantly inhibited the proliferation of the HepG2 cells in a concentration-dependent manner, in addition to inhibiting cell movement, which reduced the ability of the cells to invade and migrate. Western blot analysis indicated that the effects of QHF on HCC HepG2 cells after 24 h were to significantly decrease the expression of phosphorylated- (p-)ERK and to increase the expression of p-p38 and p-JNK; however, the total quantity of ERK, p38 and JNK protein remained unchanged. The administration of an inhibitor of ERK altered p38 and JNK expression and promoted the anti-invasion effects of QHF, whereas p38 and JNK inhibitors only partially reversed this effect. The results of the present study indicate, therefore, that QHF is able to inhibit the migratory and invasive activity of HepG2 cells. A possible underlying mechanism involves the activation of the p38 and JNK MAPK signaling pathway and the attenuation of the ERK signaling pathway. PMID:27284329

  2. Promyelocytic Leukemia (PML) Protein Plays Important Roles in Regulating Cell Adhesion, Morphology, Proliferation and Migration

    PubMed Central

    Tang, Mei Kuen; Liang, Yong Jia; Chan, John Yeuk Hon; Wong, Sing Wan; Chen, Elve; Yao, Yao; Gan, Jingyi; Xiao, Lihai; Leung, Hin Cheung; Kung, Hsiang Fu; Wang, Hua; Lee, Kenneth Ka Ho

    2013-01-01

    PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation. PMID:23555679

  3. Role of hepatitis C virus induced osteopontin in epithelial to mesenchymal transition, migration and invasion of hepatocytes.

    PubMed

    Iqbal, Jawed; McRae, Steven; Mai, Thi; Banaudha, Krishna; Sarkar-Dutta, Mehuli; Waris, Gulam

    2014-01-01

    Osteopontin (OPN) is a secreted phosphoprotein which has been linked to tumor progression and metastasis in a variety of cancers including hepatocellular carcinoma (HCC). Previous studies have shown that OPN is upregulated during liver injury and inflammation. However, the role of OPN in hepatitis C virus (HCV)-induced liver disease pathogenesis is not known. In this study, we determined the induction of OPN, and then investigated the effect of secreted forms of OPN in epithelial to mesenchymal transition (EMT), migration and invasion of hepatocytes. We show the induction of OPN mRNA and protein expression by HCV-infection. Our results also demonstrate the processing of precursor OPN (75 kDa) into 55 kDa, 42 kDa and 36 kDa forms of OPN in HCV-infected cells. Furthermore, we show the binding of secreted OPN to integrin αVβ3 and CD44 at the cell surface, leading to the activation of downstream cellular kinases such as focal adhesion kinase (FAK), Src, and Akt. Importantly, our results show the reduced expression of epithelial marker (E-cadherin) and induction of mesenchymal marker (N-cadherin) in HCV-infected cells. We also show the migration and invasion of HCV-infected cells using wound healing assay and matrigel coated Boyden chamber. In addition, we demonstrate the activation of above EMT markers, and the critical players involved in OPN-mediated cell signaling cascade using primary human hepatocytes infected with Japanese fulminant hepatitis (JFH)-1 HCV. Taken together, these studies suggest a potential role of OPN in inducing chronic liver disease and HCC associated with chronic HCV infection. PMID:24498111

  4. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    SciTech Connect

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki; Imano, Motohiro; Ogaki, Mitsuhiko; Yanae, Masashi; Nishida, Shozo

    2012-03-15

    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion, and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529/ONO-5920

  5. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion

    PubMed Central

    Wu, Y; Zhou, B P

    2010-01-01

    Tumour necrosis factor-alpha (TNF-α) is an important inflammatory factor that acts as a master switch in establishing an intricate link between inflammation and cancer. A wide variety of evidence has pointed to a critical role of TNF-α in tumour proliferation, migration, invasion and angiogenesis. The function of TNF-α as a key regulator of the tumour microenvironment is well recognised. We will emphasise the contribution of TNF-α and the nuclear factor-κB pathway on tumour cell invasion and metastasis. Understanding the mechanisms underlying inflammation-mediated metastasis will reveal new therapeutic targets for cancer prevention and treatment. PMID:20087353

  6. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

    PubMed Central

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  7. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    PubMed

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  8. Bilirubin acts as an endogenous regulator of inflammation by disrupting adhesion molecule-mediated leukocyte migration

    PubMed Central

    Vogel, Megan E.; Zucker, Stephen D.

    2016-01-01

    There is a growing body of evidence that bilirubin, which is generated during the physiological breakdown of heme, exerts potent anti-inflammatory effects. Previous work by our group suggests that bilirubin is able to suppress inflammatory responses by preventing the migration of leukocytes into target tissues through disruption of vascular cell adhesion molecule-1 (VCAM-1)-dependent cell signaling. As VCAM-1 is an important mediator of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. As anticipated, bilirubin-treated animals manifested significantly less colonic injury and reduced infiltration of inflammatory cells into colon tissues. We further observed that bilirubin administration was associated with a reduced number of eosinophils and monocytes in the small intestine, with a corresponding increase in peripheral blood eosinophilia, regardless of whether mice received DSS. These findings suggest that bilirubin impairs the normal migration of eosinophils into intestinal tissues, as supported by in vitro experiments showing that bilirubin blocks the VCAM-1-dependent movement of Jurkat cells across human endothelial cell monolayers. Taken together, our findings support that bilirubin ameliorates DSS-induced colitis and disrupts the physiological trafficking of leukocytes to the intestine by preventing transmigration across the vascular endothelium, potentially through the inhibition VCAM-1-mediated signaling. Our findings raise the possibility that bilirubin functions as an endogenous regulator of inflammatory responses. PMID:26925435

  9. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    PubMed

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-09-15

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.

  10. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    PubMed

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear.

  11. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    PubMed

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  12. MicroRNA-183 suppresses retinoblastoma cell growth, invasion and migration by targeting LRP6.

    PubMed

    Wang, Jianwen; Wang, Xiaochun; Li, Zhongji; Liu, Hongtao; Teng, Yan

    2014-03-01

    Our study demonstrates the downregulation of microRNA-183 (miR-183) in retinoblastoma (RB) tissues and RB cell lines compared with normal retinal tissues. The ectopic expression of miR-183 in the RB cell lines Y79, SO-RB50 and WERI-RB1 suppresses cell viability, migration and invasion. Furthermore, the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) was identified as a new target of miR-183, and restoration of the expression of LRP6 rescues the effects induced by miR-183 in RB cells. These results indicate that miR-183 targets and downregulates LRP6 in the growth, migration and invasion of RB cells. PMID:24289859

  13. Sesquiterpene lactones derived from Saussurea lappa induce apoptosis and inhibit invasion and migration in neuroblastoma cells.

    PubMed

    Tabata, Keiichi; Nishimura, Yuki; Takeda, Taiji; Kurita, Masahiro; Uchiyama, Taketo; Suzuki, Takashi

    2015-04-01

    Neuroblastoma is among the most fatal of solid tumors in the pediatric age group, even when treated aggressively. Therefore, a new effective therapeutic drug(s) for neuroblastoma is urgently needed. To clarify the anticancer effects of the sesquiterpene lactones dehydrocostus lactone and costunolide, derived from Saussurea lappa, we examined the cytotoxic and migration/invasion-inhibitory effects of these compounds against neuroblastoma cell lines. Both the compounds exerted significant cytotoxicity against the neuroblastoma cell lines IMR-32, NB-39, SK-N-SH, and LA-N-1. Evidence of cellular apoptosis, such as nuclear condensation and membrane inversion, were observed after treatment with these compounds. Both compounds induced caspase-7 activation and PARP cleavage as confirmed by Western blotting. Furthermore, the sesquiterpene lactones also suppressed invasion and migration of the neuroblastoma cells. These results suggest that dehydrocostus lactone and costunolide are promising candidates for being developed into novel anticancer drugs effective against neuroblastoma.

  14. Adhesive restorations, centric relation, and the Dahl principle: minimally invasive approaches to localized anterior tooth erosion.

    PubMed

    Magne, Pascal; Magne, Michel; Belser, Urs C

    2007-01-01

    The purpose of this article is to review biomechanical and occlusal principles that could help optimize the conservative treatment of severely eroded and worn anterior dentition using adhesive restorations. It appears that enamel and dentin bonding, through the combined use of resin composites (on the palatal surface) and indirect porcelain veneers (on the facial/incisal surfaces) can lead to an optimal result from both esthetic and functional/biomechanical aspects. Cases of deep bite combined with palatal erosion and wear can be particularly challenging. A simplified approach is proposed through the use of an occlusal therapy combining centric relation and the Dahl principle to create anterior interocclusal space to reduce the need for more invasive palatal reduction. This approach allows the ultraconservative treatment of localized anterior tooth erosion and wear.

  15. In vitro protective effect of lactic acid bacteria on Listeria monocytogenes adhesion and invasion of Caco-2 cells.

    PubMed

    Winkelströter, L K; De Martinis, E C P

    2015-01-01

    The adhesion of Listeria monocytogenes to intestinal endothelial cells is a crucial step in the infection process, which is not well understood. In this study, we evaluated the potential ability of bacteriocin-producing Enterococcus faecium, Leuconostoc mesenteroides and Lactobacillus sakei strains to prevent the adhesion and invasion of eukaryotic cells by ten different L. monocytogenes isolates. The results showed that E. faecium 130 co-cultured with L. monocytogenes was the most effective in preventing infection of Caco-2 cells, as the vast majority of isolates showed significantly lower adhesion counts and invasion rates below the quantification limit of the method (<30 cfu/plate). L. sakei 1 was the least effective strain in preventing L. monocytogenes infection; only one isolate presented a lower adhesion rate and two isolates reduced the invasion rate of Caco-2 cells. Fluorescence in situ hybridisation (FISH) assay was shown to be an effective tool to illustrate and identify species in co-culture with L. monocytogenes during the adhesion process to Caco-2 cells.

  16. SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer

    PubMed Central

    Bao, Jisheng; Zhu, Liping; Zhu, Qi; Su, Jianhua; Liu, Menglan; Huang, Wei

    2016-01-01

    Re-programming of lipogenic signaling has been previously demonstrated to result in significant alterations in tumor cell pathology. Sterol regulatory element-binding protein 1 (SREBP-1) is a known transcription factor of lipogenic genes. Despite the fact that its functions in proliferation and apoptosis have been elucidated in recent studies, its role in tumor cell migration and invasion, particularly in breast cancer, remains unclear. In present study, the messenger RNA and protein expression levels of SREBP-1 in cancer tissues were observed to be overexpressed compared with those in matched para-cancerous tissues (P<0.01). SREBP-1 level was highly positively correlated with tumor differentiation (P<0.001), tumor-node-metastasis stage (P=0.044) and lymph node metastasis (P<0.001). High expression of SREBP-1 predicted poor prognosis in patients with breast cancer. Additionally, multivariate analysis revealed that SREBP-1 was an independent factor of 5-year overall and disease-specific survival in breast cancer patients (P<0.01). In vitro studies revealed that the suppression of SREBP-1 expression in both MDA-MB-231 and MCF7 cells significantly inhibited cell migration and invasion (P<0.01). The present data indicate that SREBP-1 plays a critical role in breast cancer migration and invasion, and may serve as a prognostic marker of this malignancy. PMID:27703522

  17. Expression of PAPPA2 in human fetomaternal interface and involvement in trophoblast invasion and migration.

    PubMed

    Wang, H Y; Zhang, Z; Yu, S

    2016-01-01

    Pregnancy-associated plasma protein-A 2 (PAPPA2) is a placental-enriched gene that is important for normal human placentation and defects in the gene can cause complications in pregnancy. Yet the exact expression pattern and role of PAPPA2 in the human fetomaternal interface are not clear. In this study, in situ hybridization (ISH) and immunohistochemistry (IHC) were employed to examine the spatial and temporal expression of PAPPA2 in the human fetomaternal interface. IHC results exhibited wide expression of PAPPA2 in the fetomaternal interface, with placental syncytiatrophoblast (STB) and extravillous trophoblast (EVT) showing strong expression and the cytotrophoblast (CTB) showing weak expression of PAPPA2. These results were confirmed by ISH. Quantitative reverse transcription-polymerase chain reaction and western blot showed the elevation of PAPPA2 in first trimester EVT differentiation and term CTB spontaneous syncytialization. PAPPA2-siRNA transfection significantly depressed the invasion and migration ability of a trophoblast cell line (HTR8/SVneo) in a transwell migration and Matrigel invasion model compared to a negative control siRNA (P < 0.05), also revealing that matrix metalloproteinase 9 (MMP9) secretion is downregulated. This was confirmed using a human first trimester placental villi explant culture model. Our results reveal the spatial and temporal expression of PAPPA2 in the human fetomaternal interface and show the positive regulatory role of PAPPA2 in human trophoblast invasion and migration through the secretion of MMP9. PMID:27525857

  18. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis

    PubMed Central

    Fortenberry, Yolanda M.; Brandal, Stephanie M.; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P.

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential. PMID:27755560

  19. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion

    PubMed Central

    Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer. PMID:26488471

  20. MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PRKA kinase anchor protein 9.

    PubMed

    Yang, Min-Hui; Hu, Zhi-Yan; Xu, Chuan; Xie, Lin-Ying; Wang, Xiao-Yan; Chen, Shi-You; Li, Zu-Guo

    2015-01-01

    Our previous studies have shown that the 3' end of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is involved in colorectal cancer (CRC) cell proliferation and migration/invasion in vitro. The role and mechanism of MALAT1 in CRC metastasis in vivo, however, remain largely unknown. In the present study, we found that MALAT1 was up-regulated in human primary CRC tissues with lymph node metastasis. Overexpression of MALAT1 via RNA activation promoted CRC cell proliferation, invasion and migration in vitro, and stimulated tumor growth and metastasis in mice in vivo. Conversely, knockdown of MALAT1 inhibited CRC tumor growth and metastasis. MALAT1 regulated at least 243 genes in CRC cells in a genome-wide expression profiling. Among these genes, PRKA kinase anchor protein 9 (AKAP-9) was significantly up-regulated at both mRNA and protein levels. AKAP-9 was highly expressed in CRC cells with metastatic potential and human primary CRC tissues with lymph node metastasis, but not in normal cells or tissues. Importantly, knockdown of AKAP-9 blocked MALAT1-mediated CRC cell proliferation, migration and invasion. These data indicate that MALAT1 may promote CRC tumor development via its target protein AKAP-9.

  1. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion

    PubMed Central

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-01-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression. DOI: http://dx.doi.org/10.7554/eLife.07270.001 PMID:26030852

  2. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells.

    PubMed

    Li, Rong; Zhao, Yinhai; Chen, Jin; Shao, Songjun; Zhang, Xiujuan

    2014-02-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) has been reported to possess certain anticancer properties. It may inhibit tumor cell proliferation, metastasis and induce apoptosis. However, the effects of fisetin in preventing the metastasis of nasopharyngeal carcinoma (NPC) cells remain to be determined. The epithelial-mesenchymal transition (EMT) is involved in several metastatic malignancies including NPC. It has been reported that the Epstein-Barr virus latent membrane protein-1 (LMP1) induced EMT and is associated with the metastasis of NPC. The aim of this study was to examine the effects of fisetin in preventing the migration and invasion of LMP1-expressing NPC cells (CNE1-LMP1 cells), as well as to investigate whether fisetin may inhibit the molecular changes associated with EMT induced by LMP1. The investigation demonstrated that fisetin suppressed the migration and invasion of CNE1-LMP1 cells under non-cytotoxic concentrations. Fisetin inhibited molecular changes associated with EMT induced by LMP1, upregulated the epithelial marker, E-cadherin protein, and downregulated the mesenchymal marker, vimentin protein, levels. Fisetin also significantly reduced the levels of Twist protein, an EMT regulator. The investigation suggested that fisetin inhibits the migration and invasion of LMP1-positive NPC cells, and the molecular mechanism involves fisetin reversing the EMT induced by LMP1 and downregulates the expression of Twist. This study indicated that fisetin serves as a potential candidate for the treatment of cancer metastasis.

  3. SRPX2 promotes cell migration and invasion via FAK dependent pathway in pancreatic cancer.

    PubMed

    Gao, Zhenyuan; Zhang, Jingjing; Bi, Minghong; Han, Xiao; Han, Zhengquan; Wang, Hongya; Ou, Yimei

    2015-01-01

    Sushi repeat-containing protein, X-linked 2, abbreviated as SRPX2, is a candidate downstream target protein for E2A-HLF and involved in disorders of language cortex and cognition. Recent studies have demonstrated that elevated SRPX2 exhibits crucial roles in gastric cancer, however, underlying clinical significance and biological function of SRPX2 in pancreatic ductal adenocarcinoma (PDAC), remains unclear. Data from Oncomine database showed that higher SRPX2 expression is more commonly observed in PDAC compared with normal pancreatic duct, similar results were also found in 12 matched PDAC tissue samples, 7 PDAC cell lines and a tissue microarray containing 81 PDAC specimens as demonstrated by real-time quantitative PCR and immunohistochemistry, respectively. Besides, higher SRPX2 expression was closely correlated with advanced TNM stage. Silencing of endogenous SRPX2 expression reduced abilities of cell migration and invasion of PDAC cells. Further studies revealed that SRPX2 expression in PDAC tissues significantly correlated with the phosphorylation levels of FAK, indicating that FAK dependent pathway may be account for the effect of SRPX2 on cell migration and invasion in PDAC. Collectively, this study reveals that frequently elevated SRPX2 contributes to cell migration and invasion in PDAC and SRPX2-related pathways might be a potential therapeutic target for PDAC. PMID:26191169

  4. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    SciTech Connect

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  5. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    PubMed

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.

  6. Inhibition of transforming growth factor-β-activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis

    PubMed Central

    Ray, D M; Myers, P H; Painter, J T; Hoenerhoff, M J; Olden, K; Roberts, J D

    2012-01-01

    Background: Tumour cell metastasis involves cell adhesion and invasion, processes that depend on signal transduction, which can be influenced by the tumour microenvironment. N-6 polyunsaturated fatty acids, found both in the diet and in response to inflammatory responses, are important components of this microenvironment. Methods: We used short hairpin RNA (shRNA) knockdown of TGF-β-activated kinase-1 (TAK1) in human tumour cells to examine its involvement in fatty acid-stimulated cell adhesion and invasion in vitro. An in vivo model of metastasis was developed in which cells, stably expressing firefly luciferase and either a control shRNA or a TAK1-specific shRNA, were injected into the mammary fat pads of mice fed diets, rich in n-6 polyunsaturated fatty acids. Tumour growth and spontaneous metastasis were monitored with in vivo and in situ imaging of bioluminescence. Results: Arachidonic acid activated TAK1 and downstream kinases in MDA-MB-435 breast cancer cells and led to increased adhesion and invasion. Knockdown of TAK1 blocked this activation and inhibited both cell adhesion and invasion in vitro. Tumour growth at the site of injection was not affected by TAK1 knockdown, but both the incidence and extent of metastasis to the lung were significantly reduced in mice injected with TAK1 knockdown cells compared with mice carrying control tumour cells. Conclusion: These data demonstrate the importance of TAK1 signalling in tumour metastasis in vivo and suggest an opportunity for antimetastatic therapies. PMID:22644295

  7. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway

    PubMed Central

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-01-01

    AIM: To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. METHODS: We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. RESULTS: High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P < 0.05). Ectopic expression of PBX3 in low metastatic cells was shown to promote migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. CONCLUSION: PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway. PMID:25561793

  8. (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells.

    PubMed

    Sharma, Chhavi; Nusri, Qurrat El-Ain; Begum, Salema; Javed, Elham; Rizvi, Tahir A; Hussain, Arif

    2012-01-01

    Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti- proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time- dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1) . These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.

  9. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice.

    PubMed

    Jadav, Rathan S; Kumar, Dharmika; Buwa, Natasha; Ganguli, Shubhra; Thampatty, Sitalakshmi R; Balasubramanian, Nagaraj; Bhandari, Rashna

    2016-08-01

    Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO

  10. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice.

    PubMed

    Jadav, Rathan S; Kumar, Dharmika; Buwa, Natasha; Ganguli, Shubhra; Thampatty, Sitalakshmi R; Balasubramanian, Nagaraj; Bhandari, Rashna

    2016-08-01

    Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO

  11. hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2

    PubMed Central

    Saraiva, Nuno; Prole, David L.; Carrara, Guia; Johnson, Benjamin F.; Taylor, Colin W.

    2013-01-01

    Golgi antiapoptotic proteins (GAAPs) are highly conserved Golgi membrane proteins that inhibit apoptosis and promote Ca2+ release from intracellular stores. Given the role of Ca2+ in controlling cell adhesion and motility, we hypothesized that human GAAP (hGAAP) might influence these events. In this paper, we present evidence that hGAAP increased cell adhesion, spreading, and migration in a manner that depended on the C-terminal domain of hGAAP. We show that hGAAP increased store-operated Ca2+ entry and thereby the activity of calpain at newly forming protrusions. These hGAAP-dependent effects regulated focal adhesion dynamics and cell migration. Indeed, inhibition or knockdown of calpain 2 abrogated the effects of hGAAP on cell spreading and migration. Our data reveal that hGAAP is a novel regulator of focal adhesion dynamics, cell adhesion, and migration by controlling localized Ca2+-dependent activation of calpain. PMID:23940116

  12. Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer

    PubMed Central

    Qiu, Jian-Ge; Zhang, Wen-Ji; Mei, Xiao-Long; Shi, Zhi; Di, Jin-Ming

    2015-01-01

    Toll-like receptors (TLRs) play an important role in tumorigenesis and progress of prostate cancer. However, the function and mechanism of Toll-like receptor-9 (TLR9) in prostate cancer is not totally understood. Here, we found that high expression of TLR9 was associated with a higher probability of lymph node metastasis and poor prognosis. Further in vitro functional study verified that silence of TLR9 inhibited migration and invasion of PC-3 cells, indicating expression of TLR9 involving in the migration and invasion of cancer cells. The data of microarray exhibited silence of TLR9 induced 205 genes with larger than 2-fold changes in expression levels, including 164 genes down-regulated and 41 genes up-regulated. Functional Gene Ontology (GO) processes annotation demonstrated that the top three scores of molecular and cellular functions were regulation of programmed cell death, regulation of locomotion and response to calcium ion. TLR9 signaling network analysis of the migration and invasion related genes identified several genes, like matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), chemokine receptor 4 (CXCR4) and interleukin 8 (IL8), formed the core interaction network based on their known biological relationships. A few genes, such as odontogenic ameloblast-associated protein (ODAM), claudin 2 (CLDN2), gap junction protein beta 1 (GJB1) and Rho-associated coiled-coil containing protein kinase 1 pseudogene 1 (ROCK1P1), so far have not been found to interact with the other genes. This study provided the foundation to discover the new molecular mechanism in signaling networks of invasion and metastasis in prostate cancer. PMID:26087186

  13. Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma

    SciTech Connect

    Li, Yuanyuan; Jia, Qingzhu; Zhang, Qian; Wan, Ying

    2015-03-20

    Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC. - Highlights: • The transcriptional levels of 52 Rab GTPases were analyzed in renal cell carcinoma (RCC). • High levels of Rab25 expression were significantly correlated with clinicopathological factors of RCC. • Knockdown of Rab25 protein expression reduced RCC cells proliferation, migration, and invasion. • Rab25 is a target gene of let-7d in RCC.

  14. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma.

    PubMed

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Abe, Masaaki; Hino, Okio; Saga, Tsuneo

    2014-02-01

    The worldwide incidence of the highly aggressive tumor mesothelioma is expected to increase. Mesothelioma is classified into three main histological subtypes: epithelioid, sarcomatoid and biphasic. Although the pathological diagnostic markers for epithelioid are established, to date no adequate marker for sarcomatoid mesothelioma has been found. Thus, a reliable diagnostic marker of sarcomatoid mesothelioma is necessary. In this study, to identify an unknown protein with 120 kDa expressed only in the mesothelioma cell line 211H, we conducted proteomic analysis and found five candidate proteins. One such protein, AHNAK, was highly expressed in all seven mesothelioma cell lines (211H, H28, H226, H2052, H2452, MESO1 and MESO4), but not in the mesothelial cell line MeT-5A by RT-PCR and immunofluorescence staining. Furthermore, we confirmed high AHNAK expression not only in xenografts but also in human mesothelioma specimens including sarcomatoid, epithelioid and biphasic mesothelioma using immunohistochemical staining. These findings suggest that AHNAK has the potential to be a new marker for detecting mesothelioma. Since AHNAK is involved in cell migration and invasion in other metastatic tumor cells, we conducted migration and invasion assays in mesothelioma cell lines. The number of migrating cells in six of seven mesothelioma cell lines and the number of invading cells in all seven cell lines were significantly increased compared with those in MeT-5A. Knockdown of AHNAK significantly reduced the cell migration and invasion ability in all seven mesothelioma cell lines. These results support further clinical evaluation of the association of AHNAK and metastasis in mesothelioma.

  15. Invadopodia and Matrix Degradation, a New Property of Prostate Cancer Cells during Migration and Invasion*

    PubMed Central

    Desai, Bhavik; Ma, Tao; Chellaiah, Meenakshi A.

    2008-01-01

    The present study demonstrated that invadopodia are associated with invasion by degradation of matrix in prostate cancer cells PC3. To find out the presence of invadopodia in PC3 cells, we performed a few comparative analyses with osteoclasts, which utilize podosomes for migration. Our investigations indeed demonstrated that invadopodia are comparable to podosomes in the localization of Wiskott-Aldrich syndrome protein (WASP)/matrix metalloproteinase-9 and the degradation of matrix. Invadopodia are different from podosomes in the localization of actin/vinculin, distribution during migration, and the mode of degradation of extracellular matrix. Invadopodia enable polarized invasion of PC3 cells into the gelatin matrix in a time-dependent manner. Gelatin degradation was confined within the periphery of the cell. Osteoclasts demonstrated directional migration with extensive degradation of matrix underneath and around the osteoclasts. A pathway of degradation of matrix representing a migratory track was observed due to the rearrangement of podosomes as rosettes or clusters at the leading edge. Reducing the matrix metalloproteinase-9 levels by RNA interference inhibited the degradation of matrix but not the formation of podosomes or invadopodia. Competition experiments with TAT-fused WASP peptides suggest that actin polymerization and formation of invadopodia involve the WASP-Arp2/3 complex pathway. Moreover, PC3 cells overexpressing osteopontin (OPN) displayed an increase in the number of invadopodia and gelatinolytic activity as compared with PC3 cells and PC3 cells expressing mutant OPN in integrin-binding domain and null for OPN. Thus, we conclude that OPN/integrin αvβ3 signaling participates in the process of migration and invasion of PC3 cells through regulating processes essential for the formation and function of invadopodia. PMID:18337256

  16. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women.

    PubMed

    Kato, Sumie; Abarzua-Catalan, Lorena; Trigo, César; Delpiano, Ana; Sanhueza, Cristobal; García, Karen; Ibañez, Carolina; Hormazábal, Katherine; Diaz, Daniela; Brañes, Jorge; Castellón, Enrique; Bravo, Erasmo; Owen, Gareth; Cuello, Mauricio A

    2015-08-28

    The evidence linking obesity with ovarian cancer remains controversial. Leptin is expressed at higher levels in obese women and stimulates cell migration in other epithelial cancers. Here, we explored the clinical impact of overweight/obesity on patient prognosis and leptin's effects on the metastatic potential of ovarian cancer cells. We assessed clinical outcomes in 70 ovarian cancer patients (33 healthy weight and 37 overweight) that were validated with an external cohort from The Cancer Genome Atlas (TCGA) database. Progression-free and overall survival rates were significantly decreased in overweight patients. Similarly, a worse overall survival rate was found in TCGA patients expressing higher leptin/OB-Rb levels. We explored serum and ascites leptin levels and OB-Rb expression in our cohort. Serum and ascites leptin levels were higher in overweight patients experiencing worse survival. OB-Rb was more highly expressed in ascites and metastases than in primary tumors. Leptin exposure increased cancer cell migration/invasion through leptin-mediated activation of JAK/STAT3, PI3/AKT and RhoA/ROCK and promoted new lamellipodial, stress-fiber and focal adhesion formation. Leptin also contributed to the maintenance of stemness and the mesenchymal phenotype in ovarian cancer cells. Our findings demonstrate that leptin stimulated ovarian cancer cell migration and invasion, offering a potential explanation for the poor prognosis among obese women. PMID:26053184

  17. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women

    PubMed Central

    Kato, Sumie; Abarzua-Catalan, Lorena; Trigo, César; Delpiano, Ana; Sanhueza, Cristobal; García, Karen; Ibañez, Carolina; Hormazábal, Katherine; Diaz, Daniela; Brañes, Jorge; Castellón, Enrique; Bravo, Erasmo; Owen, Gareth; Cuello, Mauricio

    2015-01-01

    The evidence linking obesity with ovarian cancer remains controversial. Leptin is expressed at higher levels in obese women and stimulates cell migration in other epithelial cancers. Here, we explored the clinical impact of overweight/obesity on patient prognosis and leptin's effects on the metastatic potential of ovarian cancer cells. We assessed clinical outcomes in 70 ovarian cancer patients (33 healthy weight and 37 overweight) that were validated with an external cohort from The Cancer Genome Atlas (TCGA) database. Progression-free and overall survival rates were significantly decreased in overweight patients. Similarly, a worse overall survival rate was found in TCGA patients expressing higher leptin/OB-Rb levels. We explored serum and ascites leptin levels and OB-Rb expression in our cohort. Serum and ascites leptin levels were higher in overweight patients experiencing worse survival. OB-Rb was more highly expressed in ascites and metastases than in primary tumors. Leptin exposure increased cancer cell migration/invasion through leptin-mediated activation of JAK/STAT3, PI3/AKT and RhoA/ROCK and promoted new lamellipodial, stress-fiber and focal adhesion formation. Leptin also contributed to the maintenance of stemness and the mesenchymal phenotype in ovarian cancer cells. Our findings demonstrate that leptin stimulated ovarian cancer cell migration and invasion, offering a potential explanation for the poor prognosis among obese women. PMID:26053184

  18. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women.

    PubMed

    Kato, Sumie; Abarzua-Catalan, Lorena; Trigo, César; Delpiano, Ana; Sanhueza, Cristobal; García, Karen; Ibañez, Carolina; Hormazábal, Katherine; Diaz, Daniela; Brañes, Jorge; Castellón, Enrique; Bravo, Erasmo; Owen, Gareth; Cuello, Mauricio A

    2015-08-28

    The evidence linking obesity with ovarian cancer remains controversial. Leptin is expressed at higher levels in obese women and stimulates cell migration in other epithelial cancers. Here, we explored the clinical impact of overweight/obesity on patient prognosis and leptin's effects on the metastatic potential of ovarian cancer cells. We assessed clinical outcomes in 70 ovarian cancer patients (33 healthy weight and 37 overweight) that were validated with an external cohort from The Cancer Genome Atlas (TCGA) database. Progression-free and overall survival rates were significantly decreased in overweight patients. Similarly, a worse overall survival rate was found in TCGA patients expressing higher leptin/OB-Rb levels. We explored serum and ascites leptin levels and OB-Rb expression in our cohort. Serum and ascites leptin levels were higher in overweight patients experiencing worse survival. OB-Rb was more highly expressed in ascites and metastases than in primary tumors. Leptin exposure increased cancer cell migration/invasion through leptin-mediated activation of JAK/STAT3, PI3/AKT and RhoA/ROCK and promoted new lamellipodial, stress-fiber and focal adhesion formation. Leptin also contributed to the maintenance of stemness and the mesenchymal phenotype in ovarian cancer cells. Our findings demonstrate that leptin stimulated ovarian cancer cell migration and invasion, offering a potential explanation for the poor prognosis among obese women.

  19. Collective migration models: Dynamic monitoring of leader cells in migratory/invasive disease processes

    NASA Astrophysics Data System (ADS)

    Dean, Zachary Steven

    Leader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological

  20. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    PubMed Central

    Willer, Emerson da Motta; Lima, Renato de Lourenço; Giugliano, Loreny Gimenes

    2004-01-01

    Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants. PMID:15115555

  1. Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement

    PubMed Central

    Da Sie, Yong; Li, Yi-Cheng; Chang, Nan-Shan; Campagnola, Paul J.; Chen, Shean-Jen

    2015-01-01

    In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment. A human breast cancer cell line, MDA-MB-231, was used to investigate the behavior of cell migration and adhesion on the fabricated human FN and BSA protein structures. Experimental results indicate that many cells are not able to attach or climb on a 3D structure’s inclined plane without FN support; hence, the influence of cell growth in a 3D context with FN should being taken into consideration. This 3D multi-protein fabrication technique holds potential for cell studies in designed complex 3D ECM scaffolds. PMID:25780738

  2. Cancer/testis antigen NY-SAR-35 enhances cell proliferation, migration, and invasion.

    PubMed

    Song, Myung-Ha; Kim, Ye-Rin; Lee, Jun-Won; Lee, Chang-Hun; Lee, Sang-Yull

    2016-02-01

    The cancer/testis antigen NY-SAR-35 is aberrantly expressed in various cancer tissues and cancer cell lines but not in normal tissues except for the testis. A previous study demonstrated that the expression of NY-SAR-35 is activated by hypomethylation in cancer cells. However, the functions of this antigen remain unexplored. In the present study, we investigated the role of NY-SAR‑35 in human embryonic kidney (HEK) 293 cells using exogenous expression system of the gene. NY-SAR‑35 was predominantly expressed at the cytoplasm and was mainly observed in spermatogonia and spermatocytes. Expression of NY-SAR-35 in stable HEK293 transfectant clones was 2-fold higher than the control cells promoting cell growth and proliferation. NY-SAR-35 overexpression also enhanced cell migration and invasion ~2-fold and 4-fold more than the control, respectively. In contrast, small interfering RNA-mediated knockdown of NY-SAR-35 suppressed cell proliferation, migration, and invasion in HEK293 stable transfectants. We concluded that NY-SAR-35 as a cancer/testis antigen enhanced cell proliferation and invasion.

  3. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion.

    PubMed

    Saunders, Lauren P; Ouellette, Amy; Bandle, Russ; Chang, William Chozen; Zhou, Hongwen; Misra, Raj N; De La Cruz, Enrique M; Braddock, Demetrios T

    2008-10-01

    Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffin-embedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma.

  4. Intrathoracic migration of a breast implant after minimally invasive cardiac surgery.

    PubMed

    Songcharoen, Somjade Jay; McClure, Michael; Aru, Roberto G; Songcharoen, Somprasong

    2015-03-01

    The aging population, in combination with the popularity of breast augmentation with implants, presents surgeons with a growing number of cases involving women undergoing minimally invasive cardiac surgery (MICS) who have breast implants. We present an unusual complication involving the delayed migration of a subpectoral implant into the chest cavity through an iatrogenic defect after a minimally invasive mitral valve repair. This chest wall defect was ultimately repaired with a latissimus dorsi flap. Although MICS has been described in women with breast implants, the documented experience remains limited. Most authors classically recommend explantation of the prosthesis to provide access to the chest wall; however, some have later suggested preserving the implant capsule in situ while performing the cardiac procedure with gentle retraction. From our literature review and experience, we recommend that the posterior capsule should remain intact. If this is not possible, then the chest wall closure should be reinforced with either mesh, soft tissue, or both. Soft tissue options include the conversion from a subpectoral to a subglandular position to use the pectoralis major, or a latissimus dorsi muscle flap. With the increasing number of these cases along with the complexities of minimally invasive procedures, close communication and planning should be undertaken between both cardiothoracic and plastic surgeons when taking care of these patients. Above all, when faced with postoperative complications after MICS, the plastic surgeon must maintain a high index of clinical suspicion and consider the possibility of intrathoracic migration of an implant so that proper workup and planning may be initiated.

  5. Proliferation, migration and invasion of human glioma cells exposed to paclitaxel (Taxol) in vitro.

    PubMed Central

    Terzis, A. J.; Thorsen, F.; Heese, O.; Visted, T.; Bjerkvig, R.; Dahl, O.; Arnold, H.; Gundersen, G.

    1997-01-01

    Paclitaxel (Taxol), an anti-cancer drug derived from Taxus species, was tested for its anti-migrational, anti-invasive and anti-proliferative effect on two human glioma cell lines (GaMg and D-54Mg) grown as multicellular tumour spheroids. In addition, the direct effect of paclitaxel on glioma cells was studied using flow cytometry and scanning confocal microscopy. Both cell lines showed a dose-dependent growth and migratory response to paclitaxel. The GaMg cells were found to be 5-10 times more sensitive to paclitaxel than D-54Mg cells. Paclitaxel also proved to be remarkably effective in preventing invasion in a co-culture system in which tumour spheroids were confronted with fetal rat brain cell aggregates. Control experiments with Cremophor EL (the solvent of paclitaxel for clinical use) in this study showed no effect on tumour cell migration, cell proliferation or cell invasion. Scanning confocal microscopy of both cell lines showed an extensive random organization of the microtubules in the cytoplasm. After paclitaxel exposure, the GaMg and the D-54Mg cells exhibited a fragmentation of the nuclear material, indicating a possible induction of apoptosis. In line with this, flow cytometric DNA histograms showed an accumulation of cells in the G2/M phase of the cell cycle after 24 h of paclitaxel exposure. After 48 h, a deterioration of the DNA histograms was observed indicating nuclear fragmentation. Images Figure 3 Figure 6 PMID:9192976

  6. Repositioning "old" drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion.

    PubMed

    Shah, Esha T; Upadhyaya, Akanksha; Philp, Lisa K; Tang, Tiffany; Skalamera, Dubravka; Gunter, Jennifer; Nelson, Colleen C; Williams, Elizabeth D; Hollier, Brett G

    2016-04-01

    The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.

  7. LKB1 kinase-dependent and -independent defects disrupt polarity and adhesion signaling to drive collagen remodeling during invasion

    PubMed Central

    Konen, Jessica; Wilkinson, Scott; Lee, Byoungkoo; Fu, Haian; Zhou, Wei; Jiang, Yi; Marcus, Adam I.

    2016-01-01

    LKB1 is a serine/threonine kinase and a commonly mutated gene in lung adenocarcinoma. The majority of LKB1 mutations are truncations that disrupt its kinase activity and remove its C-terminal domain (CTD). Because LKB1 inactivation drives cancer metastasis in mice and leads to aberrant cell invasion in vitro, we sought to determine how compromised LKB1 function affects lung cancer cell polarity and invasion. Using three-dimensional models, we show that LKB1 kinase activity is essential for focal adhesion kinase–mediated cell adhesion and subsequent collagen remodeling but not cell polarity. Instead, cell polarity is overseen by the kinase-independent function of its CTD and more specifically its farnesylation. This occurs through a mesenchymal-amoeboid morphological switch that signals through the Rho-GTPase RhoA. These data suggest that a combination of kinase-dependent and -independent defects by LKB1 inactivation creates a uniquely invasive cell with aberrant polarity and adhesion signaling that drives invasion into the microenvironment. PMID:26864623

  8. Norstictic Acid Inhibits Breast Cancer Cell Proliferation, Migration, Invasion, and In Vivo Invasive Growth Through Targeting C-Met.

    PubMed

    Ebrahim, Hassan Y; Elsayed, Heba E; Mohyeldin, Mohamed M; Akl, Mohamed R; Bhattacharjee, Joydeep; Egbert, Susan; El Sayed, Khalid A

    2016-04-01

    Breast cancer is a major health problem affecting the female population worldwide. The triple-negative breast cancers (TNBCs) are characterized by malignant phenotypes, worse patient outcomes, poorest prognosis, and highest mortality rates. The proto-oncogenic receptor tyrosine kinase c-Met is usually dysregulated in TNBCs, contributing to their oncogenesis, tumor progression, and aggressive cellular invasiveness that is strongly linked to tumor metastasis. Therefore, c-Met is proposed as a promising candidate target for the control of TNBCs. Lichens-derived metabolites are characterized by their structural diversity, complexity, and novelty. The chemical space of lichen-derived metabolites has been extensively investigated, albeit their biological space is still not fully explored. The anticancer-guided fractionation of Usnea strigosa (Ach.) lichen extract led to the identification of the depsidone-derived norstictic acid as a novel bioactive hit against breast cancer cell lines. Norstictic acid significantly suppressed the TNBC MDA-MB-231 cell proliferation, migration, and invasion, with minimal toxicity to non-tumorigenic MCF-10A mammary epithelial cells. Molecular modeling, Z'-LYTE biochemical kinase assay and Western blot analysis identified c-Met as a potential macromolecular target. Norstictic acid treatment significantly suppressed MDA-MB-231/GFP tumor growth of a breast cancer xenograft model in athymic nude mice. Lichen-derived natural products are promising resources to discover novel c-Met inhibitors useful to control TNBCs. PMID:26744260

  9. Norstictic Acid Inhibits Breast Cancer Cell Proliferation, Migration, Invasion, and In Vivo Invasive Growth Through Targeting C-Met

    PubMed Central

    Ebrahim, Hassan Y.; Elsayed, Heba E.; Mohyeldin, Mohamed M.; Akl, Mohamed R.; Bhattacharjee, Joydeep; Egbert, Susan; El Sayed, Khalid A.

    2016-01-01

    Breast cancer is a major health problem affecting the female population worldwide. The triple-negative breast cancers (TNBCs) are characterized by malignant phenotypes, worse patient outcomes, poorest prognosis, and highest mortality rates. The proto-oncogenic receptor tyrosine kinase c-Met is usually dysregulated in TNBCs, contributing to their oncogenesis, tumor progression, and aggressive cellular invasiveness that is strongly linked to tumor metastasis. Therefore, c-Met is proposed as a promising candidate target for the control of TNBCs. Lichens-derived metabolites are characterized by their structural diversity, complexity, and novelty. The chemical space of lichen-derived metabolites has been extensively investigated, albeit their biological space is still not fully explored. The anticancer-guided fractionation of Usnea strigosa (Ach.) lichen extract led to the identification of the depsidone-derived norstictic acid as a novel bioactive hit against breast cancer cell lines. Norstictic acid significantly suppressed the TNBC MDA-MB-231 cell proliferation, migration, and invasion, with minimal toxicity to non-tumorigenic MCF-10A mammary epithelial cells. Molecular modeling, Z′-LYTE biochemical kinase assay and Western blot analysis identified c-Met as a potential macromolecular target. Norstictic acid treatment significantly suppressed MDA-MB-231/GFP tumor growth of a breast cancer xenograft model in athymic nude mice. Lichen-derived natural products are promising resources to discover novel c-Met inhibitors useful to control TNBCs. PMID:26744260

  10. β-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell.

    PubMed

    Ben Sghaier, Mohamed; Mousslim, Mohamed; Pagano, Alessandra; Ammari, Youssef; Luis, José; Kovacic, Hervé

    2016-09-01

    Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. In this study we examined the effect of β-eudesmol, a sesquiterpenoid alcohol isolated from Teucrium ramosissimum leaves, on proliferation, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. Proliferation of tumor cells was inhibited by β-eudesmol. It also significantly inhibited superoxide production in A549 cells. Furthermore, β-eudesmol inhibited adhesion and migration of A549 and HT29 cell. These results demonstrate that β-eudesmol may be a novel anticancer agent for the treatment of lung and colon cancer by different ways: by inhibition of superoxide production or by blocking proliferation, adhesion and migration.

  11. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner.

    PubMed

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  12. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 downregulation

    PubMed Central

    Jiang, Yuan; Gou, Hui; Zhu, Jiang; Tian, Si; Yu, Lehua

    2016-01-01

    It is well known that local anesthetics have a broad spectrum of pharmacological actions, acting as nerve blocks, and treating pain and cardiac arrhythmias via blocking of the sodium channel. The use of local anesthetics could reduce the possibility of cancer metastasis and recurrence following surgical tumor excision. The purpose of the present study was to investigate the inhibitory effect of lidocaine upon the invasion and migration of transient receptor potential cation channel subfamily V member 6 (TRPV6)-expressing cancer cells. Human breast cancer MDA-MB-231 cells, prostatic cancer PC-3 cells and ovarian cancer ES-2 cells were treated with lidocaine. Cell viability was quantitatively determined by MTT assay. The migration of the cells was evaluated using the wound healing assay, and the invasion of the cells was assessed using a Transwell assay. Calcium (Ca2+) measurements were performed using a Fluo-3 AM fluorescence kit. The expression of TRPV6 mRNA and protein in the cells was determined by quantitative-polymerase chain reaction and western blot analysis, respectively. The results suggested that lidocaine inhibits the cell invasion and migration of MDA-MB-231, PC-3 and ES-2 cells at lower than clinical concentrations. The inhibitory effect of lidocaine on TRPV6-expressing cancer cells was associated with a reduced rate of calcium influx, and could occur partly as a result of the downregulation of TRPV6 expression. The use of appropriate local anesthetics may confer potential benefits in clinical practice for the treatment of patients with TRPV6-expressing cancer. PMID:27446413

  13. c-Cbl regulates αPix-mediated cell migration and invasion

    SciTech Connect

    Seong, Min Woo; Park, Ji Ho; Yoo, Hee Min; Yang, Seung Wook; Oh, Kyu Hee; Ka, Seung Hyeun; Park, Dong Eun; Lee, Soon-Tae; Chung, Chin Ha

    2014-12-12

    Highlights: • c-Cbl ubiquitinates αPix for proteasome-mediated degradation. • C6 and A172 glioma cells lack c-Cbl, which leads to stabilization of αPix. • The accumulated αPix promotes migration and invasion of the cancer cells. • The lack of c-Cbl in the cells appears responsible for their malignant behavior. - Abstract: c-Cbl, a RING-type ubiquitin E3 ligase, down-regulates receptor tyrosine kinases, including EGF receptor, and inhibits cell proliferation. Moreover, c-Cbl mutations are frequently found in patients with myeloid neoplasm. Therefore, c-Cbl is known as a tumor suppressor. αPix is expressed only in highly proliferative and mobile cells, including immune cells, and up-regulated in certain invasive tumors, such as glioblastoma multiforme. Here, we showed that c-Cbl serves as an ubiquitin E3 ligase for proteasome-mediated degradation of αPix, but not βPix. Remarkably, the rat C6 and human A172 glioma cells were unable to express c-Cbl, which leads to a dramatic accumulation of αPix. Depletion of αPix by shRNA markedly reduced the ability of the glioma cells to migrate and invade, whereas complementation of shRNA-insensitive αPix promoted it. These results indicate that c-Cbl negatively regulates αPix-mediated cell migration and invasion and the lack of c-Cbl in the C6 and A172 glioma cells is responsible for their malignant behavior.

  14. MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK

    PubMed Central

    Cheng, Yidong; Zhang, Xiaolei; Li, Peng; Yang, Chengdi; Tang, Jinyuan; Deng, Xiaheng; Yang, Xiao; Tao, Jun; Lu, Qiang; Li, Pengchao

    2016-01-01

    Background Increasing evidence suggests that the dysregulation of certain microRNAs plays an important role in tumorigenesis and metastasis. MiR-200c exhibits a disordered expression in many tumors and presents dual roles in bladder cancer (BC). Therefore, the definite role of miR-200c in BC needs to be investigated further. Materials and methods Quantitative reverse transcription polymerase chain reaction was used to assess miR-200c expression. Cell invasion and migration were evaluated using wound healing and transwell assays. The luciferase reporter assay was used to identify the direct target of miR-200c. The expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK) in BC tissues and adjacent nontumor tissues, as well as in BC cell lines, was detected through quantitative reverse transcription polymerase chain reaction, Western blot assay, and immunohistochemistry. Results The miR-200c expression was significantly upregulated in the BC tissues compared with the adjacent nontumor tissues. The downregulation of miR-200c significantly inhibited cell migration and invasion in the BC cell lines. The luciferase reporter assay showed that RECK was a direct target of miR-200c. The knockdown of RECK in the BC cell lines treated with anti-miR-200c elevated the previously attenuated cell migration and invasion. Conclusion Our findings indicated that miR-200c functions as oncogenes in BC and may provide a novel therapeutic strategy for the treatment of BC. PMID:27574450

  15. Regulation of the actin cytoskeleton in cancer cell migration and invasion

    PubMed Central

    Yamaguchi, Hideki; Condeelis, John

    2014-01-01

    Malignant cancer cells utilize their intrinsic migratory ability to invade adjacent tissues and the vasculature, and ultimately to metastasize. Cell migration is the sum of multi-step processes initiated by the formation of membrane protrusions in response to migratory and chemotactic stimuli. The driving force for membrane protrusion is localized polymerization of submembrane actin filaments. Recently, several studies revealed that molecules that link migratory signals to the actin cytoskeleton are upregulated in invasive and metastatic cancer cells. In this review, we summarize recent progress on molecular mechanisms of formation of invasive protrusions used by tumor cells, such as lamellipodia and invadopodia, with regard to the functions of key regulatory proteins of the actin cytoskeleton; WASP family proteins, Arp2/3 complex, LIM-kinase, cofilin, and cortactin. PMID:16926057

  16. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    PubMed Central

    Carmona, Guillaume; Perera, Upamali; Gillett, Cheryl; Naba, Alexandra; Law, Ah-Lai; Sharma, Ved P.; Wang, Jian; Wyckoff, Jeffrey; Balsamo, Michele; Mosis, Fuad; De Piano, Mario; Monypenny, James; Woodman, Natalie; McConnell, Russell E.; Mouneimne, Ghassan; Van Hemelrijck, Mieke; Cao, Yihai; Condeelis, John; Hynes, Richard O.; Gertler, Frank B.; Krause, Matthias

    2016-01-01

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlates with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation, and matrix degradation were impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not Ena/VASP is required for random 2D cell migration. We identify a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, while Src-dependent phosphorylation enhances binding to Scar/WAVE but not Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of EGF gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis. PMID:26996666

  17. Fe65 Suppresses Breast Cancer Cell Migration and Invasion through Tip60 Mediated Cortactin Acetylation

    PubMed Central

    Sun, Yuefeng; Sun, Jianwei; Lungchukiet, Panida; Quarni, Waise; Yang, Shengyu; Zhang, Xiaohong; Bai, Wenlong

    2015-01-01

    Fe65 is a brain-enriched adaptor protein known for its role in the action of the Aβ amyloid precursor protein in neuronal cells and Alzheimer’s disease, but little is known about its functions in cancer cells. The present study documents for the first time a role of Fe65 in suppressing breast cancer cell migration and invasion. Mechanistic studies suggest that the suppression is mediated through its phosphotyrosine binding domain 1 that mediates the recruitment of Tip60 to cortactin to stimulate its acetylation. The studies identify the Tip60 acetyltransferase as a cytoplasmic drug target for the therapeutic intervention of metastatic breast cancers. PMID:26166158

  18. Experimental study to control the upstream migration of invasive alien fish species by submerged weir

    NASA Astrophysics Data System (ADS)

    Sakuma, Masami; Kunimatsu, Fumihiro; Tsuchiya, Taku; Kawamura, Makiko; Fujita, Hiroshi

    Largemouth bass and Bluegill, major invasive alien fish species in Japan, have been extending their habitat ranges over not only Lake Biwa and the lagoons but also surrounding waters connected to them through small rivers and canals. Their increasing number is bringing about the reduction in the number of native fish species. To prevent the spread of these alien species through small rivers and canals during breeding season of the native fish (crucian carp), this study experimentally examined the effect of a submerged weir on controlling upstream migration of the alien species and the native fish. As a result of the experiment, the ratio of the alien species migrating upstream decreased as the weir height rose, whereas the ratio did not show the same trend in the case of the native fish. The ratio of the alien species also decreased as the overflow velocity over the weir rose. On the other hand, the ratio of the native fish increased as the overflow velocity rose up to 1.0m/s and decreased thereafter. These results suggest that the submerged weir may control upstream migration of the alien species to surrounding waters through small rivers and canals without interfering with the reproductive migration of the native fish.

  19. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells.

    PubMed

    van Alphen, Lieke B; Bleumink-Pluym, Nancy M C; Rochat, Klazina D; van Balkom, Bas W M; Wösten, Marc M S M; van Putten, Jos P M

    2008-01-01

    The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency. PMID:18052944

  20. Mycophenolic Acid Inhibits Migration and Invasion of Gastric Cancer Cells via Multiple Molecular Pathways

    PubMed Central

    Dun, Boying; Sharma, Ashok; Teng, Yong; Liu, Haitao; Purohit, Sharad; Xu, Heng; Zeng, Lingwen; She, Jin-Xiong

    2013-01-01

    Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA’s antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA’s overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment. PMID:24260584

  1. Effects of the ninein-like protein centrosomal protein on breast cancer cell invasion and migration.

    PubMed

    Liu, Qi; Wang, Xinzhao; Lv, Minlin; Mu, Dianbin; Wang, Leilei; Zuo, Wensu; Yu, Zhiyong

    2015-08-01

    To investigate the effects of the centrosomal protein, ninein-like protein (Nlp), on the proliferation, invasion and metastasis of MCF-7 breast cancer cells, the present study established green fluorescent protein (GFP)-containing MCF7 plasmids with steady and overexpression of Nlp (MCG7-GFP-N1p) and blank plasmids (MCF7-GFP) using lentiviral transfection technology in MCF7 the breast cancer cell line. The expression of Nlp was determined by reverse transcription-quantitative polymerase chain reaction and western blott analysis. Differences in levels of proliferation, invasion and metastasis between the MCF7-GFP-Nlp group and MCF-GFP group were compared using MTT, plate colony formation and Transwell migration assays. The cell growth was more rapid and the colony forming rate was markedly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The number of cells in the MCF-GFP-Nlp and MCF7-GFP groups transferred across membranes were 878 ± 18.22 and 398 ± 8.02, respectively, in the migration assay. The invasive capacity was significantly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The western blotting results demonstrated high expression levels of C-X-C chemokine receptor type 4 in the MCF7-GFP-Nlp group. The increased expression of Nlp was associated with an increase in MCF7 cell proliferation, invasion and metastasis, which indicated that Nlp promoted breast tumorigenesis and may be used as a potent biological index to predict breast cancer metastasis and develop therapeutic regimes.

  2. The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells

    PubMed Central

    2014-01-01

    Background Retinoblastoma (Rb) is the most common intraocular tumor in childhood worldwide. It is a deadly pediatric eye cancer. The main cause of death in Rb patients is intracranial and systemic metastasis. ROCK is the main downstream effector of Ras-homologous (Rho) family of GTPases which are involved in many cellular functions, such as cell proliferation, invasion and metastasis. Overexpression of ROCK promotes invasion and metastasis of many solid tumors. However, the effect of ROCK in Rb is largely unknown. Methods ROCK-1 and ROCK-2 mRNA expression in Y79 cell lines were examined by RT-PCR. Protein expression in the Y79 cell line were examined by western blot analyses. ROCK-1 and ROCK-2 siRNA were transfected into Y79 cells with Lipofectamine 2000. Cell proliferation was evaluated by CCK-8 assay after exposure to ROCK inhibitor (Y-27632). We examined the effect of ROCK inhibitors (Y-27632, ROCK-1 and ROCK-2 siRNA) on Y79 cell adhesive capacity by cell adhesion assay. Cell invasion assay through matrigel was used to study the effect of ROCK inhibitors on Y79 cell invasive capacity. Results The expression of mRNA of ROCK-1 was more than that of ROCK-2 in the Y79 cell line. The protein expression levels of ROCK-1 and ROCK-2 were downregulated in the cells transfected with siRNA. Y-27632 treatment didn’t lead to any changes of Y79 cells proliferation. Adhesive ability of Y79 cells was enhanced following Y-27632 or ROCK-1 siRNA treatment. The invasive capacity of Y79 cells showed an inverse relationship with increasing Y-27632 concentration. Invasiveness of Y79 cells also decreased in Y79 cells transfected with ROCK-1 siRNA. However, there was no change in adhesive ability or invasive capacity in Y79 cells transfected with siRNA against ROCK-2. Conclusions The findings of this study demonstrate that ROCK-1 protein plays a key role in regulating metastasis and invasion of Y79 cells, suggesting that the ROCK-1 dependent pathway may be a potential target for

  3. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  4. FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

    PubMed

    Shi, Qiong; Song, Xu; Wang, Jun; Gu, Jia; Zhang, Weijian; Hu, Jinxia; Zhou, Xiuping; Yu, Rutong

    2015-01-01

    Fyn-related kinase (FRK), a member of Src-related tyrosine kinases, is recently reported to function as a potent tumor suppressor in several cancer types. Our previous study has also shown that FRK over-expression inhibited the migration and invasion of glioma cells. However, the mechanism of FRK effect on glioma cell migration and invasion, a feature of human malignant gliomas, is still not clear. In this study, we found that FRK over-expression increased the protein level of N-cadherin, but not E-cadherin. Meanwhile, FRK over-expression promoted β-catenin translocation to the plasma membrane, where it formed complex with N-cadherin, while decreased β-catenin level in the nuclear fraction. In addition, down-regulation of N-cadherin by siRNA promoted the migration and invasion of glioma U251 and U87 cells and abolished the inhibitory effect of FRK on glioma cell migration and invasion. In summary, these results indicate that FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

  5. Gypenosides inhibits migration and invasion of human oral cancer SAS cells through the inhibition of matrix metalloproteinase-2 -9 and urokinase-plasminogen by ERK1/2 and NF-kappa B signaling pathways.

    PubMed

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Lu, Pei-Jung; Weng, Jing-Ru; Chueh, Fu-Shin; Wood, W Gibson; Chung, Jing-Gung

    2011-05-01

    Gypenosides (Gyp), found in Gynostemma pentaphyllum Makino, has been used as a folk medicine in the Chinese population for centuries and is known to have diverse pharmacologic effects, including anti-proliferative and anti-cancer actions. However, the effects of Gyp on prevention from invasion and migration of oral cancer cells are still unsatisfactory. The purpose of this study was to investigate effects of Gyp treatment on migration and invasion of SAS human oral cancer cells. SAS cells were cultured in the presence of 90 and 180 μg/mL Gyp for 24 and 48 hours. Gyp induced cytotoxic effects and inhibited SAS cells migration and invasion in dose- and time-dependent response. Wound-healing assay and boyden chamber assay were carried out to investigate Gyp-inhibited migration and invasion of SAS cells. Gyp decreased the abundance of several proteins, including nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/ 2), matrix metalloproteinase-9, -2 (MMP-9, -2), sevenless homolog (SOS), Ras, urokinase-type plasminogen activator (uPA), focal adhesion kinase (FAK) and RAC-alpha serine/threonine-protein kinase (Akt), in a time-dependent manner. In addition, Gyp decreased mRNA levels of MMP-2, MMP-7, MMP-9 but did not affect FAK and Rho A mRNA levels in SAS cells. These results provide evidences for the role of Gyp as a potent anti-metastatic agent, which can markedly inhibit the metastatic and invasive capacity of oral cancer cells. The inhibition of NF-κB and MMP-2, -7 and -9 signaling may be one of the mechanisms that is present in Gyp-inhibited cancer cell invasion and migration.

  6. Microcystin-LR promotes migration and invasion of colorectal cancer through matrix metalloproteinase-13 up-regulation.

    PubMed

    Miao, Chen; Ren, Yan; Chen, Meng; Wang, Zhen; Wang, Ting

    2016-05-01

    Microcystin-LR (MC-LR) is an environmental toxin from blooms of cyanobacteria and it has been shown to be one of the environmental carcinogens for the progression of colorectal carcinoma. However, there is no direct evidence that MC-LR can induce colorectal cancer migration and invasion. In the present study, 0.04 or 40 µg/kg/d (human tolerable daily intake value of MC-LR) MC-LR treatment was observed to induce Matrix Metalloproteinase-13 (MMP-13) expression in tumor tissues and local invasion in DLD-1 xenograft model. The results are consistent with those of cell test showing that MC-LR treatment enhanced migration and invasion of DLD-1, HT-29, and SW480 cells and are also correlated with the increased mRNA and protein levels of MMP-13 by Quantitative real-time PCR, Luciferase assay, and Western blot assay respectively in DLD-1 cells and HT-29 cells after MC-LR exposure. In addition, MMP-13 siRNA inhibited MC-LR induced migration and invasion enhancement and MMP-13 over-expression in DLD-1 cells and HT-29 cells. This is the first paper confirming MC-LR-induced MMP-13 expression can promote colorectal cancer invasion and migration. Further investigation revealed that phosphorylation of AKT increased in MC-LR-treated cells, and the phosphatidylinositol 3-kinase/Akt. (PI3-K/AKT) inhibitor LY294002 effectively abolished MC-LR-enhanced migration and invasion and MMP-13 expression. Therefore, based on these observations, we concluded that the activation of PI3K/AKT by MC-LR results in MMP-13 expression, leading to the migration and invasion of DLD-1 cells and HT-29 cells. The study provides a mechanistic insight into the promoting colorectal cancer functions of MC-LR.

  7. Quercetin suppresses cellular migration and invasion in human head and neck squamous cell carcinoma (HNSCC).

    PubMed

    Chan, Chien-Yi; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2016-06-01

    Head and neck squamous cell carcinoma (HNSCC) with aberrant epidermal growth factor receptor (EGFR) signaling is often associated with a poor prognosis and a low survival rate. Hence, efficient inhibition of the EGFR signaling-mediated malignancy would improve survival rate. In a previous study, we demonstrated that quercetin appears to be a potent anti-tumorigenic agent through its inhibition of the EGFR/Akt pathway in oral cancer, but its anti-metastatic potential in HNSCC remains unclear [1]. Here, we have hypothesized that quercetin might be effective in metastatic inhibition in EGFR-overexpressing HNSCC cells. Quercetin treatment with 10 μM (half concentration of IC50) suppressed cell migration and invasion in EGFR-overexpressing HSC-3 and FaDu HNSCC cells. Quercetin also inhibited the colony growth of HSC-3 cells embedded in a Matrigel matrix. Among matrix metalloproteinases (MMPs), the secreted gelatinases MMP-2 and MMP-9 are responsible for the degradation of gelatin in the extracellular matrix and type IV collagen in the basement membrane; and this degradation event is crucial for the migration from the origin and the invasion into the bone in HNSCC. Quercetin (10 μM) treatment also suppressed the expression and proteolytic activity of MMP-2 and MMP-9. Taken together, our data indicate that quercetin is an effective anti-cancer agent against MMP-2- and MMP-9-mediated metastasis in EGFR-overexpressing HNSCC. PMID:27510965

  8. MMP14 regulates cell migration and invasion through epithelial-mesenchymal transition in nasopharyngeal carcinoma

    PubMed Central

    Yan, Tinghua; Lin, Zhonghao; Jiang, Jinhua; Lu, Suiwan; Chen, Miaoan; Que, Huaxing; He, Xiangsheng; Que, Ganbo; Mao, Jianfeng; Xiao, Jinan; Zheng, Qingwei

    2015-01-01

    Matrix metalloproteinase 14 (MMP14) has been shown to play a significant role in several types of cancers, but little is known about the function of MMP14 in nasopharyngeal carcinoma (NPC) carcinogenesis. The aim of this study was to investigate the role of MMP14 in NPC using NPC tumor samples or tissue microarray. We have shown that MMP14 was increased in NPC samples compared with normal nasopharynx (NP) tissues in microarray data (GSE13597). Both MMP14 mRNA and protein expression were markedly higher in NPC tissues than in NP tissues. High levels of MMP14 protein were found positively correlate with the status of late clinical stages of tumor and tumor with lymph node metastasis. Moreover, we have shown that MMP14 expression promoted the cell migration and invasion of NPC cells in vitro and regulated the expression of EMT-associated genes. Our data demonstrated that MMP14 plays an important role in regulation of migration and invasion of NPC cells, and constitutes a potential novel therapeutic target for NPC. PMID:26175856

  9. Benzyl isothiocyanate inhibits HNSCC cell migration and invasion, and sensitizes HNSCC cells to cisplatin.

    PubMed

    Wolf, M Allison; Claudio, Pier Paolo

    2014-01-01

    Metastasis and chemoresistance represent two detrimental events that greatly hinder the outcome for those suffering with head and neck squamous cell carcinoma (HNSCC). Herein, we investigated benzyl isothiocyanate's (BITC) ability to inhibit HNSCC migration and invasion and enhance chemotherapy. Our data suggests that treatment with BITC 1) induced significant reductions in the viability of multiple HNSCC cell lines tested (HN12, HN8, and HN30) after 24 and 48 h, 2) decreased migration and invasion of the HN12 cells in a dose dependent manner, and 3) inhibited expression and altered localization of the epithelial-mesenchymal transition (EMT) marker, vimentin. We also observed that a pretreatment of BITC followed by cisplatin treatment 1) induced a greater decrease in HN12, HN30, and HN8 cell viability and total cell count than either treatment alone and 2) significantly increased apoptosis when compared to either treatment alone. Taken together these data suggest that BITC has the capacity to inhibit processes involved in metastasis and enhance the effectiveness of chemotherapy. Consequently, the results indicate that further investigation, including in vivo studies, are warranted.

  10. Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors

    PubMed Central

    Bijnsdorp, I V; Capriotti, F; Kruyt, F A E; Losekoot, N; Fukushima, M; Griffioen, A W; Thijssen, V L; Peters, G J

    2011-01-01

    Background: Thymidine phosphorylase (TP) is often overexpressed in tumours and has a role in tumour aggressiveness and angiogenesis. Here, we determined whether TP increased tumour invasion and whether TP-expressing cancer cells stimulated angiogenesis. Methods: Angiogenesis was studied by exposing endothelial cells (HUVECs) to conditioned medium (CM) derived from cancer cells with high (Colo320TP1=CT-CM, RT112/TP=RT-CM) and no TP expression after which migration (wound-healing-assay) and invasion (transwell-assay) were determined. The involvement of several angiogenic factors were examined by RT–PCR, ELISA and blocking antibodies. Results: Tumour invasion was not dependent on intrinsic TP expression. The CT-CM and RT-CM stimulated HUVEC-migration and invasion by about 15 and 40%, respectively. Inhibition by 10 μ TPI and 100 μ L-dR, blocked migration and reduced the invasion by 50–70%. Thymidine phosphorylase activity in HUVECs was increased by CT-CM. Reverse transcription-polymerase chain reaction revealed a higher mRNA expression of bFGF (Colo320TP1), IL-8 (RT112/TP) and TNF-α, but not VEGF. Blocking antibodies targeting these factors decreased the migration and invasion that was induced by the CT-CM and RT-CM, except for IL-8 in CT-CM and bFGF in RT-CM. Conclusion: In our cell line panels, TP did not increase the tumour invasion, but stimulated the migration and invasion of HUVECs by two different mechanisms. Hence, TP targeting seems to provide a potential additional strategy in the field of anti-angiogenic therapy. PMID:21386840

  11. Phosphorylation of the alternative mRNA splicing factor 45 (SPF45) by Clk1 regulates its splice site utilization, cell migration and invasion

    PubMed Central

    Liu, Yuying; Conaway, LaShardai; Rutherford Bethard, Jennifer; Al-Ayoubi, Adnan M.; Thompson Bradley, Amber; Zheng, Hui; Weed, Scott A.; Eblen, Scott T.

    2013-01-01

    Alternative mRNA splicing is a mechanism to regulate protein isoform expression and is regulated by alternative splicing factors. The alternative splicing factor 45 (SPF45) is overexpressed in cancer, although few biological effects of SPF45 are known, and few splicing targets have been identified. We previously showed that Extracellular Regulated Kinase 2 (ERK2) phosphorylation of SPF45 regulates cell proliferation and adhesion to fibronectin. In this work, we show that Cdc2-like kinase 1 (Clk1) phosphorylates SPF45 on eight serine residues. Clk1 expression enhanced, whereas Clk1 inhibition reduced, SPF45-induced exon 6 exclusion from Fas mRNA. Mutational analysis of the Clk1 phosphorylation sites on SPF45 showed both positive and negative regulation of splicing, with a net effect of inhibiting SPF45-induced exon 6 exclusion, correlating with reduced Fas mRNA binding. However, Clk1 enhanced SPF45 protein expression, but not mRNA expression, whereas inhibition of Clk1 increased SPF45 degradation through a proteasome-dependent pathway. Overexpression of SPF45 or a phospho-mimetic mutant, but not a phospho-inhibitory mutant, stimulated ovarian cancer cell migration and invasion, correlating with increased fibronectin expression, ERK activation and enhanced splicing and phosphorylation of full-length cortactin. Our results demonstrate for the first time that SPF45 overexpression enhances cell migration and invasion, dependent on biochemical regulation by Clk1. PMID:23519612

  12. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival.

    PubMed

    Shor, Audrey C; Keschman, Elizabeth A; Lee, Francis Y; Muro-Cacho, Carlos; Letson, G Douglas; Trent, Jonathan C; Pledger, W Jack; Jove, Richard

    2007-03-15

    Sarcomas are rare malignant mesenchymal tumors for which there are limited treatment options. One potential molecular target for sarcoma treatment is the Src tyrosine kinase. Dasatinib (BMS-354825), a small-molecule inhibitor of Src kinase activity, is a promising cancer therapeutic agent with p.o. bioavailability. Dasatinib exhibits antitumor effects in cultured human cell lines derived from epithelial tumors, including prostate and lung carcinomas. However, the action of dasatinib in mesenchymally derived tumors has yet to be shown. Based on our previous findings of Src activation in human sarcomas, we evaluated the effects of dasatinib in 12 cultured human sarcoma cell lines derived from bone and soft tissue sarcomas. Dasatinib inhibited Src kinase activity at nanomolar concentrations in these sarcoma cell lines. Downstream components of Src signaling, including focal adhesion kinase and Crk-associated substrate (p130(CAS)), were also inhibited at similar concentrations. This inhibition of Src signaling was accompanied by blockade of cell migration and invasion. Moreover, apoptosis was induced in the osteosarcoma and Ewing's subset of bone sarcomas at nanomolar concentrations of dasatinib. Inhibition of Src protein expression by small interfering RNA also induced apoptosis, indicating that these bone sarcoma cell lines are dependent on Src activity for survival. These results show that dasatinib inhibits migration and invasion of diverse sarcoma cell types and selectively blocks the survival of bone sarcoma cells. Therefore, dasatinib may provide therapeutic benefit by preventing the growth and metastasis of sarcomas in patients.

  13. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion

    PubMed Central

    Hoskin, Victoria; Szeto, Alvin; Ghaffari, Abdi; Greer, Peter A.; Côté, Graham P.; Elliott, Bruce E.

    2015-01-01

    Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis. PMID:26246600

  14. miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin.

    PubMed

    Cao, Ke; Li, Jingjing; Zhao, Yong; Wang, Qi; Zeng, Qinghai; He, Siqi; Yu, Li; Zhou, Jianda; Cao, Peiguo

    2016-02-01

    miR-101 is considered to play an important role in hepato-cellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while down-regulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.

  15. miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin

    PubMed Central

    Cao, Ke; Li, Jingjing; Zhao, Yong; Wang, Qi; Zeng, Qinghai; He, Siqi; Yu, Li; Zhou, Jianda; Cao, Peiguo

    2016-01-01

    miR-101 is considered to play an important role in hepato-cellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while down-regulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment. PMID:26743900

  16. Alpinia katsumadai Extracts Inhibit Adhesion and Invasion of Campylobacter jejuni in Animal and Human Foetal Small Intestine Cell Lines.

    PubMed

    Pogačar, Maja Šikić; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Možina, Sonja Smole

    2015-10-01

    Alpinia katsumadai is used in traditional Chinese medicine for abdominal distention, pain, and diarrhoea. Campylobacter jejuni is the most common cause of bacterial food-borne diarrhoeal illnesses worldwide. Adhesion to gut epithelium is a prerequisite in its pathogenesis. The antimicrobial, cytotoxic, and anti-adhesive activities of a chemically characterised extract (SEE) and its residual material of hydrodistillation (hdSEE-R) from A. katsumadai seeds were evaluated against C. jejuni. Minimal inhibitory concentrations for SEE and hdSEE-R were 0.5 mg/mL and 0.25 mg/mL, respectively, and there was no cytotoxic influence in the anti-adhesion tests, as these were performed at much lower concentrations of these tested plant extracts. Adhesion of C. jejuni to pig (PSI) and human foetal (H4) small-intestine cell lines was significantly decreased at lower concentrations (0.2 to 50 µg/mL). In the same concentration range, the invasiveness of C. jejuni in PSI cells was reduced by 45% to 65% when they were treated with SEE or hdSEE-R. The hdSEE-R represents a bioactive waste with a high phenolic content and an anti-adhesive activity against C. jejuni and thus has the potential for use in pharmaceutical and food products. PMID:26058384

  17. Alpinia katsumadai Extracts Inhibit Adhesion and Invasion of Campylobacter jejuni in Animal and Human Foetal Small Intestine Cell Lines.

    PubMed

    Pogačar, Maja Šikić; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Možina, Sonja Smole

    2015-10-01

    Alpinia katsumadai is used in traditional Chinese medicine for abdominal distention, pain, and diarrhoea. Campylobacter jejuni is the most common cause of bacterial food-borne diarrhoeal illnesses worldwide. Adhesion to gut epithelium is a prerequisite in its pathogenesis. The antimicrobial, cytotoxic, and anti-adhesive activities of a chemically characterised extract (SEE) and its residual material of hydrodistillation (hdSEE-R) from A. katsumadai seeds were evaluated against C. jejuni. Minimal inhibitory concentrations for SEE and hdSEE-R were 0.5 mg/mL and 0.25 mg/mL, respectively, and there was no cytotoxic influence in the anti-adhesion tests, as these were performed at much lower concentrations of these tested plant extracts. Adhesion of C. jejuni to pig (PSI) and human foetal (H4) small-intestine cell lines was significantly decreased at lower concentrations (0.2 to 50 µg/mL). In the same concentration range, the invasiveness of C. jejuni in PSI cells was reduced by 45% to 65% when they were treated with SEE or hdSEE-R. The hdSEE-R represents a bioactive waste with a high phenolic content and an anti-adhesive activity against C. jejuni and thus has the potential for use in pharmaceutical and food products.

  18. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion.

    PubMed

    Jaaks, Patricia; D'Alessandro, Valentina; Grob, Nicole; Büel, Sina; Hajdin, Katarina; Schäfer, Beat W; Bernasconi, Michele

    2016-01-01

    The proprotein convertase (PC) furin cleaves precursor proteins, an important step in the activation of many cancer-associated proteins. Substrates of furin and furin-like PCs play a role in proliferation, metastasis and invasion. Some of them are involved in the progression of the pediatric soft tissue sarcoma rhabdomyosarcoma (RMS). In this study, we show that PCs, and in particular furin, are expressed in RMS cell lines. To investigate the functional role of furin, we generated RMS cell lines with modulated furin activity. Silencing or stable inhibition of furin delayed tumor growth in Rh30 and RD xenografts in vivo, and was correlated with lower microvessel density. Reduced furin activity also decreased migration and invasion abilities in vitro, and inhibition of furin in RMS cells diminished processing of IGF1R, VEGF-C, PDGF-B and MT1-MMP, leading to lower levels of mature proteins. Furthermore, we found that furin activity is required for proper IGF signaling in RMS cells, as furin silencing resulted in reduced phosphorylation of Akt upon IGF1 stimulation. Taken together, our results suggest that furin plays an important role in the malignant phenotype of RMS cells by activating proteins involved in tumor growth and vascularization, metastasis and invasion. PMID:27548722

  19. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion

    PubMed Central

    Jaaks, Patricia; D’Alessandro, Valentina; Grob, Nicole; Büel, Sina; Hajdin, Katarina; Schäfer, Beat W.; Bernasconi, Michele

    2016-01-01

    The proprotein convertase (PC) furin cleaves precursor proteins, an important step in the activation of many cancer-associated proteins. Substrates of furin and furin-like PCs play a role in proliferation, metastasis and invasion. Some of them are involved in the progression of the pediatric soft tissue sarcoma rhabdomyosarcoma (RMS). In this study, we show that PCs, and in particular furin, are expressed in RMS cell lines. To investigate the functional role of furin, we generated RMS cell lines with modulated furin activity. Silencing or stable inhibition of furin delayed tumor growth in Rh30 and RD xenografts in vivo, and was correlated with lower microvessel density. Reduced furin activity also decreased migration and invasion abilities in vitro, and inhibition of furin in RMS cells diminished processing of IGF1R, VEGF-C, PDGF-B and MT1-MMP, leading to lower levels of mature proteins. Furthermore, we found that furin activity is required for proper IGF signaling in RMS cells, as furin silencing resulted in reduced phosphorylation of Akt upon IGF1 stimulation. Taken together, our results suggest that furin plays an important role in the malignant phenotype of RMS cells by activating proteins involved in tumor growth and vascularization, metastasis and invasion. PMID:27548722

  20. Disruption of the novel gene fad104 causes rapid postnatal death and attenuation of cell proliferation, adhesion, spreading and migration

    SciTech Connect

    Nishizuka, Makoto; Kishimoto, Keishi; Kato, Ayumi; Ikawa, Masahito; Okabe, Masaru; Sato, Ryuichiro; Niida, Hiroyuki; Nakanishi, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-03-10

    The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration.

  1. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    SciTech Connect

    Young, Nicholas; Van Brocklyn, James R. . E-mail: james.vanbrocklyn@osumc.edu

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.

  2. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  3. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells.

    PubMed

    Sun, Haiji; Ma, Xiaoli

    2015-09-01

    Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.

  4. The effect of {gamma}-tocopherol on proliferation, integrin expression, adhesion, and migration of human glioma cells

    SciTech Connect

    Samandari, Elika; Visarius, Theresa; Zingg, Jean-Marc; Azzi, Angelo . E-mail: angelo.azzi@tufts.edu

    2006-04-21

    The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. {gamma}-tocopherol at 50 {mu}M concentration exerted more inhibitory effect than {alpha}-tocopherol at the same concentration on glioma cell proliferation. Integrin {alpha}5 and {beta}1 protein levels were increased upon both {alpha}- and {gamma}-tocopherol treatments. In parallel, an increase in the {alpha}5{beta}1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where {gamma}-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin {alpha}5 and {beta}1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the {alpha}5{beta}1 heterodimer. Cell migration is stimulated by {gamma}-tocopherol. It is concluded that {alpha}5 and {beta}1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.

  5. Problems in biology with many scales of length: Cell-cell adhesion and cell jamming in collective cellular migration.

    PubMed

    Pegoraro, Adrian F; Fredberg, Jeffrey J; Park, Jin-Ah

    2016-04-10

    As do all things in biology, cell mechanosensation, adhesion and migration begin at the scale of the molecule. Collections of molecules assemble to comprise microscale objects such as adhesions, organelles and cells. And collections of cells in turn assemble to comprise macroscale tissues. From the points of view of mechanism and causality, events at the molecular scale are seen most often as being the most upstream and, therefore, the most fundamental and the most important. In certain collective systems, by contrast, events at many scales of length conspire to make contributions of equal importance, and even interact directly and strongly across disparate scales. Here we highlight recent examples in cellular mechanosensing and collective cellular migration where physics at some scale bigger than the cell but smaller than the tissue - the mesoscale - becomes the missing link that is required to tie together findings that might otherwise seem counterintuitive or even unpredictable. These examples, taken together, establish that the phenotypes and the underlying physics of collective cellular migration are far richer than previously anticipated. PMID:26546401

  6. Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth

    PubMed Central

    Lai, Kuang-Chi; Hsu, Shu-Chun; Yang, Jai-Sing; Yu, Chien-Chih; Lein, Jin-Cherng; Chung, Jing-Gung

    2015-01-01

    Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis-dependent diseases including cancer. We examined the cytotoxic, anti-metastatic, anti-cancer and anti-angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases-2, -7 and -9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary-like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex-vivo angiogenesis. We investigated the anti-tumour effects of DATS against human colon cancer xenografts in BALB/cnu/nu mice and its anti-angiogenic activity in vivo. In this in-vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS. PMID:25403643

  7. Novel Suppressive Effects of Ketotifen on Migration and Invasion of MDA-MB-231 and HT-1080 Cancer Cells

    PubMed Central

    Kim, Hyun Ji; Park, Mi Kyung; Kim, Soo Youl; Lee, Chang Hoon

    2014-01-01

    The high mortality rates associated with cancer reflect the metastatic spread of tumor cells from the site of their origin. Metastasis, in fact, is the cause of 90% of cancer deaths. Therefore, considerable effort is being made to inhibit metastasis. In the present study, we screened ketotifen for anti-migratory and anti-invasive activities against MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer cells. Cancer cell migration and invasion were measured using multi-well chambers. Additionally, western blots were used to examine the effects of ketotifen on the expressions of CDC42, Rho, Rac, and matrix metalloproteinase 9 (MMP-9). The results showed that ketotifen dose-dependently suppressed the migration and invasion of MDA-MB-231 and HT-1080 cells. Ketotifen also suppressed the expressions of CDC42, Rac, and Rho, which, significantly, are involved in MDA-MB-231 and HT-1080 cancer cell migration. Moreover, ketotifen suppressed the expression and activity of MMP-9, which is involved in degradation of the extracellular matrix leading to invasion. The overall data suggested that ketotifen suppresses the migration and invasion of MDA-MB-231 and HT-1080 cancer cells via inhibition of CDC42, Rac, Rho, and MMP-9 expression. PMID:25489422

  8. RTVP-1 regulates glioma cell migration and invasion via interaction with N-WASP and hnRNPK

    PubMed Central

    Ziv-Av, Amotz; Giladi, Nissim David; Lee, Hae Kyung; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Pauker, Maor H.; Barda-Saad, Mira; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM) are characterized by increased invasion into the surrounding normal brain tissue. RTVP-1 is highly expressed in GBM and regulates the migration and invasion of glioma cells. To further study RTVP-1 effects we performed a pull-down assay using His-tagged RTVP-1 followed by mass spectrometry and found that RTVP-1 was associated with the actin polymerization regulator, N-WASP. This association was further validated by co-immunoprecipitation and FRET analysis. We found that RTVP-1 increased cell spreading, migration and invasion and these effects were at least partly mediated by N-WASP. Another protein which was found by the pull-down assay to interact with RTVP-1 is hnRNPK. This protein has been recently reported to associate with and to inhibit the effect of N-WASP on cell spreading. hnRNPK decreased cell migration, spreading and invasion in glioma cells. Using co-immunoprecipitation we validated the interactions of hnRNPK with N-WASP and RTVP-1 in glioma cells. In addition, we found that overexpression of RTVP-1 decreased the association of N-WASP and hnRNPK. In summary, we report that RTVP-1 regulates glioma cell spreading, migration and invasion and that these effects are mediated via interaction with N-WASP and by interfering with the inhibitory effect of hnRNPK on the function of this protein. PMID:26305187

  9. miR-940 Suppresses Tumor Cell Invasion and Migration via Regulation of CXCR2 in Hepatocellular Carcinoma

    PubMed Central

    Ding, Dong; Zhang, Yaodong; Yang, Renjie; Wang, Xing; Ji, Guwei; Huo, Liqun; Shao, Zicheng

    2016-01-01

    Aim. To investigate the expression of miR-940 in the hepatocellular carcinoma (HCC) and its impact on function and biological mechanism in the HCC cells. Methods. Quantitative RT-PCR analysis was used to quantify miR-940 expression in 46 cases of tissues and cells. Transfection of HCC cell lines was performed by miR-940 mimics; the abilities of invasion and migration were assessed through Transwell array. Western blot represents the alteration in expression of CXCR2 by miR-940 mimics. Results. miR-940 expression was decreased significantly in the HCC tissues and the relevant cell lines. miR-940 upregulation suppressed the invasion and migration of HCC cells in vitro. Furthermore, the CXCR2 was downregulated to suppress invasion and migration after miR-940 mimics. Moreover, decreased miR-940 expression was negatively correlated with Edmondson grade (P = 0.008), tumor microsatellite or multiple tumors (P = 0.04), vascular invasion (P = 0.035), and recurrence and metastasis (P = 0.038). Kaplan-Meier analysis demonstrated that decreased miR-940 expression contributed to poor overall survival (P < 0.05). Conclusions. Our findings present that miR-940 acts as a pivotal adaptor of CXCR2 and its transcription downregulated CXCR2 expression to decrease HCC invasion and migration in vitro. Our study suggests that miR-940 may be a novel poor prognostic biomarker for HCC. PMID:27807540

  10. Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants.

    PubMed

    Félix, Juliana S; Isella, Francesca; Bosetti, Osvaldo; Nerín, Cristina

    2012-07-01

    Adhesives used in food packaging to glue different materials can provide several substances as potential migrants, and the identification of potential migrants and migration tests are required to assess safety in the use of adhesives. Solid-phase microextraction in headspace mode and gas chromatography coupled to mass spectrometry (HS-SPME-GC-MS) and ChemSpider and SciFinder databases were used as powerful tools to identify the potential migrants in the polyurethane (PU) adhesives and also in the individual plastic films (polyethylene terephthalate, polyamide, polypropylene, polyethylene, and polyethylene/ethyl vinyl alcohol). Migration tests were carried out by using Tenax(®) and isooctane as food simulants, and the migrants were analyzed by gas chromatography coupled to mass spectrometry. More than 63 volatile and semivolatile compounds considered as potential migrants were detected either in the adhesives or in the films. Migration tests showed two non-intentionally added substances (NIAS) coming from PU adhesives that migrated through the laminates into Tenax(®) and into isooctane. Identification of these NIAS was achieved through their mass spectra, and 1,6-dioxacyclododecane-7,12-dione and 1,4,7-trioxacyclotridecane-8,13-dione were confirmed. Caprolactam migrated into isooctane, and its origin was the external plastic film in the multilayer, demonstrating real diffusion through the multilayer structure. Comparison of the migration values between the simulants and conditions will be shown and discussed. PMID:22526644

  11. Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants.

    PubMed

    Félix, Juliana S; Isella, Francesca; Bosetti, Osvaldo; Nerín, Cristina

    2012-07-01

    Adhesives used in food packaging to glue different materials can provide several substances as potential migrants, and the identification of potential migrants and migration tests are required to assess safety in the use of adhesives. Solid-phase microextraction in headspace mode and gas chromatography coupled to mass spectrometry (HS-SPME-GC-MS) and ChemSpider and SciFinder databases were used as powerful tools to identify the potential migrants in the polyurethane (PU) adhesives and also in the individual plastic films (polyethylene terephthalate, polyamide, polypropylene, polyethylene, and polyethylene/ethyl vinyl alcohol). Migration tests were carried out by using Tenax(®) and isooctane as food simulants, and the migrants were analyzed by gas chromatography coupled to mass spectrometry. More than 63 volatile and semivolatile compounds considered as potential migrants were detected either in the adhesives or in the films. Migration tests showed two non-intentionally added substances (NIAS) coming from PU adhesives that migrated through the laminates into Tenax(®) and into isooctane. Identification of these NIAS was achieved through their mass spectra, and 1,6-dioxacyclododecane-7,12-dione and 1,4,7-trioxacyclotridecane-8,13-dione were confirmed. Caprolactam migrated into isooctane, and its origin was the external plastic film in the multilayer, demonstrating real diffusion through the multilayer structure. Comparison of the migration values between the simulants and conditions will be shown and discussed.

  12. MicroRNA-383 expression regulates proliferation, migration, invasion, and apoptosis in human glioma cells.

    PubMed

    Xu, Dawei; Ma, Pengju; Gao, Guojun; Gui, Yongkun; Niu, Xiaolu; Jin, Baozhe

    2015-09-01

    This study aims to evaluate microRNA-383 (miR-383) expression level in glioma cells and its influences on proliferation, migration, invasion, apoptosis, and cell cycle in glioma cells. miR-383 expression levels were determined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Thirty BALB/c-nu mice were randomly assigned into three groups: U87-miR-383 group, vector-control group, and blank group. Tumorigenicity experiment was conducted to confirm the function of miR-383. U251 and U87 glioma cells were divided into three groups: non-transfected control cells (NT group), glioma cells transfected with miR-383 (miR-383 group), and glioma cells transfected with negative sequence (NC group). Transfection efficiency was measured by qRT-PCR. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Cell migration and invasion were examined by utilizing a Transwell chamber. Cell cycle and apoptosis were analyzed by flow cytometry. The qRT-PCR results revealed that miR-383 expression was down-regulated in human glioma cells, and was negatively related to the pathological grading of glioma. The rates of tumor growth in vector-control group and blank group were significantly faster than that in U87-miR-383 group, and the average tumor volume and weight in vector-control group and blank group were increased as compared with U87-miR-383 group. Additionally, miR-383 levels in miR-383 group were higher than those in NT group and NC group. CCK-8 assay indicated lower cell viability in miR-383 group as compared with NT group and NC group. Flow cytometry implied that the percentages of cells in miR-383 group reduced, while the cell apoptosis rate enhanced compared with NT group and NC group. In conclusion, our findings suggest that miR-383 expression is down-regulated in glioma cells, inhibiting cell proliferation, migration, and invasion, affecting the cell cycle, and inducing cell apoptosis.

  13. MicroRNA-383 expression regulates proliferation, migration, invasion, and apoptosis in human glioma cells.

    PubMed

    Xu, Dawei; Ma, Pengju; Gao, Guojun; Gui, Yongkun; Niu, Xiaolu; Jin, Baozhe

    2015-09-01

    This study aims to evaluate microRNA-383 (miR-383) expression level in glioma cells and its influences on proliferation, migration, invasion, apoptosis, and cell cycle in glioma cells. miR-383 expression levels were determined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Thirty BALB/c-nu mice were randomly assigned into three groups: U87-miR-383 group, vector-control group, and blank group. Tumorigenicity experiment was conducted to confirm the function of miR-383. U251 and U87 glioma cells were divided into three groups: non-transfected control cells (NT group), glioma cells transfected with miR-383 (miR-383 group), and glioma cells transfected with negative sequence (NC group). Transfection efficiency was measured by qRT-PCR. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Cell migration and invasion were examined by utilizing a Transwell chamber. Cell cycle and apoptosis were analyzed by flow cytometry. The qRT-PCR results revealed that miR-383 expression was down-regulated in human glioma cells, and was negatively related to the pathological grading of glioma. The rates of tumor growth in vector-control group and blank group were significantly faster than that in U87-miR-383 group, and the average tumor volume and weight in vector-control group and blank group were increased as compared with U87-miR-383 group. Additionally, miR-383 levels in miR-383 group were higher than those in NT group and NC group. CCK-8 assay indicated lower cell viability in miR-383 group as compared with NT group and NC group. Flow cytometry implied that the percentages of cells in miR-383 group reduced, while the cell apoptosis rate enhanced compared with NT group and NC group. In conclusion, our findings suggest that miR-383 expression is down-regulated in glioma cells, inhibiting cell proliferation, migration, and invasion, affecting the cell cycle, and inducing cell apoptosis. PMID:25936342

  14. Cyclin Y regulates the proliferation, migration, and invasion of ovarian cancer cells via Wnt signaling pathway.

    PubMed

    Liu, Haiyuan; Shi, Honghui; Fan, Qingbo; Sun, Xiangxiu

    2016-08-01

    This study is designated to investigate the roles of cyclin Y (CCNY) and Wnt signaling pathway in regulating ovarian cancer (OC) cell proliferation, migration, and invasion. Quantitative real-time PCR (qRT-PCR), Western blot, MTT assay, cell scratch, and transwell test were used in our study, and transplanted tumor model was constructed on nude mice. C-Myc, cyclin D1, PFTK1, ki67, OGT, and β-catenin protein expressions in tumor tissues were detected. CCNY was significantly upregulated in OC cell lines and tissues (both P < 0.05); significant association was observed between CCNY expression and clinicopathological stage, lymph node metastasis (LNM) (P < 0.05); and the CCNY expression in stages III to IV was higher than that in stages I to II, and patients with LNM had higher CCNY expression when compared with those in patients without LNM (P < 0.05); expressions of c-Myc, cyclin D, PFTK1, ki67, and OGT were upregulated in OC tissues compared with ovarian benign tissues, suggesting that these expressions were significantly different between the two groups (P < 0.05); CCNY significantly exacerbated proliferation, migration, and invasion of A2780 cells; c-Myc and cyclin D1 protein expressions increased as the expression of CCNY increased (P < 0.001); β-catenin expressions in A2780 cells with over-expression of CCNY were significantly increased in the nucleus, but significantly decreased in the cytoplasm (both P < 0.05); high expressions of CCNY exacerbated the proliferation of A2780 cells in nude mice and significantly increased c-Myc, cyclin D1, PFTK1, ki67, and OGT protein expressions in tumor tissues which were transplanted into nude mice (P < 0.01). CCNY might exacerbate the proliferation, migration, and invasion of OC cells via activating the Wnt signaling pathway. Thus, this study provides a theoretical foundation for the development of therapeutic drugs that are able to cure OC by targeting CCNY. PMID:26831658

  15. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    PubMed

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  16. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    SciTech Connect

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  17. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion

    PubMed Central

    Chen, Nan-Peng; Uddin, Borhan; Voit, Renate; Schiebel, Elmar

    2016-01-01

    Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14APD) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14APD cells. hCDC14APD cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14APD cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast. PMID:26747605

  18. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation. PMID:26781971

  19. Neuromedin B receptor antagonism inhibits migration, invasion, and epithelial-mesenchymal transition of breast cancer cells.

    PubMed

    Park, Hyun-Joo; Kim, Mi-Kyoung; Choi, Kyu-Sil; Jeong, Joo-Won; Bae, Soo-Kyung; Kim, Hyung Joon; Bae, Moon-Kyoung

    2016-09-01

    Neuromedin B (NMB) acts as an autocrine growth factor and a pro-angiogenic factor. Its receptor, NMB receptor (NMB-R), is overexpressed in solid tumors. In the present study, we showed that an NMB-R antagonist, PD168368, suppresses migration and invasion of the human breast cancer cell line MDA-MB-231. In addition, PD168368 reduced epithelial-mesenchymal transition (EMT) of breast cancer cells by E-cadherin upregulation and vimentin downregulation. Moreover, we found that PD168368 potently inhibits in vivo metastasis of breast cancer. Taken together, these findings suggest that NMB-R antagonism may be an alternative approach to prevent breast cancer metastasis, and targeting NMB-R may provide a novel therapeutic strategy for breast cancer treatment. PMID:27571778

  20. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    PubMed

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  1. MMP16 Mediates a Proteolytic Switch to Promote Cell-Cell Adhesion, Collagen Alignment, and Lymphatic Invasion in Melanoma.

    PubMed

    Tatti, Olga; Gucciardo, Erika; Pekkonen, Pirita; Holopainen, Tanja; Louhimo, Riku; Repo, Pauliina; Maliniemi, Pilvi; Lohi, Jouko; Rantanen, Ville; Hautaniemi, Sampsa; Alitalo, Kari; Ranki, Annamari; Ojala, Päivi M; Keski-Oja, Jorma; Lehti, Kaisa

    2015-05-15

    Lymphatic invasion and accumulation of continuous collagen bundles around tumor cells are associated with poor melanoma prognosis, but the underlying mechanisms and molecular determinants have remained unclear. We show here that a copy-number gain or overexpression of the membrane-type matrix metalloproteinase MMP16 (MT3-MMP) is associated with poor clinical outcome, collagen bundle assembly around tumor cell nests, and lymphatic invasion. In cultured WM852 melanoma cells derived from human melanoma metastasis, silencing of MMP16 resulted in cell-surface accumulation of the MMP16 substrate MMP14 (MT1-MMP) as well as L1CAM cell adhesion molecule, identified here as a novel MMP16 substrate. When limiting the activities of these trans-membrane protein substrates toward pericellular collagen degradation, cell junction disassembly, and blood endothelial transmigration, MMP16 supported nodular-type growth of adhesive collagen-surrounded melanoma cell nests, coincidentally steering cell collectives into lymphatic vessels. These results uncover a novel mechanism in melanoma pathogenesis, whereby restricted collagen infiltration and limited mesenchymal invasion are unexpectedly associated with the properties of the most aggressive tumors, revealing MMP16 as a putative indicator of adverse melanoma prognosis. PMID:25808867

  2. Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration

    PubMed Central

    Cohen, David P. A.; Martignetti, Loredana; Robine, Sylvie; Barillot, Emmanuel; Zinovyev, Andrei; Calzone, Laurence

    2015-01-01

    Understanding the etiology of metastasis is very important in clinical perspective, since it is estimated that metastasis accounts for 90% of cancer patient mortality. Metastasis results from a sequence of multiple steps including invasion and migration. The early stages of metastasis are tightly controlled in normal cells and can be drastically affected by malignant mutations; therefore, they might constitute the principal determinants of the overall metastatic rate even if the later stages take long to occur. To elucidate the role of individual mutations or their combinations affecting the metastatic development, a logical model has been constructed that recapitulates published experimental results of known gene perturbations on local invasion and migration processes, and predict the effect of not yet experimentally assessed mutations. The model has been validated using experimental data on transcriptome dynamics following TGF-β-dependent induction of Epithelial to Mesenchymal Transition in lung cancer cell lines. A method to associate gene expression profiles with different stable state solutions of the logical model has been developed for that purpose. In addition, we have systematically predicted alleviating (masking) and synergistic pairwise genetic interactions between the genes composing the model with respect to the probability of acquiring the metastatic phenotype. We focused on several unexpected synergistic genetic interactions leading to theoretically very high metastasis probability. Among them, the synergistic combination of Notch overexpression and p53 deletion shows one of the strongest effects, which is in agreement with a recent published experiment in a mouse model of gut cancer. The mathematical model can recapitulate experimental mutations in both cell line and mouse models. Furthermore, the model predicts new gene perturbations that affect the early steps of metastasis underlying potential intervention points for innovative therapeutic

  3. FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation.

    PubMed

    Luo, Xiaoyong; Yao, Jinke; Nie, Peipei; Yang, Zhiyuan; Feng, Hongbo; Chen, Pinjia; Shi, Xinpeng; Zou, Zhengzhi

    2016-05-01

    In this study, to investigate whether endoplastic reticulum (ER) stress correlated with FOXM1 in colorectal cancer, we analysed the mRNA levels of FOXM1 and ER stress markers HSPA5 and spliced XBP1 by qRT-PCR. FOXM1 mRNA levels were found to positively correlate with HSPA5 in colorectal cancer. However, no significant correlation between FOXM1 and spliced XBP1 mRNA levels was found. Theses results suggested the positive correlation between FOXM1 and HSPA5 in colorectal cancer was not associated with ER stress. Next, we provided evidences that FOXM1 promoted HSPA5 transcription by directly binding to and stimulating HSPA5 promoter. Moreover, a FOXM1-binding site mapped between -1019 and -1012 bp of the proximal HSPA5 promoter was identified. In addition, we found that enhancement of cell migration and invasion by FOXM1 was significantly attenuated by depletion of HSPA5 in colorectal cancer cell. Furthermore, FOXM1 triggered colorectal cancer cell migration and invasion was involved in activities of cell-surface HSPA5. Lastly, our results suggested FOXM1 facilitated the activities and expressions of MMP2 and 9 associated with cell-surface HSPA5 in colorectal cancer cells. Moreover, statistically significant positive correlations between FOXM1 and MMP2 mRNA expression, between HSPA5 and MMP2 were found in colorectal cancer tissue specimens. Together, our results suggested that FOXM1-HSPA5 signaling might be considered as a novel molecular target for designing novel therapeutic regimen to control colorectal cancer metastasis and progression.

  4. FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation

    PubMed Central

    Yang, Zhiyuan; Feng, Hongbo; Chen, Pinjia; Shi, Xinpeng; Zou, Zhengzhi

    2016-01-01

    In this study, to investigate whether endoplastic reticulum (ER) stress correlated with FOXM1 in colorectal cancer, we analysed the mRNA levels of FOXM1 and ER stress markers HSPA5 and spliced XBP1 by qRT-PCR. FOXM1 mRNA levels were found to positively correlate with HSPA5 in colorectal cancer. However, no significant correlation between FOXM1 and spliced XBP1 mRNA levels was found. Theses results suggested the positive correlation between FOXM1 and HSPA5 in colorectal cancer was not associated with ER stress. Next, we provided evidences that FOXM1 promoted HSPA5 transcription by directly binding to and stimulating HSPA5 promoter. Moreover, a FOXM1-binding site mapped between -1019 and -1012 bp of the proximal HSPA5 promoter was identified. In addition, we found that enhancement of cell migration and invasion by FOXM1 was significantly attenuated by depletion of HSPA5 in colorectal cancer cell. Furthermore, FOXM1 triggered colorectal cancer cell migration and invasion was involved in activities of cell-surface HSPA5. Lastly, our results suggested FOXM1 facilitated the activities and expressions of MMP2 and 9 associated with cell-surface HSPA5 in colorectal cancer cells. Moreover, statistically significant positive correlations between FOXM1 and MMP2 mRNA expression, between HSPA5 and MMP2 were found in colorectal cancer tissue specimens. Together, our results suggested that FOXM1-HSPA5 signaling might be considered as a novel molecular target for designing novel therapeutic regimen to control colorectal cancer metastasis and progression. PMID:27034162

  5. FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation.

    PubMed

    Luo, Xiaoyong; Yao, Jinke; Nie, Peipei; Yang, Zhiyuan; Feng, Hongbo; Chen, Pinjia; Shi, Xinpeng; Zou, Zhengzhi

    2016-05-01

    In this study, to investigate whether endoplastic reticulum (ER) stress correlated with FOXM1 in colorectal cancer, we analysed the mRNA levels of FOXM1 and ER stress markers HSPA5 and spliced XBP1 by qRT-PCR. FOXM1 mRNA levels were found to positively correlate with HSPA5 in colorectal cancer. However, no significant correlation between FOXM1 and spliced XBP1 mRNA levels was found. Theses results suggested the positive correlation between FOXM1 and HSPA5 in colorectal cancer was not associated with ER stress. Next, we provided evidences that FOXM1 promoted HSPA5 transcription by directly binding to and stimulating HSPA5 promoter. Moreover, a FOXM1-binding site mapped between -1019 and -1012 bp of the proximal HSPA5 promoter was identified. In addition, we found that enhancement of cell migration and invasion by FOXM1 was significantly attenuated by depletion of HSPA5 in colorectal cancer cell. Furthermore, FOXM1 triggered colorectal cancer cell migration and invasion was involved in activities of cell-surface HSPA5. Lastly, our results suggested FOXM1 facilitated the activities and expressions of MMP2 and 9 associated with cell-surface HSPA5 in colorectal cancer cells. Moreover, statistically significant positive correlations between FOXM1 and MMP2 mRNA expression, between HSPA5 and MMP2 were found in colorectal cancer tissue specimens. Together, our results suggested that FOXM1-HSPA5 signaling might be considered as a novel molecular target for designing novel therapeutic regimen to control colorectal cancer metastasis and progression. PMID:27034162

  6. CMTM3 inhibits cell migration and invasion and correlates with favorable prognosis in gastric cancer

    PubMed Central

    Su, Yu; Lin, Yi; Zhang, Lianhai; Liu, Baocai; Yuan, Wanqiong; Mo, Xiaoning; Wang, Xiaohong; Li, Henan; Xing, Xiaofang; Cheng, Xiaojing; Dong, Bin; Hu, Ying; Du, Hong; Zhu, Yubing; Ding, Ning; Li, Jiyou; Liu, Weili; Ma, Yongzhen; Qiu, Xiaoyan; Ji, Jiafu; Han, Wenling

    2014-01-01

    The CKLF-like MARVEL transmembrane domain containing 3 (CMTM3) gene is a novel tumor suppressor with frequent epigenetic inactivation. In this study, we showed the role played by CMTM3 in gastric cancer cells as a tumor suppressor gene, and examined the correlation between CMTM3 expression and clinicopathological parameters using immunohistochemistry in gastric cancer patients with different pathological stages (n = 350). We found that CMTM3 expression was reduced or silenced by epigenetic regulation in gastric cell lines, and dramatically downregulated in primary gastric cancer tissues. Restoration of CMTM3 significantly affected migration and invasion of AGS and SGC-7901 cells (P < 0.001). In vivo experiments showed that peritoneal disseminated metastases were significantly suppressed by CMTM3 (P < 0.001). We further showed that the expression of MMP2 and the phosphorylation of Erk1/2 were decreased when CMTM3 was restored. In addition, by immunohistochemical staining, we found that the expression of CMTM3 was remarkably weaker in gastric cancer tissues than in normal mucosae (P = 0.008), and was significantly correlated with gender (P = 0.033), tumor depth (P = 0.049), stage (P = 0.021), and histological grade (P = 0.022). More importantly, CMTM3 expression was associated with prognosis in gastric cancer patients (P = 0.041), and was a significant independent prognostic indicator (hazard ratio = 0.704, 95% confidence interval, 0.498–0.994; P = 0.046). Our findings indicate that CMTM3 regulates migration and invasion of gastric cancer cells. Moreover, CMTM3 is a candidate marker for prognosis of gastric cancer in the clinic. PMID:24131472

  7. Metastasis-associated Protein 1 Drives Tumor Cell Migration and Invasion through Transcriptional Repression of RING Finger Protein 144A*

    PubMed Central

    Marzook, Hezlin; Li, Da-Qiang; Nair, Vasudha S.; Mudvari, Prakriti; Reddy, Sirigiri Divijendra Natha; Pakala, Suresh B.; Santhoshkumar, T. R.; Pillai, M. Radhakrishna; Kumar, Rakesh

    2012-01-01

    Metastasis-associated protein 1 (MTA1), a component of the nucleosome-remodeling and histone deacetylase complex, is widely up-regulated in human cancers and significantly correlated with tumor invasion and metastasis, but the mechanisms involved remain largely unknown. Here, we report that MTA1 transcriptionally represses the expression of RING finger protein 144A (RNF144A), an uncharacterized gene whose protein product possesses potential E3 ubiquitin ligase activity, by recruiting the histone deacetylase 2 (HDAC2) and CCAAT/enhancer-binding protein α (c/EBPα) co-repressor complex onto human RNF144A promoter. Furthermore, an inverse correlation between the expression levels of MTA1 and RNF144A was demonstrated in publicly available breast cancer microarray datasets and the MCF10 breast cancer progression model system. To address functional aspects of MTA1 regulation of RNF144A, we demonstrate that RNF144A is a novel suppressor of cancer migration and invasion, two requisite steps of metastasis in vivo, and knockdown of endogenous RNF144A by small interfering RNAs accelerates the migration and invasion of MTA1-overexpressing cells. These results suggest that RNF144A is partially responsible for MTA1-mediated migration and invasion and that MTA1 overexpression in highly metastatic cancer cells drives cell migration and invasion by, at least in part, interfering with the suppressive function of RNF144A through transcriptional repression of RNF144A expression. Together, these findings provide novel mechanistic insights into regulation of tumor progression and metastasis by MTA1 and highlight a previously unrecognized role of RNF144A in MTA1-driven cancer cell migration and invasion. PMID:22184113

  8. MicroRNA-200b Impacts Breast Cancer Cell Migration and Invasion by Regulating Ezrin-Radixin-Moesin.

    PubMed

    Hong, Hong; Yu, Haizhong; Yuan, Jianfen; Guo, Chunyan; Cao, Hongyan; Li, Weibing; Xiao, Chunhong

    2016-01-01

    BACKGROUND Ezrin-radixin-moesin (ERM) plays an important role in multiple links of tumors. It also involved in breast cancer invasion and metastasis, and might be a potential biomarker of breast cancer. Another study suggested that ERM expression was regulated directly by miR-200c, and had a critical role in miR-200c suppressing cell migration. This study aimed to investigate the effect of miR-200b on ERM expression in a breast cancer cell line and its influence on invasion and metastasis ability in vitro. MATERIAL AND METHODS Breast cancer cell lines MCF-7 and MDA-MB-231 with different metastatic potentials were selected as a model. MiR-200b overexpression or inhibition was achieved by Lipofectamine™ 2000-mediated miRNA transfection. RT-PCR was used to test miR-200b level, while Western blot was selected to detect ERM protein expression. Wound healing assay and Transwell assay were performed to determine cell migration and invasion ability. RESULTS RT-PCR revealed that miR-200b level in MDA-MB-231 was obviously lower than that in MCF-7, while Western blot analysis showed that ERM expression was significantly higher. MiR-200b inhibition by transfection in MCF-7 markedly decreased miR-200b level, elevated ERM expression, and enhanced cell migration and invasion. MiR-200b overexpression in MDA-MB-231 obviously increased miR-200b level, reduced ERM expression, and weakened cell migration and invasion. CONCLUSIONS MiR-200b participates in breast cancer cell migration and invasion through regulating ERM in MCF-7 and MDA-MB-231. PMID:27276064

  9. Differential modulation of IL-1-induced endothelial adhesion molecules and transendothelial migration of granulocytes by G-CSF.

    PubMed

    Eissner, G; Lindner, H; Reisbach, G; Klauke, I; Holler, E

    1997-06-01

    Granulocyte colony stimulating factor (G-CSF) is widely used for mobilization of haemopoietic stem cells into the peripheral blood. However, little is known about the mechanisms involved in mobilization and the immune modulatory effects of this growth factor. In this report we show that G-CSF down-regulated intercellular adhesion molecule 1 (ICAM-1) induced by Interleukin-1 (IL-1) on human endothelial cells. Interestingly, the G-CSF-mediated down-modulation of IL-1-induced ICAM-1 appeared to be biphasic. In pharmacological concentrations (> 300 ng/ml), and in dose ranges of plasma G-CSF levels above that of nonfebrile healthy individuals (30 pg/ml), a significant decrease in surface ICAM-1 could be observed. This could be explained, at least in part, by an increased autocrine G-CSF production by endothelial cells in response to IL-1 and exogenous G-CSF. In contrast to ICAM-1, IL-1-triggered VCAM-1 expression was superinduced by G-CSF with the optimal concentration of 30 pg/ml. To evaluate the functional significance of these findings, 51Cr adhesion assays with peripheral blood mononuclear cells (PBMC) or granulocytes known to lack the VCAM-1 counter-receptor very late antigen 4 (VLA-4) and IL-1-stimulated endothelial cells, in the presence or absence of G-CSF, were performed. G-CSF could not inhibit the IL-1-induced adhesion of PBMC to endothelial cells, which may be due to the differential adhesion molecule modulation. In contrast, granulocyte adhesion induced by IL-1 could effectively be blocked by co-incubation with G-CSF. Finally, G-CSF also inhibited transendothelial migration of granulocytes through IL-1-activated endothelial cells in a concentration-dependent manner.

  10. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE.

    PubMed

    Carmona, G; Perera, U; Gillett, C; Naba, A; Law, A-L; Sharma, V P; Wang, J; Wyckoff, J; Balsamo, M; Mosis, F; De Piano, M; Monypenny, J; Woodman, N; McConnell, R E; Mouneimne, G; Van Hemelrijck, M; Cao, Y; Condeelis, J; Hynes, R O; Gertler, F B; Krause, M

    2016-09-29

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.

  11. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    SciTech Connect

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  12. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  13. Full-mouth adhesive rehabilitation in case of severe dental erosion, a minimally invasive approach following the 3-step technique.

    PubMed

    Grütter, Linda; Vailati, Francesca

    2013-01-01

    A full-mouth adhesive rehabilitation in case of severe dental erosion may present a challenge for both the clinician and the laboratory technician, not only for the multiple teeth to be restored, but also for their time schedule, difficult to be included in a busy agenda of a private practice. Thanks to the simplicity of the 3-step technique, full-mouth rehabilitations become easier to handle. In this article the treatment of a very compromised case of dental erosion (ACE class V) is illustrated, implementing only adhesive techniques. The very pleasing clinical outcome was the result of the esthetic, mechanic and most of all biological success achieved, confirming that minimally invasive dentistry should always be the driving motor of any rehabilitation, especially in patients who have already suffered from conspicuous tooth destruction.

  14. Pepper seed extract suppresses invasion and migration of human breast cancer cells.

    PubMed

    Kim, Hyeon-A; Kim, Min-Sook; Kim, Sang-Hyun; Kim, Yoo Kyeong

    2014-01-01

    This study was performed to determine the antimetastatic activities of chili pepper seed on human breast cancer cells. The water extract of chili pepper seeds was prepared and it contained a substantial amount of phenols (131.12 mg%) and no capsaicinoids. Pepper seed extract (PSE) suppressed the proliferation of MDA-MB-231 and MCF-7 cells at the concentration of 10, 25, and 50 μg/ml (MDA-MB-231: IC50 = 20.1 μg/ml, MCF-7: IC50 = 14.7 μg/ml). PSE increased the expression level of E-cadherin up to 1.2-fold of the control in MCF-7 cells. PSE also decreased the secretion of matrix metalloproteinase (MMP)-2 and MMP-9 in MDA-MB-231 and MCF-7 cells at the concentration of 25 and 50 μg/ml. PSE treatment significantly suppressed the invasion of MDA-MB-231 and MCF-7 cells in a dose-dependent manner. The motility of cancer cells was apparently retarded in the wound healing assay by the PSE treatment. Although our data collectively demonstrate that PSE inhibits invasion and migration of breast cancer cells, further study is needed to identify specific mechanisms and bioactive components contributing to antimetastatic effects of chili pepper seed. PMID:24341783

  15. Antithrombin controls tumor migration, invasion and angiogenesis by inhibition of enteropeptidase

    PubMed Central

    Luengo-Gil, Ginés; Calvo, María Inmaculada; Martín-Villar, Ester; Águila, Sonia; Bohdan, Nataliya; Antón, Ana I.; Espín, Salvador; Ayala de la Peña, Francisco; Vicente, Vicente; Corral, Javier; Quintanilla, Miguel; Martínez-Martínez, Irene

    2016-01-01

    Antithrombin is a key inhibitor of the coagulation cascade, but it may also function as an anti-inflammatory, anti-angiogenic, anti-viral and anti-apoptotic protein. Here, we report a novel function of antithrombin as a modulator of tumor cell migration and invasion. Antithrombin inhibited enteropeptidase on the membrane surface of HT-29, A549 and U-87 MG cells. The inhibitory process required the activation of antithrombin by heparin, and the reactive center loop and the heparin binding domain were essential. Surprisingly, antithrombin non-covalently inhibited enteropeptidase, revealing a novel mechanism of inhibition for this serpin. Moreover, as a consequence of this inhibition, antithrombin was cleaved, resulting in a molecule with anti-angiogenic properties that reduced vessel-like formation of endothelial cells. The addition of antithrombin and heparin to U-87 MG and A549 cells reduced motility in wound healing assays, inhibited the invasion in transwell assays and the degradation of a gelatin matrix mediated by invadopodia. These processes were controlled by enteropeptidase, as demonstrated by RNA interference experiments. Carcinoma cell xenografts in nude mice showed in vivo co-localization of enteropeptidase and antithrombin. Finally, treatment with heparin reduced experimental metastasis induced by HT29 cells in vivo. In conclusion, the inhibition of enteropeptidase by antithrombin may have a double anti-tumor effect through inhibiting a protease involved in metastasis and generating an anti-angiogenic molecule. PMID:27270881

  16. From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis.

    PubMed

    Dhamija, Sonam; Diederichs, Sven

    2016-07-15

    Metastasis is a multistep process that involves the dissemination of cells from the primary tumor and colonization of distant secondary organs. Epithelial cells at the invasive front of a carcinoma acquire an enhanced migratory phenotype in a process called epithelial-to-mesenchymal transition (EMT). This cellular plasticity seems to drive the initiation of metastasis. Identifying important molecules and understanding their molecular mechanisms is a key to cancer prognosis and the development of therapeutics for late stage malignancies. Recent advances in sequencing technology uncovered that the mammalian genome is pervasively transcribed into many nonprotein-coding RNAs including the class of long noncoding RNA, a.k.a. lncRNA. Several lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we review the diverse molecular mechanisms, cellular roles and regulatory patterns that are becoming apparent for the noncoding transcriptome. Chromatin modification, epigenetic regulation, alternative splicing and translational control by MALAT1, HOTAIR and TRE lncRNAs represent important examples of lncRNA-mediated control of cell migration and invasion, EMT and metastasis. Beyond these better characterized examples, numerous additional transcripts have been associated with cancer metastasis, but their functional roles await their discovery. PMID:26875870

  17. Expression of complete keratin filaments in mouse L cells augments cell migration and invasion.

    PubMed Central

    Chu, Y W; Runyan, R B; Oshima, R G; Hendrix, M J

    1993-01-01

    Intermediate filament proteins have been used to diagnose the origin of specific cells. Classically, vimentin is found in mesenchymal cells, and keratins are present in epithelial cells. However, recent evidence suggests that the coexpression of these phenotype-specific proteins augments tumor cell motility, and hence, metastasis. In the present study, we used the mouse L-cell model to determine if a direct correlation exists between the expression of additional keratins in these cells, which normally express only vimentin, and their migratory ability. Mouse L cells were transfected with human keratins 8, 18, and both 8 and 18. The results indicate that the cells expressing complete keratin filaments have a higher migratory and invasive ability (through extracellular matrix-coated filters) compared with the parental and control-transfected clones. Furthermore, there is an enrichment of keratin-positive cells from a heterogeneous population of L clones selected over serial migrations. This migratory activity was directly correlated with the spreading ability of the cells on Matrigel matrix, in which the keratin-positive transfectants maintain a round morphology for a longer duration, compared with the other L-cell populations. Collectively, these data suggest that keratins may play an important role(s) in migration, through a special interaction with the extracellular environment, thereby influencing cell shape. Images Fig. 1 Fig. 4 PMID:7683431

  18. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration.

    PubMed

    Spagnol, Stephen T; Lin, Wei-Chun; Booth, Elizabeth A; Ladoux, Benoit; Lazarus, Hillard M; Dahl, Kris Noel

    2016-07-01

    The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.

  19. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-01

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  20. Co-Expression of Ezrin-CLIC5-Podocalyxin Is Associated with Migration and Invasiveness in Hepatocellular Carcinoma

    PubMed Central

    Flores-Téllez, Teresita N. J.; Lopez, Tania V.; Vásquez Garzón, Verónica Rocío; Villa-Treviño, Saúl

    2015-01-01

    Background and Aim Prognostic markers are important for predicting the progression and staging of hepatocellular carcinoma (HCC). Ezrin (EZR) and Podocalyxin (PODXL) are proteins associated with invasion, migration and poor prognosis in various types of cancer. Recently, it has been observed that chloride intracellular channel 5 (CLIC5) forms a complex with EZR and PODXL and that it is required for podocyte structure and function. In this study, we evaluated the overexpression of EZR, PODXL and CLIC5 in HCC. Methods The modified resistant hepatocyte model (MRHR), human biopsies and HCC cell lines (HepG2, Huh7 and SNU387) were used in this study. Gene and protein expression levels were evaluated in the MRHR by qRT-PCR, Western blot and immunohistochemistry analyses, and protein expression in the human biopsies was evaluated by immunohistochemistry. Protein expression in the HCC cell lines was evaluated by immunofluorescence and Western blot, also the migration and invasive abilities of Huh7 cells were evaluated using shRNA-mediated inhibition. Results Our results indicated that these genes and proteins were overexpressed in HCC. Moreover, when the expression of CLIC5 and PODXL was inhibited in Huh7 cells, we observed decreased migration and invasion. Conclusion This study suggested that EZR, CLIC5 and PODXL could be biological markers to predict the prognosis of HCC and that these proteins participate in migration and invasion processes. PMID:26135398

  1. Girdin regulates the migration and invasion of glioma cells via the PI3K-Akt signaling pathway

    PubMed Central

    NI, WEIMIN; FANG, YAN; TONG, LEI; TONG, ZHAOXUE; YI, FUXIN; QIU, JIANWU; WANG, RUI; TONG, XIAOJIE

    2015-01-01

    Girdin, an actin-binding protein, is associated with cell migration and is expressed at high levels in glioma cells. However, the association between girdin and the development of glioma remains to be elucidated. In the present study, short-hairpin RNA technology was used to silence the gene expression of girdin. The effects of girdin silencing on glioma cell proliferation, migration and invasion were then assessed using a cell viability assay, wound-healing assay, transwell invasion assay, reverse transcription-quantitative polymerase chain reaction, western blot analysis and gelatin zymography. The results suggested that girdin silencing inhibited the proliferation, migration and invasion of glioma cells. In addition, the expression levels and activity of matrix metalloproteinase (MMP)-2 and MMP-9 were also affected by girdin silencing. Further mechanistic investigation indicated that girdin may regulate glioma cell migration and invasion through the phosphatidylinositol-3-kinase/protein kinase B (PI3K-Akt) signaling pathway. Therefore, the results of the present study provide a theoretical foundation for the development of anticancer drugs. PMID:26151295

  2. miR-451 suppresses bladder cancer cell migration and invasion via directly targeting c-Myc.

    PubMed

    Wang, Jun; Zhao, Xiaomei; Shi, Jianhua; Pan, Yiwei; Chen, Qinghai; Leng, Pengfei; Wang, Yan

    2016-10-01

    MicroRNA (miRNA) expression is shown dysregulated in tumors. It has been reported that miR-451 alters gene expression and regulates tumorigenesis in various cancer tissues. However, its underlying biological significance in bladder cancer remains to be clarified. In the present study, we investigated the function and molecular mechanism of miR-451 involved in bladder cancer cell migration and invasion. Our results showed that miR-451 was downregulated in clinical bladder carcinoma tissues compared with adjacent bladder tissues. Overexpression of miR-451 significantly retarded the proliferation, migration and invasion of bladder cancer T24 and 5637 cells in vitro. Moreover, the attenuated cell migration and invasion by miR-451 was correlated with increased apoptosis. However, our dual-luciferase reporter assay validated that c-Myc, an oncogene in many tumors, was a direct target gene of miR-451 in bladder cancer. The expression of c-Myc was repressed by miR-451 in bladder cancer cells, and knockdown of c-Myc mimicked the effects of miR-451 overexpression. This discovery suggested that miR-451 is a tumor suppressor modulating bladder cancer cell migration and invasion by directly targeting c-Myc. In addition, apoptosis promoted by miR-451 may participates in this biological behavior. Therefore, target miR-451 may be a novel therapeutic intervention for bladder cancer. PMID:27571748

  3. Feruloyl-L-arabinose attenuates migration, invasion and production of reactive oxygen species in H1299 lung cancer cells.

    PubMed

    Fang, Hsin-Yu; Wang, Hui-Min; Chang, Kuo-Feng; Hu, Huei-Ting; Hwang, Lian-Je; Fu, Tzu-Fun; Lin, Yin-Chieh; Chang, Wei-Chiao; Chiu, Tsu-Pei; Wen, Zhi-Hong; Fong, Yao; Chiu, Chien-Chih; Chen, Bing-Hung

    2013-08-01

    Ferulic acid (FA), a phenolic compound, is an abundant dietary antioxidant and exerts the mitogenic effect on cells. Recently, we isolated an active FA derivative, namely feruloyl-L-arabinose (FAA), from coba husk. The aim of this study was to investigate the effects of FAA on the proliferation, migration and invasion of H1299 human lung cancer cells. Our results showed a strong antioxidant potential of FAA. Additionally, FAA inhibited the migration and invasion ability, while causing a significant accumulation of G2/M-population, of H1299 tumor cells in a dose-dependent manner, whereas no significant change on cell proliferation was observed. Results from the wound healing assay revealed that cell migration ability was markedly inhibited by FAA treatments. Similarly, results of gelatin zymography study showed that FAA treatments significantly decreased the activities of matrix metalloproteinase (MMP)-2 and MMP-9, suggesting that FAA-mediated inhibition on migration and invasion of lung cancer cells may be achieved by the down-regulation of the MMPs activities. Taken together, our present work provides a new insight into the novel inhibitory function of FAA on cell migration in H1299 cells, suggesting its promising role in the chemoprevention of lung cancer.

  4. Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration

    PubMed Central

    Albert, Philipp J.; Schwarz, Ulrich S.

    2016-01-01

    The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before. PMID:27054883

  5. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    SciTech Connect

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker . E-mail: Herzog@uni-bonn.de

    2006-07-01

    Growing evidence shows that the soluble N-terminal form (sAPP{alpha}) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPP{alpha}, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPP{alpha} has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts.

  6. Dihydromyricetin inhibits migration and invasion of hepatoma cells through regulation of MMP-9 expression

    PubMed Central

    Zhang, Qing-Yu; Li, Ran; Zeng, Guo-Fang; Liu, Bin; Liu, Jie; Shu, Yang; Liu, Zhong-Kao; Qiu, Zhi-Dong; Wang, Dong-Jun; Miao, Hui-Lai; Li, Ming-Yi; Zhu, Run-Zhi

    2014-01-01

    AIM: To investigate the effects of dihydromyricetin (DHM) on the migration and invasion of human hepatic cancer cells. METHODS: The hepatoma cell lines SK-Hep-1 and MHCC97L were used in this study. The cells were cultured in RPIM-1640 medium supplemented with 10% fetal bovine serum at 37 °C in a humidified 5% CO2 incubator. DHM was dissolved in dimethyl sulfoxide and diluted to various concentrations in medium before applying to cells. MTT assays were performed to measure the viability of the cells after DHM treatment. Wound healing and Boyden transwell assays were used to assess cancer cell motility. The invasive capacity of cancer cells was measured using Matrigel-coated transwell chambers. Matrix metalloproteinase (MMP)-2/9 activity was examined by fluorescence analysis. Western blot was carried out to analyze the expression of MMP-2, MMP-9, p-38, JNK, ERK1/2 and PKC-δ proteins. All data were analyzed by Student’s t tests in GraphPad prism 5.0 software and are presented as mean ± SD. RESULTS: DHM was found to strongly inhibit the migration of the hepatoma cell lines SK-Hep-1 (without DHM, 24 h: 120 ± 8 μmol/L vs 100 μmol/L DHM, 24 h: 65 ± 10 μmol/L, P < 0.001) and MHCC97L (without DHM, 24 h: 126 ± 7 μmol/L vs 100 μmol/L DHM, 24 h: 74 ± 6 μmol/L, P < 0.001). The invasive capacity of the cells was reduced by DHM treatment (SK-Hep-1 cells without DHM, 24 h: 67 ± 4 μmol/L vs 100 μmol/L DHM, 24 h: 9 ± 3 μmol/L, P < 0.001; MHCC97L cells without DHM, 24 h: 117 ± 8 μmol/L vs 100 μmol/L DHM, 24 h: 45 ± 2 μmol/L, P < 0.001). MMP2/9 activity was also inhibited by DHM exposure (SK-Hep-1 cells without DHM, 24 h: 600 ± 26 μmol/L vs 100 μmol/L DHM, 24 h: 100 ± 6 μmol/L, P < 0.001; MHCC97L cells without DHM, 24 h: 504 ± 32 μmol/L vs 100 μmol/L DHM 24 h: 156 ± 10 μmol/L, P < 0.001). Western blot analysis showed that DHM decreased the expression level of MMP-9 but had little effect on MMP-2. Further investigation indicated that DHM markedly

  7. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.

    PubMed

    Kim, Min-Cheol; Kim, Choong; Wood, Levi; Neal, Devin; Kamm, Roger D; Asada, H Harry

    2012-11-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling and actin motor activity is developed for predicting cell migration behaviors on 3-dimensional curved surfaces, such as cylindrical lumens in the 3-D extracellular matrix (ECM). The work is motivated by 3-D microfluidic migration experiments suggesting that the migration speed and direction may vary depending on the cross sectional shape of the lumen along which the cell migrates. In this paper, the mechanical structure of the cell is modeled as double elastic membranes of cell and nucleus. The two elastic membranes are connected by stress fibers, which are extended from focal adhesions on the cell surface to the nuclear membrane. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bind to ligands on the ECM, form focal adhesions, and activate stress fibers. Probabilities at which integrin ligand-receptor bonds are formed as well as ruptures are affected by the surface geometry, resulting in diverse migration behaviors that depend on the curvature of the surface. Monte Carlo simulations of the integrative model reveal that (a) the cell migration speed is dependent on the cross sectional area of the lumen with a maximum speed at a particular diameter or width, (b) as the lumen diameter increases, the cell tends to spread and migrate around the circumference of the lumen, while it moves in the longitudinal direction as the lumen diameter narrows, (c) once the cell moves in one direction, it tends to stay migrating in the same direction despite the stochastic nature of migration. The relationship between the cell migration speed and the lumen width agrees with microfluidic experimental data for cancer cell migration.

  8. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.

    PubMed

    Wangpu, Xiongzhi; Lu, Jiaoyang; Xi, Ruxing; Yue, Fei; Sahni, Sumit; Park, Kyung Chan; Menezes, Sharleen; Huang, Michael L H; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2016-05-01

    Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway. PMID:26895766

  9. Raf kinase inhibitor protein (RKIP) inhibits the cell migration and invasion in human glioma cell lines in vitro

    PubMed Central

    Lei, Xuhui; Chang, Liang; Ye, Wei; Jiang, Chuanlu; Zhang, Zhiren

    2015-01-01

    Objective: To investigate the effects and the potential mechanisms of RKIP on cell migration, invasion and proliferation in human glioma cell lines in vitro. Methods: The RKIP over-expressing and RKIP knockdown human U87 glioma cells were used to reveal the effects of RKIP on human glioma cells migration, invasion and proliferation. After the recombinant plasmid pcDNA3.0-RKIP or RKIP-shRNA was transfected into the cell lines U87 by the means of liposome assay, the cells migration, invasion and proliferation were detected by wound healing, Transwell and MTT assay. Then, the levels of RKIP, MMP-3, MMP-9 and HMGA2 mRNA transcription were measured by means of RT-qPCR and levels of proteins expressions were determined using Western blot. Results: The results of MTT assay suggested that the PKIP have little inhibitive effects on glioma cells proliferation (P>0.05). The present paper showed that the migration distances in the group of RKIP-shRNA were markedly increased compared to the pcDNA3.0-RKIP and control. Similarly, the results showed that the numbers of invasion cells in RKIP-shRNA were remarkably increased than the pcDNA3.0-RKIP group and control group. Western blot and RT-qPCR suggested that over-expressions of RKIP lessened the MMP-2, MMP-9 and HMGA2 expression, however, turning down the RKIP expression showed the inverse effects. Conclusion: RKIP inhibits the cells migrations and invasions. Meanwhile, RKIP might inhibit the glioma cells through inhibiting MMPs and HMAG2 expression. Therefore, we demonstrated that RKIP is an underlying target for the treatment of glioma. PMID:26823735

  10. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway.

    PubMed

    Ahn, Ji-Hye; Choi, Youn Seok; Choi, Jung-Hye

    2015-10-01

    Despite evidence that leptin may play a role in the pathogenesis of endometriosis, the specific function of leptin in the migration and invasion of endometriotic cells is not well characterized. In this study, we investigated the effect of leptin on the migration, invasion and matrix metalloproteinase (MMP) expression levels of human endometriotic cells. We found that leptin stimulated the migration and invasion of endometriotic cells (11Z, 12Z and 22B) in a dose-dependent manner. Leptin receptor (ObR) siRNA significantly inhibited the migration and invasion induced by leptin in 11Z and 12Z cells. Leptin-induced migration and invasion were significantly attenuated by pretreatment with SB-3CT, a specific gelatinase (MMP-2 and MMP-9) inhibitor. In addition, leptin-induced increases in the mRNA and protein expression and enzyme activity of MMP-2 in 11Z and 12Z cells. Selectively inhibiting MMP-2 using siRNA and an inhibitor (GM6003), impaired the ability of leptin to stimulate the migration and invasion of endometriotic cells, suggesting that MMP-2 plays an essential role in leptin-induced migration and invasion. Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) inhibitor (AG490) significantly inhibited the migration, invasion and MMP-2 expression induced by leptin in endometriotic cells. Furthermore, the Extracellular signal-Regulated Kinase inhibitor PD98059 neutralized the migration and invasion promoting effects of leptin. Taken together, these results suggest that leptin may contribute to the migration and invasion abilities of endometriotic cells via the up-regulation of MMP-2 through an ObR-dependent JAK2/STAT3 signaling pathway.

  11. Analysis of saturated and aromatic hydrocarbons migrating from a polyolefin-based hot-melt adhesive into food.

    PubMed

    Lommatzsch, Martin; Biedermann, Maurus; Grob, Koni; Simat, Thomas J

    2016-01-01

    Hot-melt adhesives are widely utilised to glue cardboard boxes used as food packaging material. They have to comply with the requirements of Article 3 of the European Framework Regulation for food contact materials (1935/2004). The hot melt raw materials analysed mainly consisted of paraffinic waxes, hydrocarbon resins and polyolefins. The hydrocarbon resins, functioning as tackifiers, were the predominant source of hydrocarbons of sufficient volatility to migrate into dry foods: the 18 hydrocarbon resins analysed contained 8.2-118 g kg(-1) saturated and up to 59 g kg(-1) aromatic hydrocarbons eluted from GC between n-C16 and n-C24, substantially more than the paraffinic waxes and the polyolefins. These tackfier resins, especially the oligomers ≤ C24, have been characterised structurally by GC×GC-MS and (1)H-NMR spectroscopy. Migration into food was estimated using a simulating system with polenta as food simulant, which was verified by the analysis of a commercial risotto rice sample packed in a virgin fibre folding box sealed with a hot melt. About 0.5-1.5% of the potentially migrating substances (between n-C16 and n-C24) of a hot melt were found to be transferred into food under storage conditions, which can result in a food contamination in the order of 1 mg kg(-1) food (depending on the amount of potentially migrating substances from the hot melt, the hot melt surface, amount of food, contact time etc.). Migrates from hot melts are easily mistaken for mineral oil hydrocarbons from recycled cardboard.

  12. Analysis of saturated and aromatic hydrocarbons migrating from a polyolefin-based hot-melt adhesive into food.

    PubMed

    Lommatzsch, Martin; Biedermann, Maurus; Grob, Koni; Simat, Thomas J

    2016-01-01

    Hot-melt adhesives are widely utilised to glue cardboard boxes used as food packaging material. They have to comply with the requirements of Article 3 of the European Framework Regulation for food contact materials (1935/2004). The hot melt raw materials analysed mainly consisted of paraffinic waxes, hydrocarbon resins and polyolefins. The hydrocarbon resins, functioning as tackifiers, were the predominant source of hydrocarbons of sufficient volatility to migrate into dry foods: the 18 hydrocarbon resins analysed contained 8.2-118 g kg(-1) saturated and up to 59 g kg(-1) aromatic hydrocarbons eluted from GC between n-C16 and n-C24, substantially more than the paraffinic waxes and the polyolefins. These tackfier resins, especially the oligomers ≤ C24, have been characterised structurally by GC×GC-MS and (1)H-NMR spectroscopy. Migration into food was estimated using a simulating system with polenta as food simulant, which was verified by the analysis of a commercial risotto rice sample packed in a virgin fibre folding box sealed with a hot melt. About 0.5-1.5% of the potentially migrating substances (between n-C16 and n-C24) of a hot melt were found to be transferred into food under storage conditions, which can result in a food contamination in the order of 1 mg kg(-1) food (depending on the amount of potentially migrating substances from the hot melt, the hot melt surface, amount of food, contact time etc.). Migrates from hot melts are easily mistaken for mineral oil hydrocarbons from recycled cardboard. PMID:26744923

  13. A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion.

    PubMed

    Middleton, Alistair M; Fleck, Christian; Grima, Ramon

    2014-10-21

    Cell-cell adhesion plays a key role in the collective migration of cells and in determining correlations in the relative cell positions and velocities. Recently, it was demonstrated that off-lattice individual cell based models (IBMs) can accurately capture the correlations observed experimentally in a migrating cell population. However, IBMs are often computationally expensive and difficult to analyse mathematically. Traditional continuum-based models, in contrast, are amenable to mathematical analysis and are computationally less demanding, but typically correspond to a mean-field approximation of cell migration and so ignore cell-cell correlations. In this work, we address this problem by using an off-lattice IBM to derive a continuum approximation which does take into account correlations. We furthermore show that a mean-field approximation of the off-lattice IBM leads to a single partial integro-differential equation of the same form as proposed by Sherratt and co-workers to model cell adhesion. The latter is found to be only effective at approximating the ensemble averaged cell number density when mechanical interactions between cells are weak. In contrast, the predictions of our novel continuum model for the time-evolution of the ensemble cell number density distribution and of the density-density correlation function are in close agreement with those obtained from the IBM for a wide range of mechanical interaction strengths. In particular, we observe 'front-like' propagation of cells in simulations using both our IBM and our continuum model, but not in the continuum model simulations obtained using the mean-field approximation.

  14. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms.

    PubMed

    Chiu, Kun-Yuan; Wu, Chun-Chi; Chia, Chi-Hao; Hsu, Shih-Lan; Tzeng, Yew-Min

    2016-04-10

    Bladder cancer is the ninth most common cancer around the world, and is a severe urological cancer irrespective of sex. Approximately 65% of the bladder cancers will recur following surgery; with more than 20% of those patients showing an advanced and metastatic stage, with reducing prognosis. Metastasis causes the most death of bladder cancer yet current therapeutic options remain limited. Antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, has been identified as a strong cytotoxic agent against lung and metastatic breast cancer cells; however, the effects and mechanisms of antrocin on cancer growth and metastasis remain largely unclear. This study showed that treatment with cytotoxic concentration of antrocin induced both intrinsic and extrinsic apoptotic pathways in human bladder cancer 5637 cells, evidenced by increase of Fas, DR5, Bax expression and caspase-3, -8 and -9 activation. Exposure to non-cytotoxic concentrations of antrocin significantly inhibited cell growth, migration, and invasion, which was associated with decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Antrocin also reduced subcellular distribution of FAK and paxillin at the focal adhesion contacts of the cell periphery site, and disrupted the formation of filopodia and lamellipodia. Moreover, antrocin increased epithelial-to-mesenchymal transition-related gene E-cadherin and decreased vimentin expression. Real-time PCR analysis showed that antrocin downregulated the expression of mRNA of several MMPs, including MMP-2. Moreover, the phosphorylation of ERK and c-Fos were also attenuated by antrocin. Data from chromatin immunoprecipitation assay demonstrated that antrocin decreased the DNA binding activity of c-Fos to the upstream/enhancer region of MMP-2 promoter, an action likely to result in the reducing MMP-2 expression. Overall, this is the first study which demonstrates that antrocin-inhibited migration and invasion of bladder cancer cells is partly

  15. Cell adhesion and invasion inhibitory effect of an ovarian cancer targeting peptide selected via phage display in vivo.

    PubMed

    Pu, Ximing; Ma, Chuying; Yin, Guangfu; You, Fei; Wei, Yan

    2014-01-17

    Organ-specific metastasis is of great importance since most of the cancer deaths are caused by spread of the primary cancer to distant sites. Therefore, targeted anti-metastases therapies are needed to prevent cancer cells from metastasizing to different organs. The phage clone pc3-1 displaying peptide WSGPGVWGASVK selected by phage display had been identified which have high binding efficiency and remarkable cell specificity to SK-OV-3 cells. In the present work, the effects of selected cell-binding phage and cognate peptide on the cell adhesion and invasion of targeted cells were investigated. Results showed that the adhesive ability of SK-OV-3 to extracellular matrix was inhibited by pc3-1 and peptide WSGPGVWGASVK, and pc3-1 blocked SK-OV-3 cells attachment more effective than the cognate peptide. The peptide WSGPGVWGASVK suppressed the cell number of SK-OV-3 that attached to HUVECs monolayer up to 24% and could block the spreading of the attaching cells. Forthermore, the cognate peptide could inhibit the invasion of SK-OV-3 significantly. The number of invaded SK-OV-3 cells and invaded SK-OV-3-activated HUVECs pretreated with peptide WSGPGVWGASVK was decreased by 24.3% and 36.6%, respectively. All these results suggested that peptide WSGPGVWGASVK might possess anti-metastasis against SK-OV-3 cells. PMID:24342617

  16. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53

    PubMed Central

    Alaee, Mahsa; Danesh, Ghazal; Pasdar, Manijeh

    2016-01-01

    Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively. PMID:27144941

  17. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells.

    PubMed

    Taliaferro-Smith, LaTonia; Oberlick, Elaine; Liu, Tongrui; McGlothen, Tanisha; Alcaide, Tiffanie; Tobin, Rachel; Donnelly, Siobhan; Commander, Rachel; Kline, Erik; Nagaraju, Ganji Purnachandra; Havel, Lauren; Marcus, Adam; Nahta, Rita; O'Regan, Ruth

    2015-03-10

    Triple negative breast cancer (TNBC) is a highly metastatic disease that currently lacks effective prevention and treatment strategies. The insulin-like growth factor 1 receptor (IGF1R) and focal adhesion kinase (FAK) signaling pathways function in numerous developmental processes, and alterations in both are linked with a number of common pathological diseases. Overexpression of IGF1R and FAK are closely associated with metastatic breast tumors. The present study investigated the interrelationship between IGF1R and FAK signaling in regulating the malignant properties of TNBC cells. Using small hairpin RNA (shRNA)-mediated IGF1R silencing methods, we showed that IGF1R is essential for sustaining mesenchymal morphologies of TNBC cells and modulates the expression of EMT-related markers. We further showed that IGF1R overexpression promotes migratory and invasive behaviors of TNBC cell lines. Most importantly, IGF1R-driven migration and invasion is predominantly mediated by FAK activation and can be suppressed using pharmacological inhibitors of FAK. Our findings in TNBC cells demonstrate a novel role of the IGF1R/FAK signaling pathway in regulating critical processes involved in the metastatic cascade. These results may improve the current understanding of the basic molecular mechanisms of TNBC metastasis and provide a strong rationale for co-targeting of IGF1R and FAK as therapy for mesenchymal TNBCs. PMID:25749031

  18. MIP-1α enhances Jurkat cell transendothelial migration by up-regulating endothelial adhesion molecules VCAM-1 and ICAM-1.

    PubMed

    Ma, Yi-Ran; Ma, Ying-Huan

    2014-11-01

    The aim of this study is to evaluate the expression of macrophage inflammatory protein-1α (MIP-1α) in Jurkat cells and its effect on transendothelial migration. In the present study, human acute lymphoblastic leukemia Jurkat cells (Jurkat cells) were used as a model of T cells in human T-cell acute lymphoblastic leukemia (T-ALL), which demonstrated significantly higher MIP-1α expression compared with that in normal T-cell controls. The ability of Jurkat cells to cross a human brain microvascular endothelial cell (HBMEC) monolayer was almost completely abrogated by MIP-1α siRNA. In addition, the overexpression of MIP-1α resulted in the up-regulated expression of endothelial adhesion molecules, which enhanced the migration of Jurkat cells through a monolayer of HBMEC. MIP-1α levels in Jurkat cells appeared to be an important factor for its transendothelial migration, which may provide the theoretical basis to understand the mechanisms of brain metastases of T-ALL at cellular and molecular levels.

  19. Proto-Oncogenic Src Phosphorylates EB1 to Regulate the Microtubule-Focal Adhesion Crosstalk and Stimulate Cell Migration

    PubMed Central

    Zhang, Yijun; Luo, Youguang; Lyu, Rui; Chen, Jie; Liu, Ruming; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Cell migration, a complex process critical for tumor progression and metastasis, requires a dynamic crosstalk between microtubules (MTs) and focal adhesions (FAs). However, the molecular mechanisms underlying this event remain elusive. Herein we identify the proto-oncogenic protein Src as an important player in the regulation of the MT-FA crosstalk. Src interacts with and phosphorylates end-binding protein 1 (EB1), a member of MT plus end-tracking proteins (+TIPs), both in cells and in vitro. Systematic mutagenesis reveals that tyrosine-247 (Y247) is the primary residue of EB1 phosphorylated by Src. Interestingly, both constitutively activated Src and Y247-phosphorylated EB1 localize to the centrosome and FAs. Src-mediated EB1 phosphorylation diminishes its interactions with other +TIPs, including adenomatous polyposis coli (APC) and mitotic centromere associated kinesin (MCAK). In addition, EB1 phosphorylation at Y247 enhances the rate of MT catastrophe and significantly stimulates cell migration. These findings thus demonstrate that the Src-EB1 axis plays a crucial role in regulating the crosstalk between MTs and FAs to promote cell migration.

  20. Proto-Oncogenic Src Phosphorylates EB1 to Regulate the Microtubule-Focal Adhesion Crosstalk and Stimulate Cell Migration

    PubMed Central

    Zhang, Yijun; Luo, Youguang; Lyu, Rui; Chen, Jie; Liu, Ruming; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Cell migration, a complex process critical for tumor progression and metastasis, requires a dynamic crosstalk between microtubules (MTs) and focal adhesions (FAs). However, the molecular mechanisms underlying this event remain elusive. Herein we identify the proto-oncogenic protein Src as an important player in the regulation of the MT-FA crosstalk. Src interacts with and phosphorylates end-binding protein 1 (EB1), a member of MT plus end-tracking proteins (+TIPs), both in cells and in vitro. Systematic mutagenesis reveals that tyrosine-247 (Y247) is the primary residue of EB1 phosphorylated by Src. Interestingly, both constitutively activated Src and Y247-phosphorylated EB1 localize to the centrosome and FAs. Src-mediated EB1 phosphorylation diminishes its interactions with other +TIPs, including adenomatous polyposis coli (APC) and mitotic centromere associated kinesin (MCAK). In addition, EB1 phosphorylation at Y247 enhances the rate of MT catastrophe and significantly stimulates cell migration. These findings thus demonstrate that the Src-EB1 axis plays a crucial role in regulating the crosstalk between MTs and FAs to promote cell migration. PMID:27698945

  1. BCAT1 promotes tumor cell migration and invasion in hepatocellular carcinoma

    PubMed Central

    Xu, Meng; Liu, Qingquan; Jia, Yuli; Tu, Kangsheng; Yao, Yingmin; Liu, Qingguang; Guo, Cheng

    2016-01-01

    Branched-chain amino acid transaminase 1 (BCAT1) has been associated with numerous types of tumors; however, few previous studies have evaluated the expression and role of BCAT1 in hepatocellular carcinoma (HCC). In the present study, the expression of BCAT1 was detected by reverse transcription-quantitative polymerase chain reaction and immunoblotting in six HCC cell lines and 74 pairs of HCC and adjacent non-cancerous liver tissues. In addition, the correlation between the expression levels of c-Myc and BCAT1 was analyzed using immunohistochemistry. Furthermore, RNA silencing was performed using c-Myc-specific or BCAT1-specific small interfering RNA, after which wound healing and Transwell cell invasion assays were performed. Finally, the clinicopathological characteristics of BCAT1 in patients with HCC were analyzed. It was shown that the expression of BCAT1 was significantly higher in HCC tissues compared with adjacent non-tumor tissues (P<0.001), and in HCC cell lines compared within the L-02 hepatic cell line (P<0.001). In addition, immunohistochemical analyses indicated that the expression of BCAT1 was positively correlated with c-Myc (r=0.706, P<0.001). BCAT1 expression was shown to be downregulated in c-Myc-knockdown cells, and silencing of BCAT1 expression reduced the invasion and migration of HCC cells. Furthermore, a clinical analysis indicated that BCAT1 expression in HCC tissues was significantly associated with the tumor-node-metastasis stage, tumor number and tumor differentiation (all P<0.05), and that BCAT1 was able to predict the 5-year survival and disease-free survival rates of patients with HCC (both P<0.001). The results of the present study suggested that BCAT1 expression is upregulated in patients with HCC, and that BCAT1 may serve as a potential molecular target for the diagnosis and treatment of HCC.

  2. Elastin peptides regulate HT-1080 fibrosarcoma cell migration and invasion through an Hsp90-dependent mechanism

    PubMed Central

    Donet, M; Brassart-Pasco, S; Salesse, S; Maquart, F-X; Brassart, B

    2014-01-01

    Background: The elastin-derived peptides (EDPs) exert protumoural activities by potentiating the secretion of matrix metalloproteinases (MMP) and the plasminogen–plasmin activating system. In the present paper, we studied heat-shock protein 90 (Hsp90) involvement in this mechanism. Methods: HT-1080 fibrosarcoma cell migration and invasion were studied in artificial wound assay and modified Boyden chamber assay, respectively. Heat-shock protein 90 was studied by western blot and immunofluorescence. Matrix metalloproteinase–2 and urokinase plasminogen activator (uPA) were studied by gelatin±plasminogen zymography and immunofluorescence. Heat-shock protein 90 partners were studied by immunoprecipitation. Messenger RNA expression was studied using real-time PCR. Small interfering RNAs were used to confirm the essential role of Hsp90. Results: We showed that kappa-elastin and VGVAPG elastin hexapeptide stimulated Hsp90, pro-MMP-2 and uPA secretion within 6 h, whereas AGVPGLGVG and GRKRK peptides had no effect. No increase of mRNA level was observed. Heat-shock protein 90-specific inhibitors inhibit EDP-stimulated HT-1080 cell-invasive capacity and restrained EDP-stimulated pro-MMP-2 and uPA secretions. The inhibitory effect was reproduced by using Hsp90-blocking antibody or Hsp90 knockdown by siRNA. Heat-shock protein 90 interacted with and stabilised uPA and pro-MMP-2 in conditioned culture media of HT-1080 fibrosarcoma cells. Conclusions: Taken together, our results demonstrate that EDPs exert protumoural activities through an Hsp90-dependent mechanism involving pro-MMP-2 and uPA. PMID:24874477

  3. Migration of odorous compounds from adhesives used in market samples of food packaging materials by chromatography olfactometry and mass spectrometry (GC-O-MS).

    PubMed

    Vera, Paula; Canellas, Elena; Nerín, Cristina

    2014-02-15

    Adhesives are commonly used in the manufacture of multilayer food packaging materials. Although they are not in direct contact with the packed food, their compounds may migrate from the adhesive through the substrates to the food. The aim of this work is to determine the migrant concentration in order to evaluate the possible human risk and also to determine if this migration could affect the organoleptic properties of packed food. For this purpose, a total of 12 market samples of multilayer materials (laminates) for packaging dry food (tomatoes, cakes, cookies, breadcrumbs, flour or salt) or fresh food (pizza and pastry) produced with 5 different adhesives were analysed by GC-O-MS. A total of 25 different compounds from adhesives were detected in these laminates. Seventy-six percentage of these compounds migrated into a dry food simulant (Tenax®). Furthermore, compounds with concentrations below the MS detection limit were detected by sniffers with a high modified frequency (MF%). Acetic acid, butyric acid and cyclohexanol with vinegar, cheese and camphor odours were the most abundant compounds. All migration data were below the specific migration limits (SML) and threshold toxicological concern (TTC) recommended values according to the Cramer classification.

  4. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells.

    PubMed

    Kim, Yoon Suk; Sull, Jae Woong; Sung, Ho Joong

    2012-09-01

    The antioxidant 3,4',5 tri-hydroxystilbene (resveratrol), a phytoalexin found in grapes, shows cancer preventive activities, including inhibition of migration and invasion of metastatic tumors. However, the molecular mechanism underlying the effect of resveratrol on tumor metastasis, especially in human metastatic lung and cervical cancers is not clear. A non-cytotoxic dosage of resveratrol causes a reduction in the generation of reactive oxygen species, and suppresses phorbol 12-myristate 13-acetate (PMA)-induced invasion and migration in both A549 and HeLa cells. Resveratrol also decreases both the expression and the enzymatic activity of matrix metalloproteinase-9 (MMP-9), and the promoter activity of PMA-stimulated MMP-9 is also inhibited. However, resveratrol does not affect either the expression or the proteolytic activity of MMP-2. Our results also show that resveratrol suppresses the transcription of MMP-9 by the inhibition of both NF-κB and AP-1 transactivation. These results indicate that resveratrol inhibits both NF-κB and AP-1 mediated MMP-9 expression, leading to suppression of migration and invasion of human metastatic lung and cervical cancer cells. Resveratrol has potential for clinical use in preventing invasion by human metastatic lung and cervical cancers.

  5. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro.

    PubMed

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun; Sun, Lizhou

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  6. TEM7 (PLXDC1), a key prognostic predictor for resectable gastric cancer, promotes cancer cell migration and invasion

    PubMed Central

    Zhang, Zi-Zhen; Hua, Rong; Zhang, Jun-Feng; Zhao, Wen-Yi; Zhao, En-Hao; Tu, Lin; Wang, Chao-Jie; Cao, Hui; Zhang, Zhi-Gang

    2015-01-01

    Tumor endothelial marker 7 (TEM7) is a new candidate of molecular target for antiangiogenic therapy. This study aims to evaluate its expression in gastric cancer (GC) and to explore the correlation between its expression and the clinical outcome of patients. Expression of TEM7 was analyzed in both tumor tissues and cell lines of GC by real-time quantitative RT-PCR (qRT-PCR) and Western blot. RNA interference (RNAi) approaches were used to investigate the biological functions of TEM7. The effects of TEM7 on cell migration and invasion were evaluated by Transwell assays. In vitro experiments revealed that TEM7 was significantly overexpressed in GC cell lines (N87, AGS and SGC-7901) by 2-fold to 4-fold, and knockdown of TEM7 could significantly inhibit cancer cell migration and invasion. For GC patients, TEM7 gene expression was elevated in tumors in most cases (25/31), and its expression was closely correlated with tumor differentiation, depth of cancer invasion, lymphatic metastasis and TNM stage. The overall survival of TEM7 (-) group was significantly higher than that of TEM7 (+) group (P = 0.048) and TEM7 (++) group (P = 0.003). TEM7 is highly expressed in GC and is likely correlated with tumor invasion and migration, and thus its expression is closely related to the clinical outcome of patients. PMID:25973314

  7. Knockdown of TACC3 inhibits trophoblast cell migration and invasion through the PI3K/Akt signaling pathway.

    PubMed

    Zhu, Xiaojun; Cao, Qianqian; Li, Xia; Wang, Zhengping

    2016-10-01

    The insufficient invasion of trophoblasts is known to be correlated with the development of preeclampsia. Transforming acidic coiled‑coil protein 3 (TACC3), a member of the TACC domain family, is important in the regulation of cell differentiation, migration and invasion. However, the role of TACC3 in trophoblast function during placental development remains to be fully elucidated. The present study aimed to determine the expression and function of TACC3 in human placenta and to examine the underlying mechanisms. TACC3 expression was analyzed in preeclamptic placentas using reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell proliferation was determined by the MTT assay, and cell migration and invasion were measured using Transwell assays. The expression levels of TACC3, matrix metalloproteinase (MMP)‑2, MMP‑9, tissue inhibitor of metalloproteinase (TIMP)‑1, TIMP‑2, phosphoinositide 3‑kinase (PI3K), phosphorylated (p)‑PI3K, AKT and p‑AKT were detected by western blotting. The results showed that the expression of TACC3 was downregulated in preeclamptic placentas. The knockdown of TACC3 significantly inhibited HTR8/SVneo cell proliferation, migration and invasion, and inhibited the expression of matrix metalloproteinases. In addition, the knockdown of TACC3 significantly reduced the levels of p‑PI3K and Akt in the HTR8/SVneo cells. Taken together, the results of the present study demonstrated that the knockdown of TACC3 inhibited the migration and invasion of HTR8/SVneo cells through suppression of the PI3K/Akt signaling pathway. Therefore, TACC3 may serve as a novel potential target for treating preeclampsia. PMID:27572091

  8. Ampelopsin reduces the migration and invasion of ovarian cancer cells via inhibition of epithelial-to-mesenchymal transition.

    PubMed

    Liu, Tianfeng; Liu, Peishu; Ding, Feng; Yu, Nina; Li, Shihong; Wang, Surong; Zhang, Xiaofei; Sun, Xiangxiu; Chen, Ying; Wang, Feng; Zhao, Yunhe; Li, Bo

    2015-02-01

    Ampelopsin has displayed anticancer activity in several types of cancers. However, no evidence has been reported for the direct effect of ampelopsin on ovarian cancer cell migration and invasion, and the underling mechanisms have not yet been clearly established. The aim of the present study was to investigate the influence of ampelopsin on the migration and invasion of ovarian cancer. Proliferation and viability of the ovarian cancer cells were detected by MTT assay. Migration and invasion of the cells were detected, respectively, by scratch wound healing assay and Transwell assay. The expression levels of epithelial-to-mesenchymal transition (EMT) markers were detected at the protein level after stimulation with ampelopsin. Then, the expression levels of NF-κB and p-IκBα were detected with western blot analysis. Meanwhile, an inhibitor of NF-κB was used to investigate the effect of ampelopsin. Finally, the expression of Snail was also detected. Proliferation, migration and invasion of the A2780 cells were all inhibited following the application of ampelopsin. Ampelopsin upregulated E-cadherin and downregulated N-cadherin and vimentin in a concentration- and time-dependent manner. Ampelopsin also exerted its ability to suppress the nuclear translocation of the NF-κB pathway. Administration of the inhibitor BAY11-7082 confirmed the roles of NF-κB in the expression of EMT markers and its transcription factor. These results demonstrated that ampelopsin inhibited EMT and reduced the invasion of ovarian cancer cells via the NF-κB/Snail pathway. PMID:25502786

  9. Ampelopsin reduces the migration and invasion of ovarian cancer cells via inhibition of epithelial-to-mesenchymal transition.

    PubMed

    Liu, Tianfeng; Liu, Peishu; Ding, Feng; Yu, Nina; Li, Shihong; Wang, Surong; Zhang, Xiaofei; Sun, Xiangxiu; Chen, Ying; Wang, Feng; Zhao, Yunhe; Li, Bo

    2015-02-01

    Ampelopsin has displayed anticancer activity in several types of cancers. However, no evidence has been reported for the direct effect of ampelopsin on ovarian cancer cell migration and invasion, and the underling mechanisms have not yet been clearly established. The aim of the present study was to investigate the influence of ampelopsin on the migration and invasion of ovarian cancer. Proliferation and viability of the ovarian cancer cells were detected by MTT assay. Migration and invasion of the cells were detected, respectively, by scratch wound healing assay and Transwell assay. The expression levels of epithelial-to-mesenchymal transition (EMT) markers were detected at the protein level after stimulation with ampelopsin. Then, the expression levels of NF-κB and p-IκBα were detected with western blot analysis. Meanwhile, an inhibitor of NF-κB was used to investigate the effect of ampelopsin. Finally, the expression of Snail was also detected. Proliferation, migration and invasion of the A2780 cells were all inhibited following the application of ampelopsin. Ampelopsin upregulated E-cadherin and downregulated N-cadherin and vimentin in a concentration- and time-dependent manner. Ampelopsin also exerted its ability to suppress the nuclear translocation of the NF-κB pathway. Administration of the inhibitor BAY11-7082 confirmed the roles of NF-κB in the expression of EMT markers and its transcription factor. These results demonstrated that ampelopsin inhibited EMT and reduced the invasion of ovarian cancer cells via the NF-κB/Snail pathway.

  10. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells.

    PubMed

    Yu, Lei; Yang, Yanming; Hou, Jiguang; Zhai, Chengwei; Song, Yunhao; Zhang, Zhiliang; Qiu, Ling; Jia, Xiaojing

    2015-10-01

    Radiotherapy resistance remains a major obstacle for patients with breast cancer. miRNAs are important regulators in many biological processes including proliferation, apoptosis, invasion and metastasis and response to treatment in different types of tumors. Here, we describe the role of miRNA-144 in the regulation of radiotherapy sensitivity, migration and invasion of breast cancer cells. The cell survival rate of breast cancer cells was measured by WST-1 assay after irradiation. The caspase-3/-7 activity and apoptotic proteins were analyzed by Caspase-Glo3/7 assay and western blot analysis, respectively. The migration and invasion of breast cancer cells were evaluated by BD Transwell migration and Matrigel invasion assays. The EMT markers were detected by western blot analysis. We found that overexpression of miR-144 increased the proliferation rate of MDA-MB-231 cells without radiation. Both MDA-MB‑231 and SKBR3 cells exhibited significantly increased radiation resistance after overexpression of miR-144. Meanwhile, the migration and invasion of both MDA-MB-231 and SKBR3 cells were changed by altered miR-144 expression. In addition, the overexpression of miR-144 inhibited E-cadherin expression and promoted Snail expression. miR-144 activated AKT by downregulation of PTEN in breast cancer cells. Our results strongly suggest that miR-144 acts as an important regulator of tumorigenesis and tumor progression of breast cancer. These results indicate that miR-144 might serve as a potential molecular target for breast cancer treatment.

  11. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    SciTech Connect

    Zhao, Ziyi; Chen, Changjin; Liu, Yu; Wu, Chuanfang

    2014-03-07

    Highlights: • E2 affects not only estrogen-receptor α positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor α-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor α (ERα), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ERα show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ERα. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ERα independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ERα -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level.

  12. Cigarette smoke modulates PC3 prostate cancer cell migration by altering adhesion molecules and the extracellular matrix

    PubMed Central

    YANG, SUPING; LONG, MINICA; TACHADO, SOUVENIR D.; SENG, SEYHA

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related mortality among American males. Studies suggest that cigarette smoking is associated with the progression of PCa; however, the molecular mechanisms underlying this process have not been extensively investigated. PCa progression is characterized by increased cell migration and alterations in extracellular matrix (ECM)- and cell adhesion molecule (CAM)-related gene expression. In the present study, the influence of cigarette smoke medium (SM) on cell migration and on the expression of ECM- and CAM-related genes in PC3 prostate adenocarcinoma cells was investigated. According to a wound-healing assay, SM treatment promoted PC3 cell migration. RNA expression levels from SM-treated and control cells were analyzed using a polymerase chain reaction (PCR) array. Of 84 genes analyzed, 27.38% (23/84) exhibited a ≥2-fold change in threshold cycle in PC3 cells following 0.5% SM treatment. Functional gene grouping analysis demonstrated that SM treatment modulated the RNA transcription of approximately 18.4% of CAMs and 33.93% of ECM-related genes. Quantitative PCR analysis showed that SM treatment led to a significant decrease in transcription levels of the following genes: Collagen 5 α-1(V), connective tissue growth factor, integrin β-2, kallmann syndrome 1, laminin α 3, matrix metallopeptidase 7 (MMP7), MMP13, secreted protein acidic cysteine-rich, thrombospondin-2 and versican; and that SM significantly increased the transcription levels of MMP2 and MMP12. Furthermore, MMP2 knockdown significantly reduced the migration of SM-treated PC3 cells. The present study provides novel insights into the association of cigarette smoking with PCa progression, via the alteration of ECM/CAM interactions. PMID:26351771

  13. MicroRNA-1(miR-1) inhibits chordoma cell migration and invasion by targeting Slug

    PubMed Central

    Osaka, Eiji; Yang, Xiaoqian; Shen, Jacson K.; Yang, Pei; Feng, Yong; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2014-01-01

    Recent studies have revealed that expression of miRNA-1(miR-1) is frequently downregulated in several cancer types including chordoma. Identifying and validating novel targets of miR-1 is useful for understanding the roles of miR-1 in chordoma. We aimed to further investigate the functions of miR-1 in chordoma. Specifically, we assessed whether restoration of miR-1 affects cell migration and invasion in chordoma, and focused on the miR-1 potential target Slug gene. Migratory and invasive activities were assessed by wound healing and Matrigel invasion assays, respectively. Cell proliferation was determined by MTT assay. Slug expression was evaluated by Western blot, immunofluorescence, and immunohistochemistry. Restoration of miR-1 expression suppressed the migratory and invasive activities of chordoma cells. Transfection of miR-1 inhibited cell proliferation both time- and dose-dependently in chordoma. miR-1 transfected cells showed inhibited Slug expression. Slug was overexpressed in chordoma cell lines and advanced chordoma tissues. In conclusion, we have shown that miR-1 directly targets the Slug gene in chordoma. Restoration of miR-1 suppressed not only proliferation, but also migratory and invasive activities, and reduced the Slug expression in chordoma cells. These results collectively indicate that miR-1/Slug pathway is a potential therapeutic target because of its crucial roles in chordoma cell growth and migration. PMID:24760686

  14. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  15. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  16. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model.

    PubMed

    Pinto, Laine Celestino; Soares, Bruno Moreira; Pinheiro, João de Jesus Viana; Riggins, Gregory J; Assumpção, Paulo Pimentel; Burbano, Rommel Mário Rodriguez; Montenegro, Raquel Carvalho

    2015-12-01

    The present study aimed to investigate the effects of MBZ on a human malignant ascites cell line derived from a primary gastric cancer tumor. Our data reveal that MBZ showed high cytotoxicity in vitro, displaying an IC50 of 0.39 μM and 1.25 μM in ACP-02 and ACP-03, respectively. The association between MBZ and 5-FU increased slightly the cytotoxicity when compared to MBZ and 5-FU alone. Furthermore, MBZ disrupted the microtubule structure of AGP-01 cells and inhibited significantly the invasion and migration of these cells. Activity of active MMP-2 significantly decreased at all tested concentration of MBZ compared to negative control. These results support the indication of MBZ in combination with chemotherapeutic agents as a possible adjuvant therapy for the management/treatment of patients with advanced gastric cancer since MBZ is a drug of low cost with acceptable safety profile and reduced toxicity to normal cells. However, clinical trials must be performed in o to evaluate its efficacy in gastric cancer patients.

  17. Disrupting the PIKE-A/Akt interaction inhibits glioblastoma cell survival, migration, invasion and colony formation

    PubMed Central

    Qi, Q; He, K; Liu, X; Pham, C; Meyerkord, C; Fu, H; Ye, K

    2013-01-01

    The cyclin-dependent kinase 4 (CDK4) amplicon is frequently amplified in numerous human cancers including gliomas. PIKE-A, a proto-oncogene that is one of the important components of the CDK4 amplicon, binds to and enhances the kinase activity of Akt, thereby promoting cancer progression. To define the roles of the PIKE-A/Akt interaction in glioblastoma multiform (GBM) progression, we used biochemical protein/protein interaction (PPI) assays and live cell fluorescence-based protein complementation assays to search for small peptide antagonist from these proteins that were able to block their interaction. Here, we show that disruption of the interaction between PIKE-A and Akt by the small peptides significantly reduces glioblastoma cell proliferation, colony formation, migration and invasion. Disruption of PIKE-A/Akt association potently suppressed GBM cell proliferation and sensitized the cells to two clinical drugs that are currently used to treat GBM. Interestingly, GBM cells containing the CDK4 amplicon were more responsive to the inhibition of the PIKE-A/Akt interaction than GBM cells lacking this amplicon. Taken together, our findings provide proof-of-principle that blocking a PPI that is essential for cancer progression provides a valuable strategy for therapeutic discovery. PMID:22450747

  18. A Novel EPAC-Specific Inhibitor Suppresses Pancreatic Cancer Cell Migration and Invasion

    PubMed Central

    Almahariq, Muayad; Tsalkova, Tamara; Mei, Fang C.; Chen, Haijun; Zhou, Jia; Sastry, Sarita K.; Schwede, Frank

    2013-01-01

    Exchange protein directly activated by cAMP (EPAC) and cAMP-dependent protein kinase (PKA) are two intracellular receptors that mediate the effects of the prototypic second messenger cAMP. Identifying pharmacological probes for selectively modulating EPAC activity represents a significant unmet need within the research field. Herein, we report the identification and characterization of 3-(5-tert-butyl-isoxazol-3-yl)-2-[(3-chloro-phenyl)-hydrazono]-3-oxo-propionitrile (ESI-09), a novel noncyclic nucleotide EPAC antagonist that is capable of specifically blocking intracellular EPAC-mediated Rap1 activation and Akt phosphorylation, as well as EPAC-mediated insulin secretion in pancreatic β cells. Using this novel EPAC-specific inhibitor, we have probed the functional roles of overexpression of EPAC1 in pancreatic cancer cells. Our studies show that EPAC1 plays an important role in pancreatic cancer cell migration and invasion, and thus represents a potential target for developing novel therapeutic strategies for pancreatic cancer. PMID:23066090

  19. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model.

    PubMed

    Pinto, Laine Celestino; Soares, Bruno Moreira; Pinheiro, João de Jesus Viana; Riggins, Gregory J; Assumpção, Paulo Pimentel; Burbano, Rommel Mário Rodriguez; Montenegro, Raquel Carvalho

    2015-12-01

    The present study aimed to investigate the effects of MBZ on a human malignant ascites cell line derived from a primary gastric cancer tumor. Our data reveal that MBZ showed high cytotoxicity in vitro, displaying an IC50 of 0.39 μM and 1.25 μM in ACP-02 and ACP-03, respectively. The association between MBZ and 5-FU increased slightly the cytotoxicity when compared to MBZ and 5-FU alone. Furthermore, MBZ disrupted the microtubule structure of AGP-01 cells and inhibited significantly the invasion and migration of these cells. Activity of active MMP-2 significantly decreased at all tested concentration of MBZ compared to negative control. These results support the indication of MBZ in combination with chemotherapeutic agents as a possible adjuvant therapy for the management/treatment of patients with advanced gastric cancer since MBZ is a drug of low cost with acceptable safety profile and reduced toxicity to normal cells. However, clinical trials must be performed in o to evaluate its efficacy in gastric cancer patients. PMID:26315676

  20. A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma.

    PubMed

    Song, Ye; Hu, Zheng; Long, Hao; Peng, Yuping; Zhang, Xi'an; Que, Tianshi; Zheng, Shihao; Li, Zhiyong; Wang, Gang; Yi, Liu; Liu, Zhen; Fang, Weiyi; Qi, Songtao

    2014-09-01

    HDGF is overexpressed in gliomas as compared to normal brain. We therefore analyzed the molecular mechanisms of HDGF action in gliomas. HDGF was downregulated in normal brain tissue as compared to glioma specimens at both the mRNA and the protein levels. In glioma samples, increased HDGF expression was associated with disease progression. Knocking down HDGF expression not only significantly decreased cellular proliferation, migration, invasion, and tumorigenesis, but also markedly enhanced TMZ-induced cytotoxicity and apoptosis in glioma cells. Mechanistic analyses revealed that CCND1, c-myc, and TGF-β were downregulated after stable HDGF knockdown in the U251 and U87 glioma cells. HDGF knockdown restored E-cadherin expression and suppressed mesenchymal cell markers such as vimentin, β-catenin, and N-cadherin. The expression of cleaved caspase-3 increased, while Bcl-2 decreased in each cell line following treatment with shHDGF and TMZ, as compared to TMZ alone. Furthermore, RNAi-based knockdown study revealed that HDGF is probably involved in the activation of both the PI3K/Akt and the TGF-β signaling pathways. Together, our data suggested that HDGF regulates glioma cell growth, apoptosis and epithelial-mesenchymal transition (EMT) probably through the Akt and the TGF-β signaling pathways. These results provide evidence that targeting HDGF or its downstream targets may lead to novel therapies for gliomas.

  1. RNA interference-mediated targeting of DKK1 gene expression in Ishikawa endometrial carcinoma cells causes increased tumor cell invasion and migration

    PubMed Central

    YI, NUO; LIAO, QIN-PING; LI, ZHEN-HUA; XIE, BAO-JIANG; HU, YU-HONG; YI, WEI; LIU, MIN

    2013-01-01

    The Wnt signaling pathway plays an essential role in tumor invasion and migration. DKK1 functions as an important inhibitor of the pathway and represents a promising target for cancer therapy. The aim of the present study was to determine the role of DKK1 in endometrial carcinoma (EC) cell invasion and migration using RNA interference (RNAi) technology. Ishikawa EC cells were transfected at high efficiency with specific DKK1 siRNA. RT-PCR and western blot analysis were used to determine the mRNA and protein levels of DKK1, β-catenin and metalloproteinase 14 (MMP14) in siRNA-treated and -untreated cells. In addition, the invasion and migration of the EC cells were detected by invasion and migration assays. Transient transfection of DKK1 siRNA significantly inhibited the mRNA and protein levels of DKK1. Markedly increased cell invasion and migration was observed following treatment with DKK1 siRNA when compared with the negative control siRNA-treated and siRNA-untreated cells. The knockdown of DKK1 also elevated the mRNA and protein levels of β-catenin and MMP14 involved in the Wnt signaling pathway, indicating that targeting this gene may promote intracellular Wnt signal transduction and thus, accelerate EC cell invasion and migration in vitro. The RNAi-mediated targeting of DKK1 gene expression in Ishikawa EC cells resulted in increased tumor cell invasion and migration. DKK1 was identified as an inhibitor of EC cell invasion and migration via its novel role in the Wnt signaling pathway. Targeting DKK1 may therefore represent an effective anti-invasion and -migration strategy for the treatment of EC. PMID:24137406

  2. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family.

    PubMed

    Suzuki, Osamu; Abe, Masafumi; Hashimoto, Yuko

    2015-12-01

    To determine the biological roles of cell surface glycosylation, we modified the surface glycosylation of human malignant lymphoma cell lines using glycosylation inhibitors. The O-glycosylation inhibitor, benzyl-α-GalNAc (BZ) enhanced the fibronectin adhesion of HBL-8 cells, a human Burkitt's lymphoma cell line, and of H-ALCL cells, a human anaplastic large cell lymphoma cell line, both of which were established in our laboratory. The N-glycosylation inhibitor, tunicamycin (TM) inhibited the surface expression of Phaseolus vulgaris leukoagglutinating (L-PHA) lectin- and Canavalia ensiformis (ConA) lectin-reactive oligosaccharides in the HBL-8 cell line. Assay of the adhesion of HBL-8 cells to fibronectin showed that fibronectin adhesion is mediated by the integrin very late antigen (VLA)-4 and that not only BZ but also TM treatment enhanced HBL-8 cell adhesion to fibronectin. Furthermore, although BZ treatment also enhanced H-ALCL cell adhesion to fibronectin, this effect was not mediated by VLA-5 or the RGD sequence of fibronectin. We also showed that H-ALCL cell adhesion to galectin-3 was enhanced by pre-treatment with neuraminidase, which cleaves cell surface sialic acid. Additionally, H-ALCL cell adhesion to galectin-3 was inhibited by pre‑treatment with the RGD peptide suggesting that cell adhesion to galectin-3 is mediated by integrin (VLA-5). Furthermore, H-ALCL cell invasion of galectin-1 and galectin-3 was inhibited by pre-treatment with the RGD peptide. Therefore, cell adhesion to and invasion of galectin-1 and galectin-3 are integrin-dependent. In addition to these findings, cell adhesion to galectin-3 was markedly inhibited by treatment with β-lactose compared to treatment with sucrose. Therefore, interactions between integrins and galectin-3 may be mediated through β-galactose that is linked to glycans of integrins. AZA1, an inhibitor of Ras homolog oncoprotein (Rho) GTPase family proteins, RAS-related C3 botulinus toxin substrate 1 (Rac 1) and

  3. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis

    PubMed Central

    Zaman, Muhammad H.; Trapani, Linda M.; Sieminski, Alisha; MacKellar, Drew; Gong, Haiyan; Kamm, Roger D.; Wells, Alan; Lauffenburger, Douglas A.; Matsudaira, Paul

    2006-01-01

    Cell migration on 2D surfaces is governed by a balance between counteracting tractile and adhesion forces. Although biochemical factors such as adhesion receptor and ligand concentration and binding, signaling through cell adhesion complexes, and cytoskeletal structure assembly/disassembly have been studied in detail in a 2D context, the critical biochemical and biophysical parameters that affect cell migration in 3D matrices have not been quantitatively investigated. We demonstrate that, in addition to adhesion and tractile forces, matrix stiffness is a key factor that influences cell movement in 3D. Cell migration assays in which Matrigel density, fibronectin concentration, and β1 integrin binding are systematically varied show that at a specific Matrigel density the migration speed of DU-145 human prostate carcinoma cells is a balance between tractile and adhesion forces. However, when biochemical parameters such as matrix ligand and cell integrin receptor levels are held constant, maximal cell movement shifts to matrices exhibiting lesser stiffness. This behavior contradicts current 2D models but is predicted by a recent force-based computational model of cell movement in a 3D matrix. As expected, this 3D motility through an extracellular environment of pore size much smaller than cellular dimensions does depend on proteolytic activity as broad-spectrum matrix metalloproteinase (MMP) inhibitors limit the migration of DU-145 cells and also HT-1080 fibrosarcoma cells. Our experimental findings here represent, to our knowledge, discovery of a previously undescribed set of balances of cell and matrix properties that govern the ability of tumor cells to migration in 3D environments. PMID:16832052

  4. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad H.; Trapani, Linda M.; Sieminski, Alisha L.; MacKellar, Drew; Gong, Haiyan; Kamm, Roger D.; Wells, Alan; Lauffenburger, Douglas A.; Matsudaira, Paul

    2006-07-01

    Cell migration on 2D surfaces is governed by a balance between counteracting tractile and adhesion forces. Although biochemical factors such as adhesion receptor and ligand concentration and binding, signaling through cell adhesion complexes, and cytoskeletal structure assembly/disassembly have been studied in detail in a 2D context, the critical biochemical and biophysical parameters that affect cell migration in 3D matrices have not been quantitatively investigated. We demonstrate that, in addition to adhesion and tractile forces, matrix stiffness is a key factor that influences cell movement in 3D. Cell migration assays in which Matrigel density, fibronectin concentration, and 1 integrin binding are systematically varied show that at a specific Matrigel density the migration speed of DU-145 human prostate carcinoma cells is a balance between tractile and adhesion forces. However, when biochemical parameters such as matrix ligand and cell integrin receptor levels are held constant, maximal cell movement shifts to matrices exhibiting lesser stiffness. This behavior contradicts current 2D models but is predicted by a recent force-based computational model of cell movement in a 3D matrix. As expected, this 3D motility through an extracellular environment of pore size much smaller than cellular dimensions does depend on proteolytic activity as broad-spectrum matrix metalloproteinase (MMP) inhibitors limit the migration of DU-145 cells and also HT-1080 fibrosarcoma cells. Our experimental findings here represent, to our knowledge, discovery of a previously undescribed set of balances of cell and matrix properties that govern the ability of tumor cells to migration in 3D environments. cell motility | EGF receptor | extracellular matrix | matrix metalloproteinase

  5. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Xu, Xuehe; Jin, Aihui; Jia, Qunying; Zhou, Huaibin; Kang, Shuai; Lou, Yongliang; Gao, Jimin; Lu, Jianxin

    2013-09-01

    We used a baculovirus expression system to express fusion proteins of HCV core, RGD (Arg-Gly-Asp) peptide, and IFN-α2a fragments in Sf9 cells. Western blotting and electron microscopy demonstrate that HCV core, peptides RGD, and IFN-α2a fusion proteins assemble into 30 to 40 nm nano-particles (virus-like particles, VLPs). Xenograft assays show that VLPs greatly reduced tumor volume and weight with regard to a nontreated xenograft. Migration and invasion results show that VLPs can inhibit the migration and invasion of the breast cancer cells MDA-MB231. This study will provide theoretical and experimental basis for the establishment of safe and effective tumor-targeted drug delivery systems and clinical application of VLPs carrying cell interacting cargo.

  6. Overexpression of Csk-binding protein decreases growth, invasion, and migration of esophageal carcinoma cells by controlling Src activation

    PubMed Central

    Zhou, Dong; Dong, Peng; Li, Yu-Min; Guo, Fa-Cai; Zhang, An-Ping; Song, Run-Ze; Zhang, Ya-Min; Li, Zhi-Yong; Yuan, Dong; Yang, Chuan

    2015-01-01

    AIM: To investigate the mechanisms by which Csk-binding protein (CBP) inhibits tumor progression in esophageal carcinoma. METHODS: A CBP overexpressing esophageal carcinoma cell line (TE-1) was established. The growth, invasion, and migration of CBP-TE-1 cells, as well as the expression of Src were then determined and compared with those in normal TE-1 cells. RESULTS: The expression of Src was decreased by the overexpression of CBP in TE-1 cells. The growth, invasion, and migration of TE-1 cells were decreased by the overexpression of CBP. CONCLUSION: This study indicates that CBP may decrease the metastasis of esophageal carcinoma by inhibiting the activation of Src. CBP may be a potential tumor suppressor and targeting the CBP gene may be an alternative strategy for the development of therapies for esophageal carcinoma. PMID:25684946

  7. ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion

    SciTech Connect

    Feigin, Michael E.; Muthuswamy, Senthil K.

    2009-02-15

    The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression.

  8. Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma.

    PubMed

    Kesanakurti, D; Chetty, C; Rajasekhar Maddirela, D; Gujrati, M; Rao, J S

    2012-12-20

    Gliomas display anoikis resistance, enhanced invasion in to the adjacent brain parenchyma and eventually recur despite using the standard therapies. Our studies on increased anoikis sensitization in matrix metalloproteinase-2 (MMP-2)-knockdown 4910 and 5310 human glioma xenograft cells were interestingly correlated with p21-activated kinase 4 (PAK4) inhibition, prompting us to further investigate the role of PAK4 in glioma. Here, we report the PAK4 upregulation in positive correlation with increasing glioma pathological grades. The siRNA-mediated PAK4 knockdown elevated anoikis, and inhibited invasion and migration by downregulating MMP-2, αvβ3-integrin and phospho-epidermal growth factor receptor (phospho-EGFR). The cDNA-PCR arrays revealed a transcriptional suppression of essential proteins involved in cell proliferation and adhesion in PAK4-knockdown cells. Most importantly, glutathione S-transferase pull-down assays demonstrated the MMP-2 as a new PAK4-interacting protein which binds to PAK4 kinase domain. Individual EGFR/ErbB2 inhibitor and αvβ3 antibody treatments in PAK4si-treated cells indicated the regulation of αvβ3/EGFR survival signaling by PAK4. Overexpression of PAK4 significantly reversed the MMP2si-induced cell death in both cell lines. Codepletion of PAK4 and MMP-2 resulted in robust anoikis-mediated cell death, and severely inhibited invasive and migratory properties in these cells. PAK4si inhibited in vivo tumor growth in nude mice by inhibiting MMP-2, β3-integrin and phospho-EGFR levels in tumors. Our findings indicate a physical association between PAK4 and MMP-2, and suggest the future therapeutic potential of PAK4/MMP-2 dual targeting in glioma treatment.

  9. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells.

    PubMed

    Nowicki, Theodore S; Zhao, Hong; Darzynkiewicz, Zbigniew; Moscatello, Augustine; Shin, Edward; Schantz, Stimson; Tiwari, Raj K; Geliebter, Jan

    2011-01-01

    Papillary thyroid carcinoma (PTC) is the most common endocrine and thyroid malignancy.  The urokinase plasminogen activator receptor (uPAR) plays an important role in cancer pathogenesis, including breakdown of the extracellular matrix, invasion, and metastasis.  Additionally, there is increasing evidence that uPAR also promotes tumorigenesis via the modulation of multiple signaling pathways.  BRAFV600E, the most common initial genetic mutation in PTC, leads to ERK1/2 hyperphosphorylation, which has been shown in numerous cancers to induce uPAR.  Treatment of the BRAFV600E-positive PTC cell line, BCPAP, with the MEK/ERK inhibitor U0126 reduced uPAR RNA levels by 90%.  siRNA-mediated down-regulation of uPAR in BCPAP cells resulted in greatly decreased activity in the focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway.  This phenomenon was concurrent with drastically reduced proliferation rates and decreased clonigenic survival, as well as demonstrated senescence-associated nuclear morphology and induction of b-galactosidase activity. uPAR-knockdown BCPAP cells also displayed greatly reduced migration and invasion rates, as well as a complete loss of the cells' ability to augment their invasiveness following plasminogen supplementation. Taken together, these data provide new evidence of a novel role for uPAR induction (as a consequence of constitutive ERK1/2 activation) as a central component in PTC pathogenesis, and highlight the potential of uPAR as a therapeutic target. PMID:21191179

  10. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19

    SciTech Connect

    Shan, Nianxi; Shen, Liangfang; Wang, Jun; He, Dan; Duan, Chaojun

    2015-01-02

    Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues and cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC.

  11. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    PubMed Central

    Zeng, Fan-Chang; Zeng, Ming-Qiang; Huang, Liang; Li, Yong-Lin; Gao, Ben-Min; Chen, Jun-Jie; Xue, Rui-Zhi; Tang, Zheng-Yan

    2016-01-01

    Objective The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA) on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC). Methods Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT), and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC) group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001). VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01). VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05). After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and invasive cell number were markedly decreased compared to those in the NC group and the blank group (all P<0.05). Conclusion Inhibition of VEGFA inhibited proliferation, promoted apoptosis, and suppressed migration and invasion of RCCC 786-O cells. VEGF has a potential role in diagnosis and therapy of RCCC

  12. Benzo(a)pyrene inhibits migration and invasion of extravillous trophoblast HTR-8/SVneo cells via activation of the ERK and JNK pathway.

    PubMed

    Liu, Liyuan; Wang, Yingxiong; Shen, Cha; He, Junlin; Liu, Xueqing; Ding, Yubin; Gao, Rufei; Chen, Xuemei

    2016-07-01

    Benzo(a)pyrene (BaP) is a persistent organic pollutant (POP) that is a serious threat to human health. Numerous studies have shown that BaP causes adverse effects in pregnancy, but the mechanism remains unclear. The moderate invasion of trophoblast cells into the endometrium is an important factor during successful embryo implantation. The aim of this study was to investigate the effect and mechanism of BaP on the invasion and migration of trophoblast cells. HTR-8/SVneo cells were treated with different concentrations (1, 5, 10, 25, 50 and 100 μM) of BaP. The invasion and migration of HTR-8/SVneo cells were observed after BaP treatment. The protein levels related to migration and invasion was detected by Western blot. The results confirmed that BaP inhibits the migration and invasion of extravillous trophoblast HTR-8/SVneo cells. Further investigations indicated that the protein levels of MMP-2, MMP-9 and E-cadherin in HTR-8/SVneo cells were changed by BaP treatment. Moreover, the data demonstrated that BaP activated the MAPK signaling pathway. Pretreatment with specific inhibitors of MAPK rescued BaP-induced change in the migration and invasion of HTR-8/SVneo cells. Taken together, our results indicated that BaP inhibits invasion and the migration of HTR-8/SVneo cells, which might cause a failure in early pregnancy. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Both actin and polyproline interactions of Profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells

    PubMed Central

    Ding, Zhijie; Gau, David; Deasy, Bridget; Wells, Alan; Roy, Partha

    2009-01-01

    The objective of the present study was to evaluate how different ligand interactions of profilin-1 (Pfn1), an actin-binding protein that is upregulated during capillary morphogenesis of vascular endothelial cells (VEC), contribute to migration and capillary forming ability of VEC. We adopted a knockdown-knockin experimental system to stably express either fully-functional or mutants of Pfn1 that are impaired in binding to two of its major ligands, actin (H119E mutant) and proteins containing polyproline domains (H133S mutant), in a human dermal microvascular cell line (HmVEC) against near-null endogenous Pfn1 background. We found that silencing endogenous Pfn1 expression in HmVEC leads to slower random migration, reduced velocity of membrane protrusion and a significant impairment in matrigel-induced cord formation. Only re-expression of fully-functional but not any of the two ligand-binding deficient mutants of Pfn1 rescues the above defects. We further show that loss of Pfn1 expression in VEC inhibits three-dimensional capillary morphogenesis, MMP2 secretion and ECM invasion. VEC invasion through ECM is also inhibited when actin and polyproline interactions of Pfn1 are disrupted. Together, these experimental data demonstrate that Pfn1 regulates VEC migration, invasion and capillary morphogenesis through its interaction with both actin and proline-rich ligands. PMID:19607826

  14. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma

    PubMed Central

    Birch, Joanna; Clarke, Cassie J.; Campbell, Andrew D.; Campbell, Kirsteen; Mitchell, Louise; Liko, Dritan; Kalna, Gabriela; Strathdee, Douglas; Sansom, Owen J.; Neilson, Matthew; Blyth, Karen

    2016-01-01

    ABSTRACT The cell's repertoire of transfer RNAs (tRNAs) has been linked to cancer. Recently, the level of the initiator methionine tRNA (tRNAiMet) in stromal fibroblasts has been shown to influence extracellular matrix (ECM) secretion to drive tumour growth and angiogenesis. Here we show that increased tRNAiMet within cancer cells does not influence tumour growth, but drives cell migration and invasion via a mechanism that is independent from ECM synthesis and dependent on α5β1 integrin and levels of the translation initiation ternary complex. In vivo and ex vivo migration (but not proliferation) of melanoblasts is significantly enhanced in transgenic mice which express additional copies of the tRNAiMet gene. We show that increased tRNAiMet in melanoma drives migratory, invasive behaviour and metastatic potential without affecting cell proliferation and primary tumour growth, and that expression of RNA polymerase III-associated genes (which drive tRNA expression) are elevated in metastases by comparison with primary tumours. Thus, specific alterations to the cancer cell tRNA repertoire drive a migration/invasion programme that may lead to metastasis. PMID:27543055

  15. Modulatory role of garlicin in migration and invasion of intrahepatic cholangiocarcinoma via PI3K/AKT pathway

    PubMed Central

    Xie, Kun; Nian, Jianze; Zhu, Xingyang; Geng, Xiaoping; Liu, Fubao

    2015-01-01

    Increasing evidences have indicated the role of garlicin in inhibiting the progression of various tumors including glioma, pulmonary carcinoma and pancreatic carcinoma, via mediating cell apoptosis or cell cycle. The regulatory effect and related molecular mechanism of garlicin in intrahepatic cholangiocarcinoma, however, remained unknown. This study thus aimed to investigate this scientific issue. HCCC-9810 cell line was treated with serially diluted garlicin, followed by cell proliferation assay using MTT approach. Transwell migration and invasion assays were further employed the regulatory effect of garlicin. The expression level of p-AKT and AKT proteins in tumor cells was quantified by Western blot. The growth of tumor cells was significantly inhibited by high concentration of garlicin (> 1.5 μM). Lower concentration of garlicin showed dose-dependent inhibition of tumor cell invasion and migration. After using specific agonist IGF-1 (50 ng/mL) of PI3K/AKT signaling pathway, such facilitating effects of garlicin were depressed (P < 0.05). Western blotting showed significantly decreased phosphorylation level of AKT after treated with gradient concentrations of garlicin, while leaving the total AKT protein level unchanged. Garlicin may inhibit the invasion and migration of intrahepatic cholangiocarcinoma cells via inhibiting PI3K/AKT signaling pathway. PMID:26823715

  16. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  17. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation

    PubMed Central

    Hong, Sung Woo; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hwang, Daehee; Yoon, Seung Kew

    2016-01-01

    We investigated the biological role of CD133-expressing liver cancer stem cells (CSCs) enriched after irradiation of Huh7 cells in cell invasion and migration. We also explored whether a disintegrin and metalloproteinase-17 (ADAM17) influences the metastatic potential of CSC-enriched hepatocellular carcinoma (HCC) cells after irradiation. A CD133-expressing Huh7 cell subpopulation showed greater resistance to sublethal irradiation and specifically enhanced cell invasion and migration capabilities. We also demonstrated that the radiation-induced MMP-2 and MMP-9 enzyme activities as well as the secretion of vascular endothelial growth factor were increased more predominantly in Huh7CD133+ cell subpopulations than Huh7CD133− cell subpopulations. Furthermore, we showed that silencing ADAM17 significantly inhibited the migration and invasiveness of enriched Huh7CD133+ cells after irradiation; moreover, Notch signaling was significantly reduced in irradiated CD133-expressing liver CSCs following stable knockdown of the ADAM17 gene. In conclusion, our findings indicate that CD133-expressing liver CSCs have considerable metastatic capabilities after irradiation of HCC cells, and their metastatic capabilities might be maintained by ADAM17. Therefore, suppression of ADAM17 shows promise for improving the efficiency of current radiotherapies and reducing the metastatic potential of liver CSCs during HCC treatment. PMID:26993601

  18. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta

    PubMed Central

    Kohan-Ghadr, Hamid-Reza; Kadam, Leena; Jain, Chandni; Armant, D. Randall; Drewlo, Sascha

    2016-01-01

    ABSTRACT The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies. PMID:26745760

  19. Investigation of the Viability, Adhesion, and Migration of Human Fibroblasts in a Hyaluronic Acid/Gelatin Microgel-Reinforced Composite Hydrogel for Vocal Fold Tissue Regeneration.

    PubMed

    Heris, Hossein K; Daoud, Jamal; Sheibani, Sara; Vali, Hojatollah; Tabrizian, Maryam; Mongeau, Luc

    2016-01-21

    The potential use of a novel scaffold biomaterial consisting of cross-linked hyaluronic acid (HA)-gelatin (Ge) composite microgels is investigated for use in treating vocal fold injury and scarring. Cell adhesion integrins and kinematics of cell motion are investigated in 2D and 3D culture conditions, respectively. Human vocal fold fibroblast (hVFF) cells are seeded on HA-Ge microgels attached to a HA hydrogel thin film. The results show that hVFF cells establish effective adhesion to HA-Ge microgels through the ubiquitous expression of β1 integrin in the cell membrane. The microgels are then encapsulated in a 3D HA hydrogel for the study of cell migration. The cells within the HA-Ge microgel-reinforced composite hydrogel (MRCH) scaffold have an average motility speed of 0.24 ± 0.08 μm min(-1) . The recorded microscopic images reveal features that are presumably associated with lobopodial and lamellipodial cell migration modes within the MRCH scaffold. Average cell speed during lobopodial migration is greater than that during lamellipodial migration. The cells move faster in the MRCH than in the HA-Ge gel without microgels. These findings support the hypothesis that HA-Ge MRCH promotes cell adhesion and migration; thereby they constitute a promising biomaterial for vocal fold repair.

  20. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    SciTech Connect

    Tian, Yuan; Hao, Shaobo; Ye, Minhua; Zhang, Anling; Nan, Yang; Wang, Guangxiu; Jia, Zhifan; Yu, Kai; Guo, Lianmei; Pu, Peiyu; Huang, Qiang; Zhong, Yue

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  1. Unique cell adhesion and invasion properties of Yersinia enterocolitica O:3, the most frequent cause of human Yersiniosis.

    PubMed

    Uliczka, Frank; Pisano, Fabio; Schaake, Julia; Stolz, Tatjana; Rohde, Manfred; Fruth, Angelika; Strauch, Eckhard; Skurnik, Mikael; Batzilla, Julia; Rakin, Alexander; Heesemann, Jürgen; Dersch, Petra

    2011-07-01

    Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment.

  2. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells. PMID:27602167

  3. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells.

  4. Effects of Rhodomyrtus tomentosa Leaf Extract on Staphylococcal Adhesion and Invasion in Bovine Udder Epidermal Tissue Model

    PubMed Central

    Mordmuang, Auemphon; Shankar, Shiv; Chethanond, Usa; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Bovine mastitis is one of the most important infectious diseases in dairy herds, and staphylococci are the most important etiologic agents of this disease. Antibiotics and chemical agents used in livestock for prevention and cure of the disease can accumulate in milk and give rise to food safety concerns. Rhodomyrtus tomentosa leaf extract was studied as an alternative approach to reduce the bacterial infections. The ethanolic extract of this plant demonstrated antibacterial activity with minimum inhibitory concentration (MIC) values as low as 16–64 μg/mL against staphylococcal isolates. In addition, the extract had an effect on the bacterial cell surface properties by increasing its hydrophobicity in a concentration dependent manner. To further extend the antibacterial efficacy, silver nanoparticles synthesized with the extract, a pure rhodomyrtone, and liposomal encapsulated rhodomyrtone were applied and their inhibitory effects on bacterial adhesion and invasion were determined by ex vivo study in a bovine udder epidermal tissue model. These agents exerted remarkable antibacterial activity against staphylococci and decreased the adhesion of the bacterial cells to the tissues. These results supported that R. tomentosa ethanolic extract could be applied as an alternative agent for bovine udder care in dairy farms. PMID:26501314

  5. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion

    PubMed Central

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-01-01

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry. PMID:22328521

  6. Role of ING4 in human melanoma cell migration, invasion and patient survival.

    PubMed

    Li, Jun; Martinka, Magdalena; Li, Gang

    2008-07-01

    Inhibitor of growth (ING) 4 has been reported as a tumor suppressor and shown to diminish colony-forming efficiency, induce p53-dependent apoptosis and arrest cell cycle at G(2)-M phase. In this study, we investigated the role of ING4 in human melanoma pathogenesis. Using the tissue microarray technology, we found that ING4 expression is significantly decreased in malignant melanoma compared with dysplastic nevi (P < 0.0001, chi(2) test) and reduced ING4 staining is associated with melanoma thickness, ulceration (P = 0.034 and 0.002, respectively, chi(2) test) as well as poor overall and disease-specific 5-year survival of primary melanoma patients (P = 0.0002 and 0.001, respectively, chi(2) test). Cox regression analysis revealed that reduced ING4 staining is an independent factor for the poor prognosis of patients with primary melanomas. Furthermore, we found that overexpression of ING4 suppressed cell migration by 63% and inhibited the activity of Ras homolog gene family member A (RhoA) small GTPase protein and Rho-associated kinase (ROCK)-mediated formation of stress fiber in melanoma cells. Moreover, our data showed that overexpression of ING4 inhibited melanoma cell invasion by 43% compared with the control (P = 0.006, t-test) and ING4-overexpressing melanoma cells showed significantly reduced activity of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, this study highlights the importance of ING4 in melanoma pathogenesis and ING4 may serve as a promising prognostic marker and a potential therapeutic target for human melanoma.

  7. Anti-LRP/LR–Specific Antibody IgG1-iS18 Significantly Impedes Adhesion and Invasion in Early- and Late-Stage Colorectal Carcinoma Cells

    PubMed Central

    Vania, Leila; Chetty, Carryn J; Ferreira, Eloise; Weiss, Stefan FT

    2016-01-01

    Cancer is a highly complex disease that has become one of the leading causes of death globally. Metastasis, a major cause of cancer deaths, requires two crucial events, adhesion and invasion. The 37kDa/67kDa laminin receptor (laminin receptor precursor/high-affinity laminin receptor [LRP/LR]) enhances these two steps, consequently aiding in cancer progression. In this study, the role of LRP/LR in adhesion and invasion of early-stage (SW-480 and HT-29) and late-stage (DLD-1) colorectal cancer cells was investigated. Western blotting revealed that early- and late-stage colorectal cancer cells contained significantly higher total LRP/LR levels compared with poorly invasive MCF-7 breast cancer control cells. Flow cytometry revealed that both stages of colorectal cancer displayed significantly higher cell surface LRP/LR levels. Furthermore, upon treatment of colorectal cancer cells with the anti-LRP/LR–specific antibody IgG1-iS18, adhesion to laminin-1 was significantly reduced in both stages. Each stage’s invasive potential was determined using the Matrigel™ invasion assay, showing that invasion was significantly impeded in both colorectal cancer stages when the cells were incubated with IgG1-iS18. In addition, Pearson’s correlation coefficients propose that both total and cell surface LRP/LR levels are directly proportional to the adhesive and invasive potential of both stages of colorectal cancer. Hence, these findings indicate potential for use of the IgG1-iS18 antibody as a promising therapeutic tool for colorectal cancer patients at both stages. PMID:27611822

  8. Sub-micron lateral topography affects endothelial migration by modulation of focal adhesion dynamics.

    PubMed

    Antonini, S; Meucci, S; Jacchetti, E; Klingauf, M; Beltram, F; Poulikakos, D; Cecchini, M; Ferrari, A

    2015-06-24

    Through the interaction with topographical features, endothelial cells tune their ability to populate target substrates, both in vivo and in vitro. Basal textures interfere with the establishment and maturation of focal adhesions (FAs) thus inducing specific cell-polarization patterns and regulating a plethora of cell activities that govern the overall endothelial function. In this study, we analyze the effect of topographical features on FAs in primary human endothelial cells. Reported data demonstrate a functional link between FA dynamics and cell polarization and spreading on structured substrates presenting variable lateral feature size. Our results reveal that gratings with 2 µm lateral periodicity maximize contact guidance. The effect is linked to the dynamical state of FAs. We argue that these results are readily applicable to the rational design of active surfaces at the interface with the blood stream.

  9. Systems microscopy approaches to understand cancer cell migration and metastasis

    PubMed Central

    Le Dévédec, Sylvia E.; Yan, Kuan; de Bont, Hans; Ghotra, Veerander; Truong, Hoa; Danen, Erik H.; Verbeek, Fons

    2010-01-01

    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration. PMID:20556632

  10. Divergent behaviors and underlying mechanisms of cell migration and invasion in non-metastatic T24 and its metastatic derivative T24T bladder cancer cell lines.

    PubMed

    Jin, Honglei; Yu, Yonghui; Hu, Young; Lu, Chris; Li, Jingxia; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Zhang, Dongyun; Wu, Xue-Ru; Gao, Jimin; Huang, Chuanshu

    2015-01-01

    Previous studies on cancer cell invasion were primarily focused on its migration because these two events were often considered biologically equivalent. Here we found that T24T cells exhibited higher invasion but lower migration abilities than T24 cells. Expression of Rho-GDPases was much lower and expression of SOD2 was much higher in T24T cells than those in T24 cells. Indeed, knockdown of SOD2 in T24T cells can reverse the cell migration but without affecting cell invasion. We also found that SOD2 inhibited the JNK/c-Jun cascade, and the inhibition of c-Jun activation by ectopic expression of TAM67 impaired Rho-GDPases expression and cell migration in T24T shSOD2 cells. Further, we found that Sp1 can upregulate SOD2 transcription in T24T cells. Importantly, matrix metalloproteinase-2 (MMP-2) was overexpressed in T24T and participated in increasing its invasion, and MMP-2 overexpression was mediated by increasing nuclear transport of nucleolin, which enhanced mmp-2 mRNA stability. Taken together, our study unravels an inverse relationship between cell migration and invasion in human bladder cancer T24T cells and suggests a novel mechanism underlying the divergent roles of SOD2 and MMP-2 in regulating metastatic behaviors of human bladder T24T in cell migration and invasion. PMID:25402510

  11. MicroRNA-373 promotes migration and invasion in human esophageal squamous cell carcinoma by inhibiting TIMP3 expression.

    PubMed

    Liu, Wenzhi; Li, Mengkao; Chen, Xiangming; Zhang, Dakai; Wei, Lin; Zhang, Zicheng; Wang, Shuang; Meng, Li; Zhu, Shan; Li, Baosheng

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant pathological type of esophageal carcinoma in Asia. MicroRNAs (miRNAs) are a class of 19-22-nucleotide non-coding RNAs acting on target mRNAs that function as either oncogenes or anti-oncogenes. It has been confirmed that miR-373 expression varies among different tumor types. However, its mechanism is still unclear in ESCC. In our current study, we found that miR-373 expression was upregulated in ESCC tissues compared with matched adjacent normal tissues, as well as in the plasma of ESCC patients compared with that of healthy volunteers. Overexpression of miR-373 in ECA109 cells enhanced proliferation, G1-phase cell proportion, migration, and invasion. On the other hand, suppression of miR-373 in KYSE410 cells decreased proliferation, G1-phase cell proportion, migration, and invasion and also improved cell apoptosis. Moreover, we found that TIMP3, which was reported to suppress invasion and metastasis of ESCC, was a direct target of miR-373. Overexpression of miR-373 in ECA109 caused a reduction of TIMP3 mRNA and protein, whereas suppression of miR-373 in KYSE410 led to an increase of TIMP3 mRNA and protein. Introducing TIMP3 in miR-373 over-expressed cells or knocking down TIMP3 in miR-373 suppressed cells could partially abrogate the effect of miR-373 on migration and invasion. Therefore, these results prove that as an oncogene, miRNA-373 would be an important and reliable biomarker for ESCC diagnosis and treatment by targeting TIMP3.

  12. MicroRNA-373 promotes migration and invasion in human esophageal squamous cell carcinoma by inhibiting TIMP3 expression

    PubMed Central

    Liu, Wenzhi; Li, Mengkao; Chen, Xiangming; Zhang, Dakai; Wei, Lin; Zhang, Zicheng; Wang, Shuang; Meng, Li; Zhu, Shan; Li, Baosheng

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant pathological type of esophageal carcinoma in Asia. MicroRNAs (miRNAs) are a class of 19-22-nucleotide non-coding RNAs acting on target mRNAs that function as either oncogenes or anti-oncogenes. It has been confirmed that miR-373 expression varies among different tumor types. However, its mechanism is still unclear in ESCC. In our current study, we found that miR-373 expression was upregulated in ESCC tissues compared with matched adjacent normal tissues, as well as in the plasma of ESCC patients compared with that of healthy volunteers. Overexpression of miR-373 in ECA109 cells enhanced proliferation, G1-phase cell proportion, migration, and invasion. On the other hand, suppression of miR-373 in KYSE410 cells decreased proliferation, G1-phase cell proportion, migration, and invasion and also improved cell apoptosis. Moreover, we found that TIMP3, which was reported to suppress invasion and metastasis of ESCC, was a direct target of miR-373. Overexpression of miR-373 in ECA109 caused a reduction of TIMP3 mRNA and protein, whereas suppression of miR-373 in KYSE410 led to an increase of TIMP3 mRNA and protein. Introducing TIMP3 in miR-373 over-expressed cells or knocking down TIMP3 in miR-373 suppressed cells could partially abrogate the effect of miR-373 on migration and invasion. Therefore, these results prove that as an oncogene, miRNA-373 would be an important and reliable biomarker for ESCC diagnosis and treatment by targeting TIMP3. PMID:27429858

  13. MicroRNA-373 promotes migration and invasion in human esophageal squamous cell carcinoma by inhibiting TIMP3 expression

    PubMed Central

    Liu, Wenzhi; Li, Mengkao; Chen, Xiangming; Zhang, Dakai; Wei, Lin; Zhang, Zicheng; Wang, Shuang; Meng, Li; Zhu, Shan; Li, Baosheng

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant pathological type of esophageal carcinoma in Asia. MicroRNAs (miRNAs) are a class of 19-22-nucleotide non-coding RNAs acting on target mRNAs that function as either oncogenes or anti-oncogenes. It has been confirmed that miR-373 expression varies among different tumor types. However, its mechanism is still unclear in ESCC. In our current study, we found that miR-373 expression was upregulated in ESCC tissues compared with matched adjacent normal tissues, as well as in the plasma of ESCC patients compared with that of healthy volunteers. Overexpression of miR-373 in ECA109 cells enhanced proliferation, G1-phase cell proportion, migration, and invasion. On the other hand, suppression of miR-373 in KYSE410 cells decreased proliferation, G1-phase cell proportion, migration, and invasion and also improved cell apoptosis. Moreover, we found that TIMP3, which was reported to suppress invasion and metastasis of ESCC, was a direct target of miR-373. Overexpression of miR-373 in ECA109 caused a reduction of TIMP3 mRNA and protein, whereas suppression of miR-373 in KYSE410 led to an increase of TIMP3 mRNA and protein. Introducing TIMP3 in miR-373 over-expressed cells or knocking down TIMP3 in miR-373 suppressed cells could partially abrogate the effect of miR-373 on migration and invasion. Therefore, these results prove that as an oncogene, miRNA-373 would be an important and reliable biomarker for ESCC diagnosis and treatment by targeting TIMP3. PMID:27073718

  14. Adhesion and migration of avian neural crest cells on fibronectin require the cooperating activities of multiple integrins of the (beta)1 and (beta)3 families.

    PubMed

    Testaz, S; Delannet, M; Duband, J

    1999-12-01

    Based on genetic, functional and histological studies, the extracellular matrix molecule fibronectin has been proposed to play a key role in the migration of neural crest cells in the vertebrate embryo. In the present study, we have analyzed in vitro the repertoire and function of integrin receptors involved in the adhesive and locomotory responses of avian truncal neural crest cells to fibronectin. Immunoprecipitation experiments showed that neural crest cells express multiple integrins, namely (alpha)3(beta)1, (alpha)4(beta)1, (alpha)5(beta)1, (alpha)8(beta)1, (alpha)v(beta)1, (alpha)v(beta)3 and a (beta)8 integrin, as potential fibronectin receptors, and flow cytometry analyses revealed no major heterogeneity among the cell population for expression of integrin subunits. In addition, the integrin repertoire expressed by neural crest cells was found not to change dramatically during migration. At the cellular level, only (alpha)v(beta)1 and (alpha)v(beta)3 were concentrated in focal adhesion sites in connection with the actin microfilaments, whereas the other integrins were predominantly diffuse over the cell surface. In inhibition assays with function-perturbing antibodies, it appeared that complete abolition of cell spreading and migration could be achieved only by blocking multiple integrins of the (beta)1 and (beta)3 families, suggesting possible functional compensations between different integrins. In addition, these studies provided evidence for functional partitioning of integrins in cell adhesion and migration. While spreading was essentially mediated by (alpha)v(beta)1 and (alpha)8(beta)1, migration involved primarily (alpha)4(beta)1, (alpha)v(beta)3 and (alpha)8(beta)1 and, more indirectly, (alpha)3(beta)1. (alpha)5(beta)1 and the (beta)8 integrin were not found to play any major role in either adhesion or migration. Finally, consistent with the results of inhibition experiments, recruitment of (alpha)4(beta)1 and (alpha)v(beta)3, individually or in

  15. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding.

    PubMed

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A; Chan, Andrew M

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5'-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras-/-). An examination of the lymphoid organs of Rras-/- mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras-/- mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras-/- mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras-/- T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras-/- T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras-/- T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  16. MiR-625-3p promotes cell migration and invasion via inhibition of SCAI in colorectal carcinoma cells

    PubMed Central

    Wang, Qizhi; Zhang, Pei; Li, Dapeng; Wang, Qiangwu; Wang, Jianchao; Li, Huabin; Liu, Hao; Wang, Zhiwei

    2015-01-01

    MicroRNAs (miRNAs) play a critical role in controlling tumor invasion and metastasis via regulating the expression of a variety of targets, which act as oncogenes or tumor suppressor genes. Abnormally expressed miR-625-3p has been observed in several types of human cancers. However, the molecular mechanisms of miR-625-3p-mediated tumorigenesis are largely elusive. Therefore, the aim of this study was to evaluate the biological function and molecular insight on miR-625-3p-induced oncogenesis in colorectal carcinoma (CRC). The effects of miR-625-3p in cell migration and invasion were analyzed by wound healing assay and transwell assay, respectively. In addition, the expression of miR-625-3p and its targets was detected in five human CRC cell lines. In the present study, we found that overexpression of miR-625-3p promoted migration and invasion in SW480 cells, whereas downregulation of miR-625-3p inhibited cell motility in SW620 cells. More importantly, we observed potential binding sites for miR-625-3p in the 3′-untranslated region of suppressor of cancer cell invasion (SCAI). Notably, we identified that overexpression of miR-625-3p inhibited the expression of SCAI, while depletion of miR-625-3p increased SCAI level, suggesting that SCAI could be a target of miR-625-3p. Additionally, we revealed that miR-625-3p exerts its oncogenic functions through regulation of SCAI/E-cadherin/MMP-9 pathways. Our findings indicate the pivotal role of miR-625-3p in invasion that warrants further exploration whether targeting miR-625-3p could be a promising approach for the treatment of CRC. PMID:26314959

  17. Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes

    PubMed Central

    Jin, Guo-Hua; Xu, Wei; Shi, Yang; Wang, Li-Bo

    2016-01-01

    Gastric cancer (GC) is a prevalent cancer, which remains incurable, and therefore requires an alternative treatment method. Celecoxib is a nonsteroidal anti-inflammatory drug that targets cyclooxygenase-2, and exhibits anticancer effects. The present study aimed to investigate the anti-GC mechanism of celecoxib using bioinformatics methods. Gene expression datasets GSE56807 (GC tissues and normal gastric tissues) and GSE54657 (celecoxib-treated and non-treated human GC epithelial AGS cells) were downloaded from the Gene Expression Omnibus database. Two groups of differentially expressed genes (DEGs) were identified using limma package in R language. The criterion for GSE56807 was a false discovery rate of <0.05, while that for GSE54657 was P<0.01. Overlapping DEGs from the two datasets were screened out. Subsequently, pathway enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery software (P<0.1; gene count ≥2). In addition, the protein-protein interactions (PPIs) among the overlapped DEGs were obtained based on IntAct, Database of Interacting Proteins, Biomolecular Interaction Network Database and Human Protein Reference Database. Finally, a PPI network was visualized using Cytoscape software. A total of 137 overlapped DEGs were obtained, and DEGs with opposite regulation directions in the two datasets were significantly enriched in focal adhesion and leukocyte transendothelial migration. Subsequently, a PPI network of overlapped DEGs was constructed. Comprehensively, a total of 8 key DEGs [cysteine and glycine rich protein 1 (CSRP1), thrombospondin 1 (THBS1), myosin light chain 9 (MYL9), filamin A (FLNA), actinin alpha 1 (ACTN1), vinculin (VCL), laminin subunit gamma 2 (LAMC2) and claudin 1 (CLDN1)] were upregulated in GC tissues and downregulated in celecoxib-treated cells. In conclusion, celecoxib may exhibit anti-GC effects by suppressing the expression of CSRP1, THBS1, MYL9, FLNA, ACTN1, VCL, LAMC2 and CLDN1

  18. Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes

    PubMed Central

    Jin, Guo-Hua; Xu, Wei; Shi, Yang; Wang, Li-Bo

    2016-01-01

    Gastric cancer (GC) is a prevalent cancer, which remains incurable, and therefore requires an alternative treatment method. Celecoxib is a nonsteroidal anti-inflammatory drug that targets cyclooxygenase-2, and exhibits anticancer effects. The present study aimed to investigate the anti-GC mechanism of celecoxib using bioinformatics methods. Gene expression datasets GSE56807 (GC tissues and normal gastric tissues) and GSE54657 (celecoxib-treated and non-treated human GC epithelial AGS cells) were downloaded from the Gene Expression Omnibus database. Two groups of differentially expressed genes (DEGs) were identified using limma package in R language. The criterion for GSE56807 was a false discovery rate of <0.05, while that for GSE54657 was P<0.01. Overlapping DEGs from the two datasets were screened out. Subsequently, pathway enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery software (P<0.1; gene count ≥2). In addition, the protein-protein interactions (PPIs) among the overlapped DEGs were obtained based on IntAct, Database of Interacting Proteins, Biomolecular Interaction Network Database and Human Protein Reference Database. Finally, a PPI network was visualized using Cytoscape software. A total of 137 overlapped DEGs were obtained, and DEGs with opposite regulation directions in the two datasets were significantly enriched in focal adhesion and leukocyte transendothelial migration. Subsequently, a PPI network of overlapped DEGs was constructed. Comprehensively, a total of 8 key DEGs [cysteine and glycine rich protein 1 (CSRP1), thrombospondin 1 (THBS1), myosin light chain 9 (MYL9), filamin A (FLNA), actinin alpha 1 (ACTN1), vinculin (VCL), laminin subunit gamma 2 (LAMC2) and claudin 1 (CLDN1)] were upregulated in GC tissues and downregulated in celecoxib-treated cells. In conclusion, celecoxib may exhibit anti-GC effects by suppressing the expression of CSRP1, THBS1, MYL9, FLNA, ACTN1, VCL, LAMC2 and CLDN1

  19. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    PubMed Central

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  20. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation

    PubMed Central

    Ahn, So-Hee; Park, Hyunju; Ahn, Young-Ho; Kim, Sewha; Cho, Min-Sun; Kang, Jihee Lee; Choi, Youn-Hee

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation. PMID:27076368

  1. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway

    PubMed Central

    XU, MIN; WANG, SHUSHENG; SONG, YU; YAO, JIANHUA; HUANG, KUN; ZHU, XIAOJUE

    2016-01-01

    Abnormal activation of the Wnt/β-catenin signaling pathway has a significant role in human tumorigenesis. The search for potential anticancer drugs has included widespread screening of inhibitors of the Wnt signaling pathway. Recently, one of the most common flavonoids, apigenin, demonstrated potential anti-tumor effects on multiple human cancer cell lines, with low cytotoxicity and no mutagenic activity. However, the association between apigenin and the Wnt/β-catenin signaling pathway remains to be elucidated. The results of wound healing and Transwell invasion assays revealed that apigenin was able to significantly suppress colorectal cancer cell proliferation, migration and invasion in a dose-dependent manner. An organoid culture assay revealed that apigenin was also able to suppress the growth of intestinal organoids. Furthermore, apigenin inhibited β-catenin/T-cell factor/lymphoid enhancer factor signaling activation, which was induced by LiCl in a dose-dependent manner. This inhibited β-catenin nuclear entry, and therefore the expression of Wnt downstream target genes. In conclusion, apigenin significantly suppressed colorectal cancer cell proliferation, migration, invasion and organoid growth by inhibiting the Wnt/β-catenin signaling pathway. PMID:27123066

  2. HDAC1 promoted migration and invasion binding with TCF12 by promoting EMT progress in gallbladder cancer

    PubMed Central

    Zhou, Yuhong; Hou, Yingyong; Zhang, Yong; Jiang, Ying; Liu, Houbao; Shao, Yebo

    2016-01-01

    The identification of prognostic markers for gallbladder cancer is needed for clinical practice. Histone deacetylases (HDACs) play an important role in tumor development and progression by modifying histone and non-histone proteins. However, the expression of HDAC1 in patients with gallbladder cancer is still unknown. Here, we reported that HDAC1 expression was elevated in cancerous tissue and correlated with lymph node metastasis and poorer overall survival in patients with GBC. Knockdown of HDAC1 using lentivirus delivery of HDAC1-specific shRNA abrogated the migration and invasion of GBC cells in vitro. TCF-12, as the HDAC1 binding protein, has also correlates with poor prognosis in GBC patients. And there is a positive correlation between HDAC1 and TCF-12 which leading the high invasion and migration ability of GBC cells. Taken together, our data suggested that HDAC1 and TCF-12 are a potential prognostic maker and may be a molecular target for inhibiting invasion and metastasis in GBC. PMID:27092878

  3. c-Yes enhances tumor migration and invasion via PI3K/AKT pathway in epithelial ovarian cancer.

    PubMed

    Jin, Yunfeng; Huang, Menghui; Wang, Yingying; Yi, Changying; Deng, Yan; Chen, Yannan; Jiang, Lifei; Wang, Juan; Shen, Qin; Liu, Rong; QinghuaXi

    2016-08-01

    Overexpression of c-Yes has been noted to correlation with several human cancers. However, the effects of c-Yes on epithelial ovarian cancer (EOC) development remain unclear. The aim of this study is going to prove the effects of c-Yes and related mechanisms in proliferation, metastasis and invasion of EOC. Immunohistochemical analysis was performed in 119 human EOC samples, and the data was correlated with clinic pathologic features. Furthermore, western blot analysis is performed for c-Yes in EOC samples and cell lines to evaluate their protein levels and molecular interaction. Kaplan-Meier survival analysis shows that the strong expression of c-Yes exhibited a significant correlation with poor prognosis in human EOC (P<0.01(⁎)). Meanwhile, we found that knockdown of c-Yes by shRNA inhibited the ability of migration and invasion in EOC cells via the PI3K/AKT pathway. In a word, these results suggested that c-Yes plays an important role in migration and invasion of EOC.

  4. A truncated splice variant of human lysyl oxidase-like 2 promotes migration and invasion in esophageal squamous cell carcinoma.

    PubMed

    Zou, Hai-Ying; Lv, Guo-Qing; Dai, Li-Hua; Zhan, Xiu-Hui; Jiao, Ji-Wei; Liao, Lian-Di; Zhou, Tai-Mei; Li, Chun-Quan; Wu, Bing-Li; Xu, Li-Yan; Li, En-Min

    2016-06-01

    Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family, which plays an important role in extracellular matrix protein biosynthesis and tumor progression. In the present study, we identified a novel splice variant, LOXL2Δ72, which encodes a peptide having the same N- and C-termini as wild-type LOXL2 (LOXL2WT), but lacks 72 nucleotides encoding 24 amino acids. LOXL2Δ72 had dramatically reduced enzymatic activity, and was no longer secreted. However, LOXL2Δ72 promoted greater cell migration and invasion than LOXL2WT. Furthermore, a dual luciferase reporter assay indicated that LOXL2Δ72 activates distinct signal transduction pathways compared to LOXL2WT, consistent with cDNA microarray data showing different expression levels of cell migration- and invasion-related genes induced following over-expression of each LOXL2 isoform. In particular, LOXL2Δ72 distinctly promoted esophageal squamous cell carcinoma (ESCC) cell migration via up-regulating the C-C motif chemokine ligand 28 (CCL28). Our results suggest that the new LOXL2 splice variant contributes to tumor progression by novel molecular mechanisms different from LOXL2WT.

  5. Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1.

    PubMed

    Diaz, Jorge; Aranda, Evelyn; Henriquez, Soledad; Quezada, Marisol; Espinoza, Estefanía; Bravo, Maria Loreto; Oliva, Bárbara; Lange, Soledad; Villalon, Manuel; Jones, Marius; Brosens, Jan J; Kato, Sumie; Cuello, Mauricio A; Knutson, Todd P; Lange, Carol A; Leyton, Lisette; Owen, Gareth I

    2012-08-01

    Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3  h and returning to basal levels at 18  h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.

  6. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding

    PubMed Central

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A.; Chan, Andrew M.

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  7. An EP4 antagonist ONO-AE3-208 suppresses cell invasion, migration, and metastasis of prostate cancer.

    PubMed

    Xu, Song; Zhang, Zhengyu; Ogawa, Osamu; Yoshikawa, Takeshi; Sakamoto, Hiromasa; Shibasaki, Noboru; Goto, Takayuki; Wang, Liming; Terada, Naoki

    2014-09-01

    EP4 is one of the prostaglandin E2 receptors, which is the most common prostanoid and is associated with inflammatory disease and cancer. We previously reported that over-expression of EP4 was one of the mechanisms responsible for progression to castration-resistant prostate cancer, and an EP4 antagonist ONO-AE3-208 in vivo suppressed the castration-resistant progression regulating the activation of androgen receptor. The aim of this study was to analyze the association of EP4 with prostate cancer metastasis and the efficacy of ONO-AE3-208 for suppressing the metastasis. The expression levels of EP4 mRNA were evaluated in prostate cancer cell lines, LNCaP, and PC3. EP4 over-expressing LNCaP was established, and their cell invasiveness was compared with the control LNCaP (LNCaP/mock). The in vitro cell proliferation, invasion, and migration of these cells were examined under different concentrations of ONO-AE3-208. An in vivo bone metastatic mouse model was constructed by inoculating luciferase expressing PC3 cells into left ventricle of nude mice. Their bone metastasis was observed by bioluminescent imaging with or without ONO-AE3-208 administration. The EP4 mRNA expression levels were higher in PC3 than in LNCaP, and EP4 over-expression of LNCaP cells enhanced their cell invasiveness. The in vitro cell invasion and migration were suppressed by ONO-AE3-208 in a dose-dependent manner without affecting cell proliferation. The in vivo bone metastasis of PC3 was also suppressed by ONO-AE3-208 treatment. EP4 expression levels were correlated with prostate cancer cell invasiveness and EP4 specific antagonist ONO-AE3-208 suppressed cell invasion, migration, and bone metastasis, indicating that it is a potential novel therapeutic modality for the treatment of metastatic prostate cancer.

  8. Γ-Ionizing radiation-induced activation of the EGFR-p38/ERK-STAT3/CREB-1-EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate.

    PubMed

    Cho, Jeong Hyun; Hong, Wan Gi; Jung, Yu-Jin; Lee, Jaeseok; Lee, Eunah; Hwang, Sang-Gu; Um, Hong-Duck; Park, Jong Kuk

    2016-06-01

    Here, we report a new intracellular signaling pathway involved in γ-ionizing radiation (IR)-induced migration/invasion and show that podophyllotoxin acetate (PA) inhibits the IR-induced invasion and migration of A549 cells (a non-small cell lung cancer (NSCLC) cell line). Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR-induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR-induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration. Collectively, these results indicate that IR induces cancer cell invasion/migration by activating the EGFR-p38/ERK-CREB-1/STAT3-EMT pathway and that PA blocks this pathway to inhibit IR-induced invasion/migration.

  9. Zerumbone suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 and MMP-3 expression in human triple-negative breast cancer cells.

    PubMed

    Han, Jeonghun; Bae, Soo Youn; Oh, Soo-Jin; Lee, Jeongmin; Lee, Jun Ho; Lee, Hyun-Chul; Lee, Se Kyung; Kil, Won Ho; Kim, Seok Won; Nam, Seok Jin; Kim, Sangmin; Lee, Jeong Eon

    2014-11-01

    Inflammation is a key regulatory process in cancer development. Prolonged exposure of breast tumor cells to inflammatory cytokines leads to epithelial-mesenchymal transition, which is the principal mechanism involved in metastasis and tumor invasion. Interleukin (IL)-1β is a major inflammatory cytokine in a variety of tumors. To date, the regulatory mechanism of IL-1β-induced cell migration and invasion has not been fully elucidated. Here, we investigated the effect of zerumbone (ZER) on IL-1β-induced cell migration and invasion in breast cancer cells. The levels of IL-8 and matrix metalloproteinase (MMP)-3 mRNA were analyzed by real-time polymerase chain reaction. The levels of secreted IL-8 and MMP-3 protein were analyzed by enzyme-linked immunosorbent assay and western blot analysis, respectively. Cell invasion and migration was detected by Boyden chamber assay. The levels of IL-8 and MMP-3 expression were significantly increased by IL-1β treatment in Hs578T and MDA-MB231 cells. On the other hand, IL-1β-induced IL-8 and MMP-3 expression was decreased by ZER. Finally, IL-1β-induced cell migration and invasion were decreased by ZER in Hs578T and MDA-MB231 cells. ZER suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 expression and MMP-3 expression in TNBC cells. ZER could be a promising therapeutic drug for treatment of triple-negative breast cancer patients.

  10. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells

    PubMed Central

    Chen, Guang Shun; Zhou, Ning; Li, Jie-Qun; Li, Ting; Zhang, Zhong-Qiang; Si, Zhong-Zhou

    2016-01-01

    Objective To study microRNA (miR)-20a expression in hepatocellular carcinoma (HCC) and its effects on the proliferation, migration, and invasion of HepG2. Methods The real-time polymerase chain reaction was used to detect the expression of miR-20a in HCC tissue and normal tissue, as well as in HCC cell lines and normal liver cells. miR-20a mimic and miR negative control (NC) were transfected into HepG2 cells. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay was used to detect cell proliferation. Annexin fluorescein isothiocyanate/propidium iodide assay was run to examine the early apoptosis of cells. Transwell chamber assay was carried out to investigate the cell invasion and migration abilities. Results miR-20a was lowly expressed both in HCC tissues and HCC cell lines. After transfection of exogenous miR-20 mimics, miR-20a expression in HepG2 cells was significantly increased by 61.29% compared to the blank group (P<0.01). MTT assay showed that the growth of HepG2 cells in the miR-20a mimics group was significantly inhibited, and optical density values during the 36–96 hour time period were dramatically decreased compared to the blank group (P<0.01). Apoptosis rates of the miR-20a mimics group were higher than those of the blank and NC groups (both P<0.01). The number of HCC cells after transfection by miR-20a mimics in the G1 and S phases were 15.88% and 7.89%, respectively, which were lower than in the blank and NC groups (both P<0.05). Transwell assay showed that in the miR-20a mimics group the number of cell migration and invasion were 0.459 and 0.501 times that of the blank group (both P<0.01), and the migration and inhibition rates were 54.1% and 51.4%, respectively. After closing target gene CCND1 in HepG2 cells, the number of cell migration and invasion in the small interfering (si)-CCND1 group were 0.444 and 0.435 times that of the si-NC group (P<0.05); and compared to the si-NC group, the migration and inhibition rates

  11. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  12. Aberrant DNA hypomethylation of miR-196b contributes to migration and invasion of oral cancer

    PubMed Central

    HOU, YU-YI; YOU, JYUN-JIE; YANG, CHENG-MEI; PAN, HUNG-WEI; CHEN, HUNG-CHIH; LEE, JANG-HWA; LIN, YAOH-SHIANG; LIOU, HUEI-HAN; LIU, PEI-FENG; CHI, CHAO-CHUAN; GER, LUO-PING; TSAI, KUO-WANG

    2016-01-01

    MicroRNAs (miRs) are a class of small endogenous non-coding RNAs of ~21–24 nucleotides in length. Previous studies have indicated that miR-196b has either an oncogenic or tumor-suppressive function in various types of cancer. However, the biological role of miR-196b in oral squamous cell carcinoma (OSCC) remains unclear. In the present study, the expression levels of miR-196b were examined in oral cancer tissues and corresponding adjacent normal tissues from 69 OSCC patients using stem-loop reverse transcription-quantitative polymerase chain reaction. The results indicated that miR-196b was significantly overexpressed in OSCC tissues compared with the corresponding adjacent normal tissue samples (64 of 69, 92.7%, P<0.001). Analysis of the methylation status of the miR-196b gene indicated more frequent hypomethylation of the CpG islands located upstream of the miR-196b gene in the OSCC tissues than in the adjacent normal tissues (32 of 69, 46.3%), and the methylation status of miR-196b correlated inversely with its expression levels. Furthermore, the unmethylated status of the miR-196b promoter correlated with poor disease-specific survival in OSCC patients (P=0.035). Functional analysis revealed that ectopic miR-196b expression promoted oral cancer cell migration and invasion abilities, and that silencing of miR-196b could abrogate in vitro migration and invasion of oral cancer cells. Collectively, the present findings indicate that the epigenetic regulation of miR-196b expression plays a crucial role in modulating cell migration and invasion during OSCC progression, and thus may serve as a potential prognosis marker or therapeutic target for OSCC. PMID:27313732

  13. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion

    PubMed Central

    Li, Xiao Ling; Lu, Xing; Parvathaneni, Swetha; Bilke, Sven; Zhang, Hongen; Thangavel, Saravanabhavan; Vindigni, Alessandro; Hara, Toshifumi; Zhu, Yuelin; Meltzer, Paul S; Lal, Ashish; Sharma, Sudha

    2014-01-01

    The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis. PMID:25483193

  14. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    SciTech Connect

    Zhang, Zhan-Guo Chen, Wei-Xun Wu, Yan-Hui Liang, Hui-Fang Zhang, Bi-Xiang

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  15. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma

    PubMed Central

    2014-01-01

    Background The success of using glycolytic inhibitors for cancer treatment relies on better understanding the roles of each frequently deregulated glycolytic genes in cancer. This report analyzed the involvement of a key glycolytic enzyme, alpha-enolase (ENO1), in tumor progression and prognosis of human glioma. Methods ENO1 expression levels were examined in glioma tissues and normal brain (NB) tissues. The molecular mechanisms of ENO1 expression and its effects on cell growth, migration and invasion were also explored by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, Transwell chamber assay, Boyden chamber assay, Western blot and in vivo tumorigenesis in nude mice. Results ENO1 mRNA and protein levels were upregulated in glioma tissues compared to NB. In addition, increased ENO1 was associated disease progression in glioma samples. Knocking down ENO1 expression not only significantly decreased cell proliferation, but also markedly inhibited cell migration and invasion as well as in vivo tumorigenesis. Mechanistic analyses revealed that Cyclin D1, Cyclin E1, pRb, and NF-κB were downregulated after stable ENO1 knockdown in glioma U251 and U87 cells. Conversely, knockdown of ENO1 resulted in restoration of E-cadherin expression and suppression of mesenchymal cell markers, such as Vimentin, Snail, N-Cadherin, β-Catenin and Slug. Furthermore, ENO1 suppression inactivated PI3K/Akt pathway regulating the cell growth and epithelial-mesenchymal transition (EMT) progression. Conclusion Overexpression of ENO1 is associated with glioma progression. Knockdown of ENO1 expression led to suppressed cell growth, migration and invasion progression by inactivating the PI3K/Akt pathway in glioma cells. PMID:24650096

  16. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices.

    PubMed

    Gadea, Gilles; de Toledo, Marion; Anguille, Christelle; Roux, Pierre

    2007-07-01

    In addition to its role in controlling cell cycle progression, the tumor suppressor protein p53 can also affect other cellular functions such as cell migration. In this study, we show that p53 deficiency in mouse embryonic fibroblasts cultured in three-dimensional matrices induces a switch from an elongated spindle morphology to a markedly spherical and flexible one associated with highly dynamic membrane blebs. These rounded, motile cells exhibit amoeboid-like movement and have considerably increased invasive properties. The morphological transition requires the RhoA-ROCK (Rho-associated coil-containing protein kinase) pathway and is prevented by RhoE. A similar p53-mediated transition is observed in melanoma A375P cancer cells. Our data suggest that genetic alterations of p53 in tumors are sufficient to promote motility and invasion, thereby contributing to metastasis.

  17. O-6-methylguanine-DNA Methyltransferase Inhibits Gastric Carcinoma Cell Migration and Invasion by Downregulation of Matrix Metalloproteinase 2.

    PubMed

    Li, Chenglong; Deng, Li; Shen, Hugang; Meng, Qingyou; Qian, Aimin; Sang, Hongfei; Xia, Jiazeng; Li, Xiaoqiang

    2016-01-01

    MGMT plays a key role in many kinds of cancers. However, the molecular mechanisms of MGMT involvement in gastric cancer (GC) are poorly elucidated. Here, we investigated the role of MGMT in GC cell migration, invasion and metastatic potential. Our data showed that MGMT expression was negatively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by downregulation of matrix metalloproteinase 2 (MMP2). Loss of MGMT expression induced increases in GC cell metastasis and invasion potential in vitro and in vivo. These effects were reversed by inhibition of MGMT and MMP2. MGMT overexpression downregulated MMP2 protein levels, whereas this effect was counteracted by MGMT siRNA. In summary, MGMT is involved in gastric carcinogenesis via downregulation of MMP2. The MGMT/MMP2 pathway plays an essential role in GC metastasis and may be a potential therapeutic target for GC treatment. PMID:27291049

  18. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion.

    PubMed

    Gagnon, Mélanie; Zihler Berner, Annina; Chervet, Noémie; Chassard, Christophe; Lacroix, Christophe

    2013-09-01

    Human intestinal cell models are widely used to study host-enteric pathogen interactions, with different cell lines exhibiting specific characteristics and functions in the gut epithelium. In particular, the presence of mucus may play an important role in adhesion and invasion of pathogens. The aim of this study was to evaluate the suitability of the mucus-secreting HT29-MTX intestinal epithelial cell model to test adhesion and invasion of Salmonella strains and compare with data obtained with the more commonly used Caco-2 and HT-29 models. Adhesion of Salmonella to HT29-MTX cell model was significantly higher, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface, compared to the non- and low-mucus producing Caco-2 and HT-29 cell models, respectively. In addition, invasion percentages of some clinical Salmonella strains to HT29-MTX cultures were remarkably higher than to Caco-2 and HT-29 cells suggesting that these Salmonellae have subverted the mucus to enhance pathogenicity. The transepithelial electrical resistances of the infected HT29-MTX cell model decreased broadly and were highly correlated with invasion ability of the strain. Staining of S. Typhimurium-infected cell epithelium confirmed the higher invasion by Salmonella and subsequent disruption of tight junctions of HT29-MTX cell model compared with the Caco-2 and HT-29 cell models. Data from this study suggest that the HT29-MTX cell model, with more physiologically relevant characteristics with the mucus layer formation, could be better suited for studying cells-pathogens interactions.

  19. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    SciTech Connect

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  20. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    SciTech Connect

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi . E-mail: ygong@sibs.ac.cn

    2006-08-18

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the {alpha}{sub v}-containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism.

  1. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    PubMed Central

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  2. The expression of the Sprouty 1 protein inversely correlates with growth, proliferation, migration and invasion of ovarian cancer cells

    PubMed Central

    2014-01-01

    Background Our recent study on a panel of human ovarian cancer cells revealed that SKOV-3 cells barely express the Sprouty isoform 1 (Spry1) while 1A9 cells maintain it at a level similar to normal ovarian cells. Here we investigated the functional outcomes of induced alterations in the expression of Spry1 in the two cell lines in vitro. Methods Using the Spry1 specific plasmid and siRNA, the expression of Spry1 was induced and conversely silenced in SKOV-3 and 1A9 cells, respectively. The functional outcome was investigated by means of proliferation, MTT, scratch-wound, migration and invasion assays and selection of the stable clones. Mechanism of the effect was explored by Western blot. Results In the Spry1-transfected SKOV-3 cells, a significant reduction in growth and proliferation was evident. Stable clones of the Spry1-transfected SKOV-3 were almost undetectable after day 14. The number of migrated and invaded cells and the percentage of the scratch closure were significantly lower in the Spry1-transfected group. Spry1 silencing in 1A9 cells, on the other hand, led to a significant increase in cell growth and proliferation. The number of migrated and invaded cells and the percentage of the scratch closure significantly increased in Spry1-silenced 1A9 group. Mechanistically, overexpression of Bax, activation of caspases 3, 7, 8 and 9, cleavage of PARP and attenuation of Bcl-2 and Bcl-xl were observed along with reduced activation of Erk and Akt and increased amount and activity of PTEN in the Spry1-transfected SKOV-3 cells. Conclusions Here, we report the inverse correlation between the expression of Spry1 and growth, proliferation, invasion and migration of ovarian cancer cells. PMID:24932220

  3. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    SciTech Connect

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling; Lin, Chwan-Fwu; Wu, Wen-Bin

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratory effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling

  4. Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains.

    PubMed

    Merghni, Abderrahmen; Ben Nejma, Mouna; Helali, Imen; Hentati, Hajer; Bongiovanni, Antonino; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2015-09-01

    The oral cavity is regarded as a relevant site for Staphylococcus aureus colonization. However, characterization of virulence mechanisms of oral S. aureus remains to be uncovered. In this study, twenty one S. aureus strains isolated from the oral cavity of Tunisian patients were screened for adherence, invasion and cytotoxicity against HeLa cells. In addition, the presence of adhesins (icaA, icaD, can, fnbA and fnbB) and α-hemolysin (hla) genes in each strain was achieved by polymerase chain reaction (PCR). Our finding revealed that oral S. aureus strains were able to adhere and invade epithelial cells, with variable degrees (P < 0.05). Moreover they exhibited either low (23.8%) or moderate (76.2%) cytotoxic effects. In addition 76.2% of strains were icaA and icaD positive and 90.5% harbor both the fnbA and the fnbB gene. While the cna gene was detected in 12 strains (57.2%). Furthermore, the hla gene encoding the α-toxin was found in 52.4% of the isolates. All these virulence factors give to S. aureus the right qualities to become a redoubtable pathogen associated to oral infections.

  5. Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins.

    PubMed

    Provençal, Mathieu; Michaud, Marisol; Beaulieu, Edith; Ratel, David; Rivard, Georges-Etienne; Gingras, Denis; Béliveau, Richard

    2008-03-01

    Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range, TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glioblastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion, suggesting an alteration of focal adhesion complex integrity. Accordingly, we observed that TFPI inhibited the phosphorylation of focal adhesion kinase and paxillin, two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells. PMID:18327407

  6. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells.

    PubMed

    Parr-Sturgess, Catherine A; Tinker, Claire L; Hart, Claire A; Brown, Michael D; Clarke, Noel W; Parkin, Edward T

    2012-10-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at the molecular level. In the current study, we investigated whether copper might regulate the ectodomain shedding of two key cell surface proteins implicated in the invasion and metastasis of prostate cancer, the Notch ligand Jagged1 and the adhesion molecule E-cadherin, and whether the metal was able to influence the invasion of the prostate cancer epithelial cell line PC3. Physiological copper concentrations stimulated the ZMP-mediated proteolysis of Jagged1 and E-cadherin in cell culture models, whereas other divalent metals had no effect. Copper-mediated Jagged1 proteolysis was also observed following the pretreatment of cells with cycloheximide and in a cell-free membrane system, indicating a posttranslational mechanism of sheddase activation. Finally, the concentrations of copper that stimulated ZMP-mediated protein shedding also enhanced PC3 invasion; an effect that could be negated using a sheddase inhibitor or copper chelators. Collectively, these data implicate copper as an important factor in promoting prostate cancer cell invasion and indicate that the selective posttranslational activation of ZMP-mediated protein shedding might play a role in this process.

  7. Krüppel-like factor 8 activates the transcription of C-X-C cytokine receptor type 4 to promote breast cancer cell invasion, transendothelial migration and metastasis

    PubMed Central

    Yu, Lin; He, Chunjiang; Lahiri, Satadru K.; Li, Tianshu; Zhao, Jihe

    2016-01-01

    Krüppel-like factor 8 (KLF8) has been strongly implicated in breast cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we report a novel signaling from KLF8 to C-X-C cytokine receptor type 4 (CXCR4) in breast cancer. Overexpression of KLF8 in MCF-10A cells induced CXCR4 expression at both mRNA and protein levels, as determined by quantitative real-time PCR and immunoblotting. This induction was well correlated with increased Boyden chamber migration, matrigel invasion and transendothelial migration (TEM) of the cells towards the ligand CXCL12. On the other hand, knockdown of KLF8 in MDA-MB-231 cells reduced CXCR4 expression associated with decreased cell migration, invasion and TEM towards CXCL12. Histological and database mining analyses of independent cohorts of patient tissue microarrays revealed a correlation of aberrant co-elevation of KLF8 and CXCR4 with metastatic potential. Promoter analysis indicated that KLF8 directly binds and activates the human CXCR4 gene promoter. Interestingly, a CXCR4-dependent activation of focal adhesion kinase (FAK), a known upregulator of KLF8, was highly induced by CXCL12 treatment in KLF8-overexpressing, but not KLF8 deficient cells. This activation of FAK in turn induced a further increase in KLF8 expression. Xenograft studies showed that overexpression of CXCR4, but not a dominant-negative mutant of it, in the MDA-MB-231 cells prevented the invasive growth of primary tumor and lung metastasis from inhibition by knockdown of KLF8. These results collectively suggest a critical role for a previously unidentified feed-forward signaling wheel made of KLF8, CXCR4 and FAK in promoting breast cancer metastasis and shed new light on potentially more effective anti-cancer strategies. PMID:26993780

  8. BRD4 induces cell migration and invasion in HCC cells through MMP-2 and MMP-9 activation mediated by the Sonic hedgehog signaling pathway

    PubMed Central

    WANG, YONG-HUI; SUI, XIAO-MEI; SUI, YA-NA; ZHU, QIN-WEI; YAN, KAI; WANG, LI-SHAN; WANG, FEI; ZHOU, JIA-HUA

    2015-01-01

    Hepatocellular carcinoma (HCC) is a highly aggressive form of carcinoma with poor prognosis, and HCC-associated mortality primarily occurs due to migration and invasion of HCC cells. The manipulation of epigenetic proteins, such as BRD4, has recently emerged as an alternative therapeutic strategy. The present study aimed to investigate the novel mechanism of BRD4 involvement in the migration and invasion of HCC cells. Reverse transcription-quantitative polymerase chain reaction was used to assess BRD4 mRNA expression levels in HCC cell lines. This analysis demonstrated that BRD4 was significantly overexpressed in HCC cell lines compared with a human immortalized normal liver cell line. A short hairpin RNA (shRNA) was then used to suppress BRD4 expression in HCC cells, and resulted in impaired HCC cell proliferation, migration and invasion. When the HepG2 HCC cell line was treated with recombinant human sonic hedgehog (SHH) peptide, the migration and invasion capabilities of HepG2 cells that were inhibited by BRD4 silencing were restored. BRD4 induced cell migration and invasion in HepG2 cells through the activation of matrix metalloproteinase (MMP)-2 and MMP-9, mediated by the SHH signaling pathway. Taken together, the results of the present study demonstrated the importance of BRD4 in HCC cell proliferation and metastasis. Thus, BRD4 is a potential novel target for the development of therapeutic approaches against HCC. PMID:26622824

  9. Phosphorylated Heat Shock Protein 20 (HSPB6) Regulates Transforming Growth Factor-α-Induced Migration and Invasion of Hepatocellular Carcinoma Cells

    PubMed Central

    Matsushima-Nishiwaki, Rie; Toyoda, Hidenori; Nagasawa, Tomoaki; Yasuda, Eisuke; Chiba, Naokazu; Okuda, Seiji; Maeda, Atsuyuki; Kaneoka, Yuji; Kumada, Takashi; Kozawa, Osamu

    2016-01-01

    Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway. PMID:27046040

  10. MicroRNA-181c inhibits glioblastoma cell invasion, migration and mesenchymal transition by targeting TGF-β pathway.

    PubMed

    He, Xin; Liu, Zengjin; Peng, Yutao; Yu, Chunjiang

    2016-01-22

    MicroRNAs (miRNAs) are small non-coding RNAs frequently dysregulated in human malignancies. In this study, we found that miR-181c was down-regulated both in glioblastoma tissues and cell lines. We also annotated 566 TCGA miRNA expression profiles and found that patients with high microRNA-181c (miR-181c)-expressing tumors had significantly longer OS and PFS. Overexpression of miR-181c evidently inhibited glioblastoma cell line T98G migration and invasion. Further, the expression of E-cadherin was significantly upregulated and that of N-cadherin and vimentin was significantly down-regulated. We also found that miR-181c overexpression inhibited TGF-β signaling by down-regulating TGFBR1, TGFBR2 and TGFBRAP1 expression. Overall, our study found that miR-181c plays a key role in glioblastoma cell invasion, migration and mesenchymal transition suggesting potential therapeutic applications. PMID:26682928

  11. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: Role of nitric oxide.

    PubMed

    Fahey, Jonathan M; Girotti, Albert W

    2015-09-15

    Employing an in vitro model for 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), we recently reported that human prostate cancer PC3 cells rapidly and persistently overexpressed inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after a moderate ALA/light challenge. The upregulated iNOS/NO was shown to play a key role in cell resistance to apoptotic photokilling and also in the dramatic growth spurt observed in surviving cells. In the present study, we found that PC3 cells surviving an ALA/light insult not only proliferated faster than non-stressed controls, but migrated and invaded faster as well, these effects being abrogated by an iNOS inhibitor or NO scavenger. Photostressed prostate DU145 cells exhibited similar behavior. Using in-gel zymography, we showed that PC3 extracellular matrix metalloproteinase-9 (MMP-9) was strongly activated 24 h after ALA/light treatment and that MMP-9 inhibitor TIMP-1 was downregulated, consistent with MMP-9 involvement in enhanced invasiveness. We also observed a photostress-induced upregulation of α6 and β1 integrins, implying their involvement as well. The MMP-9, TIMP-1, and integrin effects were strongly attenuated by iNOS inhibition, confirming NO's role in photostress-enhanced migration/invasion. This study reveals novel, potentially tumor-promoting, side-effects of prostate cancer PDT which may be averted through use of iNOS inhibitors as PDT adjuvants.

  12. Unripe Rubus coreanus Miquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression.

    PubMed

    Kim, Yesl; Lee, Seung Min; Kim, Jung-Hyun

    2014-01-01

    Rubus coreanus Miquel (RCM) is used to promote prostate health and has been shown to have anti-oxidant and anti-carcinogenic activities. However, the effects and mechanisms of RCM on prostate cancer metastasis remain unclear. PC-3 and DU 145 cells were treated with ethanol or water extract of unripe or ripe RCM and examined for cell invasion, migration, and matrix metalloproteinases (MMPs) activity and expression. Phosphoinositide 3-kinase (PI3K) and Akt activities were examined. Unripe RCM extracts exerted significant inhibitory effects on cell migration, invasion, and MMPs activities. A significant reduction in MMPs activities by unripe RCM ethanol extract treatment (UE) was associated with reduction of MMPs expression and induction of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, PI3K/Akt activity was diminished by UE treatment. In this study, we demonstrated that UE decreased metastatic potential of prostate cancer cells by reducing MMPs expression through the suppression of PI3K/Akt phosphorylation, thereby decreasing MMP activity and enhancing TIMPs expression.

  13. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer

    PubMed Central

    Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-01-01

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer. PMID:27036016

  14. Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop.

    PubMed

    Du, Ze-Peng; Wu, Bing-Li; Xie, Yang-Min; Zhang, Ying-Li; Liao, Lian-Di; Zhou, Fei; Xie, Jian-Jun; Zeng, Fa-Min; Xu, Xiu-E; Fang, Wang-Kai; Li, En-Min; Xu, Li-Yan

    2015-10-01

    Lipocalin 2 (LCN2) is a poor prognostic factor in esophageal squamous cell carcinoma (ESCC), however its functional roles and molecular mechanisms of action remain to be clarified. Here, we described the functions and signaling pathways for LCN2 in ESCC. Overexpression of LCN2 in ESCC cells accelerated cell migration and invasion in vitro, and promoted lung metastasis in vivo. Blocking LCN2 expression inhibited its pro-oncogenic effect. Either overexpression of LCN2 or treatment with recombinant human LCN2 protein enhanced the activation of MEK/ERK pathway, which in turn increases endogenous LCN2 to increase MMP-9 activity. The decreased p-cofilin and increased p-ERM induced by pERK1/2 cause the cytoskeleton F-actin rearrangement and alter the behavior of ESCC cells mediated by LCN2. As a consequence, activation of MMP-9 and the rearrangement of F-actin throw light on the mechanisms for LCN2 in ESCC. These results imply that LCN2 promotes the migration and invasion of ESCC cells through a novel positive feedback loop.

  15. Spiclomazine Induces Apoptosis Associated with the Suppression of Cell Viability, Migration and Invasion in Pancreatic Carcinoma Cells

    PubMed Central

    Liu, Zuojia; Zheng, Xiliang; Wang, Jin; Wang, Erkang

    2013-01-01

    The effective treatment for pancreatic carcinoma remains critically needed. Herein, this current study showed that spiclomazine treatment caused a reduction in viability in pancreatic carcinoma cell lines CFPAC-1 and MIA PaCa-2 in vitro. It was notable in this regard that, compared with pancreatic carcinoma cells, normal human embryonic kidney (HEK-293) and liver (HL-7702) cells were more resistant to the antigrowth effect of spiclomazine. Biochemically, spiclomazine treatment regulated the expression of protein levels in the apoptosis related pathways. Consistent with this effect, spiclomazine reduced the mitochondria membrane potential, elevated reactive oxygen species, and activated caspase-3/9. In addition, a key finding from this study was that spiclomazine suppressed migration and invasion of cancer cells through down-regulation of MMP-2/9. Collectively, the proposed studies did shed light on the antiproliferation effect of spiclomazine on pancreatic carcinoma cell lines, and further clarified the mechanisms that spiclomazine induced apoptosis associated with the suppression of migration and invasion. PMID:23840452

  16. Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells

    PubMed Central

    Ding, Hanzhi; Quan, Hong; Yan, Weiguo; Han, Jing

    2016-01-01

    Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell-fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral shRNAs to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and protein levels of MMP9 and Twist, while notably increased E-cadherin. Moreover, SOX12 knockdown significantly inhibited the proliferation of breast cancer cells in vitro and the growth of xenograft tumours in vivo. Flow cytometry analysis revealed that breast cancer cells with SOX12 knockdown showed cell cycle arrest and decreased mRNA and protein levels of proliferating cell nuclear antigen (PCNA), CDK2 and Cyclin D1. Taken together, SOX12 plays an important role in growth inhibition through cell-cycle arrest, as well as migration and invasion of breast cancer cells. PMID:27582508

  17. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer.

    PubMed

    Liu, Li; Liu, Yuchen; Zhang, Xintao; Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-05-01

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer.

  18. Androgen receptor promotes gastric cancer cell migration and invasion via AKT-phosphorylation dependent upregulation of matrix metalloproteinase 9

    PubMed Central

    Zang, Ming-de; Chang, Qing; Fan, Zhi-yuan; Li, Jian-fang; Yu, Bei-qin; Su, Li-ping; Li, Chen; Yan, Chao; Gu, Qin-long; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2014-01-01

    Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in gastric cancer (GC) are poorly characterized. Here, we investigated the role of AR in GC cell migration, invasion and metastatic potential. Our data showed that AR expression was positively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by activation of AKT and upregulation of matrix metalloproteinase 9 (MMP9). AR overexpression induced increases in GC cell migration, invasion and proliferation in vitro and in vivo. These effects were attenuated by inhibition of AKT, AR and MMP9. AR overexpression upregulated MMP9 protein levels, whereas this effect was counteracted by AR siRNA. Inhibition of AKT by siRNA or an inhibitor (MK-2206 2HC) decreased AR protein expression in both stably transfected and parental SGC-7901 cells. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that AR bound to the AR-binding sites of the MMP9 promoter. In summary, AR overexpression induced by AKT phosphorylation upregulated MMP9 by binding to its promoter region to promote gastric carcinogenesis. The AKT/AR/MMP9 pathway plays an important role in GC metastasis and may be a novel therapeutic target for GC treatment. PMID:25301736

  19. 4-HPR impairs bladder cancer cell migration and invasion by interfering with the Wnt5a/JNK and Wnt5a/MMP-2 signaling pathways

    PubMed Central

    Cao, Yuanfei; Wang, Xiaolong; Xu, Chang; Gao, Zhengyan; Zhou, Haihong; Wang, Yongzhi; Cao, Rui; Liu, Tao; Liu, Tongzu

    2016-01-01

    In order to identify the anti-invasive and anti-metastatic effect of the synthetic retinoid N-(4-hydroxyphenyl) retinamide (4-HPR) on the human bladder cancer EJ cell line, and to study its impact on the expression of wingless-type mouse mammary tumor virus integration site family, member 5a (Wnt5a), the phosphorylation of c-Jun N-terminal kinase (JNK), the expression levels of matrix metalloproteinase-2 (MMP-2), and the migration and invasion of EJ cells, migration and Matrigel invasion assays, as well as western blot analyses, were used in the present study. The results of the migration and Matrigel invasion assays indicated that the inhibitor of JNK SP600125 could inhibit the effect of 4-HPR on EJ cells. The expression of Wnt5a and MMP-2, and the phosphorylation of JNK, were analyzed by western blotting. The data revealed that 4-HPR inhibited the migration and invasion of bladder cancer cells through stimulating Wnt5a activation, causing the downregulation of MMP-2 expression and enhancing the phosphorylation of JNK in these cells. However, JNK signaling did not appear to have a direct effect on the expression of MMP-2. The present study demonstrated that 4-HPR may be a potent anti-invasive and anti-metastatic agent that functions via the Wnt5a/JNK and Wnt5a/MMP-2 signaling pathways. PMID:27602114

  20. 4-HPR impairs bladder cancer cell migration and invasion by interfering with the Wnt5a/JNK and Wnt5a/MMP-2 signaling pathways

    PubMed Central

    Cao, Yuanfei; Wang, Xiaolong; Xu, Chang; Gao, Zhengyan; Zhou, Haihong; Wang, Yongzhi; Cao, Rui; Liu, Tao; Liu, Tongzu

    2016-01-01

    In order to identify the anti-invasive and anti-metastatic effect of the synthetic retinoid N-(4-hydroxyphenyl) retinamide (4-HPR) on the human bladder cancer EJ cell line, and to study its impact on the expression of wingless-type mouse mammary tumor virus integration site family, member 5a (Wnt5a), the phosphorylation of c-Jun N-terminal kinase (JNK), the expression levels of matrix metalloproteinase-2 (MMP-2), and the migration and invasion of EJ cells, migration and Matrigel invasion assays, as well as western blot analyses, were used in the present study. The results of the migration and Matrigel invasion assays indicated that the inhibitor of JNK SP600125 could inhibit the effect of 4-HPR on EJ cells. The expression of Wnt5a and MMP-2, and the phosphorylation of JNK, were analyzed by western blotting. The data revealed that 4-HPR inhibited the migration and invasion of bladder cancer cells through stimulating Wnt5a activation, causing the downregulation of MMP-2 expression and enhancing the phosphorylation of JNK in these cells. However, JNK signaling did not appear to have a direct effect on the expression of MMP-2. The present study demonstrated that 4-HPR may be a potent anti-invasive and anti-metastatic agent that functions via the Wnt5a/JNK and Wnt5a/MMP-2 signaling pathways.

  1. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1.

    PubMed

    Peled, Amnon; Hardan, Izhar; Trakhtenbrot, Luba; Gur, Eyal; Magid, Michal; Darash-Yahana, Merav; Cohen, Ninette; Grabovsky, Valentin; Franitza, Suzana; Kollet, Orit; Lider, Ofer; Alon, Ronen; Rechavi, Gideon; Lapidot, Tsvee

    2002-01-01

    Chronic myelogenous leukemia (CML), a malignant myeloproliferative disorder originating from a pluripotent stem cell expressing the bcr-abl oncogene, is characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow (BM) into the circulation. Moreover, immature CD34+ CML cells have lower adhesion to stromal cells and fibronectin as well as lower engraftment potential in severe combined immunedeficient (SCID) and nonobese diabetic (NOD)/SCID mice than normal CD34+ cells. We report in this study that leukemic Philadelphia chromosome-positive (Ph+)CD34+ cells from newly diagnosed CML patients that express the chemokine receptor CXCR4 migrate in response to stromal-derived factor-1 (SDF-1). However, normal Ph-CD34+CXCR4+ cells derived from the same patient have significantly higher migration levels toward SDF-1. In contrast to their transwell migration potential, the SDF-1-mediated integrin-dependent polarization and migration of the Ph+CD34+CXCR4+ cells through extracellular matrix-like gels were significantly lower than for normal cells. Concomitantly, binding of these cells to vascular cell adhesion molecule-1 or fibronectin, in the presence of SDF-1, was also substantially lower. These findings suggest a major role for SDF-1-mediated, integrin-dependent BM retention of Ph+CD34+ cells. PMID:12004084

  2. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  3. Preparation of gelatin density gradient on poly(ε-caprolactone) membrane and its influence on adhesion and migration of endothelial cells.

    PubMed

    Yu, Shan; Mao, Zhengwei; Gao, Changyou

    2015-08-01

    Directional migration of endothelial cells (ECs) can be achieved by gradient cues in vitro, which mimics the corresponding biological events in vivo. Currently, most of the gradients have been prepared on model surfaces which are too simple compared to real degradable biomaterials. In this study, the amino group density gradient was prepared on poly(ε-caprolactone) (PCL) membrane surface by a gradient aminolysis method, which was transferred into gelatin density gradient by covalent linking with glutaraldehyde. The resulted gelatin density gradient ranged from 0.49 to 1.57μg/cm(2) on the PCL membrane. The adhesion, orientation and migration of ECs on the PCL membrane with the gelatin density gradient were studied. The ECs showed preferred orientation and directional migration toward the gradient direction with enhanced gelatin density at proper position (gelatin density), forwarding a new step toward the preparation of applicable gradient biomaterials in tissue regeneration.

  4. Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a "secretome" analysis.

    PubMed

    Volmer, Martin W; Radacz, Yvonne; Hahn, Stephan A; Klein-Scory, Susanne; Stühler, Kai; Zapatka, Marc; Schmiegel, Wolff; Meyer, Helmut E; Schwarte-Waldhoff, Irmgard

    2004-05-01

    We have demonstrated previously that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas cell growth in vitro was not affected. Here we show that Smad4-positive and Smad4-negative SW480 cells deposit extracellular matrices in tissue culture which are functionally different with respect to their adhesiveness. We present a "differential secretomics analysis" as the most direct approach to identify the underlying alterations. The protein composition of conditioned media produced by Smad4-positive and Smad4-negative SW480 cells was compared by two-dimensional (2-D) gel electrophoresis. A major group of protein spots was detected in media derived from Smad4-negative cells, only, which were identified as "secreted protein, acidic and rich in cysteins" (SPARC) by mass spectrometry. SPARC expression in SW480 cells was suppressed by Smad4 at the level of transcription. SPARC is a glycoprotein of the extracellular matrix, characterized as an anti-adhesive and invasion-promoting protein. Differential secretomics appeared as a powerful method to identify a novel Smad4 target gene, which may be one of the players involved in reduced adhesiveness of extracellular matrices and thus consistent with Smad4's emerging role as an invasion suppressor.

  5. A PKA-Csk-pp60Src signaling pathway regulates the switch between endothelial cell invasion and cell-cell adhesion during vascular sprouting

    PubMed Central

    Jin, Hui; Garmy-Susini, Barbara; Avraamides, Christie J.; Stoletov, Konstantin; Klemke, Richard L.

    2010-01-01

    Angiogenesis is controlled by signals that stimulate motility in endothelial cells at the tips of vascular sprouts while maintaining cell-cell adhesion in the stalks of angiogenic sprouts. We show here that Gs-linked G protein–coupled receptor activation of cAMP-dependent protein kinase (PKA) plays an important role in regulating the switch between endothelial cell adhesion and migration by activating C-terminal Src kinase, leading to inhibition of pp60Src. Activated PKA blocks pp60Src-dependent vascular endot helial-cadherin phosphorylation, thereby stimulating cell-cell adhesion while suppressing endothelial cell polarization, motility, angiogenesis, and vascular permeability. Similar to the actions of Notch and Dll4, PKA activation blocks sprouting in newly forming embryonic blood vessels, while PKA inhibition promotes excessive sprouting in these vessels. These findings demonstrate that G protein–coupled receptors and PKA regulate vascular sprouting during angiogenesis by controlling endothelial cell migration and cell-cell adhesion through their actions on pp60Src. PMID:20826718

  6. A PKA-Csk-pp60Src signaling pathway regulates the switch between endothelial cell invasion and cell-cell adhesion during vascular sprouting.

    PubMed

    Jin, Hui; Garmy-Susini, Barbara; Avraamides, Christie J; Stoletov, Konstantin; Klemke, Richard L; Varner, Judith A

    2010-12-16

    Angiogenesis is controlled by signals that stimulate motility in endothelial cells at the tips of vascular sprouts while maintaining cell-cell adhesion in the stalks of angiogenic sprouts. We show here that Gs-linked G protein-coupled receptor activation of cAMP-dependent protein kinase (PKA) plays an important role in regulating the switch between endothelial cell adhesion and migration by activating C-terminal Src kinase, leading to inhibition of pp60Src. Activated PKA blocks pp60Src-dependent vascular endot helial-cadherin phosphorylation, thereby stimulating cell-cell adhesion while suppressing endothelial cell polarization, motility, angiogenesis, and vascular permeability. Similar to the actions of Notch and Dll4, PKA activation blocks sprouting in newly forming embryonic blood vessels, while PKA inhibition promotes excessive sprouting in these vessels. These findings demonstrate that G protein-coupled receptors and PKA regulate vascular sprouting during angiogenesis by controlling endothelial cell migration and cell-cell adhesion through their actions on pp60Src. PMID:20826718

  7. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    SciTech Connect

    Sakwe, Amos M.; Koumangoye, Rainelli; Guillory, Bobby; Ochieng, Josiah

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.

  8. SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma.

    PubMed

    Zhu, Ying; Zhu, Meng-Xiao; Zhang, Xiao-Dan; Xu, Xiu-E; Wu, Zhi-Yong; Liao, Lian-Di; Li, Li-Yan; Xie, Yang-Min; Wu, Jian-Yi; Zou, Hai-Ying; Xie, Jian-Jun; Li, En-Min; Xu, Li-Yan

    2016-06-01

    Epigenetic alterations, including DNA methylation and histone modifications, are involved in the regulation of cancer initiation and progression. SET and MYND domain-containing protein 3 (SMYD3), a methyltransferase, plays an important role in transcriptional regulation during human cancer progression. However, SMYD3 expression and its function in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, SMYD3 expression was studied by immunohistochemistry in a tumor tissue microarray from 131 cases of ESCC patients. Statistical analysis showed that overall survival of patients with high SMYD3 expressing in primary tumors was significantly lower than that of patients with low SMYD3-expressing tumors (P = .008, log-rank test). Increased expression of SMYD3 was found to be associated with lymph node metastasis in ESCC (P = .036) and was an independent prognostic factor for poor overall survival (P = .025). RNAi-mediated knockdown of SMYD3 suppressed ESCC cell proliferation, migration, and invasion in vitro and inhibited local tumor invasion in vivo. SMYD3 regulated transcription of EZR and LOXL2 by directly binding to the sequences of the promoter regions of these target genes, as demonstrated by a chromatin immunoprecipitation assay. Immunohistochemical staining of ESCC tissues also confirmed that protein levels of EZR and LOXL2 positively correlated with SMYD3 expression, and the Spearman correlation coefficients (rs) were 0.78 (n = 81; P < .01) and 0.637 (n = 103; P < .01), respectively. These results indicate that SMYD3 enhances tumorigenicity in ESCC through enhancing transcription of genes involved in proliferation, migration, and invasion. PMID:26980013

  9. Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin.

    PubMed

    Zhang, Zefeng; Bu, Xiaoling; Chen, Hao; Wang, Qiyi; Sha, Weihong

    2016-10-01

    Metastasis and recurrence are the challenges of cancer therapy. Recently, mounting evidence has suggested that cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) are critical factors in tumor metastasis and recurrence. The oncogene, Bmi-1, promotes the development of hematologic malignancies and many solid tumors. The aim of the present study was to elucidate the mechanisms through which Bmi-1 promotes the invasion and migration of colon CSCs (CCSCs) using the HCT116 colon cancer cell line. Sphere formation medium and magnetic‑activated cell sorting were used to enrich and screen the CCSCs. CD133 and CD44 were regarded as markers of CCSCs and they were found to be co-expressed in the HCT116 colon cancer cell line. Colony formation assay, cell proliferation assay and viability assay using the Cell Counting Kit-8, and transplantation assay using nude mice injected with CCSCs were used to examine the CCSCs. The CD133+CD44+ HCT116 cells exhibited greater cloning efficiency, an enhanced proliferative ability, increased cell viability and stronger tumorigenicity; these cells were used as the CCSCs for subsequent experiments. In addition, the invasive and migratory abilities of the CD133+CD44+ HCT116 cells were markedly decreased when Bmi-1 was silenced by small interfering RNA (siRNA). The results of RT-qPCR and western blot analysis suggested that Bmi-1 had a negative effect on E-cadherin expression. On the whole, our findings suggest that Bmi-1 promotes the invasion and migration of CCSCs through the downregulation of E-cadherin, possibly by inducing EMT. Our findings thus indicate that Bmi-1 may be a novel therapeutic target for the treatment of colon cancer. PMID:27600678

  10. SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma.

    PubMed

    Zhu, Ying; Zhu, Meng-Xiao; Zhang, Xiao-Dan; Xu, Xiu-E; Wu, Zhi-Yong; Liao, Lian-Di; Li, Li-Yan; Xie, Yang-Min; Wu, Jian-Yi; Zou, Hai-Ying; Xie, Jian-Jun; Li, En-Min; Xu, Li-Yan

    2016-06-01

    Epigenetic alterations, including DNA methylation and histone modifications, are involved in the regulation of cancer initiation and progression. SET and MYND domain-containing protein 3 (SMYD3), a methyltransferase, plays an important role in transcriptional regulation during human cancer progression. However, SMYD3 expression and its function in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, SMYD3 expression was studied by immunohistochemistry in a tumor tissue microarray from 131 cases of ESCC patients. Statistical analysis showed that overall survival of patients with high SMYD3 expressing in primary tumors was significantly lower than that of patients with low SMYD3-expressing tumors (P = .008, log-rank test). Increased expression of SMYD3 was found to be associated with lymph node metastasis in ESCC (P = .036) and was an independent prognostic factor for poor overall survival (P = .025). RNAi-mediated knockdown of SMYD3 suppressed ESCC cell proliferation, migration, and invasion in vitro and inhibited local tumor invasion in vivo. SMYD3 regulated transcription of EZR and LOXL2 by directly binding to the sequences of the promoter regions of these target genes, as demonstrated by a chromatin immunoprecipitation assay. Immunohistochemical staining of ESCC tissues also confirmed that protein levels of EZR and LOXL2 positively correlated with SMYD3 expression, and the Spearman correlation coefficients (rs) were 0.78 (n = 81; P < .01) and 0.637 (n = 103; P < .01), respectively. These results indicate that SMYD3 enhances tumorigenicity in ESCC through enhancing transcription of genes involved in proliferation, migration, and invasion.

  11. [Sodium nitrite enhanced the potentials of migration and invasion of human hepatocellular carcinoma SMMC-7721 cells through induction of mitophagy].

    PubMed

    Gui, Guan; Meng, Shan-shan; Li, Lu-juan; Liu, Bin; Liang, Hong-xia; Huangfu, Chao-shen

    2016-01-01

    Nitrites play multiple characteristic functions in invasion and metastasis of hepatic cancer cells, but the exact mechanism is not yet known. Cancer cells can maintain the malignant characteristics via clearance of excess mitochondria by mitophagy. The purpose of this article was to determine the roles of nitrite, reactive oxygen species (ROS) and hypoxia inducing factor 1 alpha (HIF-1 α) in mitophagy of hepatic cancer cells. After exposure of human hepatocellular carcinoma SMMC-7721 cells to a serial concentrations of sodium nitrite for 24 h under normal oxygen, the maximal cell vitality was increased by 16 mg x (-1) sodium nitrite. In addition, the potentials of migration and invasion for SMMC-7721 cells were increased significantly at the same time. Furthermore, sodium nitrite exposure displayed an increase of stress fibers, lamellipodum and perinuclear mitochondrial distribution by cell staining with Actin-Tracker Green and Mito-Tracker Red, which was reversed by N-acetylcysteine (NAC, a reactive oxygen scavenger). DCFH-DA staining with fluorescent microscopy showed that the intracellular level of ROS concentration was increased by the sodium nitrite treatment. LC3 immunostaining and Western blot results showed that sodium nitrite enhanced cell autophagy flux. Under the transmission electron microscopy (TEM), more autolysosomes formed after sodium nitrite treatment and NAC could prevent autophagosome degradation. RT-PCR results indicated that the expression levels of COX I and COXIV mRNA were decreased significantly after sodium nitrite treatment. Meanwhile, laser scanning confocal microscopy showed that sodium nitrite significantly reduced mitochondrial mass detected by Mito-Tracker Green staining. The expression levels of HIF-1α, Beclin-1 and Bnip3 (mitophagy marker molecular) increased remarkably after sodium nitrite treatment, which were reversed by NAC. Our results demonstrated that sodium nitrite (16 mg x L(-1)) increased the potentials of invasion and

  12. Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin

    PubMed Central

    Zhang, Zefeng; Bu, Xiaoling; Chen, Hao; Wang, Qiyi; Sha, Weihong

    2016-01-01

    Metastasis and recurrence are the challenges of cancer therapy. Recently, mounting evidence has suggested that cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) are critical factors in tumor metastasis and recurrence. The oncogene, Bmi-1, promotes the development of hematologic malignancies and many solid tumors. The aim of the present study was to elucidate the mechanisms through which Bmi-1 promotes the invasion and migration of colon CSCs (CCSCs) using the HCT116 colon cancer cell line. Sphere formation medium and magnetic-activated cell sorting were used to enrich and screen the CCSCs. CD133 and CD44 were regarded as markers of CCSCs and they were found to be co-expressed in the HCT116 colon cancer cell line. Colony formation assay, cell proliferation assay and viability assay using the Cell Counting Kit-8, and transplantation assay using nude mice injected with CCSCs were used to examine the CCSCs. The CD133+CD44+ HCT116 cells exhibited greater cloning efficiency, an enhanced proliferative ability, increased cell viability and stronger tumorigenicity; these cells were used as the CCSCs for subsequent experiments. In addition, the invasive and migratory abilities of the CD133+CD44+ HCT116 cells were markedly decreased when Bmi-1 was silenced by small interfering RNA (siRNA). The results of RT-qPCR and western blot analysis suggested that Bmi-1 had a negative effect on E-cadherin expression. On the whole, our findings suggest that Bmi-1 promotes the invasion and migration of CCSCs through the downregulation of E-cadherin, possibly by inducing EMT. Our findings thus indicate that Bmi-1 may be a novel therapeutic target for the treatment of colon cancer. PMID:27600678

  13. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton

    PubMed Central

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D.; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin–radixin–moesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr558, which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-α. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring ER modulator in the breast. PMID:24904530

  14. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton.

    PubMed

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin-radixin-moesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr(558), which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-α. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulator