Science.gov

Sample records for adhesion molecule cd44

  1. Alternatively spliced variants of the cell adhesion molecule CD44 and tumour progression in colorectal cancer.

    PubMed Central

    Gotley, D. C.; Fawcett, J.; Walsh, M. D.; Reeder, J. A.; Simmons, D. L.; Antalis, T. M.

    1996-01-01

    Increased expression of alternatively spliced variants of the CD44 family of cell adhesion molecules has been associated with tumour metastasis. In the present study, expression of alternatively spliced variants of CD44 and their cellular distribution have been investigated in human colonic tumours and in the corresponding normal mucosa, in addition to benign adenomatous polyps. The expression of CD44 alternatively spliced variants has been correlated with tumour progression according to Dukes' histological stage. CD44 variant expression was determined by immunohistochemisty using monoclonal antibodies directed against specific CD44 variant domains together with RT-PCR analysis of CD44 variant mRNA expression in the same tissue specimens. We demonstrate that as well as being expressed in colonic tumour cells, the full range of CD44 variants, CD44v2-v10, are widely expressed in normal colonic crypt epithelium, predominantly in the crypt base. CD44v6, the epitope which is most commonly associated with tumour progression and metastasis, was not only expressed by many benign colonic tumours, but was expressed as frequently in normal basal crypt epithelium as in malignant colonic tumour cells, and surprisingly, was even absent from some metastatic colorectal tumours. Expression of none of the CD44 variant epitopes was found to be positively correlated with tumour progression or with colorectal tumour metastasis to the liver, results which are inconsistent with a role for CD44 variants as indicators of colonic cancer progression. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:8695347

  2. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGESBeta

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J.E.; Bu, Zimei

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  3. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  4. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    SciTech Connect

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J.E.; Bu, Zimei

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin. Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.

  5. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44

    SciTech Connect

    Mori, Tomoyuki; Kitano, Ken; Terawaki, Shin-ichi; Maesaki, Ryoko; Hakoshima, Toshio

    2007-10-01

    The radixin FERM domain complexed with the CD44 cytoplasmic tail peptide has been crystallized. A diffraction data set from the complex was collected to 2.1 Å. CD44 is an important adhesion molecule that specifically binds hyaluronic acid and regulates cell–cell and cell–matrix interactions. Increasing evidence has indicated that CD44 is assembled in a regulated manner into the membrane–cytoskeletal junction, a process that is mediated by ERM (ezrin/radixin/moesin) proteins. Crystals of a complex between the radixin FERM domain and the C-terminal cytoplasmic region of CD44 have been obtained. The crystal of the radixin FERM domain bound to the CD44 cytoplasmic tail peptide belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.70, b = 66.18, c = 86.22 Å, and contain one complex in the crystallographic asymmetric unit. An intensity data set was collected to a resolution of 2.1 Å.

  6. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling

    PubMed Central

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M.; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a “stellate”-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  7. LRP-1–CD44, a New Cell Surface Complex Regulating Tumor Cell Adhesion

    PubMed Central

    Perrot, Gwenn; Langlois, Benoit; Devy, Jérôme; Jeanne, Albin; Verzeaux, Laurie; Almagro, Sébastien; Sartelet, Hervé; Hachet, Cathy; Schneider, Christophe; Sick, Emilie; David, Marion; Khrestchatisky, Michel; Emonard, Hervé; Martiny, Laurent

    2012-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. In the field of cancer, LRP-1-mediated endocytosis was first associated with antitumor properties. However, recent results suggested that LRP-1 may coordinate the adhesion-deadhesion balance in malignant cells to support tumor progression. Here, we observed that LRP-1 silencing or RAP (receptor-associated protein) treatment led to accumulation of CD44 at the tumor cell surface. Moreover, we evidenced a tight interaction between CD44 and LRP-1, not exclusively localized in lipid rafts. Overexpression of LRP-1-derived minireceptors indicated that the fourth ligand-binding cluster of LRP-1 is required to bind CD44. Labeling of CD44 with EEA1 and LAMP-1 showed that internalized CD44 is routed through early endosomes toward lysosomes in a LRP-1-dependent pathway. LRP-1-mediated internalization of CD44 was highly reduced under hyperosmotic conditions but poorly affected by membrane cholesterol depletion, revealing that it proceeds mostly via clathrin-coated pits. Finally, we demonstrated that CD44 silencing abolishes RAP-induced tumor cell attachment, revealing that cell surface accumulation of CD44 under LRP-1 blockade is mainly responsible for the stimulation of tumor cell adhesion. Altogether, our data shed light on the LRP-1-mediated internalization of CD44 that appeared critical to define the adhesive properties of tumor cells. PMID:22711991

  8. CD44 and the adhesion of neoplastic cells.

    PubMed Central

    Rudzki, Z; Jothy, S

    1997-01-01

    CD44 is a family of transmembrane glycoproteins that act mainly as a receptor for hyaluronan. It can also bind some other extracellular matrix ligands (chondroitin sulphate, heparan sulphate, fibronectin, serglycin, osteopontin) with lower affinity. CD44 is encoded by a single gene containing 20 exons, 10 of which (v1-v10) are variant exons inserted by alternative splicing. The standard, ubiquitously expressed isoform of CD44, does not contain sequences encoded by these variant exons. Numerous variant isoforms of CD44 containing different combinations of exons v1-v10 inserted into the extracellular domain can be expressed in proliferating epithelial cells and activated lymphocytes. CD44 plays a significant role in lymphocyte homing. Both alternative splicing and glycosylation influence receptor function of the molecule, usually reducing its affinity to hyaluronan. The cytoplasmic domain of CD44 communicates with the cytoskeleton via ankyrin and proteins belonging to the ezrin-moesin-radixin family. Relatively little is known about the intracellular events following interactions of CD44 with its ligands. Some variant isoforms, especially those containing sequences encoded by v6-v10, are overexpressed in both human and animal neoplasms. In a rat pancreatic adenocarcinoma model one of the variant CD44 isoforms was proved to be determinant in the metastatic process. For some human neoplasms (carcinomas of the digestive tract, non-Hodgkin's lymphomas, thyroid carcinomas, and others) correlations have been made between the particular pattern of CD44 variants produced by neoplastic cells and clinicopathological parameters of tumours, such as grade, stage, presence of metastases, and survival. In vitro studies indicate that modifications of CD44 expression result in different ligand recognition and influence cell motility, invasive properties, and metastatic potential of experimental tumours. Investigation of CD44 neoexpression can be useful both in early cancer diagnosis

  9. Expression of osteopontin and CD44 molecule in papillary renal cell tumors.

    PubMed

    Matusan, Koviljka; Dordevic, Gordana; Mozetic, Vladimir; Lucin, Ksenija

    2005-01-01

    The aim of the study was to analyze the expression of CD44 adhesion molecule and its ligand osteopontin in papillary renal cell tumors, and to assess the possible prognostic significance of CD44 and osteopontin expression in papillary renal cell carcinomas. The expression of the standard and v6 exon containing isoforms of CD44 molecule, as well as of its ligand osteopontin, was immunohistochemically evaluated in 43 papillary renal cell tumors, which included 5 adenomas and 38 carcinomas. In order to assess their prognostic significance, the results obtained in papillary renal cell carcinomas were compared to usual clinicopathological parameters such as tumor size, histological grade, pathological stage, and Ki-67 proliferation index. Normal renal tissue was negative for CD44s and v6 isoforms, while the expression of osteopontin was found in distal tubular epithelial cells in the form of cytoplasmic granular positivity. CD44s and v6 isoforms were upregulated in 22 (58%) and 12 (32%) out of 38 carcinomas, respectively. Among all clinicopathological parameters examined, we only found significant association of CD44s-positive carcinomas with lower pathological stage (p=0.026). Papillary renal cell adenomas were generally negative for CD44s, except for focal positivity found in one sample. The osteopontin protein was detected in all adenomas and all papillary renal cell carcinomas, except one. Our results show constitutive expression of osteopontin in papillary renal tumors, including papillary renal cell adenomas. The upregulation of CD44s and v6 isoforms, although found in a considerable number of papillary renal cell carcinomas, does not appear to have any prognostic value in this type of renal cancer. PMID:15999156

  10. CD44 sensitivity of platelet activation, membrane scrambling and adhesion under high arterial shear rates.

    PubMed

    Liu, Guilai; Liu, Guoxing; Alzoubi, Kousi; Chatterjee, Madhumita; Walker, Britta; Münzer, Patrick; Luo, Dong; Umbach, Anja T; Elvira, Bernat; Chen, Hong; Voelkl, Jakob; Föller, Michael; Mak, Tak W; Borst, Oliver; Gawaz, Meinrad; Lang, Florian

    2016-01-01

    CD44 is required for signalling of macrophage migration inhibitory factor (MIF), an anti-apoptotic pro-inflammatory cytokine. MIF is expressed and released from blood platelets, key players in the orchestration of occlusive vascular disease. Nothing is known about a role of CD44 in the regulation of platelet function. The present study thus explored whether CD44 modifies degranulation (P-selectin exposure), integrin activation, caspase activity, phosphatidylserine exposure on the platelet surface, platelet volume, Orai1 protein abundance and cytosolic Ca(2+)-activity ([Ca2+]i). Platelets from mice lacking CD44 (cd44(-/-)) were compared to platelets from corresponding wild-type mice (cd44(+/+)). In resting platelets, P-selectin abundance, α(IIb)β3 integrin activation, caspase-3 activity and phosphatidylserine exposure were negligible in both genotypes and Orai1 protein abundance, [Ca2+]i, and volume were similar in cd44(-/-) and cd44(+/+) platelets. Platelet degranulation and α(IIb)β3 integrin activation were significantly increased by thrombin (0.02 U/ml), collagen related peptide (CRP, 2 µg/ml and Ca(2+)-store depletion with thapsigargin (1 µM), effects more pronounced in cd44(-/-) than in cd44(+/+) platelets. Thrombin (0.02 U/ml) increased platelet [Ca2+]i, caspase-3 activity, phosphatidylserine exposure and Orai1 surface abundance, effects again significantly stronger in cd44(-/-) than in cd44(+/+) platelets. Thrombin further decreased forward scatter in cd44(-/-) and cd44(+/+) platelets, an effect which tended to be again more pronounced in cd44(-/-) than in cd44(+/+) platelets. Platelet adhesion and in vitro thrombus formation under high arterial shear rates (1,700 s(-1)) were significantly augmented in cd44(-/-) mice. In conclusion, genetic deficiency of CD44 augments activation, apoptosis and pro-thrombotic potential of platelets. PMID:26355696

  11. CD44-mediated Adhesion to Hyaluronic Acid Contributes to Mechanosensing and Invasive Motility

    PubMed Central

    Kim, Yushan; Kumar, Sanjay

    2014-01-01

    The high molecular weight glycosaminoglycan, hyaluronic acid (HA), makes up a significant portion of the brain extracellular matrix (ECM). Glioblastoma multiforme (GBM), a highly invasive brain tumor, is associated with aberrant HA secretion, tissue stiffening, and overexpression of the HA receptor CD44. Here, transcriptomic analysis, engineered materials, and measurements of adhesion, migration, and invasion were used to investigate how HA/CD44 ligation contributes to the mechanosensing and invasive motility of GBM tumor cells, both intrinsically and in the context of RGD/integrin adhesion. Analysis of transcriptomic data from The Cancer Genome Atlas (TCGA) reveals up-regulation of transcripts associated with HA/CD44 adhesion. CD44 suppression in culture reduces cell adhesion to HA on short time scales (0.5h post-incubation) even if RGD is present, whereas maximal adhesion on longer time scales (3h) requires both CD44 and integrins. Moreover, time-lapse imaging demonstrates that cell adhesive structures formed during migration on bare HA matrices are more short-lived than cellular protrusions formed on surfaces containing RGD. Interestingly, adhesion and migration speed were dependent on HA hydrogel stiffness, implying that CD44-based signaling is intrinsically mechanosensitive. Finally, CD44 expression paired with an HA-rich microenvironment maximized three-dimensional invasion, whereas CD44 suppression or abundant integrin-based adhesion limited it. These findings demonstrate that CD44 transduces HA-based stiffness cues, temporally precedes integrin-based adhesion maturation, and facilitates invasion. PMID:24962319

  12. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    PubMed Central

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Assoian, Richard K.; Rader, Daniel J.; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD44 to atherosclerosis, we bred CD44-null mice to atherosclerosis-prone apoE-deficient mice. We found a 50–70% reduction in aortic lesions in CD44-null mice compared with CD44 heterozygote and wild-type littermates. We demonstrate that CD44 promotes the recruitment of macrophages to atherosclerotic lesions. Furthermore, we show that CD44 is required for phenotypic dedifferentiation of medial smooth muscle cells to the “synthetic” state as measured by expression of VCAM-1. Finally, we demonstrate that hyaluronan, the principal ligand for CD44, is upregulated in atherosclerotic lesions of apoE-deficient mice and that the low-molecular-weight proinflammatory forms of hyaluronan stimulate VCAM-1 expression and proliferation of cultured primary aortic smooth muscle cells, whereas high-molecular-weight forms of hyaluronan inhibit smooth muscle cell proliferation. We conclude that CD44 plays a critical role in the progression of atherosclerosis through multiple mechanisms. PMID:11581304

  13. CD44 is a cytotoxic triggering molecule on human polymorphonuclear cells.

    PubMed

    Pericle, F; Sconocchia, G; Titus, J A; Segal, D M

    1996-11-15

    In this study, we present evidence that CD44 is a cytotoxic triggering molecule on freshly isolated polymorphonuclear cells (PMN). PMN constitutively express high levels of CD44 as determined by FACS analysis, and immunoprecipitation studies using PMN lysates and an anti-CD44 mAb show a band of 80 to 90 kDa that migrates slightly faster than CD44 from PBL. A bispecific Ab consisting of anti-CD44 Fab cross-linked to anti-DNP Fab (anti-CD44(Fab) x anti-DNP(Fab)) induces PMN to lyse DNP-coated tumor cells in an 18-h assay, and this lysis is specifically inhibited by a polyclonal anti-CD44 F(ab')2. A second bispecific Ab, anti-CD16(Fab) x anti-DNP(Fab), that binds to Fc(gamma)RIIIb on PMN does not induce lysis, indicating that the bridging of target cells to PMN per se is not sufficient for killing. Moreover, CD44-directed killing by PMN results in the lysis of bystander cells, suggesting that the mechanisms of tumor cytolysis by CD44-targeted PMN does not require cell-cell contact. Lastly, PMN lyse target cells coated with hyaluronic acid (HA), the principal ligand for CD44, and this cytolytic activity is specifically blocked by the polyclonal anti-CD44 F(ab')2 and by an anti-CD44 mAb. We suggest that the interaction of HA with CD44 on neutrophils might initiate cytotoxic or inflammatory responses in vivo when neutrophils encounter high amounts of HA, for example on tumor cells, or in the extracellular matrix. PMID:8906846

  14. Evidence of a Role for CD44 and Cell Adhesion in Mediating Resistance to Lenalidomide in Multiple Myeloma: Therapeutic Implications

    PubMed Central

    Bjorklund, Chad C.; Baladandayuthapani, Veerabhadran; Lin, Heather Y.; Jones, Richard J.; Kuiatse, Isere; Wang, Hua; Yang, Jing; Shah, Jatin J.; Thomas, Sheeba K.; Wang, Michael; Weber, Donna M.; Orlowski, Robert Z.

    2013-01-01

    Resistance of myeloma to lenalidomide is an emerging clinical problem, and though it has been associated in part with activation of Wnt/β-catenin signaling, the mediators of this phenotype remained undefined. Lenalidomide-resistant models were found to overexpress the hyaluronan (HA)-binding protein CD44, a downstream Wnt/β-catenin transcriptional target. Consistent with a role of CD44 in cell adhesion-mediated drug-resistance (CAM-DR), lenalidomide-resistant myeloma cells were more adhesive to bone marrow stroma and HA-coated plates. Blockade of CD44 with monoclonal antibodies, free HA, or CD44 knockdown reduced adhesion and sensitized to lenalidomide. Wnt/β-catenin suppression by FH535 enhanced the activity of lenalidomide, as did interleukin-6 neutralization with siltuximab. Notably, all-trans-retinoic acid (ATRA) down-regulated total β-catenin, cell-surface and total CD44, reduced adhesion of lenalidomide-resistant myeloma cells, and enhanced the activity of lenalidomide in a lenalidomide-resistant in vivo murine xenograft model. Finally, ATRA sensitized primary myeloma samples from patients that had relapsed and/or refractory disease after lenalidomide therapy to this immunomodulatory agent ex vivo. Taken together, our findings support the hypotheses that CD44 and CAM-DR contribute to lenalidomide-resistance in multiple myeloma, that CD44 should be evaluated as a putative biomarker of sensitivity to lenalidomide, and that ATRA or other approaches that target CD44 may overcome clinical lenalidomide resistance. PMID:23760401

  15. Interleukin-1β-induced Reduction of CD44 Ser-325 Phosphorylation in Human Epidermal Keratinocytes Promotes CD44 Homomeric Complexes, Binding to Ezrin, and Extended, Monocyte-adhesive Hyaluronan Coats*

    PubMed Central

    Jokela, Tiina; Oikari, Sanna; Takabe, Piia; Rilla, Kirsi; Kärnä, Riikka; Tammi, Markku; Tammi, Raija

    2015-01-01

    The proinflammatory cytokine interleukin-1β (IL-1β) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1β turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1β did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1β caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1β increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1β (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1β changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes. PMID:25809479

  16. A role for CD44 in T cell development and function during direct competition between CD44+ and CD44- cells.

    PubMed

    Graham, Victoria A; Marzo, Amanda L; Tough, David F

    2007-04-01

    The role of CD44 in T cell biology remains incompletely understood. Although studies using anti-CD44 antibodies have implicated this cell adhesion molecule in a variety of important T cell processes, few T cell defects have been reported in CD44-deficient mice. We have assessed the requirement for CD44 in T cell development and mature T cell function by analyzing mice in which CD44(-/-) and WT cells were produced simultaneously. In mixed (CD44(-/-) + CD44(+/+)) bone marrow chimeras, production of CD44(-/-) T cells was shown to be reduced compared to WT cells due to inefficient intrathymic development. In addition, mature CD44(-/-) CD8(+) T cells generated a substantially lower response than WT T cells after infection of mice with lymphocytic choriomeningitis virus, with the reduction in response apparent in both lymphoid and non-lymphoid tissues. Overall, these results demonstrate a poor capacity of CD44(-/-) T lineage cells to compete with WT cells at multiple levels, implicating CD44 in normal T cell function. PMID:17330818

  17. Expression of the Hermes-1 (CD44) and ICAM-1 (CD54) molecule on the surface of thyroid cells from patients with Graves' disease.

    PubMed

    Fukazawa, H; Yoshida, K; Ichinohasama, R; Sawai, T; Hiromatsu, Y; Mori, K; Kikuchi, K; Aizawa, Y; Abe, K; Wall, J R

    1993-01-01

    From studies of binding of 51Cr-labeled T cells to human thyroid monolayers, we have postulated the existence of tissue "homing-like" receptors on thyroid cells in patients with Graves' disease (GD). In this study we have investigated whether the CD44 (Hermes-1) protein, well known as a putative human lymphocyte homing receptor, is expressed on thyroid cells in patients with GD, and if so whether its expression is influenced by interferon-gamma (IFN-gamma). Cell surface CD44, as well as CD54 (ICAM-1), another putative homing receptor, antigens were analyzed by flow cytometry and immunohistochemistry. CD44 and CD54 were both expressed on thyroid cells from untreated patients with GD, which, in the case of CD44, appeared as two peaks. IFN-gamma treatment enhanced the expression of the CD54 protein on Graves' thyroid cells and inhibited the expression of the larger of the two CD44 peaks, but not the other. Only small amounts of CD44 and CD54 were detected on normal thyroid cells, neither of which was affected by IFN-gamma. The CD44 protein was also demonstrated on both GD and normal thyroid cells by immunohistochemistry. These findings suggest that CD44, and possibly CD54, may induce putative adhesion pathways that lead to the homing of lymphocytes to the thyroid in patients who develop Hashimoto's thyroiditis and Graves' disease. PMID:7509669

  18. CD44 enhances tumor aggressiveness by promoting tumor cell plasticity.

    PubMed

    Paulis, Yvette W J; Huijbers, Elisabeth J M; van der Schaft, Daisy W J; Soetekouw, Patricia M M B; Pauwels, Patrick; Tjan-Heijnen, Vivianne C G; Griffioen, Arjan W

    2015-08-14

    Aggressive tumor cells can obtain the ability to transdifferentiate into cells with endothelial features and thus form vasculogenic networks. This phenomenon, called vasculogenic mimicry (VM), is associated with increased tumor malignancy and poor clinical outcome. To identify novel key molecules implicated in the process of vasculogenic mimicry, microarray analysis was performed to compare gene expression profiles of aggressive (VM+) and non-aggressive (VM-) cells derived from Ewing sarcoma and breast carcinoma. We identified the CD44/c-Met signaling cascade as heavily relevant for vasculogenic mimicry. CD44 was at the center of this cascade, and highly overexpressed in aggressive tumors. Both CD44 standard isoform and its splice variant CD44v6 were linked to increased aggressiveness in VM. Since VM is most abundant in Ewing sarcoma tumors functional analyses were performed in EW7 cells. Overexpression of CD44 allowed enhanced adhesion to its extracellular matrix ligand hyaluronic acid. CD44 expression also facilitated the formation of vasculogenic structures in vitro, as CD44 knockdown experiments repressed migration and vascular network formation. From these results and the observation that CD44 expression is associated with vasculogenic structures and blood lakes in human Ewing sarcoma tissues, we conclude that CD44 increases aggressiveness in tumors through the process of vasculogenic mimicry. PMID:26189059

  19. The normal structure and function of CD44 and its role in neoplasia.

    PubMed Central

    Sneath, R J; Mangham, D C

    1998-01-01

    CD44 is a transmembrane glycoprotein, the variant isoforms of which are coded for by alternative splicing, with the most prolific isoform being CD44 standard. CD44 is found in a wide variety of tissues including the central nervous system, lung, epidermis, liver, and pancreas, whereas variant isoforms of CD44 (CD44v) appear to have a much more restricted distribution. Variants of CD44 are expressed in tissues during development, including embryonic epithelia. Known functions of CD44 are cellular adhesion (aggregation and migration), hyaluronate degradation, lymphocyte activation, lymph node homing, myelopoiesis and lymphopoiesis, angiogenesis, and release of cytokines. The functions of CD44 are principally dependant on cellular adhesion in one setting or another. The role of CD44 in neoplasia is less well defined, although metastatic potential can be conferred on non-metastasising cell lines by transfection with a variant of CD44 and high levels of CD44 are associated with several types of malignant tumours. The physiological functions of CD44 indicate that the molecule could be involved in the metastatic spread of tumours. Many studies have investigated the pattern of CD44 distribution in tumours and some observations suggest that certain cells do not use CD44 in tumorigenesis or in the production of metastases. However, the data are extremely conflicting, and further studies are needed to establish the prognostic value of CD44 and its variant isoforms. The precise function of CD44 in the metastatic process and the degree of involvement in human malignancies has yet to be established fully. PMID:9893744

  20. Interactions between CD44 and Hyaluronan in Leukocyte Trafficking

    PubMed Central

    McDonald, Braedon; Kubes, Paul

    2015-01-01

    Recruitment of leukocytes from the bloodstream to inflamed tissues requires a carefully regulated cascade of binding interactions between adhesion molecules on leukocytes and endothelial cells. Adhesive interactions between CD44 and hyaluronan (HA) have been implicated in the regulation of immune cell trafficking within various tissues. In this review, the biology of CD44–HA interactions in cell trafficking is summarized, with special attention to neutrophil recruitment within the liver microcirculation. We describe the molecular mechanisms that regulate adhesion between neutrophil CD44 and endothelial HA, including recent evidence implicating serum-derived hyaluronan-associated protein as an important co-factor in the binding of HA to CD44 under flow conditions. CD44–HA-mediated neutrophil recruitment has been shown to contribute to innate immune responses to invading microbes, as well as to the pathogenesis of many inflammatory diseases, including various liver pathologies. As a result, blockade of neutrophil recruitment by targeting CD44–HA interactions has proven beneficial as an anti-inflammatory treatment strategy in a number of animal models of inflammatory diseases. PMID:25741341

  1. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  2. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis

    PubMed Central

    Leemans, Jaklien C.; Florquin, Sandrine; Heikens, Mirjam; Pals, Steven T.; Neut, Ronald van der; van der Poll, Tom

    2003-01-01

    Cell migration and phagocytosis are both important for controlling Mycobacterium tuberculosis infection and are critically dependent on the reorganization of the cytoskeleton. Since CD44 is an adhesion molecule involved in inflammatory responses and is connected to the actin cytoskeleton, we investigated the role of CD44 in both these processes. Macrophage (Mφ) recruitment into M. tuberculosis–infected lungs and delayed-type hypersensitivity sites was impaired in CD44-deficient (CD44–/–) mice. In addition, the number of T lymphocytes and the concentration of the protective key cytokine IFN-γ were reduced in the lungs of infected CD44–/– mice. The production of IFN-γ by splenocytes of CD44–/– mice was profoundly increased upon antigen-specific stimulation. Flow cytometry analysis revealed that soluble CD44 can directly bind to virulent M. tuberculosis. Mycobacteria also interacted with Mφ-associated CD44, as reflected by reduced binding and internalization of bacilli by CD44–/– Mφs. This suggests that CD44 is a receptor on Mφs for binding of M. tuberculosis. CD44–/– mice displayed a decreased survival and an enhanced mycobacterial outgrowth in lungs and liver during pulmonary tuberculosis. In summary, we have identified CD44 as a new Mφ binding site for M. tuberculosis that mediates mycobacterial phagocytosis, Mφ recruitment, and protective immunity against pulmonary tuberculosis. PMID:12618522

  3. Possible involvement of CD10 in the development of endometriosis due to its inhibitory effects on CD44-dependent cell adhesion.

    PubMed

    Iwase, Akira; Kotani, Tomomi; Goto, Maki; Kobayashi, Hiroharu; Takikawa, Sachiko; Nakahara, Tatsuo; Nakamura, Tomoko; Kondo, Mika; Bayasula; Nagatomo, Yoshinari; Kikkawa, Fumitaka

    2014-01-01

    A reduced response to progesterone in the eutopic endometrium with endometriosis and in endometriotic tissues is considered to be the underlying factor for endometriosis. CD10 is known to be expressed by endometrial and endometriotic stromal cells and may be induced by progestins, although the function of CD10 is not fully revealed in endometrial or endometriotic tissues. In the current study, the expression of CD10 was significantly increased by treatment of the cells with progesterone, 17β-estradiol, and dibutyryl cyclic adenosine monophosphate (cAMP) in the endometrial stromal cells. On the other hand, the expression of CD10 following treatment with progesterone, 17β-estradiol, and dibutyryl cAMP was not significantly increased in endometriotic stromal cells. The adhesion assay for endometrial and endometriotic stromal cells to hyaluronan using 5- or 6-(N-succinimidyloxycarbonyl)-fluorescein 3', 6'-diacetate-labeled cells demonstrated that the CD44-dependent adhesion of stromal cells was inhibited by CD10. As far as the induction of CD10 is concerned, the effect of progesterone was different between endometrial stromal cells and endometriotic stromal cells. CD10 might be involved in the development of endometriosis due to its influence on CD44-dependent cell adhesion. PMID:23653392

  4. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24− breast cancer cells

    PubMed Central

    Van Phuc, Pham; Nhan, Phan Lu Chinh; Nhung, Truong Hai; Tam, Nguyen Thanh; Hoang, Nguyen Minh; Tue, Vuong Gia; Thuy, Duong Thanh; Ngoc, Phan Kim

    2011-01-01

    Background Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24− phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells. Methods In this study, we reduced CD44 expression in CD44+CD24− breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24− breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug. Results The proliferation of CD44 downregulated CD44+CD24− breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups. Conclusions It would appear that expression of CD44 is integral among the CD44+CD24− cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy. PMID:21792314

  5. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    SciTech Connect

    Ruffell, Brian; Johnson, Pauline . E-mail: pauline@interchange.ubc.ca

    2005-08-26

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding.

  6. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  7. DNA Aptamers against Exon v10 of CD44 Inhibit Breast Cancer Cell Migration

    PubMed Central

    Iida, Joji; Clancy, Rebecca; Dorchak, Jesse; Somiari, Richard I.; Somiari, Stella; Cutler, Mary Lou; Mural, Richard J.; Shriver, Craig D.

    2014-01-01

    CD44 adhesion molecules are expressed in many breast cancer cells and have been demonstrated to play a key role in regulating malignant phenotypes such as growth, migration, and invasion. CD44 is an integral transmembrane protein encoded by a single 20-exon gene. The diversity of the biological functions of CD44 is the result of the various splicing variants of these exons. Previous studies suggest that exon v10 of CD44 plays a key role in promoting cancer invasion and metastasis, however, the molecular mechanisms are not clear. Given the fact that exon v10 is in the ectodomain of CD44, we hypothesized that CD44 forms a molecular complex with other cell surface molecules through exon v10 in order to promote migration of breast cancer cells. In order to test this hypothesis, we selected DNA aptamers that specifically bound to CD44 exon v10 using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). We selected aptamers that inhibited migration of breast cancer cells. Co-immunoprecipitation studies demonstrated that EphA2 was co-precipitated with CD44. Pull-down studies demonstrated that recombinant CD44 exon v10 bound to EphA2 and more importantly aptamers that inhibited migration also prevented the binding of EphA2 to exon v10. These results suggest that CD44 forms a molecular complex with EphA2 on the breast cancer cell surface and this complex plays a key role in enhancing breast cancer migration. These results provide insight not only for characterizing mechanisms of breast cancer migration but also for developing target-specific therapy for breast cancers and possibly other cancer types expressing CD44 exon v10. PMID:24586375

  8. The expression of CD44v6 in colon: from normal to malignant.

    PubMed

    Afify, Alaa; Durbin-Johnson, Blythe; Virdi, Avnit; Jess, Heidi

    2016-02-01

    CD44v6, an integral transmembrane protein belonging to a family of adhesion molecule receptors, plays an important role in tumor growth, progression and metastasis. The purpose of this study was to evaluate the expression of CD44v6 in normal, hyperplastic, adenomatous, and malignant colonic epithelium and to determine its correlation with tumor pathologic stage and lymph node metastasis. We examined the immunohistochemical expression of CD44v6 in normal colonic tissue (n = 25), hyperplastic polyps (n = 45), tubular adenomas (n = 57), tubulovillous adenomas (n = 25), villous adenomas (n = 9), adenocarcinomas stage I (n = 26), adenocarcinomas stage III (n = 26), and lymph node metastasis (n = 26). The percentage of positive cells and the staining intensity were assessed and scored. Statistical analysis was performed using logistic regression and McNemar test. All normal colonic tissue and hyperplastic polyps showed CD44v6 staining confined to the base of the crypt. In tubular adenomas, the dysplastic surface adenomatous epithelium expressed CD44v6 in 49 (86%) cases. CD44v6 was expressed in the glandular areas of tubulovillous adenomas in 21 (84%) cases and in the villous portion in 18 (72%) cases. All villous adenomas expressed CD44v6. CD44v6 was expressed in 23 (88%) cases of stage I adenocarcinomas, in 24 (92%) cases of stage III adenocarcinomas, and in 9 (35%) cases of metastatic adenocarcinomas. We concluded that the gain of CD44v6 expression in premalignant and malignant colonic lesions suggests that CD44v6 may be functionally involved in the adenoma-to-carcinoma progression. CD44v6 did not correlate to tumor pathologic stage and is lost during the acquisition of migratory function by metastatic tumor cells. PMID:26621455

  9. Expression and Function of CD44 in Epithelial Ovarian Carcinoma

    PubMed Central

    Sacks, Joelle D.; Barbolina, Maria V.

    2015-01-01

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed. PMID:26569327

  10. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  11. CD44 variant 6 is correlated with peritoneal dissemination and poor prognosis in patients with advanced epithelial ovarian cancer

    PubMed Central

    Tjhay, Francisca; Motohara, Takeshi; Tayama, Shingo; Narantuya, Dashdemberel; Fujimoto, Koichi; Guo, Jianying; Sakaguchi, Isao; Honda, Ritsuo; Tashiro, Hironori; Katabuchi, Hidetaka

    2015-01-01

    Cancer stem cells (CSCs) drive tumor initiation and metastasis in several types of human cancer. However, the contribution of ovarian CSCs to peritoneal metastasis remains unresolved. The cell adhesion molecule CD44 has been identified as a major marker for CSCs in solid tumors, including epithelial ovarian cancer. CD44 exists as a standard form (CD44s) and also as numerous variant isoforms (CD44v) generated by alternative mRNA splicing. Here we show that disseminated ovarian tumors in the pelvic peritoneum contain highly enriched CD44v6-positive cancer cells, which drive tumor metastasis and are responsible for tumor resistance to chemotherapy. Clinically, an increased number of CD44v6-positive cancer cells in primary tumors was associated with a shortened overall survival in stage III–IV ovarian cancer patients. Furthermore, a subpopulation of CD44v6-positive cancer cells manifested the ability to initiate tumor metastasis in the pelvic peritoneum in an in vivo mouse model, suggesting that CD44v6-positive cells show the potential to serve as metastasis-initiating cells. Thus, the peritoneal disseminated metastasis of epithelial ovarian cancer is initiated by the CD44v6-positive subpopulation, and CD44v6 expression is a biomarker for the clinical outcome of advanced ovarian cancer patients. Given that a distinct subpopulation of CD44v6-positive cancer cells plays a critical role in peritoneal metastasis, definitive treatment should target this subpopulation of CD44v6-positive cells in epithelial ovarian cancer. PMID:26250934

  12. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  13. CD44: molecular interactions, signaling and functions in the nervous system.

    PubMed

    Dzwonek, Joanna; Wilczynski, Grzegorz M

    2015-01-01

    CD44 is the major surface hyaluronan (HA) receptor implicated in intercellular and cell-matrix adhesion, cell migration and signaling. It is a transmembrane, highly glycosylated protein with several isoforms resulting from alternative gene splicing. The CD44 molecule consists of several domains serving different functions: the N-terminal extracellular domain, the stem region, the transmembrane domain and the C-terminal tail. In the nervous system, CD44 expression occurs in both glial and neuronal cells. The role of CD44 in the physiology and pathology of the nervous system is not entirely understood, however, there exists evidence suggesting it might be involved in the axon guidance, cytoplasmic Ca(2+) clearance, dendritic arborization, synaptic transmission, epileptogenesis, oligodendrocyte and astrocyte differentiation, post-traumatic brain repair and brain tumour development. PMID:25999819

  14. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  15. The influence of tobacco smoking on adhesion molecule profiles

    PubMed Central

    Scott, DA; Palmer, RM

    2003-01-01

    Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein.

  16. The influence of tobacco smoking on adhesion molecule profiles

    PubMed Central

    Scott, DA; Palmer, RM

    2003-01-01

    Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein. PMID:19570245

  17. Adhesion glycoprotein CD44 functions as an upstream regulator of a network connecting ERK, AKT and Hippo-YAP pathways in cancer progression

    PubMed Central

    Wu, Chenxi; Wu, Lele; Wang, Yuzhi; Liu, Yan; Yu, Zhenghong; Qin, Sheng; Ma, Fei; Thiery, Jean Paul; Chen, Liming

    2015-01-01

    Targeted therapies are considered to be the future of cancer treatment. However, the mechanism through which intracellular signaling pathways coordinate to modulate oncogenesis remains to be elucidated. In this study, we describe a novel crosstalk among ERK, AKT and Hippo-YAP pathways, with CD44 as an upstream regulator. High cell density leads to activation of ERK and AKT but inactivation of YAP in cancer cells. CD44 modulates cell proliferation and cell cycle but not apoptosis. The expression and activity of cell cycle genes were cooperatively regulated by ERK, AKT and Hippo-YAP signaling pathways through CD44-mediated mechanisms. In addition, CD44 depletion abrogates cancer stem cell properties of tumor initiating cells. Taken together, we described a paradigm where CD44 functions as an upstream regulator sensing the extracellular environment to modulate ERK, AKT and Hippo-YAP pathways which cooperatively control downstream gene expression to modulate cell contact inhibition of proliferation, cell cycle progression and maintenance of tumor initiating cells. Our current study provides valuable information to design targeted therapeutic strategies in cancers. PMID:25605020

  18. Meta-Analysis of Prognostic and Clinical Significance of CD44v6 in Esophageal Cancer.

    PubMed

    Hu, Bangli; Luo, Wei; Hu, Rui-Ting; Zhou, You; Qin, Shan-Yu; Jiang, Hai-Xing

    2015-08-01

    CD44v6 is a cell adhesion molecule that plays an important role in the development and progression of esophageal cancer. However, the prognostic value and clinical significance of CD44v6 in esophageal cancer remains controversial. In the present study, we aimed to clarify these relationships through a meta-analysis.We performed a comprehensive search of studies from PubMed, EMBASE, Ovid library database, Google scholar, and Chinese National Knowledge Infrastructure databases that were published before June 2015. The odds ratio (OR) and pooled hazard ratio (HR) with the 95% confidence intervals (CI) were used to estimate the effects.Twenty-one studies including 1504 patients with esophageal cancer were selected to assess the prognostic value and clinical significance of CD44v6 in these patients. The results showed that the expression of CD44v6 was higher in esophageal cancer tissue than in normal colorectal tissue (OR=9.19, 95% CI=6.30-13.42). Moreover, expression of CD44v6 was higher in patients with lymphoid nodal metastasis, compared to those without (OR=6.91, 95% CI=4.81-9.93). The pooled results showed that CD44v6 was associated with survival in patients with esophageal cancer (HR = 2.47, 95% CI = 1.56-3.92). No significant difference in CD44v6 expression was found in patients with different histological types and tumor stages (both P>0.05). Moreover, no publication bias was found among the studies (all P > 0.05).This meta-analysis demonstrates that CD44v6 is associated with the metastasis of esophageal cancer and a poor prognosis, but is not associated with the histological types and tumor stages. PMID:26252284

  19. Effects of photodynamic therapy on adhesion molecules and metastasis.

    PubMed

    Rousset, N; Vonarx, V; Eléouet, S; Carré, J; Kerninon, E; Lajat, Y; Patrice, T

    1999-01-01

    Photodynamic therapy (PDT) induces among numerous cell targets membrane damage and alteration in cancer cell adhesiveness, an important parameter in cancer metastasis. We have previously shown that hematoporphyrin derivative (HPD)-PDT decreases cancer cell adhesiveness to endothelial cells in vitro and that it reduces the metastatic potential of cells injected into rats. The present study analyzes the influence of PDT in vivo on the metastatic potential of cancers cells and in vitro on the expression of molecules involved in adhesion and in the metastatic process. Photofrin and benzoporphyrin derivative monoacid ring A (BPD) have been evaluated on two colon cancer cell lines obtained from the same cancer [progressive (PROb) and regressive (REGb)] with different metastatic properties. Studies of BPD and Photofrin toxicity and phototoxicity are performed by colorimetric MTT assay on PROb and REGb cells to determine the PDT doses inducing around 25% cell death. Flow cytometry is then used to determine adhesion-molecule expression at the cell surface. ICAM-I, MHC-I, CD44V6 and its lectins (àHt1.3, PNA, SNA and UEA) are studied using cells treated either with BPD (50 ng/ml, 457 nm light, 10 J/cm2) or Photofrin (0.5 microgram/ml, 514 nm light, 25 J/cm2). Changes of metastatic patterns of PROb cells have been assessed by the subcutaneous injection of non-lethally treated BPD or Photofrin cells and counting lung metastases. First, we confirm the metastatic potential reduction induced by PDT with respectively a 71 or 96% decrease of the mean number of metastases (as compared with controls) for PROb cells treated with 50 ng/ml BPD and 10 or 20 J/cm2 irradiation. Concerning Photofrin-PDT-treated cells, we find respectively a 90 or 97% decrease (as compared with controls) of the mean number of metastases for PROb cells treated with 0.5 microgram/ml Photofrin and 25 or 50 J/cm2 irradiation. Then, we observe that CD44V6, its lectins (àHt1.3, PNA, SNA) and MHC-I are

  20. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  1. Expression of CD44 variants in human inflammatory synovitis

    SciTech Connect

    Hale, L.P.; Haynes, B.F.; McCachren, S.

    1995-11-01

    The cell surface hyaluronate receptor CD44 has previously been shown to have immunomodulatory activity and to be upregulated in inflammatory synovitis. Since these findings were reported, the genomic structure of CD44 has been delineated, and multiple splice variants have been described. Therefore, we determined which CD44 variant exons are present during inflammatory synovitis by a combination of Northern blot analysis and reverse transcription followed by polymerase chain reaction amplification of synovial RNA. Immunohistochemical staining was used to define the sites of expression of individual v6 and v9 exons in synovial tissue. The standard (S) or hematopoietic isoform, CD44S, was the predominant form of CD44 expressed in synovium and was expressed by most cell types. Other isoforms, containing alternatively spliced exons in the proximal extracellular domain, were found by RT-PCR, but at lower levels than CD44S. The second most prevalent form was CD44E, which has an insertion of three exons (v8-v10) in the proximal extracellular domain. Immunohistochemical studies showed that reactivity with v9-specific antibodies was primarily in macrophages, particularly those in the synovial lining layer. CD44 exon v6, previously reported to be important in immune activation and in epithelial tumor metastasis, was also expressed in synovial lining cells and in occasional synovial interstitial cells. The presence of CD44 variants containing v9 in rheumatoid synovial macrophages may be important in the adhesion and activation of mononuclear phagocytes in the synovium and, thus, may be a target for novel antiinflammatory therapies in the future. The role of CD44 isoforms in cellular adhesion, immune activation, and joint erosion in inflammatory synovitis deserves further study. 7 figs., 2 tabs., 56 refs.

  2. Quantitative immunohistochemical analyses of the expression of E-cadherin, thrombomodulin, CD44H and CD44v6 in primary tumours of pharynx/larynx squamous cell carcinoma and their lymph node metastases.

    PubMed

    Hernández Gaspar, R; de los Toyos, J R; Alvarez Marcos, C; Riera, J R; Sampedro, A

    1999-01-01

    The quantitative expression of E-cadherin, thrombomodulin, CD44H and CD44v6 in 32 specimens of primary tumours of pharynx/larynx squamous cell carcinoma and their lymph node metastases was studied by immunohistochemistry. With the aim of obtaining comparative and objective data, image acquisition conditions were kept unaltered for all the measurements and the immunostaining intensity was quantified by applying an image processing system. On the one hand, correlations were only observed between CD44H and CD44v6, both in primary tumours and metastases, and between E-cadherin and TM in metastases. On the other hand, statistical analyses of paired data did not show significant differences in the expression of these markers between the two tumour sites. In agreement with previous reports, E-cadherin expression was rather low or negative in primary tumours and metastases of the three poorly differentiated specimens we studied, as well as that of TM, but otherwise some of these samples showed intermediate immunostaining levels of CD44H/CD44v6. It may be concluded from the present study that the quantitative expression of these adhesion molecules in well established lymph node metastases of pharynx/larynx squamous cell carcinoma is essentially unaltered in relation to their primary sites. PMID:10609562

  3. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions. PMID:26944929

  4. Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines.

    PubMed

    Nagao, F; Suzui, M; Takeda, K; Yagita, H; Okumura, K

    2000-10-01

    The change of plasma catecholamine concentration correlates with the change of natural killer (NK) activity and NK cell number in peripheral blood mononuclear cells (PBMC) during and after moderate exercise. We studied the causal relation between exercise-induced catecholamine and expression of adhesion molecules on NK cells during and after exercise. The expression of CD44 and CD18 on CD3(-)CD56(+) NK cells was significantly reduced during exercise (P < 0.01). When PBMC were stimulated with 10(-8)M norepinephrine in vitro, the expression of these adhesion molecules on CD3(-)CD56(+) NK cells was downmodulated within 30 min. The binding capacity of NK cells to a CD44 ligand, hyaluronate, was reduced by the stimulation with norepinephrine (P < 0.01). The intravenous injection of norepinephrine in mice decreased the expression of CD44 and CD18 on CD3(-)NK1.1(+) cells (P < 0.01) and increased the number of CD3(-)NK1.1(+) cells in PBMC (P < 0.01). These findings suggest that exercise-induced catecholamines modulate the expression of adhesion molecules on NK cells, resulting in the mobilization of NK cells into the circulation. PMID:11003990

  5. CD82 Restrains Angiogenesis by Altering Lipid Raft Clustering and CD44 Trafficking in Endothelial Cells

    PubMed Central

    Wei, Quan; Zhang, Feng; Richardson, Mekel M.; Roy, Nathan H.; Rodgers, William; Liu, Yuechueng; Zhao, Wenyuan; Fu, Chenying; Ding, Yingjun; Huang, Chao; Chen, Yuanjian; Sun, Yao; Ding, Lexi; Hu, Yang; Ma, Jianxing; Boulton, Michael E.; Pasula, Satish; Wren, Jonathan D.; Tanaka, Satoshi; Huang, Xiaolin; Thali, Markus; Hämmerling, Günter J.; Zhang, Xin A.

    2014-01-01

    Background Angiogenesis is crucial for many pathological processes and becomes a therapeutic strategy against diseases ranging from inflammation to cancer. The regulatory mechanism of angiogenesis remains unclear. Although tetraspanin CD82 is widely expressed in various endothelial cells (ECs), its vascular function is unknown. Methods and Results Angiogenesis was examined in Cd82-null mice with in vivo and ex vivo morphogenesis assays. Cellular functions, molecular interactions, and signaling were analyzed in Cd82-null ECs. Angiogenic responses to various stimuli became markedly increased upon Cd82 ablation. Major changes of Cd82-null ECs were enhanced migration and invasion, likely resulting from the upregulated expression of cell adhesion molecules (CAMs) such as CD44 and integrins at the cell surface and subsequently elevated outside-in signaling. Gangliosides, lipid raft clustering, and CD44-membrane microdomain interactions were increased in the plasma membrane of Cd82-null ECs, leading to less clathrin-independent endocytosis and then more surface presence of CD44. Conclusions Our study reveals that CD82 restrains pathological angiogenesis by inhibiting EC movement, lipid raft clustering and CAM trafficking modulate angiogenic potential, and the perturbation of CD82-ganglioside-CD44 signaling attenuates angiogenesis. PMID:25149363

  6. Prognostic significance of CD44V6 expression in osteosarcoma: a meta-analysis.

    PubMed

    Zhang, Yunyuan; Ding, Chunming; Wang, Jing; Sun, Guirong; Cao, Yongxian; Xu, Longqiang; Zhou, Lan; Chen, Xian

    2015-01-01

    Numerous individual studies evaluating the relationship between CD44V6 over-expression and prognostic impact in patients with osteosarcoma (OS) have yielded in conclusive results. This meta-analysis aimed to determine the value of cell adhesion molecule CD44V6 in prognosis of OS by conducting a systematic review and meta-analysis. A comprehensive search was conducted using PubMed (medline), Embase, ISI Web of Knowledge, Springer, the Cochrane Library, Scopus, BioMed Central, ScienceDirect, Wanfang, Weipu, and China National Knowledge Internet (CNKI) databases from inception through May 26, 2015. All available articles written in English or Chinese that investigated the expression of CD44V6 and the prognosis of OS were included. The quantity of the studies was evaluated according to the critical review checklist of the Dutch Cochrane Centre proposed by MOOSE. Finally, a total of eight studies with 486 OS patients were involved and the results indicated that the positive expression of CD44V6 predicts neoplasm metastasis (RR = 1.76, 95 % CI 1.38-2.25, p < 0.00001), and poor survival in OS with the pooled HR of 1.53 (95 % CI 1.25-1.88, p < 0.0001). No significant heterogeneity was observed among all studies. In conclusion, the present meta-analysis and systematic review strongly suggest that CD44V6 over-expression is associated with overall survival rate and metastasis in OS, and may be used as a prognostic biomarker to guide the clinical therapy for OS. PMID:26697855

  7. Modulation of CD44 Activity by A6-Peptide

    PubMed Central

    Finlayson, Malcolm

    2015-01-01

    Hyaluronan (HA) is a non-sulfated glycosaminoglycan distributed throughout the extracellular matrix that plays a major role in cell adhesion, migration, and proliferation. CD44, a multifunctional cell surface glycoprotein, is a receptor for HA. In addition, CD44 is known to interact with other receptors and ligands, and to mediate a number of cellular functions as well as disease progression. Studies have shown that binding of HA to CD44 in cancer cells activates survival pathways resulting in cancer cell survival. This effect can be blocked by anti-CD44 monoclonal antibodies. A6 is a capped, eight l-amino acid peptide (Ac-KPSSPPEE-NH2) derived from the biologically active connecting peptide domain of the serine protease, human urokinase plasminogen activator (uPA). A6 neither binds to the uPA receptor (uPAR) nor interferes with uPA/uPAR binding. A6 binds to CD44 resulting in the inhibition of migration, invasion, and metastasis of tumor cells, and the modulation of CD44-mediated cell signaling. A6 has been shown to have no dose-limiting toxicity in animal studies. A6 has demonstrated efficacy and an excellent safety profile in Phase 1a, 1b, and 2 clinical trials. In animal models, A6 has also exhibited promising results for the treatment of diabetic retinopathy and wet age-related macular degeneration through the reduction of retinal vascular permeability and inhibition of choroidal neovascularization, respectively. Recently, A6 has been shown to be directly cytotoxic for B-lymphocytes obtained from patients with chronic lymphocytic leukemia expressing the kinase, ZAP-70. This review will discuss the activity of A6, A6 modulation of HA and CD44, and a novel strategy for therapeutic intervention in disease. PMID:25870596

  8. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells.

    PubMed

    Aires, Antonio; Ocampo, Sandra M; Simões, Bruno M; Josefa Rodríguez, María; Cadenas, Jael F; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B; Carrascosa, José L; Cortajarena, Aitziber L

    2016-02-12

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully  apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro. PMID:26754042

  9. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    NASA Astrophysics Data System (ADS)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  10. Simvastatin inhibits CD44 fragmentation in chondrocytes.

    PubMed

    Terabe, Kenya; Takahashi, Nobunori; Takemoto, Toki; Knudson, Warren; Ishiguro, Naoki; Kojima, Toshihisa

    2016-08-15

    In human osteoarthritic chondrocytes, the hyaluronan receptor CD44 undergoes proteolytic cleavage at the cell surface. CD44 cleavage is thought to require transit of CD44 into cholesterol-rich lipid rafts. The purpose of this study was to investigate whether statins exert a protective effect on articular chondrocytes due to diminution of cholesterol. Three model systems of chondrocytes were examined including human HCS-2/8 chondrosarcoma cells, human osteoarthritic chondrocytes and normal bovine articular chondrocytes. Treatment with IL-1β + Oncostatin M resulted in a substantial increase in CD44 fragmentation in each of the three chondrocyte models. Pre-incubation with simvastatin prior to treatment with IL-1β + Oncostatin M decreased the level of CD44 fragmentation, decreased the proportion of CD44 that transits into the lipid raft fractions, decreased ADAM10 activity and diminished the interaction between CD44 and ADAM10. In HCS-2/8 cells and bovine articular chondrocytes, fragmentation of CD44 was blocked by the knockdown of ADAM10. Inhibition of CD44 fragmentation by simvastatin also resulted in improved retention of pericellular matrix. Addition of cholesterol and farnesyl-pyrophosphate reversed the protective effects of simvastatin. Thus, the addition of simvastatin exerts positive effects on chondrocytes including reduced CD44 fragmentation and enhanced the retention of pericellular matrix. PMID:27242325

  11. A comparative phenotypical analysis of rheumatoid nodules and rheumatoid synovium with special reference to adhesion molecules and activation markers

    PubMed Central

    Elewaut, D.; De Keyser, F.; De Wever, N.; Baeten, D.; Van Damme, N.; Verbruggen, G.; Cuvelier, C.; Veys, E.

    1998-01-01

    OBJECTIVES—(1)To analyse the in situ expression of adhesion molecules in rheumatoid nodules. (2) To compare the endothelial expression of adhesion molecules in synovial tissue and subcutaneous nodules obtained from the same patients. (3) To compare the expression of adhesion molecules and activation markers on T cell lines from nodules and synovium.
METHODS—(1) Immunohistochemical analysis by APAAP technique of E selectin, CD44, ICAM-1, PECAM-1, and VCAM-1 was performed on 10 rheumatoid nodules from seven patients with rheumatoid arthritis (RA); nodules and synovium were simultaneously analysed from three patients. (2) T cell lines were generated from RA nodules (n=7) and synovium (n=7) by interleukin 2 expansion, and subsequently characterised by flow cytometry for surface expression of αEβ7, α4β7, CD44, L selectin, LFA-1a, PECAM-1, and CD30.
RESULTS—(1) In rheumatoid nodules, the palisading layer strongly stains for ICAM-1 and PECAM-1, but less pronounced for CD44. VCAM-1 staining was usually negative. ICAM-1 is upregulated in the vessels surrounding the central zone of fibrinoid necrosis. The immunohistological picture in different nodules derived from the same patient was similar. (2) The endothelial expression of adhesion molecules is comparable in RA nodules and synovium on an individual level, except for E selectin, which is overexpressed in nodule endothelium. (3) T cell lines from nodules and synovium display similar adhesion molecule profiles. However, the expression of CD30, a T cell activation marker linked with Th2 subsets, is higher in nodules compared with synovium.
CONCLUSION—These data support a recirculation hypothesis of T cells between articular and extra-articular manifestations in RA, although the activation state of the T cells in each of these localisations may differ.

 Keywords: T cells; adhesion molecules; rheumatoid nodules; rheumatoid synovium PMID:9797554

  12. Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface.

    PubMed

    Päll, Taavi; Pink, Anne; Kasak, Lagle; Turkina, Marina; Anderson, Wally; Valkna, Andres; Kogerman, Priit

    2011-01-01

    CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12-37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells. PMID:22216242

  13. Soluble cell adhesion molecules in human Chagas' disease: association with disease severity and stage of infection.

    PubMed

    Laucella, S; De Titto, E H; Segura, E L; Orn, A; Rottenberg, M E

    1996-12-01

    Formation of inflammatory lesions, one of the pathologic consequences of infection with Trypanosoma cruzi, involves intricate cell-cell interactions in which cell adhesion molecules (CAMs) are involved. Sera from 56 Chagas' disease patients grouped according to disease severity were studied for the presence of soluble intercellular adhesion molecule-1 (s-ICAM-1), soluble endothelial selectin (s-E-selectin), soluble vascular cell adhesion molecule-1 (s-VCAM-1), soluble platelet selectin (s-P-selectin), and s-CD44 were studied to determine if they could be used alone or in different combinations as markers for specific diagnostic procedures. Comparisons were made between congenitally, acutely, and chronically infected patients and aged-matched, noninfected individuals, as well as between patients with chronic Chagas' disease grouped according to the severity of their heart-related pathology. No differences in levels of s-CAMs were detected between sera from children with congenital T. cruzi infection and sera from noninfected infants born from chagasic mothers. In contrast, titers of s-ICAM-1, s-VCAM-1, s-selectin, and s-CD44 but not s-P-selectin were significantly increased in sera from patients during the acute phase of infection with T. cruzi. Titers of s-VCAM-1 and s-P-selectin were increased in chronically infected patients. A positive association with disease severity in sera from patients with chronic disease was observed for the levels of s-P-selectin. In contrast, we found no association between clinical symptoms and levels of s-VCAM-1. Patients with chronic disease with severe cardiopathy also showed diminished levels of s-CD44 in comparison with healthy controls or patients with mild disease. The results are discussed in the context of pathology of Chagas' disease. PMID:9025689

  14. CD44 and HCELL: Preventing Hematogenous Metastasis at Step 1

    PubMed Central

    Jacobs, Pieter P.; Sackstein, Robert

    2011-01-01

    Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells home to specific tissues by hijacking the normal leukocyte trafficking mechanisms. Cancer cells characteristically express CD44, and there is increasing evidence that HCELL, a sialofucosylated glycoform of CD44, serves as the major selectin ligand on cancer cells, allowing interaction of tumor cells with endothelium, leukocytes, and platelets. Here, we review the structural biology of CD44 and of HCELL, and present current data on the function of these molecules in mediating organ-specific homing/metastasis of circulating tumor cells. PMID:21827751

  15. Binding of human leukocytes to fibronectin is augmented by an anti-CD44 mAb (TL-1) and blocked by another anti-CD44 mAb (Hermes-3) but not by anti-VLA-4/VLA-5 mAbs.

    PubMed

    Cao, L; Yoshino, T; Kawasaki, N; Yanai, H; Kawahara, K; Kondo, E; Omonishi, K; Takahashi, K; Akagi, T

    Fibronectin (FN) forms meshworks in extracellular spaces, and it plays an important role in cellular trafficking. Lymphoid cells are activated by binding to FN of the VLA-4 and VLA-5 receptors. CD44 also acts as a receptor of FN, but the mechanism and physiologic regulation of their binding are poorly understood. We have developed an anti-CD44 monoclonal antibody (mAb) (TL-1) in which lymphoid cells are activated and form homotypic cell aggregation. In this study, we found that the adhesion of CEM, HSB2, and LAD lymphoid cells to FN was augmented by TL-1 treatment and was apparently blocked by another anti-CD44 mAb (Hermes-3), but TL-1 Fab' fragments treatment did not induce FN-binding. A similar phenomenon is reported in the binding of the CD44 molecule to HA. This augmentation was not inhibited by the CS1 and RGD peptides of FN or by anti-VLA-4 and -VLA-5 mAbs; it was energy-dependent and associated with cytoplasmic actin filaments. Tl-1 treatment did not alter the cell surface expression of CD44 molecules. These findings above suggested that activated and/or altered cell surface distribution of CD44 molecules via a conformational change augmented the avidity of its binding to FN, which may be similar to lymphocyte-hyaluronate and lymphocyte-endothelial cell binding. As the Hermes-3 binding site is also involved in the interaction between lymphocytes and endothelial cells, activation of lymphocytes via CD44 molecules may facilitate the binding of lymphocytes to endothelial cells, extravasation, and migration to inflammatory sites rich in FN. PMID:9145328

  16. The Role of CD44 in Disease Pathophysiology and Targeted Treatment

    PubMed Central

    Jordan, Andre R.; Racine, Ronny R.; Hennig, Martin J. P.; Lokeshwar, Vinata B.

    2015-01-01

    The cell-surface glycoprotein CD44 is involved in a multitude of important physiological functions including cell proliferation, adhesion, migration, hematopoiesis, and lymphocyte activation. The diverse physiological activity of CD44 is manifested in the pathology of a number of diseases including cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular disease, and wound healing. This diversity in biological activity is conferred by both a variety of distinct CD44 isoforms generated through complex alternative splicing, posttranslational modifications (e.g., N- and O-glycosylation), interactions with a number of different ligands, and the abundance and spatial distribution of CD44 on the cell surface. The extracellular matrix glycosaminoglycan hyaluronic acid (HA) is the principle ligand of CD44. This review focuses both CD44-hyaluronan dependent and independent CD44 signaling and the role of CD44–HA interaction in various pathophysiologies. The review also discusses recent advances in novel treatment strategies that exploit the CD44–HA interaction either for direct targeting or for drug delivery. PMID:25954275

  17. WNT5A Inhibits Metastasis and Alters Splicing of Cd44 in Breast Cancer Cells

    PubMed Central

    Jiang, Wen; Crossman, David K.; Mitchell, Elizabeth H.; Sohn, Philip; Crowley, Michael R.; Serra, Rosa

    2013-01-01

    Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq) to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44. PMID:23484019

  18. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85.

    PubMed

    Škerlová, Jana; Král, Vlastimil; Kachala, Michael; Fábry, Milan; Bumba, Ladislav; Svergun, Dmitri I; Tošner, Zdeněk; Veverka, Václav; Řezáčová, Pavlína

    2015-08-01

    The hyaluronate receptor CD44 plays role in cell adhesion and migration and is involved in tumor metastasis. The extracellular domain of CD44 comprises the hyaluronate-binding domain (HABD) and the membrane-proximal stem region; the short intracellular portion interacts with adaptor proteins and triggers signaling pathways. Binding of hyaluronate to CD44 HABD induces an allosteric conformational change, which results in CD44 shedding. A poorly characterized epitope in human CD44 HABD is recognized by the murine monoclonal antibody MEM-85, which cross-blocks hyaluronate binding to CD44 and also induces CD44 shedding. MEM-85 is of therapeutic interest, as it inhibits growth of lung cancer cells in murine models. In this work, we employed a combination of biophysical methods to determine the MEM-85 binding epitope in CD44 HABD and to provide detailed insight into the mechanism of MEM-85 action. In particular, we constructed a single-chain variable fragment (scFv) of MEM-85 as a tool for detailed characterization of the CD44 HABD-antibody complex and identified residues within CD44 HABD involved in the interaction with scFv MEM-85 by NMR spectroscopy and mutational analysis. In addition, we built a rigid body model of the CD44 HABD-scFv MEM-85 complex using a low-resolution structure obtained by small-angle X-ray scattering. The MEM-85 epitope is situated in the C-terminal part of CD44 HABD, rather than the hyaluronate-binding groove, and the binding of MEM-85 induces a structural reorganization similar to that induced by hyaluronate. Therefore, the mechanism of MEM-85 cross-blocking of hyaluronate binding is likely of an allosteric, relay-like nature. PMID:26066970

  19. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  20. Expression of adhesion molecules on synovial fluid and peripheral blood monocytes in patients with inflammatory joint disease and osteoarthritis

    PubMed Central

    Koller, M; Aringer, M; Kiener, H; Erlacher, L; Machold, K; Eberl, G; Studnicka-Benke, A; Graninger, W; Smolen, J

    1999-01-01

    OBJECTIVE—To determine the presence of adhesion molecules on monocytes/macrophages (Mϕ) from peripheral blood (PB) and synovial fluid (SF) in patients with osteoarthritis (OA) and inflammatory joint diseases (rheumatoid (RA) and reactive arthritis (ReA)) in order to improve our understanding of the possible mechanisms underlying the inflammatory process.
METHODS—Whole blood and SF cells were stained with monoclonal antibodies against CD11a (LFA-1), CD15 s (sialyl-Lewis X), CD44, CD54, VLA-4, and HLA-DR counterstained with anti-CD14 antibodies as a Mϕ marker for dual fluorescence analysis by flowcytometry. 
RESULTS—On PB-Mϕ, CD15s was markedly increased in both RA as well as ReA compared with OA. Furthermore, in the PB LFA-1, CD44, and HLA-DR showed a higher surface density on Mϕ in ReA than in OA. Comparison between SF and PB showed significantly higher CD44 and CD54 expression on SF-Mϕ. These molecules play an important part in lymphocyte-Mϕ interaction.
CONCLUSION—In PB from patients with inflammatory joint diseases, Mϕ are activated, allowing recruitment into the synovial compartment. These disorders, in contrast with OA seem to be "systemic" in nature. Within the SF, different adhesion molecules are expressed on CD14+ Mϕ as compared with PB.

 PMID:10531076

  1. Expression of hyaluronic acid and its receptors, CD44s and CD44v6, in normal, hyperplastic, and neoplastic endometrium.

    PubMed

    Afify, Alaa M; Craig, Sarah; Paulino, Augusto F G; Stern, Robert

    2005-12-01

    The interaction between epithelial tumor cells and their surrounding stroma is important in tumor progression and metastasis. This is accomplished through a number of transmembrane receptors that interact with stromal extracellular matrix molecules. One of these receptors, CD44, binds to extracellular matrix component hyaluronic acid (HA). The purpose of this study was to evaluate the significance of HA, CD44s, and CD44v6 in benign, hyperplastic, atypical, and malignant endometrial epithelia. Archival paraffin-embedded cell blocks from proliferative endometrium (n = 11), secretory endometrium (n = 12), simple hyperplasia (n = 13), complex hyperplasia without atypia (n = 9), complex hyperplasia with atypia (n = 17), and adenocarcinoma (n = 21) were stained for HA, CD44s, and CD44v6. HA was detected throughout the normal menstrual cycle but was more intense during the secretory phase. Only during the secretory phase was CD44s expressed in the stromal cells in 11 cases (92%), whereas CD44v6 was detected in glandular epithelium in 9 (75%). CD44s was expressed in the glandular epithelium in 2 (15%) cases of simple hyperplasia, 4 (44%) of complex hyperplasia without atypia, 14 (82%) of complex hyperplasia with atypia, and in 16 (76%) of adenocarcinoma. CD44v6 was expressed in the glandular epithelium in 1 (11%) case of complex hyperplasia without atypia, 17 (100%) cases of complex hyperplasia with atypia, and in 18 (86%) cases of adenocarcinoma, but in none of the cases of simple hyperplasia. The endometrial stromal cells expressed CD44v6 in 1 (8%) case of simple hyperplasia, 6 (67%) of complex hyperplasia without atypia, 8 (47%) of complex hyperplasia with atypia, and in 3 (14%) of adenocarcinoma. We concluded that in the normal menstrual cycle, the timing of peak staining of HA and CD44s in the stroma and the up-regulation of CD44v6 in secretory glands are coincident with the period in which the endometrium is most receptive to embryo implantation. HA is more abundant

  2. Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*

    PubMed Central

    Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren

    2013-01-01

    The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413

  3. Immunolocalization of the hyaluronan receptor CD44 in the reproductive tract of the mare.

    PubMed

    Rodriguez Hurtado, I; Stewart, A J; Wolfe, D F; Caldwell, F J; Harrie, M; Whitley, E M

    2011-01-15

    Hyaluronan (HA), a glycosaminoglycan, is a major component of the pericellular matrix which envelopes mammalian cells. Binding of hyaluronan to one of its specific receptors, CD44, modulates transduction of intracellular signals which direct a variety of processes, including embryogenesis, wound healing, inflammation, and neoplasia. Since regulation of these processes is critical to equine reproductive success, localization of constitutive CD44 expression was evaluated by immunohistochemical methods in ovarian, oviductal, and uterine tissues from healthy mares. Ovarian stroma contained thecal cells with varying CD44 immunopositivity. Follicular and granulosa cells of some antral and atretic follicles were positive for CD44. In the oviduct, the luminal epithelium was variably positive for CD44, with overall decreasing intensity of immunostaining from the infundibulum to the isthmus. The CD44 molecule was expressed strongly by surface epithelial cells of the uterine endometrium, but was present only rarely among cells of uterine glands. In addition, CD44 was expressed by smooth muscle cells of vascular walls, oviduct, and uterus. Since CD44 is known to modulate cell movement and differentiation, and was present at multiple sites in the reproductive tract of normal mares, we inferred there may be an important role for the HA-CD44 signaling pathway in reproductive function and inflammation. PMID:20932561

  4. The Role of CD44 in the Pathophysiology of Chronic Lymphocytic Leukemia

    PubMed Central

    Gutjahr, Julia Christine; Greil, Richard; Hartmann, Tanja Nicole

    2015-01-01

    CD44 interactions with hyaluronan (HA) play a key role in various malignancies, supporting tumor cell migration, adhesion, and survival. In contrast to solid tumors, the expression of CD44 standard and variant forms and their functional interplay with HA is less understood in hematological malignancies. Chronic lymphocytic leukemia (CLL) is a highly abundant B-cell malignancy with a well coordinated balance between cell cycle-arrest and proliferation of tumor subpopulations. The long-term survival and proliferation of CLL cells requires their dynamic interactions with stromal and immune cells in lymphoid organs. Interactions of HA with CD44 and HA-mediated motility receptor (RHAMM) contribute to CLL cell localization, and hence CLL pathophysiology, by shaping homing, interstitial migration, and adhesion of the tumor cells. CD44 can complex with key prognostic factors of CLL, particularly CD38 and CD49d, bridging the gap between prognosis and cellular function. Here, we review the current evidence for the individual and associated contributions of CD44 to CLL pathophysiology, the dynamic functional regulation of CD44 upon CLL cell activation, and possible therapeutic strategies targeting CD44 in CLL. PMID:25941526

  5. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  6. Immunohistochemical expression of CD44s in human neuroblastic tumors: Moroccan experience and highlights on current data

    PubMed Central

    2013-01-01

    Background Peripheral neuroblastic tumors (pNTs), including neuroblastoma (NB), ganglioneuroblastoma (GNB) and ganglioneuroma (GN), are extremely heterogeneous pediatric tumors responsible for 15 % of childhood cancer death. The aim of the study was to evaluate the expression of CD44s (‘s’: standard form) cell adhesion molecule by comparison with other specific prognostic markers. Methods An immunohistochemical profile of 32 formalin-fixed paraffin-embedded pNTs tissues, diagnosed between January 2007 and December 2010, was carried out. Results Our results have demonstrated the association of CD44s negative pNTs cells to lack of differentiation and tumour progression. A significant association between absence of CD44s expression and metastasis in human pNTs has been reported. We also found that expression of CD44s defines subgroups of patients without MYCN amplification as evidenced by its association with low INSS stages, absence of metastasis and favorable Shimada histology. Discussion These findings support the thesis of the role of CD44s glycoprotein in the invasive growth potential of neoplastic cells and suggest that its expression could be taken into consideration in the therapeutic approaches targeting metastases. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1034403150888863 Résumé Introduction les tumeurs neuroblastiques périphériques (TNPs), comprenant le neuroblastome (NB), le ganglioneuroblastome (GNB) et le ganglioneurome (GN), sont des tumeurs pédiatriques extrêmement hétérogènes responsables de 15% des décès par cancer chez les enfants. Le but de cette étude était d’évaluer l’expression de la molécule d’adhésion cellulaire CD44s (‘s’: pour standard) par rapport à d’autres facteurs pronostiques spécifiques. Méthodes Un profil immunohistochimique de 32 TNPs fixées au formol et incluses en paraffine, diagnostiquées entre Janvier 2007 et D

  7. Differences in CD44 Surface Expression Levels and Function Discriminates IL-17 and IFN-γ Producing Helper T Cells

    PubMed Central

    Schumann, Julia; Stanko, Katarina; Schliesser, Ulrike; Appelt, Christine; Sawitzki, Birgit

    2015-01-01

    CD44 is a prominent activation marker which distinguishes memory and effector T cells from their naïve counterparts. It also plays a role in early T cell signaling events as it is bound to the lymphocyte-specific protein kinase and thereby enhances T cell receptor signalling. Here, we investigated whether IFN-γ and IL-17 producing T helper cells differ in their CD44 expression and their dependence of CD44 for differentiation. Stimulation of CD4+ T cells with allogeneic dendritic cells resulted in the formation of three distinguishable populations: CD44+, CD44++ and CD44+++. In vitro and in vivo generated allo-reactive IL-17 producing T helper cells were mainly CD44+++ as compared to IFN-γ+ T helper cells, which were CD44++. This effect was enhanced under polarizing conditions. T helper 17 polarization led to a shift towards the CD44+++ population, whereas T helper 1 polarization diminished this population. Furthermore, blocking CD44 decreased IL-17 secretion, while IFN-γ was barely affected. Titration experiments revealed that low T cell receptor and CD28 stimulation supported T helper 17 rather than T helper 1 development. Under these conditions CD44 could act as a co-stimulatory molecule and replace CD28. Indeed, rested CD44+++CD4+ T cells contained already more total and especially phosphorylated zeta-chain-associated protein kinase 70 as compared to CD44++ cells. Our results support the notion, that CD44 enhances T cell receptor signaling strength by delivering lymphocyte-specific protein kinase, which is required for induction of IL-17 producing T helper cells. PMID:26172046

  8. Adhesion molecules in inflammatory bowel disease.

    PubMed Central

    Jones, S C; Banks, R E; Haidar, A; Gearing, A J; Hemingway, I K; Ibbotson, S H; Dixon, M F; Axon, A T

    1995-01-01

    The ability of leucocytes to adhere to endothelium is essential for leucocyte migration into inflammatory sites. Some of these adhesion molecules are released from the cell surface and can be detected in serum. The soluble adhesion molecules intercellular adhesion molecule 1 (ICAM-1), E selectin, and vascular cell adhesion molecule 1 (VCAM-1) were studied in the serum of patients with Crohn's disease, ulcerative colitis, and healthy controls. A second blood sample was taken from patients with active disease after one month of treatment and a third two months after remission was achieved. Tissue expression of the same adhesion molecules was studied by immunohistology. Circulating VCAM-1 concentrations were significantly higher in patients with active ulcerative colitis (n = 11, median = 165 U/ml) compared with patients with inactive ulcerative colitis (n = 10, median = 117 U/ml, p < 0.005), active Crohn's disease (n = 12, median = 124 U/ml, p < 0.02), and controls (n = 90, median = 50 U/ml, p < 0.0001). Within each disease group there were no significant differences in E selectin or ICAM-1 concentrations between the active and inactive states, however, patients with active Crohn's disease had significantly higher ICAM-1 concentrations (n = 12, median = 273 ng/ml) than controls (n = 28, median = 168, p < 0.003). VCAM-1 concentrations fell significantly from pretreatment values to remission in active ulcerative colitis (p < 0.01). In Crohn's disease there was a significant fall in ICAM-1 both during treatment (p < 0.01) and two months after remission (p < 0.02). Vascular expression of ICAM-1 occurred more often and was more intense in inflamed tissue sections from patients with ulcerative colitis and Crohn's disease than from controls. Vascular labelling with antibody to E selectin also occurred more often in patients with active inflammatory bowel disease. In conclusion, increased circulating concentrations of selected adhesion molecules are associated with

  9. Production and characterization of a peptide-based monoclonal antibody against CD44 variant 6.

    PubMed

    Zarei, Saeed; Bayat, Ali Ahmad; Hadavi, Reza; Mahmoudi, Ahmad R; Tavangar, Banafsheh; Vojgani, Yasaman; Jeddi-Tehrani, Mahmood; Amirghofran, Zahra

    2015-02-01

    The gene that codes for the CD44 family members consists of 20 exons, nine of which encode the standard form of the molecule. The other exons can be inserted in various combinations into the membrane proximal region of the extracellular domain of the protein, giving rise to variant isoforms (CD44v). CD44 variants, especially the CD44v6, have been reported to regulate tumor invasion, progression, and metastasis of carcinomas. Producing a high affinity monoclonal antibody against human CD44v6 provides a powerful tool to monitor and trace CD44v6 function in different biological fluids. In this study, a synthetic peptide from CD44v6 was conjugated to keyhole limpet hemocyanin (KLH) and injected into BALB/c mice. Splenocytes from the immunized mice were fused with murine SP2/0 myeloma cells followed by selection of antibody producing hybridoma cells. After screening of hybridoma colonies by ELISA, high affinity antibodies were selected and purified by affinity chromatography. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibodies. Six stable hybridoma cell lines, designated as 1H1, 1H2, 2A12, 2G11, 3H3, and 3H7, were obtained. Flow cytometry and immunocytochemistry results showed that the new monoclonal antibodies recognized CD44v6 on the cell surface. This novel panel of anti-CD44v6 antibodies has the potential for investigating the role of CD44v6 in cancer pathogenesis. PMID:25723282

  10. Membrane-Type 1 Matrix Metalloproteinase Cleaves Cd44 and Promotes Cell Migration

    PubMed Central

    Kajita, Masahiro; Itoh, Yoshifumi; Chiba, Tadashige; Mori, Hidetoshi; Okada, Akiko; Kinoh, Hiroaki; Seiki, Motoharu

    2001-01-01

    Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event stimulates cell motility; however, expression of either CD44H or MT1-MMP alone did not stimulate cell motility. Coexpression of MT1-MMP and mutant CD44H lacking the MT1-MMP–processing site did not result in shedding and did not promote cell migration, suggesting that the processing of CD44H by MT1-MMP is critical in the migratory stimulation. Moreover, expression of the mutant CD44H inhibited the cell migration promoted by CD44H and MT1-MMP in a dominant-negative manner. The pancreatic tumor cell line, MIA PaCa-2, was found to shed the 70-kD CD44H fragment in a MT1-MMP–dependent manner. Expression of the mutant CD44H in the cells as well as MMP inhibitor treatment effectively inhibited the migration, suggesting that MIA PaCa-2 cells indeed use the CD44H and MT1-MMP as migratory devices. These findings revealed a novel interaction of the two molecules that have each been implicated in tumor cell migration and invasion. PMID:11381077

  11. Production and Characterization of a Peptide-based Monoclonal Antibody Against CD44 Variant 6

    PubMed Central

    Zarei, Saeed; Bayat, Ali Ahmad; Hadavi, Reza; Mahmoudi, Ahmad R.; Tavangar, Banafsheh; Vojgani, Yasaman; Jeddi-Tehrani, Mahmood

    2015-01-01

    The gene that codes for the CD44 family members consists of 20 exons, nine of which encode the standard form of the molecule. The other exons can be inserted in various combinations into the membrane proximal region of the extracellular domain of the protein, giving rise to variant isoforms (CD44v). CD44 variants, especially the CD44v6, have been reported to regulate tumor invasion, progression, and metastasis of carcinomas. Producing a high affinity monoclonal antibody against human CD44v6 provides a powerful tool to monitor and trace CD44v6 function in different biological fluids. In this study, a synthetic peptide from CD44v6 was conjugated to keyhole limpet hemocyanin (KLH) and injected into BALB/c mice. Splenocytes from the immunized mice were fused with murine SP2/0 myeloma cells followed by selection of antibody producing hybridoma cells. After screening of hybridoma colonies by ELISA, high affinity antibodies were selected and purified by affinity chromatography. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibodies. Six stable hybridoma cell lines, designated as 1H1, 1H2, 2A12, 2G11, 3H3, and 3H7, were obtained. Flow cytometry and immunocytochemistry results showed that the new monoclonal antibodies recognized CD44v6 on the cell surface. This novel panel of anti-CD44v6 antibodies has the potential for investigating the role of CD44v6 in cancer pathogenesis. PMID:25723282

  12. Ligand binding to anti-cancer target CD44 investigated by molecular simulations.

    PubMed

    Nguyen, Tin Trung; Tran, Duy Phuoc; Pham Dinh Quoc Huy; Hoang, Zung; Carloni, Paolo; Van Pham, Phuc; Nguyen, Chuong; Li, Mai Suan

    2016-07-01

    CD44 is a cell-surface glycoprotein and receptor for hyaluronan, one of the major components of the tumor extracellular matrix. There is evidence that the interaction between CD44 and hyaluronan promotes breast cancer metastasis. Recently, the molecule F-19848A was shown to inhibit hyaluronan binding to receptor CD44 in a cell-based assay. In this study, we investigated the mechanism and energetics of F-19848A binding to CD44 using molecular simulation. Using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method, we obtained the binding free energy and inhibition constant of the complex. The van der Waals (vdW) interaction and the extended portion of F-19848A play key roles in the binding affinity. We screened natural products from a traditional Chinese medicine database to search for CD44 inhibitors. From combining pharmaceutical requirements with docking and molecular dynamics simulations, we found ten compounds that are potentially better or equal to the F-19848A ligand at binding to CD44 receptor. Therefore, we have identified new candidates of CD44 inhibitors, based on molecular simulation, which may be effective small molecules for the therapy of breast cancer. PMID:27342250

  13. CD44 expression in normal adrenal tissue and adrenal tumours.

    PubMed Central

    Barshack, I; Goldberg, I; Nass, D; Olchovsky, D; Kopolovic, J

    1998-01-01

    BACKGROUND: CD44 is a cell surface glycoprotein found on many normal cells, mainly lymphoid and epithelial. Normal cells usually express standard CD44 (CD44-S), whereas malignant tumours may express CD44 variant isoforms (CD44-V). CD44 expression has been described for neural crest derivatives. Characterisation of differences in CD44 expression may help in the diagnosis and differentiation of distinct adrenal tumours. AIMS: To examine CD44 expression in different layers of cortical cortex, in adrenal medulla, and in adrenal tumours. METHODS: CD44-S and CD44-V6 expression were studied in 12 cases of adrenal cortical adenoma, 3 of adrenal cortical carcinoma, 10 of pheochromocytoma, and 4 normal adrenal glands. RESULTS: CD44-V6 staining showed cytoplasmic expression in normal adrenal cortex and in cortical adenomas and carcinomas. Pheochromocytomas also showed CD44-V6 expression but in 5 of the 10 cases it was sparse, focal, and sometimes perinuclear. Strong membranous staining for CD44-S was observed in normal adrenal medulla. Analysis of CD44-S expression revealed differences between cortical adrenal tumours and pheochromocytomas. Ten of 12 cortical adenomas and 2 of 3 cortical carcinoma cells showed weak to moderate cytoplasmic staining, but all cases of pheochromocytoma had strong membranous staining. CONCLUSIONS: Membranous CD44-S staining may help to distinguish pheochromocytoma from adrenal cortical adenoma. Images PMID:9577373

  14. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options.

    PubMed

    Sluiter, Nina; de Cuba, Erienne; Kwakman, Riom; Kazemier, Geert; Meijer, Gerrit; Te Velde, Elisabeth Atie

    2016-06-01

    Peritoneal dissemination is diagnosed in 10-25 % of colorectal cancer patients. Selected patients are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. For these patients, earlier diagnosis, optimised selection criteria and a personalised approach are warranted. Biomarkers could play a crucial role here. However, little is known about possible candidates. Considering tumour cell adhesion as a key step in peritoneal dissemination, we aim to provide an overview of the functional importance of adhesion molecules in peritoneal dissemination and discuss the prognostic, diagnostic and therapeutic options of these candidate biomarkers. A systematic literature search was conducted according to the PRISMA guidelines. In 132 in vitro, ex vivo and in vivo studies published between 1995 and 2013, we identified twelve possibly relevant adhesion molecules in various cancers that disseminate peritoneally. The most studied molecules in tumour cell adhesion are integrin α2β1, CD44 s and MUC16. Furthermore, L1CAM, EpCAM, MUC1, sLe(x) and Le(x), chemokine receptors, Betaig-H3 and uPAR might be of clinical importance. ICAM1 was found to be less relevant in tumour cell adhesion in the context of peritoneal metastases. Based on currently available data, sLe(a) and MUC16 are the most promising prognostic biomarkers for colorectal peritoneal metastases that may help improve patient selection. Different adhesion molecules appear expressed in haematogenous and transcoelomic spread, indicating two different attachment processes. However, our extensive assessment of available literature reveals that knowledge on metastasis-specific genes and their possible candidates is far from complete. PMID:27074785

  15. Expression of CD44v6 and integrin-β1 for the prognosis evaluation of pancreatic cancer patients after cryosurgery

    PubMed Central

    2013-01-01

    Background Many previous studies demonstrated that cell adhesion molecules CD44v6 and integrin-β1 had been extensively investigated as potential prognostic markers of various cancers. However, data in PC are scarce. Methods We now investigate CD44v6 and integrin-β1 mRNA expression in PBMC by a triplex real-time RT-PCR assay and protein expression in plasma by ELISA. All specimens were collected from 54 PC patients who received the treatment of cryosurgery as well as 20 healthy individuals (control). Results The mRNA and protein expression levels of CD44v6 and integrin-β1 in patients were significantly increased compared with control group (P<0.05). The high CD44v6 mRNA and protein expression were significantly correlated with clinical stage, tumor differentiation, LNM, liver metastasis and decreased median DFS (P<0.05), while the high integrin-β1 mRNA and protein expression were significantly correlated with clinical stage, LNM, liver metastasis and decreased median DFS (P<0.05). Clinical stage, LNM, liver metastasis, CD44v6 mRNA and protein expression were the independent predictors of survival in PC patients (P<0.05). Moreover, CD44v6 and integrin-β1 mRNA and protein expression levels were significantly decreased in patients in 3 months after cryosurgery (P<0.05). No significant difference was found in CD44v6 mRNA and protein expression between patients in 3 months after cryosurgery and control group (P>0.05). Conclusion CD44v6 and integrin-β1 mRNA and protein expression in blood may serve as biomarkers for the development and metastasis of PC, and as prognostic indicators for PC. They may become useful predictors in assessing outcome of PC patients after cryosurgery. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4035308681009006. PMID:24004467

  16. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases. PMID:25999946

  17. CD44 increases the efficiency of distant metastasis of breast cancer.

    PubMed

    McFarlane, Suzanne; Coulter, Jonathan A; Tibbits, Paul; O'Grady, Anthony; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; McCarthy, Helen O; Young, Leonie S; Kay, Elaine W; Isacke, Clare M; Waugh, David J J

    2015-05-10

    Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients. PMID:25888636

  18. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    SciTech Connect

    Yoshida, Go J. Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  19. Expression of adhesion molecules in leprosy lesions.

    PubMed Central

    Sullivan, L; Sano, S; Pirmez, C; Salgame, P; Mueller, C; Hofman, F; Uyemura, K; Rea, T H; Bloom, B R; Modlin, R L

    1991-01-01

    Leprosy presents as a clinical spectrum that is precisely paralleled by a spectrum of immunological reactivity. The disease provides a useful and accessible model, in this case in the skin, in which to study the dynamics of cellular immune responses to an infectious pathogen, including the role of adhesion molecules in those responses. In lesions characterized by strong delayed-type hypersensitivity against Mycobacterium leprae (tuberculoid, reversal reaction, and Mitsuda reaction), the overlying epidermis exhibited pronounced keratinocyte intracellular adhesion molecule 1 (ICAM-1) expression and contained lymphocytes expressing the ICAM-1 ligand, LFA-1. Conversely, in lesions in which delayed-type hypersensitivity was lacking (lepromatous), keratinocyte ICAM-1 expression was low and LFA-1+ lymphocytes were rare. Expression of these adhesion molecules on the cells within the dermal granulomas was equivalent throughout the spectrum of leprosy. The percentage of lymphocytes in these granulomas containing mRNA coding for gamma interferon and tumor necrosis factor alpha, synergistic regulators of ICAM-1 expression, paralleled epidermal ICAM-1 expression. In lesions of erythema nodosum leprosum, a reactional state of lepromatous leprosy thought to be due to immune complex deposition, keratinocyte ICAM-1 expression and gamma interferon mRNA+ cells were both prominent. Antibodies to LFA-1 and ICAM-1 blocked the response of both alpha beta and gamma delta T-cell clones in vitro to mycobacteria. Overall, the expression of adhesion molecules by immunocompetent epidermal cells, as well as the cytokines which regulate such expression, correlates with the outcome of the host response to infection. Images PMID:1718871

  20. The Epithelial Cell Adhesion Molecule (Ep-CAM) as a Morphoregulatory Molecule Is a Tool in Surgical Pathology

    PubMed Central

    Winter, Manon J.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Litvinov, Sergey V.

    2003-01-01

    Cell adhesion receptors (CAMs) are actively involved in regulating various cell processes, including growth, differentiation, and cell death. Therefore, CAMs represent a large group of morphoregulating molecules, mediating cross-talk between cells and of cells with their environment. From this perspective, CAMs do contribute to cells and tissue organization, and in diseased tissue, to the disease development and biological characteristics. Therefore, observed changes in expression patterns of adhesion molecules may contribute to establish a diagnosis. A distinct shift in expression patterns in neoplastic epithelium has been described, for example for cadherins, integrins, and CD44. A relatively novel cell CAM, Ep-CAM, was first reported to be a pan-carcinoma antigen, although it is rather a marker of epithelial lineage. Several antibodies directed to Ep-CAM have been generated, and many epithelial tissues and their neoplastic appendages have been studied. This article outlines the results of these studies. Based on the results of these studies, we conclude that Ep-CAM immunohistochemistry can be a useful tool in the diagnosis of disturbed epithelial tissues. PMID:14633587

  1. Identification and Characterization of CD44RC, a Novel Alternatively Spliced Soluble CD44 Isoform that can Potentiate the Hyaluronan Binding Activity of Cell Surface CD44

    PubMed Central

    Chiu, Roland K; Carpenito, Carmine; Dougherty, Shona T; Hayes, Gregory M; Dougherty, Graeme J

    1999-01-01

    Abstract Soluble CD44 proteins generated by proteolytic cleavage or aberrant intron retention have been shown to antagonize the ligand binding activity of the corresponding cell surface receptor, inducing apoptosis and inhibiting tumor growth. Interestingly, such findings appear to contradict recent studies demonstrating a correlation between the presence of high levels of soluble CD44 in the serum of cancer patients and poor prognosis. In the present study, we report the cloning of a novel, naturally occurring, differentially expressed, soluble CD44 isoform, designated CD44RC, which, in contrast to previously described soluble CD44 proteins, can dramatically enhance the hyaluronan binding activity of cell surface CD44. Sequence analysis suggests that CD44RC is generated by an alternative splicing event in which the 3′ end of CD44 exon 2 is spliced into an internal splice acceptor site present within exon 18, altering reading frame and giving rise to a soluble protein with a unique COOH terminus. Functional studies suggest that CD44RC enhances hyaluronan binding by adhering to chondroitin sulfate side-chains attached to cell surface CD44, generating a multivalent complex with increased avidity for hyaluronan. PMID:10933060

  2. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  3. The anti-CD74 humanized monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell proliferation, migration, and adhesion molecule expression

    PubMed Central

    2012-01-01

    Introduction Targeting CD74 as the invariant chain of major histocompatibility complexes (MHC) became possible by the availability of a specific humanized monoclonal antibody, milatuzumab, which is under investigation in patients with hematological neoplasms. CD74 has been reported to regulate chemo-attractant migration of macrophages and dendritic cells, while the role of CD74 on peripheral naïve and memory B cells also expressing CD74 remains unknown. Therefore, the current study addressed the influence of milatuzumab on B-cell proliferation, chemo-attractant migration, and adhesion molecule expression. Methods Surface expression of CD74 on CD27- naïve and CD27+ memory B cells as well as other peripheral blood mononuclear cells (PBMCs) obtained from normals, including the co-expression of CD44, CXCR4, and the adhesion molecules CD62L, β7-integrin, β1-integrin and CD9 were studied after binding of milatuzumab using multicolor flow cytometry. The influence of the antibody on B-cell proliferation and migration was analyzed in vitro in detail. Results In addition to monocytes, milatuzumab also specifically bound to human peripheral B cells, with a higher intensity on CD27+ memory versus CD27- naïve B cells. The antibody reduced B-cell proliferation significantly but moderately, induced enhanced spontaneous and CXCL12-dependent migration together with changes in the expression of adhesion molecules, CD44, β7-integrin and CD62L, mainly of CD27- naïve B cells. This was independent of macrophage migration-inhibitory factor as a ligand of CD74/CD44 complexes. Conclusions Milatuzumab leads to modestly reduced proliferation, alterations in migration, and adhesion molecule expression preferentially of CD27- naïve B cells. It thus may be a candidate antibody for the autoimmune disease therapy by modifying B cell functions. PMID:22404985

  4. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability.

    PubMed Central

    Hasan, N. M.; Adams, G. E.; Joiner, M. C.; Marshall, J. F.; Hart, I. R.

    1998-01-01

    The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29 cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth. PMID:9667649

  5. [Effect of erythromycin on neutrophil adhesion molecules].

    PubMed

    Kusano, S; Mukae, H; Morikawa, T; Asai, T; Sawa, H; Morikawa, N; Oda, H; Sakito, O; Shukuwa, C; Senju, R

    1993-01-01

    The mechanisms of erythromycin (EM) in chronic lower respiratory tract diseases including diffuse panbronchiolitis (DPB) has been reported. In this study we investigated the effect of EM on peripheral neutrophil adhesion molecules such as LFA-1 and Mac-1 obtained from six healthy subjects. Pretreatment of neutrophils with each concentration (10 ng/ml approximately 100 micrograms/ml) of EM resulted in no significant reduction in the expression of LFA-1 alpha, beta and Mac-1. Moreover, EM had no capability of reducing these expressions even when neutrophils were pretreated with 1 microgram/ml of EM at time from 0 to 60 min. These findings indicate that EM does not directly reduce the expression of LFA-1 alpha, beta and Mac-1 on peripheral neutrophil obtained from healthy subjects. PMID:8450276

  6. Staurosporine Induced Apoptosis May Activate Cancer Stem-Like Cells (CD44+/CD24-) in MCF-7 by Upregulating Mucin1 and EpCAM

    PubMed Central

    Zhou, Na; Wang, Rong; Zhang, Yizhuang; Lei, Zhen; Zhang, Xuehui; Hu, Ruobi; Li, Hui; Mao, Yiqing; Wang, Xi; Irwin, David M.; Niu, Gang; Tan, Huanran

    2015-01-01

    Malignant tumors recur after chemotherapy. A small population of cancer stem-like cells within tumors is now generally considered the prime source of the recurrence. To better understand how cancer stem-like cells induce relapse after fractionated chemotherapy, we examined changes in the CD44+/CD24- cancer stem-like cells population and behavior using the breast cancer cell line MCF-7. Our results show that apart from an increase in the CD44+/CD24- population, proliferation and clone formation, but not migration, were enhanced after recovery from apoptosis induced by two pulses of staurosporine (STS). The distribution of cells in the cell cycle differed between acutely induced apoptosis and fractionated chemotherapy. Sorted CD44+/CD24- stem-like cells from MCF-7 cells recovered from STS treatment possessed greater proliferation abilities. We also observed that mucin1 (MUC1) and Epithelial cell adhesion molecule (EpCAM) were up-regulated in abundance coincidently with proliferation and clone formation enhancement. Our findings suggest that fractionated chemotherapy induced apoptosis could stimulate cancer stem-like cell to behave with a stronger malignant property than cancer cells themselves and MUC1 and EpCAM are important factors involving in this process. By demonstrating changes in cancer stem cell during chemotherapy and identifying the crucial factors, we potentially can target them, to eradicate tumors and overcome cancer relapse. PMID:26366219

  7. Immune receptors and adhesion molecules in human pulmonary leptospirosis.

    PubMed

    Del Carlo Bernardi, Fabiola; Ctenas, Bruno; da Silva, Luiz Fernando Ferraz; Nicodemo, Antonio Carlos; Saldiva, Paulo Hilário Nascimento; Dolhnikoff, Marisa; Mauad, Thais

    2012-10-01

    Pulmonary involvement in leptospirosis has been increasingly reported in the last 20 years, being related to the severity and mortality of the disease. The pathogenesis of pulmonary hemorrhage in leptospirosis is not understood. Lung endothelial cells have been proposed as targets in the pathogenesis of lung involvement in leptospirosis through the activation of Toll-like receptor 2 or the complement system, which stimulates the release of cytokines that lead to the activation of adhesion molecules. The aim of this study was to investigate the involvement of immune pathways and of the intercellular and vascular cell adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule, respectively) in the lungs of patients with pulmonary involvement of leptospirosis. We studied the lungs of 18 patients who died of leptospirosis and compared them with 2 groups of controls: normal and noninfectious hemorrhagic lungs. Using immunohistochemistry and image analysis, we quantified the expression of the C3a anaphylatoxin receptor, intercellular adhesion molecule, vascular cell adhesion molecule, and Toll-like receptor 2 in small pulmonary vessels and in the alveolar septa. There was an increased expression of intercellular adhesion molecule (P < .03) and C3a anaphylatoxin receptor (P < .008) in alveolar septa in the leptospirosis group compared with the normal and hemorrhagic controls. In the vessels of the leptospirosis group, there was an increased expression of intercellular adhesion molecule (P = .004), vascular cell adhesion molecule (P = .030), and Toll-like receptor 2 (P = .042) compared with the normal group. Vascular cell adhesion molecule expression in vessels was higher in the leptospirosis group compared with the hemorrhagic group (P = .015). Our results indicate that immune receptors and adhesion molecules participate in the phenomena leading to pulmonary hemorrhage in leptospirosis. PMID:22436623

  8. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44

    PubMed Central

    2014-01-01

    Introduction Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Methods Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. Results CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in

  9. Moesin Interacts with the Cytoplasmic Region of Intercellular Adhesion Molecule-3 and Is Redistributed to the Uropod of T Lymphocytes during Cell Polarization

    PubMed Central

    Serrador, Juan M.; Alonso-Lebrero, José L.; Pozo, Miguel A. del; Furthmayr, Heinz; Schwartz-Albiez, Reinhard; Calvo, Javier; Lozano, Francisco; Sánchez-Madrid, Francisco

    1997-01-01

    During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane–cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, β-actin and α-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti–ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin–ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin–ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which

  10. SOLUABLE ADHESION MOLECULES, SURROGATE MARKERS OF CARDIOVASCULAR DISEASE?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules expression on the surface of endothelial and immune cells are important for immune and endothelial cells interaction during the inflammatory process. Several of these adhesion molecules have been identified and are believed to be important in the pathogenesis of atherosclerosis. T...

  11. Adhesion molecules in antibacterial defenses: effects of bacterial extracts.

    PubMed

    Marchant, A; Duchow, J; Goldman, M

    1992-01-01

    Adhesion of polymorphonuclear leukocytes (PMN) to vascular endothelium is one of the first events in their response against local bacterial infection. Different adhesion molecules sequentially mediate PMN adherence to endothelium and extravasation into inflamed tissues. We show that bacterial extracts OM-85 BV and OM-89 increase the expression of adhesion molecules at the surface of PMN and we suggest that this upregulation could be linked to the beneficial effect of bacterial extracts in the prevention of respiratory tract infections. PMID:1439236

  12. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease

    PubMed Central

    Pak, Victoria M.; Grandner, Michael A.; Pack, Allan I.

    2013-01-01

    SUMMARY Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA. PMID:23618532

  13. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent

    PubMed Central

    Kumar, Smitha; Lanckacker, Ellen; Dentener, Mieke; Bracke, Ken; Provoost, Sharen; De Grove, Katrien; Brusselle, Guy; Wouters, Emiel

    2016-01-01

    Background Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics. PMID:26999446

  14. Immunohistochemical analysis of CD44s and CD44v6 in endometriosis and adenomyosis : comparison with normal, hyperplastic, and malignant endometrium.

    PubMed

    Lin, Z; Cho, S; Jeong, H; Kim, H; Kim, I

    2001-06-01

    The expression patterns of CD44s and CD44v6 were immunohistochemically compared with those of normal, hyperplastic and malignant endometrium. In normal endometria (n=37), endometrioses (n=46) and adenomyoses (n=20), the surface and glandular epithelial cells were negative for CD44s and CD44v6 in a proliferative pattern and positive in a secretory pattern, whereas the stroma was only positive for CD44s in both proliferative and secretory patterns. The endometrial hyperplasia (4 simple and 9 complex) had the identical patterns with normal proliferative phase of endometrium. Only one case showing complex hyperplasia with atypia was focally positive for CD44s and CD44v6 in glandular epithelia. CD44s and CD44v6 were positive in all endometrial adenocarcinomas (13), except one CD44s-negative case. In summary, the expressions of CD44s and CD44v6 in endometriosis and adenomyosis recapitulated those of normal cyclic endometrium. The expression patterns in endometrial hyperplasia were similar to those in normal proliferative endometrium, whereas the endometrial adenocarcinoma showed abnormal expressions for CD44s and CD44v6. Thus it was considered that the ectopic endometrium in endometriosis and adenomyosis was not aberrant as in endometrial carcinoma on the aspects of immunohistochemical expressions of CD44s and CD44v6. PMID:11410693

  15. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    PubMed Central

    2012-01-01

    Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction

  16. Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis

    PubMed Central

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-01-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697

  17. Cell adhesion molecules and in vitro fertilization.

    PubMed

    Simopoulou, Maria; Nikolopoulou, Elena; Dimakakos, Andreas; Charalabopoulos, Konstantinos; Koutsilieris, Michael

    2014-01-01

    This review addresses issues regarding the need in the in vitro fertilization (IVF) field for further predictive markers enhancing the standing embryo selection criteria. It aims to serve as a source of defining information for an audience interested in factors related to the wide range of multiple roles played by cell adhesion molecules (CAMs) in several aspects of IVF ultimately associated with the success of an IVF cycle. We begin by stressing the importance of enriching the standing embryo selection criteria available aiming for the golden standard: "extract as much information as possible focusing on non-invasive techniques" so as to guide us towards selecting the embryo with the highest implantation potential. We briefly describe the latest trends on how to best select the right embryo, moving closer towards elective single embryo transfer. These trends are: frozen embryo transfer for all, preimplantation genetic screening, non-invasive selection criteria, and time-lapse imaging. The main part of this review is dedicated to categorizing and presenting published research studies focused on the involvement of CAMs in IVF and its final outcome. Specifically, we discuss the association of CAMs with conditions and complications that arise from performing assisted reproductive techniques, such as ovarian hyperstimulation syndrome, the state of the endometrium, and tubal pregnancies, as well as the levels of CAMs in biological materials available in the IVF laboratory such as follicular fluid, trophectoderm, ovarian granulosa cells, oocytes, and embryos. To conclude, since CAMs have been successfully employed as a diagnostic tool in several pathologies in routine clinical work, we suggest that their multi-faceted nature could serve as a prognostic marker in assisted reproduction, aiming to enrich the list of non-invasive selection and predictive criteria in the IVF setting. We propose that in light of the well-documented involvement of CAMs in the developmental

  18. Silibinin suppresses EGFR ligand-induced CD44 expression through inhibition of EGFR activity in breast cancer cells.

    PubMed

    Kim, Sangmin; Han, Jeonghun; Kim, Jee Soo; Kim, Jung-Han; Choe, Jun-Ho; Yang, Jung-Hyun; Nam, Seok Jin; Lee, Jeong Eon

    2011-11-01

    CD44, the transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. The expression of CD44 and its variants is associated with poor prognosis in breast cancer. Here, we investigated the effect of silibinin (a polyphenolic flavonolignan of the herbal plant of Silybum marianum, milk thistle) on the epidermal growth factor (EGF) ligand-induced CD44 expression in human breast cancer cells. The levels of CD44 mRNA and protein expression were greatly increased by EGF and by TGF-α in SKBR3 and BT474 breast cancer cells. In contrast, EGFR ligand-induced CD44 expression was reduced by EGFR inhibitors, AG1478 and lapatinib, respectively. Interestingly, we observed that EGFR ligand-induced CD44 and matrix metalloproteinase-9 (MMP-9) expression was reduced by silibinin treatment in a dose-dependent manner. In addition, silibinin suppressed the EGF-induced phosphorylation of EGFR and extracellular signal-regulated kinase1/2 (ERK1/2), a downstream signaling molecule of EGFR. Therefore, we suggest that silibinin prevents the EGFR signaling pathway and may be used as an effective drug for the inhibition of metastasis of human breast cancer. PMID:22110198

  19. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  20. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression.

    PubMed

    Ju, Sy-Yeuan; Chiou, Shih-Hwa; Su, Yeu

    2014-01-01

    The purpose of this study was to isolate cancer stem cells (CSCs, also called tumor-initiating cells, TICs) from established human colorectal carcinoma (CRC) cell lines, characterize them extensively and dissect the mechanism for their stemness. Freshly isolated CD44(+) and CD44(-) cells from the HCT-15 human colon cancer cell line were subjected to various analyses. Interestingly, CD44(+) cells exhibited higher soft agar colony-forming ability and in vivo tumorigenicity than CD44(-) cells. In addition, the significant upregulation of the protein Snail and the downregulation of miR-203, a stemness inhibitor, in CD44(+) cells suggested that this population possessed higher invasion/metastasis and differentiation potential than CD44(-) cells. By manipulating the expression of CD44 in HCT-15 and HCT-116 cells, we found that the levels of several EMT activators and miR-203 were positively and negatively correlated with those of CD44, respectively. Further analyses revealed that miR-203 levels were repressed by Snail, which was shown to bind to specific E-box(es) present in the miR-203 promoter. In agreement, silencing miR-203 expression in wild-type HCT-116 human colon cancer cells also resulted in an increase of their stemness. Finally, we discovered that c-Src kinase activity was required for the downregulation of miR-203 in HCT-15 cells, which was stimulated by the interaction between hyaluronan (HA) and CD44. Taken together, CD44 is a critical molecule for modulating stemness in CSCs. More importantly, we show for the first time that the downregulation of miR-203 by HA/CD44 signaling is the main reason for stemness-maintenance in colon cancer cells. PMID:24145190

  1. Relationship between the expression of versican and EGFR, HER-2, HER-3 and CD44 in matrix-producing tumours in the canine mammary gland.

    PubMed

    Damasceno, K A; Ferreira, E; Estrela-Lima, A; Bosco, Y; Silva, L P; Barros, A L B; Bertagnolli, A C; Cassali, G D

    2016-06-01

    Versican is an extracellular matrix proteoglycan that has been identified as a modulator of adhesion loss, cell motility, and tumour progression. This motility results from the interaction between versican and cell surface receptors. Studies have also demonstrated the relationship between this molecule and invasion in canine mammary tumours. Given the evidence for the participation of proteoglycans in tumour progression, this study aimed to assess versican expression and its association with cell surface receptors; human epidermal growth factor receptors 1, 2, and 3 (EGFR, HER-2, and HER-3) and CD44 through an immunohistochemical analysis of benign mixed tumours (BMTs), carcinomas in mixed tumours (CMTs), and carcinosarcomas (CSs) of the canine mammary gland. Malignant tumours were divided into low and high groups with respect to versican stromal expression. The results indicated that the BMTs showed weak stromal versican expression and correlations between the expression of stromal versican and EGFR in the epithelial membrane in benign areas (p=0.013, r=0.571). A higher stromal versican expression was observed adjacent to invasive epithelial areas compared with in situ areas in CMTs and CSs, suggesting a direct relationship between versican expression and invasiveness. Furthermore, the CSs exhibited a higher expression of HER-2, cytoplasmic HER-3, and CD44 in epithelial invasive cells in cases of higher stromal versican expression. Therefore, the cell surface receptors (HER-2, HER-3, and CD44) are more evident in CSs that overexpress versican in stroma adjacent to the invasive areas. These findings suggest that the association between these molecules may be directly related to the biological behaviour and invasiveness of these canine mammary tumours. PMID:26666308

  2. Overexpression of CD44 in Neural Precursor Cells Improves Trans- Endothelial Migration and Facilitates Their Invasion of Perivascular Tissues In Vivo

    PubMed Central

    Deboux, Cyrille; Ladraa, Sophia; Cazaubon, Sylvie; Ghribi-Mallah, Siham; Weiss, Nicolas; Chaverot, Nathalie; Couraud, Pierre Olivier; Evercooren, Anne Baron-Van

    2013-01-01

    Neural precursor (NPC) based therapies are used to restore neurons or oligodendrocytes and/or provide neuroprotection in a large variety of neurological diseases. In multiple sclerosis models, intravenously (i.v) -delivered NPCs reduced clinical signs via immunomodulation. We demonstrated recently that NPCs were able to cross cerebral endothelial cells in vitro and that the multifunctional signalling molecule, CD44 involved in trans-endothelial migration of lymphocytes to sites of inflammation, plays a crucial role in extravasation of syngeneic NPCs. In view of the role of CD44 in NPCs trans-endothelial migration in vitro, we questioned presently the benefit of CD44 overexpression by NPCs in vitro and in vivo, in EAE mice. We show that overexpression of CD44 by NPCs enhanced over 2 folds their trans-endothelial migration in vitro, without impinging on the proliferation or differentiation potential of the transduced cells. Moreover, CD44 overexpression by NPCs improved significantly their elongation, spreading and number of filopodia over the extracellular matrix protein laminin in vitro. We then tested the effect of CD44 overexpression after i.v. delivery in the tail vein of EAE mice. CD44 overexpression was functional in vivo as it accelerated trans-endothelial migration and facilitated invasion of HA expressing perivascular sites. These in vitro and in vivo data suggest that CD44 may be crucial not only for NPC crossing the endothelial layer but also for facilitating invasion of extravascular tissues. PMID:23468987

  3. CD44(high)CD24(low) molecular signature determines the Cancer Stem Cell and EMT phenotype in Oral Squamous Cell Carcinoma.

    PubMed

    Ghuwalewala, Sangeeta; Ghatak, Dishari; Das, Pijush; Dey, Sanjib; Sarkar, Shreya; Alam, Neyaz; Panda, Chinmay K; Roychoudhury, Susanta

    2016-03-01

    Almost all epithelial tumours contain cancer stem-like cells, which possess a unique property of self-renewal and differentiation. In oral cancer, several biomarkers including cell surface molecules have been exploited for the identification of this highly tumorigenic population. Implicit is the role of CD44 in defining CSCs but CD24 is not well-explored. Here we show that CD44(high)CD24(low) cells isolated from the oral cancer cell lines, not only express stem cell related genes but also exhibit Epithelial-to-Mesenchymal transition (EMT) characteristics. This CD44(high)CD24(low) population gives rise to all other cell types upon differentiation. Typical Cancer Stem Cell (CSC) phenotypes like increased colony formation, sphere forming ability, migration and invasion were also confirmed in CD44(high)CD24(low) cells. Drug transporters were found to be over-expressed in CD44(high)CD24(low) sub-population thereby contributing to elevated chemo-resistance. To validate our findings in-vivo, we determined the relative expression of CD44 and CD24 in clinical samples of OSCC patients. CD44 expression was consistently high whereas CD24 showed significantly lower expression in tumour tissues. Further, the gene expression profile of the CSC and non-CSC population unravels the molecular pathways which may contribute to stemness. We conclude that CD44(high)CD24(low) represents cancer stem-like cells in Oral Squamous Cell Carcinoma. PMID:26926234

  4. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  5. V delta 1 gene usage, interleukin-2 receptors and adhesion molecules on gamma delta+ T cells in inflammatory diseases of the nervous system.

    PubMed

    Mix, E; Fiszer, U; Olsson, T; Fredrikson, S; Kostulas, V; Söderström, M; Link, H

    1994-01-01

    This study investigates the expression of T cell receptor V delta 1 chain, interleukin-2 receptor alpha-chain (CD25) and adhesion molecules ICAM-1 (CD54), LFA-1 (CD11a/18) and CD44 on gamma delta+ T cells by three-color flow cytometry on cerebrospinal fluid (CSF) and blood cells in patients with multiple sclerosis (MS), other inflammatory neurological diseases (OIND) and other neurological diseases (OND). Of gamma delta + T cells in CSF and blood, 20-40% belonged to the 'epithelial' V delta 1 subtype. MS patients had the lowest levels in both CSF and blood, but the differences between the patient groups were not significant. The activation markers CD25 and CD54 were expressed by only a small proportion of gamma delta+ T cells and in a minority of patients. Although the occurrence of CD25+ and CD54+ gamma delta+ T cells was somewhat higher in CSF than in blood and in inflammatory diseases than in controls, the small numbers of CD25+ and CD54+ gamma delta+ T cells preclude establishing differences amongst compartments and patient groups. The adhesion molecules CD11a/18 and CD44 were constitutively expressed on all T cells. Therefore, we compared the relative antigen density per cell as measured by the relative fluorescence index (RFI) between CSF and blood, between the patient groups and between gamma delta+ and total T cells. The only difference encountered was a slightly higher expression of adhesion molecules on gamma delta+ compared to total T cells, with preference to MS patients. In conclusion, the V delta 1+ subtype of gamma delta+ T cells does not dominate in the CSF compartment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7507498

  6. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-01-01

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript. © 2016 American Physiological Society. Compr Physiol 6:945-973, 2016. PMID:27065171

  7. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease.

    PubMed Central

    Ruco, L. P.; Pomponi, D.; Pigott, R.; Gearing, A. J.; Baiocchini, A.; Baroni, C. D.

    1992-01-01

    The immunocytochemical expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelial leukocyte adhesion molecule (ELAM-1), endothelial cell adhesion molecule (EndoCAM CD31), and HLA-DR antigens was investigated in sections of 24 reactive lymph nodes and in 15 cases of Hodgkin's disease. ICAM-1 was detected in sinus macrophages, follicular dendritic reticulum cells (FDRCs), interdigitating reticulum cells (IDRCs), epithelioid macrophages, Hodgkin's cells (HCs), and vascular endothelium. ICAM-1 expression was often associated with that of HLA-DR antigens. VCAM-1 was detected in FDRCs, in fibroblast reticulum cells (FRCs), in macrophages, and in rare blood vessels. EndoCAM (CD31) was constitutively expressed in all types of endothelial cells, sinus macrophages, and in epithelioid granulomas. ELAM-1 was selectively expressed by activated endothelial cells of high endothelium venules (HEVs). When expression of the inducible adhesion molecules ICAM-1, VCAM-1 and ELAM-1 was comparatively evaluated in HEVs, it was found that ICAM-1 + HEVs were present in all reactive and HD nodes, whereas ELAM-1 and/or VCAM-1 were expressed only in those pathologic conditions characterized by high levels of interleukin-1/tumor necrosis factor (IL-1/TNF) production, such as granulomatosis and Hodgkin's disease. In Hodgkin's disease, the expression of ELAM-1/VCAM-1 was more pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. Images Figure 1 Figure 2 PMID:1605306

  8. Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions.

    PubMed

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Mor, Adam

    2016-01-01

    Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair. PMID:27404581

  9. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  10. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  11. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  12. Pentoxifylline Decreases Serum Level of Adhesion Molecules in Atherosclerosis Patients

    PubMed Central

    Mohammadpour, Amir Hooshang; Falsoleiman, Homa; Shamsara, Jamal; Abadi, Ghazaleh Allah; Rasooli, Ramin; Ramezani, Mohammad

    2014-01-01

    Background: Inflammation is involved in development, progression, and complications of atherosclerotic disease. Clinical studies have indicated that the level of monocyte chemoattractant protein 1 (MCP-1), IL-18, and adhesion molecules correlates with the severity of atherosclerosis and can predict future cardiovascular events. Experimental studies have shown pentoxifylline (PTX) reduces these factors in animal models. The purpose of the present pilot study was to evaluate effect of PTX on a group of inflammatory biomarkers in patients with coronary artery disease (CAD). Methods: Forty patients with angiographically documented CAD, who fulfilled inclusion and exclusion criteria, were entered in the double-blind, randomized, pilot clinical study. The patients were randomly given PTX (400 mg three times daily) or placebo (3 tab/day) for 2 months. Serum concentrations of MCP-1, IL-18, intercellular adhesion Molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured before and at the end of intervention by enzyme-linked immunosorbant assay. Results: Our study showed that the serum levels of ICAM-1 and VCAM-1 was decreased in the study population after two-month treatment (P<0.05). Conclusion: Based on the results of our pilot study, administration of PTX in CAD patients significantly decreases adhesion molecules levels. PMID:24375159

  13. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes

    PubMed Central

    Ono, Yohei; Ishizuka, Shinya; Knudson, Cheryl B.

    2014-01-01

    Objective: A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44–hyaluronan interactions and the effects of kartogenin on articular chondrocytes. Methods: Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treated with kartogenin with or without stimulation by IL-1β. Accumulation of matrix was visualized by a particle exclusion assay or by safranin O staining and release of sulfated glycosaminoglycans was determined. Production of aggrecanases and aggrecan G1-ITEGE neoepitope, fragmentation of CD44 and the SMAD1/5/8 signaling pathway were evaluated by western blotting. Results: Kartogenin treatment enhanced chondrocyte pericellular matrix assembly and retention in the presence of IL-1β. The chondroprotective effects of kartogenin on IL-1β-induced release of sulfated glycosaminoglycans from articular cartilage explants, reduction in safranin O staining of neocartilage discs as well as a reduction in aggrecan G1-ITEGE neoepitope in chondrocyte and explant cartilage cultures were observed. Kartogenin partially blocked the IL-1β-induced increased expression of ADAMTS-5. Additionally, kartogenin-treated articular chondrocytes exhibited a decrease in CD44 proteolytic fragmentation. However, kartogenin treatment did not enhance proteoglycan in control, non-IL-1β-treated cultures. Similarly, kartogenin enhanced the SMAD1 phosphorylation but only following pretreatment with IL-1β. Conclusion: These studies provide novel information on the chondroprotective function of kartogenin in adult articular cartilage. The effects of kartogenin are significant after activation of chondrocytic chondrolysis, which may occur following disruption of homeostasis maintained by hyaluronan–CD44

  14. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  15. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  16. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  17. Influence of Intron Length on Alternative Splicing of CD44

    PubMed Central

    Bell, Martyn V.; Cowper, Alison E.; Lefranc, Marie-Paule; Bell, John I.; Screaton, Gavin R.

    1998-01-01

    Although the splicing of transcripts from most eukaryotic genes occurs in a constitutive fashion, some genes can undergo a process of alternative splicing. This is a genetically economical process which allows a single gene to give rise to several protein isoforms by the inclusion or exclusion of sequences into or from the mature mRNA. CD44 provides a unique example; more than 1,000 possible isoforms can be produced by the inclusion or exclusion of a central tandem array of 10 alternatively spliced exons. Certain alternatively spliced exons have been ascribed specific functions; however, independent regulation of the inclusion or skipping of each of these exons would clearly demand an extremely complex regulatory network. Such a network would involve the interaction of many exon-specific trans-acting factors with the pre-mRNA. Therefore, to assess whether the exons are indeed independently regulated, we have examined the alternative exon content of a large number of individual CD44 cDNA isoforms. This analysis shows that the downstream alternatively spliced exons are favored over those lying upstream and that alternative exons are often included in blocks rather than singly. Using a novel in vivo alternative splicing assay, we show that intron length has a major influence upon the alternative splicing of CD44. We propose a kinetic model in which short introns may overcome the poor recognition of alternatively spliced exons. These observations suggest that for CD44, intron length has been exploited in the evolution of the genomic structure to enable tissue-specific patterns of splicing to be maintained. PMID:9742110

  18. Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells

    PubMed Central

    Fattal, Elias

    2013-01-01

    Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that exists in living systems, and it is a major component of the extracellular matrix. The hyaluronic acid receptor CD44 is found at low levels on the surface of epithelial, haematopoietic, and neuronal cells and is overexpressed in many cancer cells particularly in tumour initiating cells. HA has been therefore used as ligand attached to HA-lipid-based nanovectors for the active targeting of small or large active molecules for the treatment of cancer. This paper describes the different approaches employed for the preparation, characterization, and evaluation of these potent delivery systems. PMID:23533773

  19. Anti-CD44-mediated blockade of leukocyte migration in skin-associated immune diseases.

    PubMed

    Zöller, Margot; Gupta, Pooja; Marhaba, Rachid; Vitacolonna, Mario; Freyschmidt-Paul, Pia

    2007-07-01

    CD44 plays an important role in leukocyte extravasation, which is fortified in autoimmune diseases and delayed-type hypersensitivity (DTH) reactions. There is additional evidence that distinct CD44 isoforms interfere with the extravasation of selective leukocyte subsets. We wanted to explore this question in alopecia areata (AA), a hair-follicle centric autoimmune disease, and in a chronic eczema. The question became of interest because AA is treated efficiently by topical application of a contact sensitizer, such that a mild DTH reaction is maintained persistently. Aiming to support the therapeutic efficacy of a chronic eczema in AA by anti-CD44 treatment, it became essential to control whether a blockade of migration, preferentially of AA effector cells, could be achieved by CD44 isoform-specific antibodies. Anti-panCD44 and anti-CD44 variant 10 isoform (CD44v10) inhibited in vitro migration of leukocytes from untreated and allergen-treated, control and AA mice. In vivo, both antibodies interfered with T cell and monocyte extravasation into the skin; only anti-panCD44 prevented T cell homing into lymph nodes. Contributing factors are disease-dependent alterations in chemokine/chemokine receptor expression and a blockade of CD44 on endothelial cells and leukocytes. It is important that CD44 can associate with several integrins and ICAM-1. Associations depend on CD44 activation and vary with CD44 isoforms and leukocyte subpopulations. CD44 standard isoform preferentially associates with CD49d in T cells and CD44v10 with CD11b in monocytes. Accordingly, anti-panCD44 and anti-CD49d inhibit T cell, anti-CD11b, and anti-CD44v10 macrophage migration most efficiently. Thus, allergen treatment of AA likely can be supported by targeting AA T cells selectively via a panCD44-CD49d-bispecific antibody. PMID:17442857

  20. Immunohistochemical analysis of adhesion molecules in airway biopsies.

    PubMed

    J Wilson, S; T Holgate, S

    2000-01-01

    Adhesion molecules are receptors found on the surface of leukocytes and endothelial cells, which bind to their ligands, either on other cells or on the extracellular matrix. The function of adhesion molecules is to allow leukocytes to interact with other hemopoetic cells or with foreign antigens (Ags) in the blood, to transiently adhere to the vascular endothelium, to migrate between endothelial cells and through the basement membrane into the surrounding tissue, and to adhere to the epithelium. There are three main groups of adhesion molecules: the integrins, immunoglobulin (Ig) supergene family, and the selectins: These are summarized in Table 1 (1-7). Table 1 Summary of Adhesion Molecules Group CD number Name Expressed on Ligand Integrins CD 49a VLA-1 T lymphocytes, fibroblasts, basement membrane Laminin, collagen B1 very late antigens CD 49b VLA-2 Activated T lymphocytes, platelets, fibroblasts, endothelium, epithelium Collagen, laminin CD 49c VLA-3 Epithelium, fibroblasts Laminin, collagen, fibronectin CD 49d VLA-4 Leukocytes, fibroblasts VCAM-1, fibronectin CD 49e VLA-5 Leukocytes, platelets, epithelium Fibronectin CD 49f VLA-6 T lymphocytes, platelets Laminin B2 leukocyte integrins CD 11a LFA-1 Leukocytes ICAM-1, ICAM-2, ICAM-3 CD 11b Mac-1 Macrophages, monocytes, granulocytes ICAM-1, fibrinogen, C3bi CD 11c p150.95 Macrophages, monocytes, granulocytes Fibrinogen, C3bi IG Supergene family CD 54 ICAM-1 Endothelium, leukocytes, epithelium LFA-1 Mac-1 CD 102 ICAM-2 Endothelium, leukocytes LFA-1 CD 106 VCAM-1 Endothelium, dendritic cells, tissue macrophages VLA-4 Selectins CD 62E E selectin Endothelium Sialyl Lewis x CD 62P P selectin Platelets, endothelium Sialyl Lewis x CD 62L L selectin Leukocytes Mannose-6-P, fructose-6-P. PMID:21312133

  1. Differential surface expression of CD18 and CD44 by neutrophils in bone marrow and spleen contributed to the neutrophilia in thalidomide-treated female B6C3F1 mice

    SciTech Connect

    Auttachoat, Wimolnut; Zheng Jianfeng; Chi, Rui P.; Meng, Andrew; Guo, Tai L. . E-mail: tlguo@vcu.edu

    2007-02-01

    Previously, we have reported that thalidomide (Thd) can enhance neutrophil function in female B6C3F1 mice. The present study was intended to evaluate the mechanisms underlying the enhanced neutrophil responses following Thd treatment intraperitoneally (100 mg/kg) for 14 or 28 days. Treatment with Thd increased the numbers of neutrophils in the spleen, peripheral blood, bone marrow, peritoneal cavity and lungs of female B6C3F1 mice when compared to the vehicle control mice. Thd treatment for 14 days increased the percentage and the number of neutrophils in the spleen in the first 8 h (peaking at 2 h) after the last Thd treatment, and it returned to the baseline after 24 h. However, Thd treatment for 28 days increased the percentage and number of neutrophils in the spleen even at the 24-h time point after the last Thd treatment. These neutrophils were demonstrated to be functional by the myeloperoxidase activity assay. Further studies have ruled out the possibility of an increased bone marrow granulopoiesis following Thd treatment. Flow cytometric analysis of the surface expression of adhesion molecules suggested that Thd treatment for either 14 or 28 days decreased the surface expression of either CD18 or CD44 by bone marrow neutrophils. On the other hand, the surface expression of both CD18 and CD44 by splenic neutrophils was increased following Thd treatment for 28 days but not for 14 days. No effect was produced for other cell surface molecules such as CD62L and CD11a. It was possible that decreased surface expressions of CD18 and CD44 facilitated neutrophils' release from the bone marrow; increased surface expressions of CD44 and CD18 by splenic neutrophils after 28 days of Thd treatment increased their ability to remain in the periphery. Taken together, Thd treatment increased neutrophils in female B6C3F1 mice, at least partially, through differentially modulating the surface expression of CD18 and CD44 by the neutrophils in the bone marrow and spleen00.

  2. sCD44 overexpression increases intraocular pressure and aqueous outflow resistance

    PubMed Central

    Giovingo, Michael; Nolan, Michael; McCarty, Ryan; Pang, Iok-Hou; Clark, Abbot F.; Beverley, Rachel M.; Schwartz, Steven; Stamer, W. Daniel; Walker, Loyal; Grybauskas, Algis; Skuran, Kevin; Kuprys, Paulius V.; Yue, Beatrice Y.J.T.

    2013-01-01

    Purpose CD44 plays major roles in multiple physiologic processes. The ectodomain concentration of the CD44 receptor, soluble CD44 (sCD44), is significantly increased in the aqueous humor of primary open-angle glaucoma (POAG). The purpose of this study was to determine if adenoviral constructs of CD44 and isolated 32-kDa sCD44 change intraocular pressure (IOP) in vivo and aqueous outflow resistance in vitro. Methods Adenoviral constructs of human standard CD44 (Ad-CD44S), soluble CD44 (Ad-sCD44), and empty viral cDNA were injected into the vitreous of BALB/cJ mice, followed by serial IOP measurements. Overexpression of CD44S and sCD44 was verified in vitro by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Anterior segments of porcine eyes were perfused with the isolated sCD44. sCD44-treated human trabecular meshwork (TM) cells and microdissected porcine TM were examined by confocal microscopy and Optiprep density gradient with western blot analysis to determine changes in lipid raft components. Results Intravitreous injection of adenoviral constructs with either Ad-CD44S or Ad-sCD44 vectors caused prolonged ocular hypertension in mice. Eight days after vector injection, Ad-CD44S significantly elevated IOP to 28.3±1.2 mmHg (mean±SEM, n=8; p<0.001); Ad-sCD44 increased IOP to 18.5±2.6 mmHg (n=8; p<0.01), whereas the IOP of uninjected eyes was 12.7±0.2 mmHg (n=16). The IOP elevation lasted more than 50 days. Topical administration of a γ-secretase inhibitor normalized Ad-sCD44-induced elevated IOP. sCD44 levels were significantly elevated in the aqueous humor of Ad-CD44S and Ad-sCD44 eyes versus contralateral uninjected eyes (p<0.01). Anterior segment perfusion of isolated 32-kDa sCD44 significantly decreased aqueous outflow rates. Co-administration of isolated sCD44 and CD44 neutralizing antibody or of γ-secretase inhibitor significantly enhanced flow rates. sCD44-treated human TM cells displayed cross-linked actin network formation

  3. CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes.

    PubMed Central

    Knutson, J R; Iida, J; Fields, G B; McCarthy, J B

    1996-01-01

    Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion

  4. Temporal variation in the distribution of hyaluronic acid, CD44s, and CD44v6 in the human endometrium across the menstrual cycle.

    PubMed

    Afify, Alaa M; Craig, Sarah; Paulino, Augusto F G

    2006-09-01

    Tissues undergoing rapid growth and regeneration contain hyaluronic acid (HA) as a prominent component of the extracellular matrix. The physiologic role of HA is partly mediated by its relationship with CD44, its major cell surface receptor. Given the extensive remodeling of the endometrium during the menstrual cycle, the authors sought to determine whether these changes are related to the levels of HA, CD44s, and CD44v6 in the endometrium. Archival paraffin embedded cell blocks from 10 cases of proliferative endometrium and 20 cases of secretory endometrium were retrieved from the surgical pathology files. Specimens from the secretory phase were subdivided into three categories: early secretory (day 15-18), mid-secretory (day 19-23), and late secretory (day 24-28). All cases were stained for hyaluronic acid, CD44s, and CD44v6. Sections from umbilical cord, tonsil, and squamous cell carcinoma served as positive controls for HA, CD44s, and CD44v6, respectively. Positive staining was defined as droplet to diffuse intracytoplasmic or extracellular staining for HA and uniform membranous staining for CD44. During the proliferative phase, the endometrial glands and the stroma were both negative for CD44s and CD44v6 in all cases. In the secretory phase, the endometrial glands were negative for CD44s in all cases, but CD44v6 was expressed in 12 (60%) of cases. In contrast, the stromal cells expressed CD44s in 18 (90%) cases and were negative for CD44v6 in all cases. HA staining was present in the endometrial stroma throughout the menstrual cycle but was most intense (3+) and diffuse during the midsecretory phase. There was perivascular staining for HA throughout the cycle; it was most intense adjacent to the spiral arterioles in the secretory phase. These data indicate temporal and geographic differences in HA and CD44 staining in the endometrium in concert with the menstrual cycle. The timing of peak staining of HA and CD44s in the stroma and the upregulation of CD44v6 in

  5. The role of CD44 in epithelial–mesenchymal transition and cancer development

    PubMed Central

    Xu, Hanxiao; Tian, Yijun; Yuan, Xun; Wu, Hua; Liu, Qian; Pestell, Richard G; Wu, Kongming

    2015-01-01

    CD44, a multi-structural and multifunctional transmembrane glycoprotein, was initially identified as a receptor for hyaluronan that participates in both physiological and pathological processes. CD44 is found to be closely linked to the development of various solid tumors. Molecular studies have revealed that high CD44 expression was correlated with the phenotypes of cancer stem cells and epithelial–mesenchymal transition, thereby contributing to tumor invasion, metastasis, recurrence, and chemoresistance. Correspondingly, blockade of CD44 has been demonstrated to be capable of attenuating the malignant phenotype, slowing cancer progression, and reversing therapy resistance. Clinical analyses showed that high CD44 expression is associated with poor survival of various cancer patients, indicating that CD44 can be a potential prognostic marker. In this review, we summarize recent research progress of CD44 on tumor biology and the clinical significance of CD44. PMID:26719706

  6. Structural requirements for neural cell adhesion molecule-heparin interaction.

    PubMed Central

    Reyes, A A; Akeson, R; Brezina, L; Cole, G J

    1990-01-01

    Two biological domains have been identified in the amino terminal region of the neural cell adhesion molecule (NCAM): a homophilic-binding domain, responsible for NCAM-NCAM interactions, and a heparin-binding domain (HBD). It is not known whether these two domains exist as distinct structural entities in the NCAM molecule. To approach this question, we have further defined the relationship between NCAM-heparin binding and cell adhesion. A putative HBD consisting of two clusters of basic amino acid residues located close to each other in the linear amino acid sequence of NCAM has previously been identified. Synthetic peptides corresponding to this domain were shown to bind both heparin and retinal cells. Here we report the construction of NCAM cDNAs with targeted mutations in the HBD. Mouse fibroblast cells transfected with the mutant cDNAs express NCAM polypeptides with altered HBD (NCAM-102 and NCAM-104) or deleted HBD (HBD-) at levels similar to those of wild-type NCAM. Mutant NCAM polypeptides purified from transfected cell lines have substantially reduced binding to heparin and fail to promote chick retinal cell attachment. Furthermore, whereas a synthetic peptide that contains both basic amino acid clusters inhibits retinal-cell adhesion to NCAM-coated dishes, synthetic peptides in which either one of the two basic regions is altered to contain only neutral amino acids do not inhibit this adhesion. These results confirm that this region of the NCAM polypeptide does indeed mediate not only the large majority of NCAM's affinity for heparin but also a significant portion of the cell-adhesion-mediating capability of NCAM. Images PMID:2078567

  7. Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior.

    PubMed

    Tsuneki, Masayuki; Madri, Joseph A

    2014-12-01

    Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors. PMID:25266662

  8. Robust fluorescence sensing platform for detection of CD44 cells based on graphene oxide/gold nanoparticles.

    PubMed

    Jeong, Ha Young; Baek, Seung Hun; Chang, Sung-Jin; Cheon, Seon Ah; Park, Tae Jung

    2015-11-01

    Gold-coated graphene oxide hybrid material (GO/AuNPs) has exceptional physical and chemical properties like π-π stacking interaction and plays a role in quencher of fluorescence dye. Therefore, GO/AuNPs could enhance the signal-to-background ratio with fluorescence dye that was the point in this fluorescent biosensor. In this study, tetramethyl-6-carboxy-rhodamine (TAMRA)-labeled aptamers that specifically interact with the hyaluronic acid binding domain of CD44 were used as targets to investigate the applicability of the method. GO/AuNPs-TAMRA-aptamer complexes could detect CD44 target cancer cells within a concentration range of 1 × 10(1) to 1 × 10(7) CFU/mL. A linear relationship was observed between target cell concentration and relative fluorescence intensity. The more mounted up CD44 target cell concentrations, relative fluorescence intensity of GO/AuNPs-TAMRA-aptamer complexes was increased even more, which was superior to that of GO alone. Sensitivity of the detection system displayed a low detection limit of 1 × 10(1) CFU/mL. Additionally, this method is specific in that fluorescence is not much enhanced in CD44 negative cancer cell line. Thus, the fluorescence sensing based on GO/AuNPs could be developed to receptive and robust detection tool for various target molecules. PMID:26263218

  9. Adhesion Molecules Associated with Female Genital Tract Infection

    PubMed Central

    Li, Lin-Xi; Carrascosa, José Manuel; Cabré, Eduard; Dern, Olga; Sumoy, Lauro; Requena, Gerard; McSorley, Stephen J.

    2016-01-01

    Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes. PMID:27272720

  10. Differential CD44 expression patterns in primary brain tumours and brain metastases.

    PubMed Central

    Li, H.; Liu, J.; Hofmann, M.; Hamou, M. F.; de Tribolet, N.

    1995-01-01

    Splicing variants of CD44 (CD44v) are increasingly recognised as metastasis-promoting factors in rodent and some human cancers. However, the frequency for CD44v expression in human cancers and their metastases and the status of CD44v expression in low or non-metastatic tumours is still uncertain. To address this issue, we investigated CD44 expression patterns in brain metastases (BMTs) spread from more than ten organs and five types of primary brain tumours (PBTs) by Northern blot, reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical analysis. The results demonstrated that all of the 56 PBTs examined express standard form of CD44 (CD44s) but none of them express CD44v. In contrast, 22 of 26 BMTs studied were found with CD44v expression. Our data thus present direct evidence of a general distribution of CD44 in BMTs but suggest that such expression is an extremely rare event in PBTs. Therefore, the presence or absence of CD44v expression may be related to high or low metastatic potential of human malignancies. Images Figure 2 Figure 1 PMID:7541233

  11. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6

    PubMed Central

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S.; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G.; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H.; Orian-Rousseau, Véronique

    2015-01-01

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs. PMID:26181364

  12. Selective killing of breast cancer cells expressing activated CD44 using CD44 ligand-coated nanoparticles in vitro and in vivo

    PubMed Central

    Zhang, Huizhen; Liu, Yiwen; Wang, Wenjuan; Du, Yan; Gao, Feng

    2015-01-01

    The cell surface glycoprotein CD44 is expressed in cancer cells and has been used as a therapeutic target in preclinical studies. However, the ubiquitous expression of CD44 in numerous cell types, including hematopoietic cells, has hindered its application in targeted therapy. Here, we demonstrated that CD44 was activated on breast cancer cells but was inactive on normal cells in vitro and in vivo. We analyzed 34 clinical primary tumor and normal breast tissues and demonstrated that CD44 was in an active state on breast cancer cells but in an inactive state on normal cells. Furthermore, based on the binding property of CD44 with its ligand hyaluronan (HA), we self-assembled HA-coated nanoparticles and studied their selective targeting efficacy. Our results indicate that HA-coated nanoparticles bearing the CD44 ligand selectively targeted cancer cells both in vitro and in vivo, killing breast cancer cells while sparing normal cells. Our study suggested that the active state of CD44 plays a crucial role in the selective targeting of breast cancer cells by avoiding nonspecific toxicity to CD44-quiescent normal cells. These findings may provide a new idea for the selective targeting of cancer cells in other human cancers. PMID:25909172

  13. Direct observation of catch bonds involving cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  14. The Role of Lymphocyte to Monocyte Ratio, Microvessel Density and HiGH CD44 Tumor Cell Expression in Non Hodgkin Lymphomas.

    PubMed

    Jelicic, Jelena; Balint, Milena Todorovic; Jovanovic, Maja Perunicic; Boricic, Novica; Micev, Marjan; Stojsic, Jelena; Antic, Darko; Andjelic, Bosko; Bila, Jelena; Balint, Bela; Pavlovic, Sonja; Mihaljevic, Biljana

    2016-07-01

    Prognostic significance of immune microenvironment has been emphasized using the most advanced analysis, with consecutive attempts to reveal prognostic impact of this findings. The aim of this study was to compare and define prognostic significance of clinical parameters, microvessel density (MVD) in tumour tissue and expression of CD44s as adhesive molecule on tumour cells in diffuse large B cell lymphoma-DLBCL, primary central nervous system DLBCL-CNS DLBCL and follicular lymphoma-FL. A total of 202 histopathological samples (115 DLBCL/65 FL/22 CNS DLBCL) were evaluated. Overall response (complete/partial remission) was achieved in 81.3 % DLBCL patients, 81.8 % primary CNS DLBCL and 92.3 % FL. Absolute lymphocyte count-ALC/Absolute monocyte count-AMC >2.6 in DLBCL and ALC/AMC ≥ 4.7 in FL were associated with better event-free survival (EFS) and overall survival (OS) (p < 0.05). In DLBCL, MVD > 42 blood vessels/0.36 mm(2) correlated with primary resistant disease (p < 0.0001), poorer EFS and OS (p = 0.014). High CD44s expression in FL correlated with inferior EFS and OS (p < 0.01). In DLBCL, multivariate Cox regression analysis showed that ALC/AMC was independent parameter that affected OS (HR 3.27, 95 % CI 1.51-7.09, p = 0.003) along with the NCCN-IPI (HR 1.39, 95 % CI 1.08-1.79, p = 0.01). Furthermore, in FL, ALC/AMC mostly influenced OS (HR 5.21, 95 % CI 1.17-23.21, p = 0.03), followed with the FLIPI (HR 3.98, 95 % CI 1.06-14.95, p = 0.041). In DLBCL and FL, ALC/AMC is simple and robust tool that is, with current prognostic scores, able to define long-term survival and identify patients with inferior outcome. The introduction of immunochemotherapy might altered the prognostic significance of microenvionmental biomarkers (MVD and CD44s). PMID:26750138

  15. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer

    PubMed Central

    Thapa, Ranjeeta; Wilson, George D.

    2016-01-01

    CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells. PMID:27200096

  16. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance

    PubMed Central

    Bellerby, Rebecca; Smith, Chris; Kyme, Sue; Gee, Julia; Günthert, Ursula; Green, Andy; Rakha, Emad; Barrett-Lee, Peter; Hiscox, Stephen

    2016-01-01

    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer. PMID:27379207

  17. Serum levels of soluble CD44 variant isoforms are elevated in rheumatoid arthritis.

    PubMed

    Kittl, E M; Haberhauer, G; Ruckser, R; Selleny, S; Rech-Weichselbraun, I; Hinterberger, W; Bauer, K

    1997-01-01

    Serum levels of soluble CD44 variant proteins including sequences encoded by exon v5 and exon v6 (sCD44v5, sCD44v6) were determined in patients with inflammatory rheumatic diseases: 56 with rheumatoid arthritis (RA+) and 31 with miscellaneous inflammatory rheumatic diseases (MIRD). There were very significantly higher serum levels of sCD44v5 and sCD44v6 in patients with RA+ than in those with MIRD (RA+ to MIRD: sCD44v5: 81 +/- 54 ng/ml to 33 +/- 13 ng/ml; sCD44v6: 237 +/- 124 ng/ml to 166 +/- 53 ng/ml; both P < 0.001). In RA+ elevated serum levels of sCD44v5 were correlated with the inflammatory activity of disease. In 17 patients with RA+ three or four follow-up measurements of sCD44v5 were performed within 6 months. The development of sCD44v5 serum levels reflected the clinical course of disease in the patients investigated. PMID:9032816

  18. Conservation of CD44 exon v3 functional elements in mammals

    PubMed Central

    Vela, Elena; Hilari, Josep M; Delclaux, María; Fernández-Bellon, Hugo; Isamat, Marcos

    2008-01-01

    Background The human CD44 gene contains 10 variable exons (v1 to v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms. Human CD44 variable exon v3 inclusion in the final mRNA depends on a multisite bipartite splicing enhancer located within the exon itself, which we have recently described, and provides the protein domain responsible for growth factor binding to CD44. Findings We have analyzed the sequence of CD44v3 in 95 mammalian species to report high conservation levels for both its splicing regulatory elements (the 3' splice site and the exonic splicing enhancer), and the functional glycosaminglycan binding site coded by v3. We also report the functional expression of CD44v3 isoforms in peripheral blood cells of different mammalian taxa with both consensus and variant v3 sequences. Conclusion CD44v3 mammalian sequences maintain all functional splicing regulatory elements as well as the GAG binding site with the same relative positions and sequence identity previously described during alternative splicing of human CD44. The sequence within the GAG attachment site, which in turn contains the Y motif of the exonic splicing enhancer, is more conserved relative to the rest of exon. Amplification of CD44v3 sequence from mammalian species but not from birds, fish or reptiles, may lead to classify CD44v3 as an exclusive mammalian gene trait. PMID:18710510

  19. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes

    PubMed Central

    Assayag-Asherie, Nathalie; Sever, Dror; Bogdani, Marika; Johnson, Pamela; Weiss, Talya; Ginzberg, Ariel; Perles, Sharon; Weiss, Lola; Sebban, Lora Eshkar; Turley, Eva A.; Okon, Elimelech; Raz, Itamar; Naor, David

    2015-01-01

    CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated. PMID:26624007

  20. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes.

    PubMed

    Assayag-Asherie, Nathalie; Sever, Dror; Bogdani, Marika; Johnson, Pamela; Weiss, Talya; Ginzberg, Ariel; Perles, Sharon; Weiss, Lola; Sebban, Lora Eshkar; Turley, Eva A; Okon, Elimelech; Raz, Itamar; Naor, David

    2015-01-01

    CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated. PMID:26624007

  1. Comparative evaluation of salivary soluble CD44 levels in periodontal health and disease

    PubMed Central

    Kaur, Sumeet; Narayanswamy, Savitha; Ramesh, Alampalli Viswanathamurthy

    2014-01-01

    Context: Inflammation, immunoactivation, and malignant diseases are associated with increased plasma levels of soluble CD44 (sCD44). Serum sCD44 has been recognized as a diagnostic marker in smoking-induced diseases. Aim: (1) To assess the levels of salivary sCD44 in periodontal health and disease. (2) To compare the levels of salivary sCD44 in smokers and nonsmokers. (3) To assess if salivary sCD44 levels could be used as a diagnostic marker for periodontitis. Setting and Design: A total of 60 patients were divided into three groups viz. Group A - healthy, Group B - aggressive periodontitis and Group C - chronic periodontitis (Subdivided into C1 - chronic periodontitis smokers and C2 - chronic periodontitis nonsmokers). Materials and Methods: The plaque index, gingival index (GI), probing depth and clinical attachment level; along with the radiographs were recorded. The saliva sample collected at baseline was stored at −80°C. The sCD44 levels were analyzed using ELISA. Statistical Analysis Used: ANOVA test and Mann–Whitney's test was used to compare readings between all the groups and Pearson correlation was calculated for CD44 and all the clinical parameters in each group. Results: Highest mean sCD44 was recorded in Group C2 followed by Group C1. The GI was positively correlated with CD44 levels in chronic periodontitis group. Contrary to previous reports nonsmokers subjects had higher CD44 levels as compared to smoker. Conclusion: Soluble CD44 levels were positively correlated with periodontal disease. Thus, salivary sCD44 could be considered as a one of the biomarker for periodontitis that is, aggressive and chronic periodontitis. PMID:25624630

  2. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  3. Cytoplasmic Tail Regulates the Intercellular Adhesion Function of the Epithelial Cell Adhesion Molecule

    PubMed Central

    Balzar, Maarten; Bakker, Hellen A. M.; Briaire-de-Bruijn, Inge H.; Fleuren, Gert Jan; Warnaar, Sven O.; Litvinov, Sergey V.

    1998-01-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of α-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with α-actinin. Binding of α-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for α-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via α-actinin. PMID:9671492

  4. Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell adhesion molecule.

    PubMed

    Balzar, M; Bakker, H A; Briaire-de-Bruijn, I H; Fleuren, G J; Warnaar, S O; Litvinov, S V

    1998-08-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of alpha-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with alpha-actinin. Binding of alpha-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for alpha-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via alpha

  5. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor

    SciTech Connect

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie; Sokabe, Masahiro

    2015-01-16

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.

  6. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  7. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  8. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin.

    PubMed

    Arabi, Leila; Badiee, Ali; Mosaffa, Fatemeh; Jaafari, Mahmoud Reza

    2015-12-28

    Although liposomes improve the safety and pharmacokinetic properties of free drugs, they have not sufficiently enhanced the therapeutic efficacy compared to them. To address this problem, targeted therapy of tumor cells holds great promise to further enhance therapeutic index and decreases off-target effects compared with non-targeted liposomes. In the context of antibody-mediated targeted cancer therapy, we evaluated the anti-tumor activity and therapeutic efficacy of Doxil, and that of Doxil modified with a monoclonal antibody (mAb) against CD44, which is one of the most well-known surface markers associated with Cancer Stem Cells (CSCs). Flow cytometry analyses and confocal laser scanning microscopy results showed significant enhanced cellular uptake of CD44-targeted Doxil (CD44-Doxil) in CD44-positive C-26 cells compared to Doxil. However, CD44-negative NIH-3T3 cells showed a similar uptake and in vitro cytotoxicity with both CD44-Doxil and non-targeted Doxil. In BALB/c mice bearing C-26 murine carcinoma, CD44-Doxil groups exhibited significantly higher doxorubicin concentration (than Doxil) inside the tumor cells, while their circulation time and distribution profile remained comparable. CD44-Doxil at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition and higher inclination to tumor, indicating the potential of anti-CD44 mAb targeting in therapeutic efficacy improvement. This study provides proof-of-principle for actively tumor-targeting concept and merits further investigations. PMID:26518722

  9. Effect of PIP3 on Adhesion Molecules and Adhesion of THP-1 Monocytes to HUVEC Treated with High Glucose

    PubMed Central

    Su, Prasenjit Manna; Jain, shil K.

    2014-01-01

    Background Phosphatidylinositol-3,4,5-triphosphate (PIP3), a well-known lipid second messenger, plays a key role in insulin signaling and glucose homeostasis. Using human umbilical vein endothelial cells (HUVEC) and THP-1 monocytes, we tested the hypothesis that PIP3 can downregulate adhesion molecules and monocyte adhesion to endothelial cells. Methods HUVEC and monocytes were exposed to high glucose (HG, 25 mM, 20 h) with or without PIP3 (0-20 nM), or PIT-1 (25 μM), an inhibitor of PIP3. Results Both HG and PIT-1 caused a decrease in cellular PIP3 in monocytes and HUVEC compared to controls. Treatment with PIT-1 and HG also increased the ICAM-1 (intercellular adhesion molecule 1) total protein expression as well as its surface expression in HUVEC, CD11a (a subunit of lymphocyte function-associated antigen 1, LFA-1) total protein expression as well as its surface expression in monocytes, and adhesion of monocytes to HUVEC. Exogenous PIP3 supplementation restored the intracellular PIP3 concentrations, downregulated the expression of adhesion molecules, and reduced the adhesion of monocytes to HUVEC treated with HG. Conclusion This study reports that a decrease in cellular PIP3 is associated with increased expression of adhesion molecules and monocyte-endothelial cell adhesion, and may play a role in the endothelial dysfunction associated with diabetes. PMID:24752192

  10. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  11. Carbohydrate ligands for endothelial - Leukocyte adhesion molecule 1

    SciTech Connect

    Tiemeyer, M.; Swiedler, S.J.; Ishihara, Masayuki; Moreland, M.; Schweingruber, H.; Hirtzer, P.; Brandley, B.K. )

    1991-02-15

    The acute inflammatory response requires that circulating leukocytes bind to and penetrate the vascular wall to access the site of injury. Several receptors have been implicated in this interaction, including a family of putative carbohydrate-binding proteins. The authors report here the identification of an endogenous carbohydrate ligand for one of these receptors, endothelial-leukocyte adhesion molecule 1 (ELAM-1). Radiolabeled COS cells transfected with a plasmid containing the cDNA for ELAM-1 were used as probes to screen glycolipids extracted from human leukocytes. COS cells transfected with this plasmid adhered to a subset of sialylated glycolipids resolved on TLC plates or adsorbed on polyvinyl chloride microtiter wells. Adhesion to these glycolipids required calcium but was not inhibited by heparin, chondroitin sulfate, keratan sulfate, or yeast phosphomannan. Monosaccharide composition, linkage analysis, and fast atom bombardment mass spectrometry of the glycolipids indicate that the ligands for ELAM-1 are terminally sialylated lactosylceramides with a variable number of N-acetyllactosamine repeats and at least one fucosylated N-acetylglucosamine residue.

  12. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro.

    PubMed

    Behrends, U; Peter, R U; Hintermeier-Knabe, R; Eissner, G; Holler, E; Bornkamm, G W; Caughman, S W; Degitz, K

    1994-11-01

    Intercellular adhesion molecule-1 (ICAM-1) plays a central role in various inflammatory reactions and its expression is readily induced by inflammatory stimuli such as cytokines or ultraviolet irradiation. We have investigated the effect of ionizing radiation (IR) on human ICAM-1 expression in human cell lines and skin cultures. ICAM-1 mRNA levels in HL60, HaCaT, and HeLa cells were elevated at 3-6 h after irradiation and increased with doses from 10-40 Gy. The rapid induction of ICAM-1 occurred at the level of transcription, was independent of de novo protein synthesis, and did not involve autocrine stimuli including tumor necrosis factor-alpha and interleukin-1. IR also induced ICAM-1 cell surface expression within 24 h. Immunohistologic analysis of cultured human split skin revealed ICAM-1 upregulation on epidermal keratinocytes and dermal microvascular endothelial cells 24 h after exposure to 6 Gy. In conclusion, we propose ICAM-1 as an important radiation-induced enhancer of immunologic cell adhesion, which contributes to inflammatory reactions after local and total body irradiation. PMID:7963663

  13. Cell adhesion molecule control of planar spindle orientation.

    PubMed

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  14. Serum polysialylated neural cell adhesion molecule in childhood neuroblastoma.

    PubMed Central

    Glüer, S.; Schelp, C.; Madry, N.; von Schweinitz, D.; Eckhardt, M.; Gerardy-Schahn, R.

    1998-01-01

    Neuroblastoma cells express the polysialylated form of the neural cell adhesion molecule (NCAM), which normally becomes restricted to a few neural tissues after embryogenesis. In this study, we investigated serum levels of polysialylated NCAM in 14 children with different grades and stages of neuroblastoma using an immunoluminescence assay, and compared the results to 269 healthy control subjects. Simultaneously, the polysialylated NCAM content of the tumours was determined by immunohistochemistry. Serum levels were dramatically elevated (more than sixfold) in children with advanced stages and fatal courses of disease, whereas children with differentiated tumour types and limited disease had low or normal levels. Serum concentrations correlated with the polysialylated NCAM content of the tumours, and they decreased during successful therapy. We therefore suggest polysialylated NCAM to be a useful marker monitoring childhood neuroblastoma. Images Figure 2 Figure 3 PMID:9662259

  15. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal

    PubMed Central

    Su, Yang; Lei, Xi; Wu, Lingyun; Liu, Lixin

    2012-01-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4·0–5·5 hr, with 84–92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications. PMID:22681228

  16. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    PubMed Central

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidates that is involved in the development of pathological lesions; it is an intercellular adhesion molecule that is expressed in various types of cells such as pulmonary cells, neurons, and mast cells. Recent studies have revealed that alterations in the transcriptional or post-transcriptional expressions of CADM1 correlate with the pathogenesis of pulmonary diseases and allergic diseases. In this review, we specifically focus on how CADM1 is involved in the development of pathological lesions in pulmonary emphysema and atopic dermatitis. PMID:26636084

  17. Phototheranostics of CD44-positive cell populations in triple negative breast cancer.

    PubMed

    Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena; Kobayashi, Hisataka; Bhujwalla, Zaver M

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44(high)/CD24(low), and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC. PMID:27302409

  18. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  19. Trans-acting factors regulate the expression of CD44 splice variants.

    PubMed Central

    Konig, H; Moll, J; Ponta, H; Herrlich, P

    1996-01-01

    Variant isoforms of the cell surface glycoprotein CD44 (CD44v) are expressed during development, in selected adult tissues and in certain metastatic tumor cells. CD44v differ from the standard isoform (CD44s) by up to ten additional exon sequences included by alternative splicing. By cell fusion experiments, we have obtained evidence for the existence of cell-type specific trans-acting factors recruiting CD44 variant exon sequences. Stable cell hybrids of CD44s and CD44v expressing cells indicated a dominant mechanism for variant-exon inclusion. In transient interspecies heterokaryons of human keratinocytes and rat fibroblasts, the ability of the keratinocytes to include all variant exon sequences in CD44 was conferred completely on the rat fibroblast nucleus. Fusions of cells with complex CD44 splice patterns do not permit interpretation of splice control by the relative abundance of a single trans-acting factor, but rather by (a) positively acting factor(s) recruiting variant exon sequences in the 3' to 5' direction and additional factors selecting individual exons. Since the pancreatic carcinoma cell line BSp73ASML (in contrast to the cervix carcinoma cell lines SiHa and ME180) could not transfer its specific splice pattern in cell fusions, we conclude that in some tumors, splicing is also controlled by mutation of cis-acting recognition sites. Images PMID:8670907

  20. Phototheranostics of CD44-positive cell populations in triple negative breast cancer

    PubMed Central

    Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena; Kobayashi, Hisataka; Bhujwalla, Zaver M.

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC. PMID:27302409

  1. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals

    PubMed Central

    2013-01-01

    Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis. PMID:23547716

  2. Target β-catenin/CD44/Nanog axis in colon cancer cells by certain N'-(2-oxoindolin-3-ylidene)-2-(benzyloxy)benzohydrazides.

    PubMed

    Radwan, Awwad A; Al-Mohanna, F; Alanazi, Fares K; Manogaran, P S; Al-Dhfyan, Abdullah

    2016-04-01

    Cell surface molecule CD44 plays a major role in regulation of cancer stem cells CSCs on both phenotypic and functional level, however chemical inhibition approach of CD44 to targets CSCs is poorly studied. Herein, we report the discovery of certain N'-(2-oxoindolin-3-ylidene)-2-(benzyloxy)benzohydrazides as a novel inhibitor of CD44. Molecular docking study showed interference of the scaffold of these compounds with β-catenin/TCF-4 complex, building a direct relationship between CD44 inhibition and observed well-fitted binding domain. Compound 11a, most potent member elicits inhibition effect on TCF/LEF reporter activity conformed the involvement of Wnt pathway inhibition as a mechanism of action. Furthermore, the treatment by the mentioned compound leads to inhibition of embryonic transcriptional factor Nanog but not Sox2 or Oct-4 suggested specific targeted effect. Moreover, the cytotoxicity and cell cycle effect of this series seems to be dependent on CD44 expression. PMID:26944615

  3. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Taeksu; Lim, Eun-Kyung; Lee, Jaemin; Kang, Byunghoon; Choi, Jihye; Park, Hyo Seon; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2013-04-01

    Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis.

  4. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  5. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  6. Heterogeneity of cell adhesion molecules in the developing nervous system

    SciTech Connect

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  7. Adhesion molecules of cultured hematopoietic malignancies. A calcium-dependent lectin is the principle mediator of binding to the high endothelial venule of lymph nodes.

    PubMed Central

    Stoolman, L M; Ebling, H

    1989-01-01

    This study documents that a calcium-dependent phosphomanosyl-binding site on human lymphoid malignancies mediates attachment to the peripheral node high endothelial venule (PNHEV). The phorbol ester PMA coordinately upregulates lectin activity and binding to the PNHEV in the human T-lymphoblastic cell line Jurkat but not in the less phenotypically mature lines HSB2, Molt4, CEM, and HPB-ALL. In contrast, expression of CD18, CD2, and several common epitopes of the putative adhesion receptor gp90Hermes (CD44) did not correlate with attachment to PNHEV in this series of cell lines. Insensitivity to inhibition by the CD18 MAb TS 1.18, temperature and divalent cation requirements further distinguish the Jurkat-PNHEV adhesive interaction from CD11a/18- and CD2-mediated adhesion. The PMA-induced phenotypic changes in the Jurkat line parallel late thymocyte differentiation as well as lymphocyte activation, suggesting that expression of the endothelial-binding lectin may be linked to one or both of these processes. The lectin-like activity on Jurkat cells is functionally indistinguishable from those previously linked to PNHEV recognition in normal human lymphocytes, normal rat lymphocytes and both normal and malignant murine lymphoid cells. In the mouse, this activity is either contained in or functionally linked to a member of the LEC-CAM family gp90Mel14, suggesting that Jurkat cells express the human homologue of the murine nodal homing receptor. Thus cultured T lymphoblastic malignancies express a variety of potential endothelial adhesion molecules but use primarily a highly conserved surface lectin to interact with PNHEV. Images PMID:2794056

  8. The CD44s splice isoform is a central mediator for invadopodia activity.

    PubMed

    Zhao, Pu; Xu, Yilin; Wei, Yong; Qiu, Qiong; Chew, Teng-Leong; Kang, Yibin; Cheng, Chonghui

    2016-04-01

    The ability for tumor cells to spread and metastasize to distant organs requires proteolytic degradation of extracellular matrix (ECM). This activity is mediated by invadopodia, actin-rich membrane protrusions that are enriched for proteases. However, the mechanisms underlying invadopodia activity are not fully understood. Here, we report that a specific CD44 splice isoform, CD44s, is an integral component in invadopodia. We show that CD44s, but not another splice isoform CD44v, is localized in invadopodia. Small hairpin (sh)RNA-mediated depletion of CD44s abolishes invadopodia activity, prevents matrix degradation and decreases tumor cell invasiveness. Our results suggest that CD44s promotes cortactin phosphorylation and recruits MT1-MMP (also known as MMP14) to sites of matrix degradation, which are important activities for invadopodia function. Importantly, we show that depletion of CD44s inhibits breast cancer cell metastasis to the lung in animals. These findings suggest a crucial mechanism underlying the role of the CD44s splice isoform in breast cancer metastasis. PMID:26869223

  9. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44.

    PubMed Central

    Lamb, R F; Hennigan, R F; Turnbull, K; Katsanakis, K D; MacKenzie, E D; Birnie, G D; Ozanne, B W

    1997-01-01

    Fibroblasts transformed by Fos oncogenes display increased expression of a number of genes implicated in tumor cell invasion and metastasis. In contrast to normal 208F rat fibroblasts, Fos-transformed 208F fibroblasts are growth factor independent for invasion. We demonstrate that invasion of v-Fos- or epidermal growth factor (EGF)-transformed cells requires AP-1 activity. v-Fos-transformed cell invasion is inhibited by c-jun antisense oligonucleotides and by expression of a c-jun dominant negative mutant, TAM-67. EGF-induced invasion is inhibited by both c-fos and c-jun antisense oligonucleotides. CD44s, the standard form of a transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. We demonstrate that increased expression of CD44 in Fos- and EGF-transformed cells is dependent upon AP-1. CD44 antisense oligonucleotides reduce expression of CD44 in v-Fos- or EGF-transformed cells and inhibit invasion but not migration. Expression of a fusion protein between human CD44s and Aequorea victoria green fluorescent protein (GFP) in 208F cells complements the inhibition of invasion by the rat-specific CD44 antisense oligonucleotide. We further show that both v-Fos and EGF transformations result in a concentration of endogenous CD44 or exogenous CD44-GFP at the ends of pseudopodial cell extensions. These results support the hypothesis that one role of AP-1 in transformation is to activate a multigenic invasion program. PMID:9001250

  10. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness.

    PubMed

    Branco da Cunha, Cristiana; Klumpers, Darinka D; Koshy, Sandeep T; Weaver, James C; Chaudhuri, Ovijit; Seruca, Raquel; Carneiro, Fátima; Granja, Pedro L; Mooney, David J

    2016-08-01

    Two-dimensional (2D) cultures often fail to mimic key architectural and physical features of the tumor microenvironment. Advances in biomaterial engineering allow the design of three-dimensional (3D) cultures within hydrogels that mimic important tumor-like features, unraveling cancer cell behaviors that would not have been observed in traditional 2D plastic surfaces. This study determined how 3D cultures impact CD44 alternative splicing in gastric cancer (GC) cells. In 3D cultures, GC cells lost expression of the standard CD44 isoform (CD44s), while gaining CD44 variant 6 (CD44v6) expression. This splicing switch was reversible, accelerated by nutrient shortage and delayed at lower initial cell densities, suggesting an environmental stress-induced response. It was further shown to be dependent on the hydrogel matrix mechanical properties and accompanied by the upregulation of genes involved in epithelial-mesenchymal transition (EMT), metabolism and angiogenesis. The 3D cultures reported here revealed the same CD44 alternative splicing pattern previously observed in human premalignant and malignant gastric lesions. These findings indicate that fundamental features of 3D cultures - such as soluble factors diffusion and mechanical cues - influence CD44 expression in GC cells. Moreover, this study provides a new model system to study CD44 dysfunction, whose role in cancer has been in the spotlight for decades. PMID:27187279

  11. Purification, composition, and structure of macrophage adhesion molecule

    SciTech Connect

    Remold-O'Donnell, E.; Savage, B.

    1988-01-12

    Macrophage adhesion molecule (MAM) is a surface heterodimer consisting of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-..cap alpha..) and the glycopeptide gp93 (MAM-..beta..). MAM, which is the guinea pig analog of Mo1 and Mac-1, was purified from detergent lysates of peritoneal neutrophils by lentil lectin chromatography and M2-antibody chromatography. The pure heterodimer molecule was dissociated by acidic conditions (pH 3.5), and MAM-..cap alpha.. and MAM-..beta.. were separated by M7-antibody chromatography. MAM-..beta.. is an approx. 640 amino acid residue polypeptide with exceptionally high cysteine content. At 7.2 residues per 100 amino acids, Cys/2 of MAM-..beta.. is more than 3 times the mean for 200 purified proteins. Reactivity with six ..beta..-subunit-specific /sup 125/I-labeled monoclonal antibodies recognizing at least four epitopes demonstrated that intrapeptide disulfide bonds are required to maintain the structure of MAM-..beta... All six antibodies failed to react when MAM-..beta.. was treated with reducing agents. MAM-..beta.. is 18% carbohydrate; the major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid. MAM-..beta.. is estimated to contain five to six N-linked carbohydrate units. MAM-..cap alpha.. is an approx. 1100-residue polypeptide with lower Cys/2 content (2.0 residues per 100 amino acid residues). MAM-..cap alpha.. is 21% carbohydrate. The major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid; the mannose content is higher in MAM-..cap alpha.. than MAM-..beta.. is estimated to contain 12 N-linked carbohydrate units.

  12. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture.

    PubMed Central

    Beauchamp, J. R.; Abraham, D. J.; Bou-Gharios, G.; Partridge, T. A.; Olsen, I.

    1992-01-01

    The infiltration of skeletal muscle by leukocytes occurs in a variety of myopathies and frequently accompanies muscle degeneration and regeneration. The latter involves development of new myofibers from precursor myoblasts, and so infiltrating cells may interact with muscle at all stages of differentiation. The authors have investigated the surface expression of ligands for T-cell adhesion during the differentiation of human skeletal muscle in vitro. Myoblasts expressed low levels of ICAM-1 (CD54), which remained constant during muscle cell differentiation and could be induced by cytokines such as gamma-interferon. It is therefore likely that ICAM-1 is involved in the invasive accumulation of lymphocytes during skeletal muscle inflammation. In contrast, LFA-3 (CD58) was expressed at higher levels than ICAM-1 on myoblasts, decreased significantly during myogenesis, and was unaffected by immune mediators. Both ICAM-1 and LFA-3 were able to mediate T cell binding to myoblasts, whereas adhesion to myotubes was independent of the LFA-3 ligand. Although expressed throughout myogenesis, human leukocyte antigen class I and CD44 did not appear to mediate T cell binding. The expression of ligands that facilitate interaction of myogenic cells with lymphocytes may have important implications for myoblast transplantation. Images Figure 1 Figure 3 Figure 4 PMID:1739132

  13. Antibody against CD44s Inhibits Pancreatic Tumor Initiation and Post-Radiation Recurrence in Mice

    PubMed Central

    Li, Ling; Hao, Xinbao; Qin, Jun; Tang, Wenhua; He, Fengtian; Smith, Amber; Zhang, Min; Simeone, Diane M.; Qiao, Xiaotan T.; Chen, Zhi-Nan; Lawrence, Theodore S.; Xu, Liang

    2014-01-01

    Background & Aims CD44s is a surface marker of tumor-initiating cells (TICs); high tumor levels correlate with metastasis and recurrence, as well as poor outcomes of patients. Monoclonal antibodies against CD44s might eliminate TICs with minimal toxicity. This strategy is unclear for treatment of pancreatic cancer, and little is known about how anti-CD44s affect pancreatic cancer initiation or recurrence after radiotherapy. Methods 192 pairs of human pancreatic adenocarcinoma and adjacent non-tumor pancreatic tissues were collected from patients undergoing surgery. We measured CD44s levels in tissue samples and pancreatic cancer cell lines by immunohistochemistry, real-time PCR and immunoblot; levels were correlated with patient survival times. We studied the effects of anti-CD44s in mice with human pancreatic tumor xenografts, and used flow cytometry to determine effects on TICs. Changes in CD44s signaling were examined by real-time PCR, immunoblot, reporter assay, and in vitro tumorsphere formation assays. Results Levels of CD44s were significantly higher in pancreatic cancer than adjacent non-tumor tissues. Patients whose tumors expressed high levels of CD44s had a median survival of 10 months, compared to 43 months for those with low levels. Anti-CD44s reduced growth, metastasis, and post-radiation recurrence of pancreatic xenograft tumors in mice. The antibody reduced the number of TICs in cultured pancreatic cancer cells and in xenograft tumors, as well as their tumorigenicity. In cultured pancreatic cancer cell lines, anti-CD44s downregulated the stem cell self-renewal genes Nanog, Sox-2, and Rex-1 and inhibited STAT3-mediated cell proliferation and survival signaling. Conclusions The TIC marker CD44s is upregulated in human pancreatic tumors and associated with patient survival time. CD44s is required for initiation, growth, metastasis, and post-radiation recurrence of xenograft tumors in mice. Anti-CD44s eliminated bulk tumor cells as well as TICs from the

  14. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis.

    PubMed

    Sfikakis, P P; Tesar, J; Baraf, H; Lipnick, R; Klipple, G; Tsokos, G C

    1993-07-01

    In view of recent data demonstrating increased expression of intercellular adhesion molecule-1 (ICAM-1) in the skin of patients with systemic sclerosis (SSc) we studied whether levels of soluble ICAM-1 (s-ICAM-1) shed into the circulation are increased in patients with this disorder. We also compared blood levels of s-ICAM-1 in SSc with those in systemic lupus erythematosus (SLE) and we investigated any possible association of s-ICAM-1 with soluble IL-2 receptor (s-IL 2R) levels, the latter being considered as a marker of lymphocyte activation. Patients with SSc had increased levels of sICAM-1 compared with healthy control subjects (mean +/- SEM, 587 +/- 34 versus 373 +/- 27 ng/ml, P < 0.0001). Patients with diffuse rapidly progressive disease had the highest s-ICAM-1 levels. No association was observed between the extent of skin or internal organ involvement and s-ICAM-1 levels. Patients with digital ulcers had significantly elevated s-ICAM-1, but not s-IL 2R, levels. No correlation was detected between individual s-ICAM-1 and S-IL 2R levels in SSc patients. These novel findings suggest that circulating s-ICAM-1 levels may be a useful marker of endothelial activation in SSc; however, further studies are needed to determine the role of ICAM-1 in the pathogenesis of this disorder. PMID:8099861

  15. Expression of CD44v6 gene in normal human peripheral blood

    PubMed Central

    Song, Jian; Zhang, Dong-Sheng; Zheng, Jie

    2005-01-01

    AIM: To investigate if CD44v6 could be used as a molecular marker of cancer progression and metastasis through the detection of CD44v6 gene expression in normal human peripheral blood. METHODS: RNA was extracted from the peripheral blood mononuclear cells of 50 healthy donors, the expression of CD44v6 was investigated using reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: CD44v6 mRNA was detected in 58% of healthy volunteers under the proper controls. CONCLUSION: Our results suggest that the measurement of CD44v6 expression in peripheral blood by RT-PCR is not suitable for detection of circulating tumor cells. PMID:15962382

  16. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  17. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells.

    PubMed

    Yin, Lijuan; Fang, Fang; Song, Xinglei; Wang, Yan; Huang, Gaoxiang; Su, Jie; Hui, Ning; Lu, Jian

    2016-07-01

    Cell adhesion to extracellular matrix (ECM) is controlled by multiple signaling molecules and intracellular pathways, and is pivotal for survival and growth of cells from most solid tumors. Our previous works demonstrated that dexamethasone (DEX) significantly enhances cell adhesion and cell resistance to chemotherapeutics by increasing the levels of integrin β1, α4, and α5 in human ovarian cancer cells. However, it is unclear whether the components of ECM or other membrane molecules are also involved in the pro-adhesive effect of DEX in ovarian cancer cells. In this study, we demonstrated that the treatment of cells with DEX did not change the expression of collagens (I, III, and IV), laminin, CD44, and its principal ligand hyaluronan (HA), but significantly increased the levels of intracellular and secreted fibronectin (FN). Inhibiting the expression of FN with FN1 siRNA or blocking CD44, another FN receptor, with CD44 blocking antibody significantly attenuated the pro-adhesion of DEX, indicating that upregulation of FN mediates the pro-adhesive effect of DEX by its interaction with CD44 besides integrin β1. Moreover, DEX significantly enhanced cell resistance to the chemotherapeutic agent paclitaxel (PTX) by activating PI-3K-Akt pathway. Finally, we found that DEX also significantly upregulated the expression of MUC1, a transmembrane glycoprotein. Inhibiting the expression of MUC1 with MUC1 siRNA significantly attenuated the DEX-induced effects of pro-adhesion, Akt-activation, and pro-survival. In conclusion, these results provide new data that upregulation of FN and MUC1 by DEX contributes to DEX-induced pro-adhesion and protects ovarian cancer cells from chemotherapy. PMID:27151574

  18. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion

    PubMed Central

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor

    2016-01-01

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN. PMID:26943029

  19. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  20. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  1. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  2. Detection of the hyaluronan receptor CD44 in the bovine oviductal epithelium.

    PubMed

    Bergqvist, Ann-Sofi; Yokoo, Masaki; Båge, Renée; Sato, Eimei; Rodríguez-Martínez, Heriberto

    2005-08-01

    Hyaluronan is involved in fundamental reproductive events such as sperm storage in the female reproductive tract, fertilization, and early embryo development, these functions are presumably mediated by its major cell surface receptor, CD44. The present study was conducted to investigate the presence and localization of CD44 in the bovine oviductal epithelium, using immunohistochemical and Western blot methods on tissue sections and epithelial cell extracts collected from the uterotubal junction (UTJ), isthmus, and ampulla of animals in the oestrus or luteal phase of the oestrous cycle. While positive immunolabelling for CD44 was found on the ad-luminal surface and supra-nuclear region of epithelial cells in all tubal segments investigated, in the UTJ, there were epithelial cells in which the entire cytoplasm positively stained. We found no differences in terms of CD44-positive staining between the different stages of the oestrous cycle. Presence of CD44 was detected by Western blotting in the tubal epithelium as a single band at 200 kDa. Although it appeared in all tubal segments, the expression of CD44 protein was more accentuated in the sperm reservoir (UTJ) than in the other segments. This is the first time CD44 has been detected in the epithelium of the tubal sperm reservoir in cattle, suggesting a pathway for the action of hyaluronan in this segment. PMID:15846044

  3. CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins

    PubMed Central

    Wigelsworth, Darran J.; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D.; Carman, Robert J.; Wilkins, Tracy D.; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G.; Popoff, Michel R.; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins. PMID:23236484

  4. CD44/CD24 immunophenotypes on clinicopathologic features of salivary glands malignant neoplasms

    PubMed Central

    2013-01-01

    Background Salivary Glands Malignant Neoplasms (SGMNs) account for 3-6% of head and neck cancers and 0.3% of all cancers. Tumor cells that express CD44 and CD24 exhibit a stem-cell-like behavior. CD44 is the binding site for hyaluronic acid, and CD24 is a receptor that interacts with P-selectin to induce metastasis and tumor progression. The present study aims to evaluate the expression of CD44 and CD24 on SGMNs and correlated these data with several clinicopathologic features. Methods Immunohistochemical stains for CD44 and CD24 were performed on tissue microarrays containing SGMN samples from 69 patients. The CD44, CD24 and CD44/CD24 expression phenotypes were correlated to patient clinicopathologic features and outcome. Results CD44 expression was associated with the primary site of neoplasm (p = 0.046). CD24 was associated with clinical stage III/IV (p = 0.008), T stage (p = 0,27) and lymph node (p = 0,001). The CD44/CD24 profiles were associated with the primary site of injury (p = 0.005), lymph node (p = 0.011) and T stage (p = 0.023). Univariate analysis showed a significant relationship between clinical staging and disease- free survival (p = 0.009), and the overall survival presents relation with male gender (p = 0.011) and metastasis (p = 0.027). Conclusion In summary, our investigation confirms that the clinical stage, in accordance with the literature, is the main prognostic factor for SGMN. Additionally, we have presented some evidence that the analysis of isolated CD44 and CD24 immunoexpression or the two combined markers could give prognostic information associated to clinicopathologic features in SGMN. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1284611098470676. PMID:23419168

  5. Anticancer Therapeutics: Targeting Macromolecules and Nanocarriers to Hyaluronan or CD44, a Hyaluronan Receptor

    PubMed Central

    Platt, Virginia M.; Szoka, Francis C.

    2009-01-01

    The complex system involved in the synthesis, degradation, and binding of the high molecular weight glycosaminoglycan hyaluronic acid (hyaluronan or HA) provides a variety of structures that can be exploited for targeted cancer therapy. In many cancers of epithelial origin there is an up-regulation of CD44, a receptor that binds HA. In other cancers, HA in the tumor matrix is over-expressed. Both CD44 on cancer cells and HA in the matrix have been targets for anti-cancer therapy. Even though CD44 is expressed in normal epithelial cells and HA is part of the matrix of normal tissues, selective targeting to cancer is possible. This is because macromolecular carriers predominantly extravasate into the tumor and not normal tissue; thus CD44-HA targeted carriers administered intravenously localize preferentially into tumors. Anti-CD44 antibodies have been used in patients to deliver radioisotopes or mertansine for treatment of CD44 expressing tumors. In early phase clinical trials, patients with breast or head and neck tumors treated with anti-CD44 conjugates experienced stabilized disease. A dose-limiting toxicity was associated with distribution of the antibody-drug conjugate to the skin, a site in the body with a high level of CD44. HA has been used as a drug carrier and a ligand on liposomes or nanoparticles to target drugs to CD44 over-expressing cells. Drugs can be attached to HA via the carboxylate on the glucuronic acid residue, the hydroxyl on the N-acetylglucosamine, or the reducing end which are located on a repeating disaccharide. Drugs delivered in HA-modified liposomes exhibited excellent anti-tumor activity both in vitro and in murine tumor models. The HA matrix is also a potential target for anti-cancer therapies. By manipulating the interaction of HA with cell surface receptors, either by degrading it with hyaluronidase or by interfering with CD44-HA interactions using soluble CD44 proteins, tumor progression was blocked. Finally, cytotoxic drugs or pro

  6. A switch from CD44⁺ cell to EMT cell drives the metastasis of prostate cancer.

    PubMed

    Shang, Zhiqun; Cai, Qiliang; Zhang, Minghao; Zhu, Shimiao; Ma, Yuan; Sun, Libin; Jiang, Ning; Tian, Jing; Niu, Xiaodan; Chen, Jiatong; Sun, Yinghao; Niu, Yuanjie

    2015-01-20

    Epithelial-mesenchymal transition (EMT) has been linked to cancer stem-like (CD44+) cell in the prostate cancer (PCa) metastasis. However, the molecular mechanism remains elusive. Here, we found EMT contributed to metastasis in PCa patients failed in androgen deprivation therapy (ADT). Castration TRAMP model also proved PCa treated with ADT promoted EMT with increased CD44+ stem-like cells. Switched CD44+ cell to EMT cell is a key step for luminal PCa cell metastasis. Our results also suggested ADT might go through promoting TGFβ1-CD44 signaling to enhance swift to EMT. Targeting CD44 with salinomycin and siRNA could inhibit cell transition and decrease PCa invasion. Together, cancer stem-like (CD44+) cells could be the initiator cells of EMT modulated by TGFβ1-CD44 signaling. Combined therapy of ADT with anti-CD44 may become a new potential therapeutic approach to battle later stage PCa. PMID:25483103

  7. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  8. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration.

    PubMed

    Sumagin, Ronen; Parkos, Charles A

    2015-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  9. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction.

    PubMed

    Sager, Hendrik B; Dutta, Partha; Dahlman, James E; Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F; Kauffman, Kevin J; Xing, Yiping; Shaw, Taylor E; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K; Anderson, Daniel G; Nahrendorf, Matthias

    2016-06-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  10. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  11. Modulation of lens cell adhesion molecules by particle beams.

    PubMed

    McNamara, M P; Bjornstad, K A; Chang, P Y; Chou, W; Lockett, S J; Blakely, E A

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  12. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  13. miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines

    SciTech Connect

    Henry, Jon C.; Park, Jong-Kook; Jiang, Jinmai; Kim, Ji Hye; Nagorney, David M.; Roberts, Lewis R.; Banerjee, Soma; Schmittgen, Thomas D.

    2010-12-03

    Research highlights: {yields} miR-199a-3p targets CD44 in HCC. {yields} Proliferation and invasion are reduced by miR-199a-3p in CD44+ HCC. {yields} miR-199a-3p is reduced and CD44 protein is increased in HCC tissues. {yields} The duplex form of miR-199a-3p mimetic is required for activity. -- Abstract: Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced

  14. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/Musashi-1(+) gastric cancer stem cells.

    PubMed

    Xu, Min; Gong, Aihua; Yang, Hongqiong; George, Suraj K; Jiao, Zhijun; Huang, Hongmei; Jiang, Xiaomeng; Zhang, Youli

    2015-12-01

    Drug resistance in gastric cancer largely results from the gastric cancer stem cells (GCSCs), which could be targeted to improve the efficacy of chemotherapy. In this study, we identified a subpopulation of GCSCs enriched in holoclones that expressed CD44(+)/Musashi-1(+) stem cell biomarkers, capable of self-renewal and proliferation. Enriched CD44(+)/Musashi-1(+) GCSCs demonstrated elevated expression of sonic hedgehog (SHH) and glioma-associated oncogene homolog 1 (GLI1), the well-known signaling pathway molecules involved in the drug resistance. Further, CD44(+)/Musashi-1(+) cells exhibited high drug efflux bump activity and were resistant to doxorubicin (Dox)-induced apoptosis, and unregulated the ATP-binding cassette sub-family G member 2 (ABCG2) expression,. The above effects on apoptosis were reversed in the presence of GLI inhibitors, GANT61 and GDC-0449, or by the knockdown of GLI1/SHH. Upon knockdown of GLI1, expression of ABCG2 was downregulated the antitumor effects were significantly improved as observed in the gastric cancer xenograft. Collectively, our study revealed that co-expression of CD44(+)/Musashi-1(+) could be used to identify GCSCs, which also accounts for the drug resistance in gastric cancer. SHH-GLI and its downstream effector ABCG2 could be better targeted to possibly improve the efficacy of chemotherapy in drug-resistant gastric cancers. PMID:26276718

  15. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells.

    PubMed

    Preca, Bogdan-Tiberius; Bajdak, Karolina; Mock, Kerstin; Sundararajan, Vignesh; Pfannstiel, Jessica; Maurer, Jochen; Wellner, Ulrich; Hopt, Ulrich T; Brummer, Tilman; Brabletz, Simone; Brabletz, Thomas; Stemmler, Marc P

    2015-12-01

    Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis. PMID:26077342

  16. The critical role of CD133+CD44+/high tumor cells in hematogenous metastasis of liver cancers

    PubMed Central

    Hou, Ying; Zou, Qifei; Ge, Ruiliang; Shen, Feng; Wang, Yizheng

    2012-01-01

    Metastatic hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. However, the cell population responsible for its metastasis remains largely unknown. Here, we reported that CD133+CD44+/high defined a subgroup of tumor cells that was responsible for hematogenous metastasis of liver cancers. Immunohistochemical investigation of human HCC specimens revealed that the number of CD133+ and CD44+ HCC cells was increased and was associated with portal vein invasion. Purified CD133+ or CD44high HCC cells were superior in clonogenic growth and vascular invasion, respectively. Thus, the combination of CD133 and CD44 was used to define a novel HCC sub-population. CD133+CD44high, but not CD133+CD44low/−, CD133−CD44high or CD133−CD44low/− xenografts, produced intrahepatic or lung metastasis in nude mice. Further analysis of human HCC samples by flow cytometry showed that the number of CD133+CD44+ tumor cells was associated with portal vein metastasis. The cDNA microarray analysis of CD133+CD44+ and CD133+CD44− tumor cells isolated from metastatic HCC patients revealed that these cells comprised of two different populations possessing distinct gene expression profiles. Our results suggest that CD133+CD44+ tumor cells are a particular population responsible for hematogenous metastasis in liver cancers and that these cells might be targets for treatment of HCC metastasis. PMID:21862973

  17. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

    PubMed

    Ren, Guangwen; Zhao, Xin; Zhang, Liying; Zhang, Jimin; L'Huillier, Andrew; Ling, Weifang; Roberts, Arthur I; Le, Anh D; Shi, Songtao; Shao, Changshun; Shi, Yufang

    2010-03-01

    Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. PMID:20130212

  18. CD44 Splice Variant v8-10 as a Marker of Serous Ovarian Cancer Prognosis.

    PubMed

    Sosulski, Amanda; Horn, Heiko; Zhang, Lihua; Coletti, Caroline; Vathipadiekal, Vinod; Castro, Cesar M; Birrer, Michael J; Nagano, Osamu; Saya, Hideyuki; Lage, Kasper; Donahoe, Patricia K; Pépin, David

    2016-01-01

    CD44 is a transmembrane hyaluronic acid receptor gene that encodes over 100 different tissue-specific protein isoforms. The most ubiquitous, CD44 standard, has been used as a cancer stem cell marker in ovarian and other cancers. Expression of the epithelial CD44 variant containing exons v8-10 (CD44v8-10) has been associated with more chemoresistant and metastatic tumors in gastrointestinal and breast cancers, but its role in ovarian cancer is unknown; we therefore investigated its use as a prognostic marker in this disease. The gene expression profiles of 254 tumor samples from The Cancer Genome Atlas RNAseqV2 were analyzed for the presence of CD44 isoforms. A trend for longer survival was observed in patients with high expression of CD44 isoforms that include exons v8-10. Immunohistochemical (IHC) analysis of tumors for presence of CD44v8-10 was performed on an independent cohort of 210 patients with high-grade serous ovarian cancer using a tumor tissue microarray. Patient stratification based on software analysis of staining revealed a statistically significant increase in survival in patients with the highest levels of transmembrane protein expression (top 10 or 20%) compared to those with the lowest expression (bottom 10 and 20%) (p = 0.0181, p = 0.0262 respectively). Expression of CD44v8-10 in primary ovarian cancer cell lines was correlated with a predominantly epithelial phenotype characterized by high expression of epithelial markers and low expression of mesenchymal markers by qPCR, Western blot, and IHC. Conversely, detection of proteolytically cleaved and soluble extracellular domain of CD44v8-10 in patient ascites samples was correlated with significantly worse prognosis (p<0.05). Therefore, presence of transmembrane CD44v8-10 on the surface of primary tumor cells may be a marker of a highly epithelial tumor with better prognosis while enzymatic cleavage of CD44v8-10, as detected by presence of the soluble extracellular domain in ascites fluid, may be

  19. CD44 Gene Polymorphisms and Environmental Factors on Oral Cancer Susceptibility in Taiwan

    PubMed Central

    Chou, Ying-Erh; Hsieh, Ming-Ju; Hsin, Chung-Han; Chiang, Whei-Ling; Lai, Yi-Cheng; Lee, Yu-Hsien; Huang, Shu-Ching; Yang, Shun-Fa; Lin, Chiao-Wen

    2014-01-01

    Background Oral squamous cell carcinoma (OSCC) is the fourth leading cause of male cancer death in Taiwan. Exposure to environmental carcinogens is the primary risk factor for developing OSCC. CD44, a well-known tumor marker, plays a crucial role in tumor cell differentiation, invasion, and metastasis. This study investigated CD44 single-nucleotide polymorphisms (SNPs) with environmental risk factors to determine OSCC susceptibility and clinicopathological characteristics. Methodology/Principal Findings Real-time polymerase chain reaction (PCR) was used to analyze 6 SNPs of CD44 in 599 patients with oral cancer and 561 cancer-free controls. We determined that the CD44 rs187115 polymorphism carriers with the genotype AG, GG, or AG+GG were associated with oral cancer susceptibility. Among 731 smokers, CD44 polymorphisms carriers with the betel-nut chewing habit had a 10.30–37.63-fold greater risk of having oral cancer compared to CD44 wild-type (WT) carriers without the betel-nut chewing habit. Among 552 betel-nut chewers, CD44 polymorphisms carriers who smoked had a 4.23–16.11-fold greater risk of having oral cancer compared to those who carried the WT but did not smoke. Finally, we also observed that the stage III and IV oral cancer patients had higher frequencies of CD44 rs187115 polymorphisms with the variant genotype (AG+GG) compared with the wild-type (WT) carriers. Conclusion Our results suggest that gene–environment interactions between the CD44 polymorphisms and betel quid chewing and tobacco smoking increase the susceptibility to oral cancer development. Patients with CD44 rs187115 variant genotypes (AG+GG) were correlated with a higher risk of oral cancer development, and these patients may possess greater chemoresistance to advanced- to late-stage oral cancer than WT carriers do. The CD44 rs187115 polymorphism has potential predictive significance in oral carcinogenesis and also may be applied as factors to predict the clinical stage in OSCC

  20. CD44 Splice Variant v8-10 as a Marker of Serous Ovarian Cancer Prognosis

    PubMed Central

    Zhang, Lihua; Coletti, Caroline; Vathipadiekal, Vinod; Castro, Cesar M.; Birrer, Michael J.; Nagano, Osamu; Saya, Hideyuki; Lage, Kasper; Donahoe, Patricia K.; Pépin, David

    2016-01-01

    CD44 is a transmembrane hyaluronic acid receptor gene that encodes over 100 different tissue-specific protein isoforms. The most ubiquitous, CD44 standard, has been used as a cancer stem cell marker in ovarian and other cancers. Expression of the epithelial CD44 variant containing exons v8-10 (CD44v8-10) has been associated with more chemoresistant and metastatic tumors in gastrointestinal and breast cancers, but its role in ovarian cancer is unknown; we therefore investigated its use as a prognostic marker in this disease. The gene expression profiles of 254 tumor samples from The Cancer Genome Atlas RNAseqV2 were analyzed for the presence of CD44 isoforms. A trend for longer survival was observed in patients with high expression of CD44 isoforms that include exons v8-10. Immunohistochemical (IHC) analysis of tumors for presence of CD44v8-10 was performed on an independent cohort of 210 patients with high-grade serous ovarian cancer using a tumor tissue microarray. Patient stratification based on software analysis of staining revealed a statistically significant increase in survival in patients with the highest levels of transmembrane protein expression (top 10 or 20%) compared to those with the lowest expression (bottom 10 and 20%) (p = 0.0181, p = 0.0262 respectively). Expression of CD44v8-10 in primary ovarian cancer cell lines was correlated with a predominantly epithelial phenotype characterized by high expression of epithelial markers and low expression of mesenchymal markers by qPCR, Western blot, and IHC. Conversely, detection of proteolytically cleaved and soluble extracellular domain of CD44v8-10 in patient ascites samples was correlated with significantly worse prognosis (p<0.05). Therefore, presence of transmembrane CD44v8-10 on the surface of primary tumor cells may be a marker of a highly epithelial tumor with better prognosis while enzymatic cleavage of CD44v8-10, as detected by presence of the soluble extracellular domain in ascites fluid, may be

  1. CD44 regulates Wnt signaling at the level of LRP6

    PubMed Central

    Orian-Rousseau, Véronique; Schmitt, Mark

    2015-01-01

    CD44 was recently identified as a positive feedback regulator of Wnt/β-catenin signaling. This regulation occurs at the level of low-density lipoprotein receptor-related protein 6 phosphorylation and membrane targeting. These findings broaden our understanding of the Wnt pathway activation process and open new perspectives for anti-CD44 therapies in diseases associated with Wnt induction, including colorectal cancer. PMID:27308483

  2. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    SciTech Connect

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  3. ERK1/2 regulation of CD44 modulates oral cancer aggressiveness

    PubMed Central

    Judd, Nancy P.; Winkler, Ashley E.; Murillo-Sauca, Oihana; Brotman, Joshua J.; Law, Jonathan H.; Lewis, James S.; Dunn, Gavin P.; Bui, Jack D.; Sunwoo, John B.; Uppaluri, Ravindra

    2011-01-01

    Carcinogen-induced oral cavity squamous cell carcinoma (OSCC) incurs significant morbidity and mortality and constitutes a global health challenge. To gain further insight into this disease, we generated cell line models from DMBA-induced murine primary OSCC capable of tumor formation upon transplantation into immunocompetent wild-type mice. While several lines grew rapidly and were capable of metastasis, some grew slowly and did not metastasize. Aggressively growing lines displayed ERK1/2 activation, which stimulated expression of CD44, a marker associated with EMT and putative cancer stem cells. MEK inhibition upstream of ERK1/2 decreased CD44 expression and promoter activity and reduced cell migration and invasion. Conversely, MEK1 activation enhanced CD44 expression and promoter activity, whereas CD44 attenuation reduced in vitro migration and in vivo tumor formation. Extending these findings to freshly resected human OSCC, we confirmed a strict relationship between ERK1/2 phosphorylation and CD44 expression. In summary, our findings identify CD44 as a critical target of ERK1/2 in promoting tumor aggressiveness and offer a preclinical proof of concept to target this pathway as a strategy to treat head and neck cancer. PMID:22086849

  4. Fibronectin extra domain A (EDA) sustains CD133(+)/CD44(+) subpopulation of colorectal cancer cells.

    PubMed

    Ou, Juanjuan; Deng, Jia; Wei, Xing; Xie, Ganfeng; Zhou, Rongbin; Yu, Liqing; Liang, Houjie

    2013-09-01

    Fibronectin is a major extracellular matrix glycoprotein with several alternatively spliced variants, including extra domain A (EDA), which was demonstrated to promote tumorigenesis via stimulating angiogenesis and lymphangiogenesis. Given that CD133(+)/CD44(+) cancer cells are critical in tumorigenesis of colorectal cancer (CRC), we hypothesize that fibronectin EDA may promote tumorigenesis by sustaining the properties of CD133(+)/CD44(+) colon cancer cells. We found that tumor tissue and serum EDA levels are substantially higher in advanced versus early stage human CRC. Additionally we showed that tumor tissue EDA levels are positively correlated with differentiation status and chemoresistance, and correlated with a poor prognosis of CRC patients. We also showed that in colon cancer cells SW480, CD133(+)/CD44(+) versus CD133(-)/CD44(-) cells express significantly elevated EDA receptor integrin α9β1. Silencing EDA in SW480 cells reduces spheroid formation and cells positive for CD133 or CD44, which is associated with reduced expressions of embryonic stem cell markers and increased expressions of differentiation markers. Blocking integrin α9β1 function strongly reversed the effect of EDA overexpression. We also provided evidence suggesting that EDA sustains Wnt/β-catenin signaling activity via activating integrin/FAK/ERK pathway. In xenograft models, EDA-silenced SW480 cells exhibit reduced tumorigenic and metastatic capacity. In conclusion, EDA is essential for the maintenance of the properties of CD133(+)/CD44(+) colon cancer cells. PMID:23811539

  5. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells.

    PubMed

    Eriksson, Minna; Guse, Kilian; Bauerschmitz, Gerd; Virkkunen, Pekka; Tarkkanen, Maija; Tanner, Minna; Hakkarainen, Tanja; Kanerva, Anna; Desmond, Renee A; Pesonen, Sari; Hemminki, Akseli

    2007-12-01

    Cancer stem cells have been indicated in the initiation of tumors and are even found to be responsible for relapses after apparently curative therapies have been undertaken. In breast cancer, they may reside in the CD44(+)CD24(-/low) population. The use of oncolytic adenoviruses presents an attractive anti-tumor approach for eradication of these cells because their entry occurs through infection and they are, therefore, not susceptible to those mechanisms that commonly render stem cells resistant to many drugs. We isolated CD44(+)CD24(-/low) cells from patient pleural effusions and confirmed stem cell-like features including oct4 and sox2 expression and Hoechst 33342 exclusion. CD44(+)CD24(-/low) cells, including the Hoechst excluding subpopulation, could be effectively killed by oncolytic adenoviruses Ad5/3-Delta24 and Ad5.pk7-Delta24. In mice, CD44(+)CD24(-/low) cells formed orthotopic breast tumors but virus infection prevented tumor formation. Ad5/3-Delta24 and Ad5.pk7-Delta24 were effective against advanced orthotopic CD44(+)CD24(-/low)-derived tumors. In summary, Ad5/3-Delta24 and Ad5.pk7-Delta24 can kill CD44(+)CD24(-/low), and also committed breast cancer cells, making them promising agents for treatment of breast cancer. PMID:17848962

  6. Fibronectin Extra Domain A (EDA) Sustains CD133+/CD44+ Subpopulation of Colorectal Cancer Cells

    PubMed Central

    Ou, Juanjuan; Deng, Jia; Wei, Xing; Xie, Ganfeng; Zhou, Rongbin; Yu, Liqing; Liang, Houjie

    2013-01-01

    Fibronectin is a major extracellular matrix glycoprotein with several alternatively spliced variants, including extra domain A (EDA), which was demonstrated to promote tumorigenesis via stimulating angiogenesis and lymphangiogenesis. Given that CD133+/CD44+ cancer cells are critical in tumorigenesis of colorectal cancer (CRC), we hypothesize that fibronectin EDA may promote tumorigenesis by sustaining the properties of CD133+/CD44+ colon cancer cells. We found that tumor tissue and serum EDA levels are substantially higher in advanced versus early stage human CRC. Additionally we showed that tumor tissue EDA levels are positively correlated with differentiation status and chemoresistance, and correlated with a poor prognosis of CRC patients. We also showed that in colon cancer cells SW480, CD133+/CD44+ versus CD133−/CD44− cells express significantly elevated EDA receptor integrin α9β1. Silencing EDA in SW480 cells reduces spheroid formation and cells positive for CD133 or CD44, which is associated with reduced expressions of embryonic stem cell markers and increased expressions of differentiation markers. Blocking integrin α9β1 function strongly reversed the effect of EDA overexpression. We also provided evidence suggesting that EDA sustains Wnt/β-catenin signaling activity via activating integrin/FAK/ERK pathway. In xenograft models, EDA-silenced SW480 cells exhibit reduced tumorigenic and metastatic capacity. In conclusions, EDA is essential for the maintenance of the properties of CD133+/CD44+ colon cancer cells. PMID:23811539

  7. Functionalizing Liposomes with anti-CD44 Aptamer for Selective Targeting of Cancer Cells.

    PubMed

    Alshaer, Walhan; Hillaireau, Hervé; Vergnaud, Juliette; Ismail, Said; Fattal, Elias

    2015-07-15

    CD44 receptor protein is found to be overexpressed by many tumors and is identified as one of the most common cancer stem cell surface markers including tumors affecting colon, breast, pancreas, and head and neck, making this an attractive receptor for therapeutic targeting. In this study, 2'-F-pyrimidine-containing RNA aptamer (Apt1), previously selected against CD44, was successfully conjugated to the surface of PEGylated liposomes using the thiol-maleimide click reaction. The conjugation of Apt1 to the surface of liposomes was confirmed by the change in size and zeta potential and by migration on agarose gel electrophoresis. The binding affinity of Apt1 was improved after conjugation compared to free-Apt1. The cellular uptake for Apt1-Lip was tested by flow cytometry and confocal imaging using the two CD44(+) cell lines, human lung cancer cells (A549) and human breast cancer cells (MDA-MB-231), and the CD44(-) cell line, mouse embryonic fibroblast cells (NIH/3T3). The results showed higher sensitivity and selectivity for Apt1-Lip compared to the blank liposomes (Mal-Lip). In conclusion, we demonstrate a successful conjugation of anti-CD44 aptamer to the surface of liposome and binding preference of Apt1-Lip to CD44-expressing cancer cells and conclude to a promising potency of Apt1-Lip as a specific drug delivery system. PMID:25343502

  8. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells.

    PubMed

    Ma, Zeng-Chun; Hong, Qian; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Cai, Shao-Hua; Gao, Yue

    2010-01-01

    Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes. Since adhesion molecules play an important role in facilitating the immune response at the inflammation sites, interfering with the expression of these molecules may be an important therapeutic target of radiation induced inflammation. Many adhesion molecules such as intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) have been identified in radiation. Ferulic acid (FA), an effective radioprotector during radiotherapy, is widely used in endothelium protection. The present study examined the effect of FA on the induction of adhesion molecules by gamma-radiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 18 h with FA and then exposed to 10 Gy radiation. The result of cell adhesion assay showed FA inhibited radiation-induced U937 adhesion to HUVECs. FA prevented induction of ICAM-1 and VCAM-1 expression in a concentration-dependent manner after stimulation with radiation at the level of mRNA and protein. Inhibitors of the extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways were used to determine which pathway was involved in FA action; the result showed that the inhibitory effect of FA on adhesion molecule expression was mediated by the blockade of JNK. FA appears to be a potential therapeutic agent for treating various inflammatory disorders including radiation induced inflammation. PMID:20460750

  9. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  10. Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer

    PubMed Central

    Wang, Xiaoxiao; Liu, Shen-Lin

    2016-01-01

    This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells. PMID:26840024

  11. Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer.

    PubMed

    Zhou, Jin-Yong; Chen, Min; Ma, Long; Wang, Xiaoxiao; Chen, Yu-Gen; Liu, Shen-Lin

    2016-02-16

    This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells. PMID:26840024

  12. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    PubMed Central

    Ashander, Liam M.; Appukuttan, Binoy; Ma, Yuefang; Gardner-Stephen, Dione; Smith, Justine R.

    2016-01-01

    Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1) mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1), in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α), and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (si)RNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans. PMID:27293321

  13. [The expression level of adhesion molecules on neutrophils depending at segmentation of their nuclei].

    PubMed

    Kashutin, S L; Danilov, S I; Vereshchagina, E N; Kluchareva, S V

    2013-11-01

    The article deals with results of detection of expression level of adhesion molecules on neutrophils and segmentation of their nuclei. It is established that in conditions of absence of antigen stimulation neutrophils of circulating pool express molecules of L-selectin in 53.34%, LFA-1 molecules in 65.64%, ICAM-1 in 40.51%, LE4-3 in 58.72% and PECAM-1 in 59.74%. The full readiness to realization of phase of sliding, strong adhesion and immediately transmigration itselfis detected in neutrophils with five segments in nucleus. PMID:24640111

  14. Role of EGR1 in regulation of stimulus-dependent CD44 transcription in B lymphocytes.

    PubMed Central

    Maltzman, J S; Carman, J A; Monroe, J G

    1996-01-01

    The immediate-early gene egr-1 encodes a transcription factor (EGR1) that links B-cell antigen receptor (BCR) signals to downstream activation events through the regulation of previously unidentified target genes. Here we identify the gene encoding the lymphocyte homing and migration protein CD44 as a target of EGR1 regulation in B cells. BCR-induced increases in CD44 mRNA expression and transcription levels are shown to occur in EGR1-expressing but not in nonexpressing subclones of the B-cell line WEHI-231. Kinetics of egr-1 transcription and the appearance of nuclear EGR1 protein precede CD44 induction and occur within 30 min after stimulation in the EGR1-expressing subclone. A single EGR1 binding motif is demonstrated at bp -301 of the human CD44 promoter. Cotransfection of a CD44 promoter-chloramphenicol acetyltransferase reporter construct with an egr-1 expression vector resulted in a 6.5- to 8.5-fold induction of transcriptional activity relative to an empty expression vector. The EGR1 binding motif was shown to be necessary for stimulus-induced expression of a CD44 promoter-chloramphenicol acetyltransferase reporter construct in nontransformed B lymphocytes and was required for transactivation by an EGR1 expression vector in a B-cell line. These studies identify EGR1 as an intermediary linking BCR-derived signals to the induction of CD44. The relevance of these molecular events to BCR signal transduction and antigen-stimulated B-cell-mediated immune responses is discussed. PMID:8628295

  15. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas.

    PubMed

    Adams, April; Warner, Kristy; Pearson, Alexander T; Zhang, Zhaocheng; Kim, Hong Sun; Mochizuki, Daiki; Basura, Gregory; Helman, Joseph; Mantesso, Andrea; Castilho, Rogério M; Wicha, Max S; Nör, Jacques E

    2015-09-29

    A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas. Here, we investigated the expression of putative cancer stem cell markers (ALDH, CD10, CD24, CD44) in primary human mucoepidermoid carcinomas by immunofluorescence, in vitro salisphere assays, and in vivo tumorigenicity assays in immunodeficient mice. Human mucoepidermoid carcinoma cells (UM-HMC-1, UM-HMC-3A, UM-HMC-3B) sorted for high levels of ALDH activity and CD44 expression (ALDHhighCD44high) consistently formed primary and secondary salispheres in vitro, and showed enhanced tumorigenic potential in vivo (defined as time to tumor palpability, tumor growth after palpability), when compared to ALDHlowCD44low cells. Cells sorted for CD10/CD24, and CD10/CD44 showed varying trends of salisphere formation, but consistently low in vivo tumorigenic potential. And finally, cells sorted for CD44/CD24 showed inconsistent results in salisphere formation and tumorigenic potential assays when different cell lines were evaluated. Collectively, these data demonstrate that salivary gland mucoepidermoid carcinomas contain a small population of cancer stem cells with enhanced tumorigenic potential and that are characterized by high ALDH activity and CD44 expression. These results suggest that patients with mucoepidermoid carcinoma might benefit from therapies that ablate these highly tumorigenic cells. PMID:26449187

  16. CD44 and TGFbeta1 synergise to induce expression of a functional NADPH oxidase in promyelocytic cells.

    PubMed

    Basoni, Caroline; Reuzeau, Edith; Croft, Daniel; Génot, Elisabeth; Kramer, Ijsbrand M

    2006-05-01

    Bone marrow stromal cells produce large amounts of extracellular matrix and cytokines. Amongst them, hyaluronan, a glycosaminoglycan and ligand for the cell surface molecule CD44, and TGFbeta1, a cytokine particularly important in monocyte differentiation. We have studied in vitro the role of hyaluronan and TGFbeta1 in the differentiation process of U937 monocytic progenitor cells. We provide evidence that, in the presence of whole blood-derived serum, the addition of hyaluronan is sufficient to induce the expression of NADPH-oxidase components but not of other monocytic markers (CD14, CD11b, and VLA-4). In the presence of plasma-derived serum, besides hyaluronan, the additional presence of TGFbeta1 was required for the expression of all of the components of the NADPH oxidase. We further show that hyaluronan mediates its effect through CD44. We conclude that cell matrix factors act cooperatively with cytokines to induce the expression of the components of the NADPH-oxidase in monocytic progenitor cells. PMID:16554035

  17. Cell Membrane CD44v6 Levels in Squamous Cell Carcinoma of the Lung: Association with High Cellular Proliferation and High Concentrations of EGFR and CD44v5

    PubMed Central

    Ruibal, Álvaro; Aguiar, Pablo; Del Río, María Carmen; Nuñez, Matilde Isabel; Pubul, Virginia; Herranz, Michel

    2015-01-01

    Membranous CD44v6 levels in tumors and surrounding samples obtained from 94 patients with squamous cell lung carcinomas were studied and compared to clinical stage, cellular proliferation, membranous CD44v5 levels, epidermal growth factor receptor EGFR and cytoplasmatic concentrations of CYFRA 21.1. CD44v6 positive values were observed in 33/38 non-tumor samples and in 76/94 tumor samples, but there were not statistically significant differences between both subgroups. In CD44v6 positive tumor samples, CD44v6 was not associated with clinical stage, histological grade, ploidy and lymph node involvement, but significant association was found with high cellular proliferation. Likewise, CD44v6 positive tumors had significantly higher levels of EGFR and CD44v5. In patients with squamous cell lung carcinomas and clinical stage I, positive CD44v6 cases were associated with the same parameters. Furthermore, positive CD44v5 squamous tumors were associated significantly with histological grade III and lower levels of CYFRA21.1. Our findings support the value of CD44v6 as a possible indicator of poor outcome in patients with squamous lung carcinomas. PMID:25809603

  18. Cell membrane CD44v6 levels in squamous cell carcinoma of the lung: association with high cellular proliferation and high concentrations of EGFR and CD44v5.

    PubMed

    Ruibal, Álvaro; Aguiar, Pablo; Del Río, María Carmen; Nuñez, Matilde Isabel; Pubul, Virginia; Herranz, Michel

    2015-01-01

    Membranous CD44v6 levels in tumors and surrounding samples obtained from 94 patients with squamous cell lung carcinomas were studied and compared to clinical stage, cellular proliferation, membranous CD44v5 levels, epidermal growth factor receptor EGFR and cytoplasmatic concentrations of CYFRA 21.1. CD44v6 positive values were observed in 33/38 non-tumor samples and in 76/94 tumor samples, but there were not statistically significant differences between both subgroups. In CD44v6 positive tumor samples, CD44v6 was not associated with clinical stage, histological grade, ploidy and lymph node involvement, but significant association was found with high cellular proliferation. Likewise, CD44v6 positive tumors had significantly higher levels of EGFR and CD44v5. In patients with squamous cell lung carcinomas and clinical stage I, positive CD44v6 cases were associated with the same parameters. Furthermore, positive CD44v5 squamous tumors were associated significantly with histological grade III and lower levels of CYFRA21.1. Our findings support the value of CD44v6 as a possible indicator of poor outcome in patients with squamous lung carcinomas. PMID:25809603

  19. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis

    PubMed Central

    Mruk, Dolores D.; Xiao, Xiang; Lydka, Marta; Li, Michelle W.M.; Bilinska, Barbara; Cheng, C. Yan

    2013-01-01

    Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies. PMID:23942142

  20. CD44-Tropic Polymeric Nanocarrier for Breast Cancer Targeted Rapamycin Chemotherapy

    PubMed Central

    Zhao, Yunqi; Zhang, Ti; Duan, Shaofeng; Davies, Neal M.; Forrest, M. Laird

    2014-01-01

    In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44 positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell-viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area-under-the-curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin1loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis. PMID:24637218

  1. Group A Streptococcus tissue invasion by CD44-mediated cell signalling

    NASA Astrophysics Data System (ADS)

    Cywes, Colette; Wessels, Michael R.

    2001-12-01

    Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.

  2. MicroRNA‑143 targets CD44 to inhibit breast cancer progression and stem cell-like properties.

    PubMed

    Yang, Zhuangqing; Chen, Dedian; Nie, Jianyun; Zhou, Shaoqiang; Wang, Jiankui; Tang, Qi; Yang, Xiaojuan

    2016-06-01

    CD44 is closely linked to breast cancer progression; however, the regulatory functions of microRNAs (miRs) in breast cancer have yet to be fully elucidated. In order to investigate the regulation of CD44 by miRs in breast cancer, the present study isolated CD44+ and CD44- breast cancer cells by flow cytometry, revealing that CD44+ cells were enriched in transplanted compared with those in primary breast cancers, and that their proliferation and stem-cell sphere formation ability were enhanced. A miRNA array assay indicated that miR-143 expression in CD44+ breast cancer cells was lower than that in CD44- cells. Furthermore, miR-143 was decreased in breast cancer tissues and cell lines compared with that in normal tissues and cells. Restoration of miR-143 expression in CD44+ breast cancer cells inhibited their proliferation and sphere formation. A luciferase reporter assay demonstrated that miR-143 directly tartgeted the 3'-untranslated region of CD44. In addition, miR-143 inhibited metastasis-associated features in breast cancer and reduced tumor growth in a mouse model of breast cancer. In conclusion, the results of the present study demonstrated that miR-143 inhibited the progression and stem-cell properties of breast cancer cells by targeting CD44. PMID:27121210

  3. Histological and prognostic importance of CD44(+) /CD24(+) /EpCAM(+) expression in clinical pancreatic cancer.

    PubMed

    Ohara, Yusuke; Oda, Tatsuya; Sugano, Masato; Hashimoto, Shinji; Enomoto, Tsuyoshi; Yamada, Keiichi; Akashi, Yoshimasa; Miyamoto, Ryoichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Morishita, Yukio; Ohkohchi, Nobuhiro

    2013-08-01

    CD44(+) /CD24(+) /EpCAM(+) cells have been reported to be cancer stem cells in pancreatic cancer; however, the histological and clinical importance of these cells has not yet been investigated. Here we clarified the characteristics of CD44(+) /CD24(+) /EpCAM(+) cells in clinical specimens of pancreatic cancer using immunohistochemical assay. We used surgical specimens of pancreatic ductal adenocarcinoma from 101 patients. In view of tumor heterogeneity, we randomly selected 10 high-power fields per case, and triple-positive CD44(+) /CD24(+) /EpCAM(+) expression was identified using our scoring system. The distribution, histological characteristics, and prognostic importance of CD44(+) /CD24(+) /EpCAM(+) cells were then analyzed. As a result, the distribution of CD44(+) /CD24(+) /EpCAM(+) cells varied widely among the 101 cases examined, and CD44(+) /CD24(+) /EpCAM(+) expression was correlated with poor glandular differentiation and high proliferation. Survival analysis showed that CD44(+) /CD24(+) /EpCAM(+) expression was not correlated with patient outcome; however, CD44(+) /CD24(+) expression appeared to be correlated with poor prognosis. In conclusion, CD44(+) /CD24(+) /EpCAM(+) expression overlapped with poorly differentiated cells and possessed high proliferative potential in clinical pancreatic cancer. In particular, the presence of double-positive CD44(+) /CD24(+) expression seemed to have clinical relevance, associating with poor prognosis. PMID:23679813

  4. Significant elevation of tumour-associated isoforms of soluble CD44 in serum of normal individuals caused by cigarette smoking.

    PubMed

    Kittl, E M; Ruckser, R; Rech-Weichselbraun, I; Hinterberger, W; Bauer, K

    1997-02-01

    While performing a prospective study on sCD44 variant isoforms as tumour markers in certain malignancies, we detected relevant differences in the control group between non-smokers and smokers. For a detailed evaluation of these findings, serum levels of sCD44 variant proteins, including sequences encoded by exon v5 and exon v6, respectively, were adjusted to sex, age and smoking habit. We were able to demonstrate a significant elevation of serum levels of sCD44v5 and sCD44v6 in normal individuals due to cigarette smoking (non-smokers to smokers: sCD44v5: 33 +/- 11 microg/l to 62 +/- 30 microg/l; sCD44v6: 142 +/- 34 microg/l to 232 +/- 86 microg/l). Stepwise multiple linear regression analysis of the concentrations of sCD44v5 and sCD44v6 on the possible influence factors sex, age and smoking habit revealed cigarette smoking as the only factor influencing these isoforms (both p < 0.001). Further investigations have to elucidate a possible clinical importance of these findings in smokers. However, in patients with suspected or proven malignancy the diagnostic specifity of sCD44v5 and sCD44v6 is diminished due to this observation. PMID:9056747

  5. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  6. CD44 Plays a Critical Role in Regulating Diet-Induced Adipose Inflammation, Hepatic Steatosis, and Insulin Resistance

    PubMed Central

    Kang, Hong Soon; Liao, Grace; DeGraff, Laura M.; Gerrish, Kevin; Bortner, Carl D.; Garantziotis, Stavros; Jetten, Anton M.

    2013-01-01

    CD44 is a multifunctional membrane receptor implicated in the regulation of several biological processes, including inflammation. CD44 expression is elevated in liver and white adipose tissue (WAT) during obesity suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we examined the effect of the loss of CD44 expression on the development of various features of metabolic syndrome using CD44 null mice. Our study demonstrates that CD44-deficient mice (CD44KO) exhibit a significantly reduced susceptibility to the development of high fat-diet (HFD)-induced hepatic steatosis, WAT-associated inflammation, and insulin resistance. The decreased expression of genes involved in fatty acid synthesis and transport (Fasn and Cd36), de novo triglyceride synthesis (Mogat1), and triglyceride accumulation (Cidea, Cidec) appears in part responsible for the reduced hepatic lipid accumulation in CD44KO(HFD) mice. In addition, the expression of various inflammatory and cell matrix genes, including several chemokines and its receptors, osteopontin, and several matrix metalloproteinases and collagen genes was greatly diminished in CD44KO(HFD) liver consistent with reduced inflammation and fibrogenesis. In contrast, lipid accumulation was significantly increased in CD44KO(HFD) WAT, whereas inflammation as indicated by the reduced infiltration of macrophages and expression of macrophage marker genes, was significantly diminished in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. CD44KO(HFD) mice remained considerably more insulin sensitive and glucose tolerant than WT(HFD) mice and exhibited lower blood insulin levels. Our study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome and may provide a new therapeutic target in the management of insulin resistance. PMID:23505504

  7. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies.

    PubMed Central

    Banks, R. E.; Gearing, A. J.; Hemingway, I. K.; Norfolk, D. R.; Perren, T. J.; Selby, P. J.

    1993-01-01

    Cellular adhesion molecules have been implicated in tumour progression and metastasis. This study examines for the first time the serum concentrations of circulating VCAM-1 and E-selectin in a consecutive series of 110 cancer patients seen in a general medical oncology clinic, and confirms and extends previous studies reporting measurement of circulating ICAM-1. Soluble ICAM-1 and VCAM-1 levels were significantly higher in all the patient groups compared with the controls whereas soluble E-selectin was significantly higher in the ovarian, breast and GI cancer groups and lower in the myeloma group. The significance of these results together with the possible sources and stimuli for release of these adhesion molecules are discussed. PMID:7686390

  8. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells.

    PubMed

    Shi, Yang; Liu, Can; Liu, Xin; Tang, Dean G; Wang, Junchen

    2014-01-01

    Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate, which is probably due to the existence of lung cancer stem cells (CSCs). CSCs in many tumors including non-small cell lung cancer (NSCLC) have been identified using adhesion molecular CD44, either individually or in combination with other marker(s). MicroRNAs (miRNAs) regulate both normal stem cells and CSCs and dysregulation of miRNAs has been implicated in tumorigenesis. Recently, miR-34a was found to be downregulated in NSCLC cells but the biological functions of miR-34a in regulating NSCLC cell behavior have not been extensively studied. Here we show that transfection of synthetic miR-34a, but not the negative control (NC) miRNA oligonucleotides (oligos) in three NSCLC cell lines, i.e., A549, H460, and H1299, inhibited their holoclone formation, clonogenic expansion, and tumor regeneration in vivo. Furthermore, the lentiviral vector-mediated overexpression of miR-34a in purified CD44hi H460 cells also inhibited tumor outgrowth. In contrast, expression of miR-34a antagomirs (i.e., antisense oligos) in the CD44lo H460 cells promoted tumor development. Our study shows that miR-34a is a negative regulator of the tumorigenic properties of NSCLC cells and CD44hi lung CSCs, and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against NSCLC. PMID:24595209

  9. Integrins and adhesion molecules as targets to treat inflammatory bowel disease.

    PubMed

    Bravatà, Ivana; Allocca, Mariangela; Fiorino, Gionata; Danese, Silvio

    2015-12-01

    Inflammatory bowel diseases (IBD) present a typically relapsing-remitting behavior and are characterized by a disabling and progressive course. Anti-tumor necrosis factor (TNF)-α agents have drastically changed the therapeutic management of IBD. However, a significant proportion of patients does not have a primary response, some patients lose response overtime and/or experience side effects. Recently, anti-adhesion molecules were investigated and showed efficacy with a good safety profile. Vedolizumab was recently approved for both Crohn's disease (CD) and ulcerative colitis (UC) and several other molecules are under evaluation in this field. Anti-adhesion molecules could represent a potential therapeutic option for future therapy in IBD. In this review we report the efficacy and safety of major anti-adhesion drugs in active IBD patients. PMID:26687159

  10. Hyaluronan coated cerium oxide nanoparticles modulate CD44 and reactive oxygen species expression in human fibroblasts.

    PubMed

    Lord, Megan S; Farrugia, Brooke L; Yan, Claudia M Y; Vassie, James A; Whitelock, John M

    2016-07-01

    Cerium oxide nanoparticles are being widely explored for cell therapies. In this study, nanoceria was functionalized with hyaluronan (HA) using the organosilane linker, 3-aminopropyltriethoxysilane. HA-nanoceria was found to be cytocompatible and to reduce intracellular reactive oxygen species in human fibroblasts. The HA-nanoceria was found to colocalize with CD44 on the surface of the cells and once internalized traffic to the lysosomes, be degraded and induce markers of autophagy. These particles were also effective in reducing the cell surface expression of CD44. Together these data suggest that HA-nanoceria is a promising drug delivery material to target CD44-expressing cells through a variety of mechanisms. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1736-1746, 2016. PMID:26946213

  11. ADHESION AND REPULSION MOLECULES IN DEVELOPMENTAL NEUROTOXIC INJURY

    EPA Science Inventory

    Work during the next year will focus on establishing structural and functional correlations between the changes in Eph/ephrin expression and MeHg exposure. We have begun to characterize the cellular expression of the specific molecules using in situ hybridization ...

  12. CD44 promotes the migration of bone marrow-derived mesenchymal stem cells toward glioma

    PubMed Central

    YIN, QIANG; ZHOU, YANG-YANG; WANG, PENG; MA, LI; LI, PENG; WANG, XIAO-GUANG; SHE, CHUN-HUA; LI, WEN-LIANG

    2016-01-01

    Previous in vivo and in vitro studies have shown that human mesenchymal stem cells (MSCs) exhibit tropism for gliomas. However, the mechanism underlying this directed migration remains unclear. The aim of the present study was to investigate the possible mechanism underlying platelet-derived growth factor-BB (PDGF-BB)-induced chemotactic migration of bone marrow-derived MSCs (BMSCs) toward glioma. Rat glioma C6 cell-conditioned medium was utilized to evaluate the chemotactic response of BMSCs toward glioma using an in vitro migration assay. Recombinant rat PDGF-BB was added to C6 cell-conditioned medium to assess its effect on the tropism of BMSCs. The effect of PDGF-BB on the expression levels of cluster of differentiation (CD)44 in BMSCs was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence assays. The results revealed that chemotactic migration was induced in BMSCs by rat glioma C6 cell-conditioned medium, which was enhanced by PDGF-BB treatment in a dose-dependent manner. Furthermore, RT-PCR and immunofluorescence assays showed that CD44 expression was upregulated in BMSCs following treatment with 40 ng/ml PDGF-BB for 12 h. Additionally, 3-h pretreatment with the anti-CD44 neutralizing antibody OX-50 was observed to attenuate the tropism of BMSCs toward glioma in the presence or absence of PDGF-BB. The results of the present study indicate that CD44 mediates the tropism of BMSCs toward glioma, and PDGF-BB promotes the migration of BMSCs toward glioma via the upregulation of CD44 expression in BMSCs. These findings suggest CD44 inhibition may be a potential therapeutic target for the treatment of glioma. PMID:27073479

  13. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation.

    PubMed

    Ferrari, L F; Araldi, D; Bogen, O; Levine, J D

    2016-06-01

    We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation. PMID:26996509

  14. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells.

    PubMed

    Bauerschmitz, Gerd J; Ranki, Tuuli; Kangasniemi, Lotta; Ribacka, Camilla; Eriksson, Minna; Porten, Marius; Herrmann, Isabell; Ristimäki, Ari; Virkkunen, Pekka; Tarkkanen, Maija; Hakkarainen, Tanja; Kanerva, Anna; Rein, Daniel; Pesonen, Sari; Hemminki, Akseli

    2008-07-15

    It has been proposed that human tumors contain stem cells that have a central role in tumor initiation and posttreatment relapse. Putative breast cancer stem cells may reside in the CD44(+)CD24(-/low) population. Oncolytic adenoviruses are attractive for killing of these cells because they enter through infection and are therefore not susceptible to active and passive mechanisms that render stem cells resistant to many drugs. Although adenoviruses have been quite safe in cancer trials, preclinical work suggests that toxicity may eventually be possible with more active agents. Therefore, restriction of virus replication to target tissues with tissues-specific promoters is appealing for improving safety and can be achieved without loss of efficacy. We extracted CD44(+)CD24(-/low) cells from pleural effusions of breast cancer patients and found that modification of adenovirus type 5 tropism with the serotype 3 knob increased gene delivery to CD44(+)CD24(-/low) cells. alpha-Lactalbumin, cyclo-oxygenase 2, telomerase, and multidrug resistance protein promoters were studied for activity in CD44(+)CD24(-/low) cells, and a panel of oncolytic viruses was subsequently constructed. Each virus featured 5/3 chimerism of the fiber and a promoter controlling expression of E1A, which was also deleted in the Rb binding domain for additional tumor selectivity. Cell killing assays identified Ad5/3-cox2L-d24 and Ad5/3-mdr-d24 as the most active agents, and these viruses were able to completely eradicate CD44(+)CD24(-/low) cells in vitro. In vivo, these viruses had significant antitumor activity in CD44(+)CD24(-/low)-derived tumors. These findings may have relevance for elimination of cancer stem cells in humans. PMID:18632604

  15. Association of CD44 Gene Polymorphism with Survival of NSCLC and Risk of Bone Metastasis

    PubMed Central

    Liu, Yaosheng; Qing, Haifeng; Su, Xiuyun; Wang, Cheng; Li, Zhuo; Liu, Shubin

    2015-01-01

    Background Previous studies have reported CD44 expression influenced the development and progression of tumors. The aim of this study was to investigate whether single-nucleotide polymorphisms (SNPs) of the CD44 gene are associated with survival of non-small cell lung cancer (NSCLC) and occurrence rate of bone metastasis. Material/Methods A total of 234 patients with NSCLC between 2003 and 2010 were enrolled in this study and 468 healthy persons were used as controls. Two polymorphisms, rs13347 and rs187115, in the CD44 gene were genotyped using DNA from blood lymphocytes. For statistical analysis we used the chi-square test, Fisher’s exact test, Kaplan-Meier method, and log-rank test. Results CD44 gene rs13347 polymorphism was not associated with NSCLC risk. For rs187115, the association with NSCLC risk was observed (P<0.001). Allele G carriers had significantly higher occurrence rates of bone metastasis (OR=0.4, 95%CI: 0.20–0.64, P<0.001) and more advanced tumor stage (OR=2.6, 95%CI: 1.50–4.45, P=0.001) compared to carriers of allele A. The survival rates for patients with AA genotype were significantly higher than for patients with the AG+GG genotypes (P<0.001). In multivariate analysis of survival in NSCLC patients, significant predictors were CD44 gene (AG+GG) (RR=0.48, 95%CI: 0.34–0.68, P<0.001), tumor stage (RR=0.45, 95%CI: 0. 0.31–0.65, P<0.001), and bone metastasis (RR=1.52, 95%CI: 1.05–2.21, P=0.027). Conclusions CD44 gene rs187115 polymorphism is a potential predictive marker of survival in NSCLC patients, and is significantly correlated with bone metastasis and tumor stage. PMID:26356590

  16. Immunohistochemical detection of cytokines and cell adhesion molecules in the synovial membrane.

    PubMed

    Parker, A; Smith, M D

    1999-06-01

    This paper describes the immunohistochemical techniques which can be used to detect cytokines and cell adhesion molecules in synovial membrane tissue, including a list of reagents and possible problems in each technique. It also describes three methods of quantitation of the resultant immunohistochemical detection, including the recent innovation computer-assisted digital video image analysis, and lists the advantages and disadvantages of each quantitation technique. This information will be a useful summary for any scientist interested in applying such techniques to the detection of cytokines and cell adhesion molecules in human tissue sections. PMID:10420385

  17. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1.

    PubMed

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G; Higgins, Matthew K

    2013-02-22

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  18. CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.

    PubMed

    Liu, Ju-Fang; Hou, Sheng-Mou; Tsai, Chun-Hao; Huang, Chun-Yin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-05-01

    CCN4 is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov family of matricellular proteins. Here, we investigated the intracellular signaling pathways involved in CCN4-induced vascular cell adhesion molecule-1 expression in human osteoarthritis synovial fibroblasts. Stimulation of OASFs with CCN4 induced VCAM-1 expression. CCN4-induced VCAM-1 expression was attenuated by αvβ5 or α6β1 integrin antibody, Syk inhibitor, PKCδ inhibitor (rottlerin), JNK inhibitor (SP600125), and AP-1 inhibitors (curcumin and tanshinone). Stimulation of cells with CCN4 increased Syk, PKCδ, and JNK activation. Treatment of OASFs with CCN4 also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element in the VCAM-1 promoter. Moreover, up-regulation of VCAM-1 increased the adhesion of monocytes to OASF monolayers, and this adhesion was attenuated by transfection with a VCAM-1 siRNA. Our results suggest that CCN4 increases VCAM-1 expression in human OASFs via the Syk, PKCδ, JNK, c-Jun, and AP-1 signaling pathways. The CCN4-induced VCAM-1 expression promoted monocyte adhesion to human OASFs. PMID:23313051

  19. CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation

    PubMed Central

    Bertaux-Skeirik, Nina; Feng, Rui; Schumacher, Michael A.; Li, Jing; Mahe, Maxime M.; Engevik, Amy C.; Javier, Jose E.; Peek Jr, Richard M.; Ottemann, Karen; Orian-Rousseau, Veronique; Boivin, Gregory P.; Helmrath, Michael A.; Zavros, Yana

    2015-01-01

    The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylorithat was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H

  20. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    PubMed Central

    Ercan, Ertugrul; Bozdemir, Huseyin; Tengiz, Istemihan; Sekuri, Cevad; Aliyev, Emil; Akilli, Azem; Akin, Mustafa

    2004-01-01

    Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1) in patients with unstable angina pectoris (AP). Methods Thirty-five patients with unstable AP (Group I), ten patients with stable AP (Group II) and ten subjects who had angiographycally normal coronary arteries (Group III) were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15) received tirofiban and Group IB (n = 20) did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h) in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point. PMID:15059285

  1. Effect of CD44 gene polymorphisms on risk of transitional cell carcinoma of the urinary bladder in Taiwan.

    PubMed

    Weng, Wei-Chun; Huang, Yu-Hui; Yang, Shun-Fa; Wang, Shian-Shiang; Kuo, Wu-Hsien; Hsueh, Chao-Wen; Huang, Ching-Hsuan; Chou, Ying-Erh

    2016-05-01

    The carcinogenesis of transitional cell carcinoma (TCC) of the urinary bladder involves etiological factors, such as ethnicity, the environment, genetics, and diet. Cluster of differentiation (CD44), a well-known tumor marker, plays a crucial role in regulating tumor cell differentiation and metastasis. This study investigated the effect of CD44 single nucleotide polymorphisms (SNPs) on TCC risk and clinicopathological characteristics. Five SNPs of CD44 were analyzed through real-time polymerase chain reaction in 275 patients with TCC and 275 participants without cancer. In this study, we observed that CD44 rs187115 polymorphism carriers with the genotype of at least one G were associated with TCC risk. Furthermore, TCC patients who carried at least one G allele at CD44 rs187115 had a higher stage risk than did patients carrying the wild-type allele (p < 0.05). In addition, The AATAC or GACGC haplotype among the five CD44 sites was also associated with a reduced risk of TCC. In conclusion, our results suggest that CD44 SNPs influence the risk of TCC. Patients with CD44 rs187115 variant genotypes (AG + GG) exhibited a higher risk of TCC; these patients may possess chemoresistance to developing late-stage TCC compared with those with the wild-type genotype. The CD44 rs187115 SNP may predict poor prognosis in patients with TCC. PMID:26662954

  2. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys

    PubMed Central

    Vugts, Danielle J; Heuveling, Derrek A; Stigter-van Walsum, Marijke; Weigand, Stefan; Bergstrom, Mats; van Dongen, Guus AMS; Nayak, Tapan K

    2014-01-01

    RG7356 is a humanized antibody targeting the constant region of CD44. RG7356 was radiolabeled with 89Zr for preclinical evaluations in tumor xenograft-bearing mice and normal cynomolgus monkeys to enable study of its biodistribution and the role of CD44 expression on RG7356 uptake. Studies with 89Zr-RG7356 were performed in mice bearing tumor xenografts that differ in the level of CD44 expression (CD44+ or CD44-) and RG7356 responsiveness (resp or non-resp): MDA-MB-231 (CD44+, resp), PL45 (CD44+, non-resp) and HepG2 (CD44–, non-resp). Immuno-PET whole body biodistribution studies were performed in normal cynomolgus monkeys to determine normal organ uptake after administration of a single dose. At 1, 2, 3, and 6 days after injection, 89Zr-RG7356 uptake in MDA-MB-231 (CD44+, resp) xenografts was nearly constant and about 9 times higher than in HepG2 (CD44–, non-resp) xenografts (range 27.44 ± 12.93 to 33.13 ± 7.42% ID/g vs. 3.25 ± 0.38 to 3.90 ± 0.58% ID/g). Uptake of 89Zr-RG7356 was similar in MDA-MB-231 (CD44+, resp) and PL45 (CD44+, non-resp) xenografts. Studies in monkeys revealed antibody uptake in spleen, salivary glands and bone marrow, which might be related to the level of CD44 expression. 89Zr-RG7356 uptake in these normal organs decreased with increasing dose levels of unlabeled RG7356. 89Zr-RG7356 selectively targets CD44+ responsive and non-responsive tumors in mice and CD44+ tissues in monkeys. These studies indicate the importance of accurate antibody dosing in humans to obtain optimal tumor targeting. Moreover, efficient binding of RG7356 to CD44+ tumors may not be sufficient in itself to drive an anti-tumor response. PMID:24492295

  3. Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry.

    PubMed

    Ohmura, Mitsuyo; Hishiki, Takako; Yamamoto, Takehiro; Nakanishi, Tsuyoshi; Kubo, Akiko; Tsuchihashi, Kenji; Tamada, Mayumi; Toue, Sakino; Kabe, Yasuaki; Saya, Hideyuki; Suematsu, Makoto

    2015-04-30

    CD44 expressed in cancer cells was shown to stabilize cystine transporter (xCT) that uptakes cystine and excretes glutamate to supply cysteine as a substrate for reduced glutathione (GSH) for survival. While targeting CD44 serves as a potentially therapeutic stratagem to attack cancer growth and chemoresistance, the impact of CD44 targeting in cancer cells on metabolic systems of tumors and host tissues in vivo remains to be fully determined. This study aimed to reveal effects of CD44 silencing on alterations in energy metabolism and sulfur-containing metabolites in vitro and in vivo using capillary electrophoresis-mass spectrometry and quantitative imaging mass spectrometry (Q-IMS), respectively. In an experimental model of xenograft transplantation of human colon cancer HCT116 cells in superimmunodeficient NOG mice, snap-frozen liver tissues containing metastatic tumors were examined by Q-IMS. As reported previously, short hairpin CD44 RNA interference (shCD44) in cancer cells caused significant regression of tumor growth in the host liver. Under these circumstances, the CD44 knockdown suppressed polyamines, GSH and energy charges not only in metastatic tumors but also in the host liver. In culture, HCT116 cells treated with shCD44 decreased total amounts of methionine-pool metabolites including spermidine and spermine, and reactive cysteine persulfides, suggesting roles of these metabolites for cancer growth. Collectively, these results suggest that CD44 expressed in cancer accounts for a key regulator of metabolic interplay between tumor and the host tissue. PMID:25461272

  4. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents

    PubMed Central

    Teye, Kwesi; Numata, Sanae; Ishii, Norito; Krol, Rafal P.; Tsuchisaka, Atsunari; Hamada, Takahiro; Koga, Hiroshi; Karashima, Tadashi; Ohata, Chika; Tsuruta, Daisuke; Saya, Hideyuki; Haftek, Marek; Hashimoto, Takashi

    2016-01-01

    CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways. PMID:27505250

  5. Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma.

    PubMed

    Ma, Chaoya; Komohara, Yoshihiro; Ohnishi, Koji; Shimoji, Tetsu; Kuwahara, Nao; Sakumura, Yasuo; Matsuishi, Kozue; Fujiwara, Yukio; Motoshima, Takanobu; Takahashi, Wataru; Yamada, Sohsuke; Kitada, Shohei; Fujimoto, Naohiro; Nakayama, Toshiyuki; Eto, Masatoshi; Takeya, Motohiro

    2016-05-01

    Cancer stem-like cells (CSC) or cancer-initiating cells are now considered to be an important cell population related to cancer recurrence and the resistance to anti-cancer therapy. Tumor-associated macrophages (TAM) are a main component of stromal cells and are related to cancer progression in clear cell renal cell carcinoma (ccRCC). Because the detailed mechanisms allowing the maintenance of CSC in cancer tissues remain unclear, we investigated the relationship between TAM and CD44-expressing cancer cells in ccRCC. CD44 was used as a marker for CSC, and CD163 and CD204 were used as markers for TAM. CD44-positive cancer cells were detected in 37 of the 103 cases. Although statistical analysis showed no relationship between CD44-positive cancer cells and the clinical course, the distribution of CD44-positive cancer cells was significantly associated with a high density of TAM. Our in vitro study using RCC cell lines and human macrophages demonstrated that CD44 expression was upregulated by direct co-culture with macrophages. Silencing of TNF-alpha on macrophages abrogated the upregulation of CD44 expression in cancer cells. Macrophage-induced CD44 overexpression was also suppressed by NF-κB inhibitors. These results suggest that TNF-alpha derived from TAM is linked to CD44 overexpression via NF-κB signaling in ccRCC. PMID:26918621

  6. Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-01

    Inflammatory cell infiltration of the lung is a predominant histopathological change that occurs during radiation pneumonitis. Emigration of inflammatory cells from the circulation requires the interaction between cell adhesion molecules on the vascular endothelium and molecules on the surface of leukocytes. We studied the immunohistochemical pattern of expression of cell adhesion molecules in lungs from mice treated with thoracic irradiation. After X-irradiation, the endothelial leukocyte adhesion molecule 1 (ELAM-1; E-selectin) was primarily expressed in the pulmonary endothelium of larger vessels and minimally in the microvascular endothelium. Conversely, the intercellular adhesion molecule 1 (ICAM-1; CD54) was expressed in the pulmonary capillary endothelium and minimally in the endothelium of larger vessels. Radiation-mediated E-selectin expression was first observed at 6 h, whereas ICAM-1 expression initially increased at 24 h after irradiation. ICAM-1 and E-selectin expression persisted for several days. P-selectin is constitutively expressed in Weibel-Palade bodies in the endothelium, which moved to the vascular lumen within 30 min after irradiation. P-selectin was not detected in the pulmonary endothelium at 6 h after irradiation. The radiation dose required for increased cell adhesion molecule expression within the pulmonary vascular endothelium was 2 Gy, and expression increased in a dose-dependent manner. These data demonstrate that ICAM-1 and E-selectin expression is increased in the pulmonary endothelium following thoracic irradiation. The pattern of expression of E-selectin, P-selectin, and ICAM-1 is distinct from one another. PMID:9187101

  7. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  8. Effect of ultraviolet light on the expression of adhesion molecules and T lymphocyte adhesion to human dermal microvascular endothelial cells.

    PubMed

    Chung, Kee Yang; Chang, Nam Soo; Park, Yoon Kee; Lee, Kwang Hoon

    2002-04-01

    In order to determine the effect of ultraviolet radiation (UVR) on the cell adhesion molecules expressed in human dermal microvascular endothelial cells (HDMEC), the cells were exposed to varying UVR doses and the cell surface was examined for expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM- 1), and E-selectin. The effect of UVB irradiation on the binding of T lymphocytes to HDMEC was also examined. UVA irradiation did not affect the surface expression of ICAM-1, VCAM-1, or E-selectin on the HDMEC. However, following UVB exposure, ELISA demonstrated a significant increase in the baseline ICAM-1 cell surface expression on the HDMEC. However, no induction of either E-selectin or VCAM-1 was noted. UVB also significantly augmented ICAM-1 induction by IL-1alpha and TNF-alpha. VCAM-1 was induced by stimulating HDMEC with IL-1alpha following a UVB irradiation dose of 100 mJ/cm2. Flow cytometric analysis of the HDMEC stimulated with IL-1alpha for 24h demonstrated that 12% of the cells expressed VCAM-1 but either IL-1alpha or UVB irradiation alone failed to induce VCAM-1 expression. Enhancement of T cell-HDMEC binding by IL-1alpha or TNF-alpha treatment was not significantly affected after UVB irradiation. This study demonstrated that UVB irradiation can alter ICAM-1 and VCAM-1 expression on the HDMEC surface and that augmentation of ICAM-1 expression and the IL-1alpha-dependent induction of VCAM-1 following UVB exposure might be important steps in the pathogenesis of sunburn. PMID:11971210

  9. Reduction in cellular and vascular rejection by blocking leukocyte adhesion molecule receptors.

    PubMed Central

    Sadahiro, M.; McDonald, T. O.; Allen, M. D.

    1993-01-01

    Whether antibody blockage of leukocyte receptors for intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 would prevent cardiac graft rejection was studied in a rabbit heterotopic transplant model. Monoclonal antibody 60.3, anti-CD18 (intercellular adhesion molecule-1 receptor, Group 1, n = 10) and monoclonal antibody HP1/2, anti-VLA-alpha 4 (vascular cell adhesion molecule-1 receptor, Group 2, n = 10) were administered to transplanted unimmunosuppressed animals. At 7 days, donor heart histology was compared to transplanted untreated controls (Group 3, n = 11). Peripheral white blood cell counts on postoperative day 2 were significantly higher in both treatment groups than controls. Significant increases in circulating neutrophils occurred in Group 1 (P < or = 0.05); lymphocytes predominated in Group 2 (P < or = 0.05). A significant reduction in cellular rejection was seen in Group 1 (P < or = 0.05) but not Group 2 hearts. Group 1 hearts demonstrated localization of lymphocytes to perivenular collections, whereas Group 2 hearts evidenced diffuse interstitial infiltration. Both treatment groups demonstrated a reduction in transplant arteritis compared to controls. Results suggest that monoclonal antibody 60.3 (anti-CD18) may hold promise as a therapeutic agent for both cellular and vascular rejection. Monoclonal antibody HP1/2 (anti-VLA-alpha 4) may reduce vascular rejection disproportionate to cellular rejection. Images Figure 2 Figure 3 Figure 4 PMID:8096120

  10. Two waves of neutrophil emigration in response to corneal epithelial abrasion: Distinct adhesion molecule requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: Corneal abrasion results in an inflammatory response characterized by leukocyte emigration into the corneal stroma. Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. In this study, the contributions of two...

  11. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide

    PubMed Central

    Sborov, Douglas W.; Cascione, Luciano; Radomska, Hanna S.; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C.; Efebera, Yvonne A.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients. PMID:26429859

  12. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling.

    PubMed

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  13. Potential of sulfasalazine as a therapeutic sensitizer for CD44 splice variant 9-positive urogenital cancer.

    PubMed

    Takayama, Tatsuya; Kubo, Taro; Morikawa, Ai; Morita, Tatsuo; Nagano, Osamu; Saya, Hideyuki

    2016-05-01

    Cancer stem-like cells (CSCs) with high expression of CD44 splice variant (CD44v) have an enhanced capacity for intracellular reduced glutathione synthesis and defense against reactive oxygen species, resulting in resistance to various therapeutic stresses. Sulfasalazine (SSZ), a drug used in the treatment of rheumatoid arthritis (RA), inhibits glutamate-cystine transport, and suppressed CD44v-dependent tumor growth and increased sensitivity to cytotoxic drugs in an in vivo study. Here, we present two cases of CD44v9-positive urogenital cancer with concomitant treatment with SSZ for RA. Patient 1 was a 62-year-old man who had received SSZ for RA beginning 2 months before the diagnosis of urinary bladder cancer. Although he had multiple metastases to the bladder, abdominal, left cervical and left axillary lymph nodes, and brain, complete response with multidisciplinary therapy was maintained for more than 2 years. Patient 2 was a 74-year-old man with castration-resistant prostate cancer who was diagnosed with RA during chemotherapy and a gradual increase in prostate-specific antigen (PSA) level. When SSZ was added, his PSA value (ng/mL) decreased from 12.93 to 5.58 in only 2 weeks and then quickly rebounded, whereas levels of neuron-specific enolase, a neuroendocrine differentiator and CSC marker, remained almost unchanged. We therefore speculate that SSZ treatment may represent a new adjuvant treatment option for patients with CD44v9-positive urogenital cancer. PMID:27044355

  14. Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes

    PubMed Central

    Qhattal, Hussaini Syed Sha; Liu, Xinli

    2011-01-01

    Hyaluronan (HA) is a biocompatible and biodegradable linear polysaccharide which is of interest for tumor targeting through cell surface CD44 receptors. HA binds with high affinity to CD44 receptors, which are overexpressed in many tumors and involved in cancer metastasis. In the present study, we investigated the impact of HA molecular weight (MW), grafting density, and CD44 receptor density on endocytosis of HA-grafted liposomes (HA-liposomes) by cancer cells. Additionally, the intracellular localization of the HA-liposomes was determined. HAs of different MWs (5-8, 10-12, 175-350, and 1600 kDa) were conjugated to liposomes with varying degrees of grafting density. HA surface density was quantified using the hexadecyltrimethylammonium bromide turbidimetric method. Cellular uptake and subcellular localization of HA-liposomes were evaluated by flow cytometry and fluorescence microscopy. Mean particle sizes of HA-liposomes ranged from 120 to 180 nm and increased with the bigger size of HA. HA-liposome uptake correlated with HA MW (5-8 < 10-12 < 175-350 kDa), grafting density, and CD44 receptor density and exceeded that obtained with unconjugated plain liposomes. HA-liposomes were taken up into cells via lipid raft-mediated endocytosis, which is both energy- and cholesterol-dependent. Once within cells, HA-liposomes localized primarily to endosomes and lysosomes. The results demonstrate that cellular targeting efficiency of HA-liposomes depends strongly upon HA MW, grafting density, and cell surface receptor CD44 density. The results support a role of HA-liposomes for targeted drug delivery. PMID:21696190

  15. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    PubMed

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  16. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  17. Intercellular Adhesion Molecule-1 (ICAM-1) in the Pathogenesis of Asthma

    NASA Astrophysics Data System (ADS)

    Wesgner, Craig D.; Gundel, Robert H.; Reilly, Patricia; Haynes, Nancy; Letts, L. Gordon; Rothlein, Robert

    1990-01-01

    Airway eosinophilia, epithelial desquamation, and hyperresponsiveness are characteristics of the airway inflammation underlying bronchial asthma. The contribution of intercellular adhesion molecule-1 (ICAM-1) to eosinophil migration and airway responsiveness was studied. ICAM-1 partially mediated eosinophil adhesion to endothelium in vitro and was upregulated on inflamed bronchial endothelium in vivo. ICAM-1 expression was also upregulated on inflamed airway epithelium in vitro and in vivo. In a primate model of asthma, a monoclonal antibody to ICAM-1 attenuated airway eosinophilia and hyperresponsiveness. Thus, antagonism of ICAM-1 may provide a therapeutic approach to reducing airway inflammation, hyperresponsiveness, and asthma symptoms.

  18. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys

  19. In vivo monitoring of CD44+ cancer stem-like cells by γ-irradiation in breast cancer.

    PubMed

    Kim, Mi Hyun; Kim, Min Hwan; Kim, Kwang Seok; Park, Myung-Jin; Jeong, Jae-Hoon; Park, Seung Woo; Ji, Young Hoon; Kim, Kwang Il; Lee, Tae Sup; Ryu, Phil Youl; Kang, Joo Hyun; Lee, Yong Jin

    2016-06-01

    There is increasing evidence that cancer contains cancer stem cells (CSCs) that are capable of regenerating a tumor following chemotherapy or radiotherapy. CD44 and CD133 are used to identify CSCs. This study investigated non-invasive in vivo monitoring of CD44-positive cancer stem-like cells in breast cancer by γ-irradiation using molecular image by fusing the firefly luciferase (fLuc) gene with the CD44 promoter. We generated a breast cancer cell line stably expressing fLuc gene by use of recombinant lentiviral vector controlled by CD44 promoter (MCF7-CL). Irradiated MCF7-CL spheres showed upregulated expression of CD44 and CD133, by immunofluorescence and flow cytometry. Also, gene expression levels of CSCs markers in irradiated spheres were clearly increased. CD44+ CSCs increased fLuc expression and tumor growth in vivo and in vitro. When MCF7-CL was treated with siCD44 and irradiated, CD44 expression was inhibited and cell survival ratio was decreased. MCF7-CL subsets were injected into the mice and irradiated by using a cobalt-60 source. Then, in vivo monitoring was performed to observe the bioluminescence imaging (BLI). When breast cancer was irradiated, relative BLI signal was increased, but tumor volume was decreased compared to non-irradiated tumor. These results indicate that increased CD44 expression, caused by general feature of CSCs by irradiation and sphere formation, can be monitored by using bioluminescence imaging. This system could be useful to evaluate CD44- expressed CSCs in breast cancer by BLI in vivo as well as in vitro for radiotherapy. PMID:27098303

  20. Cationic conjugated polymer/fluoresceinamine-hyaluronan complex for sensitive fluorescence detection of CD44 and tumor-targeted cell imaging.

    PubMed

    Huang, Yanqin; Yao, Xin; Zhang, Rui; Ouyang, Lang; Jiang, Rongcui; Liu, Xingfen; Song, Caixia; Zhang, Guangwei; Fan, Quli; Wang, Lianhui; Huang, Wei

    2014-01-01

    Simple, rapid, and sensitive detection of CD44 is of paramount importance since it plays pivotal roles in tumor initiation, growth and metastasis. Herein, we describe a novel method for sensitive, visual and facile fluorescence detection of CD44 and CD44-mediated cancer cell imaging, using a probe based on cationic conjugated polymer (CCP)-PFEP and fluoresceinamine-hyaluronan (FA-HA). HA is an anionic natural glycosaminoglycan that can specifically bind to the overexpressed CD44 on various kinds of cancer cells. PFEP and FA-HA formed a complex through electronic interactions, resulting in a highly efficient fluorescence resonance energy transfer (FRET) from PFEP to FA-HA; moreover, the efficiencies of FRET correlated with the concentrations of CD44 because the specific binding of HA-CD44 would separate FA-HA away from PFEP. This method did not require laborious and expensive dual-labeling or protein-labeling needed in previously reported detection methods of CD44. Just mix the sample and test solution containing the PFEP/FA-HA complex, and the results allowed naked-eye detection by observing fluorescent color of solutions with the assistance of a UV lamp. Most importantly, the use of a conjugated polymer with excellent amplification property as well as the specific binding of HA-CD44 endowed this method with high sensitivity and specificity, making it applicable for reliable quantitative detection of CD44. Furthermore, the PFEP/FA-HA complex formed nanoparticles in aqueous solution, and the nanoparticles can be selectively taken up by MCF-7 cells (cancer cell) through the HA-CD44 interaction, thereby giving rise to a dual-color tumor-targeted imaging probe with good photostability. The development of this fluorescent probe showed promising potential to make a reliable and routine method available for early diagnosis of cancer. PMID:25278260

  1. In vivo monitoring of CD44+ cancer stem-like cells by γ-irradiation in breast cancer

    PubMed Central

    KIM, MI HYUN; KIM, MIN HWAN; KIM, KWANG SEOK; PARK, MYUNG-JIN; JEONG, JAE-HOON; PARK, SEUNG WOO; JI, YOUNG HOON; KIM, KWANG IL; LEE, TAE SUP; RYU, PHIL YOUL; KANG, JOO HYUN; LEE, YONG JIN

    2016-01-01

    There is increasing evidence that cancer contains cancer stem cells (CSCs) that are capable of regenerating a tumor following chemotherapy or radiotherapy. CD44 and CD133 are used to identify CSCs. This study investigated non-invasive in vivo monitoring of CD44-positive cancer stem-like cells in breast cancer by γ-irradiation using molecular image by fusing the firefly luciferase (fLuc) gene with the CD44 promoter. We generated a breast cancer cell line stably expressing fLuc gene by use of recombinant lentiviral vector controlled by CD44 promoter (MCF7-CL). Irradiated MCF7-CL spheres showed upregulated expression of CD44 and CD133, by immunofluorescence and flow cytometry. Also, gene expression levels of CSCs markers in irradiated spheres were clearly increased. CD44+ CSCs increased fLuc expression and tumor growth in vivo and in vitro. When MCF7-CL was treated with siCD44 and irradiated, CD44 expression was inhibited and cell survival ratio was decreased. MCF7-CL subsets were injected into the mice and irradiated by using a cobalt-60 source. Then, in vivo monitoring was performed to observe the bioluminescence imaging (BLI). When breast cancer was irradiated, relative BLI signal was increased, but tumor volume was decreased compared to non-irradiated tumor. These results indicate that increased CD44 expression, caused by general feature of CSCs by irradiation and sphere formation, can be monitored by using bioluminescence imaging. This system could be useful to evaluate CD44-expressed CSCs in breast cancer by BLI in vivo as well as in vitro for radiotherapy. PMID:27098303

  2. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  3. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses.

    PubMed

    Dustin, Michael L

    2007-10-01

    The immunological synapse is a stable adhesive junction between a polarized immune effector cell and an antigen-bearing cell. Immunological synapses are often observed to have a striking radial symmetry in the plane of contact with a prominent central cluster of antigen receptors surrounded by concentric rings of adhesion molecules and actin-rich projections. There is a striking similarity between the radial zones of the immunological synapse and the dynamic actinomyosin modules employed by migrating cells. Breaking the symmetry of an immunological synapse generates a moving adhesive junction that can be defined as a kinapse, which facilitates signal integration by immune cells while moving over the surface of antigen-presenting cells. PMID:17923403

  4. Inhibition of gamma-irradiation induced adhesion molecules and NO production by alginate in human endothelial cells.

    PubMed

    Son, E W; Cho, C K; Rhee, D K; Pyo, S

    2001-10-01

    Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with gamma-irradiation (gammaIR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannuronic acid-containing alginate (HMA) inhibits gammaIR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited gammaIR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules. PMID:11693551

  5. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  6. Expression of CD44 and CD35 during normal and myelodysplastic erythropoiesis.

    PubMed

    Laranjeira, Paula; Rodrigues, Raquel; Carvalheiro, Tiago; Constanço, Conceição; Vitória, Helena; Matarraz, Sergio; Trindade, Hélder; Órfão, Alberto; Paiva, Artur

    2015-03-01

    Erythroid dysplasia is a common feature of myelodysplastic syndromes (MDS). Currently available information about the immunophenotypic features of normal and dysplastic erythropoiesis is scarce and restricted to relatively few markers. Here we studied the expression of CD117, CD35 and CD44 throughout the normal (n=16) and dysplastic (n=48) bone marrow erythroid maturation. CD35 emerged as an early marker of CD34(+) erythroid-committed precursors, which is expressed before CD105 and remains positive thereafter. MDS patients (with and without morphologic dyserythropoiesis) displayed overall increased expression of CD44, associated with slight alterations on CD35 expression, suggesting that phenotypic alterations in MDS may precede morphologic dysplasia. In turn, MDS patients with anemia showed increased expression of CD117. PMID:25582385

  7. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Meunier, Michel

    2015-01-01

    We present a new hyperspectral darkfield imaging system with a scanned broadband supercontinuum light source. We observed the specific attachment of the functionalized gold plasmonic nanoparticles (AuNPs) targeting CD44(+) human breast cancer cells by conventional and by proposed hyperspectral darkfield microscopy. This wide-field and low phototoxic hyperspectral imaging system has been successful for performing spectral three-dimensional (3D) localization and spectroscopic identification of CD44-targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic-based imaging, disease detection and treatment in complex biological environment. Presented system capability for 3D NP tracking will also enable investigation of specific sub-cellular activity with the use of NPs as spectral sensors. PMID:24343875

  8. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  9. Concurrent CD44s and STAT3 expression in human clear cell renal cellular carcinoma and its impact on survival

    PubMed Central

    Qin, Jun; Yang, Bo; Xu, Bao-Qin; Smithc, Amber; Xu, Liang; Yuan, Jian-Lin; Li, Ling

    2014-01-01

    Although CD44 was overexpressed and considered as a useful prognostic marker in renal cell carcinoma, the prognostic role of CD44s in clear cell renal cell carcinoma (ccRCC) remains controversial. Moreover, the correlation and prognostic significance of CD44s and its downstream signaling target pSTAT3 are unclear in ccRCC. In this study, 75 pairs of carcinoma and paired adjacent non-tumor renal tissue samples were collected from patients with localized ccRCC who underwent a nephrectomy. The expression levels of CD44s and pSTAT3 were analyzed using immunohistochemistry. Correlations between CD44s/pSTAT3 expression and clinical and pathological characteristics were determined using x2 test, Kaplan-Meier analysis and Cox’s proportional hazards model. We found that CD44s is highly expressed in 46.67% of tumor tissues, and its high expression was significantly associated with high tumor grade (P < 0.001), large tumor size (P = 0.009) and advanced T stage (P = 0.004). A strong correlation exists between high expression of CD44s and pSTAT3 (r = 0.4013, P = 0.0004). The joint over expression of CD44s and pSTAT3 was present in 42.66% of tumor specimens and had an additive negative impact on overall survival. Patients with CD44shighpSTAT3high expression had significantly poor survival as compared to patients with CD44slowpSTAT3low tumor expression (P = 0.024), though the concurrent overexpression of CD44s and pSTAT3 was not an independent prognostic factor for overall survival. Our data indicate that expression of both CD44s and pSTAT3 in ccRCC is associated with advanced tumor stage and patient survival. The conclusions from this study may improve the prediction of ccRCC prognosis information when CD44s and pSTAT3 expression are evaluated together with classical clinicopathological parameters. PMID:25031744

  10. Insulin Resistance May Contribute to Upregulation of Adhesion Molecules on Endothelial Cells in Psoriatic Plaques.

    PubMed

    Schlüter, Kathrin; Diehl, Sandra; Lang, Victoria; Kaufmann, Roland; Boehncke, Wolf-Henning; Bürger, Claudia

    2016-02-01

    Psoriasis primarily affects the skin, but also has a systemic dimension and is associated with severe comorbidities. Since endothelial cells play an important role in psoriasis as well as in the development of cardiovascular comorbidities, we investigated whether a common mechanism, namely cytokine-induced insulin resistance, underlies both pathologies. Activation of the insulin pathway was studied in psoriatic skin and dermal endothelial cells. Expression of adhesion molecules was assessed by flow cytometry, as well as their biological function in flow chamber experiments. The phosphorylation status of Akt, a central kinase in the insulin pathway, suggests that endothelial cells within psoriatic plaques are rendered insulin resistant by pro-inflammatory cytokines. Insulin counteracts the expression of adhesion molecules, but has limited effects on interactions between T cells and endothelial cells. Pro-inflammatory cytokines induce insulin resistance in endothelial cells, which may contribute to the development of the inflammatory infiltrate in psoriasis. PMID:26315601

  11. L1 cell adhesion molecule as a therapeutic target in cancer.

    PubMed

    Yu, Xinzhe; Yang, Feng; Fu, De-Liang; Jin, Chen

    2016-03-01

    L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy. PMID:26781307

  12. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    SciTech Connect

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. )

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  13. FKBPL and Peptide Derivatives: Novel Biological Agents That Inhibit Angiogenesis by a CD44-Dependent Mechanism

    PubMed Central

    Valentine, Andrea; O’Rourke, Martin; Yakkundi, Anita; Worthington, Jenny; Hookham, Michelle; Bicknell, Roy; McCarthy, Helen O.; McClelland, Keeva; McCallum, Lynn; Dyer, Hayder; McKeen, Hayley; Waugh, David; Roberts, Jennifer; McGregor, Joanne; Cotton, Graham; James, Iain; Harrison, Timothy; Hirst, David G.; Robson, Tracy

    2011-01-01

    Purpose Anti-angiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their anti-angiogenic activity and mechanism of action. Experimental Design Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration and Matrigel dependent tubule formation was determined. They were further evaluated in an ex-vivo rat model of neo-vascularisation and in two in vivo mouse models of angiogenesis; the sponge implantation and the intra-vital microscopy models. Anti-tumor efficacy was determined in two human tumor xenograft models grown in SCID mice. Finally, the dependence of peptide on CD44 was determined using a CD44 targeted siRNA approach or in cell lines of differing CD44 status. Results rFKBPL inhibited endothelial cell migration, tubule formation and microvessel formation in vitro and in vivo. The region responsible for FKBPL’s anti-angiogenic activity was identified and a 24 amino acid peptide (AD-01) spanning this sequence was synthesised. It was potently anti-angiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own, or in combination with docetaxel. The anti-angiogenic activity of FKBPL and AD-01 was dependent on the cell surface receptor CD44 and signalling downstream of this receptor promoted an anti-migratory phenotype. Conclusion FKBPL and its peptide derivative AD-01 have potent anti-angiogenic activity. Thus, these agents offer the potential of an attractive new approach to anti-angiogenic therapy. PMID:21364036

  14. Association between two single base polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease

    PubMed Central

    Habibi, Manijeh; Naderi, Nosratllah; Farnood, Alma; Balaii, Hedieh; Dadaei, Tahereh; Almasi, Shohreh; Zojaji, Homayoun; Asadzadeh Aghdae, Hamid; Zali, Mohammad Reza

    2016-01-01

    Aim: The present study evaluated the association between G241R and K469E polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease in Iranian population. Background: Inflammatory bowel disease including ulcerative colitis and Crohn’s disease, is a chronic idiopathic inflammatory disease of the gastrointestinal tract. There are two single base polymorphisms of intercellular adhesion molecule 1gene, G241R and K469E, reported to be associated with inflammatory disorders. Patients and methods: In this case-control study, 156 inflammatory bowel disease patients (110 ulcerative colitis and 46 Crohn’s disease patients) and 131 healthy controls were enrolled. Two polymorphisms of intercellular adhesion molecule 1 gene, including G241R and K469E, were assessed by polymerase chain reaction followed by restriction fragment length polymorphism. Results: The E469 allele of K469E polymorphism was significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 1.83; 95% CI: 1.13 to 2.96). The mutant homozygote genotype of K469E polymorphism (E/E) was also significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 4.23; 95% CI: 1.42 to 12.59). No difference was observed in the frequency of K469E polymorphism among ulcerative colitis patients compared to controls. There were no significant differences in genotype and allele frequencies of G241R polymorphism among ulcerative colitis and Crohn’s disease patients compared to control subjects. Conclusion: According to our findings, K469E polymorphism of intercellular adhesion molecule 1 gene may probably participate in the pathogenesis of Crohn’s disease in Iran. PMID:27099667

  15. Characterization of the inflammatory infiltrate and expression of endothelial cell adhesion molecules in lupus erythematosus tumidus.

    PubMed

    Kuhn, Annegret; Sonntag, Monika; Lehmann, Percy; Megahed, Mosaad; Vestweber, Dietmar; Ruzicka, Thomas

    2002-03-01

    Lupus erythematosus tumidus (LET) is a disease with characteristic clinical and histopathologic features that has not always been considered a subset of cutaneous lupus erythematosus (CLE). Although LET was first mentioned in the literature in 1930, it has rarely been documented, and immunohistochemical studies have never been performed. The aim of the present study was to characterize the inflammatory infiltrate and to analyze the expression of endothelial cell adhesion molecules in skin specimens from patients with LET and to compare the results with those from patients with other variants of CLE, such as discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE). Cryostat sections of lesional skin specimens from ten patients with LET demonstrated an infiltrate composed of more than 75% CD4+, CD8+, and HLA-DR+ cells. Interestingly, CD45RO+ cells, in contrast to CD45RA+ cells, were the prevailing inflammatory cell population. Compared with skin specimens from patients with DLE and SCLE, the mean expression of CD4+ and CD8+ cells was higher (but not significantly so) in LET, and no differences were observed with the other three antibodies. Furthermore, in contrast to controls, intercellular adhesion molecule-1, vascular adhesion molecule-1, E-selectin, and P-selectin showed the same expression pattern in skin specimens from patients with DLE, SCLE, and LET. In conclusion, the inflammatory infiltrate of LET primarily consists of CD4+/CD8+ lymphocytes. Furthermore, expression of endothelial cell adhesion molecules was equally upregulated in LET compared with the expression in DLE and SCLE, suggesting a similar immunopathomechanism of these subtypes of CLE. PMID:12071156

  16. The control of tumor vessels: what you would not expect from a neural adhesion molecule

    PubMed Central

    Angiolini, Francesca; Cavallaro, Ugo

    2015-01-01

    The neural adhesion molecule L1 is involved in development and plasticity of the nervous system. We recently reported aberrant expression of L1 in the vasculature of various human tumor types. Genetic and functional inactivation of endothelial L1 in a mouse tumor model resulted in decreased tumor angiogenesis and promoted vascular normalization. Thus, endothelial L1 might represent a novel therapeutic target for vessel-targeted treatments of solid tumors. PMID:27308446

  17. Increased invasion and tumorigenicity capacity of CD44+/CD24- breast cancer MCF7 cells in vitro and in nude mice

    PubMed Central

    2013-01-01

    Background Identification of cancer stem cells (CSCs) and their behaviors will provide insightful information for the future control of human cancers. This study investigated CD44 and CD24 cell surface markers as breast cancer CSC markers in vitro and in vivo. Methods Flow cytometry with CD44 and CD24 markers was used to sort breast cancer MCF7 cells for scanning electron microscopy (SEM), tumor cell invasion assay, and nude mouse xenograft assay. Results Flow cytometry assay using CD44 and CD24 markers sorted MCF7 cells into four subsets, i.e., CD44+/CD24-/low, CD44-/CD24+, CD44+/CD24+, and CD44-/CD24-. The SEM data showed that there were many protrusions on the surface of CD44+/CD24-/low cells. CD44+/CD24-/low cells had many microvilli and pseudopodia. The CD44+/CD24-/low cells had a higher migration and invasion abilities than that of the other three subsets of the cells. The in vivo tumor formation assay revealed that CD44+/CD24- cells had the highest tumorigenic capacity compared to the other three subsets. Conclusion CD44 and CD24 could be useful markers for identification of breast CSCs because CD44+/CD24-/low cells had unique surface ultrastructures and the highest tumorigenicity and invasive abilities. PMID:23799994

  18. The surface energy of various biomaterials coated with adhesion molecules used in cell culture.

    PubMed

    Harnett, Elaine M; Alderman, John; Wood, Terri

    2007-03-15

    This study calculates the surface energy of polystyrene tissue culture plastic, silicon, silicon dioxide and indium tin oxide, all of which have applications in tissue culture. The adhesion molecules: collagen, fibronectin, poly-L-ornithine and poly-D-lysine, were coated onto these various surfaces, and the surface energy of the coated substrates calculated. Coating with fibronectin was found to produce a monopolar acidic surface while poly-D-lysine, poly-L-ornithine and collagen coatings were found to produce monopolar basic surfaces. The calculated surface energy components of the coated materials were then used to give a quantitative determination of the magnitude of their hydrophobicity. It was concluded that collagen, polylysine and polyornithine could provide a hydrophobic or hydrophilic surface depending on the underlying substrates they were coated on. The measurement obtained for fibronectin, unlike the other adhesion molecules, was independent of the underlying surface and remained hydrophobic on all substrates tested. Wetting experiments were carried out on the coated substrates, using the tissue culture medium Dulbeccos modified eagles medium, both containing and not containing serum proteins, and saline solution. These liquids that are commonly used in tissue culture, were then used to provide information how these liquids behave on various substrates coated with the adhesion molecules. Results show that fibronectin coated surfaces represent the most phobic surface for all three liquids. The findings of this study can be used in cell manipulation studies and provide a valuable data set for the biomedical and research industries. PMID:17207976

  19. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients

    PubMed Central

    Vargas-Robles, Hilda; Serrano, Alberto Maceda; Lozano-Nuevo, Jose Juan; Escalante-Acosta, Bruno Alfonso

    2009-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and is associated with inflammation, increased levels of circulating soluble adhesion molecules and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in normotensive type-2 diabetic patients. Results: We found significant correlations between ICAM-1 (r = 0.69, p < 0.001 95% IC 0.65 to 0.82) and VCAM-1 (r = 0.4, p < 0.03, 95% IC 0.65 to 0.82) levels and maximal carotid artery intimal-medial thickness, whereas no correlation was observed with E-selectin. Methods: We studied 30 normotensive type-2 diabetic patients in whom VCAM-1, ICAM-1 and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. Conclusion: Our results suggest that ICAM-1 and VCAM-1 are markers associated, and correlated with the degree of atherosclerosis in normotensive type-2 diabetic patients. PMID:19717975

  20. Differential Associations between CDH13 Genotypes, Adiponectin Levels, and Circulating Levels of Cellular Adhesive Molecules

    PubMed Central

    Teng, Ming-Sheng; Wu, Semon; Hsu, Lung-An; Chou, Hsin-Hua; Ko, Yu-Lin

    2015-01-01

    CDH13 gene variants with lower adiponectin levels are paradoxically associated with a more favorable metabolic profile. We investigated the statistical association between CDH13 locus variants and adiponectin levels by examining 12 circulating inflammation marker levels and adiposity status in 530 Han Chinese people in Taiwan. After adjustments for clinical covariates, adiponectin levels were positively associated with soluble vascular cell adhesion molecule-1 (sVCAM1) levels and negatively associated with adiposity status and levels of C-reactive protein (CRP), soluble E-selectin (sE-selectin), and soluble intercellular adhesion molecule-1 (sICAM1). In addition, minor alleles of the CDH13 rs12051272 polymorphism were found to have lower adiponectin levels and higher CRP, sE-selectin, sICAM1, and sVCAM1 levels as well as higher body mass indices and waist circumferences in participants (all P < 0.05). In a subgroup analysis stratified by sex, significant associations between CDH13 genotypes and sE-selectin levels occurred only in men (P = 3.9 × 10−4 and interaction P = 0.005). CDH13 locus variants and adiponectin levels are associated with circulating levels of cellular adhesion molecules and adiposity status in a differential manner that interacts with sex. These results provide further evidence for the crucial role of adiponectin levels and CDH13 gene variants in immune-mediated and inflammatory diseases. PMID:26600672

  1. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  2. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions.

    PubMed

    Quarmby, S; Kumar, P; Kumar, S

    1999-07-30

    The late onset of necrosis and fibrosis in normal tissues can be a serious consequence of radiotherapy in cancer patients. Because radiation-induced vascular injury precedes the tissue damage, vascular injury is regarded as crucial in the pathogenesis of tissue damage. An understanding of the processes responsible is essential to develop strategies for the amelioration of radiation-induced normal tissue damage. Leukocyte infiltration is commonly observed at sites of irradiation and is likely to lead to the acceleration and/or induction of parenchymal atrophy, fibrosis and necrosis in normal tissues following radiotherapy. The molecular mechanisms mediating leukocyte infiltration of tissues during inflammation have been studied extensively. It is now well established that cell adhesion molecules (CAMs) expressed on leukocytes and endothelial cells control the trafficking of leukocytes from the blood vessel lumen in these conditions. CAMs including E (endothelial), P (platelet) and L (leukocyte)-selectins, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), beta1 and beta2 integrins and CD31 are involved in the cascade of events resulting in rolling, arrest and transmigration of leukocytes through the inflamed endothelium. Whether a similar sequence of molecular events induces leukocyte sequestration in irradiated normal tissues is not known. This review is focussed on the role of CAMs in radiation-induced leukocyte infiltration of normal tissues and the therapeutic implications of these findings. PMID:10399956

  3. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals.

    PubMed

    Law, Chris O; Kirby, Rebecca J; Aghamohammadzadeh, Soheil; Furley, Andrew J W

    2008-08-01

    When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord (VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets. PMID:18550718

  4. The blot rolling assay: a method for identifying adhesion molecules mediating binding under shear conditions.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2006-01-01

    Adhesive interactions of cells with blood vessel walls under flow conditions are critical to a variety of processes, including hemostasis, leukocyte trafficking, tumor metastasis, and atherosclerosis. We have developed a new technique for the observation of binding interactions under shear, which we have termed the "blot rolling assay." In this method, molecules in a complex mixture are resolved by gel electrophoresis and transferred to a membrane. This membrane can be rendered semitransparent and incorporated into a parallel-plate flow chamber apparatus. Cells or particles bearing adhesion proteins of interest are then introduced into the chamber under controlled flow, and their interactions with individual components of the immobilized substrates can be visualized in real time. The substrate molecules can be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. Thus, this method allows for the identification, within a complex mixture and without previous isolation or purification, of both known and novel adhesion molecules capable of binding under shear conditions. PMID:16799202

  5. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  6. [Allergens-induced sensitization alters airway epithelial adhesion molecules expression in mice].

    PubMed

    Zeng, Dan; Tan, Mei-Ling; Xiang, Yang; Qin, Xiao-Qun; Zhu, Li-Ming; Dai, Ai-Guo

    2015-12-25

    To explore the relationship between the epithelial adhesion molecules and immune responses of airway epithelium, we observed the expression of integrin β4 and intercellular adhesion molecule-1 (ICAM-1) in the mice airway epithelium after sensitization with allergens. BALB/c mice were sensitized with intraperitoneal injection of ovalbumin (OVA) or house dust mite (HDM) and then developed airway hyper-responsiveness as determined by barometric whole-body plethysmography. Both OVA and HDM sensitization led to increases of the number of peripheral leukocytes as well as inflammatory cells infiltration in lungs. OVA sensitized mice showed more severe inflammatory cells infiltration than HDM sensitized mice. Immunohistochemistry analysis of mice lung tissues revealed that sensitization with both allergens also led to a decrease of integrin β4 expression and an increase of ICAM-1 expression in airway epithelia. OVA sensitized mice showed a more significant increase of ICAM-1 expression compared with HDM sensitized mice. siRNA mediated silencing of integrin β4 gene in 16HBE cells resulted in an up-regulation of ICAM-1 expression. Our results indicate a possible role of airway epithelial adhesion molecules in allergen-induced airway immune responses. PMID:26701635

  7. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  8. Deciphering the cellular source of tumor relapse identifies CD44 as a major therapeutic target in pancreatic adenocarcinoma

    PubMed Central

    Molejon, Maria Inés; Tellechea, Juan Ignacio; Loncle, Celine; Gayet, Odile; Gilabert, Marine; Duconseil, Pauline; Lopez-Millan, Maria Belen; Moutardier, Vincent; Gasmi, Mohamed; Garcia, Stephane; Turrini, Olivier; Ouaissi, Mehdi; Poizat, Flora; Dusetti, Nelson; Iovanna, Juan

    2015-01-01

    It has been commonly found that in patients presenting Pancreatic Ductal Adenocarcinoma (PDAC), after a period of satisfactory response to standard treatments, the tumor becomes non-responsive and patient death quickly follows. This phenomenon is mainly due to the rapid and uncontrolled development of the residual tumor. The origin and biological characteristics of residual tumor cells in PDAC still remain unclear. In this work, using PDACs from patients, preserved as xenografts in nude mice, we demonstrated that a residual PDAC tumor originated from a small number of CD44+ cells present in the tumor. During PDAC relapse, proliferating CD44+ cells decrease expression of ZEB1, while overexpressing the MUC1 protein, and gain morphological and biological characteristics of differentiation. Also, we report that CD44+ cells, in primary and residual PDAC tumors, are part of a heterogeneous population, which includes variable numbers of CD133+ and EpCAM+ cells. We confirmed the propagation of CD44+ cells in samples from cases of human relapse, following standard PDAC treatment. Finally, using systemic administration of anti-CD44 antibodies in vivo, we demonstrated that CD44 is an efficient therapeutic target for treating tumor relapse, but not primary PDAC tumors. We conclude that CD44+ cells generate the relapsing tumor and, as such, are themselves promising therapeutic targets for treating patients with recurrent PDAC. PMID:25797268

  9. Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell–Cell Interactions Mediated by Classic Cadherins

    PubMed Central

    Litvinov, Sergey V.; Balzar, Maarten; Winter, Manon J.; Bakker, Hellen A.M.; Bruijn, Inge H. Briaire-de; Prins, Frans; Fleuren, Gert Jan; Warnaar, Sven O.

    1997-01-01

    The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in

  10. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  11. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  12. Adhesion molecules in atopic dermatitis: patch tests elicited by house dust mite.

    PubMed

    Jung, K; Linse, F; Pals, S T; Heller, R; Moths, C; Neumann, C

    1997-10-01

    Different T-helper subsets, which are characterized by the secretion of distinct cytokines (Th1, Th2), have been found in house dust mite-exposed skin of sensitized individuals and in nickel-specific T lymphocytes from nickel contact allergic and non-allergic individuals. In order to evaluate the role which adhesion molecules may play in the homing of different T-cell subsets into allergen-exposed skin of atopic and normal individuals, we compared the expression pattern of adhesion molecules in patch test reactions to house dust mite antigen (D.pt.), nickel sulfate (Ni) and the irritant anthralin. Biopsies were taken at various time points after application of these agents and studied by immuncytochemistry. To exclude an endogenous difference in adhesion molecule expression in atopic and non-atopic skin, sequential biopsies from Ni patch tests of 2 normal individuals were also included in this study. The expression of E-selectin, P-selectin, CD31, VCAM-1 and ICAM-1 on endothelial cells and other cells in the skin was quantified by microscopic evaluation. Skin homing T cells were also quantified using antibodies to CD3, CD4, CD8, UCHL-1, L-selectin and the cutaneous lymphocyte antigen (CLA). Independent of the eliciting substance, all lesions showed an upregulation of all adhesion molecules tested, with the exception of CD62. The appearance of E-selectin and an increase in ICAM-1 and VCAM-1 expression were first observed at 12 h after application of the various agents. In parallel, the number of CLA+ and L-selectin+ lymphocytes increased steadily. No principle differences could be established between the various types of skin reactions in atopic individuals, nor did the skin of patients with AD differ from normal controls. Our results provide evidence that differential expression of adhesion molecules does not play a major part in observed differential homing of Th1 and Th2-cell subsets into patch test sites provoked by house dust mite and nickel sulfate in atopic

  13. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  14. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  15. Development of a sandwich enzyme-linked immunosorbent assay for the detection of CD44v3 using exon v3- and v6-specific monoclonal antibody pairs.

    PubMed

    Jeoung, Mee Hyun; Kim, Taek-Keun; Shim, Hyunbo; Lee, Sukmook

    2016-09-01

    It has been suggested that soluble CD44 levels in cancer patient sera may be closely associated with tumor progression and metastasis. However, to date, there has been limited methodology for detecting the soluble CD44 variant 3 isoform (CD44v3). Herein, using phage display technology, we isolated monoclonal antibodies specific to exon v3 or v6 of CD44 (CD44-exonv3 or CD44-exonv6) from a human synthetic antibody library. We also confirmed the specificity of antibody binding to CD44-exonv3 or -exonv6. Label-free kinetic analysis using the Octet biolayer interferometry system showed that the Kd values of the anti-CD44-exonv3 and anti-CD44-exonv6 antibodies for CD44v3-10 are approximately 1.1nM and 1.5nM, respectively. Finally, we developed a sandwich enzyme-linked immunosorbent assay (ELISA) using the anti-CD44-exonv3 and anti-CD44-exonv6 antibody pairs. The minimum detection limit of the assay was 6.2ng/ml CD44v3-10 and the linear range was up to 125ng/ml. Intra- and inter-assay coefficients of variation were 2.2% and 2.9%, respectively. The intra- and inter-assay recoveries were 99.3% and 105.3%, respectively. Taken together, these results suggest that this novel sandwich ELISA using the anti-CD44-exonv3 and anti-CD44-exonv6 antibody pairs will be useful for the detection of soluble CD44v3 in cancer patient sera. PMID:27288967

  16. Monocyte Trafficking to Hepatic Sites of Bacterial Infection Is Chemokine Independent and Directed by Focal Intercellular Adhesion Molecule-1 Expression

    PubMed Central

    Shi, Chao; Velázquez, Peter; Hohl, Tobias M.; Leiner, Ingrid; Dustin, Michael L.; Pamer, Eric G.

    2010-01-01

    Recruitment of CCR2+Ly6Chigh monocytes to sites of infection is essential for efficient clearance of microbial pathogens. Although CCR2-mediated signals promote monocyte emigration from bone marrow, the contribution of CCR2 to later stages of monocyte recruitment remains unresolved. In this article, we show that CCR2 deficiency markedly worsens hepatic Listeria monocytogenes infection because Ly6Chigh monocytes are retained in the bone marrow. Intravenously transferred, CCR2-deficient Ly6Chigh monocytes traffic normally to hepatic foci of infection and contribute to bacterial clearance. Pertussis toxin treatment of adoptively transferred monocytes does not impair their intrahepatic trafficking, suggesting that chemokine signaling, once CCR2+ Ly6Chigh monocytes emigrate from the bone marrow, is not required for monocyte localization to sites of bacterial infection in the liver. Expression of ICAM-1 is induced in close proximity to foci of bacterial infection in the liver, including on CD31+ endothelial cells, and blockade of CD11b and CD44 diminishes monocyte localization to these hepatic foci. Our studies demonstrated that Ly6Chigh monocyte recruitment from the bloodstream to the L. monocytogenes-infected liver does not require chemokine receptor-mediated signals but instead is principally dependent on integrin- and extracellular matrix-mediated monocyte adhesion. PMID:20435926

  17. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.

    PubMed

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  18. Expression and structural studies of fasciclin I, an insect cell adhesion molecule.

    PubMed

    Wang, W C; Zinn, K; Bjorkman, P J

    1993-01-15

    Fasciclin I is a lipid-linked cell-surface glycoprotein that can act as a homophilic adhesion molecule in tissue culture cells. It is thought to be involved in growth cone guidance in the embryonic insect nervous system. To facilitate structure-function studies, we have generated Chinese hamster ovary (CHO) cell lines expressing high levels of cell surface grasshopper and Drosophila fasciclin I. Grasshopper fasciclin I released by phospholipase C cleavage was purified on an immunoaffinity column and single crystals were obtained that diffracted to approximately 5-A resolution. We also generated CHO and Drosophila S2 cell lines that produce a secreted form of fasciclin I. Fasciclin I expressed in S2 cells contains significantly less carbohydrate than the protein expressed in CHO cells, and may therefore be more suitable for crystallization. Biochemical characterization of purified fasciclin I indicates that the extracellular portion exists as a monomer in solution. Circular dichroism studies suggest that fasciclin I is primarily alpha-helical. Its structure is therefore different from other known cell adhesion molecules, which are predicted to be elongated beta-sheet structures. This suggests that fasciclin I may define a new structural motif used to mediate adhesive interactions between cell surfaces. PMID:8419345

  19. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  20. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  1. Adhesive hierarchy involving the cell adhesion molecules L1, CD24, and alpha 6 integrin in murine neuroblastoma N2A cells.

    PubMed

    Kadmon, G; Imhof, B A; Altevogt, P; Schachner, M

    1995-09-01

    The aggregation rate of resuspended neuroblastoma N2A cells depends on the density of the cells in culture prior to their resuspension: isolated, fast growing cells have a weak tendency to aggregate whereas confluent, slowly growing cells reaggregate very strongly. L1 antibody 557 strongly inhibited the slow aggregation of isolated, fast growing cells but not the reaggregation of confluent cells. CD24 (nectadrin) antibodies did not affect the aggregation of isolated or confluent cells but stimulated the aggregation of subconfluent cells. In all stages aggregation was not inhibited when antibody 557 was used together with CD24 antibodies at 37 degrees C in the presence of divalent cations. EA-1 antibody to alpha 6 integrin chain stimulated the aggregation of subconfluent cells but inhibited the reaggregation of confluent cells. Therefore, L1 appears to be an early recognition molecule mediating weak primary adhesion. CD24 appears to participate in activating secondary adhesion mechanisms during primary adhesion, possibly in cooperation with L1, and alpha 6 integrin seems to serve as a secondary, strong adhesion molecule that in early adhesion phases also mediates the activation of itself or of other adhesion mechanisms. These results indicate that neural cells might employ a strategy of adhesion cascade in establishing stable contacts. PMID:7669058

  2. Identification of two structural types of calcium-dependent adhesion molecules in the chicken embryo.

    PubMed Central

    Crittenden, S L; Rutishauser, U; Lilien, J

    1988-01-01

    By using an immunological and peptide mapping approach two calcium-dependent cell-cell adhesion molecules (calCAMs) in the embryonic chicken are compared. A third closely related molecule is identified and compared to the two calCAMs. One of the calCAMs appears to be identical to the previously identified adhesion molecule N-cadherin, originally identified in chicken retina and localized to neural tissues. The second is the same as L-CAM, originally identified in chicken liver but localized to a variety of epithelial tissues. The third, also found in liver, is similar to L-CAM but is much closer in structure to N-cadherin. It is, however, immunologically distinct from N-cadherin. We therefore refer to this newly identified molecule as CRM-L for cadherin-related molecule in liver. CRM-L, N-cadherin, and L-CAM are all cell-surface proteins with a similar stability to tryptic digestion in the presence of calcium. CRM-L has the same molecular mass and isoelectric point as N-cadherin but is distinct from L-CAM in these properties. Two-dimensional peptide maps of complete tryptic digests reveal that CRM-L shares 69% of its peptides with N-cadherin and 20% with L-CAM. On the basis of these data, we suggest that there are at least two distinguishable types of calCAMs in the chicken embryo: one represented by the closely related molecules N-cadherin and CRM-L, and another represented by L-CAM. Images PMID:3368455

  3. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis

    PubMed Central

    Xu, Hanxiao; Tian, Yijun; Yuan, Xun; Liu, Yu; Wu, Hua; Liu, Qian; Wu, Gen Sheng; Wu, Kongming

    2016-01-01

    Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that serves as the receptor for the extracellular matrix component hyaluronic acid. CD44 has been reported to play key roles in cell proliferation, motility, and survival, but its role in breast cancer remains controversial. In this study, we conducted a meta-analysis. A total of 23 published Gene Expression Omnibus databases were included to evaluate the association between CD44 mRNA expression and clinicopathological characteristics or prognosis of the patients with breast cancer. Our analysis revealed that CD44 expression was associated with clinicopathological features, including the histological grade, estrogen receptor status, progesterone receptor status, and human epidermal growth factor receptor-2 status. Higher levels of CD44 expression were observed in the basal subtype of breast cancer both at the mRNA and protein levels (odds ratio [OR] =2.08, 95% confidence interval [CI]: 1.72–2.52; OR =2.11, 95% CI: 1.67–2.68). Patients with CD44 overexpression exhibited significantly worse overall survival (hazard ratio =1.27; 95% CI: 1.04–1.55). Whole gene profile analysis revealed that CD44 expression was enriched in basal-type breast cancer and correlated with epithelial–mesenchymal transition and cancer stem cell gene profiles. In summary, our analyses indicated that CD44 potentially might be a prognostic marker for breast cancer and thus can serve as a therapeutic target for basal-type breast cancer. PMID:26855592

  4. CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination

    PubMed Central

    Ravindranath, Abhilash K.; Kaur, Swayamjot; Wernyj, Roman P.; Kumaran, Muthu N.; Miletti-Gonzalez, Karl E.; Chan, Rigel; Lim, Elaine; Madura, Kiran; Rodriguez-Rodriguez, Lorna

    2015-01-01

    Here we demonstrate that a ubiquitin E3-ligase, FBXO21, targets the multidrug resistance transporter, ABCB1, also known as P-glycoprotein (P-gp), for proteasomal degradation. We also show that the Ser291-phosphorylated form of the multifunctional protein and stem cell marker, CD44, inhibits FBXO21-directed degradation of P-gp. Thus, CD44 increases P-gp mediated drug resistance and represents a potential therapeutic target in P-gp-positive cells. PMID:26299618

  5. Evaluation of soluble CD44 splice variant v5 in the diagnosis and follow-up in breast cancer patients.

    PubMed

    Kittl, E M; Ruckser, R; Selleny, S; Samek, V; Hofmann, J; Huber, K; Reiner, A; Ogris, E; Hinterberger, W; Bauer, K

    1997-01-01

    Aberrant expression of CD44 splice variants has been detected on a variety of human tumor cells. Overexpression of specific isoforms has been shown to be associated with metastasis and poor prognosis in breast cancer. We evaluated the possible utility of soluble CD44 splice variant v5 (sCD44v5) as a circulating, tumor-associated marker in breast cancer patients. Serum levels of sCD44v5 were determined in 147 healthy volunteers, in 53 patients with nonmalignant breast disease, in 85 patients with breast cancer at presentation, in 13 patients with recurrence and in 73 patients with active metastatic disease. Statistically, the levels at presentation in stages I-IV, in benign disease, and in a female control group were not significantly different. First longitudinal studies over 1-2 years in the follow-up of 28 patients who have remained tumor-free showed considerable between-patient variation while the intrapatient levels remained within relatively narrow limits. In patients with active metastatic disease, elevated levels of sCD44v5 (> 58 ng.ml-1) were detected in 50% of the cases with marked elevation in only 26%. In these cases, sCD44v5 correlated with the extent of metastatic disease and fell during clinical response to cytoreductive therapy. In comparison with CA15-3 in the patients' follow-up serum levels of sCD44v5 proved to be much less sensitive concerning lead time, percentage of raised serum levels at the time of recurrence and in metastatic disease. The value of sCD44v5 determinations in breast cancer patients was further limited by the poor diagnostic specificity of this marker due to elevated levels in smokers and chronic inflammatory disease. PMID:9523162

  6. Neutrophil transmigration under shear flow conditions in vitro is junctional adhesion molecule-C independent.

    PubMed

    Sircar, Monica; Bradfield, Paul F; Aurrand-Lions, Michel; Fish, Richard J; Alcaide, Pilar; Yang, Lin; Newton, Gail; Lamont, Deanna; Sehrawat, Seema; Mayadas, Tanya; Liang, Tony W; Parkos, Charles A; Imhof, Beat A; Luscinskas, Francis W

    2007-05-01

    Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration. PMID:17442972

  7. Syntenin-1 and Ezrin Proteins Link Activated Leukocyte Cell Adhesion Molecule to the Actin Cytoskeleton*

    PubMed Central

    Tudor, Cicerone; te Riet, Joost; Eich, Christina; Harkes, Rolf; Smisdom, Nick; Bouhuijzen Wenger, Jessica; Ameloot, Marcel; Holt, Matthew; Kanger, Johannes S.; Figdor, Carl G.; Cambi, Alessandra; Subramaniam, Vinod

    2014-01-01

    Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side. PMID:24662291

  8. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers

    PubMed Central

    Mas, Aymara; Nair, Sangeeta; Laknaur, Archana; Simón, Carlos; Diamond, Michael P.; Al-Hendy, Ayman

    2015-01-01

    Objective To identify and characterize myometrial/fibroid stem cells by specific stem cell markers in human myometrium, and to better understand the stem cell contribution in the development of uterine fibroids. Design Prospective experimental human and animal study. Setting University research laboratory. Patients Women undergoing hysterectomy for treatment of symptomatic uterine fibroids. Animals Female NOD/SCID/IL-2Rγnull mice. Interventions Identification and isolation of stem cells from human fibroids (F) and adjacent myometrium (MyoF) tissues using Stro-1/CD44 specific surface markers. Main Outcome Measures Flow cytometry, semi- quantitative polymerase chain reaction, clonogenicity assays, cell culture, molecular analysis, immunocyto- histochemistry, in vitro differentiation, and xenotransplantation assays. Results Using Stro-1/CD44 surface markers, we were able to isolate stem cells from MyoF and F tissues. The undifferentiated status of isolated cells was confirmed by the expression of ABCG2 transporter, as well as additional stem cell markers OCT4, NANOG and GDB3, and the low expression of steroid receptors ERα and PR-A/PR-B. Mesodermal cell origin was established by the presence of typical mesenchymal markers (CD90, CD105, and CD73) and absence of hematopoietic stem cell markers (CD34, CD45), and confirmed by the ability of these cells to differentiate in vitro into adipocytes, osteocytes and chondrocytes. Finally, their functional capability to form fibroid-like lesions was established in xenotransplantation mouse model. The injected cells labeled with superparamagnetic iron oxide (SPIO) were tracked by both magnetic resonance imaging (MRI) and fluorescence imaging, thus demonstrating the regenerative potential of putative fibroid stem cells in vivo. Conclusion We have demonstrated that Stro-1/CD44 can be used as specific surface markers to enrich a subpopulation of myometrial/fibroids cells, exhibiting key features of stem/progenitor cells. These

  9. The Interplay of Antigen Affinity, Internalization, and Pharmacokinetics on CD44-Positive Tumor Targeting of Monoclonal Antibodies.

    PubMed

    Glatt, Dylan M; Beckford Vera, Denis R; Parrott, Matthew C; Luft, J Christopher; Benhabbour, S Rahima; Mumper, Russell J

    2016-06-01

    Monoclonal antibodies (mAbs) offer promise as effective tumor targeting and drug delivery agents for cancer therapy. However, comparative biological and clinical characteristics of mAbs targeting the same tumor-associated antigen (TAA) often differ widely. This study examined the characteristics of mAbs that impact tumor targeting using a panel of mAb clones specific to the cancer-associated cell-surface receptor and cancer stem cell marker CD44. CD44 mAbs were screened for cell-surface binding, antigen affinity, internalization, and CD44-mediated tumor uptake by CD44-positive A549 cells. It was hypothesized that high-affinity, rapidly internalizing CD44 mAbs would result in high tumor uptake and prolonged tumor retention. Although high-affinity clones rapidly bound and were internalized by A549 cells in vitro, an intermediate-affinity clone demonstrated significantly greater tumor uptake and retention than high-affinity clones in vivo. Systemic exposure, rather than high antigen affinity or rapid internalization, best associated with tumor targeting of CD44 mAbs in A549 tumor-bearing mice. PMID:27079967

  10. [Serum soluble CD44 isoform variant 5 level in patients with seropositive rheumatoid arthritis treated with cyclosporin A].

    PubMed

    Feyertag, J; Haberhauer, G; Skoumal, M; Kittl, E M; Bauer, K; Dunky, A

    2000-01-01

    CD44 is a widely expressed cell surface glycoprotein which is involved in many cell-cell and cell-matrix interactions. Expression of soluble CD44 splice variants is strictly regulated and is linked to a high rate of cell division. Serum levels of soluble CD44 variant 5 (sCD44v5) were determined in 14 patients with erosive RA. Patients were divided into two groups. In group 1 cyclosporin A treatment (CYA) was initiated after the first visit. In group 2 preliminary CYA was continued. Controls were performed after 6 months. We found a significant decrease of swollen joint count (SJC) and sCD44v5 in group 1. No effect of CYA was found on c-reactive protein, erythrocyte sedimentation rate and IgM-rheumatoid factor (IgM-RF). In group 2 a significant decrease of CRP was found. Therefore we conclude that measurement of sCD44v5 might be useful in monitoring RA+ patients with CYA. PMID:11261266

  11. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. PMID:23910523

  12. Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption.

    PubMed Central

    Teraki, Y.; Moriya, N.; Shiohara, T.

    1994-01-01

    The mechanism(s) and the factor(s) that contribute to preferential localization of fixed drug eruption (FDE) lesions to certain skin sites remain speculative. Previous studies suggested that populations of T cells residing in the lesional epidermis may be involved in selective destruction of the epidermis in FDE. In this study, to define the earliest cellular and molecular events with potential relevance to activation of the epidermal T cells, expression of adhesion molecules on keratinocytes (KC) and vascular endothelium was examined sequentially in the lesional skin of FDE patients after challenge with the causative drug. Rapid and intense intercellular adhesion molecule-1 (ICAM-1) expression was induced on the vascular endothelium and KC as early as 1.5 hours after challenge, at which time E-selectin and vascular cell adhesion molecule-1 (VCAM-1) were not up-regulated. In vitro studies using skin organ culture showed that the lesional KC and endothelium responded more rapidly and intensely to express ICAM-1 to tumor necrosis factor-alpha or interferon-gamma compared with those in the nonlesional skin. Surprisingly, such selective induction of KC ICAM-1 restricted to the lesional skin was also observed after exposure to the causative drug alone in skin organ culture. Pretreatment of the lesional skin with anti-tumor necrosis factor completely abrogated in vitro induction of KC ICAM-1 expression by the drug. Drug-induced, TNF-alpha-dependent KC ICAM-1 expression in the lesional skin suggests that induction of ICAM-1 expression by the lesional KC after ingestion of the drug would probably provide a localized initiating stimulus for activation of the disease-associated epidermal T cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7915886

  13. Concentration of soluble adhesion molecules in cerebrospinal fluid and serum of epilepsy patients.

    PubMed

    Luo, Jing; Wang, Wei; Xi, Zhiqin; Dan, Chen; Wang, Liang; Xiao, Zheng; Wang, Xuefeng

    2014-12-01

    Mounting evidence supports the involvement of brain inflammation and the associated blood-brain barrier damage from which spontaneous and recurrent seizures originate. Detection of the soluble form of adhesion molecules (AM) has also been proven to predict outcomes in central nervous system (CNS) disorders. A recent study has shown that expression of AM in brain vessels was upregulated 24 h after kainic acid (KA) induced seizures. The aim of the present study was to investigate soluble AM levels in the cerebrospinal fluid (CSF) and serum of epilepsy patients. Paired CSF and serum samples were analyzed by sandwich enzyme-linked immunosorbent assay (ELISA) to determine the concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1). Increased serum concentrations of sICAM-1 were present in epileptic patients (41 localization-related of unknown etiology, 19 idiopathic generalized). Serum sICAM-1 level in drug-refractory epilepsy was elevated as compared to new diagnosis epilepsy and drug-responsive epilepsy. CSF sVCAM-1 and serum sVCAM-1 concentrations in the epilepsy group were higher as compared to the neurosis group. Moreover, CSF sVCAM-1 and serum sVCAM-1 concentrations in drug-refractory epilepsy were raised as compared to drug-responsive epilepsy and new diagnosis epilepsy. However, there were no significant differences in concentrations of CSF sICAM-1 between the epilepsy and neurosis groups. Our results suggest that sVCAM-1 and sICAM-1 could play an important role in the drug-refractory epilepsy. PMID:25001004

  14. Propranolol affects stress-induced leukocytosis and cellular adhesion molecule expression.

    PubMed

    Kühlwein, E C; Irwin, M R; Ziegler, M G; Woods, V L; Kennedy, B; Mills, P J

    2001-12-01

    In this study, the impact of the beta-adrenergic antagonist propranolol on resting and acute psychological- and physical-stress-induced circulating leukocyte numbers and the density of cellular adhesion molecules was investigated. In a randomized double-blind crossover design, 45 healthy volunteers performed a 15-min public speaking task and 21 subjects performed a 16-min bicycle exercise after 5 days of ingesting a placebo and after 5 days of ingesting 100 mg/day propranolol. One week of ingesting propranolol modestly elevated the numbers of CD62L+ (P<0.019) but not CD62L- T-lymphocytes. Moreover, propranolol preferentially blunted-psychological stress-induced increases in naïve T-helper (CD4+CD62L+; P<0.049) and naïve T-cytotoxic lymphocytes (CD8+CD62L+; P<0.003), as well as activated T-cytotoxic lymphocytes (CD8+CD29+; P<0.005). However, exercise-induced increases in leukocyte numbers were enhanced following propranolol treatment (P<0.04). In contrast to the effect on the numbers of adhesion-molecule-bearing cells, there was only a modest effect of propranolol on stress-induced alterations of the density of CD62L, CD54 and CD11a. In this study, propranolol treatment interfered with the adrenergic regulation of circulating leukocyte numbers by blunting psychological stress effects but enhancing exercise effects. Propranolol affected the cell activation status to a lesser extent, as reflected by the density of adhesion molecules. PMID:11822472

  15. Neurite Fasciculation Mediated by Complexes of Axonin-1 and Ng Cell Adhesion Molecule

    PubMed Central

    Kunz, Stefan; Spirig, Marianne; Ginsburg, Claudia; Buchstaller, Andrea; Berger, Philipp; Lanz, Rainer; Rader, Christoph; Vogt, Lorenz; Kunz, Beat; Sonderegger, Peter

    1998-01-01

    Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons. PMID:9852159

  16. Intercellular Adhesion Molecule-1–Dependent Neutrophil Adhesion to Endothelial Cells Induces Caveolae-Mediated Pulmonary Vascular Hyperpermeability

    PubMed Central

    Hu, Guochang; Vogel, Stephen M.; Schwartz, David E.; Malik, Asrar B.; Minshall, Richard D.

    2009-01-01

    We investigated the role of caveolae in the mechanism of increased pulmonary vascular permeability and edema formation induced by the activation of polymorphonuclear neutrophils (PMNs). We observed that the increase in lung vascular permeability induced by the activation of PMNs required caveolin-1, the caveolae scaffold protein. The permeability increase induced by PMN activation was blocked in caveolin-1 knockout mice and by suppressing caveolin-1 expression in rats. The response was also dependent on Src phosphorylation of caveolin-1 known to activate caveolae-mediated endocytosis in endothelial cells. To address the role of PMN interaction with endothelial cells, we used an intercellular adhesion molecule (ICAM)-1 blocking monoclonal antibody. Preventing the ICAM-1–mediated PMN binding to endothelial cells abrogated Src phosphorylation of caveolin-1, as well as the increase in endothelial permeability. Direct ICAM-1 activation by crosslinking recapitulated these responses, suggesting that ICAM-1 activates caveolin-1 signaling responsible for caveolae-mediated endothelial hyperpermeability. Our results provide support for the novel concept that a large component of pulmonary vascular hyperpermeability induced by activation of PMNs adherent to the vessel wall is dependent on signaling via caveolin-1 and increased caveolae-mediated transcytosis. Thus, it is important to consider the role of the transendothelial vesicular permeability pathway that contributes to edema formation in developing therapeutic interventions against PMN-mediated inflammatory diseases such as acute lung injury. PMID:18511851

  17. Regulation of platelet biology by platelet endothelial cell adhesion molecule-1.

    PubMed

    Jones, Chris I; Moraes, Leonardo A; Gibbins, Jonathan M

    2012-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation. PMID:22035359

  18. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    SciTech Connect

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  19. The diagnostic, predictive, and prognostic role of serum epithelial cell adhesion molecule (EpCAM) and vascular cell adhesion molecule-1 (VCAM-1) levels in breast cancer.

    PubMed

    Karabulut, S; Tas, F; Tastekin, D; Karabulut, M; Yasasever, C T; Ciftci, R; Güveli, M; Fayda, M; Vatansever, S; Serilmez, M; Disci, R; Aydıner, A

    2014-09-01

    The purpose of this study was to determine the clinical significance of vascular cell adhesion molecule-1 (VCAM-1) and epithelial cell adhesion molecule (EpCAM) in breast cancer (BC) patients. Ninety-six BC patients and 30 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich (enzyme-linked immunosorbent assay (ELISA)). The median age at diagnosis was 48 years (range 29-80 years). Majority of the patients (71 %) had luminal subtype, and 38.5 % had metastatic disease. Twenty-nine (30 %) patients showed tumor progression, and 20 (21 %) patients died during follow-up. Median progression-free survival (PFS) and overall survival (OS) were 8.6 ± 1.7 and 35.5 ± 1.5 months, respectively. The baseline serum EpCAM levels of the patients were significantly higher than those of the controls (p < 0.001). There was no significant difference in the serum levels of VCAM-1 between the patients and controls (p = 0.47). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p > 0.05). Patients with HER-2-positive and triple-negative tumors had significantly poorer PFS (p = 0.04 and p = 0.001, respectively), while metastatic disease and chemotherapy unresponsiveness had significantly adverse effect on OS analysis (p < 0.001 and p < 0.001, respectively). Neither serum VCAM-1 levels nor serum EpCAM levels were identified to have a prognostic role on either PFS or OS (VCAM-1 p = 0.76 and p = 0.32; EpCAM p = 0.16 and p = 0.69, respectively). Even though any predictive or prognostic role could not be determined for both markers, serum levels of EpCAM were found to have diagnostic value in BC patients. PMID:24891186

  20. Generation of CD44 gene-deficient mouse derived induced pluripotent stem cells: CD44 gene-deficient iPSCs.

    PubMed

    Song, Zhenwei; Ji, Qianqian; Zhao, Haijing; Nie, Yu; He, Zuyong; Chen, Yaosheng; Cong, Peiqing

    2014-10-01

    Induced pluripotent stem cells (iPSCs) show good promise for the treatment of defects caused by numerous genetic diseases. Herein, we successfully generated CD44 gene-deficient iPSCs using Oct4, Sox2, Klf4, and vitamin C. The generated iPSCs displayed a characteristic morphology similar to the well-characterized embryonic stem cells. Alkaline phosphatase, cell surface (SSEA1, NANOG, and OCT4), and pluripotency markers were expressed at high levels in these cells. The iPSCs formed teratomas in vivo and supported full-term development of constructed porcine embryos by inter-species nuclear transplantation. Importantly, incubation with trichostatin A increased the efficiency of iPSCs generation by increasing the histone acetylation levels. Moreover, more iPSCs colonies appeared following cell passaging during colony picking, thus increasing the effectiveness of iPSCs selection. Thus, our work provides essential stem cell materials for the treatment of genetic diseases and proposes a novel strategy to enhance the efficiency of induced reprogramming. PMID:24952030

  1. CD44 is a Marker for the Outer Pillar Cells in the Early Postnatal Mouse Inner Ear

    PubMed Central

    Puligilla, Chandrakala; Chan, Siaw-Lin; Timothy, Caroline; Depireux, Didier A.; Ahmed, Zubair; Wolf, Jeffrey; Eisenman, David J.; Friedman, Thomas B.; Riazuddin, Sheikh; Kelley, Matthew W.; Strome, Scott E.

    2010-01-01

    Cluster of differentiation antigens (CD proteins) are classically used as immune cell markers. However, their expression within the inner ear is still largely undefined. In this study, we explored the possibility that specific CD proteins might be useful for defining inner ear cell populations. mRNA expression profiling of microdissected auditory and vestibular sensory epithelia revealed 107 CD genes as expressed in the early postnatal mouse inner ear. The expression of 68 CD genes was validated with real-time RT-PCR using RNA extracted from microdissected sensory epithelia of cochleae, utricles, saccules, and cristae of newborn mice. Specifically, CD44 was identified as preferentially expressed in the auditory sensory epithelium. Immunohistochemistry revealed that within the early postnatal organ of Corti, the expression of CD44 is restricted to outer pillar cells. In order to confirm and expand this finding, we characterized the expression of CD44 in two different strains of mice with loss- and gain-of-function mutations in Fgfr3 which encodes a receptor for FGF8 that is essential for pillar cell development. We found that the expression of CD44 is abolished from the immature pillar cells in homozygous Fgfr3 knockout mice. In contrast, both the outer pillar cells and the aberrant Deiters’ cells in the Fgfr3P244R/+ mice express CD44. The deafness phenotype segregating in DFNB51 families maps to a linkage interval that includes CD44. To study the potential role of CD44 in hearing, we characterized the auditory system of CD44 knockout mice and sequenced the entire open reading frame of CD44 of affected members of DFNB51 families. Our results suggest that CD44 does not underlie the deafness phenotype of the DFNB51 families. Finally, our study reveals multiple potential new cell type-specific markers in the mouse inner ear and identifies a new marker for outer pillar cells. Electronic supplementary material The online version of this article (doi:10.1007/s10162

  2. Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    PubMed Central

    Murakami, Masato; Giampietro, Costanza; Giannotta, Monica; Corada, Monica; Torselli, Ilaria; Orsenigo, Fabrizio; Cocito, Andrea; d'Ario, Giovanni; Mazzarol, Giovanni; Confalonieri, Stefano; Di Fiore, Pier Paolo; Dejana, Elisabetta

    2011-01-01

    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target. PMID:21695058

  3. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules.

    PubMed Central

    Fraser, S E; Murray, B A; Chuong, C M; Edelman, G M

    1984-01-01

    The neural cell adhesion molecule (N-CAM) mediates neuron-neuron adhesion, is ubiquitous in the nervous system of developing and mature vertebrates, and undergoes major alterations in both amount and distribution during development. Perturbation of homophilic (N-CAM to N-CAM) binding by univalent fragments of specific anti-N-CAM antibodies has previously been found to alter neural tissue patterns in vitro. To show that significant alterations can also occur in vivo, antibodies to Xenopus N-CAM were embedded in agarose microcylinders and implanted in the tecta of juvenile Xenopus laevis frogs that were undergoing regeneration of their retinotectal projections; 1 week later, the effects of implantation on the projection pattern from the optic nerve were determined. Both polyclonal and monoclonal antibodies to N-CAM distorted the retinotectal projection pattern and greatly decreased the precision of the projection; these alterations recovered to near normal after an additional 3 weeks. Similar but smaller effects were obtained when normally developing froglets received tectal implants. In control animals, implants of immunoglobulins from preimmune serum and monoclonal antibodies not directed against N-CAM had little or no effect on the pattern. The results suggest that neuronal adhesion mediated by N-CAM is important in establishing and maintaining the precision and topography of neural patterns. Images PMID:6588385

  4. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. PMID:7704836

  5. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed Central

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. Images Fig. 2. Fig. 3. Fig. 4. PMID:7704836

  6. Diatomic molecules and metallic adhesion, cohesion, and chemisorption - A single binding-energy relation

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1983-01-01

    Potential-energy relations involving a few parameters in simple analytic forms have been found to represent well the energetics of a wide variety of diatomic molecules. However, such two-atom potential functions are not appropriate for metals. It is well known that, in the case of metals, there exist strong volume-dependent forces which can never be expressed as pairwise interactions. The present investigation has the objective to show that, in spite of the observation concerning metals, a single binding-energy relation can be found which accurately describes diatomic molecules as well as adhesion, cohesion, and chemisorption on metals. This universality reveals a commonality between the molecular and metallic bond.

  7. Molecular Imaging of CD44-Overexpressing Gastric Cancer in Mice Using T2 MR Imaging.

    PubMed

    Lee, Hwunjae; Yang, Seung-Hyun; Heo, Dan; Son, Heyoung; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min

    2016-01-01

    Novel diagnostic techniques have been developed in many research area using targetable contrast agents with magnetic resonance imaging (MRI) for cancer diagnosis. For cancer diagnosis, the use of MRI with biocompatible targeting moieties and manganese ferrite nanoparticles (MFNPs) is preferred. Thus, we synthesized MFNPs using a thermal decomposition method which enables sensitive T2 or T2 Turbo Spin Echo (TSE) MRI and coated them with hyaluronic acid (HA). The high targeting ability of HA-MFNPs was observed at MKN-45 cells (gastric cancer cell line) which high-expressing CD44 in contrast with MKN-28 cells which low-expressing CD44. We also prepared the gastric cancer mice model using MKN-45 cells which has the stem-like property was implanted into BALB/c nude mice. And then HA-MFNPs of the T2 contrast enhancement effects and targeting ability were investigated by in vivo MR imaging. As a result of these studies, we conclude that HA coated MFNPs can be effectively used as a novel probes for visualizing gastric cancer stem cells. PMID:27398445

  8. Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery.

    PubMed

    Lee, Jae-Young; Termsarasab, Ubonvan; Park, Ju-Hwan; Lee, Song Yi; Ko, Seung-Hak; Shim, Jae-Seong; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-08-28

    Dual CD44 and folate receptor targetable nanoparticles (NPs) based on hyaluronic acid-ceramide-folic acid (HACE-FA) were fabricated for improving tumor targetability. HACE-FA was synthesized via esterification between the carboxylic group of FA and hydroxyl group of HA. Doxorubicin (DOX)-loaded HACE-FA NPs, with a mean diameter of 120-130nm, narrow size distribution, and negative zeta potential, were prepared. The drug release from HACE-FA NPs were significantly increased in acidic pH (pH5.5) compared with physiological pH (7.4) (p<0.05). The cellular accumulation of the drug in HACE-FA NPs group was higher than that of HACE NPs group in SKOV-3 cells (human ovarian cancer cells; CD44 and folate receptor (FR)-positive cells). Dual targetability of HACE-FA NPs, compared to HACE NPs, was also verified in the SKOV-3 tumor-xenografted mouse model by near-infrared fluorescence (NIRF) imaging. Twenty-four hours after injection, HACE-FA NPs were accumulated mainly in tumor regions and their fluorescence intensity was 4.82-fold higher than that of HACE NPs (p<0.05). These findings suggest successful application of HACE-FA NPs for the accurate delivery of anticancer drugs to ovarian cancer. PMID:27320169

  9. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  10. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells.

    PubMed

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors. PMID:26901756

  11. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    PubMed Central

    Van Pham, Phuc; Vu, Ngoc Bich; Duong, Thuy Thanh; Nguyen, Tam Thanh; Truong, Nhung Hai; Phan, Nhan Lu Chinh; Vuong, Tue Gia; Pham, Viet Quoc; Nguyen, Hoang Minh; Nguyen, Kha The; Nguyen, Nhung Thi; Nguyen, Khue Gia; Khat, Lam Tan; Van Le, Dong; Truong, Kiet Dinh; Phan, Ngoc Kim

    2012-01-01

    Background Breast cancer stem cells with a CD44+CD24− phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24− breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment. Methods Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24− cells. To track CD44+CD24− cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control. Results The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group. Conclusion These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy. PMID:22649280

  12. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  13. Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer.

    PubMed

    Arabzadeh, A; Chan, C; Nouvion, A-L; Breton, V; Benlolo, S; DeMarte, L; Turbide, C; Brodt, P; Ferri, L; Beauchemin, N

    2013-02-14

    Liver metastasis is the predominant cause of colorectal cancer (CRC)-related mortality in developed countries. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell adhesion molecule with reduced expression in early phases of CRC development and thus functions as a tumor growth inhibitor. However, CEACAM1 is upregulated in metastatic colon cancer, suggesting a bimodal role in CRC progression. To investigate the role of this protein in the host metastatic environment, Ceacam1(-/-) mice were injected intrasplenically with metastatic MC38 mouse CRC cells. A significant reduction in metastatic burden was observed in Ceacam1(-/-) compared with wild-type (WT) livers. Intravital microscopy showed decreased early survival of MC38 cells in Ceacam1(-/-) endothelial environment. Metastatic cell proliferation within the Ceacam1(-/-) livers was also diminished. Bone marrow-derived cell recruitment, attenuation of immune infiltrates and diminished CCL2, CCL3 and CCL5 chemokine production participated in the reduced Ceacam1(-/-) metastatic phenotype. Transplantations of WT bone marrow (BM) into Ceacam1(-/-) mice fully rescued metastatic development, whereas Ceacam1(-/-) BM transfer into WT mice showed reduced metastatic burden. Chimeric immune cell profiling revealed diminished recruitment of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) to Ceacam1(-/-) metastatic livers and adoptive transfer of MDSCs confirmed the involvement of these immune cells in reduction of liver metastasis. CEACAM1 may represent a novel metastatic CRC target for treatment. PMID:22469976

  14. HOXA9 Methylation by PRMT5 Is Essential for Endothelial Cell Expression of Leukocyte Adhesion Molecules

    PubMed Central

    Bandyopadhyay, Smarajit; Harris, Daniel P.; Adams, Gregory N.; Lause, Gregory E.; McHugh, Anne; Tillmaand, Emily G.; Money, Angela; Willard, Belinda; Fox, Paul L.

    2012-01-01

    The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-α) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-α-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response. PMID:22269951

  15. Association of adipokines and adhesion molecules with indicators of obesity in women undergoing mammography screening

    PubMed Central

    2012-01-01

    Background The soluble cell adhesion molecules and adipokines are elevated in patients with obesity, hypertension, type 2 diabetes mellitus, breast cancer and atherosclerosis. Objective To investigate the relationship between anthropometric profile, dietary intake, lipid profile and fasting glycemia with serum levels of adipokines (adiponectin and PAI-1) and adhesion molecules (ICAM-1 and VCAM-1) in women without breast cancer undergoing routine mammographic screening. Design Transversal study. Subjects One hundred and forty-five women over 40-years old participated in this study. Results In 39.3% of cases the BMI was above 30 kg/m2; 46.9% had hypertension, 14.5% had type 2 Diabetes Mellitus, 31.7% had dyslipidemia and 88.3% presented a waist-to-hip ratio ≥ 0.8. A linear correlation was found between serum levels of PAI-1 and triglycerides, between serum levels of PAI-1 and WHR and between serum levels of VCAM-1 and BMI. Conclusion We found a high prevalence of obesity and metabolic syndrome. PAI-1 and VCAM-1 levels were correlated with clinical indicators of obesity and overweight. PMID:23113882

  16. Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice

    PubMed Central

    Huang, Jin; Filipe, Anne; Rahuel, Cécile; Bonnin, Philippe; Mesnard, Laurent; Guérin, Coralie; Wang, Yu; Le Van Kim, Caroline; Colin, Yves; Tharaux, Pierre-Louis

    2014-01-01

    Migration of circulating leukocytes from the vasculature into the surrounding tissue is an important component of the inflammatory response. Among the cell surface molecules identified as contributing to leukocyte extravasation is VCAM-1, expressed on activated vascular endothelium, which participates in all stages of leukocyte–endothelial interaction by binding to leukocyte surface expressed integrin VLA-4. However, not all VLA-4-mediated events can be linked to VCAM-1. A novel interaction between VLA-4 and endothelial Lutheran (Lu) blood group antigens and basal cell adhesion molecule (BCAM) proteins has been recently shown, suggesting that Lu/BCAM may have a role in leukocyte recruitments in inflamed tissues. Here, we assessed the participation of Lu/BCAM in the immunopathogenesis of crescentic glomerulonephritis. High expression of Lu/BCAM in glomeruli of mice with rapidly progressive glomerulonephritis suggests a potential role for the local expression of Lu/BCAM in nephritogenic recruitment of leukocytes. Genetic deficiency of Lu/BCAM attenuated glomerular accumulation of T cells and macrophages, crescent formation, and proteinuria, correlating with reduced fibrin and platelet deposition in glomeruli. Furthermore, we found a pro-adhesive interaction between human monocyte α4β1 integrin and Lu/BCAM proteins. Thus, Lu/BCAM may have a critical role in facilitating the accumulation of monocytes and macrophages, thereby exacerbating renal injury. PMID:24429403

  17. FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules.

    PubMed

    Williams, E J; Mittal, B; Walsh, F S; Doherty, P

    1995-11-01

    We have cultured cerebellar neurons on monolayers of cortical astrocytes in control medium or medium containing recombinant basic fibroblast growth factor (FGF). FGF was found to inhibit neurite outgrowth, with a significant effect seen at 0.5 ng/ml and a maximal effect at 10 ng/ml. FGF increased the production of arachidonic acid (AA) in cerebellar neurons, and when added directly to cultures or generated endogenously via activation of phospholipase A2 using melittin, this second messenger could mimic the inhibitory effect of FGF. FGF and AA could also specifically inhibit neurite outgrowth stimulated by three cell adhesion molecules (NCAM, N-cadherin and L1) expressed in transfected fibroblasts, or in the case of L1 bound to a tissue culture substratum. These data demonstrate that, in certain cellular contexts, FGF can act as an inhibitory cue for axonal growth and that arachidonic acid is the second messenger responsible for this activity. We discuss the possibility that arachidonic acid inhibits neurite outgrowth by desensitising the second messenger pathway underlying neuronal responsiveness to cell adhesion molecules. PMID:8586663

  18. Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression

    PubMed Central

    Sanz, María-Jesús; Nabah, Yafa Naim Abu; Cerdá-Nicolás, Miguel; O'Connor, José-Enrique; Issekutz, Andrew C; Cortijo, Julio; Morcillo, Esteban J

    2004-01-01

    Macrolides have long been used as anti-bacterial agents; however, there is some evidence that may exert anti-inflammatory activity. Therefore, erythromycin was used to characterize the mechanisms involved in their in vivo anti-inflammatory activity. Erythromycin pretreatment (30 mg kg−1 day−1 for 1 week) reduced the lipopolysaccharide (LPS; intratracheal, 0.4 mg kg−1)-induced increase in neutrophil count and elastase activity in the bronchoalveolar lavage fluid (BALF) and lung tissue myeloperoxidase activity, but failed to decrease tumor necrosis factor-α and macrophage-inflammatory protein-2 augmented levels in BALF. Erythromycin pretreatment also prevented lung P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mRNA upregulation in response to airway challenge with LPS. Mesentery superfusion with LPS (1 μg ml−1) induced a significant increase in leukocyte–endothelial cell interactions at 60 min. Erythromycin pretreatment abolished the increases in these parameters. LPS exposure of the mesentery for 4 h caused a significant increase in leukocyte rolling flux, adhesion and emigration, which were inhibited by erythromycin by 100, 93 and 95%, respectively. Immunohistochemical analysis showed that LPS exposure of the mesentery for 4 h caused a significant enhancement in P-selectin, E-selectin, ICAM-1 and VCAM-1 expression that was downregulated by erythromycin pretreatment. Flow cytometry analysis indicated that erythromycin pretreatment inhibited LPS-induced CD11b augmented expression in rat neutrophils. In conclusion, erythromycin inhibits leukocyte recruitment in the lung and this effect appears mediated through downregulation of CAM expression. Therefore, macrolides may be useful in the control of neutrophilic pulmonary diseases. PMID:15665859

  19. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy.

    PubMed

    Jang, Eunji; Kim, Eunjung; Son, Hye-Young; Lim, Eun-Kyung; Lee, Hwunjae; Choi, Yuna; Park, Kwangyeol; Han, Seungmin; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2016-10-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells overexpressing CD44 are marked as CSCs that cause tumorigenesis and recurrence. This hypothesis suggests that CD44 is a potential therapeutic target that can interfere with CSCs qualities. MicroRNA-34a (miR-34a) is a promising candidate for CD44 repression-based cancer therapy as it has been reported to inhibit proliferation, metastasis, and survival of CD44-positive CSCs. Here, we used nanovesicles containing PLI/miR complexes (NVs/miR) to systemically deliver miR-34a and induce miR-34a-triggered CD44 suppression in orthotopically and subcutaneously implanted tumors in nude mice. Poly(l-lysine-graft-imidazole) (PLI) condenses miRs and is functionally modified to deliver miRs to the site of action by buffering effect of imidazole residues under endosomal pH. Indeed, NVs/miR consisting of PEGylated lipids enveloping PLI/miR complexes greatly reduced inevitable toxicity of polycations by compensating their surface charge and markedly improved their in vivo stability and accumulation to tumor tissue compared to PLI/miR polyplexes. Our NVs-mediated miR-34a delivery system specifically increased endogenous target miR levels, thereby attenuating proliferation and migration of gastric cancer cells by repressing the expression of CD44 with decreased levels of Bcl-2, Oct 3/4 and Nanog genes. Our strategy led to a greater therapeutic outcome than PLI-based delivery with highly selective tumor cell death and significantly delayed tumor growth in CD44-positive tumor-bearing mouse models, thus providing a fundamental therapeutic window for CSCs. PMID:27497057

  20. The metastasis suppressor, NDRG1, inhibits “stemness” of colorectal cancer via down-regulation of nuclear β-catenin and CD44

    PubMed Central

    Wangpu, Xiongzhi; Yang, Xiao; Zhao, Jingkun; Lu, Jiaoyang; Guan, Shaopei; Lu, Jun; Kovacevic, Zaklina; Liu, Wensheng; Mi, Lan; Jin, Runsen; Sun, Jing; Yue, Fei; Ma, Junjun; Lu, Aiguo; Richardson, Des R.; Wang, Lishun; Zheng, Minhua

    2015-01-01

    N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target. PMID:26418878

  1. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  2. Glucosyltransferases of Viridans Group Streptococci Modulate Interleukin-6 and Adhesion Molecule Expression in Endothelial Cells and Augment Monocytic Cell Adherence

    PubMed Central

    Yeh, Chiou-Yueh; Chen, Jen-Yang; Chia, Jean-San

    2006-01-01

    Recruitment of monocytes plays important roles during vegetation formation and endocardial inflammation in the pathogenesis of infective endocarditis (IE). Bacterial antigens or modulins can activate endothelial cells through the expression of cytokines or adhesion molecules and modulate the recruitment of leukocytes. We hypothesized that glucosyltransferases (GTFs), modulins of viridans group streptococci, may act directly to up-regulate the expression of adhesion molecules and also interleukin-6 (IL-6) to augment monocyte attachment to endothelial cells. Using primary cultured human umbilical vein endothelial cells (HUVECs) as an in vitro model, we demonstrated that GTFs (in the cell-bound or free form) could specifically modulate the expression of IL-6, and also adhesion molecules, in a dose- and time-dependent manner. Results of inhibition assays suggested that enhanced expression of adhesion molecules was dependent on the activation of nuclear factor κB (NF-κB) and extracellular signal-regulated kinase and that p38 mitogen-activated protein kinase pathways also contributed to the release of IL-6. Streptococcus-infected HUVECs or treatment with purified IL-6 plus soluble IL-6 receptor α enhanced the expression of ICAM-1 and the adherence of the monocytic cell line U937. These results suggest that streptococcal GTFs might play an important role in recruiting monocytic cells during inflammation in IE through induction of adhesion molecules and IL-6, a cytokine involved in transition from neutrophil to monocyte recruitment. PMID:16428777

  3. Novel strategies for the treatment of inflammatory bowel disease: Selective inhibition of cytokines and adhesion molecules

    PubMed Central

    Nakamura, Kazuhiko; Honda, Kuniomi; Mizutani, Takahiro; Akiho, Hirotada; Harada, Naohiko

    2006-01-01

    The etiology of inflammatory bowel disease (IBD) has not yet been clarified and immunosuppressive agents which non-specifically reduce inflammation and immunity have been used in the conventional therapies for IBD. Evidence indicates that a dysregulation of mucosal immunity in the gut of IBD causes an overproduction of inflammatory cytokines and trafficking of effector leukocytes into the bowel, thus leading to an uncontrolled intestinal inflammation. Such recent advances in the understanding of the pathogenesis of IBD created a recent trend of novel biological therapies which specifically inhibit the molecules involved in the inflammatory cascade. Major targets for such treatment are inflammatory cytokines and their receptors, and adhesion molecules. A chimeric anti-TNF-α monoclonal antibody, infliximab, has become a standard therapy for CD and it is also likely to be beneficial for UC. Several anti-TNF reagents have been developed but most of them seem to not be as efficacious as infliximab. A humanized anti-TNF monoclonal antibody, adalimumab may be useful for the treatment of patients who lost responsiveness or developed intolerance to infliximab. Antibodies against IL-12 p40 and IL-6 receptor could be alternative new anti-cytokine therapies for IBD. Anti-interferon-γ and anti-CD25 therapies were developed, but the benefit of these agents has not yet been established. The selective blocking of migration of leukocytes into intestine seems to be a nice approach. Antibodies against α4 integrin and α4β7 integrin showed benefit for IBD. Antisense oligonucleotide of intercellular adhesion molecule 1 (ICAM-1) may be efficacious for IBD. Clinical trials of such compounds have been either recently reported or are currently underway. In this article, we review the efficacy and safety of such novel biological therapies for IBD. PMID:16937430

  4. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability.

    PubMed

    Wong, Donald; Prameya, Rukmini; Dorovini-Zis, Katerina

    2007-03-01

    The mechanisms by which polymorphonuclear leukocytes (PMN) cross the human blood-brain barrier have not been fully elucidated. Using a well characterized in vitro model of the human BBB, we examined the role of endothelial cell adhesion molecules on the adhesion and transendothelial migration of PMN across primary cultures of human brain microvessel endothelial cells (HBMEC). A small number of PMN (0.06%) adhered to unstimulated HBMEC, and the basal adhesion was not affected by anti-adhesion molecule antibodies. Treatment of HBMEC with tumor necrosis factor (TNF)-alpha resulted in increased PMN adhesion that was significantly inhibited by blocking antibodies to E-selectin and ICAM-1, but not VCAM-1 or PECAM-1. A very small number of adherent PMN migrated across unstimulated HBMEC monolayers. Migration increased 2 to 20 fold following stimulation of HBMEC with TNF-alpha. Monoclonal antibody blocking studies showed that PMN used ICAM-1, but not VCAM-1, E-selectin or PECAM-1 to move across activated monolayers. Anti-adhesion molecule antibodies did not diminish the basal PMN migration. Ultrastructurally, PMN often aggregated on top and between adjacent endothelial cells and adhered by first extending pseudopodia along the apical endothelial surface. They then flattened and inserted themselves between endothelial cells in order to migrate across the monolayers. At the end of the migration period, the cultures resumed their continuity with no evidence of disruption. Transendothelial migration of PMN decreased the transendothelial electrical resistance and increased the permeability to horseradish peroxidase, which penetrated alongside the migrating leukocytes. A blocking antibody to ICAM-1 that greatly decreased migration, had no effect on the permeability changes. These studies provide insights into the mechanisms that regulate the entry of PMN into the brain and the increased permeability of the BBB in CNS inflammation. PMID:17291598

  5. Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*

    PubMed Central

    Fu, Changliang; Tong, Chunfang; Wang, Manliu; Gao, Yuxin; Zhang, Yan; Lü, Shouqin; Liang, Shile; Dong, Cheng; Long, Mian

    2011-01-01

    Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics. PMID:21840991

  6. NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib

    PubMed Central

    Corbet, Cyril; Génot, Elisabeth; Adriaenssens, Eric; Chassat, Thierry; Bertucci, François; Daubon, Thomas; Magné, Nicolas

    2015-01-01

    There is accumulating evidence that TrkA and its ligand Nerve Growth Factor (NGF) are involved in cancer development. Staurosporine derivatives such as K252a and lestaurtinib have been developed to block TrkA kinase signaling, but no clinical trial has fully demonstrated their therapeutic efficacy. Therapeutic failures are likely due to the existence of intrinsic signaling pathways in cancer cells that impede or bypass the effects of TrkA tyrosine kinase inhibitors. To verify this hypothesis, we combined different approaches including mass spectrometry proteomics, co-immunoprecipitation and proximity ligation assays. We found that NGF treatment induced CD44 binding to TrkA at the plasma membrane and subsequent activation of the p115RhoGEF/RhoA/ROCK1 pathway to stimulate breast cancer cell invasion. The NGF-induced CD44 signaling was independent of TrkA kinase activity. Moreover, both TrkA tyrosine kinase inhibition with lestaurtinib and CD44 silencing with siRNA inhibited cell growth in vitro as well as tumor development in mouse xenograft model; combined treatment significantly enhanced the antineoplastic effects of either treatment alone. Altogether, our results demonstrate that NGF-induced tyrosine kinase independent TrkA signaling through CD44 was sufficient to maintain tumor aggressiveness. Our findings provide an alternative mechanism of cancer resistance to lestaurtinib and indicate that dual inhibition of CD44 and TrkA tyrosine kinase activity may represent a novel therapeutic strategy. PMID:25840418

  7. Surgically resected human tumors reveal the biological significance of the gastric cancer stem cell markers CD44 and CD26

    PubMed Central

    NISHIKAWA, SHIMPEI; KONNO, MASAMITSU; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; KANO, YOSHIHIRO; FUKUSUMI, TAKAHITO; SATOH, TAROH; TAKIGUCHI, SHUJI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2015-01-01

    Cancer tissue is maintained by relatively small populations of cancer stem cells (CSCs), which are involved in chemotherapy resistance, recurrence and metastasis. As tumor tissues are comprised of various cells, studies of human clinical samples are important for the characterization of CSCs. In the present study, an expression profiling study was performed in which an anti-cell surface marker antibody-based array platform, a flow cytometry-based cell separation technique and a tumorigenicity analysis in immunodeficient animals were utilized. These approaches revealed that the markers cluster of differentiation (CD)44 and CD26 facilitated the fractionation of surgically resected human gastric cancer (GC) cells into the following subset populations with distinct tumorigenic potentials: Highly tumorigenic CD26+CD44+ cells (6/6 mice formed tumors), moderately tumorigenic CD26+CD44− cells (5/6 mice formed tumors), and weakly or non-tumorigenic CD26−CD44− cells (2/6 mice formed tumors). Furthermore, exposure to 5-fluorouracil significantly increased the proportion of CD26+ cells in vitro. The present study demonstrated that the combined expression of CD26 and CD44 presents a potential marker of human GC stem cells. PMID:26137071

  8. Physiological Contribution of CD44 as a Ligand for E-Selectin during Inflammatory T-Cell Recruitment

    PubMed Central

    Nácher, Maria; Blázquez, Ana Belén; Shao, Bojing; Matesanz, Adela; Prophete, Colette; Berin, M. Cecilia; Frenette, Paul S.; Hidalgo, Andrés

    2011-01-01

    Endothelial selectins guide the migration of inflammatory T cells to extralymphoid tissues. Whereas P-selectin glycoprotein ligand-1 (PSGL-1) functions as the exclusive ligand for P-selectin, it acts in coordination with additional glycoproteins to mediate E-selectin binding. CD44 can act as one such ligand in neutrophils, but its contribution in inflammatory T lymphocytes remains unexplored. We have used real-time in vivo imaging of the cremasteric and dermal microcirculations to explore the dynamics of leukocyte recruitment, as well as the physiological contribution of CD44 in a model of Th1-driven inflammation. CD4+ T-cell rolling frequency and kinetics, as well as arrest, were dependent on endothelial selectins and were markedly altered under inflammatory conditions. CD44 extracted from Th1 cells bound to soluble E-selectin in vitro and cooperated with PSGL-1 by controlling rolling velocities and promoting firm arrest. Using several competitive recruitment assays in a delayed-type hypersensitivity model, we show that the combined absence of CD44 and PSGL-1 impairs inflammatory T-cell recruitment beyond that of PSGL-1 alone. Differential expression of leukocyte fucosyltransferases in these cells may account for the differential use of E-selectin ligands relative to neutrophils. Our results identify additional mechanisms by which CD44 modulates the inflammatory response. PMID:21457936

  9. Expression of the matrix receptor CD44v5 on chondrocytes changes with osteoarthritis: an experimental investigation in the rabbit

    PubMed Central

    Tibesku, C O; Szuwart, T; Ocken, S A; Skwara, A; Fuchs, S

    2006-01-01

    Objective To evaluate the expression of CD44v5 on chondrocytes of hyaline cartilage during the course of osteoarthritis (OA). Methods In 12 white New Zealand rabbits the anterior cruciate ligament (ACL) was resected to create an anterior instability of the knee. In 12 control rabbits only a sham operation without resection of the ACL was done. Four animals of each group were killed at 3, 6, and 12 weeks. The loadbearing area was evaluated histologically according to Mankin and by immunostaining for CD44v5. Results In the trial group, histological grades of OA showed a positive linear correlation with the time after surgery. Immunostaining showed an increased expression of CD44v5 in the control group after 3 and 6 weeks, which dropped to normal after 12 weeks. There was no difference between control and trial groups after 3 and 6 weeks, but a difference was seen after 12 weeks. A significant positive correlation between CD44v5 expression and the histological grade of OA was found (r = 0.314). Conclusions An in vivo increase of expression of the hyaluronan receptor CD44v5 occurs during the course of OA. Further studies are needed to evaluate whether this pattern applies to man and whether new treatment approaches might evolve from this knowledge. PMID:16344493

  10. α6 Integrin and CD44 Enrich for a Primary Keratinocyte Population That Displays Resistance to UV-Induced Apoptosis

    PubMed Central

    Wray, Helen; Mackenzie, Ian C.; Storey, Alan; Navsaria, Harshad

    2012-01-01

    Epidermal human keratinocytes are exposed to a wide range of environmental genotoxic insults, including the UV component of solar radiation. Epidermal homeostasis in response to cellular or tissue damage is maintained by a population of keratinocyte stem cells (KSC) that reside in the basal layer of the epithelium. Using cell sorting based on cell-surface markers, we have identified a novel α6 integrinhigh+/CD44+ sub-population of basal keratinocytes. These α6 integrinhigh+/CD44+ keratinocytes have both high proliferative potential, form colonies in culture that have characteristics of holoclones and have a unique pattern of resistance to apoptosis induced by UVB radiation or by agents that induce single- or double strand DNA breaks. Resistance to UVB induced apoptosis in the α6 integrinhigh+/CD44+ cells involved increased expression of TAp63 and was overcome by PI-3 kinase inhibition. In marked contrast, the α6 integrinhigh+/CD44+ cells were sensitive to apoptosis induced by the cross-linking agent cisplatin, and imatinib inhibition of c-Abl blocked the ability of cisplatin to kill α6 integrinhigh+/CD44+ cells. Our findings reveal a population of basal keratinocytes with long-term proliferative properties that display specific patterns of apoptotic resistance that is dependent upon the genotoxic stimulus, and provide insights into how these cells can be targeted with chemotherapeutic agents. PMID:23071680

  11. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease.

    PubMed

    Ghatak, Shibnath; Bogatkevich, Galina S; Atnelishvili, Ilia; Akter, Tanjina; Feghali-Bostwick, Carol; Hoffman, Stanley; Fresco, Victor M; Fuchs, John C; Visconti, Richard P; Markwald, Roger R; Padhye, Subhas B; Silver, Richard M; Hascall, Vincent C; Misra, Suniti

    2014-03-14

    The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis. PMID:24324260

  12. Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles.

    PubMed

    Boere, Janneke; van de Lest, Chris H A; Libregts, Sten F W M; Arkesteijn, Ger J A; Geerts, Willie J C; Nolte-'t Hoen, Esther N M; Malda, Jos; van Weeren, P René; Wauben, Marca H M

    2016-01-01

    Extracellular vesicles (EVs) in synovial fluid (SF) are gaining increased recognition as important factors in joint homeostasis, joint regeneration, and as biomarkers of joint disease. A limited number of studies have investigated EVs in SF samples of patients with joint disease, but knowledge on the role of EVs in healthy joints is lacking. In addition, no standardized protocol is available for isolation of EVs from SF. Based on the high viscosity of SF caused by high concentrations of hyaluronic acid (HA) - a prominent extracellular matrix component - it was hypothesized that EV recovery could be optimized by pretreatment with hyaluronidase (HYase). Therefore, the efficiency of EV isolation from healthy equine SF samples was tested by performing sequential ultracentrifugation steps (10,000g, 100,000g and 200,000g) in the presence or absence of HYase. Quantitative EV analysis using high-resolution flow cytometry showed an efficient recovery of EVs after 100,000g ultracentrifugation, with an increased yield of CD44+ EVs when SF samples were pretreated with HYase. Morphological analysis of SF-derived EVs with cryo-transmission-electron microscopy did not indicate damage by high-speed ultracentrifugation and revealed that most EVs are spherical with a diameter of 20-200 nm. Further protein characterization by Western blotting revealed that healthy SF-derived EVs contain CD9, Annexin-1, and CD90/Thy1.1. Taken together, these data suggest that EV isolation protocols for body fluids that contain relatively high amounts of HA, such as SF, could benefit from treatment of the fluid with HYase prior to ultracentrifugation. This method facilitates recovery and detection of CD44+ EVs within the HA-rich extracellular matrix. Furthermore, based on the findings presented here, it is recommended to sediment SF-derived EVs with at least 100,000g for optimal EV recovery. PMID:27511891

  13. Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles

    PubMed Central

    Boere, Janneke; van de Lest, Chris H. A.; Libregts, Sten F. W. M.; Arkesteijn, Ger J. A.; Geerts, Willie J. C.; Nolte-'t Hoen, Esther N. M.; Malda, Jos; van Weeren, P. René; Wauben, Marca H. M.

    2016-01-01

    Extracellular vesicles (EVs) in synovial fluid (SF) are gaining increased recognition as important factors in joint homeostasis, joint regeneration, and as biomarkers of joint disease. A limited number of studies have investigated EVs in SF samples of patients with joint disease, but knowledge on the role of EVs in healthy joints is lacking. In addition, no standardized protocol is available for isolation of EVs from SF. Based on the high viscosity of SF caused by high concentrations of hyaluronic acid (HA) – a prominent extracellular matrix component – it was hypothesized that EV recovery could be optimized by pretreatment with hyaluronidase (HYase). Therefore, the efficiency of EV isolation from healthy equine SF samples was tested by performing sequential ultracentrifugation steps (10,000g, 100,000g and 200,000g) in the presence or absence of HYase. Quantitative EV analysis using high-resolution flow cytometry showed an efficient recovery of EVs after 100,000g ultracentrifugation, with an increased yield of CD44+ EVs when SF samples were pretreated with HYase. Morphological analysis of SF-derived EVs with cryo-transmission-electron microscopy did not indicate damage by high-speed ultracentrifugation and revealed that most EVs are spherical with a diameter of 20–200 nm. Further protein characterization by Western blotting revealed that healthy SF-derived EVs contain CD9, Annexin-1, and CD90/Thy1.1. Taken together, these data suggest that EV isolation protocols for body fluids that contain relatively high amounts of HA, such as SF, could benefit from treatment of the fluid with HYase prior to ultracentrifugation. This method facilitates recovery and detection of CD44+ EVs within the HA-rich extracellular matrix. Furthermore, based on the findings presented here, it is recommended to sediment SF-derived EVs with at least 100,000g for optimal EV recovery. PMID:27511891

  14. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  15. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues.

    PubMed Central

    Jin, L.; Hemperly, J. J.; Lloyd, R. V.

    1991-01-01

    The neural cell adhesion molecule (N-CAM) is a group of cell surface glycoproteins involved in direct cell--cell adhesion. N-CAM expression in normal and neoplastic tissues was examined with specific antibodies and oligonucleotide probes by immunohistochemistry and in situ hybridization. Most neuroendocrine cells and tumors with secretory granules expressed N-CAM protein and mRNA. Parathyroid adenomas (4) were somewhat unusual, because N-CAM mRNA, but not protein, was detected in some of these benign neoplasms. Most non-neuroendocrine cells and tumors did not express N-CAM, although uterine smooth muscle and an adrenal cortical carcinoma were both positive. Western blots disclosed proteins of 180, 140, and 120 kd in normal adult brain, whereas two pheochromocytomas, a null cell adenoma, and a gastrinoma had proteins of approximately 180 and 140 kd. These results indicate that N-CAM protein and mRNA are widely expressed in neuroendocrine cells and neoplasms. N-CAM oligonucleotide probes as well as antibodies against N-CAM can be used as broad-spectrum neuroendocrine markers. In addition, these molecular probes can be used to examine the role of N-CAM in the development and regulation of neuroendocrine tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2012179

  16. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  17. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation.

    PubMed

    Capkovic, Katie L; Stevenson, Severin; Johnson, Marc C; Thelen, Jay J; Cornelison, D D W

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression. PMID:18308302

  18. N-glycosylation controls the function of junctional adhesion molecule-A

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Graham, David M.; Wittchen, Erika; Bear, James E.; Burridge, Keith

    2015-01-01

    Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein’s functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein’s ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A–mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A’s many functions. PMID:26224316

  19. The homophilic adhesion molecule sidekick-1 contributes to augmented podocyte aggregation in HIV-associated nephropathy.

    PubMed

    Kaufman, Lewis; Yang, Guozhe; Hayashi, Kayo; Ashby, James R; Huang, Li; Ross, Michael J; Klotman, Mary E; Klotman, Paul E

    2007-05-01

    The collapsing glomerulopathy of HIV-associated nephropathy (HIVAN) is characterized by podocyte dedifferentiation and proliferation. In affected glomeruli, proliferating podocytes adhere in aggregates to form glomerular pseudocrescents and fill an enlarged Bowman's space. Previously, we reported that sidekick-1 (sdk-1), an adhesion molecule of the immunoglobulin superfamily, was highly up-regulated in HIV-1 transgenic podocytes. In the current work, we explore how sdk-1 overexpression contributes to HIVAN pathogenesis. Murine podocytes infected with HIV-1 virus expressed significantly more sdk-1 than control-infected cells. Podocytes stably transfected with an sdk-1 expression construct grew in large aggregates with a simplified morphology characterized by a disorganized actin cytoskeleton, changes similar to podocytes in HIVAN. In contrast to controls, HIV-1 infected podocytes adhered to stably transfected sdk-1 podocyte aggregates in mixing studies. Furthermore, substrate-released cell sheets of wild-type podocytes were readily dissociated by mechanical stress, whereas HIV-1 podocytes remained in aggregates. The number of HIV-1 podocyte aggregates was significantly reduced in cells expressing a short hairpin RNA (shRNA) construct specific for sdk-1 compared with cells expressing control shRNA. Finally, in a HIVAN mouse model, sdk-1 protein was detected in podocytes in collapsed glomerular tufts and in glomerular pseudocrescents. These findings suggest that sdk-1 is an important mediator of cellular adhesion in HIV-infected podocytes and may contribute to podocyte clustering that is characteristic of pseudocrescent formation in HIVAN. PMID:17307840

  20. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  1. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes.

    PubMed

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R

    2015-09-01

    Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons. PMID:25988664

  2. Circulating adhesion molecules after short-term exposure to particulate matter among welders

    PubMed Central

    Fang, S C; Eisen, E A; Cavallari, J M; Mittleman, M A; Christiani, D C

    2011-01-01

    Background Studies from several countries indicate that welders experience increased risk of mortality and morbidity from ischaemic heart disease. Although the underlying mechanisms are unclear, vascular responses to particulate matter contained in welding fumes may play a role. To investigate this, we studied the acute effects of welding fume exposure on the endothelial component of vascular function, as measured by circulating adhesion molecules involved in leukocyte adhesion (sICAM-1 and sVCAM-1) and coagulation (vWF). Methods A panel of 26 male welders was studied repeatedly across a 6 h work-shift on a high exposure welding day and/or a low exposure non-welding day. Personal PM2.5 exposure was measured throughout the work-shift. Blood samples were collected in the morning (baseline) prior to the exposure period, immediately after the exposure period, and the following morning. To account for the repeated measurements, we used linear mixed models to evaluate the effects of welding (binary) and PM2.5 (continuous) exposure on each blood marker, adjusting for baseline blood marker concentration, smoking, age and time of day. Results Welding and PM2.5 exposure were significantly associated with a decrease in sVCAM-1 in the afternoon and the following morning and an increase in vWF in the afternoon. Conclusions The data suggest that welding and short-term occupational exposure to PM2.5 may acutely affect the endothelial component of vascular function. PMID:19736177

  3. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina.

    PubMed

    Yamagata, Masahito; Weiner, Joshua A; Sanes, Joshua R

    2002-09-01

    A major determinant of specific connectivity in the central nervous system is that synapses made by distinct afferent populations are restricted to particular laminae in their target area. We identify Sidekick (Sdk)-1 and -2, homologous transmembrane immunoglobulin superfamily molecules that mediate homophilic adhesion in vitro and direct laminar targeting of neurites in vivo. sdk-1 and -2 are expressed by nonoverlapping subsets of retinal neurons; each sdk is expressed by presynaptic (amacrine and bipolar) and postsynaptic (ganglion) cells that project to common inner plexiform (synaptic) sublaminae. Sdk proteins are concentrated at synaptic sites, and Sdk-positive synapses are restricted to the 2 (of > or =10) sublaminae to which sdk-expressing cells project. Ectopic expression of Sdk in Sdk-negative cells redirects their processes to a Sdk-positive sublamina. These results implicate Sdks as determinants of lamina-specific synaptic connectivity. PMID:12230981

  4. Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association between Caveolins, Inflammation and Adhesion Molecules

    PubMed Central

    Grenon, S. Marlene; Jeanne, Marion; Aguado-Zuniga, Jesus; Conte, Michael S.; Hughes-Fulford, Millie

    2013-01-01

    Mechanical forces including gravity affect endothelial cell (ECs) function, and have been implicated in vascular disease as well as physiologic changes associated with low gravity environments. The goal of this study was to investigate the impact of gravitational mechanical unloading on ECs phenotype as determined by patterns of gene expression. Human umbilical vascular endothelial cells were exposed to 1-gravity environment or mechanical unloading (MU) for 24 hours, with or without periods of mechanical loading (ML). MU led to a significant decrease in gene expression of several adhesion molecules and pro-inflammatory cytokines. On the contrary, eNOS, Caveolin-1 and -2 expression were significantly increased with MU. There was a decrease in the length and width of the cells with MU. Addition of ML during the MU period was sufficient to reverse the changes triggered by MU. Our results suggest that gravitational loading could dramatically affect vascular endothelial cell function. PMID:23511048

  5. Expression of the cluster 1 antigen (neural cell adhesion molecule) in neuroectodermal tumours.

    PubMed Central

    Patel, K.; Frost, G.; Kiely, F.; Phimister, E.; Coakham, H. B.; Kemshead, J. T.

    1991-01-01

    In this study, we have investigated the expression of the neural cell adhesion molecule (NCAM) in the human brain, primary brain tumours and neuroblastoma. Adult brain was found to express discrete isoforms of 180, 170, 140 and 120 kDa, which on neuraminidase treatment resolved into bands of 180, 170, 140, 120 and 95 kDa. Primary brain tumours such as Schwannoma and medulloblastoma expressed embryonic NCAM characterised by a high level of glycosylation, whereas other tumours, e.g. astrocytoma, meningioma, glioma and oligodendroglioma expressed adult NCAM. Post-neuraminidase treatment, differential expression of the 180, 170, 140, 120 and 95 kDa isoforms were noted in these various tumour types. On the other hand, neuroblastoma cell lines were found to express only embryonic NCAM, which after neuraminidase treatment resulted in differential presence of only 180, 140 and 120 kDa proteins. Images Figure 1 Figure 2 PMID:2039710

  6. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    PubMed Central

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  7. Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade.

    PubMed

    Wei, Bo; Sun, Xiaoyan; Geng, Zhijun; Shi, Ming; Chen, Zhida; Chen, Lin; Wang, Yongan; Fu, Xiaobing

    2016-10-01

    Gastric cancer is a heterogeneous disease, and stem cells are thought to be the cell of origin contributed to this malignancy. However, studies with breast and intestinal cancer models show non-stem cancer cells can change their surface phenotype and convert into tumor-initiating cells induced by the signals emanating from surrounding tumor microenvironment. Here, we show that CD44 was expressed at different levels in gastric metastases compared with primary tumors, and also negatively correlated with the expression of miR-373. By using a panel of human gastric cancer cell lines and analysis of archived data from The Cancer Genomics Altas (TCGA) database, we verified the inverse correlation between CD44 and miR-373. Furthermore, the stress-associated hormone, isoproterenol, could increase the expression levels of "stem"-related proteins, such as CD44, Nanog, and Rex-1, and induce chemoresistance in gastric cancer cells. Transfection with miR-373, however, reversed not only the effect of isoproterenol on phenotypic conversion but also its effect on drug sensitivity. Isoproterenol triggered downstream target STAT3 mainly through β2-adrenergic receptors (β2-ARs). Activated STAT3 functioned as a miR-373 suppressor by binding to its promoter, which forms a positive feedback circuit to maintain CD44 activity and direct the phenotypic conversion from CD44(low) to CD44(hi) expression. Our data suggest an important role of β2-AR/STAT3/miR-373 signaling on the transformation of gastric cancer cells. This study also suggests a potential therapeutic or preventive treatment for gastric cancer patients who are especially prone to psychosocial stress. PMID:27512943

  8. Nomogram Incorporating CD44v6 and Clinicopathological Factors to Predict Lymph Node Metastasis for Early Gastric Cancer

    PubMed Central

    Eom, Bang Wool; Joo, Jungnam; Park, Boram; Jo, Min Jung; Choi, Seung Ho; Cho, Soo-Jeong; Ryu, Keun Won; Kim, Young-Woo; Kook, Myeong-Cherl

    2016-01-01

    Background Treatment strategy for early gastric cancer depends on the probability of lymph node metastasis. The aim of this study is to develop a nomogram predicting lymph node metastasis in early gastric cancer using clinicopathological factors and biomarkers. Methods A literature review was performed to identify biomarkers related to lymph node metastasis in gastric cancer. Seven markers were selected and immunohistochemistry was performed in 336 early gastric cancer tissues. Based on the multivariable analysis, a prediction model including clinicopatholgical factors and biomarkers was developed, and benefit of adding biomarkers was evaluated using the area under the receiver operating curve and net reclassification improvement. Functional study in gastric cancer cell line was performed to evaluate mechanism of biomarker. Results Of the seven biomarkers studied, α1 catenin and CD44v6 were significantly associated with lymph node metastasis. A conventional prediction model, including tumor size, histological type, lymphatic blood vessel invasion, and depth of invasion, was developed. Then, a new prediction model including both clinicopathological factors and CD44v6 was developed. Net reclassification improvement analysis revealed a significant improvement of predictive performance by the addition of CD44v6, and a similar result was shown in the internal validation using bootstrapping. Prediction nomograms were then constructed based on these models. In the functional study, CD44v6 was revealed to affect cell proliferation, migration and invasion. Conclusions Overexpression of CD44v6 was a significant predictor of lymph node metastasis in early gastric cancer. The prediction nomograms incorporating CD44v6 can be useful to determine treatment plans in patients with early gastric cancer. PMID:27482895

  9. Key Roles of Hyaluronan and Its CD44 Receptor in the Stemness and Survival of Cancer Stem Cells

    PubMed Central

    Chanmee, Theerawut; Ontong, Pawared; Kimata, Koji; Itano, Naoki

    2015-01-01

    Cancer stem cells (CSCs) represent a unique subpopulation of self-renewing oncogenic cells that drive cancer initiation and progression. CSCs often acquire multidrug and oxidative stress resistance and are thereby thought to be responsible for tumor recurrence following treatment and remission. Although the mechanisms responsible for CSC generation, maintenance, and expansion have become a major focus in cancer research, the molecular characteristics of CSCs remain poorly understood. The stemness and subsequent expansion of CSCs are believed to be highly influenced by changes in microenvironmental signals as well as genetic and epigenetic alterations. Hyaluronan (HA), a major component of the extracellular matrix, has recently been demonstrated to provide a favorable microenvironment for the self-renewal and maintenance of stem cells. HA directly and indirectly affects CSC self-renewal by influencing the behavior of both cancer and stromal cells. For instance, HA in the tumor microenvironment modulates the function of tumor-associated macrophages to support CSC self-renewal, and excessive HA production promotes the acquisition of CSC signatures through epithelial-to-mesenchymal transition. The importance of HA in mediating CSC self-renewal has been strengthened by the finding that interactions between HA and its receptor, CD44, propagate the stemness of CSCs. HA–CD44 interactions evoke a wide range of signals required for CSC self-renewal and maintenance. CD44 also plays a critical role in the preservation and multidrug resistance (MDR) of CSCs by transmitting survival and anti-apoptotic signals. Thus, a better understanding of the molecular mechanisms involved in HA and CD44 control of CSC stemness may help in the design of more effective therapies for cancer patients. In this review, we address the key roles of HA and CD44 in CSC self-renewal and maintenance. We also discuss the involvement of CD44 in the oxidative stress and MDR of CSCs. PMID:26322272

  10. Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan.

    PubMed

    Clark, Richard A F; Lin, Fubao; Greiling, Doris; An, Jianqang; Couchman, John R

    2004-02-01

    After tissue injury, fibroblast migration from the peri-wound collagenous stroma into the fibrin-laden wound is critical for granulation tissue formation and subsequent healing. Recently we found that fibroblast transmigration from a collagen matrix into a fibrin matrix required the presence of fibronectin. Several integrins-alpha 4 beta 1, alpha 5 beta 1, and alpha v beta 3-with known fibronectin binding affinity were necessary for this invasive migration. Here we examined another family of cell surface receptors: the proteoglycans. We found that dermatan sulfate was required for fibroblast migration into a fibronectin/fibrin gel. This conclusion was based on beta-xyloside inhibition of glycanation and specific glycosaminoglycan degradation. CD44, a cell surface receptor known to bind hyaluronan, not infrequently exists as a proteoglycan, decorated with various glycosaminoglycan chains including heparan sulfate and chondroitin sulfate, and as such can bind fibronectin. We found that CD44H, the non-spliced isoform of CD44, was necessary for fibroblast invasion into fibronectin/fibrin gels. Resting fibroblasts expressed mostly nonglycanated CD44H core protein, which became glycanated with chondroitin sulfate and dermatan sulfate, but not heparan sulfate, after a 24 h incubation with platelet-derived growth factor, the stimulus used in the migration assay. These results demonstrate that dermatan sulfate-CD44H proteoglycan is essential for fibroblast migration into fibrin clots and that platelet-derived growth factor, the stimulus for migration, induces the production of chondroitin-sulfate- and dermatan-sulfate-glycanated CD44H. PMID:15009704

  11. Functional role of endothelial adhesion molecules in the early stages of brain metastasis

    PubMed Central

    Soto, Manuel Sarmiento; Serres, Sébastien; Anthony, Daniel C.; Sibson, Nicola R.

    2014-01-01

    Background Cellular adhesion molecules (CAMs), which are normally associated with leukocyte trafficking, have also been shown to play an essential role in tumor metastasis to non-CNS sites. However, the role played by CAMs in brain metastasis is largely unexplored. It is known that leukocyte recruitment to the brain is very atypical and that mechanisms of disease in peripheral tissues cannot be extrapolated to the brain. Here, we have established the spatiotemporal expression of 12 key CAMs in the initial phases of tumor seeding in 2 different models of brain metastasis. Methods BALB/c or SCID mice were injected intracardially (105 cells/100 μL phosphate-buffered saline with either 4T1-GFP or MDA231BR-GFP cells, respectively (n = 4–6/group), and expression of the CAMs was determined by immunohistochemistry and immunofluorescence colocalisation. Results Endothelial expression of E-selectin, VCAM-1, ALCAM, ICAM-1, VLA-4, and β4 integrin was markedly increased early in tumor seeding. At the same time, the natural ligands to these adhesion molecules were highly expressed on the metastatic tumor cells both in vitro and in vivo. Two of these ligands showed particularly high tumor cell expression (ALCAM and VLA-4), and consequently their functional role in tumor seeding was determined. Antibody neutralization of either ALCAM or VLA-4 significantly reduced tumor seeding within the brain (>60% decrease in tumor number/mm2 brain; P < .05–0.01). Conclusions These findings suggest that ALCAM/ALCAM and VLA-4/VCAM-1 interactions play an important functional role in the early stages of metastasis seeding in the brain. Moreover, this work identifies a specific subset of ligand-receptor interactions that may yield new therapeutic and diagnostic targets for brain metastasis. PMID:24311639

  12. Release of soluble intercellular adhesion molecule 1 into bile and serum in murine endotoxin shock.

    PubMed

    Jaeschke, H; Essani, N A; Fisher, M A; Vonderfecht, S L; Farhood, A; Smith, C W

    1996-03-01

    Neutrophil-induced liver injury during endotoxemia is dependent on the adhesion molecules Mac-1 (CD11b/CD18) on neutrophils and its counterreceptor on endothelial cells and hepatocytes, intercellular adhesion molecule 1 (ICAM-1). To investigate a potential release of a soluble form of ICAM-1 (sICAM-1), animals received 100 micrograms/kg Salmonella abortus equi endotoxin alone or in combination with 700 mg/kg galactosamine. In endotoxin-sensitive mice (C3Heb/FeJ), injection of endotoxin did not cause liver injury but induced a time-dependent increase of sICAM-1 in serum (300%) and in bile (615%) without affecting bile flow. In galactosamine/endotoxin-treated animals, which developed liver injury, the increase in both compartments was only 97% and 104%, respectively. In either case, the increase in sICAM-1 concentrations paralleled the enhanced ICAM-1 expression in the liver. The endotoxin-resistant strain (C3H/HeJ) did not show elevated sICAM-1 levels in serum or bile after endotoxin administration. In contrast, the intravenous injection of murine tumor necrosis factor alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) or IL-1 beta (13-23 micrograms/kg) into endotoxin-resistant mice induced a 225% to 364% increase in serum sICAM-1 and a 370% elevation of the biliary efflux of sICAM-1, again independent of changes in bile flow. These data indicate that cytokines are major inducers of sICAM-1 formation during endotoxemia in vivo. The described experimental model can be used to investigate the role of sICAM-1 in the pathophysiology of inflammatory liver disease. PMID:8617433

  13. Evaluation of soluble adhesion molecules in the diagnosis of amoebiasis, giardiasis and toxoplasmosis.

    PubMed

    el-Shazly, A M; Soliman, M; el-Kalla, M R; Rezk, H; el-Nemr, H; Handoussa, A E; el-Aaty, H E; Morsy, T A

    2001-12-01

    A total of 47 patients with toxoplasmosis (21 cases) with amoebic liver abscess (14 cases) and with giardiasis (12 cases) as well as 14 healthy control were subjected to thorough history taking, clinical examination, stool & urine analysis, complete blood picture, ESR, C-reactive protein, ASO, widal test, blood cultures, liver function tests, serum creatinine, hepatitis viral markers, rheumatoid factor, auto-antibodies, stool culture, rectal snip, chest X-ray, abdominal sonar, level of serum adhesion molecules (sICAM-1, sELAM-1), ELISA detection of Toxoplasma antibodies in serum, liver biopsy, detection and counting of Giardia cysts. In toxoplasmosis group, highly significant increase in serum levels of sICAM-1 (P<0.01) and significant increase in serum levels of sELAM-1 (P<0.05) in comparison to control. However, only sICAM-1 levels were significantly increased in IgM cases more than in IgG cases. In amoebic liver abscess group, both sICAM-1 and sELAM-1 significantly increased when compared with control. In giardiasis group, highly significant increase of serum levels of sELAM-1 was noticed than in control group (P<0.01), while sICAM-1 showed no significant difference (P>0.05). There was no correlation between sELAM-1 and number of cysts in the stool (intensity of infection). Soluble forms of adhesion molecules especially sICAM-1 have the potentiality as good markers of endothelial damage, severity of disease and to less extend load of infection. PMID:11775096

  14. Soluble Adhesion Molecules in Patients Coinfected with HIV and HCV: A Predictor of Outcome

    PubMed Central

    Aldámiz-Echevarría, Teresa; Berenguer, Juan; Miralles, Pilar; Jiménez-Sousa, María A.; Carrero, Ana; Pineda-Tenor, Daniel; Díez, Cristina; Tejerina, Francisco; Pérez-Latorre, Leire; Bellón, José M.; Resino, Salvador

    2016-01-01

    Background Higher serum levels of adhesion molecules (sICAM-1 and sVCAM-1) are associated with advanced liver fibrosis in patients coinfected with human immunodeficiency virus and hepatitis C virus. We assessed the relationship between serum levels of adhesion molecules and liver-related events (LRE) or death, in coinfected patients. Methods We studied clinical characteristics and outcomes of 182 coinfected patients with a baseline liver biopsy (58 with advanced fibrosis) and simultaneous plasma samples who were followed for median of 9 years. We used receiver-operating characteristic (ROC) curves to calculate optimized cutoff values (OCV) of sICAM-1 and sVCAM-1, defined as the values with the highest combination of sensitivity and specificity for LRE. We used multivariate regression analysis to test the association between OCVs of sICAM-1 and sVCAM-1 and outcomes. The variables for adjustment were age, HIV transmission category, liver fibrosis, baseline CD4+ T-cell counts, antiretroviral therapy, and sustained virologic response (SVR). Results During the study period 51 patients had SVR, 19 had LRE, and 16 died. The OCVs for LRE were 5.68 Log pg/mL for sICAM-1 and 6.25 Log pg/mL for sVCAM-1, respectively. The adjusted subhazard ratio (aSHR) (95% confidence interval [CI]) of death or LRE, whichever occurred first, for sICAM-1 and sVCAM-1 > OCV were 3.98 ([1.14; 13.89], P = 0.030) and 2.81 ([1.10; 7.19], respectively (P = 0.030). Conclusions Serum levels of sICAM-1 and sVCAM-1 can serve as markers of outcome in HIV/HCV-coinfected patients. Therapies targeting necroinflammatory damage and fibrogenesis may have a role in the management chronic hepatitis C. PMID:26849641

  15. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  16. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  17. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  18. Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions.

    PubMed

    Balzar, M; Briaire-de Bruijn, I H; Rees-Bakker, H A; Prins, F A; Helfrich, W; de Leij, L; Riethmüller, G; Alberti, S; Warnaar, S O; Fleuren, G J; Litvinov, S V

    2001-04-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca(2+)-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via alpha-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  19. Epidermal Growth Factor-Like Repeats Mediate Lateral and Reciprocal Interactions of Ep-CAM Molecules in Homophilic Adhesions

    PubMed Central

    Balzar, M.; Briaire-de Bruijn, I. H.; Rees-Bakker, H. A. M.; Prins, F. A.; Helfrich, W.; de Leij, L.; Riethmüller, G.; Alberti, S.; Warnaar, S. O.; Fleuren, G. J.; Litvinov, S. V.

    2001-01-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca2+-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via α-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  20. Hyaluronan (HA) content, the ratio of HA fragments and the expression of CD44 in the ovine cervix vary with the stage of the oestrous cycle.

    PubMed

    Perry, K; Haresign, W; Wathes, D C; Khalid, M

    2010-07-01

    The complex anatomy of the ovine cervix limits the success of trans-cervical artificial insemination in sheep. However, there is a degree of natural relaxation of cervix at oestrus that is accompanied by an increase in the water content. As hyaluronan (HA) has a high affinity for water molecules, in this study, we tested the hypothesis that the HA content of the cervix, the proportion of different size fragments of HA and expression of its receptor CD44 vary with the stage of the oestrous cycle. Oestrous was synchronized in 25 Welsh mountain ewes, and their cervices were collected either during luteal phase (n=8) or pre-LH (n=8) or post-LH (n=9) surge stage of the oestrous cycle. The pre-LH surge group had the highest HA content (2.96 ng/mg of cervical tissue), which was significantly (PCD44 in the vaginal and mid regions was significantly (PCD44 expression depended on the stage of the oestrous cycle. At the luteal stage, CD44

  1. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways.

    PubMed

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-05-01

    Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  2. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    PubMed

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  3. Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating

    SciTech Connect

    Kornu, R.; Kelly, M.A.; Smith, R.L.; Maloney, W.J.

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. 40 refs., 4 figs.

  4. Modulating the Adhesion of Haematopoietic Stem Cells with Chemokines to Enhance Their Recruitment to the Ischaemically Injured Murine Kidney

    PubMed Central

    White, Rebecca L.; Nash, Gerard; Kavanagh, Dean P. J.; Savage, Caroline O. S.; Kalia, Neena

    2013-01-01

    Introduction Renal disease affects over 500 million people worldwide and is set to increase as treatment options are predominately supportive. Evidence suggests that exogenous haematopoietic stem cells (HSCs) can be of benefit but due to the rarity and poor homing of these cells, benefits are either minor or transitory. Mechanisms governing HSC recruitment to injured renal microcirculation are poorly understood; therefore this study determined (i) the adhesion molecules responsible for HSC recruitment to the injured kidney, (ii) if cytokine HSC pre-treatment can enhance their homing and (iii) the molecular mechanisms accountable for any enhancement. Methods Adherent and free-flowing HSCs were determined in an intravital murine model of renal ischaemia-reperfusion injury. Some HSCs and animals were pre-treated prior to HSC infusion with function blocking antibodies, hyaluronidase or cytokines. Changes in surface expression and clustering of HSC adhesion molecules were determined using flow cytometry and confocal microscopy. HSC adhesion to endothelial counter-ligands (VCAM-1, hyaluronan) was determined using static adhesion assays in vitro. Results CD49d, CD44, VCAM-1 and hyaluronan governed HSC adhesion to the IR-injured kidney. Both KC and SDF-1α pre-treatment strategies significantly increased HSC adhesion within injured kidney, whilst SDF-1α also increased numbers continuing to circulate. SDF-1α and KC did not increase CD49d or CD44 expression but increased HSC adhesion to VCAM-1 and hyaluronan respectively. SDF-1α increased CD49d surface clustering, as well as HSC deformability. Conclusion Increasing HSC adhesive capacity for its endothelial counter-ligands, potentially through surface clustering, may explain their enhanced renal retention in vivo. Furthermore, increasing HSC deformability through SDF-1α treatment could explain the prolonged systemic circulation; the HSC can therefore continue to survey the damaged tissue instead of becoming entrapped

  5. LIN28B suppresses microRNA let-7b expression to promote CD44+/LIN28B+ human pancreatic cancer stem cell proliferation and invasion

    PubMed Central

    Shao, Yebo; Zhang, Lei; Cui, Lei; Lou, Wenhui; Wang, Dansong; Lu, Weiqi; Jin, Dayong; Liu, Te

    2015-01-01

    Although the highly proliferative, migratory, and multi-drug resistant phenotype of human pancreatic cancer stem cells (PCSCs) is well characterized, knowledge of their biological mechanisms is limited. We used CD44 and LIN28B as markers to screen, isolate, and enrich CSCs from human primary pancreatic cancer. Using flow cytometry, we identified a human primary pancreatic cancer cell (PCC) subpopulation expressing high levels of both CD44 and LIN28B. CD44+/LIN28B+ PCSCs expressed high levels of stemness marker genes and possessed higher migratory and invasive ability than CD44-/LIN28B- PCCs. CD44+/LIN28B+ PCSCs were more resistant to growth inhibition induced by the chemotherapeutic drugs cisplatin and gemcitabine hydrochloride, and readily established tumors in vivo in a relatively short time. Moreover, microarray analysis revealed significant differences between the cDNA expression patterns of CD44+/LIN28B+ PCSCs and CD44-/LIN28B- PCCs. Following siRNA interference of endogenous LIN28B gene expression in CD44+/LIN28B+ PCSCs, not only was their proliferation decreased, there was also cell cycle arrest due to suppression of cyclin D1 expression following the stimulation of miRNA let-7b expression. In conclusion, CD44+/LIN28B+ cells, which possess CSC characteristics, can be reliably sorted from human primary PCCs and represent a valuable model for studying cancer cell physiology and multi-drug resistance. PMID:26609473

  6. Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation.

    PubMed Central

    Iglesias, T; Caubín, J; Stunnenberg, H G; Zaballos, A; Bernal, J; Muñoz, A

    1996-01-01

    Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3-regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha-tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c-erbA) were identified in the isolated clones by gel-shift and footprinting assays. Sites in the NCAM (in an intron), alpha-tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid-deficient humans and experimental animals. Images PMID:8861959

  7. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury.

    PubMed

    Saini, Vedangana; Loers, Gabriele; Kaur, Gurcharan; Schachner, Melitta; Jakovcevski, Igor

    2016-07-01

    The neural cell adhesion molecule (NCAM) plays important functional roles in development of the nervous system. We investigated the influence of a constitutive ablation of NCAM on the outcome of spinal cord injury. Transgenic mice lacking NCAM (NCAM-/-) were subjected to severe compression injury of the lower thoracic spinal cord using wild-type (NCAM+/+) littermates as controls. According to the single-frame motion analysis, the NCAM-/- mice showed reduced locomotor recovery in comparison to control mice at 3 and 6 weeks after injury, indicating an overall positive impact of NCAM on recovery after injury. Also the Basso Mouse Scale score was lower in NCAM-/- mice at 3 weeks after injury, whereas at 6 weeks after injury the difference between genotypes was not statistically significant. Worse locomotor function was associated with decreased monoaminergic and cholinergic innervation of the spinal cord caudal to the injury site and decreased axonal regrowth/sprouting at the site of injury. Astrocytic scar formation at the injury site, as assessed by immunohistology for glial fibrillary acidic protein at and around the lesion site was increased in NCAM-/- compared with NCAM+/+ mice. Migration of cultured monolayer astrocytes from NCAM-/- mice was reduced as assayed by scratch wounding. Numbers of Iba-1 immunopositive microglia were not different between genotypes. We conclude that constitutive NCAM deletion in young adult mice reduces recovery after spinal cord injury, validating the hypothesized beneficial role of this molecule in recovery after injury. PMID:27178448

  8. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  9. Equid herpesvirus 1 infection of endothelial cells requires activation of putative adhesion molecules: an in vitro model

    PubMed Central

    SMITH, D; HAMBLIN, A; EDINGTON, N

    2002-01-01

    Antisera to activated equine endothelial cells, which detected surface molecules of 116 kD, 97 kD, 42 kD and 38 kD, were made to investigate the role of endothelial adhesion molecules in equid herpes virus 1 infection. These putative adhesion molecules could be induced by 17-β oestradiol, chorionic gonadotrophin, or IL-2, as well as by LPS and PWM. In an in vitro flow system, using equine veins or arteries, equid herpesvirus 1 in leucocytes was only transferred to infect endothelial cells if both leucocytes and endothelial cells expressed these surface molecules. Blocking of the membrane molecules with polyclonal antibodies prevented transfer of virus to the endothelial cells, indicating that the adhesion molecules had a key role in effecting transfer of virus. These in vitro observations give particular insight into the reports that in the natural course of infection in horses infection of endothelial cells is restricted to certain tissues, and in a wider context the results illustrate the complexity of factors that may direct tissue tropism. PMID:12165084

  10. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  11. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  12. Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes.

    PubMed Central

    Michaelis, D.; Goebels, N.; Hohlfeld, R.

    1993-01-01

    Understanding the immunobiology of muscle is relevant to muscular autoimmune diseases and to gene therapies based on myoblast transfer. We have investigated the constitutive and cytokine-induced intra- and extracellular expression of histocompatibility human leukocyte antigens (HLA) and cell adhesion molecules by multinucleated human myotubes using immunofluorescence microscopy. Myotubes constitutively expressed HLA class I but not HLA class II. Exposure to interferon-gamma, but not tumor necrosis factor-alpha, induced HLA-DR in the cytoplasm and on the surface membrane of approximately 40 to 95% of cultured myotubes. Surface expression was strongest in perinuclear membrane areas, and cytoplasmic expression was strongest at branching points and at the tips of myotubes. HLA-DP and HLA-DQ were not expressed in detectable amounts. Both interferon-gamma and tumor necrosis factor-alpha induced the intercellular adhesion molecule-1 (CD54) in the cytoplasm and on the surface of nearly all myotubes. The distribution of intercellular adhesion molecule-1 and HLA-DR was similar but not identical in double-positive myotubes. The leukocyte function-associated (LFA) adhesion molecules LFA-1 (CD11a/CD18), LFA-2 (CD2), and LFA-3 (CD58) could not be detected in the cytoplasm or on the surface. Our results indicate that cytokine-induced myotubes can participate in immune interactions with T lymphocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8214008

  13. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  14. Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1.

    PubMed

    Pocock, Roger; Bénard, Claire Y; Shapiro, Lawrence; Hobert, Oliver

    2008-01-01

    Cell adhesion molecules of the Immunoglobulin superfamily (IgCAMs) play important roles in neuronal development, homeostasis and disease. Here, we use an animal in vivo assay system to study the function of sax-7, the Caenorhabditis elegans homologue of the human L1 IgCAM, a homophilic adhesion molecule involved in several neurological diseases. We show that the 6 Ig/5 FnIII domain protein SAX-7 acts autonomously in the nervous system to maintain axon position in the ventral nerve cord of the nematode. As previously reported, sax-7 is also required to maintain the relative positioning of neuronal cell bodies in several head ganglia. We use the loss of cellular adhesiveness in sax-7 null mutants as an assay system to investigate the contribution of individual domains and sequence motifs to the function of SAX-7, utilizing transgenic rescue approaches. By shortening the hinge region between the Ig1+2 and Ig3+4 domains, we improve the adhesive function of SAX-7, thereby providing support for a previously proposed autoinhibitory "horseshoe" conformation of IgCAMs. However, we find that Ig3+4 are the only Ig domains required and sufficient for the adhesive function of SAX-7. Previous models of L1-type IgCAMs that invoke an important role of the first two Ig domains in controlling adhesion therefore do not appear to apply to SAX-7. Moreover, we find that neither the 5 FnIII domains, nor the protease cleavage site embedded in them, are required for the adhesive function of SAX-7. Lastly, we show that of the several protein binding motifs present in the intracellular region of SAX-7, only its ankyrin binding motif is required and also solely sufficient to confer the adhesive functions of SAX-7. PMID:17933550

  15. Cell adhesion molecules in the pathogenesis of and host defence against microbial infection.

    PubMed Central

    Kerr, J R

    1999-01-01

    Eukaryotic cell adhesion molecules (CAMs) are used by various cells and extracellular molecules in host defence against infection. They are involved in many processes including recognition by circulating phagocytes of a site of inflammation, transmigration through the endothelial barrier, diapedesis through basement membrane and extracellular matrix, and release of effector mechanisms at the infected site. CAMs involved in leucocyte-endothelial cell interaction include the selectins, integrins, and members of the immunoglobulin superfamily. However, CAMs are also used by various microorganisms (protozoa, fungi, bacteria, and viruses) during their pathogenesis. For example, bacteria that utilise CAMs include Mycobacterium tuberculosis, Listeria monocytogenes, Yersinia spp, enteropathogenic Escherichia coli, Shigella spp, Neisseria spp, Bordetella spp, and Borrelia burgdorferi. In addition, CAMs are involved in the pathogenetic effects of the RTX toxins of Pasteurella haemolytica, Actinobacillus actinomycetemcomitans, and the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes. A recurrent and topical theme of potential importance within the bacterial group is the intimate relation between CAMs, bacterial protein receptors, and type III secretion systems. For example, the IpaBCD protein complex is secreted by the type III system of Shigella flexneri and interacts with alpha 5 beta 1 integrin on the eukaryotic cell surface, followed by Rho mediated internalisation; this illustrates the relevance of cellular microbiology. CAMs might prove to be novel therapeutic targets. Comparative genomics has provided the knowledge of shared virulence determinants among diverse bacterial genera, and will continue to deepen our understanding of microbial pathogenesis, particularly in the context of the interaction of prokaryotic and eukaryotic molecules. PMID:10694943

  16. Recognition molecules myelin-associated glycoprotein and tenascin-C inhibit integrin-mediated adhesion of neural cells to collagen.

    PubMed

    Bachmann, M; Conscience, J F; Probstmeier, R; Carbonetto, S; Schachner, M

    1995-03-01

    Because of the importance of collagens in mediating cell-substrate interactions and the association of collagens with neural recognition molecules in the peripheral nervous system, the ability of neural recognition molecules to modify the substrate properties of collagens, in particular collagen type I, for cell adhesion was determined. Two cell lines, the N2A neuroblastoma and PC12 pheochromocytoma, were investigated for their capacity to adhere to different collagen types in the absence or presence of several neural recognition molecules. Adhesion of N2A or PC12 cells and membrane vesicles from PC12 cells to collagen type I was reduced when the collagen had been preincubated prior to its application as substrate with the extracellular domain of myelin-associated glycoprotein (s-MAG) or, as control, fibroblast tenascin-C (F-tenascin). In mixture with other collagen types, s-MAG was only able to reduce the adhesiveness of collagen types III and V, but not of collagen types II and IV. F-tenascin reduced the adhesiveness of all collagen types tested. In contrast to F-tenascin, s-MAG had to be present during fibrillogenesis to exert its effect, indicating that it must be coassembled into the collagen fibril to block the binding site. Cell adhesion to collagen type I was dependent on Mg2+ or Mn2+ and inhibited by a monoclonal antibody to the alpha 1 integrin subunit. The combined observations indicate that s-MAG and F-tenascin interfere with cell binding, most probably by modifying the integrin binding site, and that the two molecules act by different mechanisms, both leading to reduction of adhesion. PMID:7542351

  17. Hyaluronan-CD44 Interaction Promotes Growth of Decidual Stromal Cells in Human First-Trimester Pregnancy

    PubMed Central

    Zhu, Rui; Wang, Song-Cun; Sun, Chan; Tao, Yu; Piao, Hai-Lan; Wang, Xiao-Qiu; Du, Mei-Rong; Da-Jin Li

    2013-01-01

    Hyaluronan (HA) and its receptor CD44 are expressed at the maternal-fetal interface, but its role in early pregnancy remains unclear. Here, we found that primary decidual stromal cells (DSCs) continuously secreted HA and expressed its receptor CD44. Pregnancy-associated hormones up-regulated HA synthetase (HAS) 2 transcription and HA release from DSCs. High molecular weight-HA (HMW-HA), but not medium molecular weight (MMW-HA) or low molecular weight (LMW-HA), promoted proliferation and inhibited apoptosis of DSCs in a CD44-dependent manner. The in-cell Western analysis revealed HMW-HA activated PI3K/AKT and mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathways time-dependently. Blocking these pathways by specific inhibitor LY294002 or U0126 abrogated HMW-HA-regulated DSc proliferation and apoptosis. Finally, we have found that HA content, HA molecular weight, HAS2 mRNA level, and CD44 expression were significantly decreased in DSCs from unexplained miscarriage compared with the normal pregnancy. Collectively, our results indicate that higher level and greater molecular mass of HA at maternal-fetal interface contributes to DSc growth and maintenance of DSCs in human early pregnancy. PMID:24069351

  18. Hyaluronan-CD44 interaction promotes growth of decidual stromal cells in human first-trimester pregnancy.

    PubMed

    Zhu, Rui; Wang, Song-Cun; Sun, Chan; Tao, Yu; Piao, Hai-Lan; Wang, Xiao-Qiu; Du, Mei-Rong; Da-Jin Li

    2013-01-01

    Hyaluronan (HA) and its receptor CD44 are expressed at the maternal-fetal interface, but its role in early pregnancy remains unclear. Here, we found that primary decidual stromal cells (DSCs) continuously secreted HA and expressed its receptor CD44. Pregnancy-associated hormones up-regulated HA synthetase (HAS) 2 transcription and HA release from DSCs. High molecular weight-HA (HMW-HA), but not medium molecular weight (MMW-HA) or low molecular weight (LMW-HA), promoted proliferation and inhibited apoptosis of DSCs in a CD44-dependent manner. The in-cell Western analysis revealed HMW-HA activated PI3K/AKT and mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathways time-dependently. Blocking these pathways by specific inhibitor LY294002 or U0126 abrogated HMW-HA-regulated DSc proliferation and apoptosis. Finally, we have found that HA content, HA molecular weight, HAS2 mRNA level, and CD44 expression were significantly decreased in DSCs from unexplained miscarriage compared with the normal pregnancy. Collectively, our results indicate that higher level and greater molecular mass of HA at maternal-fetal interface contributes to DSc growth and maintenance of DSCs in human early pregnancy. PMID:24069351

  19. Aberrations of a cell adhesion molecule CADM4 in renal clear cell carcinoma.

    PubMed

    Nagata, Masayoshi; Sakurai-Yageta, Mika; Yamada, Daisuke; Goto, Akiteru; Ito, Akihiko; Fukuhara, Hiroshi; Kume, Haruki; Morikawa, Teppei; Fukayama, Masashi; Homma, Yukio; Murakami, Yoshinori

    2012-03-15

    Renal clear cell carcinoma (RCCC) is the most frequent subpopulation of renal cell carcinoma and is derived from the proximal uriniferous tubules. We have previously reported that an actin-binding protein, 4.1B/DAL-1, is expressed in renal proximal tubules, whereas it is inactivated in 45% of RCCC by promoter methylation. In the lung and several epithelial tissues, 4.1B is shown to associate with a tumor suppressor protein, CADM1, belonging to the immunoglobulin-superfamily cell adhesion molecules. Here, we demonstrate by immunohistochemistry that another member of the CADM-family protein, CADM4, as well as 4.1B is expressed specifically in human proximal tubules, while CADM1 and 4.1N, another member of the 4.1 proteins, are expressed in the distal tubules. Immunoprecipitation analysis coupled with Western blotting revealed that CADM4 associated with 4.1B, while CADM1 associated with 4.1N in the lysate from normal human kidney, implicating that a cascade of CADM4 and 4.1B plays an important role in normal cell adhesion of the proximal tubules. On the other hand, CADM4 expression was lost or markedly reduced in 7 of 10 (70%) RCC cell lines and 28 of 40 (70%) surgically resected RCCC, including 10 of 16 (63%) tumors with T1a. CADM4 expression was more preferentially lost in RCCC with vascular infiltration (p = 0.04), suggesting that loss of CADM4 is involved in tumor invasion. Finally, introduction of CADM4 into an RCC cell line, 786-O, dramatically suppressed tumor formation in nude mice. These findings suggest that CADM4 is a novel tumor suppressor candidate in RCCC acting with its binding partner 4.1B. PMID:21544807

  20. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.

    PubMed

    Barsegov, V; Thirumalai, D

    2005-02-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin-P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime t initially increases (catch bonds) at low (< or =10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody t monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin-G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin-sPSGL-1 complex is far (approximately 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein-protein complexes. PMID:15701706

  1. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  2. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-01

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth. PMID:26914234

  3. Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds

    PubMed Central

    Barsegov, V.; Thirumalai, D.

    2005-01-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin–P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime 〈t〉 initially increases (catch bonds) at low (≤10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody 〈t〉 monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin–G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin–sPSGL-1 complex is far (≈ 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein–protein complexes. PMID:15701706

  4. Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions.

    PubMed

    Needham, L K; Thelen, K; Maness, P F

    2001-03-01

    The neural adhesion molecule L1 mediates the axon outgrowth, adhesion, and fasciculation that are necessary for proper development of synaptic connections. L1 gene mutations are present in humans with the X-linked mental retardation syndrome CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia, hydrocephalus). Three missense mutations associated with CRASH syndrome reside in the cytoplasmic domain of L1, which contains a highly conserved binding region for the cytoskeletal protein ankyrin. In a cellular ankyrin recruitment assay that uses transfected human embryonic kidney (HEK) 293 cells, two of the pathologic mutations located within the conserved SFIGQY sequence (S1224L and Y1229H) strikingly reduced the ability of L1 to recruit 270 kDa ankyrinG protein that was tagged with green fluorescent protein (ankyrin-GFP) to the plasma membrane. In contrast, the L1 missense mutation S1194L and an L1 isoform lacking the neuron-specific sequence RSLE in the cytoplasmic domain were as effective as RSLE-containing neuronal L1 in the recruitment of ankyrin-GFP. Ankyrin binding by L1 was independent of cell-cell interactions. Receptor-mediated endocytosis of L1 regulates intracellular signal transduction, which is necessary for neurite outgrowth. In rat B35 neuroblastoma cell lines stably expressing L1 missense mutants, antibody-induced endocytosis was unaffected by S1224L or S1194L mutations but appeared to be enhanced by the Y1229H mutation. These results suggested a critical role for tyrosine residue 1229 in the regulation of L1 endocytosis. In conclusion, specific mutations within key residues of the cytoplasmic domain of L1 (Ser(1224), Tyr(1229)) destabilize normal L1-ankyrin interactions and may influence L1 endocytosis to contribute to the mechanism of neuronal dysfunction in human X-linked mental retardation. PMID:11222639

  5. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults.

    PubMed

    Vincent, Heather K; Bourguignon, Cheryl M; Weltman, Arthur L; Vincent, Kevin R; Barrett, Eugene; Innes, Karen E; Taylor, Ann G

    2009-02-01

    The objective of the study was to determine whether short-term antioxidant (AOX) supplementation affects insulin sensitivity, endothelial adhesion molecule levels, and oxidative stress in overweight young adults. A randomized, double-blind, controlled study tested the effects of AOXs on measures of insulin sensitivity (homeostasis model assessment [HOMA]) and quantitative insulin sensitivity check index), endothelial adhesion molecules (soluble intercellular adhesion molecule-1, vascular adhesion molecule, and endothelial-leukocyte adhesion molecule-1), adiponectin, and oxidative stress (lipid hydroperoxides) in overweight and normal-weight individuals (N = 48, 18-30 years). Participants received either AOX (vitamin E, 800 IU; vitamin C, 500 mg; beta-carotene, 10 mg) or placebo for 8 weeks. The HOMA values were initially higher in the overweight subjects and were lowered with AOX by week 8 (15% reduction, P = .02). Adiponectin increased in both AOX groups. Soluble intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 decreased in overweight AOX-treated groups by 6% and 13%, respectively (P < .05). Plasma lipid hydroperoxides were reduced by 0.31 and 0.70 nmol/mL in the normal-weight and overweight AOX-treated groups, respectively, by week 8 (P < .05). Antioxidant supplementation moderately lowers HOMA and endothelial adhesion molecule levels in overweight young adults. A potential mechanism to explain this finding is the reduction in oxidative stress by AOX. Long-term studies are needed to determine whether AOXs are effective in suppressing diabetes or vascular activation over time. PMID:19154960

  6. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors

    PubMed Central

    Ganesh, Shanthi; Iyer, Arun K.; Morrissey, David V.; Amiji, Mansoor M.

    2013-01-01

    Anticancer therapeutics employing RNA interference mechanism holds promising potentials for sequence-specific silencing of target genes. However targeted delivery of siRNAs to tumor tissues and cells and more importantly, their intracellular release at sites of interest still remains a major challenge that needs to be addressed before this technique could become a clinically viable option. In the current study, we have engineered and screened a series of CD44 targeting hyaluronic acid (HA) based self-assembling nanosystems for targeted siRNA delivery. The HA polymer was functionalized with lipids of varying carbon chain lengths/nitrogen content, as well as polyamines for assessing siRNA encapsulation. From the screens, several HA-derivatives were identified that could stably encapsulate/complex siRNAs and form self-assembled nanosystems, as determined by gel retardation assays and dynamic light scattering. Many HA derivatives could transfect siRNAs into cancer cells overexpressing CD44 receptors. Interestingly, blocking the CD44 receptors on the cells using free excess soluble HA prior to incubation of cy3-labeled-siRNA loaded HA nano-assemblies resulted in >90% inhibition of the receptor mediated uptake, confirming target specificity. In addition, SSB/PLK1 siRNA encapsulated in HA-PEI/PEG nanosystems demonstrated dose dependent and target specific gene knockdown in both sensitive and resistant A549 lung cancer cells overexpressing CD44 receptors. More importantly, these siRNA encapsulated nanosystems demonstrated tumor selective uptake and target specific gene knock down in vivo in solid tumors as well as in metastatic tumors. The HA based nanosystems thus portend to be promising siRNA delivery vectors for systemic targeting of CD44 overexpressing cancers including tumor initiating (stem-) cells and metastatic lesions. PMID:23410679

  7. CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers

    PubMed Central

    Chen, Junwei; Guo, Tianhua; Zhang, Lei; Qin, Li-Xuan; Singer, Samuel; Maki, Robert G.; Taguchi, Takahiro; DeMatteo, Ronald; Besmer, Peter; Antonescu, Cristina R

    2012-01-01

    Although imatinib mesylate has been a major breakthrough in the treatment of advanced GIST, complete responses are rare and most patients eventually develop resistance to the drug. Thus the possibility of an imatinib-insensitive cell subpopulation within GIST tumors, harboring stem cell characteristics, may be responsible for the clinical failures. However, the existence of a cancer stem cell component in GIST has not been yet established. The present study was aimed to determine whether expression of commonly used stem cell markers in other malignancies, i.e. CD133 and CD44, might identify cells with characteristics of cancer stem/progenitor cells in human GIST. CD133 and CD44 expression in GIST explants was analyzed by flow cytometry, immunofluorescence, and gene expression. Their transcription levels were correlated with clinical and molecular factors in a large, well-annotated cohort of GIST patients. FACS sorted GIST cells based on CD133 and CD44 expression were isolated and used to assess phenotypic characteristics, ability to maintain their surface expression, sensitivity to imatinib, and expression signature. The enrichment in CD133/CD44 cells in the side population (SP) assay was also investigated. CD133 expression was consistently found in GIST. CD133− cells formed more colonies, were more invasive in a matrigel assay, and showed enrichment in the SP cells, compared to CD133+ cells. CD133 expression was also detected in the two imatinib-sensitive GIST cell lines, while was absent in the imatinib-resistant lines. Our results show that CD133 and CD44 are universally expressed in GIST, and may represent a lineage rather than a cancer stem cell marker. PMID:22076958

  8. Application of Collagen-Model Triple-Helical Peptide-Amphiphiles for CD44-Targeted Drug Delivery Systems

    PubMed Central

    Ndinguri, Margaret W.; Zheleznyak, Alexander; Lauer, Janelle L.; Anderson, Carolyn J.; Fields, Gregg B.

    2012-01-01

    Cancer treatment by chemotherapy is typically accompanied by deleterious side effects, attributed to the toxic action of chemotherapeutics on proliferating cells from nontumor tissues. The cell surface proteoglycan CD44 has been recognized as a cancer stem cell marker. The present study has examined CD44 targeting as a way to selectively deliver therapeutic agents encapsulated inside colloidal delivery systems. CD44/chondroitin sulfate proteoglycan binds to a triple-helical sequence derived from type IV collagen, α1(IV)1263–1277. We have assembled a peptide-amphiphile (PA) in which α1(IV)1263–1277 was sandwiched between 4 repeats of Gly-Pro-4-hydroxyproline and conjugated to palmitic acid. The PA was incorporated into liposomes composed of DSPG, DSPC, cholesterol, and DSPE-PEG-2000 (1 : 4 : 5 : 0.5). Doxorubicin-(DOX-)loaded liposomes with and without 10% α1(IV)1263–1277 PA were found to exhibit similar stability profiles. Incubation of DOX-loaded targeted liposomes with metastatic melanoma M14#5 and M15#11 cells and BJ fibroblasts resulted in IC50 values of 9.8, 9.3, and >100 μM, respectively. Nontargeted liposomes were considerably less efficacious for M14#5 cells. In the CD44+ B16F10 mouse melanoma model, CD44-targeted liposomes reduced the tumor size to 60% of that of the untreated control, whereas nontargeted liposomes were ineffective. These results suggest that PA targeted liposomes may represent a new class of nanotechnology-based drug delivery systems. PMID:23213537

  9. The Accumulation of Intracellular ITEGE and DIPEN Neoepitopes in Bovine Articular Chondrocytes Is Mediated by CD44 Internalization of Hyaluronan

    PubMed Central

    Flory, Jennifer J. Embry; Fosang, Amanda J.; Knudson, Warren

    2011-01-01

    Objective A dramatic loss of aggrecan proteoglycan from cartilage is associated with osteoarthritis. The fate of residual G1 domains of aggrecan is unknown, but inefficient turnover of these domains may impede subsequent repair and retention of newly synthesized aggrecan. Thus, the objective of this study was to determine whether ITEGE- and DIPEN-containing G1 domains, generated in situ, are internalized by articular chondrocytes, and whether these events are dependent on hyaluronan (HA) and its receptor, CD44. Methods ITEGE and DIPEN neoepitopes were detected by immunofluorescence staining of bovine articular cartilage chondrocytes treated with or without interleukin-1α (IL-1α). Additionally, purified ITEGE- or DIPEN-containing G1 domains were aggregated with HA and then added to articular chondrocytes, articular chondrocytes transfected with CD44Δ67, or COS-7 cells transfected with or without full-length CD44. Internalized epitopes were distinguished by their resistance to extensive trypsinization of the cell surface. Results Both ITEGE and DIPEN were visualized within the extracellular cell-associated matrix of chondrocytes as well as within intracellular vesicles. Following trypsinization, the intracellular accumulation of both epitopes was clearly visible. IL-1 treatment increased extracellular as well as intracellular ITEGE epitope accumulation. Once internalized, the ITEGE neoepitope became localized within the nucleus and displayed little colocalization with HA, DIPEN, or other G1 domain epitopes. The internalization of both ITEGE and DIPEN G1 domains was dependent on the presence of HA and CD44. Conclusion One important mechanism for the elimination of residual G1 domains following extracellular degradation of aggrecan is CD44-mediated co-internalization with HA. PMID:16447219

  10. Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria.

    PubMed

    Pesarrodona, Mireia; Fernández, Yolanda; Foradada, Laia; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Unzueta, Ugutz; Xu, Zhikun; Roldán, Mónica; Villegas, Sandra; Ferrer-Miralles, Neus; Schwartz, Simó; Rinas, Ursula; Daura, Xavier; Abasolo, Ibane; Vázquez, Esther; Villaverde, Antonio

    2016-06-01

    Biofabrication is attracting interest as a means to produce nanostructured functional materials because of its operational versatility and full scalability. Materials based on proteins are especially appealing, as the structure and functionality of proteins can be adapted by genetic engineering. Furthermore, strategies and tools for protein production have been developed and refined steadily for more than 30 years. However, protein conformation and therefore activity might be sensitive to production conditions. Here, we have explored whether the downstream strategy influences the structure and biological activities, in vitro and in vivo, of a self-assembling, CD44-targeted protein-only nanoparticle produced in Escherichia coli. This has been performed through the comparative analysis of particles built from soluble protein species or protein versions obtained by in vitro protein extraction from inclusion bodies, through mild, non-denaturing procedures. These methods have been developed recently as a convenient alternative to the use of toxic chaotropic agents for protein resolubilization