Science.gov

Sample records for adhesion molecule cd44

  1. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGES

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; ...

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  2. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    SciTech Connect

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J.E.; Bu, Zimei

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin. Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.

  3. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  4. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines

    PubMed Central

    Roszkowska, Matylda; Skupien, Anna; Wójtowicz, Tomasz; Konopka, Anna; Gorlewicz, Adam; Kisiel, Magdalena; Bekisz, Marek; Ruszczycki, Blazej; Dolezyczek, Hubert; Rejmak, Emilia; Knapska, Ewelina; Mozrzymas, Jerzy W.; Wlodarczyk, Jakub; Wilczynski, Grzegorz M.; Dzwonek, Joanna

    2016-01-01

    Synaptic cell adhesion molecules regulate signal transduction, synaptic function, and plasticity. However, their role in neuronal interactions with the extracellular matrix (ECM) is not well understood. Here we report that the CD44, a transmembrane receptor for hyaluronan, modulates synaptic plasticity. High-resolution ultrastructural analysis showed that CD44 was localized at mature synapses in the adult brain. The reduced expression of CD44 affected the synaptic excitatory transmission of primary hippocampal neurons, simultaneously modifying dendritic spine shape. The frequency of miniature excitatory postsynaptic currents decreased, accompanied by dendritic spine elongation and thinning. These structural and functional alterations went along with a decrease in the number of presynaptic Bassoon puncta, together with a reduction of PSD-95 levels at dendritic spines, suggesting a reduced number of functional synapses. Lack of CD44 also abrogated spine head enlargement upon neuronal stimulation. Moreover, our results indicate that CD44 contributes to proper dendritic spine shape and function by modulating the activity of actin cytoskeleton regulators, that is, Rho GTPases (RhoA, Rac1, and Cdc42). Thus CD44 appears to be a novel molecular player regulating functional and structural plasticity of dendritic spines. PMID:27798233

  5. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44

    SciTech Connect

    Mori, Tomoyuki; Kitano, Ken; Terawaki, Shin-ichi; Maesaki, Ryoko; Hakoshima, Toshio

    2007-10-01

    The radixin FERM domain complexed with the CD44 cytoplasmic tail peptide has been crystallized. A diffraction data set from the complex was collected to 2.1 Å. CD44 is an important adhesion molecule that specifically binds hyaluronic acid and regulates cell–cell and cell–matrix interactions. Increasing evidence has indicated that CD44 is assembled in a regulated manner into the membrane–cytoskeletal junction, a process that is mediated by ERM (ezrin/radixin/moesin) proteins. Crystals of a complex between the radixin FERM domain and the C-terminal cytoplasmic region of CD44 have been obtained. The crystal of the radixin FERM domain bound to the CD44 cytoplasmic tail peptide belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.70, b = 66.18, c = 86.22 Å, and contain one complex in the crystallographic asymmetric unit. An intensity data set was collected to a resolution of 2.1 Å.

  6. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling

    PubMed Central

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M.; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a “stellate”-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  7. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion.

    PubMed Central

    Mohamadzadeh, M; DeGrendele, H; Arizpe, H; Estess, P; Siegelman, M

    1998-01-01

    The localization of circulating leukocytes within inflamed tissues occurs as the result of interactions with and migration across vascular endothelium, and is governed, in part, by the expression of adhesion molecules on both cell types. Recently, we have described a novel primary adhesion interaction between the structurally activated form of the adhesion molecule CD44 on lymphocytes and its major ligand hyaluronan on endothelial cells under physiologic laminar flow conditions, and have proposed that this interaction functions in an extravasation pathway for lymphocytes in vascular beds at sites of inflammation. While the regulation of activated CD44 on leukocytes has been characterized in depth, regulation of hyaluronate (HA) on endothelial cells has not been extensively studied. Here we demonstrate that the expression of HA on cultured endothelial cell lines and primary endothelial cultures is inducible by the proinflammatory cytokines TNFalpha and IL-1beta, as well as bacterial lipopolysaccharide. In addition, this inducibility appears strikingly restricted to endothelial cells derived from microvascular, but not large vessel, sources. The elevated HA levels thus induced result in increased CD44-dependent adhesive interactions in both nonstatic shear and laminar flow adhesion assays. Changes in mRNA levels for the described HA synthetic and degradative enzymes were not found, suggesting other more complex mechanisms of regulation. Together, these data add to the selectin and immunoglobulin gene families a new inducible endothelial adhesive molecule, hyaluronan, and help to further our understanding of the potential physiologic roles of the CD44/HA interaction; i.e., local cytokine production within inflamed vascular beds may enhance surface hyaluronan expression on endothelial cells, thereby creating local sites receptive to the CD44/HA interaction and thus extravasation of inflammatory cells. PMID:9421471

  8. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells

    PubMed Central

    Senbanjo, Linda T.; Chellaiah, Meenakshi A.

    2017-01-01

    CD44 is a cell surface adhesion receptor that is highly expressed in many cancers and regulates metastasis via recruitment of CD44 to the cell surface. Its interaction with appropriate extracellular matrix ligands promotes the migration and invasion processes involved in metastases. It was originally identified as a receptor for hyaluronan or hyaluronic acid and later to several other ligands including, osteopontin (OPN), collagens, and matrix metalloproteinases. CD44 has also been identified as a marker for stem cells of several types. Beside standard CD44 (sCD44), variant (vCD44) isoforms of CD44 have been shown to be created by alternate splicing of the mRNA in several cancer. Addition of new exons into the extracellular domain near the transmembrane of sCD44 increases the tendency for expressing larger size vCD44 isoforms. Expression of certain vCD44 isoforms was linked with progression and metastasis of cancer cells as well as patient prognosis. The expression of CD44 isoforms can be correlated with tumor subtypes and be a marker of cancer stem cells. CD44 cleavage, shedding, and elevated levels of soluble CD44 in the serum of patients is a marker of tumor burden and metastasis in several cancers including colon and gastric cancer. Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells. However, the underlying mechanisms need further elucidation. PMID:28326306

  9. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    PubMed

    King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  10. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation.

    PubMed

    Nandi, Animesh; Estess, Pila; Siegelman, Mark

    2004-04-01

    CD44 on activated T cells can initiate contact and mediate rolling on hyaluronan on endothelial cells. We have shown that the integrin VLA-4 is used preferentially over LFA-1 in conjunction with this rolling interaction for firm adhesion. Here, we show by coimmunoprecipitation and transfection studies that CD44 associates with VLA-4 but not LFA-1 on the plasma membrane of immune cells. Absence of the cytoplasmic portion of CD44 abrogates this coassociation and attendant firm adhesion. Moreover, in an in vivo model of lymphocyte homing, cells expressing only the truncated form of CD44 together with VLA-4 fail to traffic to an inflamed site, thereby defining a discrete biological role for the cytoplasmic domain. These studies demonstrate a molecular mechanism whereby coanchoring within a single bimolecular complex between a primary and secondary adhesion molecule regulates a cell's ability to firmly adhere, providing a fundamental alteration to the paradigm of leukocyte extravasation.

  11. Link protein hyaluronan-binding motif abrogates CD44-hyaluronan-mediated leukemia-liver cell adhesion.

    PubMed

    Chen, Jing; Li, Na; Li, Gongchu

    2013-05-01

    The liver is a frequent site for the metastasis of cancer cells originating from other sites. Leukemic liver metastasis is associated with poor prognosis. The ligation of CD44 with hyaluronan (HA) has been shown to contribute to the drug resistance of leukemic cells. In this study, a link protein HA-binding motif was genetically fused with enhanced green fluorescence protein (EGFP) to generate an EGFP-L fusion protein. Furthermore, a coculture system was established to investigate the interaction of leukemic cells with liver cells. CD44-positive Kasumi-1, but not CD44-negative HL-60 cells, were observed to adhere to the liver cell line L02. This cell-cell adhesion was significantly blocked by HA, indicating that Kasumi-L02 cell adhesion was mediated by the CD44-HA interaction. Compared to EGFP, EGFP-L fusion protein bound to L02 and BEL7404 liver cells. EGFP-L partially abrogated the Kasumi-L02 adhesion, suggesting that the link protein-binding motif is able to inhibit CD44-HA-mediated leukemia-liver adhesion. These results may help provide insight into novel therapeutic methods for leukemic patients diagnosed with liver metastasis.

  12. IL-17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44-VCAM-1 interaction

    PubMed Central

    Chen, Chong; Zhang, Qiuyang; Liu, Sen; Parajuli, Keshab R.; Qu, Yine; Mei, Jiandong; Chen, Zhiquan; Zhang, Hui; Khismatullin, Damir B.; You, Zongbing

    2015-01-01

    BACKGROUND Extravasation is a critical step in cancer metastasis, in which adhesion of intravascular cancer cells to the vascular endothelial cells is controlled by cell surface adhesion molecules. The role of interleukin-17 (IL-17), insulin, and insulin-like growth factor 1 (IGF1) in adhesion of prostate cancer cells to the vascular endothelial cells is unknown, which is the subject of the present study. METHODS Human umbilical vein endothelial cells (HUVECs) and human prostate cancer cell lines (PC-3, DU-145, LNCaP, and C4-2B) were analyzed for expression of vascular cell adhesion molecule 1 (VCAM-1), integrins, and cluster of differentiation 44 (CD44) using flow cytometry and Western blot analysis. The effects of IL-17, insulin and IGF1 on VCAM-1 expression and adhesion of prostate cancer cells to HUVECs were examined. The interaction of VCAM-1 and CD44 was assessed using immunoprecipitation assays. RESULTS Insulin and IGF1 acted with IL-17 to increase VCAM-1 expression in HUVECs. PC-3, DU-145, LNCaP, and C4-2B cells expressed β1 integrin but not α4 integrin. CD44 was expressed by PC-3 and DU-145 cells but not by LNCaP or C4-2B cells. When HUVECs were treated with IL-17, insulin or IGF1, particularly with a combination of IL-17 and insulin (or IGF1), adhesion of PC-3 and DU-145 cells to HUVECs was significantly increased. In contrast, adhesion of LNCaP and C4-2B cells to HUVECs was not affected by treatment of HUVECs with IL-17 and/or insulin/IGF1. CD44 expressed in PC-3 cells physically bound to VCAM-1 expressed in HUVECs. CONCLUSIONS CD44-VCAM-1 interaction mediates the adhesion between prostate cancer cells and HUVECs. IL-17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through increasing VCAM-1 expression in the vascular endothelial cells. These findings suggest that IL-17 may act with insulin/IGF1 to promote prostate cancer metastasis. PMID:25683512

  13. Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds.

    PubMed

    Lin, Hong; Zhou, Jian; Shen, Longxiang; Ruan, Yuhui; Dong, Jian; Guo, Changan; Chen, Zhengrong

    2014-04-01

    The clinical need for improved treatment options for patients with cartilage injuries has motivated tissue-engineering studies aimed at the in vitro generation of cell-based implants with functional properties. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to the scaffold. In the present study, chondrocyte-scaffold constructs were engineered by planting porcine chondrocytes into nonporous chitosan membranes and 3D porous chitosan scaffolds that were treated with or without biotin-conjugated anti-CD44 antibody-avidin binding system and avidin-biotin binding system. The spreading area, cell exfoliation rates, cell proliferation rates, histological analysis, DNA and glycosaminoglycan (GAG) content, and mRNA expression were investigated to evaluate the efficiency of biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of cell adhesion to scaffolds in the cartilage tissue. The results showed that the biotin-conjugated anti-CD44 antibody-avidin binding system improved cell adhesion to scaffolds effectively. These studies suggest that this binding system has the potential to provide improved tissue-engineered cartilage for clinical applications.

  14. Expression of CD44 on rheumatoid synovial fluid lymphocytes.

    PubMed Central

    Kelleher, D; Murphy, A; Hall, N; Omary, M B; Kearns, G; Long, A; Casey, E B

    1995-01-01

    OBJECTIVES--To investigate the involvement of the adhesion molecule CD44 in the homing of lymphocytes to synovial tissue, by examining the density of expression and molecular mass of CD44 on rheumatoid synovial fluid lymphocytes. METHODS--Twenty patients with rheumatoid arthritis were studied. Peripheral blood and synovial fluid lymphocytes were isolated by Ficoll-Hypaque sedimentation. CD44 expression was analysed by two colour flow cytometry of CD3 positive T lymphocytes with calculation of mean fluorescence intensity. Expression of activation markers M21C5, M2B3, interleukin (IL)-2 receptor and transferrin receptor was quantitated. In addition, CD44 molecular mass was examined by Western blot in six patients. RESULTS--CD44 expression was markedly increased on synovial fluid T lymphocytes of rheumatoid patients relative to peripheral blood lymphocytes from the same individuals. CD44 molecular mass on peripheral blood mononuclear cells was 88 kDa, but that on synovial fluid lymphocytes was only 83 kDa. CD44 expression correlated significantly with expression of activation markers M21C5, M2B3, and the IL-2 receptor. CONCLUSIONS--Alterations in density of expression or of the molecular mass of CD44 could contribute to local tissue injury, either directly by facilitating adhesion, or indirectly through effects on other adhesion molecules. Images PMID:7545382

  15. Activation of VCAM-1 and Its Associated Molecule CD44 Leads to Increased Malignant Potential of Breast Cancer Cells

    PubMed Central

    Wang, Pei-Chen; Weng, Ching-Chieh; Hou, You-Syuan; Jian, Shu-Fang; Fang, Kuan-Te; Hou, Ming-Feng; Cheng, Kuang-Hung

    2014-01-01

    VCAM-1 (CD106), a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1). In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT) program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention. PMID:24583847

  16. Role of CD44 and Variants in Membrane-Cytoskeleton Interactions, Adhesion, Metastasis and Human Breast Cancers

    DTIC Science & Technology

    1997-10-01

    expressing polyomavirus middle T oncogene), to further analyze the functional property of this CD44 variant isoform. We used a variety of techniques (e.g. RT-PCR, Southern blot, immunoprecipitation and immuno-blot techniques).

  17. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  18. Expression of CD44v6 as matrix-associated ectodomain in the bone development.

    PubMed

    Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro

    2010-08-01

    This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.

  19. Possible involvement of CD10 in the development of endometriosis due to its inhibitory effects on CD44-dependent cell adhesion.

    PubMed

    Iwase, Akira; Kotani, Tomomi; Goto, Maki; Kobayashi, Hiroharu; Takikawa, Sachiko; Nakahara, Tatsuo; Nakamura, Tomoko; Kondo, Mika; Bayasula; Nagatomo, Yoshinari; Kikkawa, Fumitaka

    2014-01-01

    A reduced response to progesterone in the eutopic endometrium with endometriosis and in endometriotic tissues is considered to be the underlying factor for endometriosis. CD10 is known to be expressed by endometrial and endometriotic stromal cells and may be induced by progestins, although the function of CD10 is not fully revealed in endometrial or endometriotic tissues. In the current study, the expression of CD10 was significantly increased by treatment of the cells with progesterone, 17β-estradiol, and dibutyryl cyclic adenosine monophosphate (cAMP) in the endometrial stromal cells. On the other hand, the expression of CD10 following treatment with progesterone, 17β-estradiol, and dibutyryl cAMP was not significantly increased in endometriotic stromal cells. The adhesion assay for endometrial and endometriotic stromal cells to hyaluronan using 5- or 6-(N-succinimidyloxycarbonyl)-fluorescein 3', 6'-diacetate-labeled cells demonstrated that the CD44-dependent adhesion of stromal cells was inhibited by CD10. As far as the induction of CD10 is concerned, the effect of progesterone was different between endometrial stromal cells and endometriotic stromal cells. CD10 might be involved in the development of endometriosis due to its influence on CD44-dependent cell adhesion.

  20. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44.

    PubMed Central

    Shepley, M P; Racaniello, V R

    1994-01-01

    A monoclonal antibody, AF3, was previously shown to specifically inhibit poliovirus binding to HeLa cells and to detect a 100-kDa glycoprotein only in cell lines and tissues permissive for poliovirus infection. These results suggested that the 100-kDa protein may be involved in the pathogenesis of poliomyelitis and the cellular function of the poliovirus receptor site. To study further the role of the 100-kDa protein in poliovirus attachment, immunoaffinity purification, amino acid sequencing, and cDNA cloning were undertaken. The results demonstrate that antibody AF3 reacts with the lymphocyte homing receptor CD44, a multifunctional cell surface glycoprotein involved in the homing of circulating lymphocytes to lymph nodes and the modulation of lymphocyte adhesion and activation. Antibody AF3 reacts with a subset of CD44 molecules (AF3CD44H), which appears to be a small fraction of the heterogeneously glycosylated CD44 molecules expressed on hematopoietic and nonhematopoietic cells. Anti-CD44 monoclonal antibodies, previously reported to induce CD44-mediated modulation of lymphocyte activation and adhesion, compete with 125I-AF3 in binding assays, demonstrating functional overlap among the epitopes. The anti-CD44 monoclonal antibody A3D8, which binds to a greater molecular weight range of CD44 than does AF3, inhibits poliovirus binding to a similar degree. CD44 does not act as a poliovirus receptor, since CD44-expressing mouse L-cell transformants did not bind poliovirus. The poliovirus receptor and AF3CD44H may be noncovalently associated, or they may interact through the cytoskeleton or signal transduction pathways. Images PMID:7508992

  1. Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1/LSF-MMP2/CD44 axes

    PubMed Central

    Luo, Xiangjian; Li, Namei; Zhong, Juanfang; Tan, Zheqiong; Liu, Ying; Dong, Xin; Cheng, Can; Xu, Zhijie; Li, Hongde; Yang, Lifang; Tang, Min; Weng, Xinxian; Yi, Wei; Liu, Jikai; Cao, Ya

    2016-01-01

    Grifolin, a farnesyl phenolic compound isolated from the fresh fruiting bodies of the mushroom Albatrellus confluens, exhibits effective antitumor bioactivity in previous study of our group and other lab. In this study, we observed that grifolin inhibited tumor cells adhesion and migration. Moreover, grifolin reduced reactive oxygen species (ROS) production and caused cellular ATP depletion in high-metastatic tumor cells. PGC1α (Peroxisome proliferator-activated receptor γ, coactivator 1α) encodes a transcriptional co-activator involved in mitochondrial biogenesis and respiration and play a critical role in the maintenance of energy homeostasis. Interestingly, grifolin suppressed the mRNA as well as protein level of PGC1α. We further identified that MMP2 and CD44 expressions were PGC1α inducible. PGC1α can bind with metastatic-associated transcription factors: Fra-1 and LSF and the protein-protein interaction was attenuated by grifolin treatment. Overall, these findings suggest that grifolin decreased ROS generation and intracellular ATP to suppress tumor cell adhesion/migration via impeding the interplay between PGC1α and Fra-1 /LSF-MMP2/CD44 axes. Grifolin may develop as a promising lead compound for antitumor therapies by targeting energy metabolism regulator PGC1α signaling. PMID:27626695

  2. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    SciTech Connect

    Ruffell, Brian; Johnson, Pauline . E-mail: pauline@interchange.ubc.ca

    2005-08-26

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding.

  3. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  4. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells

    PubMed Central

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A.; García-Pérez, Carlos A.; Guerrero-Rodríguez, Sandra L.; Ruiz, Angel J.; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M.; Velasco-Velázquez, Marco A.

    2016-01-01

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24− cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists. PMID:27009862

  5. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  6. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells.

    PubMed

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A; García-Pérez, Carlos A; Guerrero-Rodríguez, Sandra L; Ruiz-Moreno, Angel J; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2016-04-26

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24- cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists.

  7. CD45R, CD44 and MHC class II are signaling molecules for the cytoskeleton-dependent induction of dendrites and motility in activated B cells.

    PubMed

    Partida-Sánchez, S; Garibay-Escobar, A; Frixione, E; Parkhouse, R M; Santos-Argumedo, L

    2000-09-01

    Anti-CD44 or anti-MHC II antibodies bound to tissue culture plates have previously been shown to induce a dramatic generation of dendritic processes in activated murine B cells. In this study, we demonstrate a similar generation of dendrites and cell motility in activated B cells through CD45R. The dynamic formation of dendritic processes and associated induction of cell motility were analyzed by video microscopy and were characterized by a rapid, and multidirectional emission of dendrites with retractile behavior. The addition of cytochalasin E totally blocked dendrites formation and motility induced through either CD45R, CD44 or MHC II, suggesting that the necessary cytoskeletal rearrangements require active polymerization of actin. Confocal microscopy showed an accumulation of F-actin in the dendrites, as long as cells were elongating. In contrast, G-actin was localized in the perinuclear area and also accumulated in sites where dendrites originated. Preincubation of B cells with staurosporine (a PKC inhibitor) or BAPTA-AM (a calcium chelator) prevented these morphological changes, indicating additionally a requirement for a PKC-calcium-dependent activity. Dendrite formation and cellular motility, therefore, seem to be two manifestations of the same phenomenon, and CD44, CD45R and MHC II appear to be signaling molecules for the observed cytoskeleton-dependent morphological changes.

  8. DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration.

    PubMed

    Iida, Joji; Clancy, Rebecca; Dorchak, Jesse; Somiari, Richard I; Somiari, Stella; Cutler, Mary Lou; Mural, Richard J; Shriver, Craig D

    2014-01-01

    CD44 adhesion molecules are expressed in many breast cancer cells and have been demonstrated to play a key role in regulating malignant phenotypes such as growth, migration, and invasion. CD44 is an integral transmembrane protein encoded by a single 20-exon gene. The diversity of the biological functions of CD44 is the result of the various splicing variants of these exons. Previous studies suggest that exon v10 of CD44 plays a key role in promoting cancer invasion and metastasis, however, the molecular mechanisms are not clear. Given the fact that exon v10 is in the ectodomain of CD44, we hypothesized that CD44 forms a molecular complex with other cell surface molecules through exon v10 in order to promote migration of breast cancer cells. In order to test this hypothesis, we selected DNA aptamers that specifically bound to CD44 exon v10 using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). We selected aptamers that inhibited migration of breast cancer cells. Co-immunoprecipitation studies demonstrated that EphA2 was co-precipitated with CD44. Pull-down studies demonstrated that recombinant CD44 exon v10 bound to EphA2 and more importantly aptamers that inhibited migration also prevented the binding of EphA2 to exon v10. These results suggest that CD44 forms a molecular complex with EphA2 on the breast cancer cell surface and this complex plays a key role in enhancing breast cancer migration. These results provide insight not only for characterizing mechanisms of breast cancer migration but also for developing target-specific therapy for breast cancers and possibly other cancer types expressing CD44 exon v10.

  9. FOXP3 suppresses breast cancer metastasis through downregulation of CD44.

    PubMed

    Zhang, Cun; Xu, Yujin; Hao, Qiang; Wang, Shuning; Li, Hong; Li, Jialin; Gao, Yuan; Li, Meng; Li, Weina; Xue, Xiaochang; Wu, Shouzhen; Zhang, Yingqi; Zhang, Wei

    2015-09-15

    Forkhead box protein 3 (FOXP3) plays an important role in breast cancer as an X-linked tumor suppressor gene. However, the biological functions and significance of FOXP3 in breast cancer metastasis remain unclear. Here, we find that, clinically, nuclear FOXP3 expression is inversely correlated with breast cancer metastasis. Moreover, we demonstrate that FOXP3 significantly inhibits adhesion, invasion and metastasis of breast cancer cells in vivo and in vitro. In addition, the adhesion molecule CD44 is found to be suppressed by FOXP3 through transcriptome sequence analysis (RNA-seq). A luciferase reporter assay, chromatin immunoprecipitation and electrophoretic mobility shift assay identify CD44 as a direct target of FOXP3. The expression of CD44 is downregulated by FOXP3 in breast cancer cells. Importantly, anti-CD44 antibody reverses the FOXP3 siRNA-induced effects on the breast cancer cells in vitro and FOXP3 expression level in the nucleus of breast cancer cells is inversely correlated with CD44 expression level in clinic breast cancer tissues. Taken together, the results from the present study suggest that FOXP3 is a suppressor of breast cancer metastasis. FOXP3 directly binds to the promoter of CD44 and inhibits its protein expression, thereby suppressing adhesion and invasion of human breast cancer cells. This finding highlights the therapeutic potential of FOXP3-CD44 signaling to inhibit breast cancer metastasis.

  10. Functional Hierarchy of Simultaneously Expressed Adhesion Receptors: Integrin α2β1 but Not CD44 Mediates MV3 Melanoma Cell Migration and Matrix Reorganization within Three-dimensional Hyaluronan-containing Collagen MatricesV⃞

    PubMed Central

    Maaser, Kerstin; Wolf, Katarina; Klein, C. Eberhard; Niggemann, Bernd; Zänker, Kurt S.; Bröcker, Eva-B.; Friedl, Peter

    1999-01-01

    Haptokinetic cell migration across surfaces is mediated by adhesion receptors including β1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both β1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only β1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-β1 and anti-α2 integrin mAbs, whereas mAbs blocking CD44, α3, α5, α6, or αv integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of β1 integrins was not restored via CD44. Because α2β1-mediated migration was neither synergized nor replaced by CD44–HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces. PMID:10512851

  11. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  12. The expression of CD44v6 in colon: from normal to malignant.

    PubMed

    Afify, Alaa; Durbin-Johnson, Blythe; Virdi, Avnit; Jess, Heidi

    2016-02-01

    CD44v6, an integral transmembrane protein belonging to a family of adhesion molecule receptors, plays an important role in tumor growth, progression and metastasis. The purpose of this study was to evaluate the expression of CD44v6 in normal, hyperplastic, adenomatous, and malignant colonic epithelium and to determine its correlation with tumor pathologic stage and lymph node metastasis. We examined the immunohistochemical expression of CD44v6 in normal colonic tissue (n = 25), hyperplastic polyps (n = 45), tubular adenomas (n = 57), tubulovillous adenomas (n = 25), villous adenomas (n = 9), adenocarcinomas stage I (n = 26), adenocarcinomas stage III (n = 26), and lymph node metastasis (n = 26). The percentage of positive cells and the staining intensity were assessed and scored. Statistical analysis was performed using logistic regression and McNemar test. All normal colonic tissue and hyperplastic polyps showed CD44v6 staining confined to the base of the crypt. In tubular adenomas, the dysplastic surface adenomatous epithelium expressed CD44v6 in 49 (86%) cases. CD44v6 was expressed in the glandular areas of tubulovillous adenomas in 21 (84%) cases and in the villous portion in 18 (72%) cases. All villous adenomas expressed CD44v6. CD44v6 was expressed in 23 (88%) cases of stage I adenocarcinomas, in 24 (92%) cases of stage III adenocarcinomas, and in 9 (35%) cases of metastatic adenocarcinomas. We concluded that the gain of CD44v6 expression in premalignant and malignant colonic lesions suggests that CD44v6 may be functionally involved in the adenoma-to-carcinoma progression. CD44v6 did not correlate to tumor pathologic stage and is lost during the acquisition of migratory function by metastatic tumor cells.

  13. Expression and Function of CD44 in Epithelial Ovarian Carcinoma

    PubMed Central

    Sacks, Joelle D.; Barbolina, Maria V.

    2015-01-01

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed. PMID:26569327

  14. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation.

    PubMed

    Singleton, Patrick A; Bourguignon, Lilly Y W

    2004-04-15

    In this study, we have showed that aortic endothelial cells (GM7372A cell line) express CD44v10 [a hyaluronan (HA) receptor], which is significantly enriched in cholesterol-containing lipid rafts (characterized as caveolin-rich plasma membrane microdomains). HA binding to CD44v10 promotes recruitment of the cytoskeletal protein, ankyrin and inositol 1,4,5-triphosphate (IP3) receptor into cholesterol-containing lipid rafts. The ankyrin repeat domain (ARD) of ankyrin is responsible for binding IP3 receptor to CD44v10 at lipid rafts and subsequently triggering HA/CD44v10-mediated intracellular calcium (Ca2+) mobilization leading to a variety of endothelial cell functions such as nitric oxide (NO) production, cell adhesion and proliferation. Further analyses indicate (i) disruption of lipid rafts by depleting cholesterol from the membranes of GM7372A cells (using methyl-beta-cyclodextrin treatment) or (ii) interference of endogenous ankyrin binding to CD44 and IP3 receptor using overexpression of ARD fragments (by transfecting cells with ARDcDNA) not only abolishes ankyrin/IP3 receptor accumulation into CD44v10/cholesterol-containing lipid rafts, but also blocks HA-mediated Ca2+ signaling and endothelial cell functions. Taken together, our findings suggest that CD44v10 interaction with ankyrin and IP3 receptor in cholesterol-containing lipid rafts plays an important role in regulating HA-mediated Ca2+ signaling and endothelial cell functions such as NO production, cell adhesion and proliferation.

  15. A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Banerji, Suneale; Howarth, Mark; Jackson, David G.; Richter, Ralf P.

    2016-09-01

    Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG·protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG·protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices.

  16. A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force

    PubMed Central

    Bano, Fouzia; Banerji, Suneale; Howarth, Mark; Jackson, David G.; Richter, Ralf P.

    2016-01-01

    Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG·protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG·protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices. PMID:27679982

  17. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids

    PubMed Central

    McDonald, Braedon; McAvoy, Erin F.; Lam, Florence; Gill, Varinder; de la Motte, Carol; Savani, Rashmin C.; Kubes, Paul

    2008-01-01

    Adhesion molecules known to be important for neutrophil recruitment in many other organs are not involved in recruitment of neutrophils into the sinusoids of the liver. The prevailing view is that neutrophils become physically trapped in inflamed liver sinusoids. In this study, we used a biopanning approach to identify hyaluronan (HA) as disproportionately expressed in the liver versus other organs under both basal and inflammatory conditions. Spinning disk intravital microscopy revealed that constitutive HA expression was restricted to liver sinusoids. Blocking CD44–HA interactions reduced neutrophil adhesion in the sinusoids of endotoxemic mice, with no effect on rolling or adhesion in postsinusoidal venules. Neutrophil but not endothelial CD44 was required for adhesion in sinusoids, yet neutrophil CD44 avidity for HA did not increase significantly in endotoxemia. Instead, activation of CD44–HA engagement via qualitative modification of HA was demonstrated by a dramatic induction of serum-derived HA-associated protein in sinusoids in response to lipopolysaccharide (LPS). LPS-induced hepatic injury was significantly reduced by blocking CD44–HA interactions. Administration of anti-CD44 antibody 4 hours after LPS rapidly detached adherent neutrophils in sinusoids and improved sinusoidal perfusion in endotoxemic mice, revealing CD44 as a potential therapeutic target in systemic inflammatory responses involving the liver. PMID:18362172

  18. CD44 expression in intraoral salivary ductal papillomas and oral papillary squamous cell carcinoma.

    PubMed

    Fitzpatrick, Sarah G; Montague, Lindsay J; Cohen, Donald M; Bhattacharyya, Indraneel

    2013-06-01

    CD44 is a transmembrane adhesion molecule which has been previously shown to be useful in the differentiation of benign papillary lesions from invasive carcinoma in several different areas including sinonasal mucosa and breast tissue. CD44 expression has previously been shown to be lost in invasive carcinoma and retained in benign papillary lesions in both of the above locations. In addition, studies have evaluated oral mucosal lesions for CD44 expression and found a loss with invasive squamous cell carcinoma when compared to normal epithelium, hyperplasia, and squamous papillomas, which stained particularly strongly. To the best of our knowledge, no study has evaluated CD44 expression when comparing salivary ductal papillomas in comparison to oral papillary SCCA. In this study 18 cases of intraductal papilloma were compared to 19 cases of oral papillary SCCA. Within the ductal papilloma group, all cases stained either absent (6%), weakly (33%), or moderately (61%) with 76% expressing the stain diffusely and 24% focally. In comparison, the papillary squamous cell carcinoma cases expressed the CD44 moderately (26%) or strongly (74%) with 100 % showing diffuse staining. Thus, the CD44 expression was contrary to expectation based on previous studies, which we hypothesize is due to the extremely well differentiated nature of papillary SCCA which expressed CD44 staining compatible with levels previously reported with oral squamous papillomas than invasive carcinoma.

  19. Lack of CD44 variant 6 expression in rectal cancer invasive front associates with early recurrence

    PubMed Central

    Avoranta, Suvi Tuulia; Korkeila, Eija Annika; Syrjänen, Kari Juhani; Pyrhönen, Seppo Olavi; Sundström, Jari Toivo Tapio

    2012-01-01

    AIM: To investigate the prognostic value of CD44 variant 6 (CD44v6), a membranous adhesion molecule, in rectal cancer. METHODS: Altogether, 210 rectal cancer samples from 214 patients treated with short-course radiotherapy (RT, n = 90), long-course (chemo) RT (n = 53) or surgery alone (n = 71) were studied with immunohistochemistry for CD44v6. The extent and intensity of membranous and cytoplasmic CD44v6 staining, and the intratumoral membranous staining pattern, were analyzed. RESULTS: Membranous CD44v6 expression was seen in 84% and cytoplasmic expression in 81% of the cases. In 59% of the tumors with membranous CD44v6 expression, the staining pattern in the invasive front was determined as “front-positive” and in 41% as “front-negative”. The latter pattern was associated with narrower circumferential margin (P = 0.01), infiltrative growth pattern (P < 0.001), and shorter disease-free survival in univariate survival analysis (P = 0.022) when compared to the “front-positive” tumors. CONCLUSION: The lack of membranous CD44v6 in the rectal cancer invasive front could be used as a method to identify patients at increased risk for recurrent disease. PMID:22969228

  20. CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging

    PubMed Central

    El-Dakdouki, Mohammad H.; El-Boubbou, Kheireddine; Kamat, Medha; Huang, Ruiping; Abela, George S.; Kiupel, Matti; Zhu, David C.; Huang, Xuefei

    2013-01-01

    Purpose The cell surface adhesion molecule CD44 plays important roles in the initiation and development of atherosclerotic plaques. We aim to develop nanoparticles that can selectively target CD44 for the non-invasive detection of atherosclerotic plaques by magnetic resonance imaging. Methods Magnetic glyco-nanoparticles with hyaluronan immobilized on the surface have been prepared. The binding of these nanoparticles with CD44 in vitro was evaluated by enzyme linked immunosorbent assay, flow cytometry and confocal microscopy. In vivo magnetic resonance imaging of plaques was performed on an atherosclerotic rabbit model. Results The magnetic glyconanoparticles can selectively bind CD44. In T2* weighted magnetic resonance images acquired in vivo, significant contrast changes in aorta walls were observed with a very low dose of the magnetic nanoparticles, allowing the detection of atherosclerotic plaques. Furthermore, imaging could be performed without significant delay after probe administration. The selectivity of hyaluronan nanoparticles in plaque imaging was established by several control experiments. Conclusions Magnetic nanoparticles bearing surface hyaluronan enabled the imaging of atherosclerotic plaques in vivo by magnetic resonance imaging. The low dose of nanoparticles required, the possibility to image without much delay and the high biocompatibility are the advantages of these nanoparticles as contrast agents for plaque imaging. PMID:23568520

  1. CD44 in Differentiated Embryonic Stem Cells: Surface Expression and Transcripts Encoding Multiple Variants

    PubMed Central

    Haegel, Hélène; Dierich, Andrée

    1994-01-01

    Expression of the surface-adhesion molecule CD44 was investigated during the in vitro differentiation of the embryonic stem (ES) cell line D3. By immunofluorescence analysis, totipotent, undifferentiated ES cells did not show surface expression of CD44, although two transcripts of approximately 1.6 and 3.3 kb were detected on Northern blots. Following 1 week of differentiation in either suspension or substrate-attached cultures, CD44 appeared on the surface of some D3 cells, and synthesis of an additional 4.5 kb mRNA species was detected on Northern blots. At this stage, at least three distinct transcripts encoding CD44 variants were induced within the cultures, resulting from alternative splicing of additional exons in the variable domains of CD44. From PCR analysis, they all appeared to contain the variable exon v10, and two of them in addition contained v6. Taken together, these results suggest that CD44 may play a role in cell migration and adhesion in the early development of the mouse embryo. PMID:7542511

  2. CD44 expression in plexiform lesions of idiopathic pulmonary arterial hypertension.

    PubMed

    Ohta-Ogo, Keiko; Hao, Hiroyuki; Ishibashi-Ueda, Hatsue; Hirota, Seiichi; Nakamura, Kazufumi; Ohe, Tohru; Ito, Hiroshi

    2012-04-01

    Plexiform lesions in pulmonary arteries are a characteristic histological feature for idiopathic pulmonary arterial hypertension (IPAH). The pathogenesis of the plexiform lesion is not fully understood, although it may be related to endothelial cell dysfunction and local inflammation. CD44 is a cell adhesion molecule and it is also involved in angiogenesis, endothelial cell proliferation and migration. The expression of CD44 was examined in lung plexiform lesions obtained from patients with IPAH (IPAH group, n= 7) and pulmonary arterial hypertension associated with atrial septal defect (ASD-PAH group, n= 4). Expression of CD44 was detected in 49 out of 52 plexiform lesions (93%) from all patients in the IPAH group, whereas 31 plexiform lesions obtained from the ASD-PAH group lacked CD44 positivity by immunohistochemistry. In the IPAH group, CD44 was localized in the endothelial cells of microvessels within plexiform lesions and activated T cells in and around the lesions. Furthermore, T cell infiltration and endothelial cell proliferation activity were prominent in the plexiform lesions of the IPAH group, compared to those of the ASD-PAH group. These findings suggest that CD44 and activated T cell infiltration play an important role in the development of plexiform lesions particularly in IPAH.

  3. Meta-Analysis of Prognostic and Clinical Significance of CD44v6 in Esophageal Cancer.

    PubMed

    Hu, Bangli; Luo, Wei; Hu, Rui-Ting; Zhou, You; Qin, Shan-Yu; Jiang, Hai-Xing

    2015-08-01

    CD44v6 is a cell adhesion molecule that plays an important role in the development and progression of esophageal cancer. However, the prognostic value and clinical significance of CD44v6 in esophageal cancer remains controversial. In the present study, we aimed to clarify these relationships through a meta-analysis.We performed a comprehensive search of studies from PubMed, EMBASE, Ovid library database, Google scholar, and Chinese National Knowledge Infrastructure databases that were published before June 2015. The odds ratio (OR) and pooled hazard ratio (HR) with the 95% confidence intervals (CI) were used to estimate the effects.Twenty-one studies including 1504 patients with esophageal cancer were selected to assess the prognostic value and clinical significance of CD44v6 in these patients. The results showed that the expression of CD44v6 was higher in esophageal cancer tissue than in normal colorectal tissue (OR=9.19, 95% CI=6.30-13.42). Moreover, expression of CD44v6 was higher in patients with lymphoid nodal metastasis, compared to those without (OR=6.91, 95% CI=4.81-9.93). The pooled results showed that CD44v6 was associated with survival in patients with esophageal cancer (HR = 2.47, 95% CI = 1.56-3.92). No significant difference in CD44v6 expression was found in patients with different histological types and tumor stages (both P>0.05). Moreover, no publication bias was found among the studies (all P > 0.05).This meta-analysis demonstrates that CD44v6 is associated with the metastasis of esophageal cancer and a poor prognosis, but is not associated with the histological types and tumor stages.

  4. Role of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior.

    PubMed

    Hernández, Daniel; Miquel-Serra, Laia; Docampo, Maria José; Marco-Ramell, Anna; Bassols, Anna

    2011-02-01

    Versican is a hyaluronan-binding, large extracellular matrix chondroitin sulfate proteoglycan whose expression is increased in malignant melanoma. Binding to hyaluronan allows versican to indirectly interact with the hyaluronan cell surface receptor CD44. The aim of this work was to study the effect of silencing the large versican isoforms (V0 and V1) and CD44 in the SK-mel-131 human melanoma cell line. Versican V0/V1 or CD44 silencing caused a decrease in cell proliferation and migration, both in wound healing assays and in Transwell chambers. Versican V0/V1 silencing also caused an increased adhesion to type I collagen, laminin and fibronectin. These results support the proposed role of versican as a proliferative, anti-adhesive and pro-migratory molecule. On the other hand, CD44 silencing caused a decrease in cell adhesion to vitronectin, fibronectin and hyaluronan. CD44 silencing inhibited the binding of a FITC-hyaluronan complex to the cell surface and its internalization into the cytoplasm. Our results indicate that both versican and CD44 play an important role regulating the behavior of malignant melanoma cells.

  5. Circulating tumor cells expressing cancer stem cell marker CD44 as a diagnostic biomarker in patients with gastric cancer

    PubMed Central

    Watanabe, Toru; Okumura, Tomoyuki; Hirano, Katsuhisa; Yamaguchi, Tetsuji; Sekine, Shinichi; Nagata, Takuya; Tsukada, Kazuhiro

    2017-01-01

    Epithelial cell adhesion molecule (EpCAM) is a marker for circulating tumor cells (CTCs) in various types of cancer, while cluster of differentiation 44 (CD44) is a marker for gastric cancer (GC) stem cells. To evaluate the clinical significance of CD44+ CTCs in patients with GC in the present study, the number of EpCAM+CD44+ and EpCAM+CD44− cells were detected in the peripheral blood of 26 GC patients and 12 healthy volunteers using flow cytometry. The number (mean ± standard deviation) of EpCAM+CD44+ cells in the GC patients and healthy volunteers was 69.9±52.0 and 0.91±2.10, respectively (P=0.0001), while that of EpCAM+CD44− cells was 59.1±88.0 and 9.83±9.91, respectively (P=0.0313). The sensitivity and specificity of EpCAM+CD44+ cell detection for the identification of GC patients were 92.3 and 100%, respectively. By contrast, the values of EpCAM+CD44− cell detection were 76.9 and 83.3%, respectively. The number of EpCAM+CD44+ cells in the GC patients was correlated with the disease stage (P=0.0423), the depth of the tumor (P=0.0314) and venous invasion (P=0.0184) in the resected tumor specimens, while the number of EpCAM+CD44− cells did not correlate with any clinicopathological factors. The number of EpCAM+CD44+ cells significantly decreased following surgical resection of the tumor or induction of systemic chemotherapy. Additionally, atypical cells with a high nuclear to cytoplasmic ratio were morphologically detected in the sorted EpCAM+CD44+ cells. These results suggested that CD44+ CTCs, but not CD44− CTCs, reflect the malignant status of the primary tumor in patients with GC, providing a candidate biomarker for diagnosis and treatment response. PMID:28123556

  6. HGF-promoted motility in primary human melanocytes depends on CD44v6 regulated via NF-kappa B, Egr-1, and C/EBP-beta.

    PubMed

    Damm, Sabine; Koefinger, Petra; Stefan, Martina; Wels, Christian; Mehes, Gabor; Richtig, Erika; Kerl, Helmut; Otte, Marcus; Schaider, Helmut

    2010-07-01

    The regulation of CD44v6, a variant of the CD44 family of glycosylated adhesion molecules, through hepatocyte growth factor (HGF) has implications for motility in primary human melanocytes. We show that exposure of primary human melanocytes to HGF results in an increase of CD44v6 expression. Immunostaining of melanocytic lesions revealed low cytoplasmic positivity of CD44v6 in some nevi but high membranous expression in primary cutaneous melanomas, and cutaneous and lymph node metastases. HGF-dependent CD44v6 regulation in melanocytes is NF-kappaB dependent because BAY 11-7082, an inhibitor of NF-kappaB activation, but not interference with the mitogen-activated protein kinase or phosphatidylinositol 3-kinase cascade, antagonized HGF-induced CD44v6 expression. NF-kappaB-mediated transcriptional regulation of CD44v6 involves the transcription factors Egr-1 and CCAAT enhancer-binding protein-beta (C/EBP-beta). In gel shift assays, the initial binding of p100/p52 NF-kappaB, C/EBP-beta, and Egr-1 to the CD44 promoter experienced reshuffling toward increased affinity of C/EBP-beta after HGF stimulation. A blocking antibody to CD44v6 decreased HGF-induced c-Met phosphorylation as well as enhanced random- and site-directed migration. Our data show that HGF-induced motility in primary human melanocytes depends on c-Met-CD44v6 interaction, and that HGF-enhanced CD44v6 expression is required for motility and transcriptional upregulation of CD44v6, presumably mediated through a complex comprising NF-kappaB/C/EBP-beta and Egr-1.

  7. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi.

    PubMed

    Skupien, Anna; Konopka, Anna; Trzaskoma, PaweI; Labus, Josephine; Gorlewicz, Adam; Swiech, Lukasz; Babraj, Matylda; Dolezyczek, Hubert; Figiel, Izabela; Ponimaskin, Evgeni; Wlodarczyk, Jakub; Jaworski, Jacek; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2014-12-01

    The acquisition of proper dendrite morphology is a crucial aspect of neuronal development towards the formation of a functional network. The role of the extracellular matrix and its cellular receptors in this process has remained enigmatic. We report that the CD44 adhesion molecule, the main hyaluronan receptor, is localized in dendrites and plays a crucial inhibitory role in dendritic tree arborization in vitro and in vivo. This novel function is exerted by the activation of Src tyrosine kinase, leading to the alteration of Golgi morphology. The mechanism operates during normal brain development, but its inhibition might have a protective influence on dendritic trees under toxic conditions, during which the silencing of CD44 expression prevents dendritic shortening induced by glutamate exposure. Overall, our results indicate a novel role for CD44 as an essential regulator of dendritic arbor complexity in both health and disease.

  8. hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron.

    PubMed

    Loh, Tiing Jen; Cho, Sunghee; Moon, Heegyum; Jang, Ha Na; Williams, Darren Reece; Jung, Da-Woon; Kim, Il-Chul; Ghigna, Claudia; Biamonti, Giuseppe; Zheng, Xuexiu; Shen, Haihong

    2015-06-01

    CD44 is a complex cell adhesion molecule that mediates communication and adhesion between adjacent cells as well as between cells and the extracellular matrix. CD44 pre-mRNA produces various mRNA isoforms through alternative splicing of 20 exons, among which exons 1-5 (C1-C5) and 16-20 (C6-C10) are constant exons, whereas exons 6-15 (V1-V10) are variant exons. CD44 V10 exon has important roles in breast tumor progression and Hodgkin lymphoma. Here we show that increased expression of hnRNP L inhibits V10 exon splicing of CD44 pre-mRNA, whereas reduced expression of hnRNP L promotes V10 exon splicing. In addition, hnRNP L also promotes V10 splicing of endogenous CD44 pre-mRNA. Through mutation analysis, we demonstrate that the effects of hnRNP L on V10 splicing are abolished when the CA-rich sequence on the upstream intron of V10 exon is disrupted. However, hnRNP L effects are stronger if more CA-repeats are provided. Furthermore, we show that hnRNP L directly contacts the CA-rich sequence. Importantly, we provide evidences that hnRNP L inhibits U2AF65 binding on the upstream Py tract of V10 exon. Our results reveal that hnRNP L is a new regulator for CD44 V10 exon splicing.

  9. [Regulation of all-trans retinoic acid and arsenic trioxide on CD44v6 expression in NB4 cells].

    PubMed

    Huang, Hui-Fang; Chen, Ping; Lu, Rong; Lin, Zhen-Xing; Wu, Yong; Chen, Yuan-Zhong

    2012-02-01

    The adhesion molecule CD44 variant isoform (CD44v6) closely associates with progress of acute myeloid leukemia (AML). This study was purposed to investigate the effects of all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) on the expression of CD44v6 and the associated signal pathway phosphatidylinositol 3-kinase (PI3K)/Akt in acute promyelocytic leukemia (APL) cell line NB4 cells. The differentiation of NB4 was detected by morphologic observation and flow cytometry; the NB4 cell apoptosis was assayed by flow cytometry with Annexin V-FITC/PI double staining; the CD44v6 mRNA expression in NB4 cells was determined by real-time RT-PCR, the CD44v6 protein expression and changes of PI3K/Akt signal pathway in NB4 cells were analysed by Western blot. The results demonstrated that in ATRA-induced differentiation, the transcriptional level of CD44v6 was dominantly down-regulated, the translational level of CD44v6 did not change and the PI3K/Akt signal axis was activated. In As2O3-induced apoptosis, both the transcriptional level and translational level of CD44v6 were remarkably reduced, and the PI3K/Akt pathway was inhibited. It is concluded that the regulation of ATRA on expression of CD44v6 in NB4 cells differs from that of As2O3. The results provide an experimental basis to reveal the different mechanism of ATRA and As2O3 in view of the intercommunication between leukemia cells and hematopoietic microenvironment.

  10. Expression of CD44 variants in human inflammatory synovitis

    SciTech Connect

    Hale, L.P.; Haynes, B.F.; McCachren, S.

    1995-11-01

    The cell surface hyaluronate receptor CD44 has previously been shown to have immunomodulatory activity and to be upregulated in inflammatory synovitis. Since these findings were reported, the genomic structure of CD44 has been delineated, and multiple splice variants have been described. Therefore, we determined which CD44 variant exons are present during inflammatory synovitis by a combination of Northern blot analysis and reverse transcription followed by polymerase chain reaction amplification of synovial RNA. Immunohistochemical staining was used to define the sites of expression of individual v6 and v9 exons in synovial tissue. The standard (S) or hematopoietic isoform, CD44S, was the predominant form of CD44 expressed in synovium and was expressed by most cell types. Other isoforms, containing alternatively spliced exons in the proximal extracellular domain, were found by RT-PCR, but at lower levels than CD44S. The second most prevalent form was CD44E, which has an insertion of three exons (v8-v10) in the proximal extracellular domain. Immunohistochemical studies showed that reactivity with v9-specific antibodies was primarily in macrophages, particularly those in the synovial lining layer. CD44 exon v6, previously reported to be important in immune activation and in epithelial tumor metastasis, was also expressed in synovial lining cells and in occasional synovial interstitial cells. The presence of CD44 variants containing v9 in rheumatoid synovial macrophages may be important in the adhesion and activation of mononuclear phagocytes in the synovium and, thus, may be a target for novel antiinflammatory therapies in the future. The role of CD44 isoforms in cellular adhesion, immune activation, and joint erosion in inflammatory synovitis deserves further study. 7 figs., 2 tabs., 56 refs.

  11. Adhesion molecules in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Geboes, K.; Al-Kharashi, S.; Tabbara, K.; Missotten, L.; Desmet, V.

    1997-01-01

    AIMS/BACKGROUND—Adhesion molecules play a key role in the selective recruitment of different leucocyte population to inflammatory sites. The purpose of the present study was to investigate the presence and distribution of adhesion molecules in the conjunctiva of patients with vernal keratoconjunctivitis (VKC).
METHODS—The presence and distribution of adhesion molecules were studied in 14 conjunctival biopsy specimens from seven patients with active VKC and in four normal conjunctival biopsy specimens. We used a panel of specific monoclonal antibodies (mAbs) directed against intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-3 (ICAM-3), lymphocyte function associated antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leucocyte adhesion molecule-1 (ELAM-1). In addition, a panel of mAbs were used to characterise the composition of the inflammatory infiltrate.
RESULTS—In the normal conjunctiva, ICAM-1 was expressed on the vascular endothelium only, LFA-1 and ICAM-3 on epithelial and stromal mononuclear cells , and VLA-4 on stromal mononuclear cells. The expression of VCAM-1 and ELAM-1 was absent. The number of cells expressing adhesion molecules was found to be markedly increased in all VKC specimens. This was concurrent with a heavy inflammatory infiltrate. Strong ICAM-1 expression was induced on the basal epithelial cells, and vascular endothelial cells. Furthermore, ICAM-1 was expressed on stromal mononuclear cells. LFA-1 and ICAM-3 were expressed on the majority of epithelial and stromal infiltrating mononuclear cells. VLA-4 expression was noted on stromal mononuclear cells. Compared with controls, VKC specimens showed significantly more ICAM-3+, LFA-1+, and VLA-4+ cells. VCAM-1 and ELAM-1 were induced on the vascular endothelial cells.
CONCLUSIONS—Increased expression of adhesion molecules may play an important role in the pathogenesis of VKC.

 PMID

  12. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    PubMed

    Donatello, Simona; Babina, Irina S; Hazelwood, Lee D; Hill, Arnold D K; Nabi, Ivan R; Hopkins, Ann M

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  13. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions.

  14. Hypoxia regulates CD44 expression via hypoxia-inducible factor-1α in human gastric cancer cells

    PubMed Central

    Liang, Gai; Li, Shuang; Du, Wei; Ke, Qinghua; Cai, Jun; Yang, Jiyuan

    2017-01-01

    Hypoxia induces proliferation and invasion in cancer cells via hypoxia-inducible factor (HIF)-1α. The cell adhesion molecule cluster of differentiation (CD) 44 has been associated with increased cell invasion and metastasis. Whether hypoxia regulates the expression of CD44 in gastric cancer cells remains to be established. In the current study, the effects of hypoxia on HIF-1α and CD44 expression levels in human gastric cell lines SGC-7901 and BGC-823 were evaluated. The cells were cultured in 1% O2 for 1 week and then treated with 20 nM rapamycin for 72 h. Cell viability was evaluated using the Cell Counting kit-8 assay, and cell invasion was detected by the Transwell invasion assay. The protein and messenger (m) RNA expression levels of HIF-1α and CD44 were detected using western blotting and reverse transcription-quantitative polymerase chain reaction, respectively. The results revealed that cell viability and invasion increased under hypoxic conditions, but decreased following rapamycin treatment in SGC-7901 and BGC-823 cells. Hypoxia also increased the protein and mRNA expression levels of HIF-1α and CD44 in these two cell lines. However, this hypoxia-induced increase in HIF-1α and CD44 protein and mRNA expression levels was inhibited by rapamycin. These findings suggest that hypoxia induced the proliferation and invasion of SGC-7901 and BGC-823 cells. Furthermore, CD44 expression levels were potentially associated with HIF-1α expression levels. Therefore, in gastric cancer cells, hypoxia may regulate CD44 expression via HIF-1α in order to promote cell proliferation and invasion.

  15. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  16. Involvement of CD44 in leukocyte recruitment to the rat testis in experimental autoimmune orchitis.

    PubMed

    Guazzone, V A; Denduchis, B; Lustig, L

    2005-05-01

    Experimental autoimmune orchitis (EAO) is characterized by an interstitial mononuclear cell infiltrate and a severe lesion of the seminiferous tubules with germ cells that undergo apoptosis and sloughing. The aim of this study was to determine the role of CD44 in testicular leukocyte recruitment in EAO. The biological functions of CD44 have been attributed to the generation of a functionally active hyaluronan-binding phenotype. Orchitis was induced in Sprague-Dawley adult rats by active immunization with an emulsion of testicular homogenate and complete Freund's adjuvant using Bordetella pertussis as co-adjuvant. Control rats (C) injected with saline and adjuvants and normal (N) untreated rats were also studied. CD44 expression was analyzed by flow cytometry in peripheral blood mononuclear cells (PBMC) and lymph node cells isolated from rats at different times after the first immunization. We observed an increase in the mean fluorescence intensity of both samples in the C and experimental (E) groups only after the immunization period. A significant decrease in percentage of CD44+PBMC and in mean fluorescence intensity was observed in rats with orchitis compared with the C group. By in vitro hyaluronic acid-binding assay we demonstrated that the percentage of PBMC adhesion was higher in the E group compared with the C and N groups. By immunohistochemistry, we observed a significant increase in the number of CD44+cells in the testicular interstitium of rats with severe orchitis compared with the N and C groups. These results suggested that the CD44 molecule is involved in the homing of lymphomonocytes into the testes of rats with autoimmune orchitis.

  17. The prognostic significance of CD44V6, CDH11, and β-catenin expression in patients with osteosarcoma.

    PubMed

    Deng, Zhouming; Niu, Guangfeng; Cai, Lin; Wei, Renxiong; Zhao, Xiaolei

    2013-01-01

    This study aimed to examine the expression of and the relationship between CD44V6, CDH11, and β-catenin. The expression of these cell adhesion molecules was detected in 90 osteosarcoma and 20 osteochondroma specimens using immunohistochemistry. Associations between these parameters and clinicopathological data were also examined. The expression rates of CD44V6, CDH11, and β-catenin were 25.0% (5/20), 70.0% (14/20), and 20.0% (4/20) in osteochondroma specimens, respectively. Compared to osteochondromas, the proportions of expression of CD44V6 and β-catenin in osteosarcoma specimens increased to 65.6% (59/90) and 60.0% (54/90), respectively. However, the expression rate of CDH11 in osteosarcomas was reduced to 40.0% (36/90). The expression of these markers was significantly associated with metastasis and overall survival (P < 0.05). Survival analysis revealed that patients with increased expression of CD44V6 and β-catenin as well as decreased expression of CDH11 were correlated with a shorter survival time. Multivariate analysis indicated that clinical stage, metastasis status, and the expression of CD44V6, CDH11, and β-catenin were found to be associated with overall survival. Further, the expression of β -catenin and that of CD44V6 were positively correlated with each other. Thus, our results indicated abnormal expression of CD44V6, CDH11, and β-catenin in osteosarcomas and osteochondromas, which may provide important indicators for further research.

  18. Prognostic significance of CD44V6 expression in osteosarcoma: a meta-analysis.

    PubMed

    Zhang, Yunyuan; Ding, Chunming; Wang, Jing; Sun, Guirong; Cao, Yongxian; Xu, Longqiang; Zhou, Lan; Chen, Xian

    2015-12-23

    Numerous individual studies evaluating the relationship between CD44V6 over-expression and prognostic impact in patients with osteosarcoma (OS) have yielded in conclusive results. This meta-analysis aimed to determine the value of cell adhesion molecule CD44V6 in prognosis of OS by conducting a systematic review and meta-analysis. A comprehensive search was conducted using PubMed (medline), Embase, ISI Web of Knowledge, Springer, the Cochrane Library, Scopus, BioMed Central, ScienceDirect, Wanfang, Weipu, and China National Knowledge Internet (CNKI) databases from inception through May 26, 2015. All available articles written in English or Chinese that investigated the expression of CD44V6 and the prognosis of OS were included. The quantity of the studies was evaluated according to the critical review checklist of the Dutch Cochrane Centre proposed by MOOSE. Finally, a total of eight studies with 486 OS patients were involved and the results indicated that the positive expression of CD44V6 predicts neoplasm metastasis (RR = 1.76, 95 % CI 1.38-2.25, p < 0.00001), and poor survival in OS with the pooled HR of 1.53 (95 % CI 1.25-1.88, p < 0.0001). No significant heterogeneity was observed among all studies. In conclusion, the present meta-analysis and systematic review strongly suggest that CD44V6 over-expression is associated with overall survival rate and metastasis in OS, and may be used as a prognostic biomarker to guide the clinical therapy for OS.

  19. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.

    PubMed

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-12-14

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.

  20. Insights into the structural perturbations of spliced variants of CD44: a modeling and simulation approach.

    PubMed

    Patel, Shanaya; Shaikh, Faraz; Devaraji, Vinod; Radadiya, Ashish; Shah, Kanisha; Shah, Anamik; Rawal, Rakesh

    2017-02-01

    Transient interactions between cancer stem cells and components of the tumor microenvironment initiate various signaling pathways crucial for carcinogenesis. Predominant hyaluronan (HA) receptor, CD44 is structurally and functionally one of the most variable cell surface receptors having the potential to generate a diverse repertory of CD44 isoforms by alternative splicing of variant exons and post-translational modifications. A structurally distinctive variant of CD44, CD44v10, has an inevitable role in malignant progression, invasion, and metastasis. This can be attributed to the binding of HA with CD44v10, which demonstrates a completely different behavioral pattern as compared to the other spliced variants of CD44 molecule. Absence of a comprehensively predicted crystal structure of human CD44s and CD44v10 is an impediment in understanding the resultant structural alterations caused by the binding of HA. Thus, in this study, we aim to predict the CD44s and CD44v10 structures to their closest native confirmation and study the HA binding-induced structural perturbations using homology modeling, molecular docking, and MD simulation approach. The results depicted that modeled 3D structures of CD44s and CD44v10 isoforms were found to be stable throughout MD simulations; however, a substantial decrease was observed in the binding affinity of HA with CD44v10 (-5.355 kcal/mol) as compared to CD44s. Furthermore, loss and gain of several H-bonds and hydrophobic interactions in CD44v10-HA complex during the simulation process not only elucidated the reason for decreased binding affinity for HA but also prompted toward the plausible role of HA-induced structural perturbations in occurrence and progression of carcinogenesis.

  1. Analysis of Cd44-Containing Lipid Rafts

    PubMed Central

    Oliferenko, Snezhana; Paiha, Karin; Harder, Thomas; Gerke, Volker; Schwärzler, Christoph; Schwarz, Heinz; Beug, Hartmut; Günthert, Ursula; Huber, Lukas A.

    1999-01-01

    CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II–p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II–lipid raft complexes were stabilized by addition of GTPγS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton. PMID:10459018

  2. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    NASA Astrophysics Data System (ADS)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  3. Detection and clinical significance of CD44v6 and integrin-β1 in pancreatic cancer patients using a triplex real-time RT-PCR assay.

    PubMed

    Zhou, Gang; Chiu, David; Qin, Dajiang; Niu, Lizhi; Cai, Jinlei; He, Lihua; Huang, Wenhao; Xu, Kecheng

    2012-08-01

    The cell adhesion molecules CD44v6 and integrin-β1 are associated with the progression and metastasis of cancer. A novel triplex real-time reverse transcription polymerase chain reaction (qRT-PCR) assay was developed to quantify CD44v6 and integrin-β1 gene expression in peripheral blood mononuclear cells from 30 pancreatic cancer (PC) patients and 12 healthy individuals. The standard curve of the triplex qRT-PCR was constructed by optimizing the reaction condition and the amplification efficiency was 102.5, 101.1, and 100.6 % for CD44v6, integrin-β1 and endogenous gene (β-actin) amplification. Nonspecific bands were not observed from the triplex qRT-PCR amplification and the detection limit of this assay was 100 copies. Expression levels of CD44v6 and integrin-β1 gene were significantly lower in healthy individuals than PC patients (P<0.05). CD44v6 and integrin-β1 gene expression were not associated with the sex, age, and tumor position in PC (P>0.05). CD44v6 gene expression was significantly associated with clinical stage, liver metastasis, and tumor size (P<0.05). Integrin-β1 gene expression was significantly associated with clinical stage and liver metastasis (P<0.05). This triplex qRT-PCR assay may provide a useful tool for diagnosis, prognosis, and therapeutic evaluation in PC.

  4. Biphasic Dependence of Glioma Survival and Cell Migration on CD44 Expression Level.

    PubMed

    Klank, Rebecca L; Decker Grunke, Stacy A; Bangasser, Benjamin L; Forster, Colleen L; Price, Matthew A; Odde, Thomas J; SantaCruz, Karen S; Rosenfeld, Steven S; Canoll, Peter; Turley, Eva A; McCarthy, James B; Ohlfest, John R; Odde, David J

    2017-01-03

    While several studies link the cell-surface marker CD44 to cancer progression, conflicting results show both positive and negative correlations with increased CD44 levels. Here, we demonstrate that the survival outcomes of genetically induced glioma-bearing mice and of high-grade human glioma patients are biphasically correlated with CD44 level, with the poorest outcomes occurring at intermediate levels. Furthermore, the high-CD44-expressing mesenchymal subtype exhibited a positive trend of survival with increased CD44 level. Mouse cell migration rates in ex vivo brain slice cultures were also biphasically associated with CD44 level, with maximal migration corresponding to minimal survival. Cell simulations suggest that cell-substrate adhesiveness is sufficient to explain this biphasic migration. More generally, these results highlight the potential importance of non-monotonic relationships between survival and biomarkers associated with cancer progression.

  5. Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration

    PubMed Central

    Donatello, Simona; Babina, Irina S.; Hazelwood, Lee D.; Hill, Arnold D.K.; Nabi, Ivan R.; Hopkins, Ann M.

    2012-01-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration. PMID:23031255

  6. CD44 and HCELL: Preventing Hematogenous Metastasis at Step 1

    PubMed Central

    Jacobs, Pieter P.; Sackstein, Robert

    2011-01-01

    Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells home to specific tissues by hijacking the normal leukocyte trafficking mechanisms. Cancer cells characteristically express CD44, and there is increasing evidence that HCELL, a sialofucosylated glycoform of CD44, serves as the major selectin ligand on cancer cells, allowing interaction of tumor cells with endothelium, leukocytes, and platelets. Here, we review the structural biology of CD44 and of HCELL, and present current data on the function of these molecules in mediating organ-specific homing/metastasis of circulating tumor cells. PMID:21827751

  7. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches.

    PubMed

    Williams, Karin; Motiani, Karan; Giridhar, Premkumar Vummidi; Kasper, Susan

    2013-03-01

    The stem cell niche provides a regulatory microenvironment for cells as diverse as totipotent embryonic stem cells to cancer stem cells (CSCs) which exhibit stem cell-like characteristics and have the capability of regenerating the bulk of tumor cells while maintaining self-renewal potential. The transmembrane glycoprotein CD44 is a common component of the stem cell niche and exists as a standard isoform (CD44s) and a range of variant isoforms (CD44v) generated though alternative splicing. CD44 modulates signal transduction through post-translational modifications as well as interactions with hyaluronan, extracellular matrix molecules and growth factors and their cognate receptor tyrosine kinases. While the function of CD44 in hematopoietic stem cells has been studied in considerable detail, our knowledge of CD44 function in tissue-derived stem cell niches remains limited. Here we review CD44s and CD44v in both hematopoietic and tissue-derived stem cell niches, focusing on their roles in regulating stem cell behavior including self-renewal and differentiation in addition to cell-matrix interactions and signal transduction during cell migration and tumor progression. Determining the role of CD44 and CD44v in normal stem cell, CSC and (pre)metastatic niches and elucidating their unique functions could provide tools and therapeutic strategies for treating diseases as diverse as fibrosis during injury repair to cancer progression.

  8. The Role of CD44 in Disease Pathophysiology and Targeted Treatment

    PubMed Central

    Jordan, Andre R.; Racine, Ronny R.; Hennig, Martin J. P.; Lokeshwar, Vinata B.

    2015-01-01

    The cell-surface glycoprotein CD44 is involved in a multitude of important physiological functions including cell proliferation, adhesion, migration, hematopoiesis, and lymphocyte activation. The diverse physiological activity of CD44 is manifested in the pathology of a number of diseases including cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular disease, and wound healing. This diversity in biological activity is conferred by both a variety of distinct CD44 isoforms generated through complex alternative splicing, posttranslational modifications (e.g., N- and O-glycosylation), interactions with a number of different ligands, and the abundance and spatial distribution of CD44 on the cell surface. The extracellular matrix glycosaminoglycan hyaluronic acid (HA) is the principle ligand of CD44. This review focuses both CD44-hyaluronan dependent and independent CD44 signaling and the role of CD44–HA interaction in various pathophysiologies. The review also discusses recent advances in novel treatment strategies that exploit the CD44–HA interaction either for direct targeting or for drug delivery. PMID:25954275

  9. Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*

    PubMed Central

    Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren

    2013-01-01

    The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413

  10. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  11. Regulation of Antigen-Experienced T Cells: Lessons from the Quintessential Memory Marker CD44

    PubMed Central

    Baaten, Bas J. G.; Tinoco, Roberto; Chen, Alex T.; Bradley, Linda M.

    2011-01-01

    Despite the widespread use of the cell-surface receptor CD44 as a marker for antigen (Ag)-experienced, effector and memory T cells, surprisingly little is known regarding its function on these cells. The best-established function of CD44 is the regulation of cell adhesion and migration. As such, the interactions of CD44, primarily with its major ligand, the extracellular matrix (ECM) component hyaluronic acid (HA), can be crucial for the recruitment and function of effector and memory T cells into/within inflamed tissues. However, little is known about the signaling events following engagement of CD44 on T cells and how cooperative interactions of CD44 with other surface receptors affect T cell responses. Recent evidence suggests that the CD44 signaling pathway(s) may be shared with those of other adhesion receptors, and that these provide contextual signals at different anatomical sites to ensure the correct T cell effector responses. Furthermore, CD44 ligation may augment T cell activation after Ag encounter and promote T cell survival, as well as contribute to regulation of the contraction phase of an immune response and the maintenance of tolerance. Once the memory phase is established, CD44 may have a role in ensuring the functional fitness of memory T cells. Thus, the summation of potential signals after CD44 ligation on T cells highlights that migration and adhesion to the ECM can critically impact the development and homeostasis of memory T cells, and may differentially affect subsets of T cells. These aspects of CD44 biology on T cells and how they might be modulated for translational purposes are discussed. PMID:22566907

  12. Alteration of CD44 expression in HIV type 1-infected T cell lines.

    PubMed

    Giordanengo, V; Limouse, M; Doglio, A; Lesimple, J; Lefebvre, J C

    1996-11-20

    CD44 is known to interfere in HIV replication and to participate in many physiological processes such as lymphocyte binding to high endothelial venules of lymphoid tissue, lymph nodes, and mucosal endothelium. The T cell lines MOLT-4 and CEM, and CEM subclones were infected with the HIV-1 LAI strain and monitored for the expression of CD44 during the course of chronic virus production until the infected cells were at the stage of latent infection. The levels of CD44 protein expression were quantified using cell surface immunostaining and biotinylation. The maturation of CD44 molecules was evaluated by metabolic sulforadiolabeling and CD44 mRNA was visualized by Northern blot analysis. We show a downmodulation of CD44 expression in infected T cell lines and subclones. This phenomenon was most evident at the stage of latent infection. Then, CD44 molecules were undetectable at both the protein and mRNA levels in latently infected CEM cells and CEM subclones. In addition, the 97-kDa standard CD44 isoform showed a shift upward, while detectable during the stage of chronic virus production. In latently infected MOLT-4 cells, the CD44 protein levels were dramatically decreased; CD44 mRNA was detected, but the sizes differed from the mRNA in uninfected cells. Since CD44 is known to regulate in part lymphocyte homing and HIV replication, the alterations that were observed in the expression of this molecule could interfere with the particular homing of HIV-infected cells and/or viral latency.

  13. Changes in CD44 expression during B cell differentiation in the human tonsil.

    PubMed

    Kremmidiotis, G; Zola, H

    1995-04-01

    CD44 is a widely distributed cell surface glycoprotein that has been implicated in a number of cellular adhesion processes and signal transduction events. These functional capabilities qualify CD44 as a potential mediator of contact-signaling events underlying the process of antigen-dependent B cell differentiation in secondary lymphoid tissues. We postulated that changes in the expression of CD44 during B cell differentiation reflect the cells' changing requirements for this receptor. It has been reported that germinal center B cells are low to negative for CD44 expression, implying that the receptor is lost upon activation. Correlation of the expression of CD44 with surface immunoglobulin and a number of B cell differentiation markers revealed a trimodal expression pattern. High levels of CD44 are expressed on resting IgD+/IgM+ cells. The receptor is still expressed at the early activation stage defined by the expression of CD23. At the early blast stage, when the blast marker CD38 appears on the cell surface and IgD and CD23 disappear, CD44 is downregulated. The majority of CD38+/IgM+ blasts and CD38+/Ig- centroblasts are CD44 low/negative. The receptor is re-upregulated at the point of transition from the centroblast to the centrocyte level. Centrocytes expressing IgG or IgA comprise CD44high and CD44low fractions. IgG+ or IgA+ cells at the postgerminal center stage express high levels of CD44. The functional implications of this expression pattern are discussed.

  14. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress

    PubMed Central

    Shatirishvili, M; Burk, A S; Franz, C M; Pace, G; Kastilan, T; Breuhahn, K; Hinterseer, E; Dierich, A; Bakiri, L; Wagner, E F; Ponta, H; Hartmann, T N; Tanaka, M; Orian-Rousseau, V

    2016-01-01

    CD44, a large family of transmembrane glycoproteins, plays decisive roles in physiological and pathological conditions. CD44 isoforms are involved in several signaling pathways essential for life such as growth factor-induced signaling by EGF, HGF or VEGF. CD44 is also the main hyaluronan (HA) receptor and as such is involved in HA-dependent processes. To allow a genetic dissection of CD44 functions in homeostasis and disease, we generated a Cd44 floxed allele allowing tissue- and time-specific inactivation of all CD44 isoforms in vivo. As a proof of principle, we inactivated Cd44 in the skin epidermis using the K14Cre allele. Although the skin of such Cd44Δker mutants appeared morphologically normal, epidermal stiffness was reduced, wound healing delayed and TPA induced epidermal thickening decreased. These phenotypes might be caused by cell autonomous defects in differentiation and HA production as well as impaired adhesion and migration on HA by Cd44Δker keratinocytes. These findings support the usefulness of the conditional Cd44 allele in unraveling essential physiological and pathological functions of CD44 isoforms. PMID:27831556

  15. Heterogeneity of CD44 expression among human B-cell subpopulations.

    PubMed

    Kremmidiotis, G; Ridings, J; Hicks, M; Beckman, I G; Bryson, G; Collins, R; Zola, H

    1998-03-01

    CD44 is a widely distributed cell surface glycoprotein that participates in a number of cellular adhesion and signal transduction processes. Germinal center B cells express very low levels of CD44, whereas their precursors and differentiation products express much higher levels. In immunofluorescence studies comparing 20 antibodies classified as being against the hematopoietic isoform of CD44, one antibody, A1G3, was unreactive with germinal center B cells, whereas the other antibodies showed low intensity but definite reactivity. Western blotting and sequential immunoprecipitation studies of lysates from density-separated lymphocyte fractions showed two bands that were differentially expressed and reacted differently with A1G3 compared with the other CD44 antibodies. These results suggest that germinal center B cells and non-germinal center B cells express different forms of CD44. Of 21 malignant B-cell populations examined, 5 showed reactivity with a "standard" CD44 reagent and significantly reduced reactivity with A1G3, while one sample showed the opposite pattern and the remainder were positive for both reagents. Of 10 cell lines studied, 5 were differentially stained by A1G3 and a standard CD44 antibody. PCR amplification of reverse transcribed mRNA from sorted human tonsil B-cell subpopulations and Southern blotting showed that B cells express a number of splice isoforms of CD44. These results demonstrate that B cells express multiple forms of CD44; both splice insert isoforms and variants distinguished by A1G3; the form of CD44 expressed depends on B-cell differentiation state.

  16. CD44 distribution in sweat gland tumors suggests it has different functional roles in the various cell types.

    PubMed

    Fernández-Figueras, M T; Puig, L; Ariza, A; Calatrava, A; Fuente, M J; Ferrándiz, C

    1996-10-01

    CD44 is a polymorphic group of membrane glycoproteins with multiple functions that include cell adhesion. Since on normal sweat glands CD44 is expressed only in eccrine coil secretory cells, it has been considered as a possible marker of this type of differentiation. We have immunohistochemically investigated the distribution of CD44 in paraffin-embedded samples of 41 benign and malignant sweat gland tumors by using a monoclonal antibody directed against the standard isoform of CD44. CD44 was strongly expressed in epithelial cells at the peripheral row of syringomas and in cuticular areas of eccrine poromas. Apocrine tumors such as apocrine hidrocystoma, syringocystadenoma papilliferum, or hidradenoma papilliferum showed intense CD44 positivity in the portion of cells in contact with the neighboring stroma and focally on the luminal side of cells with apocrine secretion. Cylindromas and spiradenomas presented focal CD44 positivity, virtually limited to clear cells. Malignant neoplasms exhibited irregular CD44 staining, which was more intense in the less differentiated zones and tumors. Our results indicate that CD44 is not a useful marker for a specific form of sweat gland differentiation. Nevertheless, its characteristic patterns of distribution might reflect the variety of functional roles assumed by the different CD44 isoforms in each epithelial cell.

  17. Immunohistochemical expression of CD44s in human neuroblastic tumors: Moroccan experience and highlights on current data

    PubMed Central

    2013-01-01

    Background Peripheral neuroblastic tumors (pNTs), including neuroblastoma (NB), ganglioneuroblastoma (GNB) and ganglioneuroma (GN), are extremely heterogeneous pediatric tumors responsible for 15 % of childhood cancer death. The aim of the study was to evaluate the expression of CD44s (‘s’: standard form) cell adhesion molecule by comparison with other specific prognostic markers. Methods An immunohistochemical profile of 32 formalin-fixed paraffin-embedded pNTs tissues, diagnosed between January 2007 and December 2010, was carried out. Results Our results have demonstrated the association of CD44s negative pNTs cells to lack of differentiation and tumour progression. A significant association between absence of CD44s expression and metastasis in human pNTs has been reported. We also found that expression of CD44s defines subgroups of patients without MYCN amplification as evidenced by its association with low INSS stages, absence of metastasis and favorable Shimada histology. Discussion These findings support the thesis of the role of CD44s glycoprotein in the invasive growth potential of neoplastic cells and suggest that its expression could be taken into consideration in the therapeutic approaches targeting metastases. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1034403150888863 Résumé Introduction les tumeurs neuroblastiques périphériques (TNPs), comprenant le neuroblastome (NB), le ganglioneuroblastome (GNB) et le ganglioneurome (GN), sont des tumeurs pédiatriques extrêmement hétérogènes responsables de 15% des décès par cancer chez les enfants. Le but de cette étude était d’évaluer l’expression de la molécule d’adhésion cellulaire CD44s (‘s’: pour standard) par rapport à d’autres facteurs pronostiques spécifiques. Méthodes Un profil immunohistochimique de 32 TNPs fixées au formol et incluses en paraffine, diagnostiquées entre Janvier 2007 et D

  18. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  19. The establishment of the duplex real-time RT-PCR assay for the detection of CD44v6 in pancreatic cancer patients and clinical application.

    PubMed

    Zhou, Gang; Chiu, David; Qin, Dajiang; Niu, Lizhi; Cai, Jinlei; He, Lihua; Huang, Wenhao; Xu, Kecheng

    2012-01-01

    Cell adhesion molecule CD44v6 has been found to be associated with the progression and metastasis of numerous cancers. In this study, a novel duplex real-time quantitative reverse-transcription PCR (qRT-PCR) assay was developed to quantitatively detect the CD44v6 gene expression in pancreatic cancer patients. The primers and probes of CD44v6 and β-actin genes were designed and standard curve of the duplex qRT-PCR was constructed by optimizing the reaction conditions. The specificity and reproducibility of this assay were satisfactory and the detection limit was 100 copies, which was 10 times more sensitive than the conventional RT-PCR assay. This assay was also used to detect the expression levels of CD44v6 messenger RNA in peripheral blood mononuclear cell in 37 pancreatic cancer patients and 12 healthy people. The results showed that 37 clinical samples were tested positive by the duplex qRT-PCR compared with only 30 by the conventional RT-PCR. The levels of CD44v6 expression showed significant correlation with sex, tumor size, tumor differentiation, clinical stage, lymph node, and liver metastasis (P < 0.05). Compared with the control group, CD44v6 levels in patients prior and 10 days post cryosurgery were significantly increased (P < 0.05) but had no significant change in those 1 month post cryosurgery (P > 0.05). The duplex qRT-PCR assay may provide a useful tool for the evaluation of prognosis and curative effect of pancreatic cancer.

  20. Lipid Raft-Mediated Regulation of Hyaluronan–CD44 Interactions in Inflammation and Cancer

    PubMed Central

    Murai, Toshiyuki

    2015-01-01

    Hyaluronan is a major component of the extracellular matrix and plays pivotal roles in inflammation and cancer. Hyaluronan oligomers are frequently found in these pathological conditions, in which they exert their effects via association with the transmembrane receptor CD44. Lipid rafts are cholesterol- and glycosphingolipid-enriched membrane microdomains that may regulate membrane receptors while serving as platforms for transmembrane signaling at the cell surface. This article focuses on the recent discovery that lipid rafts regulate the interaction between CD44 and hyaluronan, which depends largely on hyaluronan’s size. Lipid rafts regulate CD44’s ability to bind hyaluronan in T cells, control the rolling adhesion of lymphocytes on vascular endothelial cells, and regulate hyaluronan- and CD44-mediated cancer cell migration. The implications of these findings for preventing inflammatory disorders and cancer are also discussed. PMID:26347743

  1. Clinicopathologic significance of Sox2, CD44 and CD44v6 expression in intrahepatic cholangiocarcinoma.

    PubMed

    Gu, Mi Jin; Jang, Byung Ik

    2014-07-01

    Embryonic stem cells (ESC) and cancer stem cells (CSC) have a capacity for self-renewal and differentiation into multiple cell lineages. Sox2 plays a critical role in ESC and has been shown to participate in carcinogenesis and tumor progression in many human cancers. CD44 and CD44v6 are putative CSC markers and their association with tumor progression, metastasis, and tumor relapse after treatment has been demonstrated. We evaluated the immunoexpression of Sox2, CD44, and CD44v6 in 85 cases of Intrahepatic cholangiocarcinomas (IHCC) and assessed their prognostic significance. Sox2 expression showed a significant association with lymph node metastasis (p = 0.025), T4 stage (p = 0.046), and worse overall survival (p = 0.047). Greater expression of Sox2 was observed in IHCC with poor differentiation, vascular invasion, and stage IV, without statistical significance (p > 0.05). CD44 expression showed an association with periductal infiltrative type (p = 0.034), poor differentiation (p = 0.012), and vascular invasion (p = 0.009). CD44v6 expression was evident in patients with stage IV (p = 0.019). These results demonstrated that Sox2 expression is associated with aggressive behavior and poor overall survival in IHCC.

  2. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis.

    PubMed

    Tremmel, Martina; Matzke, Alexandra; Albrecht, Imke; Laib, Anna M; Olaku, Vivienne; Ballmer-Hofer, Kurt; Christofori, Gerhard; Héroult, Mélanie; Augustin, Hellmut G; Ponta, Helmut; Orian-Rousseau, Véronique

    2009-12-10

    A specific splice variant of the CD44 cell- surface protein family, CD44v6, has been shown to act as a coreceptor for the receptor tyrosine kinase c-Met on epithelial cells. Here we show that also on endothelial cells (ECs), the activity of c-Met is dependent on CD44v6. Furthermore, another receptor tyrosine kinase, VEGFR-2, is also regulated by CD44v6. The CD44v6 ectodomain and a small peptide mimicking a specific extracellular motif of CD44v6 or a CD44v6-specific antibody prevent CD44v6-mediated receptor activation. This indicates that the extracellular part of CD44v6 is required for interaction with c-Met or VEGFR-2. In the cytoplasm, signaling by activated c-Met and VEGFR-2 requires association of the CD44 carboxy-terminus with ezrin that couples CD44v6 to the cytoskeleton. CD44v6 controls EC migration, sprouting, and tubule formation induced by hepatocyte growth factor (HGF) or VEGF-A. In vivo the development of blood vessels from grafted EC spheroids and angiogenesis in tumors is impaired by CD44v6 blocking reagents, suggesting that the coreceptor function of CD44v6 for c-Met and VEGFR-2 is a promising target to block angiogenesis in pathologic conditions.

  3. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases. PMID:25999946

  4. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  5. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    SciTech Connect

    Yoshida, Go J. Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  6. TNF-alpha increases the carbohydrate sulfation of CD44: induction of 6-sulfo N-acetyl lactosamine on N- and O-linked glycans.

    PubMed

    Delcommenne, Marc; Kannagi, Reiji; Johnson, Pauline

    2002-10-01

    CD44 and sulfation have both been implicated in leukocyte adhesion. In monocytes, the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) stimulates CD44 sulfation, and this correlates with the induction of CD44-mediated adhesion events. However, little is known about the sulfation of CD44 or its induction by inflammatory cytokines. We determined that TNF-alpha induces the carbohydrate sulfation of CD44. CD44 was established as a major sulfated cell surface protein on myeloid cells. In the SR91 myeloid cell line, the majority of CD44 sulfation was attributed to the glycosaminoglycan chondroitin sulfate. However, TNF-alpha stimulation increased CD44 sulfation two- to threefold, largely attributed to the increased sulfation of N- and O-linked glycans on CD44. Therefore, TNF-alpha induced a decrease in the percentage of CD44 sulfation due to chondroitin sulfate and an increase due to N- and O-linked sulfation. Furthermore, TNF-alpha induced the expression of 6-sulfo N-acetyl lactosamine (LacNAc)/Lewis x on these cells, which was detected by a monoclonal antibody after neuraminidase treatment. This 6-sulfo LacNAc/Lewis x epitope was induced on N-linked and (to a lesser extent) on O-linked glycans present on CD44. This demonstrates that CD44 is modified by sulfated carbohydrates in myeloid cells and that TNF-alpha modifies both the type and amount of carbohydrate sulfation occurring on CD44. In addition, it demonstrates that TNF-alpha can induce the expression of 6-sulfo N-acetyl glucosamine on both N- and O-linked glycans of CD44 in myeloid cells.

  7. Involvement of Endothelial CD44 during in Vivo Angiogenesis

    PubMed Central

    Cao, Gaoyuan; Savani, Rashmin C.; Fehrenbach, Melane; Lyons, Chris; Zhang, Lin; Coukos, George; DeLisser, Horace M.

    2006-01-01

    CD44, a cell-surface receptor for hyaluronan, has been implicated in endothelial cell functions, but its role in the formation of blood vessels in vivo has not been established. In CD44-null mice, vascularization of Matrigel implants and tumor and wound angiogenesis were inhibited. Leukocyte accumulation during tumor growth and wound healing in wild-type and CD44-null mice were comparable, and reconstitution of CD44-null mice with wild-type bone marrow did not restore the wild-type phenotype, suggesting that impairments in angiogenesis in CD44-deficient mice are due to the loss of endothelial CD44. Although the cell proliferation, survival, and wound-induced migration of CD44-null endothelial cells were intact, these cells were impaired in their in vitro ability to form tubes. Nascent vessels in Matrigel implants from CD44-null mice demonstrated irregular luminal surfaces characterized by retracted cells and thinned endothelia. Further, an anti-CD44 antibody that disrupted in vitro tube formation induced hemorrhage around Matrigel implants, suggesting that antagonism of endothelial CD44 undermined the integrity of the endothelium of nascent vessels. These data establish a role for CD44 during in vivo angiogenesis and suggest that CD44 may contribute to the organization and/or stability of developing endothelial tubular networks. PMID:16816384

  8. Coexpression of EpCAM, CD44 Variant Isoforms and Claudin-7 in Anaplastic Thyroid Carcinoma

    PubMed Central

    Okada, Toshihiro; Nakamura, Teruo; Watanabe, Takayuki; Onoda, Naoyoshi; Ashida, Atsuko; Okuyama, Ryuhei; Ito, Ken-ichi

    2014-01-01

    Background Anaplastic thyroid cancer is considered to be one of the most aggressive human malignancies, and the mean survival time after diagnosis is approximately six months, regardless of treatments. This study aimed to examine how EpCAM and its related molecules are involved in the characteristics of anaplastic thyroid carcinoma. Methodology/Principal Findings Two differentiated thyroid cancer cell lines (TPC-1 and FTC-133), and two anaplastic thyroid cancer cell lines (FRO, ACT-1) were analyzed for expression of CD44 standard isoform (CD44s), CD44 variant isoforms, and EpCAM, and human aldehyde dehydrogenase-1 (ALDH1) enzymatic activity using flow cytometry. CD44s expression was higher in TPC-1 and FTC-133 than in the FRO and ACT-1, whereas ALDH1 activities were higher in FRO and ACT-1 than in TPC-1 and FTC-133. An inverse correlation between CD44s expression and ALDH1 activity was observed in all thyroid cancer cell lines. As for the expressions of CD44 variant isoforms, ACT-1 showed higher and FRO showed moderate CD44v6 expressions, whereas either TPC-1 or FTC-133 showed negative CD44v6 expression. EpCAM expressions in FRO and ACT-1 were higher than those in TPC-1 and FTC-133, and EpCAM expressions inversely correlated with those of CD44s. A positive correlation was observed between EpCAM expression and ALDH1 activity in thyroid cancer cell lines. In the RT-PCR analysis, the expression levels of EpCAM, caludin-7 and ALDH1 in FRO and ATC-1 cells were significantly higher than those in TPC-1 and FTC-133 cells. In clinical specimens of thyroid cancers, nuclear expression of EpCAM and high expression of CD44v6 were detected significantly more frequently in anaplastic carcinomas. Conclusions/Significance Our study suggests the possibility that EpCAM, together with CD44v6 and claudin-7 as well as ALDH1, may be involved in the development of the aggressive phenotype of anaplastic thyroid carcinoma. Our findings may suggest a novel therapeutic strategy for treatment

  9. Functional activation of lymphocyte CD44 in peripheral blood is a marker of autoimmune disease activity.

    PubMed Central

    Estess, P; DeGrendele, H C; Pascual, V; Siegelman, M H

    1998-01-01

    Interactions between complementary receptors on leukocytes and endothelial cells play a central role in regulating extravasation from the blood and thereby affect both normal and pathologic inflammatory responses. CD44 on lymphocytes that has been "activated" to bind its principal ligand hyaluronate (HA) on endothelium can mediate the primary adhesion (rolling) of lymphocytes to vascular endothelial cells under conditions of physiologic shear stress, and this interaction is used for activated T cell extravasation into an inflamed site in vivo in mice (DeGrendele, H.C., P. Estess, L.J. Picker, and M.H. Siegelman. 1996. J. Exp. Med. 183:1119-1130. DeGrendele, H.D., P. Estess, and M.H. Siegelman. 1997. Science. 278:672-675. DeGrendele, H.C., P. Estess, and M.H. Siegelman. 1997. J. Immunol. 159: 2549-2553). Here, we have investigated the role of lymphocyte-borne-activated CD44 in the human and show that CD44-dependent primary adhesion is induced in human peripheral blood T cells through T cell receptor triggering. In addition, lymphocytes capable of CD44/HA-dependent rolling interactions can be found resident within inflamed tonsils. In analysis of peripheral bloods of patients from a pediatric rheumatology clinic, examining systemic lupus erythematosus, and a group of chronic arthropathies, expression of CD44-dependent primary adhesion strongly correlates with concurrent symptomatic disease, with 85% of samples from clinically active patients showing elevated levels of rolling activity (compared with only 4% of inactive patients). These rolling interactions are predominantly mediated by T cells. The results suggest that circulating T lymphocytes bearing activated CD44 are elevated under conditions of chronic inflammation and that these may represent a pathogenically important subpopulation of activated circulating cells that may provide a reliable marker for autoimmune or chronic inflammatory disease activity. PMID:9739051

  10. The efficacy evaluation of cryosurgery in pancreatic cancer patients with the expression of CD44v6, integrin-β1, CA199, and CEA.

    PubMed

    Zhou, Gang; Chiu, David; Qin, Dajiang; Niu, Lizhi; Cai, Jinlei; He, Lihua; Huang, Wenhao; Xu, Kecheng

    2012-09-01

    Increased expression of cell adhesion molecule CD44v6, integrin-β1, carbohydrate antigen 199 (CA199), and carcinoembryonic antigen (CEA) are closely associated with the progression and metastasis of numerous cancers. In this study, peripheral blood mononuclear cell (PBMC) and serum samples were collected from 37 pancreatic cancer patients and 12 healthy people. A novel triplex TaqMan real-time reverse transcription polymerase chain reaction assay was used to measure the expression levels of CD44v6 and integrin-β1 gene in PBMCs, while chemiluminescence and enzyme-linked immunosorbent assay were used to measure the levels of CA199 and CEA expression in serum. The results showed that both the levels of CD44v6 and integrin-β1 expression had significant correlation with clinical stage, lymph node, and liver metastasis of pancreatic cancer (P < 0.05). Age, tumor size, tumor differentiation, clinical stage, lymph nodes, and liver metastasis were significantly associated with the levels of CA199 and CEA expression (P < 0.05). The levels of CD44v6, integrin-β1, CA199, and CEA expression in the patients prior cryosurgery and chemotherapy were significantly higher than those in the control group (P < 0.05), whereas no significant difference was found between the patients 1 month post cryosurgery and control group (P > 0.05). The expression levels of CD44v6, integrin-β1, CA199, and CEA in the patients 1 month post cryosurgery were significantly lower than those in the patients prior cryosurgery (P < 0.05). Interestingly, no significant difference was found for the CD44v6, integrin-β1, CA199, and CEA levels between the patients prior and post-chemotherapy (P > 0.05). The higher expression of CD44v6, integrin-β1, CA199, and CEA are closely related to the progression and metastasis of pancreatic cancer and may play a important role in the curative evaluation of cryosurgery of pancreatic cancer.

  11. Enriched CD44(+)/CD24(-) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC).

    PubMed

    Ma, Fei; Li, Huihui; Wang, Haijuan; Shi, Xiuqing; Fan, Ying; Ding, Xiaoyan; Lin, Chen; Zhan, Qimin; Qian, Haili; Xu, Binghe

    2014-10-28

    The mechanism underlying the aggressive behaviors of triple negative breast cancer (TNBC) is not well characterized yet. The association between cancer stem cell (CSC) population and the aggressive behaviors of TNBC has not been established. We found the CD44(+)/CD24(-) cell population was enriched in TNBC tissues and cell lines, with a higher capacity of proliferation, migration, invasion and tumorigenicity as well as lower adhesion ability. The CD44(+)/CD24(-) cell population with cancer stem cell-like properties may play an important role in the aggressive behaviors of TNBC. This discovery may lead to new therapeutic strategies targeting CD44(+)/CD24(-) cell population in TNBC.

  12. CD44 and melanocytic tumors: a possible role for standard CD44 in the epidermotropic spread of melanoma.

    PubMed

    Fernández-Figueras, M T; Ariza, A; Calatrava, A; Puig, L; Fernández-Vasalo, A; Ferrándiz, C

    1996-04-01

    CD44 is a polymorphic family of cell membrane glycoproteins that mediate cell-matrix and cell-cell interactions involved in the mechanisms of tumor invasion and metastasis, and are subject to differential regulation during normal and malignant cell growth. We have investigated immunohistochemically the expression of CD44S and the variant isoforms CD44v3 and CD44v6 in paraffin-embedded tissue from 5 Spitz nevi, 3 compound melanocytic nevi, 2 blue nevi, 6 primary melanomas, 15 cutaneous metastases (three epidermotropic, nine dermal and three ulcerated) and 10 lymph node metastases of melanoma. Melanocytes were extensively positive for CD44S in primary melanomas and benign melanocytic proliferations. Among 15 cases of cutaneous metastases of melanoma, the three epidermotropic metastases, as well as one of the three ulcerated ones were positive for CD44S. CD44S expression was diminished or totally absent in six of the nine dermal metastases, in two of the ulcerated metastases and in seven of the ten lymph node metastases. CD44v3 and CD44v6 melanocytic expression was absent in all the lesions studied. According to our results, selective retention of CD44S expression by melanocytes in epidermotropic metastases of melanoma seems to indicate that preservation of CD44S may contribute to the intraepidermal spread of melanoma.

  13. Senescent Atrophic Epidermis Retains Lrig1+ Stem Cells and Loses Wnt Signaling, a Phenotype Shared with CD44KO Mice

    PubMed Central

    Barnes, Laurent; Saurat, Jean-Hilaire; Kaya, Gürkan

    2017-01-01

    Lrig1 is known to repress the epidermal growth through its inhibitory activity on EGFR, while CD44 promotes it. We analyzed the expression of these molecules in senescent atrophic human epidermis and in the epidermis of CD44KO mice. In normal human epidermis, Lrig1+ cells form clusters located in the basal layer in which CD44 expression is downregulated and Lef1 expression reflects an active Wnt signaling. In senescent atrophic human epidermis, we found retention of Lrig1high+ cells all along the basal layer, forming no clusters, with decrease of CD44 and lef1 expression. In vitro silencing of CD44 indicated that CD44 may be required for Wnt signaling. However, if looking at the ear epidermis of CD44KO mice, we only found a limited interfollicular epidermal atrophy and unchanged Lrig1high+ cells in the hair follicle. Cell lineage tracing further revealed that interfollicular epidermis did lost its self-renewing capacity but that its homeostasis relied on Lrig1-derived keratinocytes migrating from the hair follicle. Therefore, we conclude that CD44 downregulation is part of the phenotype of senescent atrophic human epidermis, and contributes to reduce Wnt signaling and to alter Lrig1high+ stem cell distribution. PMID:28099467

  14. Differential expression of ezrin/radixin/moesin (ERM) and ERM-associated adhesion molecules in the blastocyst and uterus suggests their functions during implantation.

    PubMed

    Matsumoto, Hiromichi; Daikoku, Takiko; Wang, Haibin; Sato, Eimei; Dey, S K

    2004-03-01

    Development of the blastocyst to implantation competency, differentiation of the uterus to the receptive state, and a cross talk between the implantation-competent blastocyst and the uterine luminal epithelium are all essential to the process of implantation. In the present investigation, we examined the possibility for a potential cross talk between the blastocyst and uterus involving the ezrin/radixin/moesin (ERM) proteins and ERM-associated cytoskeletal cross-linker proteins CD43, CD44, ICAM-1, and ICAM-2. In normal Day 4 blastocysts and after rendering dormant blastocysts to implantation-competent by estrogen in vivo (activated), the outer surface of mural trophectoderm cells showed much higher levels of radixin as compared to those in the polar trophectoderm cells, inner cell mass (ICM), and primitive endoderm. In contrast, ezrin was present on both the mural and the polar trophectoderm cell surfaces of normal Day 4 and activated blastocysts at higher intensity than dormant blastocysts. A distinct localization was noted in the primitive endoderm of dormant blastocysts that was not apparent in activated or normal Day 4 blastocysts. The expression of moesin was modestly higher at the mural trophectoderm of implantation-competent blastocysts, while the localization appeared to be present primarily on the polar trophectoderm cell surface of Day 4 blastocysts. The localization of ERM-associated adhesion molecules CD43, CD44, and ICAM-2 was more intense in the implantation-competent blastocysts compared with the dormant blastocysts. However, while CD44 was present both in the trophectoderm and in ICM, CD43 and ICAM-2 were localized primarily to the trophectoderm. The signal for ICAM-1 was very intense in the ICM but was modest in the trophectoderm. No significant changes in fluorescence intensity were noted between activated and dormant blastocysts. In the receptive uterus on Day 4 of pregnancy, ERM proteins were localized to the uterine epithelium, while on Day 5

  15. CD44 is the principal cell surface receptor for hyaluronate.

    PubMed

    Aruffo, A; Stamenkovic, I; Melnick, M; Underhill, C B; Seed, B

    1990-06-29

    CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding.

  16. Prognostic value of CD44 and CD44v6 expression in patients with non-small cell lung cancer: meta-analysis.

    PubMed

    Jiang, Hao; Zhao, Wei; Shao, Wei

    2014-08-01

    We sought to clarify the prognostic value of CD44 in survival of patients with non-small cell lung cancer (NSCLC). We performed a meta-analysis of relevant literature to aggregate the available survival results, using studies published in English until March 2014. Eligible studies dealt with CD44, CD44 standard form (CD44s) and CD44 variant 6 (CD44v6), assessment in NSCLC patients on primary lesions and reported survival data according to CD44 and CD44 isoforms expression. We aggregated 10 trials (5 trials for CD44v6, 3 trials for CD44, and 2 trials for CD44s) comprising 1,074 patients, in this meta-analysis. The combined hazard ratio (HR) with CD44v6 and CD44s was 2.39 (95 % confidence interval (CI) 1.69-3.37) and 1.64 (95 % CI 1.06-2.52), respectively. It associated high CD44v6 and CD44s expression with poor survival in NSCLC patients. However, CD44 overexpression did not significantly correlate with survival in patients with NSCLC (HR 1.44; 95 % CI 0.72-2.89). Our meta-analysis shows that CD44v6 and CD44s overexpression indicates poor prognosis for NSCLC patients. However, the high CD44 expression is not significantly correlated with survival for patients with NSCLC.

  17. Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types

    PubMed Central

    1989-01-01

    A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non- lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those

  18. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44

    PubMed Central

    2014-01-01

    Introduction Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Methods Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. Results CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in

  19. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization.

    PubMed

    Serrador, J M; Alonso-Lebrero, J L; del Pozo, M A; Furthmayr, H; Schwartz-Albiez, R; Calvo, J; Lozano, F; Sánchez-Madrid, F

    1997-09-22

    During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane-cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, beta-actin and alpha-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti-ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin-ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin-ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which

  20. Polymorphism of CD44 influences the efficacy of CD34(+) cells mobilization in patients with hematological malignancies.

    PubMed

    Szmigielska-Kaplon, Anna; Szemraj, Janusz; Hamara, Katarzyna; Robak, Marta; Wolska, Anna; Pluta, Agnieszka; Czemerska, Magdalena; Krawczynska, Anna; Jamroziak, Krzysztof; Szmigielska, Katarzyna; Robak, Tadeusz; Wierzbowska, Agnieszka

    2014-07-01

    In the last decade, peripheral blood was the main source of hematopoietic stem cells (HSC) for autologous and allogeneic transplantation. The exact mechanisms of HSC mobilization are still not clear and the efficacy of the procedure is hardly predictable. Ligand-receptor interactions of adhesion molecules, such as SDF1/CXCR4, VLA4/VCAM-1, or CD44/osteopontin, play an important role in homing of HSC in the hematopoietic niche. There is some evidence that disruption of the ligand-receptor complex leads to the egress of HSCs to the peripheral blood. The aim of the present study was the evaluation of constitutive polymorphism of genes encoding cytokines and receptors present in the HSC niche and their impact on the efficacy of mobilization of HSCs in patients with hematological malignancies. We enrolled 110 patients (60 females and 50 males) in the study. The median age of the patients was 55 (range, 22 to 69) years. The group consisted of patients with multiple myeloma (n = 74), non-Hodgkin lymphoma (n = 19), Hodgkin lymphoma (n = 15), or acute myeloid leukemia (n = 2). The mobilization procedures comprised chemotherapy and subsequent granulocyte-colony stimulating factor (G-CSF) at a dose of 10 μg/kg daily. The poor mobilizers group was defined according to Italian National Bone Marrow Transplant Registry criteria: patients with peak CD34(+) in the peripheral blood < 20/μL or total yield < 2 × 10(6) CD34(+) cells/kg body weight in maximum 3 aphereses. Genotyping was performed using standard PCR-based assays. The group of patients (N = 108) who achieved minimal threshold for collections (CD34(+) at least 10/μL) proceeded to apheresis. The median total yield of CD34(+) in this group was 5.6 × 10(6) cells/kg body weight, whereas the median number of cells collected during the first apheresis was 3.3 × 10(6) cells/kg body weight. Median number of days of G-CSF treatment before first apheresis was 10. Fifteen patients fulfilled the criteria for poor mobilizer. The

  1. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma.

    PubMed

    Casucci, Monica; Nicolis di Robilant, Benedetta; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Genovese, Pietro; Gentner, Bernhard; Gullotta, Fabiana; Ponzoni, Maurilio; Bernardi, Massimo; Marcatti, Magda; Saudemont, Aurore; Bordignon, Claudio; Savoldo, Barbara; Ciceri, Fabio; Naldini, Luigi; Dotti, Gianpietro; Bonini, Chiara; Bondanza, Attilio

    2013-11-14

    Genetically targeted T cells promise to solve the feasibility and efficacy hurdles of adoptive T-cell therapy for cancer. Selecting a target expressed in multiple-tumor types and that is required for tumor growth would widen disease indications and prevent immune escape caused by the emergence of antigen-loss variants. The adhesive receptor CD44 is broadly expressed in hematologic and epithelial tumors, where it contributes to the cancer stem/initiating phenotype. In this study, silencing of its isoform variant 6 (CD44v6) prevented engraftment of human acute myeloid leukemia (AML) and multiple myeloma (MM) cells in immunocompromised mice. Accordingly, T cells targeted to CD44v6 by means of a chimeric antigen receptor containing a CD28 signaling domain mediated potent antitumor effects against primary AML and MM while sparing normal hematopoietic stem cells and CD44v6-expressing keratinocytes. Importantly, in vitro activation with CD3/CD28 beads and interleukin (IL)-7/IL-15 was required for antitumor efficacy in vivo. Finally, coexpressing a suicide gene enabled fast and efficient pharmacologic ablation of CD44v6-targeted T cells and complete rescue from hyperacute xenogeneic graft-versus-host disease modeling early and generalized toxicity. These results warrant the clinical investigation of suicidal CD44v6-targeted T cells in AML and MM.

  2. CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation

    PubMed Central

    Shen, Yao-An; Wang, Chia-Yu; Chuang, Hui-Yen; Hwang, John Jeng-Jong; Chi, Wei-Hsin; Shu, Chih-Hung; Ho, Ching-Yin; Li, Wing-Yin; Chen, Yann-Jang

    2016-01-01

    Cell surface proteins such as CD44 and CD24 are used to distinguish cancer stem cells (CSCs) from the bulk-tumor population. However, the molecular functionalities of CD24 and CD44, and how these two molecules coordinate in CSCs remain poorly understood. We found that nasopharyngeal carcinoma (NPC) cells with high expression of CD44 and CD24 proteins presented with pronounced CSC properties. Accordingly, a subpopulation of NPC cells with co-expression of CD44 and CD24 were specially enriched in high-stage clinical samples. Furthermore, ectopically expressing the epithelial-mesenchymal transition (EMT) regulator Twist was able to upregulate the stemness factors, and vice versa. This indicates a reciprocal regulation of stemness and EMT. Intriguingly, we found that this reciprocal regulation was differentially orchestrated by CD44 and CD24, and only simultaneous silencing the expression of CD44 and CD24 led to a broad-spectrum suppression of CSC properties. Oppositely, overexpression of CD44 and CD24 induced the reprogramming of parental NPC cells into CSCs through STAT3 activation, which could be blunted by STAT3 inhibition, indicating that CD44 and CD24 collaboratively drive the reprogramming of NPC cells through STAT3-mediated stemness and EMT activation. Consequently, targeting of the CD44/CD24/STAT3 axis may provide a potential therapeutic paradigm for the treatment of NPC through repressing CSC activities. PMID:27521216

  3. A Glycovariant of Human CD44 is Characteristically Expressed on Human Mesenchymal Stem Cells.

    PubMed

    Pachón-Peña, Gisela; Donnelly, Conor; Ruiz-Cañada, Catalina; Katz, Adam; Fernández-Veledo, Sonia; Vendrell, Joan; Sackstein, Robert

    2016-11-26

    The clinical effectiveness of systemically administered human mesenchymal stem cells (hMSCs) depends on their capacity to engage vascular endothelium. hMSCs derived from bone marrow (BM-hMSCs) natively lack endothelial binding capacity, but express a CD44 glycovariant containing N-linked sialyllactosamines that can be α(1,3)-fucosylated using fucosyltransferase-VI (FTVI) to enforce sLe(X) decorations, thereby creating hematopoietic cell E-/L-selectin ligand (HCELL). HCELL expression programs potent shear-resistant adhesion of circulating cells to endothelial beds expressing E-selectin. An alternative source of hMSCs is adipose tissue (A-hMSCs), and we assessed whether A-hMSCs bind E-selectin and/or possess sialyllactosamine-decorated CD44 accessible to α(1,3)-fucosylation. Similar to BM-hMSCs, we found that A-hMSCs natively lack E-selectin ligands, but FTVI-mediated cell surface α(1,3)-fucosylation induces sLe(X) expression and robust E-selectin binding secondary to conversion of CD44 into HCELL. Moreover, treatment with the α(1,3)-fucosyltransferase-FTVII also generated expression of HCELL on both BM-hMSCs and A-hMSCs, with sLe(X) decorations created on N-linked glycans of the "standard" CD44 (CD44s) isoform. The finding that hMSCs from both source tissues each lack native E-selectin ligand expression prompted examination of the expression of glycosyltransferases that direct lactosaminyl glycan synthesis. These studies reveal that both types of hMSCs conspicuously lack transcripts encoding α(1,3)-fucosyltransferases, but equally express glycosyltransferases critical to creation of sialyllactosamines. Collectively, these data indicate that assembly of a sialyllactosaminyl-decorated CD44s glycovariant is a conserved feature of hMSCs derived from adipose tissue and marrow, thus identifying a CD44 glycosignature of these cells and supporting the applicability of cell surface α(1,3)-fucosylation in programming migration of systemically administered A-hMSCs to

  4. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease.

    PubMed

    Pak, Victoria M; Grandner, Michael A; Pack, Allan I

    2014-02-01

    Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA.

  5. Correlation of E-cadherin and CD44v6 expression with clinical pathology in esophageal carcinoma.

    PubMed

    Shen, Wei-Dong; Ji, Yong; Liu, Peng-Fei; Xiang, Bin; Chen, Guo-Qiang; Huang, Bin; Wu, Song

    2012-03-01

    Cell adhesion, important for maintaining tissue architecture, plays a role in numerous cancers and particularly in tumor progression. In the present study, we investigated perturbations in the expression of two important adhesion proteins, epithelial (E)-cadherin and CD44v6, in esophageal carcinoma (EC). EC specimens were obtained from 42 patients undergoing resection of EC; both cancer and adjacent normal tissue were collected. Expression of E-cadherin and CD44v6 was detected by immunohistochemistry and the correlation between the expression of these two proteins and their individual relationships with pathology were determined. E-cadherin expression in EC tissue was significantly less common than in adjacent normal tissue. Furthermore, absence of E-cadherin expression was correlated with infiltration depth, lymph node metastasis, distant metastases and TNM stage (P<0.05), but not with gender, age, differentiation or tumor size. By contrast, CD44v6 expression in EC was significantly higher than that in adjacent normal tissue and was correlated with differentiation, distant metastases and TNM stage (P<0.05), but not with other clinicopathological parameters. Additionally, we observed a negative correlation between E-cadherin and CD44v6 expression in EC (P<0.05). Based on their correlations with pathology, we suggest that the expression of E-cadherin and CD44v6 is important roles in promoting the infiltration and metastasis of EC.

  6. Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities

    PubMed Central

    Toole, Bryan P.

    2009-01-01

    Hyaluronan is a prominent component of the micro-environment in most malignant tumors and can be prognostic for tumor progression. Extensive experimental evidence in animal models implicates hyaluronan interactions in tumor growth and metastasis, but it is also evident that a balance of synthesis and turnover by hyaluronidases is critical. CD44, a major hyaluronan receptor, is commonly but not uniformly associated with malignancy, and is frequently used as a marker for cancer stem cells in human carcinomas. Multivalent interactions of hyaluronan with CD44 collaborate in driving numerous tumor-promoting signaling pathways and transporter activities. It is widely accepted that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to therapy, but major challenges for future research in the field are the mechanism of activation of hyaluronan-CD44 signaling in cancer cells, the relative importance of variant forms of CD44 and other hyaluronan receptors, e.g. Rhamm, in different tumor contexts, and the role of stromal versus tumor cell production and turnover of hyaluronan. Despite these caveats, it is clear that hyaluronan-CD44 interactions are an important target for translation into the clinic. Among the approaches that show promise are antibodies and vaccines to specific variants of CD44 that are uniquely expressed at critical stages of progression of a particular cancer, hyaluronidase-mediated reduction of barriers to drug access, and small hyaluronan oligosaccharides that attenuate constitutive hyaluronan-receptor signaling and enhance chemosensitivity. In addition, hyaluronan is being used to tag drugs and delivery vehicles for targeting of anti-cancer agents to CD44-expressing tumor cells. PMID:20008845

  7. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease.

    PubMed

    Azeredo, E L; De Oliveira-Pinto, L M; Zagne, S M; Cerqueira, D I S; Nogueira, R M R; Kubelka, C F

    2006-02-01

    During the innate immune response against infections, Natural Killer (NK) cells are as important effector cells as are Cytotoxic T lymphocytes (CTL) generated after antigenic stimulation in the adaptative response. NK cells increase in numbers, after viral infection or vaccination. We investigated the NK cell and CD8 T lymphocyte status in 55 dengue infected patients. The NK (CD56+CD3-) and CD56+ T cell (CD56+CD3+) rates rise during the acute phase of disease. The majority of NK cells from dengue patients display early markers for activation (CD69, HLA-DR, and CD38) and cell adhesion molecules (CD44, CD11a) during the acute phase of disease. The intracellular cytotoxic granule, TIA-1, is also up-regulated early in NK cells. Most of these markers appear also on CD8+ T lymphocytes but during the late acute phase. Circulating IL-15 is elevated in a significant number of patients during early acute infection and its values were statistically correlated with NK frequencies and cytotoxic markers on NKs. We have therefore shown that dengue virus infection is very likely stimulating a cytotoxic response that may be efficient in controlling the virus in synergism with CD8+ T lymphocytes. Interestingly, the heightened CD56+CD3-, CD56+CD3+, CD56+TIA-1+ and CD56+CD11a+ cell rates are associated with mild dengue clinical manifestations and might indicate a good prognosis of the disease.

  8. [Role of "leukocyte adhesion molecules" in early periodontal disease].

    PubMed

    Vierucci, S

    1992-01-01

    The purpose of this paper is to focus on functional characteristics of leukocyte adhesion molecules, on their localization and specific ligands. In fact, leukocyte chemotaxis and adhesion to endothelium is an essential step in promoting adequate immune response to bacterial infections. Since periodontal health is highly dependent on neutrophil function against the microbial dental plaque, defects in chemotaxis and adhesion of leukocytes to endothelium often result in severe, early onset periodontitis. Furthermore, oral lesions may be the only clinical manifestation of neutrophil impairment.

  9. Cell adhesion molecules: detection with univalent second antibody

    PubMed Central

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens. PMID:6970200

  10. CD44+/CD24− breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

    PubMed Central

    Mi, Kun; Xing, Zhihua

    2015-01-01

    Background Self-assembling peptide nanofiber scaffolds have been shown to be a permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24−) of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16) peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA) and collagen I. Methods CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2′-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D) cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo. Results The breast cancer cell line MDA-MB-435S contained a high percentage (>99%) of CD44+/CD24− cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor formation assay further supported of the functional changes caused by the reversion in 3D RADA16 culture. Expression levels of intercellular surface adhesion molecule-1 were upregulated in cells cultured in RADA16 scaffolds, and the NF-kappa B inhibitor pyrrolidine dithiocarbamate could inhibit

  11. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression.

    PubMed

    Ju, Sy-Yeuan; Chiou, Shih-Hwa; Su, Yeu

    2014-01-01

    The purpose of this study was to isolate cancer stem cells (CSCs, also called tumor-initiating cells, TICs) from established human colorectal carcinoma (CRC) cell lines, characterize them extensively and dissect the mechanism for their stemness. Freshly isolated CD44(+) and CD44(-) cells from the HCT-15 human colon cancer cell line were subjected to various analyses. Interestingly, CD44(+) cells exhibited higher soft agar colony-forming ability and in vivo tumorigenicity than CD44(-) cells. In addition, the significant upregulation of the protein Snail and the downregulation of miR-203, a stemness inhibitor, in CD44(+) cells suggested that this population possessed higher invasion/metastasis and differentiation potential than CD44(-) cells. By manipulating the expression of CD44 in HCT-15 and HCT-116 cells, we found that the levels of several EMT activators and miR-203 were positively and negatively correlated with those of CD44, respectively. Further analyses revealed that miR-203 levels were repressed by Snail, which was shown to bind to specific E-box(es) present in the miR-203 promoter. In agreement, silencing miR-203 expression in wild-type HCT-116 human colon cancer cells also resulted in an increase of their stemness. Finally, we discovered that c-Src kinase activity was required for the downregulation of miR-203 in HCT-15 cells, which was stimulated by the interaction between hyaluronan (HA) and CD44. Taken together, CD44 is a critical molecule for modulating stemness in CSCs. More importantly, we show for the first time that the downregulation of miR-203 by HA/CD44 signaling is the main reason for stemness-maintenance in colon cancer cells.

  12. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  13. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.

    PubMed

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-06-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.

  14. Adhesion Molecule-Modified Biomaterials for Neural Tissue Engineering

    PubMed Central

    Rao, Shreyas S.; Winter, Jessica O.

    2009-01-01

    Adhesion molecules (AMs) represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review discusses common AMs used in neural biomaterials and the mechanism of cell attachment to these AMs. Methods to modify materials with AMs are discussed and compared. Additionally, patterning of AMs for achieving specific neuronal responses is explored. PMID:19668707

  15. Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5.

    PubMed

    Conant, Katherine; Lonskaya, Irina; Szklarczyk, Arek; Krall, Caroline; Steiner, Joseph; Maguire-Zeiss, Kathleen; Lim, Seung T

    2011-08-01

    Methamphetamine (MA) is a highly addictive psychostimulant that, used in excess, may be neurotoxic. Although the mechanisms that underlie its addictive potential are not completely understood, in animal models matrix metalloproteinase (MMP) inhibitors can reduce behavioral correlates of addiction. In addition, evidence from genome-wide association studies suggests that polymorphisms in synaptic cell-adhesion molecules (CAMs), known MMP substrates, are linked to addictive potential in humans. In the present study, we examined the ability of MA to stimulate cleavage of intercellular adhesion molecule-5 (ICAM-5), a synaptic CAM expressed on dendritic spines in the telencephalon. Previous studies have shown that shedding of ICAM-5 is associated with maturation of dendritic spines, and that MMP-dependent shedding occurs with long term potentiation. Herein, we show that MA stimulates ectodomain cleavage of ICAM-5 in vitro, and that this is abrogated by a broad spectrum MMP inhibitor. We also show that an acute dose of MA, administered in vivo, is associated with cleavage of ICAM-5 in murine hippocampus and striatum. This occurs within 6 h and is accompanied by an increase in MMP-9 protein. In related experiments, we examined the potential consequences of ICAM-5 shedding. We demonstrate that the ICAM-5 ectodomain can interact with β(1) integrins, and that it can stimulate β(1) integrin-dependent phosphorylation of cofilin, an event that has previously been linked to MMP-dependent spine maturation. Together these data support an emerging appreciation of MMPs as effectors of synaptic plasticity and suggest a mechanism by which MA may influence the same.

  16. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  17. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-03-15

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.

  18. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  19. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  20. Adhesion molecules in breast carcinoma: a challenge to the pathologist.

    PubMed

    Rossetti, Claudia; Reis, Beatriz da Costa Aguiar Alves; Delgado, Pamela de Oliveira; Azzalis, Ligia Ajaime; Junqueira, Virginia B C; Feder, David; Fonseca, Fernando

    2015-01-01

    The role of adhesion molecules is very important both in the activation of carcinogenesis and in the differentiation of subtypes of breast carcinoma, aiding in diagnosis, prognosis and therapeutic choice in these tumors. Therefore, understanding the functions and interrelationships among these molecules is crucial to the pathologist, who often uses these factors as a resource to differentiate tumors and further classify them according to a molecular point of view. Our goal is to describe the applicability and the difficulties encountered by the pathologist in the diagnosis of breast carcinoma, discussing the most commonly used markers of adhesion in routine analyses.

  1. Expression of CD44 isoforms in renal cell tumors. Positive correlation to tumor differentiation.

    PubMed Central

    Terpe, H. J.; Störkel, S.; Zimmer, U.; Anquez, V.; Fischer, C.; Pantel, K.; Günthert, U.

    1996-01-01

    CD44 isoforms have been implicated in tumor progression and embryogenesis. Primary renal cell tumors (n = 100) of various histopathological differentiation and grading stages were analyzed for expression of CD44 isoforms in comparison with nonmalignant adult and fetal renal tissues. Evaluations were performed by immunohistochemistry using CD44 isoform-specific monoclonal antibodies and by reverse transcriptase polymerase chain reactions (RT-PCR). In the nonmalignant kidney no CD44 variant isoforms were detected. There was a significant increase in expression of CD44 standard (CD44s) and several variant isoforms (CD44v) in the course of tumor differentiation in clear cell carcinomas (n = 68) from stages G1 to G3 (P < 0.0001 for CD44s and isoforms containing CD44-6v, and P < 0.007 for those containing CD44-9v). Also, in chromophilic cell carcinomas (n = 13), CD44 isoform expression correlated with grading; ie, no CD44 expression was detected in G1 tumors, whereas in approximately 50% of the G2 tumors, CD44s, CD44-6v, and CD44-9v isoforms were present. Oncocytomas (n = 8), which are benign renal cell tumors, did not express CD44 isoforms, whereas invasive chromophobe cell carcinomas (n = 11) were positive for CD44s and CD44v isoforms. Transcript analyses by RT-PCR revealed that the upregulated isoforms in the carcinoma cells contained exons 8 to 10 and 3, 8 to 10 in combination from the variant region. In conclusion, expression of variant CD44 isoforms was strongly correlated with grading and appears to mediate a more aggressive phenotype to renal cell tumors. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8579108

  2. Moesin is a glioma progression marker that induces proliferation and Wnt/β-catenin pathway activation via interaction with CD44.

    PubMed

    Zhu, Xiaoping; Morales, Fabiana C; Agarwal, Nitin Kumar; Dogruluk, Turgut; Gagea, Mihai; Georgescu, Maria-Magdalena

    2013-02-01

    Moesin is an ERM family protein that connects the actin cytoskeleton to transmembrane receptors. With the identification of the ERM family protein NF2 as a tumor suppressor in glioblastoma, we investigated roles for other ERM proteins in this malignancy. Here, we report that overexpression of moesin occurs generally in high-grade glioblastoma in a pattern correlated with the stem cell marker CD44. Unlike NF2, moesin acts as an oncogene by increasing cell proliferation and stem cell neurosphere formation, with its ectopic overexpression sufficient to shorten survival in an orthotopic mouse model of glioblastoma. Moesin was the major ERM member activated by phosphorylation in glioblastoma cells, where it interacted and colocalized with CD44 in membrane protrusions. Increasing the levels of moesin competitively displaced NF2 from CD44, increasing CD44 expression in a positive feedback loop driven by the Wnt/β-catenin signaling pathway. Therapeutic targeting of the moesin-CD44 interaction with the small-molecule inhibitor 7-cyanoquinocarcinol (DX-52-1) or with a CD44-mimetic peptide specifically reduced the proliferation of glioblastoma cells overexpressing moesin, where the Wnt/β-catenin pathway was activated. Our findings establish moesin and CD44 as progression markers and drugable targets in glioblastoma, relating their oncogenic effects to activation of the Wnt/β-catenin pathway.

  3. Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices.

    PubMed

    Sapudom, Jiranuwat; Ullm, Franziska; Martin, Steve; Kalbitzer, Liv; Naab, Johanna; Möller, Stephanie; Schnabelrauch, Matthias; Anderegg, Ulf; Schmidt, Stephan; Pompe, Tilo

    2017-03-01

    Hyaluronan (HA) and its principal receptor CD44 are known to be involved in regulating tumor cell dissemination and metastasis. The direct correlation of CD44-HA interaction on proliferation and invasion of tumor cells in dependence on the molecular weight and the presentation form of HA is not fully understood because of lack of appropriate matrix models. To address this issue, we reconstituted 3D collagen (Coll I) matrices and functionalized them with HA of molecular weight of 30-50kDa (low molecular weight; LMW-HA) and 500-750kDa (high molecular weight; HMW-HA). A post-modification strategy was applied to covalently immobilize HA to reconstituted fibrillar Coll I matrices, resulting in a non-altered Coll I network microstructure and stable immobilization over days. Functionalized Coll I matrices were characterized regarding topological and mechanical characteristics as well as HA amount using confocal laser scanning microscopy, colloidal probe force spectroscopy and quantitative Alcian blue assay, respectively. To elucidate HA dependent tumor cell behavior, BRO melanoma cell lines with and without CD44 receptor expression were used for in vitro cell experiments. We demonstrated that only soluble LMW-HA promoted cell proliferation in a CD44 dependent manner, while HMW-HA and immobilized LMW-HA did not. Furthermore, an enhanced cell invasion was found only for immobilized LMW-HA. Both findings correlated with a very strong and specific adhesive interaction of LMW-HA and CD44+ cells quantified in single cell adhesion measurements using soft colloidal force spectroscopy. Overall, our results introduce an in vitro biomaterials model allowing to test presentation mode and molecular weight specificity of HA in a 3D fibrillar matrix thus mimicking important in vivo features of tumor microenvironments.

  4. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells.

    PubMed

    Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2006-04-01

    Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion

  5. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  6. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  7. CD44-expressing undifferentiated carcinoma with rhabdoid features of the pancreas: molecular analysis of aggressive invasion and metastasis.

    PubMed

    Ohmoto, Takuji; Yoshitani, Nobuyuki; Nishitsuji, Kazuchika; Takayama, Tetsuji; Yanagisawa, Yuto; Takeya, Motohiro; Sakashita, Naomi

    2015-05-01

    Carcinoma with rhabdoid features is a rare malignant tumor with a poor prognosis whose molecular mechanism for aggressive behavior is unclear. We describe an undifferentiated pancreatic carcinoma with rhabdoid features that demonstrated extensive invasion and metastasis. Examination of a 63-year-old man with back pain disclosed a retroperitoneal tumor with multiple metastases. Lymph node biopsy revealed an undifferentiated carcinoma of unknown origin. Intensive chemotherapy was ineffective; the patient died 3 months after initial symptoms. Autopsy showed that the tumor displaced the retroperitoneal space: it diffusely invaded and destroyed the pancreas and duodenum. Histology demonstrated tumor cells with eccentric vesicular nuclei, large nucleoli, juxtanuclear eosinophilic inclusions, and poor cell adhesion. Immunohistochemistry showed that tumor cells expressed cytokeratin and vimentin, and electron microscopy confirmed a perinuclear mass of intermediate fibrils and lipid droplets, which indicated an undifferentiated carcinoma with rhabdoid features. Tumor tissue contained hyaluronan; tumor cells strongly expressed CD44, matrix metalloproteinase-9, hypoxia-inducible factor-1α, hyaluronan synthase 2, and acyl-CoA:cholesterol acyltransferase 1 and had a high Ki-67(+) ratio. Since hyaluronan is a ligand for CD44, formation of CD44-hyaluronan complex on the cell surface activates CD44 and this activation may explain why the tumor manifested aggressive invasion and metastasis throughout the clinical course.

  8. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  9. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  10. Highly enriched CD133(+)CD44(+) stem-like cells with CD133(+)CD44(high) metastatic subset in HCT116 colon cancer cells.

    PubMed

    Chen, Ke-li; Pan, Feng; Jiang, Heng; Chen, Jian-fang; Pei, Li; Xie, Fang-wei; Liang, Hou-jie

    2011-12-01

    Stem-like cancer cells (SLCCs) are distinct cellular subpopulation in colon cancer that is essential for tumor maintenance. Previous studies indicated that SLCCs accounted for only a minor subset in a given cancer model. However, we found that SLCCs frequency varied among a panel of colon cancer cell lines, with HCT116 cells composed mainly of SLCCs, as demonstrated by colonosphere forming capability and CD133 expression. Indeed, flow cytometric analysis revealed more than 60% HCT116 cells co-expressed the putative SLCCs markers CD133 and CD44. Compared with non-CD133(+)CD44(+) cells, FACS sorted CD133(+)CD44(+) cells were undifferentiated, endowed with extensive self-renewal and epithelial lineage differentiation capacity in vitro. CD133(+)CD44(+) exhibited enhanced tumorigeneicity in NOD/SCID mice. One thousand CD133(+)CD44(+) cells initiated xenograft tumors efficiently (3/6) while 1 × 10(5) non-CD133(+)CD44(+) cells could only form palpable nodule with much slower growth rate (1/6). More interestingly, long-term cultured self-renewing CD133(+)CD44(+) cells enriched CD133(+)CD44(high) subset, which expressed epithelial to mesenchymal transition marker, were more invasive in vitro and responsible solely for liver metastasis in vivo. In conclusion, these data demonstrated for the first time that CD133(+)CD44(+) SLCCs were highly enriched in HCT116 cells and that metastatic SLCCs resided exclusively in a CD133(+)CD44(high) subpopulation.

  11. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease.

    PubMed

    Azeredo, Elzinandes L; Zagne, Sonia M O; Alvarenga, Allan R; Nogueira, Rita M R; Kubelka, Claire F; de Oliveira-Pinto, Luzia M

    2006-06-01

    The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.

  12. Differential surface expression of CD18 and CD44 by neutrophils in bone marrow and spleen contributed to the neutrophilia in thalidomide-treated female B6C3F1 mice

    SciTech Connect

    Auttachoat, Wimolnut; Zheng Jianfeng; Chi, Rui P.; Meng, Andrew; Guo, Tai L. . E-mail: tlguo@vcu.edu

    2007-02-01

    Previously, we have reported that thalidomide (Thd) can enhance neutrophil function in female B6C3F1 mice. The present study was intended to evaluate the mechanisms underlying the enhanced neutrophil responses following Thd treatment intraperitoneally (100 mg/kg) for 14 or 28 days. Treatment with Thd increased the numbers of neutrophils in the spleen, peripheral blood, bone marrow, peritoneal cavity and lungs of female B6C3F1 mice when compared to the vehicle control mice. Thd treatment for 14 days increased the percentage and the number of neutrophils in the spleen in the first 8 h (peaking at 2 h) after the last Thd treatment, and it returned to the baseline after 24 h. However, Thd treatment for 28 days increased the percentage and number of neutrophils in the spleen even at the 24-h time point after the last Thd treatment. These neutrophils were demonstrated to be functional by the myeloperoxidase activity assay. Further studies have ruled out the possibility of an increased bone marrow granulopoiesis following Thd treatment. Flow cytometric analysis of the surface expression of adhesion molecules suggested that Thd treatment for either 14 or 28 days decreased the surface expression of either CD18 or CD44 by bone marrow neutrophils. On the other hand, the surface expression of both CD18 and CD44 by splenic neutrophils was increased following Thd treatment for 28 days but not for 14 days. No effect was produced for other cell surface molecules such as CD62L and CD11a. It was possible that decreased surface expressions of CD18 and CD44 facilitated neutrophils' release from the bone marrow; increased surface expressions of CD44 and CD18 by splenic neutrophils after 28 days of Thd treatment increased their ability to remain in the periphery. Taken together, Thd treatment increased neutrophils in female B6C3F1 mice, at least partially, through differentially modulating the surface expression of CD18 and CD44 by the neutrophils in the bone marrow and spleen00.

  13. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds.

    PubMed

    Martines, E; Zhong, J; Muzard, J; Lee, A C; Akhremitchev, B B; Suter, D M; Lee, G U

    2012-08-22

    Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.

  14. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin.

    PubMed

    Arabi, Leila; Badiee, Ali; Mosaffa, Fatemeh; Jaafari, Mahmoud Reza

    2015-12-28

    Although liposomes improve the safety and pharmacokinetic properties of free drugs, they have not sufficiently enhanced the therapeutic efficacy compared to them. To address this problem, targeted therapy of tumor cells holds great promise to further enhance therapeutic index and decreases off-target effects compared with non-targeted liposomes. In the context of antibody-mediated targeted cancer therapy, we evaluated the anti-tumor activity and therapeutic efficacy of Doxil, and that of Doxil modified with a monoclonal antibody (mAb) against CD44, which is one of the most well-known surface markers associated with Cancer Stem Cells (CSCs). Flow cytometry analyses and confocal laser scanning microscopy results showed significant enhanced cellular uptake of CD44-targeted Doxil (CD44-Doxil) in CD44-positive C-26 cells compared to Doxil. However, CD44-negative NIH-3T3 cells showed a similar uptake and in vitro cytotoxicity with both CD44-Doxil and non-targeted Doxil. In BALB/c mice bearing C-26 murine carcinoma, CD44-Doxil groups exhibited significantly higher doxorubicin concentration (than Doxil) inside the tumor cells, while their circulation time and distribution profile remained comparable. CD44-Doxil at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition and higher inclination to tumor, indicating the potential of anti-CD44 mAb targeting in therapeutic efficacy improvement. This study provides proof-of-principle for actively tumor-targeting concept and merits further investigations.

  15. Expression of CD44v6 and Its Association with Prognosis in Epithelial Ovarian Carcinomas.

    PubMed

    Zhou, Dang-Xia; Liu, Yun-Xia; Xue, Ya-Hong

    2012-01-01

    The aim of this study was to evaluate CD44v6 protein expression and its prognostic value of CD44v6 in ovarian carcinoma. The expression of CD44v6 was analyzed in 62 patients with ovarian carcinoma by immunohistochemical method. The data obtained were analyzed by univariate and multivariate analyses. The present study clearly demonstrates that tumor tissues from 41 (66.1%) patients showed positive expression with CD44v6. The expression of CD44v6 was significantly correlated with histological type, FIGO stage and histological grade of ovarian carcinomas. Concerning the prognosis, the survival period of patients with CD44v6 positive was shorter than that of patients with CD44v6 negative (36.6% versus 66.7%, 5-year survival, P < 0.05). Univariate analysis showed that CD44v6 expression, histological type, FIGO stage and histological grade were associated with 5-year survival, and CD44v6 expression was associated with histological type, FIGO stage and histological grade and 5-year survival. In multivariate analysis, using the COX-regression model, CD44v6 expression was important prognostic factor. In conclusion, these results suggest that CD44v6 may be related to histological type, FIGO stage and histological grade of ovarian carcinomas, and CD44v6 may be an important molecular marker for poor prognosis in ovarian carcinomas.

  16. Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma.

    PubMed

    Chen, Kai; Li, Zhonghu; Jiang, Peng; Zhang, Xi; Zhang, Yujun; Jiang, Yan; He, Yu; Li, Xiaowu

    2014-08-01

    The metastasis-related molecules CD133, CD44v6 and human tissue factor (TF) have been shown to be associated with tumor invasion and metastasis. This study aimed to determine whether co-expression of these three molecules was associated with metastasis and overall prognosis in pancreatic carcinoma. We analyzed the expression profiles of these three molecules by immunohistochemistry and evaluated the relationship of their expression profiles with metastasis and prognosis in 109 pancreatic carcinomas. The results showed that the expression levels of CD133, CD44v6 and TF were increased in pancreatic carcinoma. Co-expression of CD133, CD44v6 and TF (tri-expression) was also detected in pancreatic carcinoma. Clinical analysis showed that individual expression of CD133, CD44v6 or TF was associated with vessel invasion, lymph node metastasis and liver metastasis, while tri-expression was associated with lymph node metastasis. Survival analysis showed that patients with co-expression of CD133 and TF or tri-expression had lower and the lowest overall survival rates, respectively. Univariate analysis showed that T-factor, lymph node metastasis, TNM stage, and individual levels or tri-expression of CD133, CD44v6 and TF were survival risk factors. Multivariate analysis showed that tri-expression of CD133, CD44v6 and TF was an independent predictor of survival. These results suggest that overexpression of CD133, CD44v6 and TF is associated with pancreatic carcinoma metastasis. Tri-expression of these three molecules may be a useful predictor for pancreatic carcinoma prognosis.

  17. Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice.

    PubMed

    Shiratori, H; Koshino, T; Uesugi, M; Nitto, H; Saito, T

    2001-09-20

    The effect of CD44-phenotypic expression on metastasis to the lung was studied using a spontaneous murine osteosarcoma-derived cell line, POS-1, stimulated with lipopolysaccharide (LPS). POS-1 cells were inoculated into the hind paws of 20 C3H/HeJ mice and produced a visible mass in all mice in 5 weeks, and these transplanted tumors resulted in lung metastasis in all mice. The number of metastatic foci in the lungs was 12.0+/-2.1 (mean+/-SD) with LPS-stimulated cells, which was significantly higher than that of unstimulated cells (5.8+/-1.4; N=10 for each; P<0.05). Hyaluronate (HA), a ligand of CD44, inhibited a number of lung metastases in a dose-dependent manner (0.5% HA, 3.0+/-1.1; 0.005% HA, 5.1+/-1.5; without HA, 8.6+/-1.7; N=10 for each; P<0.05, each group with HA versus the group without HA). Adhesion assay by coculturing POS-1 cells and lung microvascular endothelial cells on culture plate showed that the adhesion was significantly lower in HA treated POS-1 than those without HA (1.18+/-0.12 and 2.74+/-0.17, respectively, P<0.05). These results suggest that lung metastasis was accelerated by up-regulation of CD44.

  18. Clinicopathological characterisation of duodenal adenocarcinoma with high CD44 variant 9 expression.

    PubMed

    Maruyama, Yasuhiro; Uehara, Takeshi; Daikuhara, Seiichi; Kobayashi, Yukihiro; Nakajima, Tomoyuki; Matsumoto, Akihiro; Tanaka, Eiji; Ota, Hiroyoshi

    2015-12-01

    CD44 has been identified as a cancer stem cell (CSC) biomarker in various malignancies. The aim of this study was to elucidate the clinicopathological features of CD44v9 positive cells in duodenal adenocarcinoma (DA).Twenty-nine DA patients were selected from medical archives at our hospital. CD44v9 expression was analysed together with that of MUC2, MUC5AC, and MUC6 by immunohistochemistry. High levels of CD44v9 expression weakly correlated with inflammatory cell infiltration (r = 0.431, p = 0.020) and MUC6 expression (r = 0.425, p = 0.022). Furthermore, double immunofluorescence staining of CD44v9 and Ki-67 or cleaved caspase 3 (CC3) was performed. High- and low-density areas of CD44v9 positive cells were designated as CD44v9 positive and negative areas, respectively. Within CD44v9 positive areas, the level of Ki-67 positivity among CD44v9 positive cells was significantly lower than that of CD44v9 negative cells (p = 0.002). Meanwhile, the level of CC3 positivity among CD44v9 positive cells was significantly lower than that of CD44v9 negative cells (p < 0.001).CD44v9 expression may be affected by mononuclear cell infiltration and MUC6 expression in DA. CD44v9 positive cells also have a low mitotic activity and resist apoptosis. These characteristics suggest that CD44v9 positive cells possess CSC-like properties in DA.

  19. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44.

    PubMed

    Hidalgo, Andrés; Peired, Anna J; Wild, Martin K; Vestweber, Dietmar; Frenette, Paul S

    2007-04-01

    The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.

  20. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6.

    PubMed

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H; Orian-Rousseau, Véronique

    2015-06-29

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs.

  1. Prognostic significance of CD44v6/v7 in acute promyelocytic leukemia.

    PubMed

    Chen, Ping; Huang, Hui-Fang; Lu, Rong; Wu, Yong; Chen, Yuan-Zhong

    2012-01-01

    CD44v, especially splice variants containing exon v6, has been shown to be related closely to development of different tumors. High levels of CD44v6/v7 have been reported to be associated with invasiveness and metastasis of many malignancies. The objective of this study was to detect expression of CD44v6-containing variants in patients with acute promyelocytic leukemia (APL) and evaluate the potential of CD44v6/v7 for risk stratification. Reverse transcription polymerase chain reaction (RT-PCR) followed by PCR product purification, ligation into T vectors and positive clone sequencing were used to detect CD44 v6-containing variant isoforms in 23 APL patients. Real-time quantitative PCR of the CD44v6/v7 gene was performed in patients with APL and in NB4 cells that were treated with all-trans retinoic acid (ATRA) or arsenic trioxide (As2O3). Sequencing results identified four isoforms (CD44v6/v7, CD44v6/v8/v10, CD44v6/v8/v9/v10, and CD44v6/v7/v8/v9/v10) in bone marrow mononuclear cells of 23 patients with APL. The level of CD44v6/v7 in high-risk cases was significantly higher than those with low-risk. Higher levels of CD44v6/v7 were found in three patients with central nervous system relapse than in other patients inthe same risk group. Furthermore, in contrast to ATRA, only As2O3 could significantly down-regulate CD44v6/v7 expression in NB4 cells. Our data suggest that CD44v6/v7 expression may be a prognostic indicator for APL.

  2. Osteopontin CD44 Interaction: A Novel Mechanism for the Selective Homing of Breast Tumor Cells into Bone

    DTIC Science & Technology

    2001-06-01

    Introduction cancer pharmacology, and im- structure - function analysis of munology he served on the fac- extracellular matrix molecules What are the traits...isolated a hexa peptide from osteopontin that is chemotactic to tumor cells. Antibodies raised against this peptide neutralize the chemotactic response of ...circulating breast tumor cells expressing specific CD44v splice variants. We have isolated a peptide analogue of the chemotactic domain (PepL) that

  3. [Neutrophils expression of adhesion molecules in diabetic nephropaty patients].

    PubMed

    Shcherban', T D

    2013-01-01

    CD11b and CD54 expression on neutrophils in patients with diabetic nephropathy (DN), arterial hypertension patients and healthy donors were examined. Development of DN associates with an increase of the number of CD11b and CD54 positive cells and violation of cellular co-operation. In the conditions of diabetic microenvironment expression of adhesion molecules rises substantially, what may characterized the mechanism of connection between hyperglycemia and vascular and tissues injury at DN. Authentication of morphological and biochemical markers of intercellular co-operation must in a prospect assist the deeper understanding of pathogenic mechanisms of DN.

  4. Junctional Adhesion Molecule C Mediates Leukocyte Adhesion to Rheumatoid Arthritis Synovium

    PubMed Central

    Rabquer, Bradley J.; Pakozdi, Angela; Michel, James E.; Gujar, Bansari S.; Haines, G. Kenneth; Imhof, Beat A.; Koch, Alisa E.

    2010-01-01

    Objective Leukocyte infiltration into the rheumatoid arthritis (RA) synovium is a multistep process in which leukocytes leave the bloodstream and invade the synovial tissue (ST). Leukocyte transendothelial migration and adhesion to RA ST requires adhesion molecules on the surface of endothelial cells and RA ST fibroblasts. This study was undertaken to investigate the role of junctional adhesion molecule C (JAM-C) in mediating leukocyte recruitment and retention in the RA joint. Methods Immunohistologic analysis was performed on RA, osteoarthritis (OA), and normal ST samples to quantify JAM-C expression. Fibroblast JAM-C expression was also analyzed using Western blotting, cell surface enzyme-linked immunosorbent assay, and immunofluorescence. To determine the role of JAM-C in leukocyte retention in the RA synovium, in vitro and in situ adhesion assays and RA ST fibroblast transmigration assays were performed. Results JAM-C was highly expressed by RA ST lining cells, and its expression was increased in OA ST and RA ST endothelial cells compared with normal ST endothelial cells. JAM-C was also expressed on the surface of OA ST and RA ST fibroblasts. Furthermore, we demonstrated that myeloid U937 cell adhesion to both OA ST and RA ST fibroblasts and to RA ST was dependent on JAM-C. U937 cell migration through an RA ST fibroblast monolayer was enhanced in the presence of neutralizing antibodies against JAM-C. Conclusion Our results highlight the novel role of JAM-C in recruiting and retaining leukocytes in the RA synovium and suggest that targeting JAM-C may be important in combating inflammatory diseases such as RA. PMID:18821692

  5. Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    PubMed Central

    Koper, Andre; Schenck, Annette; Prokop, Andreas

    2012-01-01

    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need

  6. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer

    PubMed Central

    Thapa, Ranjeeta; Wilson, George D.

    2016-01-01

    CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells. PMID:27200096

  7. The Role of Lymphocyte to Monocyte Ratio, Microvessel Density and HiGH CD44 Tumor Cell Expression in Non Hodgkin Lymphomas.

    PubMed

    Jelicic, Jelena; Balint, Milena Todorovic; Jovanovic, Maja Perunicic; Boricic, Novica; Micev, Marjan; Stojsic, Jelena; Antic, Darko; Andjelic, Bosko; Bila, Jelena; Balint, Bela; Pavlovic, Sonja; Mihaljevic, Biljana

    2016-07-01

    Prognostic significance of immune microenvironment has been emphasized using the most advanced analysis, with consecutive attempts to reveal prognostic impact of this findings. The aim of this study was to compare and define prognostic significance of clinical parameters, microvessel density (MVD) in tumour tissue and expression of CD44s as adhesive molecule on tumour cells in diffuse large B cell lymphoma-DLBCL, primary central nervous system DLBCL-CNS DLBCL and follicular lymphoma-FL. A total of 202 histopathological samples (115 DLBCL/65 FL/22 CNS DLBCL) were evaluated. Overall response (complete/partial remission) was achieved in 81.3 % DLBCL patients, 81.8 % primary CNS DLBCL and 92.3 % FL. Absolute lymphocyte count-ALC/Absolute monocyte count-AMC >2.6 in DLBCL and ALC/AMC ≥ 4.7 in FL were associated with better event-free survival (EFS) and overall survival (OS) (p < 0.05). In DLBCL, MVD > 42 blood vessels/0.36 mm(2) correlated with primary resistant disease (p < 0.0001), poorer EFS and OS (p = 0.014). High CD44s expression in FL correlated with inferior EFS and OS (p < 0.01). In DLBCL, multivariate Cox regression analysis showed that ALC/AMC was independent parameter that affected OS (HR 3.27, 95 % CI 1.51-7.09, p = 0.003) along with the NCCN-IPI (HR 1.39, 95 % CI 1.08-1.79, p = 0.01). Furthermore, in FL, ALC/AMC mostly influenced OS (HR 5.21, 95 % CI 1.17-23.21, p = 0.03), followed with the FLIPI (HR 3.98, 95 % CI 1.06-14.95, p = 0.041). In DLBCL and FL, ALC/AMC is simple and robust tool that is, with current prognostic scores, able to define long-term survival and identify patients with inferior outcome. The introduction of immunochemotherapy might altered the prognostic significance of microenvionmental biomarkers (MVD and CD44s).

  8. Up-regulation of the hyaluronate receptor CD44 in canine distemper demyelinated plaques.

    PubMed

    Alldinger, S; Fonfara, S; Kremmer, E; Baumgärtner, W

    2000-02-01

    CD44 antigen (CD44), the principle cell surface receptor for hyaluronate, is up-regulated in the human demyelinating disease multiple sclerosis on fibrous astrocytes. As astrocytes are the main target cell of canine distemper virus (CDV), the consequences of a CDV infection on the CD44 expression and distribution in brains with spontaneous demyelinating canine distemper encephalitis (CDE) were of interest. Thirteen acute, 35 subacute, and 11 chronic plaques of nine dogs with immunohistologically confirmed CDE and brains of control dogs were included in the study. For light microscopy, 5-micron-thick serial sections were stained with H&E and incubated with monoclonal antibodies (mAbs) against CD44 and canine distemper virus nucleoprotein and polyclonal antibodies (pAbs) against glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP). For immunoelectron microscopy, 90-nm-thick sections were double stained with anti-GFAP and anti-CD44 mAbs to specify CD44-expressing structures. In controls, CD44 was diffusely distributed in the white matter and single meningeal cells exhibited a marginal expression of the antigen. In acute and more prominently in subacute demyelinating encephalitis, there was a plaque-associated up-regulation of CD44 which paralleled GFAP. In chronic demyelinating lesions, a reduction of CD44 associated with a loss of GFAP-positive astrocytes was noted. Additionally, in chronic plaques, CD44 was expressed on the cell membrane of perivascular mononuclear cells. Immunoelectron microscopically, in controls, CD44 was rarely demonstrated on astrocytic cell processes. In contrast, in brains with CDE CD44 was found on the cell membrane of broadened astrocytic cell processes. In summary, CD44 is up-regulated on astrocytes in the early phase of CDE and seems to represent a marker for the activation of immune cells in the late phase of the infection.

  9. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes

    PubMed Central

    Assayag-Asherie, Nathalie; Sever, Dror; Bogdani, Marika; Johnson, Pamela; Weiss, Talya; Ginzberg, Ariel; Perles, Sharon; Weiss, Lola; Sebban, Lora Eshkar; Turley, Eva A.; Okon, Elimelech; Raz, Itamar; Naor, David

    2015-01-01

    CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated. PMID:26624007

  10. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  11. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    PubMed Central

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  12. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor

    SciTech Connect

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie; Sokabe, Masahiro

    2015-01-16

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.

  13. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.

    PubMed

    Sahlberg, Sara Häggblad; Spiegelberg, Diana; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2014-01-01

    The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms) expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1) expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high) were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low). The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2) did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

  14. Implications of single nucleotide polymorphisms in CD44 exon 2 for risk of breast cancer.

    PubMed

    Zhou, Juhua; Nagarkatti, Prakash S; Zhong, Yin; Zhang, Jiajia; Nagarkatti, Mitzi

    2011-09-01

    CD44 is a cell-surface glycoprotein involved in many cellular functions including lymphocyte activation, recirculation and homing, hematopoiesis and tumor metastasis, suggesting that CD44 may play an important role in breast cancer development. In this study, we examined whether CD44 exon 2 polymorphisms are associated with increased susceptibility to breast cancer. Direct nucleotide sequencing analysis showed that multiple single nucleotide polymorphisms were present in the CD44 exon 2 coding region in female patients with breast cancer. There was no significant difference in the frequency of any one single nucleotide polymorphism in the CD44 exon 2 coding region between patients with breast cancer and normal donors. However, CD44 polymorphisms in the CD44 exon 2 coding region were identified in approximately 40% of patients with breast cancer, which was significantly higher than in normal donors (odds ratio, 9.34; 95% confidence interval = 2.58-33.82; P < 0.0001). The Wilcoxon-Mann-Whitney test analysis showed that the patients with the CD44 polymorphisms in CD44 exon 2 coding sequence had breast cancer at earlier ages, 49 ± 3 versus 62 ± 2 years (P < 0.0005), and larger tumor burdens (4.9 ± 1.22 vs. 1.6 ± 0.15 mm, P < 0.01) at the time of diagnosis. Interestingly, African-American female patients having the CD44 polymorphisms in CD44 exon 2 coding sequence were diagnosed with breast cancer at very young age (41 ± 2 years). Our results show that CD44 exon 2 polymorphisms are associated with breast cancer development, and such analysis may be effectively used in the evaluation of risk, prediction of cancer, prevention, diagnosis, and epidemiological studies of breast cancer.

  15. Evaluation of STAT3 Signaling in ALDH+ and ALDH+/CD44+/CD24− Subpopulations of Breast Cancer Cells

    PubMed Central

    Lin, Li; Hutzen, Brian; Lee, Hsiu-Fang; Peng, Zhengang; Wang, Wenlong; Zhao, Chongqiang; Lin, Huey-Jen; Sun, Duxin; Li, Pui-Kai; Li, Chenglong; Korkaya, Hasan; Wicha, Max S.; Lin, Jiayuh

    2013-01-01

    Background STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH+), or cell surface molecule CD44-positive (CD44+) but CD24-negative (CD24−) breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells is unknown. Methods and Results We examined STAT3 activation in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH+) cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH−) cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH+ subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH+ subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH+ subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH+ breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH+ cells were further selected for the stem cell markers CD44+ and CD24−. Conclusion These studies demonstrate an important role for STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells which may have cancer stem cell properties and suggest

  16. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  17. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation.

    PubMed

    Su, Weiping; Foster, Scott C; Xing, Rubing; Feistel, Kerstin; Olsen, Reid H J; Acevedo, Summer F; Raber, Jacob; Sherman, Larry S

    2017-03-17

    Adult neurogenesis in the hippocampal subgranular zone (SGZ) is involved in learning and memory throughout life but declines with aging. Mice lacking the CD44 transmembrane receptor for the glycosaminoglycan hyaluronan (HA) demonstrate a number of neurological disturbances including hippocampal memory deficits, implicating CD44 in the processes underlying hippocampal memory encoding, storage, or retrieval. Here, we found that HA and CD44 play important roles in regulating adult neurogenesis, and we provide evidence that HA contributes to age-related reductions in neural stem cell (NSC) expansion and differentiation in the hippocampus. CD44-expressing NSCs isolated from the mouse SGZ are self-renewing and capable of differentiating into neurons, astrocytes, and oligodendrocytes. Mice lacking CD44 demonstrate increases in NSC proliferation in the SGZ. This increased proliferation is also observed in NSCs grown in vitro, suggesting that CD44 functions to regulate NSC proliferation in a cell-autonomous manner. HA is synthesized by NSCs and increases in the SGZ with aging. Treating wild type but not CD44-null NSCs with HA inhibits NSC proliferation. HA digestion in wild type NSC cultures or in the SGZ induces increased NSC proliferation, and CD44-null as well as HA-disrupted wild type NSCs demonstrate delayed neuronal differentiation. HA therefore signals through CD44 to regulate NSC quiescence and differentiation, and HA accumulation in the SGZ may contribute to reductions in neurogenesis that are linked to age-related decline in spatial memory.

  18. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  19. Phototheranostics of CD44-positive cell populations in triple negative breast cancer

    PubMed Central

    Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena; Kobayashi, Hisataka; Bhujwalla, Zaver M.

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC. PMID:27302409

  20. Involvement of CD44v6 in InlB-dependent Listeria invasion.

    PubMed

    Jung, C; Matzke, A; Niemann, H H; Schwerk, Christian; Tenenbaum, Tobias; Orian-Rousseau, V

    2009-06-01

    Listeria monocytogenes, a Gram-positive bacterium, is the causative agent for the disease called listeriosis. This pathogen utilizes host cell surface proteins such as E-cadherin or c-Met in order to invade eukaryotic cells. The invasion via c-Met depends on the bacterial protein InlB that activates c-Met phosphorylation and internalization mimicking in many regards HGF, the authentic c-Met ligand. In this paper, we demonstrate that the activation of c-Met induced by InlB is dependent on CD44v6, a member of the CD44 family of transmembrane glycoproteins. Inhibiting CD44v6 by means of a blocking peptide, a CD44v6 antibody or CD44v6-specific siRNA prevents the activation of c-Met induced by InlB. Subsequently, signalling, scattering and the entry of InlB-coated beads into host cells are also impaired by CD44v6 blocking reagents. For the entry process, ezrin, a protein that links the CD44v6 cytoplasmic domain to the cytoskeleton, is required as well. Most importantly, this collaboration between c-Met and CD44v6 contributes to the invasion of L. monocytogenes into target cells as demonstrated by a drastic decrease in bacterial invasion in the presence of blocking agents such as the CD44v6 peptide or antibody.

  1. An epithelial cell adhesion molecule- and CD3-bispecific antibody plus activated T-cells can eradicate chemoresistant cancer stem-like pancreatic carcinoma cells in vitro.

    PubMed

    Umebayashi, Masayo; Kiyota, Akifumi; Koya, Norihiro; Tanaka, Hiroto; Onishi, Hideya; Katano, Mitsuo; Morisaki, Takashi

    2014-08-01

    Cancer stem-like properties of various types of cancer, including pancreatic cancer, one of the most aggressive types, correlate with metastasis, invasion, and therapeutic resistance. More importantly, chemoresistance in cancer stem-like cells (CSLCs) is a critical problem for eradication of pancreatic cancer. Several cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), are molecular targets on CSLCs of pancreatic carcinoma. In this study, we investigated whether catumaxomab, a clinical-grade bi-specific antibody that binds to both EpCAM on tumor cells and CD3 on T-cells, combined with activated T-cells can eliminate chemoresistant pancreatic CSLCs in vitro. Firstly, we established a CSLC line (MU-PK1) from human pancreatic carcinoma cells derived from a patient with chemoresistant and disseminated pancreatic cancer. These CSLCs were almost completely resistant to gemcitabine-mediated cytotoxicity up to a concentration of 10 μg/ml. The cells expressed high levels of CSLC markers (CD44 and EpCAM) and had significantly higher capacities for sphere formation, invasion, and aldehyde dehydrogenase-1 expression, which are associated with cancer stemness properties. We found that pre-treatment with catumaxomab and subsequent addition of interleukin-2/OKT3 activated autologous T-cells eliminated CSLCs during a short incubation period. Moreover, when MU-PK1 cells were cultured under hypoxic conditions, the CSLCs became more aggressive. However, the combination of cytokine-activated killer T-cells with catumaxomab successfully lysed almost all these cells. In conclusion, catumaxomab combined with activated T-cells may be a potent therapeutic modality to eradicate chemoresistant pancreatic CSLCs.

  2. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm(2), compared with the observed value of 3431.8μm(2) in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm(2) (vitiligo) and 8966.7μm(2) (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1.

  3. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  4. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  5. Pharmacology of Cell Adhesion Molecules of the Nervous System

    PubMed Central

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders. PMID:19305742

  6. Discovery of novel hematopoietic cell adhesion molecules from human bone marrow stromal cell membrane protein extracts by a new cell-blotting technique.

    PubMed

    Seshi, B

    1994-05-01

    In an attempt to define the role of cell adhesion molecules (CAMs) within the bone marrow (BM) microenvironment in normal hematopoiesis and in leukemia development, a novel cell-blotting technique that involved cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane has been developed. Human BM stromal cell membrane fractions have been prepared from Dexter-type cultures after cell lysis by sonification and differential centrifugations of the sonification contents. The 20,000 g pellets representing membrane fractions have been solubilized by 2% Triton X-100, 0.575% LDS, and 8 mol/L urea in sequential order. The protein extracts are fractionated by LDS-PAGE and screened for CAMs by the new cell-blotting technique. This led to identification of nine protein bands in lanes containing LDS extracts showing adhesion of KG1a (CD34+ progenitor myeloid) cells. Evidence that the BM proteins exhibiting KG1a cell adhesion are novel CAMs is based on the observations that these proteins, in comparison with known CAMs, specifically VCAM-1, CD54, and CD44, show (1) contrasting detergent-solubility properties, (2) different temperature requirement for mediating cell adhesion function, and (3) markedly distinct electrophoretic mobilities. The various cell types tested, notably KG1a, NALM-6, WIL-2, Ramos, HS-Sultan, K562, JY B lymphoblastoid cells, and T lymphoblasts, showed distinctive patterns of binding to different subsets of BM CAMs. These results demonstrate a new approach to studies of molecular mechanisms that may determine specificity of hematopoietic cellular localization within BM microenvironment and may play an important role in controlling hematopoiesis.

  7. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  8. Junction adhesion molecule is a receptor for reovirus.

    PubMed

    Barton, E S; Forrest, J C; Connolly, J L; Chappell, J D; Liu, Y; Schnell, F J; Nusrat, A; Parkos, C A; Dermody, T S

    2001-02-09

    Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.

  9. The homing receptor CD44 is involved in the progression of precancerous gastric lesions in patients infected with Helicobacter pylori and in development of mucous metaplasia in mice

    PubMed Central

    Garay, Jone; Piazuelo, M. Blanca; Majumdar, Sumana; Li, Li; Trillo-Tinoco, Jimena; del Valle, Luis; Schneider, Barbara G.; Delgado, Alberto G.; Wilson, Keith T.; Correa, Pelayo; Zabaleta, Jovanny

    2016-01-01

    Infection with Helicobacter pylori (H. pylori) leads to inflammatory events that can promote gastric cancer development. Immune cells transition from the circulation into the infected mucosa through the interaction of their receptors and ligands in the endothelial compartment. CD44 expression is increased in advanced gastric lesions. However, the association of this molecule with the progression of these lesions over time has not been investigated. In addition, there is a lack of understanding of the CD44-dependent cellular processes that lead to gastritis, and possibly to gastric cancer. Here we studied H. pylori-positive subjects with gastric lesions that ranged from multifocal atrophic gastritis to dysplasia to determine gene expression changes associated with disease progression over a period of six years. We report that CD44 expression is significantly increased in individuals whose gastric lesions progressed along the gastric precancerous cascade. We also show that CD44−/− mice develop less severe and less extensive H. pylori-induced metaplasia, and show fewer infiltrating Gr1+ cells compared to wild type mice. We present data suggesting that CD44 is associated with disease progression. Mechanisms associated with these effects include induction of interferon gamma responses. PMID:26639196

  10. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Taeksu; Lim, Eun-Kyung; Lee, Jaemin; Kang, Byunghoon; Choi, Jihye; Park, Hyo Seon; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2013-04-01

    Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis.

  11. RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: A different interpretation of redundancy

    PubMed Central

    Nedvetzki, Shlomo; Gonen, Erez; Assayag, Nathalie; Reich, Reuven; Williams, Richard O.; Thurmond, Robin L.; Huang, Jing-Feng; Neudecker, Birgit A.; Wang, Fu-Shang; Turley, Eva A.; Naor, David

    2004-01-01

    We report here that joint inflammation in collagen-induced arthritis is more aggravated in CD44-knockout mice than in WT mice, and we provide evidence for molecular redundancy as a causal factor. Furthermore, we show that under the inflammatory cascade, RHAMM (receptor for hyaluronan-mediated motility), a hyaluronan receptor distinct from CD44, compensates for the loss of CD44 in binding hyaluronic acid, supporting cell migration, up-regulating genes involved with inflammation (as assessed by microarrays containing 13,000 cDNA clones), and exacerbating collagen-induced arthritis. Interestingly, we further found that the compensation for loss of the CD44 gene does not occur because of enhanced expression of the redundant gene (RHAMM), but rather because the loss of CD44 allows increased accumulation of the hyaluronic acid substrate, with which both CD44 and RHAMM engage, thus enabling augmented signaling through RHAMM. This model enlightens several aspects of molecular redundancy, which is widely discussed in many scientific circles, but the processes are still ill defined. PMID:15596723

  12. The CD44+/CD24- phenotype is enriched in basal-like breast tumors

    PubMed Central

    Honeth, Gabriella; Bendahl, Pär-Ola; Ringnér, Markus; Saal, Lao H; Gruvberger-Saal, Sofia K; Lövgren, Kristina; Grabau, Dorthe; Fernö, Mårten; Borg, Åke; Hegardt, Cecilia

    2008-01-01

    Introduction Human breast tumors are heterogeneous and consist of phenotypically diverse cells. Breast cancer cells with a CD44+/CD24- phenotype have been suggested to have tumor-initiating properties with stem cell-like and invasive features, although it is unclear whether their presence within a tumor has clinical implications. There is also a large heterogeneity between tumors, illustrated by reproducible stratification into various subtypes based on gene expression profiles or histopathological features. We have explored the prevalence of cells with different CD44/CD24 phenotypes within breast cancer subtypes. Methods Double-staining immunohistochemistry was used to quantify CD44 and CD24 expression in 240 human breast tumors for which information on other tumor markers and clinical characteristics was available. Gene expression data were also accessible for a cohort of the material. Results A considerable heterogeneity in CD44 and CD24 expression was seen both between and within tumors. A complete lack of both proteins was evident in 35% of the tumors, while 13% contained cells of more than one of the CD44+/CD24-, CD44-/CD24+ and CD44+/CD24+ phenotypes. CD44+/CD24- cells were detected in 31% of the tumors, ranging in proportion from only a few to close to 100% of tumor cells. The CD44+/CD24- phenotype was most common in the basal-like subgroup – characterized as negative for the estrogen and progesterone receptors as well as for HER2, and as positive for cytokeratin 5/14 and/or epidermal growth factor receptor, and particularly common in BRCA1 hereditary tumors, of which 94% contained CD44+/CD24- cells. The CD44+/CD24- phenotype was surprisingly scarce in HER2+ tumors, which had a predominantly CD24+ status. A CD44+/CD24- gene expression signature was generated, which included CD44 and α6-integrin (CD49f) among the top-ranked overexpressed genes. Conclusion We demonstrate an association between basal-like and particularly BRCA1 hereditary breast cancer and

  13. CD44 Antibodies and Immune Thrombocytopenia in the Amelioration of Murine Inflammatory Arthritis

    PubMed Central

    Mott, Patrick J.; Lazarus, Alan H.

    2013-01-01

    Antibodies to CD44 have been used to successfully ameliorate murine models of autoimmune disease. The most often studied disease model has been murine inflammatory arthritis, where a clear mechanism for the efficacy of CD44 antibodies has not been established. We have recently shown in a murine passive-model of the autoimmune disease immune thrombocytopenia (ITP) that some CD44 antibodies themselves can induce thrombocytopenia in mice, and the CD44 antibody causing the most severe thrombocytopenia (IM7), also is known to be highly effective in ameliorating murine models of arthritis. Recent work in the K/BxN serum-induced model of arthritis demonstrated that antibody-induced thrombocytopenia reduced arthritis, causing us to question whether CD44 antibodies might primarily ameliorate arthritis through their thrombocytopenic effect. We evaluated IM7, IRAWB14.4, 5035-41.1D, KM201, KM114, and KM81, and found that while all could induce thrombocytopenia, the degree of protection against serum-induced arthritis was not closely related to the length or severity of the thrombocytopenia. CD44 antibody treatment was also able to reverse established inflammation, while thrombocytopenia induced by an anti-platelet antibody targeting the GPIIbIIIa platelet antigen, could not mediate this effect. While CD44 antibody-induced thrombocytopenia may contribute to some of its therapeutic effect against the initiation of arthritis, for established disease there are likely other mechanisms contributing to its efficacy. Humans are not known to express CD44 on platelets, and are therefore unlikely to develop thrombocytopenia after CD44 antibody treatment. An understanding of the relationship between arthritis, thrombocytopenia, and CD44 antibody treatment remains critical for continued development of CD44 antibody therapeutics. PMID:23785450

  14. CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance.

    PubMed

    Jung, Thorsten; Gross, Wolfgang; Zöller, Margot

    2011-05-06

    Tumor progression requires a crosstalk with the tumor surrounding, where the tumor matrix plays an essential role. We recently reported that only the matrix delivered by a CD44v6-competent (ASML(wt)), but not that of a CD44v6-deficient (ASML-CD44v(kd)) rat pancreatic adenocarcinoma line supports metastasis formation. We here describe that this matrix provides an important feedback toward the tumor cell and that CD44v6 accounts for orchestrating signals received from the matrix. ASML(wt) cells contain more hyaluronan synthase-3 and secrete higher amounts of >50 kDa HA than ASML-CD44v(kd) cells, which secrete more hyaluronidase. Only the ASML(wt)-matrix supports migration and apoptosis resistance, which both can be initiated via CD44v6, c-Met, and α6β4 ligand binding and proceed via FAK, PI3K/Akt, and MAPK activation, respectively. However, c-Met- and α6β4-initiated signaling are strongly augmented by the association with CD44v6 as only very weak effects are observed in CD44v6-deficient cells. The same CD44v6-dependent convergence of motility- and apoptosis resistance-related signals also accounts for human tumor lines. Thus, CD44v6 promotes motility and apoptosis resistance via its involvement in assembling a matrix that, in turn, triggers activation of signaling cascades, which proceeds, independent of the initiating receptor-ligand interaction, in a concerted action via CD44v6.

  15. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  16. Preferential up-regulation of osteopontin in primary central nervous system lymphoma does not correlate with putative receptor CD44v6 or CD44H expression.

    PubMed

    Yuan, Ji; Gu, Keni; He, Jianqing; Sharma, Suash

    2013-04-01

    Osteopontin (SPP1) is reportedly the most up-regulated gene in primary central nervous system lymphoma (PCNSL). Our objective was to confirm immunoexpression of osteopontin and determine if CD44v6 and CD44H played a significant role as receptors for osteopontin in PCNSL. Twenty PCNSL, 12 nodal diffuse large B-cell lymphoma (N-DLBCL), and 17 extra-nodal DLBCL (EN-DLBCL) archival pathology cases were examined. Osteopontin nuclear positivity was observed in 20 (100%) of 20 PCNSL cases, 16 (95 %) of 17 EN-DLBCL, and 3 of 12 (25%) N-DLBCL. The immunohistochemical score of osteopontin in PCNSL (7.0 ± 3.5) and EN-DLBCL (4.4 ± 4.1) was significantly higher than N-DLBCL (0.3 ± 0.6). Sixteen cases were positive for CD44v6 (33%), including 6 PCNSL, and 5 each EN-DLBCL and N-DLBCL; no statistical difference was observed. CD44H was positive in all cases except one PCNSL but without any significant differences across the 3 groups. CD44H expression was significantly higher in non-germinal center B-cell (GCB) (score 12 ± 1.5) as compared to the GCB group (9.5 ± 3.1), and in non-GCB PCNSL (7.9 ± 4.2) as compared to non-GCB non-CNS lymphoma (2.8 ± 4.0) (P = .009); the differences were insignificant for osteopontin and CD44v6. Neither CD44H nor CD44v6 scores correlated with the osteopontin expression score or Ki-67 index. Osteopontin immunoexpression was highest in PCNSL, suggesting its probable role in its pathogenesis. However, its lack of correlation with CD44v6 excludes the latter as the likely osteopontin receptor in PCNSL. The significantly higher CD44H expression in the non-GCB than GCB group may contribute to the aggressiveness of the non-GCB DLBCL. Further studies are needed to elucidate the pathway and the prognostic/predictive role of osteopontin in PCNSL.

  17. CD44v6 Dependence of Premetastatic Niche Preparation by Exosomes12

    PubMed Central

    Jung, Thorsten; Castellana, Donatello; Klingbeil, Pamela; Hernández, Ines Cuesta; Vitacolonna, Mario; Orlicky, David J; Roffler, Steve R; Brodt, Pnina; Zöller, Margot

    2009-01-01

    The metastasizing capacity of the rat pancreatic adenocarcinoma BSp73ASML (ASMLwt) is strikingly reduced by a knockdown of CD44v4-v7 (ASMLkd). We used this model to analyze the role of the CD44 variant isoform (CD44v) in (pre)metastatic niche formation. Intrafootpad injections of ASMLwt-, but not ASMLkd-conditioned medium (CM), strongly promote settlement of ASMLkd cells in lymph nodes and lung. Fractionation of CM revealed a contribution by a soluble matrix and exosomes, where the CD44v6-containing ASMLwt-soluble fraction can complement ASMLkd-exosomes, but not vice versa. This implies that exosomes are the final actors, are CD44v-independent, but require a soluble matrix, which depends on CD44v. Analyzing the composition revealed that only the ASMLwt-matrix contains c-Met and urokinase-type plasminogen activator receptor. In vitro, mostly ASMLwt-exosomes promote proliferation and induce gene expression in metastatic organ cells. However, in vivo corresponding changes in the (pre) metastatic organ are only observed when both, exosomes plus the soluble matrix, are provided. Thus, neither CD44v nor exosomes alone suffice for (pre)metastatic niche formation. Instead, CD44v suffices for assembling a soluble matrix, which allows exosomes, independent of their origin from poorly or highly metastatic cells, to modulate (pre) metastatic organ cells for tumor cell embedding and growth. PMID:19794968

  18. Curcumin Induces Apoptosis of Colorectal Cancer Stem Cells by Coupling with CD44 Marker.

    PubMed

    Huang, Yu-Ting; Lin, Yu-Wei; Chiu, Han-Mo; Chiang, Been-Huang

    2016-03-23

    This study investigated the effect of curcumin on colorectal cancer stem cells (CCSCs) and its possible mechanism. Comparison of the metabolic profiles of human adenomatous polyp (N = 61) and colorectal cancer (CRC) (N = 57) tissue found statistically significant differences (p < 0.05) in their composition of adenosine monophosphate (AMP), adenine, 5'-methythioadenosine, 3-hydroxybutyric acid, prostaglandin E2, threonine, and glutamine. Our cell culture model study found that curcumin treatment (50 μM for 48 h) did indeed increase apoptosis of CRC cells as well as of CCSCs, but at a significant level only in CD44(+) cells. Further metabolic profile studies of the CRC, CD44(+), and CD44(-) cells indicated that curcumin treatment increased glyceraldehyde and hydroxypropionic acid in CD44(-) cells but decreased glutamine content in both curcumin-treated CRC and CD44(+) cells. Based on our comparison of the metabolic profiles of human tissues and cancer cells, we suggest that curcumin might couple with CD44 and that curcumin-CD44(+) coupling at the cell membrane might have some blocking effect on the transport of glutamine into the cells, thus decreasing the glutamine content in the CD44(+) cells and inducing apoptosis.

  19. CD44v6-Peptide Functionalized Nanoparticles Selectively Bind to Metastatic Cancer Cells.

    PubMed

    Li, Linxian; Schmitt, Mark; Matzke-Ogi, Alexandra; Wadhwani, Parvesh; Orian-Rousseau, Veronique; Levkin, Pavel A

    2017-01-01

    CD44v6 peptide functionalized nanoparticles are fabricated in a facile and controllable way to selectively bind to CD44v6 positive tumor cells with highly efficient anticancer and antimetastatic properties. The reported modular synthesis and facile preparation makes this system highly potent for developing novel multifunctional nanocarriers for therapeutic and/or diagnostic anticancer applications.

  20. CD44+/CD24- Cancer Stem Cells Are Associated With Higher Grade of Canine Mammary Carcinomas.

    PubMed

    Im, K S; Jang, Y G; Shin, J I; Kim, N H; Lim, H Y; Lee, S M; Kim, J H; Sur, J H

    2015-11-01

    The CD44+/CD24- phenotype identifies cancer stem cell (CSC) properties in canine mammary carcinoma (MC); however, the histopathological features associated with this phenotype remain to be elucidated. Here, we determined whether the CD44+/CD24- phenotype was associated with hormonal receptor (HR; estrogen receptor [ER] and/or progesterone receptor [PR]) status and/or triple (ER, PR, and human epithelial growth factor receptor 2)-negative (TN) subtype; conventional histological evaluation was also performed. We found that, as single markers, both CD44+ and CD24+ were associated with less aggressive histological types, low grade, and a non-TN subtype; both markers were associated with HR positivity. On the other hand, a CD44+/CD24- phenotype was associated with higher grade of carcinoma. Therefore, our results suggest that immunohistochemical phenotyping for CD44/CD24 is useful for the evaluation of tumor behavior as well as CSC-like properties in canine MCs.

  1. Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats.

    PubMed

    Saegusa, Shotaro; Isaji, Shuji; Kawarada, Yoshifumi

    2002-06-01

    Serum hyaluronic acid (HA) is widely distributed in connective tissues, and the majority of circulating HA is degraded by hepatic sinusoidal endothelial cells (SECs) via a receptor recycling pathway. Our previous clinical study revealed that monitoring serum HA levels after hepatectomy is useful in predicting the development of liver failure. In the present study, to determine the mechanism of the high HA levels after hepatectomy, especially in patients with liver cirrhosis, expression of the major HA receptor, CD44, and its mRNA was investigated in SECs isolated from rats with thioacetamide-induced liver cirrhosis subjected to 70% hepatectomy (group I) and from rats with a normal liver that were subjected to 70% hepatectomy (group II). The 48-hour postoperative survival rate in group I (13.3%) was significantly lower than in group II (100%). In group II, the expression of CD44 mRNA had increased significantly at 6 hours after hepatectomy, and this was followed by progressive increases in expression of CD44, indicating activation of SEC function. The increased serum HA levels after hepatectomy in group II became normal as CD44 expression increased. By contrast, the expression of CD44 and CD44 mRNA in group I was markedly attenuated after hepatectomy. The very low CD44 expression was followed by a significant and sustained increase in serum HA levels, indicating functional failure of the SECs. These results suggest that the significantly impaired functional reserve of SECs in liver cirrhosis is associated with increased mortality after 70% hepatectomy.

  2. Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and in vivo Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets.

    PubMed

    Hartmans, Elmire; Orian-Rousseau, Veronique; Matzke-Ogi, Alexandra; Karrenbeld, Arend; de Groot, Derk Jan A; de Jong, Steven; van Dam, Gooitzen M; Fehrmann, Rudolf S N; Nagengast, Wouter B

    2017-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. High adenoma miss rates, especially seen in high-risk patients, demand for better endoscopic detection. By fluorescently 'highlighting' specific molecular characteristics, endoscopic molecular imaging has great potential to fulfill this need. To implement this technique effectively, target proteins that distinguish adenomas from normal tissue must be identified. In this study we applied in silico Functional Genomic mRNA (FGmRNA) profiling, which is a recently developed method that results in an enhanced view on the downstream effects of genomic alterations occurring in adenomas on gene expression levels. FGmRNA profiles of sporadic adenomas were compared to normal colon tissue to identify overexpressed genes. We validated the protein expression of the top identified genes, AXIN2, CEMIP, CD44 and JUN, in sporadic adenoma patient samples via immunohistochemistry (IHC). CD44 was identified as the most attractive target protein for imaging purposes and we proved its relevance in high-risk patients by demonstrating CD44 protein overexpression in Lynch lesions. Subsequently, we show that the epithelial splice variant CD44V6 is highly overexpressed in our patient samples and we demonstrated the feasibility of visualizing adenomas in Apc(Min/+) mice in vivo by using a fluorescently labeled CD44v6 targeting peptide. In conclusion, via in silico functional genomics and ex vivo protein validation, this study identified CD44 as an attractive molecular target for both sporadic and high-risk Lynch adenomas, and demonstrates the in vivo applicability of a small peptide drug directed against splice variant CD44v6 for adenoma imaging.

  3. Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and in vivo Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets

    PubMed Central

    Hartmans, Elmire; Orian-Rousseau, Veronique; Matzke-Ogi, Alexandra; Karrenbeld, Arend; de Groot, Derk Jan A.; de Jong, Steven; van Dam, Gooitzen M.; Fehrmann, Rudolf S.N.; Nagengast, Wouter B.

    2017-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. High adenoma miss rates, especially seen in high-risk patients, demand for better endoscopic detection. By fluorescently 'highlighting' specific molecular characteristics, endoscopic molecular imaging has great potential to fulfill this need. To implement this technique effectively, target proteins that distinguish adenomas from normal tissue must be identified. In this study we applied in silico Functional Genomic mRNA (FGmRNA) profiling, which is a recently developed method that results in an enhanced view on the downstream effects of genomic alterations occurring in adenomas on gene expression levels. FGmRNA profiles of sporadic adenomas were compared to normal colon tissue to identify overexpressed genes. We validated the protein expression of the top identified genes, AXIN2, CEMIP, CD44 and JUN, in sporadic adenoma patient samples via immunohistochemistry (IHC). CD44 was identified as the most attractive target protein for imaging purposes and we proved its relevance in high-risk patients by demonstrating CD44 protein overexpression in Lynch lesions. Subsequently, we show that the epithelial splice variant CD44V6 is highly overexpressed in our patient samples and we demonstrated the feasibility of visualizing adenomas in ApcMin/+ mice in vivo by using a fluorescently labeled CD44v6 targeting peptide. In conclusion, via in silico functional genomics and ex vivo protein validation, this study identified CD44 as an attractive molecular target for both sporadic and high-risk Lynch adenomas, and demonstrates the in vivo applicability of a small peptide drug directed against splice variant CD44v6 for adenoma imaging. PMID:28255344

  4. Tocotrienol is the most effective vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes.

    PubMed

    Theriault, Andre; Chao, Jun-Tzo; Gapor, Abdul; Chao, Jun Tzo; Gapor, Abeli

    2002-01-01

    Alpha-tocopherol and its esterified derivatives have been shown to be effective in reducing monocytic-endothelial cell adhesion. However, the effect of alpha-tocotrienol (alpha-T3) has not been characterized. In the present study, using human umbilical vein endothelial cells (HUVEC) as the model system, we examined the relative inhibitory effects of alpha-T3 and other vitamin E derivatives on cell surface adhesion molecule expression under TNF-alpha stimulation. Using enzyme-linked immunosorbent assay, we demonstrated that alpha-T3 markedly inhibited the surface expression of vascular cell adhesion molecule-1 in TNF-alpha activated HUVEC in a dose- and time-dependent manner. The optimal inhibition was observed at 25 micromol/l alpha-T3 within 24 h (77+/-5%) without cytotoxicity. In addition, the surface expression of intercellular adhesion molecule-1 and E-selectin were also reduced by 40+/-7 and 42+/-5%, respectively. In order to further evaluate the effects of alpha-T3 on the vascular endothelium, we investigated the ability of monocytes to adhere to endothelial cells. Interestingly, a 63+/-3% decrease in monocytic cell adherence was observed. Compared to alpha-tocopherol and alpha-tocopheryl succinate, alpha-T3 displayed a more profound inhibitory effect on adhesion molecule expression and monocytic cell adherence. This inhibitory action by alpha-T3 on TNF-alpha-induced monocyte adhesion was shown to be NF-kappaB dependent and was interestingly reversed with co-incubation with farnesol and geranylgeraniol, suggesting a role for prenylated proteins in the regulation of adhesion molecule expression. In summary, the above results suggest that alpha-T3 is a potent and effective agent in the reduction of cellular adhesion molecule expression and monocytic cell adherence.

  5. FMC46, a cell protrusion-associated leukocyte adhesion molecule-1 epitope on human lymphocytes and thymocytes.

    PubMed

    Pilarski, L M; Turley, E A; Shaw, A R; Gallatin, W M; Laderoute, M P; Gillitzer, R; Beckman, I G; Zola, H

    1991-07-01

    In this report, we describe a 76-kDa glycoprotein recognized by mAb FMC46 that, by virtue of its concentration on cell protrusions involved in motility, may be important in lymphoid cell locomotion. FMC46 detects an epitope of the leukocyte adhesion molecule-1 (LAM-1), a member of the selecting family (LAM-1, Endothelial Leukocyte Adhesion Molecular-1 (ELAM-1), and Granule Membrane Protein-140 (GMP-140), that is expressed on LAM-1-transfected cell lines, is a glycosylation epitope based on its loss after culture in tunicamycin, and is closely related to the LAM-1.2 epitope. FMC46 is expressed at high density on the majority of CD45RA+ and CD45RO+ peripheral blood T cells (60 to 70%) and on a subset of thymocytes that includes the multinegative CD3- CD4- CD8- progenitor cells (100% FMC46hi) and the CD45R0- presumptive thymic generative lineage (70% FMC46hi). It appears at reduced density and frequency on CD45RA- thymocytes (50% FMC46lo), comprised mainly of death-committed thymocytes. Among thymic subsets defined by expression of CD4 and/or CD8, FMC46 is expressed at high density predominantly on a subset of single-positive cells and not on double-positive cells. These results suggest a fundamental role for LAM-1 in thymic development, with a high density preferentially expressed on cells involved in thymic generative processes and a low density on cells progressing to intrathymic death. A major subset of peripheral blood B cells and thymic B cells also express FMC46. Immunohistochemistry on frozen sections indicated strong staining in splenic follicles and around blood vessels, staining of the thymic medulla and subcapsular areas, and staining of the mantle zone of germinal centers of the lymph node. FMC46+ lymphocytes accumulated along high endothelial venules in the lymph node. On locomoting multinegative thymocytes, FMC46 is concentrated on the leading tip of extended processes, on pseudopods, and on ruffles, unlike the distribution of either CD44 or TQ1 (LAM 1

  6. Adhesion molecules of cultured hematopoietic malignancies. A calcium-dependent lectin is the principle mediator of binding to the high endothelial venule of lymph nodes.

    PubMed Central

    Stoolman, L M; Ebling, H

    1989-01-01

    This study documents that a calcium-dependent phosphomanosyl-binding site on human lymphoid malignancies mediates attachment to the peripheral node high endothelial venule (PNHEV). The phorbol ester PMA coordinately upregulates lectin activity and binding to the PNHEV in the human T-lymphoblastic cell line Jurkat but not in the less phenotypically mature lines HSB2, Molt4, CEM, and HPB-ALL. In contrast, expression of CD18, CD2, and several common epitopes of the putative adhesion receptor gp90Hermes (CD44) did not correlate with attachment to PNHEV in this series of cell lines. Insensitivity to inhibition by the CD18 MAb TS 1.18, temperature and divalent cation requirements further distinguish the Jurkat-PNHEV adhesive interaction from CD11a/18- and CD2-mediated adhesion. The PMA-induced phenotypic changes in the Jurkat line parallel late thymocyte differentiation as well as lymphocyte activation, suggesting that expression of the endothelial-binding lectin may be linked to one or both of these processes. The lectin-like activity on Jurkat cells is functionally indistinguishable from those previously linked to PNHEV recognition in normal human lymphocytes, normal rat lymphocytes and both normal and malignant murine lymphoid cells. In the mouse, this activity is either contained in or functionally linked to a member of the LEC-CAM family gp90Mel14, suggesting that Jurkat cells express the human homologue of the murine nodal homing receptor. Thus cultured T lymphoblastic malignancies express a variety of potential endothelial adhesion molecules but use primarily a highly conserved surface lectin to interact with PNHEV. Images PMID:2794056

  7. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors

    PubMed Central

    Menke-van der Houven van Oordt, C. Willemien; Gomez-Roca, Carlos; van Herpen, Carla; Coveler, Andrew L.; Mahalingam, Devalingam; Verheul, Henk M. W.; van der Graaf, Winette T. A.; Christen, Randolph; Rüttinger, Dominik; Weigand, Stefan; Cannarile, Michael A.; Heil, Florian; Brewster, Michael; Walz, Antje-Christine; Nayak, Tapan K.; Guarin, Ernesto; Meresse, Valerie; Le Tourneau, Christophe

    2016-01-01

    Transmembrane glycoprotein CD44 is overexpressed in various malignancies. Interactions between CD44 and hyaluronic acid are associated with poor prognosis, making CD44 an attractive therapeutic target. We report results from a first-in-human phase I trial of RG7356, a recombinant anti-CD44 immunoglobulin G1 humanized monoclonal antibody, in patients with advanced CD44-expressing solid malignancies. Sixty-five heavily pretreated patients not amenable to standard therapy were enrolled and received RG7356 intravenously biweekly (q2w) or weekly (qw) in escalating doses from 100 mg to 2,250 mg. RG7356 was well tolerated. Most frequent adverse events were fever, headache and fatigue. Dose-limiting toxicities included headache (1,500 mg q2w and 1,350 mg qw) and febrile neutropenia (2,250 mg q2w). The maximum tolerated dose with q2w dosing was 1,500 mg, but was not defined for qw dosing due to early study termination. Clinical efficacy was modest; 13/61 patients (21%) experienced disease stabilization lasting a median of 12 (range, 6–35) weeks. No apparent dose- or dose schedule-dependent changes in biological activity were reported from blood or tissue analyses. Tumor-targeting by positron emission tomography (PET) using 89Zr-labeled RG7356 was observed for doses ≥200 mg (q2w) warranting further investigation of this agent in combination regimens. PMID:27507056

  8. Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins

    PubMed Central

    Um, Ji Won; Pramanik, Gopal; Ko, Ji Seung; Song, Min-Young; Lee, Dongmin; Kim, Hyun; Park, Kang-Sik; Südhof, Thomas C.; Tabuchi, Katsuhiko; Ko, Jaewon

    2014-01-01

    SUMMARY Multiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in heterologous synapse-formation assays. Calsyntenin-3 (CST-3) was highly expressed during various postnatal periods of mouse brain development. The simultaneous knockdown of all three CSTs, but not CST-3 alone, decreased inhibitory, but not excitatory, synapse densities in cultured hippocampal neurons. Moreover, the knockdown of CSTs specifically reduced inhibitory synaptic transmission in vitro and in vivo. Remarkably, the loss of CSTs induced a concomitant decrease in neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) were affinity-purified as components of a CST-3 complex involved in CST-3-mediated presynaptic differentiation. However, CST-3 did not directly bind to Nrxs. Viewed together, these data suggest that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse function, and neuron development in concert with Nrxs. PMID:24613359

  9. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  10. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins [published erratum appears in J Cell Biol 1991 Feb;112(3):following 513

    PubMed Central

    1990-01-01

    The present study was undertaken to determine the relationship between the hyaluronate receptor and CD44 (H-CAM), cell-surface glycoproteins of similar molecular weights that have been implicated in cell adhesion. In initial experiments, a panel of monoclonal antibodies directed against CD44 were tested for their ability to cross react with the hyaluronate receptor. These antibodies immunoprecipitated [3H]hyaluronate binding activity from detergent extracts of both mouse and human cells, indicating that the hyaluronate receptor is identical to CD44. In addition, one of these antibodies (KM-201 to mouse CD44) directly blocked the binding of labeled hyaluronate to the receptor and inhibited hyaluronate dependent aggregation of SV-3T3 cells. CD44 has also been implicated in lymphocyte binding to high endothelial venules during lymphocyte homing. Interestingly, the monoclonal antibody Hermes- 3, which blocks lymphocyte binding to the high endothelial venules of mucosal lymphoid tissue, had no effect on the binding of labeled hyaluronate. Furthermore, the binding of lymphocytes to high endothelial cells of lymph nodes and mucosal lymphoid tissue was not significantly affected by treatment with agents that block the binding of hyaluronate (hyaluronidase, excess hyaluronate and specific antibodies). Thus, CD44 appears to have at least two distinct functional domains, one for binding hyaluronate and another involved in interactions with mucosal high endothelial venules. PMID:1703543

  11. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis.

    PubMed

    Yoo, Seung-Ah; Leng, Lin; Kim, Bum-Joon; Du, Xin; Tilstam, Pathricia V; Kim, Kyung Hee; Kong, Jin-Sun; Yoon, Hyung-Ju; Liu, Aihua; Wang, Tian; Song, Yan; Sauler, Maor; Bernhagen, Jurgen; Ritchlin, Christopher T; Lee, Patty; Cho, Chul-Soo; Kim, Wan-Uk; Bucala, Richard

    2016-12-06

    Fibroblast-like synoviocytes mediate joint destruction in rheumatoid arthritis and exhibit sustained proinflammatory and invasive properties. CD44 is a polymorphic transmembrane protein with defined roles in matrix interaction and tumor invasion that is also a signaling coreceptor for macrophage migration inhibitory factor (MIF), which engages cell surface CD74. High-expression MIF alleles (rs5844572) are associated with rheumatoid joint erosion, but whether MIF signaling through the CD74/CD44 receptor complex promotes upstream autoimmune responses or contributes directly to synovial joint destruction is unknown. We report here the functional regulation of CD44 by an autocrine pathway in synovial fibroblasts that is driven by high-expression MIF alleles to up-regulate an inflammatory and invasive phenotype. MIF increases CD44 expression, promotes its recruitment into a functional signal transduction complex, and stimulates alternative exon splicing, leading to expression of the CD44v3-v6 isoforms associated with oncogenic invasion. CD44 recruitment into the MIF receptor complex, downstream MAPK and RhoA signaling, and invasive phenotype require MIF and CD74 and are reduced by MIF pathway antagonists. These data support a functional role for high-MIF expression alleles and the two-component CD74/CD44 MIF receptor in rheumatoid arthritis and suggest that pharmacologic inhibition of this pathway may offer a specific means to interfere with progressive joint destruction.

  12. Prognostic significance of CD44 in human colon cancer and gastric cancer: Evidence from bioinformatic analyses

    PubMed Central

    Xia, Pu; Xu, Xiao-Yan

    2016-01-01

    CD44 is a well-recognized stem cell biomarker expressed in colon and gastric cancer. In order to identify whether CD44 mRNA could be used as a prognostic marker in colon and gastric cancer, bioinformatic analyses were used in this study. cBioPortal analysis and COSMIC analysis were used to explore the CD44 mutation. CD44 mRNA levels were evaluated by using SAGE Genie tools and Oncomine analysis. Kaplan-Meier Plotter was performed to identify the prognostic roles of CD44 mRNA in these two cancers. In this study, first, we found that low alteration frequency of CD44 mRNA in colon and gastric cancer. Second, the high CD44 mRNA level was found in colon and gastric cancer, and it correlated with a benign survival rate in gastric cancer. Third, CD4 and CD74 may be used as markers to predict the prognosis of colon and gastric cancer. However, the deep mechanism(s) of these results remains unclear, further studies have to be performed in the future. PMID:27323782

  13. Soluble CD44: quantification and molecular repartition in plasma of patients with colorectal cancer

    PubMed Central

    Masson, D; Denis, M G; Denis, M; Blanchard, D; Loirat, M J; Cassagnau, E; Lustenberger, P

    1999-01-01

    Based on the important role of CD44 in tumour progression and metastasis, we evaluated, in a prospective study, plasma-soluble CD44 (sCD44) as a serum marker in colorectal cancer. Blood plasma specimens from 89 patients with colorectal neoplasm, 22 patients with a gastrointestinal disease and 23 healthy donors were analysed for quantitation (ELISA assay) and purification of sCD44. The concentration of sCD44, indicating the concentration of all isoforms, was significantly higher in patients with colorectal cancer and intestinal disease than in normal individuals, but no significant differences were found between the two groups. We found no association between plasma levels and staging of the colorectal cancer patients according to Astler and Coller. A two-step batch purification combining ion exchange and immunoaffinity chromatography, followed by Western blot analysis, revealed a complex pattern with a major band corresponding to the standard form of CD44 and minor bands that may correspond to larger variant forms. No particular sCD44 isoform was clearly associated with anatomopathological or biological information. © 1999 Cancer Research Campaign PMID:10471052

  14. Identification and characterization of CD133+CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines

    PubMed Central

    Wang, Jue; Wu, Yongyan; Gao, Wei; Li, Fei; Bo, Yunfeng; Zhu, Meixia; Fu, Rong; Liu, Qingqing; Wen, Shuxin; Wang, Binquan

    2017-01-01

    Background: Laryngeal squamous cell carcinoma ranks second among head and neck squamous-cell carcinomas. Cancer stem cells can support cancer growth and malignant behavior. Therefore, cancer stem cells isolated from laryngeal squamous cell carcinoma tissue could be used to investigate the initiation, progression, and treatment strategies of this cancer. Methods: We isolated CD133-CD44-, CD133-CD44+, CD133+CD44- and CD133+CD44+ cell populations from laryngeal squamous-cell carcinoma cell lines Hep2 and TU-177 by magnetic-activated cell sorting. Sphere formation, cell proliferation, migration, invasion, colony formation, resistance to radio- and chemotherapy, and in vivo tumorigenicity of these populations were evaluated. Moreover, we investigated the expression of the stem-cell markers (sex determining region Y)-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) in CD133-CD44-, CD133-CD44+, CD133+CD44-, CD133+CD44+ cell populations and parental Hep2 and TU-177 cells. Results: As compared with CD133-CD44-, CD133-CD44+, CD133+CD44- populations and parental cells, CD133+CD44+ cells showed higher cell viability, migration and invasive capability and colony formation ability as well as stronger resistance to cisplatin and irradiation. Moreover, levels of SOX2 and OCT4 and tumorigenicity in nude mice were greater in CD133+CD44+ Hep2 and TU-177 cells than other cell populations and parental cells. Conclusion: The CD133+CD44+ population of laryngeal squamous-cell carcinoma Hep2 and TU-177 cells have stem cell properties and showed more malignant features than CD133+CD44- and CD133-CD44+ cell populations. CD133+CD44+ cancer stem cells may be a promising target for developing anticancer drugs and treatment strategies for laryngeal squamous cell carcinoma. PMID:28261352

  15. CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer

    PubMed Central

    Xu, Hanxiao; Wu, Kongju; Tian, Yijun; Liu, Qian; Han, Na; Yuan, Xun; Zhang, Lu; Wu, Gen Sheng; Wu, Kongming

    2016-01-01

    Cluster of differentiation 44 (CD44), a well-known transmembrane glycoprotein, serves as a promoting factor in the carcinogenesis and progression of a variety of neoplasms. Previous studies have demonstrated that aberrant expression of CD44 was associated with the initiation, invasion, metastasis, and therapy-resistance of breast cancer, but whether there was any association between CD44 and pathological characteristics of breast cancer or epidermal growth factor receptor (EGFR) has not been clearly elucidated. In this study, we utilized public microarray data analysis and tissue microarray technologies to display that CD44 level was enhanced in breast cancer and was significantly correlated with histological grade and the status of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 (HER2) and EGFR. Furthermore, mRNA expression of CD44 in breast tumors was positively correlated with basal cytokeratin markers KRT5 and KRT17, but inversely associated with luminal marker FOXA1. Besides, Kaplan-Meier analysis showed that high CD44 mRNA level had adverse impact on the progression-free survival of patients with HER2-expressing or basal-like breast cancer. Functionally, inhibition of EGFR activity by erlotinib impaired the invasion and migration ability of breast cancer cell lines. Western blot assays demonstrated that erlotinib treatment decreased the expression of CD44, accompanied with the reduced protein levels of mesenchymal and cancer stem cell markers. Collectively, this study suggested that the expression of CD44 was upregulated by EGFR pathway and CD44 had a robust impact on the development of breast cancer. PMID:27499099

  16. Hyaluronic acid controls the uptake pathway and intracellular trafficking of an octaarginine-modified gene vector in CD44 positive- and CD44 negative-cells.

    PubMed

    Yamada, Yuma; Hashida, Masahiro; Harashima, Hideyoshi

    2015-06-01

    The cellular uptake pathway for a gene vector is an important factor in transgene expression. We previously constructed an original gene vector, multifunctional envelope-type nano device (MEND). The use of octaarginine (R8), a cell-penetrating peptide dramatically enhanced the transfection activity of the MEND since efficient cellular uptake via macropinocytosis, while the R8 should overcome its poor cell selectivity. Here we prepared an R8-MEND equipped with GALA (a peptide for endosomal escape) (R8/GALA-MEND) coated with hyaluronic acid (HA) (HA-R8/GALA-MEND), a natural ligand for cancer cells overexpressing CD44. We investigated the cellular uptake pathway of the HA-R8/GALA-MEND and the R8/GALA-MEND using HCT116 cells overexpressing CD44. Both carriers were taken up by cells mainly via macropinocytosis, whereas only the HA-R8/GALA-MEND was partially internalized into cells via a CD44-mediated pathway. Investigation of transgene expression showed that the HA-R8/GALA-MEND had a high transfection activity in HCT116 cells via both macropinocytotic and CD44-mediated pathways. On the other hand, the value for the HA-R8/GALA-MEND was significantly decreased compared with the value for the R8/GALA-MEND in NIH3T3 cells (CD44-negative cells). These findings indicate that the HA-coating controls the intracellular pathway for R8-modified nanocarriers, and that a CD44-mediated pathway is an important route for transgene expression.

  17. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications

    PubMed Central

    Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-01-01

    Background Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Methods Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Results Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (P<0.05). No significant differences were found in sVCAM-1 and CD146 levels between the study and the control group. Although patients were subdivided into groups according to the type of microvascular complications that they experienced, cell adhesion molecule levels were not correlated with the complication type. Conclusion In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. PMID:28345319

  18. Role of glucocorticoids in neutrophil and endothelial adhesion molecule expression and function

    PubMed Central

    Talbot, Vivienne

    1992-01-01

    Glucocorticoids are very effective inhibitors of both the acute and chronic inflammatory response. In this study the hypothesis that glucocorticoids inhibit an early component of the inflammatory response, neutrophil adhesion to endothelium, by down-regulation of adhesion molecules on neutrophils or endothelium was examined. No effect of dexamethasone on neutrophil adhesion to endothelium or of antigen expression by neutrophils or endothelium was found. The mechanism of action of glucocorticoids in the inflammatory response is probably not mediated by alterations in adhesion molecules. PMID:18475448

  19. A switch from CD44⁺ cell to EMT cell drives the metastasis of prostate cancer.

    PubMed

    Shang, Zhiqun; Cai, Qiliang; Zhang, Minghao; Zhu, Shimiao; Ma, Yuan; Sun, Libin; Jiang, Ning; Tian, Jing; Niu, Xiaodan; Chen, Jiatong; Sun, Yinghao; Niu, Yuanjie

    2015-01-20

    Epithelial-mesenchymal transition (EMT) has been linked to cancer stem-like (CD44+) cell in the prostate cancer (PCa) metastasis. However, the molecular mechanism remains elusive. Here, we found EMT contributed to metastasis in PCa patients failed in androgen deprivation therapy (ADT). Castration TRAMP model also proved PCa treated with ADT promoted EMT with increased CD44+ stem-like cells. Switched CD44+ cell to EMT cell is a key step for luminal PCa cell metastasis. Our results also suggested ADT might go through promoting TGFβ1-CD44 signaling to enhance swift to EMT. Targeting CD44 with salinomycin and siRNA could inhibit cell transition and decrease PCa invasion. Together, cancer stem-like (CD44+) cells could be the initiator cells of EMT modulated by TGFβ1-CD44 signaling. Combined therapy of ADT with anti-CD44 may become a new potential therapeutic approach to battle later stage PCa.

  20. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  1. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  2. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion.

    PubMed

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor; Haferkamp, Axel; Blaheta, Roman A

    2016-04-12

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.

  3. miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines

    SciTech Connect

    Henry, Jon C.; Park, Jong-Kook; Jiang, Jinmai; Kim, Ji Hye; Nagorney, David M.; Roberts, Lewis R.; Banerjee, Soma; Schmittgen, Thomas D.

    2010-12-03

    Research highlights: {yields} miR-199a-3p targets CD44 in HCC. {yields} Proliferation and invasion are reduced by miR-199a-3p in CD44+ HCC. {yields} miR-199a-3p is reduced and CD44 protein is increased in HCC tissues. {yields} The duplex form of miR-199a-3p mimetic is required for activity. -- Abstract: Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced

  4. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD.

    PubMed

    Kuo, Ko-Lin; Hung, Szu-Chun; Lee, Tzong-Shyuan; Tarng, Der-Cherng

    2014-11-01

    High-dose intravenous iron supplementation is associated with adverse cardiovascular outcomes in patients with CKD, but the underlying mechanism is unknown. Our study investigated the causative role of iron sucrose in leukocyte-endothelium interactions, an index of early atherogenesis, and subsequent atherosclerosis in the mouse remnant kidney model. We found that expression levels of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and adhesion of U937 cells increased in iron-treated human aortic endothelial cells through upregulated NADPH oxidase (NOx) and NF-κB signaling. We then measured mononuclear-endothelial adhesion and atherosclerotic lesions of the proximal aorta in male C57BL/6 mice with subtotal nephrectomy, male apolipoprotein E-deficient (ApoE(-/-)) mice with uninephrectomy, and sham-operated mice subjected to saline or parenteral iron loading. Iron sucrose significantly increased tissue superoxide production, expression of tissue cell adhesion molecules, and endothelial adhesiveness in mice with subtotal nephrectomy. Moreover, iron sucrose exacerbated atherosclerosis in the aorta of ApoE(-/-) mice with uninephrectomy. In patients with CKD, intravenous iron sucrose increased circulating mononuclear superoxide production, expression of soluble adhesion molecules, and mononuclear-endothelial adhesion compared with healthy subjects or untreated patients. In summary, iron sucrose aggravated endothelial dysfunction through NOx/NF-κB/CAM signaling, increased mononuclear-endothelial adhesion, and exacerbated atherosclerosis in mice with remnant kidneys. These results suggest a novel causative role for therapeutic iron in cardiovascular complications in patients with CKD.

  5. CD44v3 and v6 variant isoform expression correlates with poor prognosis in early-stage vulvar cancer.

    PubMed Central

    Tempfer, C.; Sliutz, G.; Haeusler, G.; Speiser, P.; Reinthaller, A.; Breitenecker, G.; Vavra, N.; Kainz, C.

    1998-01-01

    Expression of alternatively spliced CD44 isoforms has been reported to correlate with poor prognosis in human squamous cell cancers, i.e. squamous cell cancer of the lung and cervix. The aim of this study was to evaluate whether CD44 isoform expression is a prognostic factor in early-stage squamous cell cancer of the vulva. Seventy cases of squamous cell carcinoma of the vulva International Federation of Gynaecology and Obstetrics (FIGO) stage I were examined immunohistochemically for expression of CD44 isoforms. We used four different variant exon sequence-specific murine monoclonal antibodies to epitopes encoded by exons v3, v5, v6 and v7-8 of human variant CD44. The correlation of CD44 expression with histological grade and disease-free and overall survival was investigated. CD44 isoforms CD44v3, CD44v5, CD44v6 and CD44v7-8 were detected in 28% (20/70), 47% (33/70), 33% (23/70) and 17% (12/70) of the tumour samples respectively. Patients suffering from tumours expressing CD44v6 had a poorer relapse-free (log-rank test, P = 0.02) and overall survival (log-rank test, P = 0.03). Likewise, patients suffering from tumours expressing CD44v3 had a poorer relapse-free (log-rank test, P = 0.04) and overall survival (log-rank test, P = 0.01). Expression of CD44v5 and CD44v7-8 did not compromise the patients' outcome. Histological grade did not correlate with CD44 isoform expression. Immunohistochemically detected expression of CD44 isoforms containing variant exon v6 or v3 is correlated with a poor relapse-free and overall survival in FIGO stage I vulvar cancer patients. PMID:9792156

  6. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    PubMed

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O; Shibahara, Ichiyo; de Jesus, Jason A; Yong, William H; Mischel, Paul S; Fernandez, Soledad; Kornblum, Harley I; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44(high) GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high) GBM but not from CD44(low) GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44(high) GBM, but not in CD44(low) GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  7. CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer.

    PubMed

    Saito, Seiya; Okabe, Hirohisa; Watanabe, Masayuki; Ishimoto, Takatsugu; Iwatsuki, Masaaki; Baba, Yoshifumi; Tanaka, Youhei; Kurashige, Junji; Miyamoto, Yuji; Baba, Hideo

    2013-04-01

    CD44 standard isoform (CD44s) is a cancer stem cell marker in many tumors, and is one of the CD44 isoforms.CD44v6 has been reported to correlate with tumor progression and poor prognosis in colorectal cancer. However, the relevance of CD44s and CD44v6 to epithelial-mesenchymal transition (EMT) remains unclear. Immunohistochemistry was performed to investigate the clinical importance of CD44s and CD44v6 and their relevance to EMT in 113 patients with stage II/III colorectal cancer treated by curative resection. The relevance of CD44v6 knockdown to the phenotype of colon cancer cells was examined using small interfering RNA (siRNA) specific for CD44v6 in vitro. CD44v6 expression showed a significant inverse correlation with E-cadherin expression (P=0.0007) and a positive correlation with vimentin expression (P=0.0096). A multivariate analysis showed that high CD44v6 expression was an independent poor prognostic factor for disease-free survival (P=0.01, HR=3.05) and overall survival (P=0.025, HR=3.16). The clinical significance and the relevance of CD44s expression to EMT markers was noted to a lesser extent compared to CD44v6 expression. The knockdown of CD44v6 decreased vimentin expression, cell invasion and HGF-induced cell migration, but conferred only a slight effect on E-cadherin expression in colon cancer cells (HCT116 and LoVo). CD44v6 is related to poor outcome of patients with colorectal cancer via upregulation of the mesenchymal phenotype.

  8. Adhesion molecules and the extracellular matrix as drug targets for glioma.

    PubMed

    Shimizu, Toshihiko; Kurozumi, Kazuhiko; Ishida, Joji; Ichikawa, Tomotsugu; Date, Isao

    2016-04-01

    The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

  9. Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging.

    PubMed

    Lim, Eun-Kyung; Kim, Hyun-Ouk; Jang, Eunji; Park, Joseph; Lee, Kwangyeol; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2011-11-01

    We fabricated hyaluronan-modified magnetic nanoclusters (HA-MNCs) for detection of CD44-overexpressing breast cancer using magnetic resonance (MR) imaging. CD44 is closely associated with cancer growth, including proliferation, metastasis, invasion, and angiogenesis. Hence, pyrenyl hyaluronan (Py-HA) conjugates were synthesized as CD44-targetable surfactants with hyaluronan (HA) and 1-pyrenylbutyric acid (Py) to modify hyaluronan on hydrophobic magnetic nanocrystals. Subsequently, HA-MNCs were fabricated using the nano-emulsion method; magnetic nanocrystals were simultaneously self-assembled with Py-HA conjugates, and their physical and magnetic properties depended on the degree of substitution (DS) of Py in Py-HA conjugates. HA-MNCs exhibited superior targeting efficiency with MR sensitivity as well as excellent biocompatibility through in vitro/in vivo studies. This suggests that HA-MNCs can be a potent cancer specific molecular imaging agent via targeted detection of CD44 with MR imaging.

  10. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells.

    PubMed

    Yamada, Tomohiro; Kuramitsu, Kaori; Rikitsu, Etsuko; Kurita, Souichi; Ikeda, Wataru; Takai, Yoshimi

    2013-11-01

    Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.

  11. CD44 Splice Variant v8-10 as a Marker of Serous Ovarian Cancer Prognosis

    PubMed Central

    Zhang, Lihua; Coletti, Caroline; Vathipadiekal, Vinod; Castro, Cesar M.; Birrer, Michael J.; Nagano, Osamu; Saya, Hideyuki; Lage, Kasper; Donahoe, Patricia K.; Pépin, David

    2016-01-01

    CD44 is a transmembrane hyaluronic acid receptor gene that encodes over 100 different tissue-specific protein isoforms. The most ubiquitous, CD44 standard, has been used as a cancer stem cell marker in ovarian and other cancers. Expression of the epithelial CD44 variant containing exons v8-10 (CD44v8-10) has been associated with more chemoresistant and metastatic tumors in gastrointestinal and breast cancers, but its role in ovarian cancer is unknown; we therefore investigated its use as a prognostic marker in this disease. The gene expression profiles of 254 tumor samples from The Cancer Genome Atlas RNAseqV2 were analyzed for the presence of CD44 isoforms. A trend for longer survival was observed in patients with high expression of CD44 isoforms that include exons v8-10. Immunohistochemical (IHC) analysis of tumors for presence of CD44v8-10 was performed on an independent cohort of 210 patients with high-grade serous ovarian cancer using a tumor tissue microarray. Patient stratification based on software analysis of staining revealed a statistically significant increase in survival in patients with the highest levels of transmembrane protein expression (top 10 or 20%) compared to those with the lowest expression (bottom 10 and 20%) (p = 0.0181, p = 0.0262 respectively). Expression of CD44v8-10 in primary ovarian cancer cell lines was correlated with a predominantly epithelial phenotype characterized by high expression of epithelial markers and low expression of mesenchymal markers by qPCR, Western blot, and IHC. Conversely, detection of proteolytically cleaved and soluble extracellular domain of CD44v8-10 in patient ascites samples was correlated with significantly worse prognosis (p<0.05). Therefore, presence of transmembrane CD44v8-10 on the surface of primary tumor cells may be a marker of a highly epithelial tumor with better prognosis while enzymatic cleavage of CD44v8-10, as detected by presence of the soluble extracellular domain in ascites fluid, may be

  12. Intestinal intraepithelial lymphocytes contain a CD3- CD7+ subset expressing natural killer markers and a singular pattern of adhesion molecules.

    PubMed

    Eiras, P; Leon, F; Camarero, C; Lombardia, M; Roldan, E; Bootello, A; Roy, G

    2000-07-01

    Intestinal intraepithelial lymphocytes (i-IEL) represent one of the largest, non-organized lymphoid population in the body. They are located outside the epithelial basement membrane among the mucosal epithelial cells. We, and previously other groups, have reported the presence of a CD7+CD3-IEL subset in the epithelium of human small intestine. This subset is drastically reduced in coeliac disease (CD) patients. In the present work we accomplish a better phenotypic characterization of this CD3-IEL subset and demonstrate the expression of typical natural killer (NK) cell markers. Most, if not all, CD3-CD7+ cells express NKPR1 (CD161)[98% +/- 2] and CD122[92% +/- 6]. In addition, a variable percentage express CD2[55% +/- 16], CD94[24% +/- 18], CD56[44% +/- 21] and CD16[12% +/- 4], however, no CD57 expression was observed. Moreover, these cells contain perforin granules[75% +/- 5], supporting a potential cytolytic ability. Regarding adhesion molecules, CD18 and CD44 expression is absent, which is consistent with a limited capacity of migration. Altogether, these data suggest the presence of intraepithelial NK cells in human intestinal epithelium, a compartment where cytotoxic effectors have not been clearly defined.

  13. Integrin β3 and CD44 levels determine the effects of the OPN-a splicing variant on lung cancer cell growth

    PubMed Central

    Sheu, Gwo-Tarng; Chang, Hui-Yi; Chen, Mei-Yu; Lin, Yu-Ying; Chuang, Cheng-Yen; Hsu, Shih-Lan; Chang, Jinghua Tsai

    2016-01-01

    Osteopontin (OPN), a phosphorylated glycoprotein, is frequently overexpressed in cancer. Among the three OPN isoforms, OPN-a is the most highly expressed in lung cancer cell lines and lung tumors. Overexpression of OPN-a greatly reduced CL1-5 lung adenocarcinoma cell growth, but had no effect on growth in A549 lung adenocarcinoma cells. Examination of the expression of integrins and CD44, which are possible OPN-a receptors, revealed that differences in integrin β3 levels might explain this discrepancy between CL1-5 and A549 cells. When integrin β3 was ectopically expressed in A549 cells, OPN-a inhibited their growth, whereas OPN-a increased cell growth following integrin β3 knockdown in CL1-5 cells. This OPN-a-induced increase in growth appeared to result from activation of the CD44/NFκB pathway. Our results demonstrated that OPN-a inhibits growth of cells with high integrin β3 levels and increases growth via activation of the CD44/NFκB pathway in cells with low integrin β3 levels. Thus, OPN-a, integrin β3, and CD44 interact to affect lung cancer cell growth, and this study may aid in the development of cancer treatment strategies involving these molecules. PMID:27487131

  14. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    SciTech Connect

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  15. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    DTIC Science & Technology

    2003-09-01

    Malignant peripheral nerve sheath tumors ( MPNST ) are aggressive, difficult to treat tumors that occur in type I neurofibromatosis patients with an...survival rate. We previously found that MPNSTs overexpress the CD44 tranmembrane glycoprotein and that reducing CD44 expression partially inhibits MPNST ...depends on Src kinase and that Src kinase activity promotes MPNST invasion (Su et al., 2003a) . Furthermore, we show that MPNST cell invasion depends on

  16. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  17. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  18. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  19. Chinese Herbal Cardiotonic Pill Stabilizes Vulnerable Plaques in Rabbits by Decreasing the Expression of Adhesion Molecules

    PubMed Central

    Chen, Liang; Li, Xiaonan; Li, Changjiang; Rong, Yuanyuan; Xiao, Yawei; Xu, Xinsheng; Yao, Guihua; Jiang, Guihua

    2016-01-01

    Abstract: The cardiotonic pill (CP), consisting of a mixture of Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, has been widely used in the prevention and treatment of cardiovascular disease. Adhesion molecules, including intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, are involved in the development of vulnerable plaque. We investigated the effect of the CP in a rabbit model of vulnerable plaque established by local transfection with p53 gene. Compared with the control group, rabbits with vulnerable plaque showed a significantly lower intima-media thickness and plaque burden after CP treatment for 12 weeks. Moreover, the reduction in rate of plaque rupture and vulnerability index was similar. On enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry analysis, the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 was inhibited with CP treatment. CP treatment could postpone atherosclerotic plaque development and stabilize vulnerable plaque by inhibiting the expression of adhesion molecules in treatment of cardiovascular disease. PMID:27110743

  20. In Vivo Evidence for the Role of CD44s in Promoting Breast Cancer Metastasis to the Liver

    PubMed Central

    Ouhtit, Allal; Abd Elmageed, Zakaria Y.; Abdraboh, Mohamed E.; Lioe, Tong F.; Raj, Madhwa H.G.

    2007-01-01

    The hyaluronan receptor CD44 plays an important role in facilitating invasion and metastasis of a variety of tumors, including breast carcinomas. CD44 functions as a bioactive signaling transmitter. Although a number of studies have implicated CD44 in breast tumor invasion, the evidence is still circumstantial. We have developed a tetracycline-regulated CD44s (standard form) system in the weakly metastatic breast cancer cell MCF7, which exhibits low endogenous expression of CD44 and generated a new cell line, MCF7F-B5. Induction of CD44s alone affected the growth characteristics of MCF7F-B5 cells by increasing their abilities to proliferate, migrate, and invade in vitro. In addition, we have identified and validated cortactin as a novel transcriptional target of hyaluronan/CD44s signaling in underpinning breast tumor invasion. To test these observations in vivo, we developed a doxycycline (DOX)-regulated CD44s breast cancer xenograft model. Induction of CD44s did not affect the growth rate or local invasion of the primary tumor. However, although no mice from the +DOX group developed metastasis, 8 of 11 mice from the −DOX group developed secondary tumors to the liver only. Interestingly, metastatic breast tumors expressed high levels of CD44. This study provides in vivo evidence for the role of the standard form of CD44 in promoting breast tumor invasion and metastasis to the liver. PMID:17991717

  1. In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver.

    PubMed

    Ouhtit, Allal; Abd Elmageed, Zakaria Y; Abdraboh, Mohamed E; Lioe, Tong F; Raj, Madhwa H G

    2007-12-01

    The hyaluronan receptor CD44 plays an important role in facilitating invasion and metastasis of a variety of tumors, including breast carcinomas. CD44 functions as a bioactive signaling transmitter. Although a number of studies have implicated CD44 in breast tumor invasion, the evidence is still circumstantial. We have developed a tetracycline-regulated CD44s (standard form) system in the weakly metastatic breast cancer cell MCF7, which exhibits low endogenous expression of CD44 and generated a new cell line, MCF7F-B5. Induction of CD44s alone affected the growth characteristics of MCF7F-B5 cells by increasing their abilities to proliferate, migrate, and invade in vitro. In addition, we have identified and validated cortactin as a novel transcriptional target of hyaluronan/CD44s signaling in underpinning breast tumor invasion. To test these observations in vivo, we developed a doxycycline (DOX)-regulated CD44s breast cancer xenograft model. Induction of CD44s did not affect the growth rate or local invasion of the primary tumor. However, although no mice from the +DOX group developed metastasis, 8 of 11 mice from the -DOX group developed secondary tumors to the liver only. Interestingly, metastatic breast tumors expressed high levels of CD44. This study provides in vivo evidence for the role of the standard form of CD44 in promoting breast tumor invasion and metastasis to the liver.

  2. CD44 stimulation by fragmented hyaluronic acid induces upregulation of urokinase-type plasminogen activator and its receptor and subsequently facilitates invasion of human chondrosarcoma cells.

    PubMed

    Kobayashi, Hiroshi; Suzuki, Mika; Kanayama, Naohiro; Nishida, Takashi; Takigawa, Masaharu; Terao, Toshihiko

    2002-12-01

    It has been established that fragmented hyaluronic acid (HA), but not native high molecular weight HA, can induce angiogenesis, cell proliferation and migration. We have studied the outside-in signal transduction pathways responsible for fragmented HA-mediated cancer cell invasion. In our study, we have studied the effects of CD44 stimulation by ligation with HA upon the expression of matrix metalloproteinases (MMPs)-2 and -9 as well as urokinase-type plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) and the subsequent induction of invasion of human chondrosarcoma cell line HCS-2/8. Our study indicates that (i) CD44 stimulation by fragmented HA upregulates expression of uPA and uPAR mRNA and protein but does not affect MMPs secretion or PAI-1 mRNA expression; (ii) the effects of HA fragments are critically HA size dependent: high molecular weight HA is inactive, but lower molecular weight fragmented HA (Mr 3.5 kDa) is active; (iii) cells can bind avidly Mr 3.5 kDa fragmented HA through a CD44 molecule, whereas cells do not effectively bind higher Mr HA; (iv) a fragmented HA induces phosphorylation of MAP kinase proteins (MEK1/2, ERK1/2 and c-Jun) within 30 min; (v) CD44 is critical for the response (activation of MAP kinase and upregulation of uPA and uPAR expression); and (vi) cell invasion induced by CD44 stimulation with a fragmented HA is inhibited by anti-CD44 mAb, MAP kinase inhibitors, neutralizing anti-uPAR pAb, anti-catalytic anti-uPA mAb or amiloride. Therefore, our study represents the first report that CD44 stimulation induced by a fragmented HA results in activation of MAP kinase and, subsequently, enhances uPA and uPAR expression and facilitates invasion of human chondrosarcoma cells.

  3. Drug-tolerant cancer cells show reduced tumor-initiating capacity: depletion of CD44 cells and evidence for epigenetic mechanisms.

    PubMed

    Yan, Hong; Chen, Xin; Zhang, Qiuping; Qin, Jichao; Li, Hangwen; Liu, Can; Calhoun-Davis, Tammy; Coletta, Luis Della; Klostergaard, Jim; Fokt, Izabela; Skora, Stanislaw; Priebe, Waldemar; Bi, Yongyi; Tang, Dean G

    2011-01-01

    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44(+) cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many "stemness" genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44(+) tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms.

  4. The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells.

    PubMed

    Raberger, Julia; Schebesta, Alexandra; Sakaguchi, Shinya; Boucheron, Nicole; Blomberg, K Emelie M; Berglöf, Anna; Kolbe, Thomas; Smith, C I Edvard; Rülicke, Thomas; Ellmeier, Wilfried

    2008-11-18

    Transcriptional pathways controlling the development of CD44(hi) memory phenotype (MP) T cells with "innate-like" functions are not well understood. Here we show that the BTB (bric-a-brac, tramtrack, broad complex) domain-containing protein promyelocytic leukemia zinc finger (PLZF) is expressed in CD44(hi), but not in CD44(lo), CD4(+) T cells. Transgenic expression of PLZF during T cell development and in CD4(+) and CD8(+) T cells induced a T cell intrinsic program leading to an increase in peripheral CD44(hi) MP CD4(+) and CD8(+) T cells and a corresponding decrease of naïve CD44(lo) T cells. The MP CD4(+) and CD8(+) T cells produced IFNgamma upon PMA/ionomycin stimulation, thus showing innate-like function. Changes in the naïve versus memory-like subset distribution were already evident in single-positive thymocytes, indicating PLZF-induced T cell developmental alterations. In addition, CD1d-restricted natural killer T cells in PLZF transgenic mice showed impaired development and were severely reduced in the periphery. Finally, after anti-CD3/CD28 stimulation, CD4(+) transgenic T cells showed reduced IL-2 and IFNgamma production but increased IL-4 secretion as a result of enhanced IL-4 production of the CD44(hi)CD62L(+) subset. Our data indicate that PLZF is a novel regulator of the development of CD44(hi) MP T cells with a characteristic partial innate-like phenotype.

  5. Hyaluronate Fragments Reverse Skin Atrophy by a CD44-Dependent Mechanism

    PubMed Central

    Kaya, Gürkan; Tran, Christian; Sorg, Olivier; Hotz, Raymonde; Grand, Denise; Carraux, Pierre; Didierjean, Liliane; Stamenkovic, Ivan; Saurat, Jean-Hilaire

    2006-01-01

    Background Skin atrophy is a common manifestation of aging and is frequently accompanied by ulceration and delayed wound healing. With an increasingly aging patient population, management of skin atrophy is becoming a major challenge in the clinic, particularly in light of the fact that there are no effective therapeutic options at present. Methods and Findings Atrophic skin displays a decreased hyaluronate (HA) content and expression of the major cell-surface hyaluronate receptor, CD44. In an effort to develop a therapeutic strategy for skin atrophy, we addressed the effect of topical administration of defined-size HA fragments (HAF) on skin trophicity. Treatment of primary keratinocyte cultures with intermediate-size HAF (HAFi; 50,000–400,000 Da) but not with small-size HAF (HAFs; <50,000 Da) or large-size HAF (HAFl; >400,000 Da) induced wild-type (wt) but not CD44-deficient (CD44−/−) keratinocyte proliferation. Topical application of HAFi caused marked epidermal hyperplasia in wt but not in CD44−/− mice, and significant skin thickening in patients with age- or corticosteroid-related skin atrophy. The effect of HAFi on keratinocyte proliferation was abrogated by antibodies against heparin-binding epidermal growth factor (HB-EGF) and its receptor, erbB1, which form a complex with a particular isoform of CD44 (CD44v3), and by tissue inhibitor of metalloproteinase-3 (TIMP-3). Conclusions Our observations provide a novel CD44-dependent mechanism for HA oligosaccharide-induced keratinocyte proliferation and suggest that topical HAFi application may provide an attractive therapeutic option in human skin atrophy. PMID:17177600

  6. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  7. Cell membrane CD44v6 levels in squamous cell carcinoma of the lung: association with high cellular proliferation and high concentrations of EGFR and CD44v5.

    PubMed

    Ruibal, Álvaro; Aguiar, Pablo; Del Río, María Carmen; Nuñez, Matilde Isabel; Pubul, Virginia; Herranz, Michel

    2015-02-18

    Membranous CD44v6 levels in tumors and surrounding samples obtained from 94 patients with squamous cell lung carcinomas were studied and compared to clinical stage, cellular proliferation, membranous CD44v5 levels, epidermal growth factor receptor EGFR and cytoplasmatic concentrations of CYFRA 21.1. CD44v6 positive values were observed in 33/38 non-tumor samples and in 76/94 tumor samples, but there were not statistically significant differences between both subgroups. In CD44v6 positive tumor samples, CD44v6 was not associated with clinical stage, histological grade, ploidy and lymph node involvement, but significant association was found with high cellular proliferation. Likewise, CD44v6 positive tumors had significantly higher levels of EGFR and CD44v5. In patients with squamous cell lung carcinomas and clinical stage I, positive CD44v6 cases were associated with the same parameters. Furthermore, positive CD44v5 squamous tumors were associated significantly with histological grade III and lower levels of CYFRA21.1. Our findings support the value of CD44v6 as a possible indicator of poor outcome in patients with squamous lung carcinomas.

  8. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy.

    PubMed

    Takahashi, Shu; Kato, Kazunori; Nakamura, Kiminori; Nakano, Rika; Kubota, Kazuishi; Hamada, Hirofumi

    2011-04-01

    In adenovirus-derived gene therapy, one of the problems is the difficulty in specific targeting. We have recently demonstrated that monoclonal antibody (mAb) libraries screened by fiber-modified adenovirus vector (Adv-FZ33), which is capable of binding to immunoglobulin-G (IgG), provide a powerful approach for the identification of suitable target antigens for prostate cancer therapy. Hybridoma libraries from mice immunized with androgen-dependent prostate cancer cell line LNCaP were screened and mAb were selected. Through this screening, we obtained one mAb, designated LNI-29, that recognizes a glycoprotein with an apparent molecular mass of 100 kD. It was identified as neural cell adhesion molecule 2 (NCAM2). Some prostate and breast cancer cell lines highly expressed NCAM2 whereas normal prostate cell lines expressed NCAM2 at low levels. In contrast to the low efficiency of gene transduction by Adv-FZ33 with a control antibody, LNI-29-mediated Adv-FZ33 infection induces high rates of gene delivery in NCAM2-positive cancers. NCAM2-mediated therapeutic gene transduction of uracil phosphoribosyltransferase (UPRT) had a highly effective cytotoxic effect on NCAM2-positive cancer cells, whereas it had less of an effect in cases with a control antibody. In conclusion, NCAM2 should be a novel gene therapy target for the treatment of prostate and breast cancer.

  9. In Situ Identification of CD44+/CD24− Cancer Cells in Primary Human Breast Carcinomas

    PubMed Central

    Perrone, Giuseppe; Gaeta, Laura Maria; Zagami, Mariagiovanna; Nasorri, Francesca; Coppola, Roberto; Borzomati, Domenico; Bartolozzi, Francesco; Altomare, Vittorio; Trodella, Lucio; Tonini, Giuseppe; Santini, Daniele; Cavani, Andrea; Muda, Andrea Onetti

    2012-01-01

    Breast cancer cells with the CD44+/CD24− phenotype have been reported to be tumourigenic due to their enhanced capacity for cancer development and their self-renewal potential. The identification of human tumourigenic breast cancer cells in surgical samples has recently received increased attention due to the implications for prognosis and treatment, although limitations exist in the interpretation of these studies. To better identify the CD44+/CD24− cells in routine surgical specimens, 56 primary breast carcinoma cases were analysed by immunofluorescence and confocal microscopy, and the results were compared using flow cytometry analysis to correlate the amount and distribution of the CD44+/CD24− population with clinicopathological features. Using these methods, we showed that the breast carcinoma cells displayed four distinct sub-populations based on the expression pattern of CD44 and CD24. The CD44+/CD24− cells were found in 91% of breast tumours and constituted an average of 6.12% (range, 0.11%–21.23%) of the tumour. A strong correlation was found between the percentage of CD44+/CD24− cells in primary tumours and distant metastasis development (p = 0.0001); in addition, there was an inverse significant association with ER and PGR status (p = 0.002 and p = 0.001, respectively). No relationship was evident with tumour size (T) and regional lymph node (N) status, differentiation grade, proliferative index or HER2 status. In a multivariate analysis, the percentage of CD44+/CD24− cancer cells was an independent factor related to metastasis development (p = 0.004). Our results indicate that confocal analysis of fluorescence-labelled breast cancer samples obtained at surgery is a reliable method to identify the CD44+/CD24− tumourigenic cell population, allowing for the stratification of breast cancer patients into two groups with substantially different relapse rates on the basis of CD44+/CD24− cell percentage. PMID:23028444

  10. Mensenchymal stem cells can delay radiation-induced crypt death: impact on intestinal CD44(+) fragments.

    PubMed

    Chang, Peng-Yu; Jin, Xing; Jiang, Yi-Yao; Wang, Li-Xian; Liu, Yong-Jun; Wang, Jin

    2016-05-01

    Intestinal stem cells are primitive cells found within the intestinal epithelium that play a central role in maintaining epithelial homeostasis through self-renewal and commitment into functional epithelial cells. Several markers are available to identify intestinal stem cells, such as Lgr5, CD24 and EphB2, which can be used to sort intestinal stem cells from mammalian gut. Here, we identify and isolate intestinal stem cells from C57BL/6 mice by using a cell surface antigen, CD44. In vitro, some CD44(+) crypt cells are capable of forming "villus-crypt"-like structures (organoids). A subset strongly positive for CD44 expresses high levels of intestinal stem-cell-related genes, including Lgr5, Bmi1, Hopx, Lrig1, Ascl2, Smoc2 and Rnf43. Cells from this subset are more capable of developing into organoids in vitro, compared with the subset weakly positive for CD44. However, the organoids are sensitive to ionizing irradiation. We investigate the specific roles of mesenchymal stem cells in protecting organoids against radiation-induced crypt death. When co-cultured with mesenchymal stem cells, the crypt domains of irradiated organoids possess more proliferative cells and fewer apoptotic cells than those not co-cultured with mesenchymal stem cells. Cd44v6 continues to be expressed in the crypt domains of irradiated organoids co-cultured with mesenchymal stem cells. Our results indicate specific roles of mesenchymal stem cells in delaying radiation-induced crypt death in vitro.

  11. Group A Streptococcus tissue invasion by CD44-mediated cell signalling

    NASA Astrophysics Data System (ADS)

    Cywes, Colette; Wessels, Michael R.

    2001-12-01

    Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.

  12. CD44-Tropic Polymeric Nanocarrier for Breast Cancer Targeted Rapamycin Chemotherapy

    PubMed Central

    Zhao, Yunqi; Zhang, Ti; Duan, Shaofeng; Davies, Neal M.; Forrest, M. Laird

    2014-01-01

    In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44 positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell-viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area-under-the-curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin1loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis. PMID:24637218

  13. SR proteins regulate V6 exon splicing of CD44 pre-mRNA.

    PubMed

    Loh, Tiing Jen; Moon, Heegyum; Jang, Ha Na; Liu, Yongchao; Choi, Namjeong; Shen, Shengfu; Williams, Darren Reece; Jung, Da-Woon; Zheng, Xuexiu; Shen, Haihong

    2016-11-01

    CD44 pre-mRNA includes 20 exons, of which exons 1-5 (C1-C5) and exons 16-20 (C6-C10) are constant exons, whereas exons 6-15 (V1-V10) are variant exons. V6-exon-containing isoforms have been known to be implicated in tumor cell invasion and metastasis. In the present study, we performed a SR protein screen for CD44 V6 splicing using overexpression and lentivirus-mediated shRNA treatment. Using a CD44 V6 minigene, we demonstrate that increased SRSF3 and SRSF4 expression do not affect V6 splicing, but increased expression of SRSF1, SRSF6 and SRSF9 significantly inhibit V6 splicing. In addition, using a constitutive exon-specific primer set, we could not detect alterations of CD44 splicing after SR protein-targeting shRNA treatment. However, using a V6 specific primer, we identified that reduced SRSF2 expression significantly reduced the V6 isoform, but increased V6-10 and V6,7-10 isoforms. Our results indicate that SR proteins are important regulatory proteins for CD44 V6 splicing. [BMB Reports 2016; 49(11): 612-616].

  14. Evaluation of osteopontin and CD44v6 expression in odontogenic cystic lesions by immunohistochemistry.

    PubMed

    Salehinejad, Jahanshah; Saghafi, Shadi; Sharifi, Nourieh; Zare-Mahmoodabadi, Reza; Saghravanian, Nasrollah; Ghazi, Narges; Shakeri, Mohammad Taghi

    2012-07-15

    Odontogenic cysts are common lesions with different biological behavior. Odontogenic keratocysts (OKCs) and calcifying odontogenic cysts (COCs) with ameloblastoma-like epithelium are more aggressive than dentigerous cysts (DCs) and radicular cysts (RCs). Therefore, they were included in the list of odontogenic tumors by WHO. Osteopontin (OPN) is a calcium-binding glycoprotein present in many normal tissues. It plays a role in the migration and invasion of transformed epithelial cells. Binding of OPN to its receptor CD44v6 can enhance cell motility and migration. The purpose of this study was to compare the expression of these markers between odontogenic cysts of varying biological behavior. We examined OPN and CD44v6 expression in tissue sections of 14OKCs, 14COCs, 14RCs and 14DCs by immunohistochemistry. OPN and CD44v6 immunostaining was observed in all lining epithelial cells of the studied lesions with different degrees. The highest level of OPN and CD44v6 expression was found in OKCs, followed by COCs, RCs and DCs. Comparison of both markers among four groups revealed significant differences (P<0.001). Our findings suggest that higher level of OPN and CD44v6 expression in epithelial cells of some lesions such as OKC and COC can explain the local aggressive behavior of them.

  15. SALL4 promotes gastric cancer progression through activating CD44 expression.

    PubMed

    Yuan, X; Zhang, X; Zhang, W; Liang, W; Zhang, P; Shi, H; Zhang, B; Shao, M; Yan, Y; Qian, H; Xu, W

    2016-11-07

    The stem cell factor SALL4 (Sal-like protein 4) plays important roles in the development and progression of cancer. SALL4 is critically involved in tumour growth, metastasis and therapy resistance. However, the underlying mechanisms responsible for the oncogenic roles of SALL4 have not been well characterized. In this study, we demonstrated that SALL4 knockdown by short hairpin RNA greatly inhibited the proliferation, migration and invasion of gastric cancer cells. We further confirmed the inhibitory effects of SALL4 knockdown on gastric cancer cells by using a tetracycline-inducible system. Mechanistically, SALL4 knockdown downregulated the expression of CD44. The results of luciferase assay and chromatin immunoprecipitation study showed that SALL4 bound to CD44 promoter region and transcriptionally activated CD44. The results of rescue study revealed that CD44 overexpression antagonized SALL4 knockdown-mediated inhibition of gastric cancer cell proliferation, migration, and invasion in vitro and gastric cancer growth in vivo. Collectively, our findings indicate that SALL4 promotes gastric cancer progression through directly activating CD44 expression, which suggests a novel mechanism for the oncogenic roles of SALL4 in gastric cancer and represents a new target for gastric cancer therapy.

  16. SALL4 promotes gastric cancer progression through activating CD44 expression

    PubMed Central

    Yuan, X; Zhang, X; Zhang, W; Liang, W; Zhang, P; Shi, H; Zhang, B; Shao, M; Yan, Y; Qian, H; Xu, W

    2016-01-01

    The stem cell factor SALL4 (Sal-like protein 4) plays important roles in the development and progression of cancer. SALL4 is critically involved in tumour growth, metastasis and therapy resistance. However, the underlying mechanisms responsible for the oncogenic roles of SALL4 have not been well characterized. In this study, we demonstrated that SALL4 knockdown by short hairpin RNA greatly inhibited the proliferation, migration and invasion of gastric cancer cells. We further confirmed the inhibitory effects of SALL4 knockdown on gastric cancer cells by using a tetracycline-inducible system. Mechanistically, SALL4 knockdown downregulated the expression of CD44. The results of luciferase assay and chromatin immunoprecipitation study showed that SALL4 bound to CD44 promoter region and transcriptionally activated CD44. The results of rescue study revealed that CD44 overexpression antagonized SALL4 knockdown-mediated inhibition of gastric cancer cell proliferation, migration, and invasion in vitro and gastric cancer growth in vivo. Collectively, our findings indicate that SALL4 promotes gastric cancer progression through directly activating CD44 expression, which suggests a novel mechanism for the oncogenic roles of SALL4 in gastric cancer and represents a new target for gastric cancer therapy. PMID:27819668

  17. SR proteins regulate V6 exon splicing of CD44 pre-mRNA

    PubMed Central

    Loh, Tiing Jen; Moon, Heegyum; Jang, Ha Na; Liu, Yongchao; Choi, Namjeong; Shen, Shengfu; Williams, Darren Reece; Jung, Da-Woon; Zheng, Xuexiu; Shen, Haihong

    2016-01-01

    CD44 pre-mRNA includes 20 exons, of which exons 1–5 (C1–C5) and exons 16–20 (C6–C10) are constant exons, whereas exons 6–15 (V1–V10) are variant exons. V6-exon-containing isoforms have been known to be implicated in tumor cell invasion and metastasis. In the present study, we performed a SR protein screen for CD44 V6 splicing using overexpression and lentivirus-mediated shRNA treatment. Using a CD44 V6 minigene, we demonstrate that increased SRSF3 and SRSF4 expression do not affect V6 splicing, but increased expression of SRSF1, SRSF6 and SRSF9 significantly inhibit V6 splicing. In addition, using a constitutive exon-specific primer set, we could not detect alterations of CD44 splicing after SR protein-targeting shRNA treatment. However, using a V6 specific primer, we identified that reduced SRSF2 expression significantly reduced the V6 isoform, but increased V6–10 and V6,8–10 isoforms. Our results indicate that SR proteins are important regulatory proteins for CD44 V6 splicing. PMID:27530682

  18. Isothiocyanate analogs targeting CD44 receptor as an effective strategy against colon cancer

    PubMed Central

    Misra, Suniti; Vyas, Alok; O’Brien, Paul; Markwald, Roger R.; Khetmalas, Madhukar; Hascall, Vincent C.; McCarthy, James B.; Karamanos, Nikos K.; Tammi, Markku I.; Tammi, Raija H.; Prestwitch, Glenn D.

    2014-01-01

    Inflammatory pathway plays an important role in tumor cell progression of colorectal cancers. Although colon cancer is considered as one of the leading causes of death worldwide, very few drugs are available for its effective treatment. Many studies have examined the effects of specific COX-2 and 5-LOX inhibitors on human colorectal cancer, but the role of isothiocyanates (ITSCs) as COX–LOX dual inhibitors engaged in hyaluronan–CD44 interaction has not been studied. In the present work, we report series of ITSC analogs incorporating bioisosteric thiosemicarbazone moiety. These inhibitors are effective against panel of human colon cancer cell lines including COX-2 positive HCA-7, HT-29 cells lines, and hyaluronan synthase-2 (Has2) enzyme over-expressing transformed intestinal epithelial Apc10.1Has2 cells. Specifically, our findings indicate that HA-CD44v6-mediated COX-2/5-LOX signaling mediate survivin production, which in turn, supports anti-apoptosis and chemo-resistance leading to colon cancer cell survival. The over-expression of CD44v6shRNA as well as ITSC treatment significantly decreases the survival of colon cancer cells. The present results thus offer an opportunity to evolve potent inhibitors of HA synthesis and CD44v6 pathway and thus underscoring the importance of the ITSC analogs as chemopreventive agents for targeting HA/CD44v6 pathway. PMID:25013352

  19. Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule.

    PubMed

    Cordero, M I; Rodríguez, J J; Davies, H A; Peddie, C J; Sandi, C; Stewart, M G

    2005-01-01

    The amygdala is a brain area which plays a decisive role in fear and anxiety. Since exposure to chronic stress can induce profound effects in emotion and cognition, plasticity in specific amygdaloid nuclei in response to prior stress has been hypothesized to account for stress-induced emotional alterations. In order to identify amygdala nuclei which may be affected under chronic stress conditions we evaluated the effects of 21-days chronic restraint stress on the expression of a molecule implicated crucially in alterations in structural plasticity: the polysialylated neural cell adhesion molecule. We found that polysialylated neural cell adhesion molecule-immunoreactivity within the amygdala, present in somata and neuronal processes, has a regional gradient with the central medial and medial amygdaloid nuclei showing the highest levels. Our results demonstrate that chronic restraint stress induced an overall reduction in polysialylated neural cell adhesion molecule-immunoreactivity in the amygdaloid complex, mainly due to a significant decrease in the central medial amygdaloid and medial amygdaloid nuclei. Our data suggest that polysialylated neural cell adhesion molecule in these nuclei may play a prominent role in functional and structural remodeling induced by stress, being a potential mechanism for cognitive and emotional modulation. Furthermore, these finding provide the first clear evidence that life experiences can regulate the expression of polysialylated neural cell adhesion molecule in the amygdaloid complex.

  20. Dynamics of adhesion molecule domains on neutrophil membranes: surfing the dynamic cell topography.

    PubMed

    Gaborski, Thomas R; Sealander, Michael N; Waugh, Richard E; McGrath, James L

    2013-12-01

    Lateral organization and mobility of adhesion molecules play a significant role in determining the avidity with which cells can bind to target cells or surfaces. Recently, we have shown that the lateral mobility of the principal adhesion molecules on neutrophils is lower for rolling associated adhesion molecules (RAAMs: L-selectin and PSGL-1) than for β2 integrins (LFA-1 and Mac-1). Here we report that all four adhesion molecules exhibit distinct punctate distributions that are mobile on the cell surface. Using uniform illumination image correlation microscopy, we measure the lateral mobility of these topologically distinct domains. For all four molecules, we find that diffusion coefficients calculated from domain mobility agree with measurements we made previously using fluorescence recovery after photobleaching. This agreement indicates that the transport of receptors on the surface of the resting neutrophil is dominated by the lateral movement of domains rather than individual molecules. The diffusion of pre-assembled integrin domains to zones of neutrophil/endothelial contact may provide a mechanism to facilitate high avidity adhesion during the earliest stages of firm arrest.

  1. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer.

    PubMed

    Gao, Yan; Foster, Rosemary; Yang, Xiaoqian; Feng, Yong; Shen, Jacson K; Mankin, Henry J; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-04-20

    The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer.

  2. CD44v6 promotes β-catenin and TGF-β expression, inducing aggression in ovarian cancer cells.

    PubMed

    Wang, Jing; Xiao, Ling; Luo, Chen-Hui; Zhou, Hui; Zeng, Liang; Zhong, Jingmin; Tang, Yan; Zhao, Xue-Heng; Zhao, Min; Zhang, Yi

    2015-05-01

    A high expression of CD44v6 has been reported in numerous malignant cancers, including stomach, prostate, lung and colon. However, the pathological role and the regulatory mechanisms of CD44v6 have yet to be elucidated. In the present study, the expression levels of CD44v6 were shown to be significantly higher in ovarian cancer tissues, as compared with adjacent normal tissues. Furthermore, the upregulated expression levels of CD44v6 were correlated with disease recurrence and poor survival in patients. The expression of CD44v6 was knocked down in the CAOV3 ovarian cell line, by transfection of a specific small hairpin RNA. The present study showed a correlation between the aggression, viability, invasion and migration of the ovarian cancer cells, with the expression of CD44v6. In addition, the expression of CD44v6 was positively correlated with the expression levels of β‑catenin and tumor growth factor‑β, which indicates that the effects of CD44v6 on ovarian cancer cell aggression may be mediated by these two signaling pathways. In conclusion, the present study provides a novel insight into the association between CD44v6 expression and ovarian cancer. CD44v6 may provide a novel target for the prognosis and treatment of ovarian cancer.

  3. CD44v6 down-regulation is an independent prognostic factor for poor outcome of colorectal carcinoma.

    PubMed

    Wang, Lili; Liu, Qin; Lin, Dongliang; Lai, Maode

    2015-01-01

    We aim to investigate the variation of CD44v6 expression in the normal-adenoma-primary carcinoma-liver metastasis sequence and its prognostic impact on colorectal carcinomas. The difference in CD44v6 expression between the tumor center and invasive front was also assessed. Immunohistochemistry was performed for CD44v6 on two cohorts. The first was tissue microarrays including 402 primary CRCs sampled from the tumor center and the invasive margin. The second was whole-tissue sections, consisting of 217 adenomas, 72 primary carcinomas, and the corresponding metastatic carcinomas. In the first cohort, we found that CD44v6 down-regulation was inclined to lymph node metastasis and perineural invasion, and had an unfavorable prognosis compared with CD44v6 up-regulation. In the second cohort, CD44v6 expression was predominant in adenoma over primary carcinoma and liver metastasis in multiple steps (normal < adenoma > primary carcinoma and liver metastasis). In addition, our analysis showed that CD44v6 expression was decreased at the invasion front of the CRC compared with the center of the tumor. In conclusion, the maximal expression of CD44v6 in adenoma plays a crucial role in colorectal carcinogenesis, while loss of CD44v6 expression on the cell surface of the tumor edge enhances the progression of metastasis. CD44v6 down-regulation is an independent prognostic factor for strikingly worse disease-specific survival.

  4. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons

    PubMed Central

    Földy, Csaba; Darmanis, Spyros; Aoto, Jason; Malenka, Robert C.; Quake, Stephen R.; Südhof, Thomas C.

    2016-01-01

    In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity. PMID:27531958

  5. Latrophilins Function as Heterophilic Cell-adhesion Molecules by Binding to Teneurins

    PubMed Central

    Boucard, Antony A.; Maxeiner, Stephan; Südhof, Thomas C.

    2014-01-01

    Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance. PMID:24273166

  6. HMGA2 regulates CD44 expression to promote gastric cancer cell motility and sphere formation

    PubMed Central

    Sun, Junying; Sun, Baocun; Zhu, Dongwang; Zhao, Xiulan; Zhang, Yanhui; Dong, Xueyi; Che, Na; Li, Jing; Liu, Fang; Zhao, Nan; Zhang, Danfang; Liu, Tieju; Lin, Xian

    2017-01-01

    High mobility group AT-hook 2 (HMGA2) is a transcriptional modulator that mediates motility and self-renewal in cancer stem cells. Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC contains a population of stem-like cells that promote tumor invasion and resistance to therapy. In the current study, we investigated the expression of HMGA2 and the cancer stem cell marker CD44 in 200 GC samples and found that HMGA2 and CD44 were significantly associated with distant metastasis, histological differentiation and poor prognosis in GC patients. Positive clinical correlations of HMGA2 with CD44 were also observed in tissue sections. In vitro, overexpression of HMGA2 promoted GC sphere formation and migration in MKN74/MKN28 cells, whereas downregulation of HMGA2 decreased GC sphere formation and migration in MKN45/MGC803 cells. In addition, western blot and immunofluorescent analyses showed that HMGA2 increased the expression of the stem cell markers CD44, ALDH1, Sox2, and Oct4 and the EMT-related factors Snail and β-catenin. In a xenograft mouse model, overexpression of HMGA2 promoted tumor growth. Further immunohistochemical (IHC) analysis showed that HMGA2 increased the expression of CD44 and β-catenin, resulting in the promotion of tumor growth. Taken together, our findings indicate that HMGA2 promotes GC cancer stem cell induction and cell motility by regulating the expression of CD44. Therefore, targeting HMGA2 in GC may be therapeutically beneficial. PMID:28337375

  7. CD44 promotes the migration of bone marrow-derived mesenchymal stem cells toward glioma

    PubMed Central

    YIN, QIANG; ZHOU, YANG-YANG; WANG, PENG; MA, LI; LI, PENG; WANG, XIAO-GUANG; SHE, CHUN-HUA; LI, WEN-LIANG

    2016-01-01

    Previous in vivo and in vitro studies have shown that human mesenchymal stem cells (MSCs) exhibit tropism for gliomas. However, the mechanism underlying this directed migration remains unclear. The aim of the present study was to investigate the possible mechanism underlying platelet-derived growth factor-BB (PDGF-BB)-induced chemotactic migration of bone marrow-derived MSCs (BMSCs) toward glioma. Rat glioma C6 cell-conditioned medium was utilized to evaluate the chemotactic response of BMSCs toward glioma using an in vitro migration assay. Recombinant rat PDGF-BB was added to C6 cell-conditioned medium to assess its effect on the tropism of BMSCs. The effect of PDGF-BB on the expression levels of cluster of differentiation (CD)44 in BMSCs was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence assays. The results revealed that chemotactic migration was induced in BMSCs by rat glioma C6 cell-conditioned medium, which was enhanced by PDGF-BB treatment in a dose-dependent manner. Furthermore, RT-PCR and immunofluorescence assays showed that CD44 expression was upregulated in BMSCs following treatment with 40 ng/ml PDGF-BB for 12 h. Additionally, 3-h pretreatment with the anti-CD44 neutralizing antibody OX-50 was observed to attenuate the tropism of BMSCs toward glioma in the presence or absence of PDGF-BB. The results of the present study indicate that CD44 mediates the tropism of BMSCs toward glioma, and PDGF-BB promotes the migration of BMSCs toward glioma via the upregulation of CD44 expression in BMSCs. These findings suggest CD44 inhibition may be a potential therapeutic target for the treatment of glioma. PMID:27073479

  8. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation.

    PubMed

    Ferrari, L F; Araldi, D; Bogen, O; Levine, J D

    2016-06-02

    We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation.

  9. Single-molecule manipulation experiments to explore friction and adhesion

    NASA Astrophysics Data System (ADS)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  10. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts.

    PubMed

    Rimpelová, Silvie; Kasálková, Nikola Slepičková; Slepička, Petr; Lemerová, Helena; Švorčík, Václav; Ruml, Tomáš

    2013-04-01

    The cell-material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules.

  11. CD44v3+/CD24- cells possess cancer stem cell-like properties in human oral squamous cell carcinoma.

    PubMed

    Todoroki, Keita; Ogasawara, Sachiko; Akiba, Jun; Nakayama, Masamichi; Naito, Yoshiki; Seki, Naoko; Kusukawa, Jingo; Yano, Hirohisa

    2016-01-01

    Cancer stem cells (CSCs) or cancer stem cell-like cells (CSC-LCs) are a minority population of cells that relate to tumor progression, metastasis and drug resistance. To identify CSC-LCs in oral squamous cell carcinoma (OSCC), we used two OSCC cell lines, SAS and OSC20, and cell surface markers, CD44v3 and CD24. In addition, we examined CD44v3 and CD24 expression immunohistochemically and evaluated the relationship between the expression and clinicopathological parameters in 50 OSCC tissues. In SAS and OSC20, CD44v3+/CD24- cells showed a higher sphere forming ability than the other fractions, i.e., CD44v3+/CD24+, CD44v3-/CD24- and CD44v3-/CD24+ cells. The proportion of CD44v3+/CD24- cells in SAS and OSC20 was 10.7 and 24.1%, respectively. Regarding SAS, CD44v3+/CD24- cells also showed a higher drug resistance for CDDP, 5-FU and cetuximab and expressed higher mRNA levels of CSC property-related genes than the other cell fractions. The tumorigenicity of CD44v3+/CD24- cells was not significantly different from the other fractions in SAS. An immunohistochemical study revealed a significant correlation between CD44v3 expression in the invasive portion and lymph node metastasis. Kaplan Meier analysis revealed cases with CD44v3 expression in the invasive portion tended to show poor overall survival (OS) compared with those without CD44v3, and there was a significant difference in OS between CD44v3+/CD24- and CD44v3-/CD24- immunophenotypes in the invasive portion. In conclusion, the results suggest that the CD44v3+/CD24- cell population displays CSC-LC properties in a human OSCC cell line. Additionally, we present evidence that CD44v3 immunoexpression and CD44v3+/CD24- immunophenotypes could give prognostic information associated with unfavorable clinical outcomes.

  12. CD44 family proteins in gastric cancer: a meta-analysis and narrative review.

    PubMed

    Wu, Ying; Li, Zhi; Zhang, Chenlu; Yu, Kai; Teng, Zan; Zheng, Guoliang; Wang, Shuang; Liu, Yunpeng; Cui, Lei; Yu, Xiaosong

    2015-01-01

    With a meta-analysis and narrative review, we evaluated the clinical and prognostic role of all CD44 family proteins in gastric cancer (GC). Literatures published up to August 2014 were searched on PubMed. Among the 37 eligible studies (6606 patients), 34 were included in meta-analysis, and 10 were subjected to narrative review. With meta-analysis, standard CD44 (CD44s) was demonstrated to predict reduced overall survival (OS) (HR = 1.93, 95% CI: 1.58-2.34, PHR = 0.0222) and disease free survival (HR = 3.13, 95% CI: 1.02-9.68, PHR = 0.0469), advanced N-stage (RR = 1.12, 95% CI: 1.04-1.21, PRR = 0.0019), and distant metastasis (RR = 2.14, 95% CI: 1.46-3.14, PRR < 0.0001) of GC. CD44 variant 6 (CD44v6) in GC might influence OS (5 studies; HR = 1.27, 95% CI: 0.75-2.14, PHR = 0.3783; 4 studies; HR = 1.52, 95% CI: 1.09-2.14, PHR = 0.0139), while significantly associated with N-stage (RR = 1.23, 95% CI: 1.03-1.48, PRR = 0.0240), M-stage (RR = 2.54, 95% CI: 1.08-6.00, PRR = 0.0333), TNM-stage (RR = 1.72, 95% CI: 1.18-2.50, PRR = 0.0045), Lauren type (RR = 0.67, 95% CI: 0.50-0.91, PRR = 0.0106), lymphatic invasion (RR = 1.13, 95% CI: 1.04-1.23, PRR = 0.0057), and liver metastasis (RR = 3.20, 95% CI: 1.94-5.27, PRR < 0.0001) of the disease. Moreover, a narrative review was performed for CD44 isoforms, such as v3, v5, v7, v8-10, and v9, in GC. In conclusion, CD44s and CD44v6 as evaluated by immunohistochemistry, respectively, predicts the prognosis and disease severity of GC.

  13. Involvement of oxidative stress and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in inflammatory bowel disease

    PubMed Central

    Tanida, Satoshi; Mizoshita, Tsutomu; Mizushima, Takashi; Sasaki, Makoto; Shimura, Takaya; Kamiya, Takeshi; Kataoka, Hiromi; Joh, Takashi

    2011-01-01

    The pathophysiology of inflammatory bowel disease involves excessive immune effects of inflammatory cells against gut microbes. In genetically predisposed individuals, these effects are considered to contribute to the initiation and perpetuation of mucosal injury. Oxidative stress is a fundamental tissue-destructive mechanisms that can occur due to the reactive oxygen species and reactive nitrogen metabolites which are released in abundance from numerous inflammatory cells that have extravasated from lymphatics and blood vessels to the lamina propria. This extravasation is mediated by interactions between adhesion molecules including mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of lymphocytes or neutrophils and their ligands on endothelial cells. Thus, reactive oxygen species and adhesion molecules play an important role in the development of inflammatory bowel disease. The present review focuses on the involvement of oxidative stress and adhesion molecules, in particular mucosal addressin cell adhesion molecule-1, in inflammatory bowel disease. PMID:21373262

  14. Effects of a healthy life exercise program on arteriosclerosis adhesion molecules in elderly obese women

    PubMed Central

    Lim, Seung-Taek; Min, Seok-Ki; Park, Hyuntae; Park, Jong-Hwan; Park, Jin-Kee

    2015-01-01

    [Purpose] The aim of this study was to investigate the change in the arteriosclerosis adhesion molecules after a healthy life exercise program that included aerobic training, anaerobic training, and traditional Korean dance. [Subjects] The subjects were 20 elderly women who were over 65 years of age and had 30% body fat. [Methods] The experimental group underwent a 12-week healthy life exercise program. To evaluate the effects of the healthy life exercise program, measurements were performed before and after the healthy life exercise program in all the subjects. [Results] After the healthy life exercise program, MCP-1 and the arteriosclerosis adhesion molecules sE-selectin and sVCAM-1 were statistically significantly decreased. [Conclusion] The 12-week healthy life exercise program reduced the levels of arteriosclerosis adhesion molecules. Therefore, the results of our study suggest that a healthy life exercise program may be useful in preventing arteriosclerosis and improving quality of life in elderly obese women. PMID:26157257

  15. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.

    PubMed

    Gu, Jijin; Fang, Xiaoling; Hao, Junguo; Sha, Xianyi

    2015-03-01

    Multidrug resistance (MDR) remains one of the major reasons for the reductions in efficacy of many chemotherapeutic agents in cancer therapy. As a classical MDR phenotype of human malignancies, the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp) is an efflux protein with aberrant activity that has been linked to multidrug resistance in cancer. For the reversal of MDR by RNA interference (RNAi) technology, an U6-RNA gene promoter-driven expression vector encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules was constructed (abbreviated pDNA-iMDR1-shRNA). This study explored the feasibility of using Pluronic P123-conjugated polypropylenimine (PPI) dendrimer (P123-PPI) as a carrier for pDNA-iMDR1-shRNA to overcome tumor drug resistance in breast cancer cells. P123-PPI functionalized with anti-CD44 monoclonal antibody (CD44 receptor targeting ligand) (anti-CD44-P123-PPI) can efficiently condense pDNA into nanocomplexes to achieve efficient delivery of pDNA, tumor specificity and long circulation. The in vitro studies methodically evaluated the effect of P123-PPI and anti-CD44-P123-PPI on pDNA-iMDR1-shRNA delivery and P-gp downregulation. Our in vitro results indicated that the P123-PPI/pDNA and anti-CD44-P123-PPI/pDNA nanocomplexes with low cytotoxicity revealed higher transfection efficiency compared with the PPI/pDNA nanocomplexes and Lipofectamine™ 2000 in the presence of serum. The nanocomplexes loaded with pDNA-iMDR1-shRNA against P-gp could reverse MDR accompanied by the suppression of MDR1/P-gp expression at the mRNA and protein levels and improve the internalization and cytotoxicity of Adriamycin (ADR) in the MCF-7/ADR multidrug-resistant cell line. BALB/c nude mice bearing MCF-7/ADR tumor were utilized as a xenograft model to assess antitumor efficacy in vivo. The results demonstrated that the administration of anti-CD44-P123-PPI/pDNA-iMDR1-shRNA nanocomplexes combined with ADR could inhibit tumor growth more

  16. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  17. Effect of CD44 gene polymorphisms on risk of transitional cell carcinoma of the urinary bladder in Taiwan.

    PubMed

    Weng, Wei-Chun; Huang, Yu-Hui; Yang, Shun-Fa; Wang, Shian-Shiang; Kuo, Wu-Hsien; Hsueh, Chao-Wen; Huang, Ching-Hsuan; Chou, Ying-Erh

    2016-05-01

    The carcinogenesis of transitional cell carcinoma (TCC) of the urinary bladder involves etiological factors, such as ethnicity, the environment, genetics, and diet. Cluster of differentiation (CD44), a well-known tumor marker, plays a crucial role in regulating tumor cell differentiation and metastasis. This study investigated the effect of CD44 single nucleotide polymorphisms (SNPs) on TCC risk and clinicopathological characteristics. Five SNPs of CD44 were analyzed through real-time polymerase chain reaction in 275 patients with TCC and 275 participants without cancer. In this study, we observed that CD44 rs187115 polymorphism carriers with the genotype of at least one G were associated with TCC risk. Furthermore, TCC patients who carried at least one G allele at CD44 rs187115 had a higher stage risk than did patients carrying the wild-type allele (p < 0.05). In addition, The AATAC or GACGC haplotype among the five CD44 sites was also associated with a reduced risk of TCC. In conclusion, our results suggest that CD44 SNPs influence the risk of TCC. Patients with CD44 rs187115 variant genotypes (AG + GG) exhibited a higher risk of TCC; these patients may possess chemoresistance to developing late-stage TCC compared with those with the wild-type genotype. The CD44 rs187115 SNP may predict poor prognosis in patients with TCC.

  18. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents

    PubMed Central

    Teye, Kwesi; Numata, Sanae; Ishii, Norito; Krol, Rafal P.; Tsuchisaka, Atsunari; Hamada, Takahiro; Koga, Hiroshi; Karashima, Tadashi; Ohata, Chika; Tsuruta, Daisuke; Saya, Hideyuki; Haftek, Marek; Hashimoto, Takashi

    2016-01-01

    CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways. PMID:27505250

  19. [Hyaluronic acid, receptor CD44, and their role in diabetic complications].

    PubMed

    Ievdokimova, N Iu

    2008-01-01

    Hyaluronic acid (HA) is a straight chain glycosaminoglycan polymer composed of repeating units of the disaccharide [-D-glucuronic acid-beta1,3-N-acetyl-D-glucosamine-beta1,4-]n, and is found in vertebrates and certain microorganisms. The molecular weight of HA chains is usually equal to approximately 1-10 and MDa, n > 10(3-4), although it can exists as oligosaccharides under some physiological and pathological conditions. HA resides on the cell surface or in the extracellular space, but it also occurred inside the mammalian cells. HA is synthesized in mammals by three enzymes with polymers of varying chain length. The biological functions of HA include the maintenance of elastoviscosity of liquid connective tissues, control of tissue hydration, supramolecular assembly of proteoglycans in the extracellular matrix and besides numerous receptor-mediated functions in cell attachment, mitosis, migration, tumor development, wound healing and inflammation. The extensive repertoire of biological functions of HA corresponds to the existence of a large repertoire of HA-binding proteins (hyaladherins). Many hyaladherins contain a common structural domain, termed a Link module, which is involved in ligand binding. The most important member of the Link module superfamily is the main HA receptor, CD44. CD44 has diverse functions including not only the organization and metabolism of extracellular matrix, but also engage the cytoskeleton and co-ordinate signaling events to enable the cell responce to changes in the environment. HA has an extraordinary high rate of turnover, and at the cellular level it is considered to be degraded progressively by a series of enzymatic reactions that generate polymers of decreasing sizes. HA biological effects are known to be determined by the polymer size and depend on the cell type. For example, the native high molecular weight HA is anti-angiogenic, while its degradation products (6-20 saccharides) stimulate endothelial cell proliferation

  20. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies

    PubMed Central

    Hua, Susan

    2013-01-01

    Targeted drug delivery to sites of inflammation will provide effective, precise, and safe therapeutic interventions for treatment of diverse disease conditions, by limiting toxic side effects and/or increasing drug action. Disease-site targeting is believed to play a major role in the enhanced efficacy observed for a variety of drugs when formulated inside lipid vesicles. This article will focus on the factors and mechanisms involved in drug targeting to sites of inflammation and the importance of cell adhesion molecules, in particular intercellular adhesion molecule-1, in this process. PMID:24109453

  1. High frequency of autoantibodies in patients with primary sclerosing cholangitis that bind biliary epithelial cells and induce expression of CD44 and production of interleukin 6

    PubMed Central

    Xu, B; Broome, U; Ericzon, B-G; Sumitran-Holgersson, S

    2002-01-01

    Aim: Sera of patients with autoimmune liver diseases were investigated for the presence of autoantibodies binding to human biliary epithelial cells (BECs). Furthermore, their functional capacity was investigated by testing their capacity to fix complement as well as induce expression of various adhesion molecules and production of cytokines. Methods: Sera from patients with various stages of primary sclerosing cholangitis (PSC; n=30), primary biliary cirrhosis (PBC; n=29), autoimmune hepatitis (AIH; n=25), and normal controls (n=12) were investigated for the presence of antibodies that reacted with unstimulated and cytokine stimulated BECs isolated from a normal healthy liver. To demonstrate organ specificity, lung epithelial cells (LECs) were used as control cells. Antibodies were tested for their functional capacity. Results: Compared with controls (8%), significantly higher numbers of PSC patients (63%, p=0.001), but not PBC (37%, NS) or AIH (16%, NS) patients, had anti-BEC antibodies. In 90% of PSC patients, the autoantibodies reacted only with cytokine stimulated target cells. Lower numbers of PSC (6%), PBC (10%), and AIH (0%) patients had LEC antibodies. Other significant findings were that anti-BEC antibodies were found in (i) PSC patients with either the HLA-DRB1*0301 or DR2 allele compared with those without (p=0.007); and (ii) in PBC patients with end stage disease compared with those without (p=0.018). Furthermore, anti-BEC antibodies from PSC and PBC but not AIH patients induced BECs to produce high levels of the cytokine interleukin 6. IgM and IgG fractions isolated from PSC but not PBC and AIH sera induced significantly increased expression of the cell adhesion molecule CD44. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blot analysis of BEC membranes demonstrated a specific band of 40 kDa with PSC sera and 45, 42, 30, and 33 kDa bands with PBC sera, which were absent in control groups. Conclusion: Thus for the first time we

  2. Associations of five polymorphisms in the CD44 gene with cancer susceptibility in Asians

    PubMed Central

    Qi, Qichao; Wang, Jiwei; Chen, Anjing; Huang, Bin; Li, Gang; Li, Xingang; Wang, Jian

    2016-01-01

    CD44 polymorphisms have been previously associated with cancer risk. However, the results between independent studies were inconsistent. Here, a meta-analysis was performed to systematically evaluate associations between CD44 polymorphisms and cancer susceptibility. A comprehensive literature search conducted in PubMed, Embase, and Web of Science databases through August 10, 2016 yielded 11 eligible publications consisting of 5,788 cancer patients and 5,852 controls. Overall, odds ratios (OR) calculated with 95% confidence intervals (CI) identified a significant association between CD44 polymorphism rs13347 and cancer susceptibility under all genetic models. Additionally, the minor allele of polymorphism rs11821102 was associated with a decreased susceptibility to cancer in allele contrast, dominant, and heterozygous models, while no significant association was identified for polymorphisms rs10836347, rs713330, or rs1425802. Subgroup analysis by ethnicity revealed rs13347 was significantly associated with cancer susceptibility for Chinese but not for Indians. Linkage disequilibrium (LD) between different polymorphisms varied across diverse ethnic populations. In conclusion, the results indicate that CD44 polymorphism rs13347 acts as a risk factor for cancer, especially in Chinese, while the minor allele of polymorphism rs11821102 may be associated with a decreased susceptibility to cancer. Nevertheless, further studies on a larger population covering different ethnicities are warranted. PMID:28000766

  3. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling

    PubMed Central

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  4. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide.

    PubMed

    Canella, Alessandro; Cordero Nieves, Hector; Sborov, Douglas W; Cascione, Luciano; Radomska, Hanna S; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C; Efebera, Yvonne A; Hofmeister, Craig C; Pichiorri, Flavia

    2015-10-13

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9-5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.

  5. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide

    PubMed Central

    Sborov, Douglas W.; Cascione, Luciano; Radomska, Hanna S.; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C.; Efebera, Yvonne A.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients. PMID:26429859

  6. Alternate Splicing of CD44 Messenger RNA in Prostate Cancer Growth

    DTIC Science & Technology

    2009-04-01

    CT stably knocked down to undetectable levels using anti-CT hammerhead ribozymes [25]. Salmon CT (BAChem, Torrance, CA) was used at a physiologic...called CTR-, derived from PC-3M cells after anti- CT receptor ribozyme knockdown of CTR[18]. CTR- cells have very low levels of CD44v protein[4

  7. Alternate Splicing of CD44 Messenger RNA in Prostate Cancer Growth

    DTIC Science & Technology

    2009-10-01

    CT-cells have endog- enous CT stably knocked down to undetectable levels using anti-CT hammerhead ribozymes [25]. Salmon CT (BAChem, Torrance, CA) was...and cells called CTR-, derived from PC-3M cells after anti-CT receptor ribozyme knock- down of CTR[18]. CTR-cells have very low levels of CD44v

  8. Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway

    PubMed Central

    Chen, Cheng-Hsien; Sue, Yuh-Mou; Cheng, Chung-Yi; Chen, Yen-Cheng; Liu, Chung-Te; Hsu, Yung-Ho; Hwang, Pai-An; Huang, Nai-Jen; Chen, Tso-Hsiao

    2017-01-01

    Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands. PMID:28098144

  9. Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway.

    PubMed

    Chen, Cheng-Hsien; Sue, Yuh-Mou; Cheng, Chung-Yi; Chen, Yen-Cheng; Liu, Chung-Te; Hsu, Yung-Ho; Hwang, Pai-An; Huang, Nai-Jen; Chen, Tso-Hsiao

    2017-01-18

    Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.

  10. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44.

    PubMed

    Dohadwala, M; Luo, J; Zhu, L; Lin, Y; Dougherty, G J; Sharma, S; Huang, M; Pold, M; Batra, R K; Dubinett, S M

    2001-06-15

    Elevated tumor cyclooxygenase (COX-2) expression is associated with increased angiogenesis, tumor invasion, and suppression of host immunity. We have previously shown that genetic inhibition of tumor COX-2 expression reverses the immunosuppression induced by non-small cell lung cancer (NSCLC). To assess the impact of COX-2 expression in lung cancer invasiveness, NSCLC cell lines were transduced with a retroviral vector expressing the human COX-2 cDNA in the sense (COX-2-S) and antisense (COX-2-AS) orientations. COX-2-S clones expressed significantly more COX-2 protein, produced 10-fold more prostaglandin E(2), and demonstrated an enhanced invasive capacity compared with control vector-transduced or parental cells. CD44, the cell surface receptor for hyaluronate, was overexpressed in COX-2-S cells, and specific blockade of CD44 significantly decreased tumor cell invasion. In contrast, COX-2-AS clones had a very limited capacity for invasion and showed diminished expression of CD44. These findings suggest that a COX-2-mediated, CD44-dependent pathway is operative in NSCLC invasion. Because tumor COX-2 expression appears to have a multifaceted role in conferring the malignant phenotype, COX-2 may be an important target for gene or pharmacologic therapy in NSCLC.

  11. Suppression of tunicamycin-induced CD44v6 ectodomain shedding and apoptosis is correlated with temporal expression patterns of active ADAM10, MMP-9 and MMP-13 proteins in Caki-2 renal carcinoma cells.

    PubMed

    Kim, Yeoun-Hee; Jung, Jae-Chang

    2012-11-01

    CD44v6 has been shown to coordinate the activation of anti-apoptotic molecules as well as resistance to apoptosis. Here, we investigated CD44v6 ectodomain shedding in Caki-2 human renal carcinoma cells as well as its underlying mechanisms. Exposure of cells to tunicamycin (TM)-induced apoptosis was accompanied by cleavage of caspase-3, PARP-1 and CD44v6 ectodomain. TM-induced apoptosis was also closely associated with endoplasmic reticulum (ER) stress, as shown by increased expression of GRP-78 and CHOP proteins. Furthermore, induction of matrix metallo-proteinase (MMP)-13, MMP-9 and ADAM10 expression was highly stimulated by tunicamycin in a time- and dose-dependent manner. TM-induced PARP-1 cleavage was significantly inhibited by treatment with GM6001 (a broad spectrum MMP inhibitor), MMP-9/-13 inhibitor and GI254023X (specific ADAM10 inhibitor). In addition, inhibition of all examined MMPs resulted in reversal of TM-induced apoptosis as well as increased cell viability. When considering the functional implications of MMP-9 and ADAM10, it is likely that active MMP-9 and ADAM10 help regulate the cellular levels of CD44v6 through cleavage of CD44v6 ectodomain during TM-induced apoptosis of Caki-2 cells. Collectively, these findings suggest that multiple TM-induced MMPs may cooperate to induce apoptosis.

  12. CD44v6: A metastasis-associated biomarker in patients with gastric cancer?

    PubMed Central

    Lu, Li; Huang, Fei; Zhao, Zhicheng; Li, Chuan; Liu, Tong; Li, Weidong; Fu, Weihua

    2016-01-01

    Abstract Background: The diagnostic and prognostic value of CD44v6 in patients with gastric cancer remains unclear. Therefore, a quantitative meta-analysis was conducted to determine the clinical value of CD44v6 in patients with gastric cancer. Methods: Sixteen studies with 2177 patients were included. Pooled odds ratios (ORs) and hazard ratio (HR) with 95% confidence intervals (CIs) were calculated to estimate the impact of CD44v6 in patients with gastric cancer on clinicopathological features and 5-year overall survival (OS). Sensitivity analysis, subgroup analysis, and regression analysis were introduced to evaluate the heterogeneity across the studies. Publication bias was also explored among the studies. Results: The meta-analysis showed that the upregulated CD44v6 was associated with lymph node metastasis (OR 1.91, 95% CI 1.19–3.08; P = 0.007), distant metastasis (OR 3.41, 95% CI 2.01–5.78; P = 0.000), high TNM stage (OR 2.29, 95% CI 1.10–4.75; P = 0.026), lymphatic vessel invasion (OR 1.59, 95% CI 1.21–2.09; P = 0.001), and vascular invasion (OR 1.57, 95% CI 1.19–2.07; P = 0.001). When excluded 1 study based on sensitivity analysis, pooled HR indicated that CD44v6 positive expression was correlated poor 5-year OS (OR 1.76, 95% CI 1.30–2.39; P = 0.000), meanwhile, heterogeneity was eliminated. The heterogeneity of Lauren type mainly existed in the big sample size subgroup. Different region and publication year might contribute to the heterogeneity of differentiation type. While the heterogeneity of lymph node mainly existed in Asian and big sample size group. Publication bias was observed among 12 studies on lymph node metastasis (Ppublication bias = 0.041), and 5 studies on TNM stage (Ppublication bias = 0.026). Conclusion: Taken together, CD44v6 overexpression might be correlated to the characteristics of tumor metastasis in gastric cancer, consisting with many mechanism studies. Therefore, CD44v6 might present a

  13. Sequences from the First Fibronectin Type III Repeat of the Neural Cell Adhesion Molecule Allow O-Glycan Polysialylation of an Adhesion Molecule Chimera*

    PubMed Central

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Thompson, Matthew G.; Mendiratta, Shalu Shiv; Colley, Karen J.

    2010-01-01

    Polysialic acid is a developmentally regulated, anti-adhesive polymer that is added to N-glycans on the fifth immunoglobulin domain (Ig5) of the neural cell adhesion molecule (NCAM). We found that the first fibronectin type III repeat (FN1) of NCAM is required for the polysialylation of N-glycans on the adjacent Ig5 domain, and we proposed that the polysialyltransferases recognize specific sequences in FN1 to position themselves for Ig5 N-glycan polysialylation. Other studies identified a novel FN1 acidic surface patch and α-helix that play roles in NCAM polysialylation. Here, we characterize the contribution of two additional FN1 sequences, Pro510-Tyr511-Ser512 (PYS) and Gln516-Val517-Gln518 (QVQ). Replacing PYS or the acidic patch dramatically decreases the O-glycan polysialylation of a truncated NCAM protein, and replacing the α-helix or QVQ shifts polysialic acid to FN1 O-glycans in full-length NCAM. We also found that the FN1 domain of the olfactory cell adhesion molecule, a homologous but unpolysialylated protein, could partially replace NCAM FN1. Inserting Pro510-Tyr511 eliminated N-glycan polysialylation and enhanced O-glycosylation of an NCAM- olfactory cell adhesion molecule chimera, and inserting other FN1 sequences unique to NCAM, predominantly the acidic patch, created a new polysialyltransferase recognition site. Taken together, our results highlight the role of the FN1 α-helix and QVQ sequences in N-glycan polysialylation and demonstrate that the acidic patch primarily functions in O-glycan polysialylation. PMID:20805222

  14. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  15. New 3-alkylpyridine marine alkaloid analogues as promising antitumor agents against the CD44(+/high) /CD24(-/low) subset of triple-negative breast cancer cell line.

    PubMed

    de Lima, Aline Brito; Barbosa, Camila de Souza; Gonçalves, Alessandra Mirtes Marques Neves; Santos, Fabio Vieira Dos; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla; Silva, Luciana Maria

    2016-12-19

    Triple-negative breast cancer (TNBC) is one of the most aggressive cancers in women. Additionally, presence of residual cancer stem cells (CSC) in TNBC has challenged the efficacy of chemotherapy. Thus, the development of new molecules with potential action against CSC is fundamental. In this study, six synthetic analogues of theonelladin C, a 3-alkylpyridine marine alkaloid, were tested for cytotoxic activity against human TNBC cell line (BT-549) and tumorspheres derived from BT-549. Cytotoxicity assay was performed by sulforhodamine B (SRB). BT-549 and tumorspheres were examined for CD44(+/high) /CD24(-/low) markers, indicative of CSC profile, by flow cytometry. Clonogenic assay was performed to verify inhibiting growth of tumorspheres by the synthetic analogues. Cell death by apoptosis was investigated employing annexin V assay. SRB assay on BT-549 cells revealed that compounds 1c and 2c were the most active of the series, with IC50 values of 18.66 and 9.8 μm, respectively. Compounds 1c and 2c were able to reduce both CSC-like population (CD44(+/high) /CD24(-/low) ) and non-CSC population (CD44(+/high) /CD24(+/high) ) in tumorsphere model. Clonogenic and annexin V assays confirmed the ability of 1c and 2c to induce growth inhibition and apoptosis in BT-549 cells and tumorspheres. These preliminary data indicate that these compounds are a promising class for development of anticancer agents.

  16. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor

    PubMed Central

    1995-01-01

    Glycosaminoglycan-modified isoforms of CD44 have been implicated in growth factor presentation at sites of inflammation. In the present study we show that COS cell transfectants expressing CD44 isoforms containing the alternatively spliced exon V3 are modified with heparan sulfate (HS). Binding studies with three HS-binding growth factors, basic-fibroblast growth factor (b-FGF), heparin binding-epidermal growth factor (HB-EGF), and amphiregulin, showed that the HS-modified CD44 isoforms are able to bind to b-FGF and HB-EGF, but not AR. b-FGF and HB-EGF binding to HS-modified CD44 was eliminated by pretreating the protein with heparitinase or by blocking with free heparin. HS- modified CD44 immunoprecipitated from keratinocytes, which express a CD44 isoform containing V3, also bound to b-FGF. We examined whether HS- modified CD44 isoforms were expressed by activated endothelial cells where they might present HS-binding growth factors to leukocytes during an inflammatory response. PCR and antibody-binding studies showed that activated cultured endothelial cells only express the CD44H isoform which does not contain any of the variably spliced exons including V3. Immunohistological studies with antibodies directed to CD44 extracellular domains encoded by the variably spliced exons showed that vascular endothelial cells in inflamed skin tissue sections do not express CD44 spliced variants. Keratinocytes, monocytes, and dendritic cells in the same specimens were found to express variably spliced CD44. 35SO4(-2)-labeling experiments demonstrated that activated cultured endothelial cells do not express detectable levels of chondroitin sulfate or HS-modified CD44. Our results suggest that one of the functions of CD44 isoforms expressing V3 is to bind and present a subset of HS-binding proteins. Furthermore, it is probable that HS- modified CD44 is involved in the presentation of HS-binding proteins by keratinocytes in inflamed skin. However, our data suggests that CD44 is

  17. CD44 knock-down in bovine and human chondrocytes results in release of bound HYAL2

    PubMed Central

    Hida, Daisuke; Danielson, Ben T.; Knudson, Cheryl B.; Knudson, Warren

    2015-01-01

    CD44 shedding occurs in osteoarthritic chondrocytes. Previous work of others has suggested that the hyaluronidase isoform HYAL2 has the capacity to bind to CD44, a binding that may itself induce CD44 cleavage. Experiments were developed to elucidate whether chondrocyte HYAL2: (1) was exposed on the extracellular plasma membrane of chondrocytes, (2) bound to CD44, (3) underwent shedding together with CD44 and lastly, (4) exhibited hyaluronidase activity within a near-neutral pH range. Enhancing CD44 shedding by IL-1β resulted in a proportional increase in HYAL2 released from human and bovine chondrocytes into the medium. CD44 knockdown by siRNA also resulted in increased accumulation of HYAL2 in the media of chondrocytes. By hyaluronan zymography only activity at pH 3.7 was observed and this activity was reduced by pre-treatment of chondrocytes with trypsin. CD44 and HYAL2 were found to co-immunoprecipitate, and to co-localize within intracellular vesicles and at the plasma membrane. Degradation of hyaluronan was visualized by agarose gel electrophoresis. With this approach, hyaluronidase activity could be observed at pH 4.8 under assay conditions in which CD44 and HYAL2 binding remained intact; additionally, weak hyaluronidase activity could be observed at pH 6.8 under these conditions. This study suggests that CD44 and HYAL2 are bound at the surface of chondrocytes. The release of HYAL2 when CD44 is shed could provide a mechanism for weak hyaluronidase activity to occur within the more distant extracellular matrix of cartilage. PMID:25864644

  18. Dimerization of Cell-Adhesion Molecules Can Increase Their Binding Strength.

    PubMed

    Huang, Wenmao; Qin, Meng; Li, Ying; Cao, Yi; Wang, Wei

    2017-02-14

    Cell-adhesion molecules (CAMs) often exist as homodimers under physiological conditions. However, owing to steric hindrance, simultaneous binding of two ligands to the homodimers at the same location can hardly be satisfied, and the molecular mechanism underlying this natural design is still unknown. Here, we present a theoretical model to understand the rupture behavior of cell-adhesion bonds formed by multiple binding ligands with a single receptor. We found that the dissociation forces for the cell-adhesion bond could be greatly enhanced in comparison with the monomer case through a ligand rebinding and exchange mechanism. We also confirmed this prediction by measuring dimeric cRGD (cyclic Arg-Gly-Asp) unbinding from integrin (αvβ3) using atomic force microscopy-based single-molecule force spectroscopy. Our finding addresses the mechanism of increasing the binding strength of cell-adhesion bonds through dimerization at the single-molecule level, representing a key step toward the understanding of complicated cell-adhesion behaviors. Moreover, our results also highlight a wealth of opportunities to design mechanically stronger bioconjunctions for drug delivery, biolabeling, and surface modification.

  19. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  20. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Astrophysics Data System (ADS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-08-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to CEA, an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  1. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  2. CD44, Sonic Hedgehog, and Gli1 Expression Are Prognostic Biomarkers in Gastric Cancer Patients after Radical Resection.

    PubMed

    Jian-Hui, Chen; Er-Tao, Zhai; Si-Le, Chen; Hui, Wu; Kai-Ming, Wu; Xin-Hua, Zhang; Chuang-Qi, Chen; Shi-Rong, Cai; Yu-Long, He

    2016-01-01

    Aim. CD44 and Sonic Hedgehog (Shh) signaling are important for gastric cancer (GC). However, the clinical impact, survival, and recurrence outcome of CD44, Shh, and Gli1 expressions in GC patients following radical resection have not been elucidated. Patients and Methods. CD44, Shh, and Gli1 protein levels were quantified by immunohistochemistry (IHC). The association between CD44, Shh, and Gli1 expression and clinicopathological features or prognosis of GC patients was determined. The biomarker risk score was calculated by the IHC staining score of CD44, Shh, and Gli1 protein. Results. The IHC positive staining of CD44, Shh, and Gli1 proteins was correlated with larger tumour size, worse gross type and histological type, and advanced TNM stage, which also predicted shorter overall survival (OS) and disease-free survival (DFS) after radical resection. Multivariate analysis indicated the Gli1 protein and Gli1, CD44 proteins were predictive biomarkers for OS and DFS, respectively. If biomarker risk score was taken into analysis, it was the independent prognostic factor for OS and DFS. Conclusions. CD44 and Shh signaling are important biomarkers for tumour aggressiveness, survival, and recurrence in GC.

  3. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  4. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.

    PubMed

    Todaro, Matilde; Gaggianesi, Miriam; Catalano, Veronica; Benfante, Antonina; Iovino, Flora; Biffoni, Mauro; Apuzzo, Tiziana; Sperduti, Isabella; Volpe, Silvia; Cocorullo, Gianfranco; Gulotta, Gaspare; Dieli, Francesco; De Maria, Ruggero; Stassi, Giorgio

    2014-03-06

    Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.

  5. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  6. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca.

    PubMed Central

    Zamuner, Stella R; Teixeira, Catarina F P

    2002-01-01

    It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study. PMID:12581499

  7. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys

  8. Internalization of Met requires the co-receptor CD44v6 and its link to ERM proteins.

    PubMed

    Hasenauer, Susanne; Malinger, Dieter; Koschut, David; Pace, Giuseppina; Matzke, Alexandra; von Au, Anja; Orian-Rousseau, Véronique

    2013-01-01

    Receptor Tyrosine Kinases (RTKs) are involved in many cellular processes and play a major role in the control of cell fate. For these reasons, RTK activation is maintained under tight control. Met is an essential RTK that induces proliferation, differentiation, migration, survival and branching morphogenesis. Deregulation of Met by overexpression, amplification or lack of effective degradation leads to cancer and metastasis. We have shown that Met relies on CD44v6 for its activation and for signaling in several cancer cell lines and also in primary cells. In this paper, we show that internalization of Met is dependent on CD44v6 and the binding of Ezrin to the CD44v6 cytoplasmic domain. Both CD44v6 and Met are co-internalized upon Hepatocyte Growth Factor induction suggesting that Met-induced signaling from the endosomes relies on its collaboration with CD44v6 and the link to the cytoskeleton provided by ERM proteins.

  9. Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4beta1 integrin.

    PubMed

    Ludwig, Ralf J; Hardt, Katja; Hatting, Max; Bistrian, Roxana; Diehl, Sandra; Radeke, Heinfried H; Podda, Maurizio; Schön, Michael P; Kaufmann, Roland; Henschler, Reinhard; Pfeilschifter, Josef M; Santoso, Sentot; Boehncke, Wolf-Henning

    2009-10-01

    Junctional adhesion molecule-A (JAM-A), JAM-B and JAM-C have been implicated in leucocyte transmigration. As JAM-B binds to very late activation antigen (VLA)-4, a leucocyte integrin that contributes to rolling and firm adhesion of lymphocytes to endothelial cells through binding to vascular cell adhesion molecule (VCAM)-1, we hypothesized that JAM-B is also involved in leucocyte rolling and firm adhesion. To test this hypothesis, intravital microscopy of murine skin microvasculature was performed. Rolling interactions of murine leucocytes were significantly affected by blockade of JAM-B [which reduced rolling interactions from 9.1 +/- 2.6% to 3.2 +/- 1.2% (mean +/- standard deviation)]. To identify putative ligands, T lymphocytes were perfused over JAM-B-coated slides in a dynamic flow chamber system. JAM-B-dependent rolling and sticking interactions were observed at low shear stress [0.3 dyn/cm(2): 220 +/- 71 (mean +/- standard deviation) versus 165 +/- 88 rolling (P < 0.001; Mann-Whitney rank sum test) and 2.6 +/- 1.3 versus 1.0 +/- 0.7 sticking cells/mm(2)/min (P = 0.026; Mann-Whitney rank sum test) on JAM-B- compared with baseline], but not at higher shear forces (1.0 dyn/cm(2)). As demonstrated by antibody blocking experiments, JAM-B-mediated rolling and sticking of T lymphocytes was dependent on alpha4 and beta1 integrin, but not JAM-C expression. To investigate whether JAM-B-mediated leucocyte-endothelium interactions are involved in a disease-relevant in vivo model, adoptive transfer experiments in 2,4,-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity reactions were performed in mice in the absence or in the presence of a function-blocking JAM-B antibody. In this model, JAM-B blockade during the sensitization phase impaired the generation of the immune response to DNFB, which was assessed as the increase in ear swelling in untreated, DNFB-challenged mice, by close to 40% [P = 0.037; analysis of variance (anova)]. Overall, JAM-B appears to

  10. Spatio-Temporally Restricted Expression of Cell Adhesion Molecules during Chicken Embryonic Development

    PubMed Central

    Roy, Priti; Bandyopadhyay, Amitabha

    2014-01-01

    Differential cell adhesive properties are known to regulate important developmental events like cell sorting and cell migration. Cadherins and protocadherins are known to mediate these cellular properties. Though a large number of such molecules have been predicted, their characterization in terms of interactive properties and cellular roles is far from being comprehensive. To narrow down the tissue context and collect correlative evidence for tissue specific roles of these molecules, we have carried out whole-mount in situ hybridization based RNA expression study for seven cadherins and four protocadherins. In developing chicken embryos (HH stages 18, 22, 26 and 28) cadherins and protocadherins are expressed in tissue restricted manner. This expression study elucidates precise expression domains of cell adhesion molecules in the context of developing embryos. These expression domains provide spatio-temporal context in which the function of these genes can be further explored. PMID:24806091

  11. The CD44+ALDH+ Population of Human Keratinocytes Is Enriched for Epidermal Stem Cells with Long-Term Repopulating Ability

    PubMed Central

    Szabo, Akos Z.; Fong, Stephen; Yue, Lili; Zhang, Kai; Strachan, Lauren R.; Scalapino, Kenneth; Mancianti, Maria Laura; Ghadially, Ruby

    2014-01-01

    Like for other somatic tissues, isolation of a pure population of stem cells has been a primary goal in epidermal biology. We isolated discrete populations of freshly obtained human neonatal keratinocytes (HNKs) using previously untested candidate stem cell markers aldehyde dehydrogenase (ALDH) and CD44 as well as the previously studied combination of integrin α6 and CD71. An in vivo transplantation assay combined with limiting dilution analysis was used to quantify enrichment for long-term repopulating cells in the isolated populations. The ALDH+CD44+ population was enriched 12.6-fold for long-term repopulating epidermal stem cells (EpiSCs) and the integrin α6hiCD71lo population was enriched 5.6-fold, over unfractionated cells. In addition to long-term repopulation, CD44+ALDH+ keratinocytes exhibited other stem cell properties. CD44+ALDH+ keratinocytes had self-renewal ability, demonstrated by increased numbers of cells expressing nuclear Bmi-1, serial transplantation of CD44+ALDH+ cells, and holoclone formation in vitro. CD44+ALDH+ cells were multipotent, producing greater numbers of hair follicle-like structures than CD44−ALDH− cells. Furthermore, 58% ± 7% of CD44+ALDH+ cells exhibited label-retention. In vitro, CD44+ALDH+ cells showed enhanced colony formation, in both keratinocyte and embryonic stem cell growth media. In summary, the CD44+ALDH+ population exhibits stem cell properties including long-term epidermal regeneration, multipotency, label retention, and holoclone formation. This study shows that it is possible to quantify the relative number of EpiSCs in human keratinocyte populations using long-term repopulation as a functional test of stem cell nature. Future studies will combine isolation strategies as dictated by the results of quantitative transplantation assays, in order to achieve a nearly pure population of EpiSCs. PMID:23335266

  12. Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases.

    PubMed

    Jing, Feifeng; Kim, Hun Jin; Kim, Chang Hyun; Kim, Young Jin; Lee, Jae Hyuk; Kim, Hyeong Rok

    2015-04-01

    CD44 and CD133 mRNA expression as cancer stem cell markers in colorectal cancer were correlated with synchronous hepatic metastases and the clinicopathological factors, including patient survival. The CD44 and CD133 mRNA levels in 36 primary colorectal adenocarcinomas with synchronous hepatic metastasis were analyzed by reverse transcriptase polymerase chain reaction, with normalization relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Immunohistochemical analysis was performed on samples with typical mRNA expression patterns to investigate protein expression. Both CD44 and CD133 gene expressions were highest in hepatic metastasis tissue, followed by colorectal cancer and normal mucosa. The differences were statistically significant among groups of normal mucosa, colorectal cancer and hepatic metastasis tissue. CD44 mRNA expression was significantly associated with the tumor location (P=0.019) and histology (P=0.026). With a median follow-up period of 38 months, the 5-year disease-free survival rate of the patients with high CD44 mRNA expression in the CD44 hepatic metastasis tissue group was significantly lower than that of the patients with low expression (P=0.002). While the mRNA expressions in groups of CD44 colorectal tumor, CD133 colorectal tumor, and CD133 hepatic metastasis tissue were not significant. CD44 and CD133 mRNA were highly correlatively co-expressed in colorectal cancer with hepatic metastases. CD44 expression was an independent factor associated with patient survival, while CD133 did not show this pattern. Thus, CD44 is a more reliable marker for predicting hepatic metastases and survival. Larger prospective studies are required to confirm these findings.

  13. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.

    PubMed

    Jonjić, N; Peri, G; Bernasconi, S; Sciacca, F L; Colotta, F; Pelicci, P; Lanfrancone, L; Mantovani, A

    1992-10-01

    The mesothelium is a flat epithelial lining of serous cavities that could gate the traffic of molecules and cells between the circulation and these body compartments. The present study was designed to elucidate the capacity of mesothelial cells to express adhesion molecules and chemoattractant cytokines, two fundamental mechanisms of regulation of leukocyte recruitment. Cultured human mesothelial cells express appreciable levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and these were increased by in vitro exposure to tumor necrosis factor (TNF), interferon gamma (IFN-gamma), or TNF and IFN-gamma. Interleukin 1 (IL-1) was a less consistent stimulus for adhesion molecule expression in vitro. Unlike endothelial cells, used as a reference cell population, resting or stimulated mesothelial cells did not express E-selectin and ICAM-2, as assessed by flow cytometry. Analysis of VCAM-1 mRNA by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that mesothelial cells expressed both the seven- and the six-Ig domain transcripts, with predominance of the longer species. Monocytes bound appreciably to "resting" and, to a greater extent, to stimulated mesothelial cells. Monocytes exposed to IFN-gamma and lipopolysaccharide, used as prototypic activation signals, showed increased capacity to bind mesothelial cells. Anti-CD18 monoclonal antibody significantly inhibited binding of monocytes to mesothelial cells, and this blocking effect was amplified by anti-very late antigen 4. Mesothelial cells were able to express the chemotactic cytokines IL-8 and monocyte chemotactic protein 1 at the mRNA and protein levels. These results indicate that mesothelial cells can express a set of adhesion molecules (ICAM-1 and VCAM-1) overlapping with, but distinct from, that expressed in vascular endothelium (ICAM-1, ICAM-2, VCAM-1, E-selectin), and that these are functionally relevant for interacting with

  14. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  15. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  16. Alternate Splicing of CD44 Messenger RNA in Prostate Cancer Growth

    DTIC Science & Technology

    2008-04-01

    hammerhead ribozymes .25 Salmon CT (BAChem, Torrance, CA) was used at physiologic 50 nM dose14,16, which effectively alters CD44,6 or at 250 nM. To detect...receptor14), and cells called CTR-, derived from PC-3M cells after anti-CT receptor ribozyme knockdown of CTR.18 CTR- cells have very low levels of

  17. FKBPL and Peptide Derivatives: Novel Biological Agents That Inhibit Angiogenesis by a CD44-Dependent Mechanism

    PubMed Central

    Valentine, Andrea; O’Rourke, Martin; Yakkundi, Anita; Worthington, Jenny; Hookham, Michelle; Bicknell, Roy; McCarthy, Helen O.; McClelland, Keeva; McCallum, Lynn; Dyer, Hayder; McKeen, Hayley; Waugh, David; Roberts, Jennifer; McGregor, Joanne; Cotton, Graham; James, Iain; Harrison, Timothy; Hirst, David G.; Robson, Tracy

    2011-01-01

    Purpose Anti-angiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their anti-angiogenic activity and mechanism of action. Experimental Design Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration and Matrigel dependent tubule formation was determined. They were further evaluated in an ex-vivo rat model of neo-vascularisation and in two in vivo mouse models of angiogenesis; the sponge implantation and the intra-vital microscopy models. Anti-tumor efficacy was determined in two human tumor xenograft models grown in SCID mice. Finally, the dependence of peptide on CD44 was determined using a CD44 targeted siRNA approach or in cell lines of differing CD44 status. Results rFKBPL inhibited endothelial cell migration, tubule formation and microvessel formation in vitro and in vivo. The region responsible for FKBPL’s anti-angiogenic activity was identified and a 24 amino acid peptide (AD-01) spanning this sequence was synthesised. It was potently anti-angiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own, or in combination with docetaxel. The anti-angiogenic activity of FKBPL and AD-01 was dependent on the cell surface receptor CD44 and signalling downstream of this receptor promoted an anti-migratory phenotype. Conclusion FKBPL and its peptide derivative AD-01 have potent anti-angiogenic activity. Thus, these agents offer the potential of an attractive new approach to anti-angiogenic therapy. PMID:21364036

  18. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    DTIC Science & Technology

    2002-09-01

    Malignant peripheral nerve sheath tumors ( MPNSTs ) are aggressive malignancies that arise within peripheral nerves. These tumors occur with increased...and abnormal expression of the epidermal growth factor receptor (EGFR). We previously found that MPNSTs express increased levels of the CD44 family...kinase activity (and not increased Ras-GTP) contributes to MPNST cell invasion. We further find that EGFR contributes at least part of the elevated Src

  19. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    DTIC Science & Technology

    2001-09-01

    Malignant peripheral nerve sheath tumors ( MPNST ) are aggressive, difficult to treat tumors that occur in type I neurofibromatosis patients with an...survival rate. We previously found that MPNSTs overexpress the CD44 tranmembrane glycoprotein and that reducing Cc44 expression inhibits MPNST cell...Src kinase. Furthermore, we show that MPNST cell invasion depends on an autocrine loop involving MCF, an MCF activating enzyme (MGFA), and c-Met, all of

  20. Identification of CD44 as a Surface Biomarker for Drug Resistance by Surface Proteome Signature Technology

    PubMed Central

    Cain, Jason W.; Hauptschein, Robert S.; Stewart, Jean K.; Bagci, Tugba; Sahagian, Gary G.; Jay, Daniel G.

    2011-01-01

    We developed Surface Proteome Signatures (SPS) for identification of new biomarkers playing a role in cancer drug resistance. SPS compares surface antigen expression of different cell lines by immunocytochemistry of a phage display antibody library directed to surface antigens of HT1080 fibrosarcoma cells. We applied SPS to compare the surface proteomes of two epithelially derived cancer cell lines, MCF7 and NCI/ADR-RES, which is drug resistant due to overexpression of the P-glycoprotein drug efflux pump. Surface proteome profiling identified CD44 as an additional biomarker that distinguishes between these two cell lines. CD44 immunohistochemistry can distinguish between tumors derived from these lines and predict tumor response to doxorubicin in vivo. We further show CD44 acts in drug resistance independently of P-glycoprotein in NCI/ADR-RES cells and increases expression of the anti-apoptotic protein Bcl-xL. Our findings illustrate the utility of SPS to distinguish between cancer cell lines and their derived tumors and identify novel biomarkers involved in drug resistance. PMID:21357442

  1. Epithelial membrane protein 3 regulates TGF-β signaling activation in CD44-high glioblastoma.

    PubMed

    Jun, Fu; Hong, Jidong; Liu, Qin; Guo, Yong; Liao, Yiwei; Huang, Jianghai; Wen, Sailan; Shen, Liangfang

    2016-08-05

    Although epithelial membrane protein 3 (EMP3) has been implicated as a candidate tumor suppressor gene for low grade glioma, its biological function in glioblastoma multiforme (GBM) still remains poorly understood. Herein, we showed that EMP3 was highly expressed in CD44-high primary GBMs. Depletion of EMP3 expression suppressed cell proliferation, impaired in vitro tumorigenic potential and induced apoptosis in CD44-high GBM cell lines. We also identified TGF-β/Smad2/3 signaling pathway as a potential target of EMP3. EMP3 interacts with TGF-β receptor type 2 (TGFBR2) upon TGF-β stimulation in GBM cells. Consequently, the EMP3-TGFBR2 interaction regulates TGF-β/Smad2/3 signaling activation and positively impacts on TGF-β-stimulated gene expression and cell proliferation in vitro and in vivo. Highly correlated protein expression of EMP3 and TGF-β/Smad2/3 signaling pathway components was also observed in GBM specimens, confirming the clinical relevancy of activated EMP3/TGF-β/Smad2/3 signaling in GBM. In conclusion, our findings revealed that EMP3 might be a potential target for CD44-high GBMs and highlight the essential functions of EMP3 in TGF-β/Smad2/3 signaling activation and tumor progression.

  2. Adhesion molecules in gonarthrosis and knee prosthesis aseptic loosening follow-up: possible therapeutic implications.

    PubMed

    Dambra, P; Loria, M P; Moretti, B; D'Oronzio, L; Patella, V; Pannofino, A; Cavallo, E; Pesce, V; Dell'Osso, A; Simone, C

    2003-05-01

    The involvement of the synovium is common in phlogistic processes of various joint diseases. Apart from synoviocytes and the other cells in the synovial tissue, circulating cells recruited from peripheral blood also participate in the phlogistic process. The increased expression of adhesion molecules on both circulating and endothelial cell surface may further this recruitment. We studied 15 patients affected by serious gonarthrosis requiring a prosthetic implant (GPI) and 7 with knee prosthesis aseptic loosening (KPL) to evaluate adhesion molecule expression and phlogistic infiltration in the synovium using immunohistochemistry and microscopic analysis. As control we studied 10 subjects affected by degenerative meniscopathies undergoing a selective arthroscopic surgical meniscectomy. Analysis with Kruskal-Wallis test showed no statistical significant differences in the expression of CD54, CD11a, CD11b and CD18 in three groups examined. The model of variance analysis (Friedman test), showed that CD54 expression is greater in patients with GPI and KPL in comparison with the other molecules. Adhesion molecules and their functions are important in arthropathies not only because their evaluation can allow us to identify the degree of inflammation and to predict its evolution, but also because pharmacological control of their expression could have important therapeutic implications.

  3. Distribution of carcinoembryonic antigen-related cellular adhesion molecules in human gingiva.

    PubMed

    Huynh-Torlakovic, Hong; Bjerkan, Louise; Schenck, Karl; Blix, Inger J S

    2012-10-01

    Carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs) are glycoproteins produced in epithelial, endothelial, lymphoid, and myeloid cells. Carcinoembryonic antigen-related cellular adhesion molecules mediate cell-cell contact and host-pathogen interactions. The aims of this study were to map the distribution and examine the regulation of CEACAMs in human gingival sites. Quantitative real-time PCR performed on human gingival biopsies from periodontitis sites revealed mRNA coding for CEACAM1, -5, -6, and -7. Immunohistochemistry showed that CEACAMs were not found in oral gingival epithelium, except for CEACAM5 in periodontitis. Carcinoembryonic antigen-related cellular adhesion molecules 1, 5, and 6 were present in the oral sulcular epithelium of periodontitis but not in that of healthy gingiva. In junctional epithelium, all three molecules were present in healthy gingiva, but in periodontitis only CEACAM1 and -6 were detected. Staining for CEACAM1 and -6 was also seen in the inflammatory cell infiltrate in periodontitis. No staining for CEACAM7 was found. Proinflammatory mediators, including lipopolysaccharide (LPS), tumour necrosis factor-α (TNF-α)/interleukin-1β (IL-1β), and interferon-γ (IFN-γ), increased the expression of CEACAM1 and CEACAM6 mRNAs in cultured human oral keratinocytes. CEACAM1 and CEACAM6 mRNAs were also strongly up-regulated upon stimulation with lysophosphatidic acid. In conclusion, the distribution of different CEACAMs was related to specific sites in the gingiva. This might reflect different functional roles in this tissue.

  4. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  5. Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia

    PubMed Central

    Vey, Norbert; Delaunay, Jacques; Martinelli, Giovanni; Fiedler, Walter; Raffoux, Emmanuel; Prebet, Thomas; Gomez-Roca, Carlos; Papayannidis, Cristina; Kebenko, Maxim; Paschka, Peter; Christen, Randolph; Guarin, Ernesto; Bröske, Ann-Marie; Baehner, Monika; Brewster, Michael; Walz, Antje-Christine; Michielin, Francesca; Runza, Valeria; Meresse, Valerie; Recher, Christian

    2016-01-01

    RG7356, a recombinant anti-CD44 immunoglobulin G1 humanized monoclonal antibody, inhibits cell adhesion and has been associated with macrophage activation in preclinical models. We report results of a phase I dose-escalation study of RG7356 in relapsed/refractory acute myeloid leukemia (AML). Eligible patients with refractory AML, relapsed AML after induction chemotherapy, or previously untreated AML not eligible for intensive chemotherapy were enrolled and received intravenous RG7356 at dosages ≤ 2400 mg every other week or ≤ 1200 mg weekly or twice weekly; dose escalation started at 300 mg. Forty-four patients (median age, 69 years) were enrolled. One dose-limiting toxicity occurred (grade 3 hemolysis exacerbation) after one 1200 mg dose (twice-weekly cohort). The majority of adverse events were mild/moderate. Infusion-related reactions occurred in 64% of patients mainly during cycle 1. Two patients experienced grade 3 drug-induced aseptic meningitis. Pharmacokinetics increased supraproportionally, suggesting a target-mediated drug disposition (TMDD) at ≥ 1200 mg. Two patients achieved complete response with incomplete platelet recovery or partial response, respectively. One patient had stable disease with hematologic improvement. RG7356 was generally safe and well tolerated. Maximum tolerated dose was not reached, but saturation of TMDD was achieved. The recommended dose for future AML evaluations is 2400 mg every other week. PMID:27081038

  6. Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis.

    PubMed

    Tanaka, Kosuke; Osada, Hirotaka; Murakami-Tonami, Yuko; Horio, Yoshitsugu; Hida, Toyoaki; Sekido, Yoshitaka

    2017-01-28

    Malignant mesothelioma (MM) frequently exhibits Hippo signaling pathway inactivation (HPI) mainly due to NF2 and/or LATS2 mutations, which leads to the activation of YAP transcriptional co-activator. Here, we show antitumor effects of statin on MM cells with HPI, through the interplay of the mevalonate and Hippo signaling pathways. Statin attenuated proliferation and migration of MM cells harboring NF2 mutation by accelerating YAP phosphorylation/inactivation. CD44 expression was decreased by statin, in parallel with YAP phosphorylation/inactivation. Importantly, we discovered that YAP/TEAD activated CD44 transcription by binding to the CD44 promoter at TEAD-binding sites. On the other hand, CD44 regulated Merlin phosphorylation according to cell density and sequentially promoted YAP transcriptional co-activator, suggesting that CD44 plays two pivotal functional roles as an upstream suppressor of the Hippo pathway and one of downstream targets regulated by YAP/TEAD. Moreover, the YAP/CD44 axis conferred cancer stem cell (CSC)-like properties in MM cells leading to chemoresistance, which was blocked by statin. Together, our findings suggest that YAP mediates CD44 up-regulation at the transcriptional level, conferring CSC-like properties in MM cells, and statin represents a potential therapeutic option against MM by inactivating YAP.

  7. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  8. Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons.

    PubMed

    Ghosh, Biswarup; Li, Yan; Thayer, Stanley A

    2011-02-16

    The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.

  9. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  10. Induced overexpression of CD44 associated with resistance to apoptosis on DNA damage response in human head and neck squamous cell carcinoma cells.

    PubMed

    Ohkoshi, Emika; Umemura, Naoki

    2017-02-01

    CD44 is a marker of cancer stem cells in head and neck squamous cell carcinoma, and CD44 expression is related to prognosis in cancer patients. We examined whether herbal medicine components affect CD44 expression and induce cancer cell apoptosis. Baicalin enhanced apoptosis with no effect on CD44 levels, while baicalein did not enhance apoptosis and upregulated CD44 in head and neck squamous cell carcinoma. Furthermore, baicalein induced phosphorylation of CHK1, as a marker of DNA damage response to S-to-G2/M phase arrest. Our results clearly demonstrated that baicalein enhanced expression of CD44 and accordingly enhanced the DNA damage response. These data suggest that induction of CD44 inhibited cancer cell induction of apoptosis by increasing the DNA damage response. Together, our findings suggest that CD44 expression in head and neck squamous cell carcinoma plays a role in enhancing the DNA damage response.

  11. Induced overexpression of CD44 associated with resistance to apoptosis on DNA damage response in human head and neck squamous cell carcinoma cells

    PubMed Central

    Ohkoshi, Emika; Umemura, Naoki

    2017-01-01

    CD44 is a marker of cancer stem cells in head and neck squamous cell carcinoma, and CD44 expression is related to prognosis in cancer patients. We examined whether herbal medicine components affect CD44 expression and induce cancer cell apoptosis. Baicalin enhanced apoptosis with no effect on CD44 levels, while baicalein did not enhance apoptosis and upregulated CD44 in head and neck squamous cell carcinoma. Furthermore, baicalein induced phosphorylation of CHK1, as a marker of DNA damage response to S-to-G2/M phase arrest. Our results clearly demonstrated that baicalein enhanced expression of CD44 and accordingly enhanced the DNA damage response. These data suggest that induction of CD44 inhibited cancer cell induction of apoptosis by increasing the DNA damage response. Together, our findings suggest that CD44 expression in head and neck squamous cell carcinoma plays a role in enhancing the DNA damage response. PMID:28035370

  12. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates.

    PubMed

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-25

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  13. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-01

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  14. Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients.

    PubMed

    Rubio-Guerra, Alberto Francisco; Vargas-Robles, Hilda; Serrano, Alberto Maceda; Vargas-Ayala, German; Rodriguez-Lopez, Leticia; Escalante-Acosta, Bruno Alfonso

    2010-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and in hypertension, and is associated with inflammation, increased levels of circulating soluble adhesion molecules, and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in hypertensive type-2 diabetic patients. We studied 30 hypertensive type-2 diabetic patients in whom VCAM-1, ICAM-1, and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. We found significant correlations between ICAM-1 (r = 0.5) levels and maximal carotid artery intimal-medial thickness these patients. No correlation was observed with E-selectin and VCAM-1. Our results suggest that ICAM-1 is associated and correlated with the degree of atherosclerosis in type-2 diabetic hypertensive patients.

  15. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  16. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology.

    PubMed

    Brousse, Valentine; Colin, Yves; Pereira, Catia; Arnaud, Cecile; Odièvre, Marie Helene; Boutemy, Anne; Guitton, Corinne; de Montalembert, Mariane; Lapouméroulie, Claudine; Picot, Julien; Le Van Kim, Caroline; El Nemer, Wassim

    2015-01-01

    Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.

  17. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients

    PubMed Central

    Vargas-Robles, Hilda; Serrano, Alberto Maceda; Lozano-Nuevo, Jose Juan; Escalante-Acosta, Bruno Alfonso

    2009-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and is associated with inflammation, increased levels of circulating soluble adhesion molecules and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in normotensive type-2 diabetic patients. Results: We found significant correlations between ICAM-1 (r = 0.69, p < 0.001 95% IC 0.65 to 0.82) and VCAM-1 (r = 0.4, p < 0.03, 95% IC 0.65 to 0.82) levels and maximal carotid artery intimal-medial thickness, whereas no correlation was observed with E-selectin. Methods: We studied 30 normotensive type-2 diabetic patients in whom VCAM-1, ICAM-1 and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. Conclusion: Our results suggest that ICAM-1 and VCAM-1 are markers associated, and correlated with the degree of atherosclerosis in normotensive type-2 diabetic patients. PMID:19717975

  18. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    PubMed

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  19. Experimental Cerebral Malaria Develops Independently of Endothelial Expression of Intercellular Adhesion Molecule-1 (ICAM-1)*

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Darley, Meghan M.; McDonald, Kristin; Crawford, David F.; Barnum, Scott R.

    2013-01-01

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM. PMID:23493396

  20. Experimental cerebral malaria develops independently of endothelial expression of intercellular adhesion molecule-1 (icam-1).

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Darley, Meghan M; McDonald, Kristin; Crawford, David F; Barnum, Scott R

    2013-04-19

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM.

  1. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    PubMed

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients.

  2. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  3. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to

  4. Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome.

    PubMed

    Marzese, Diego M; Liu, Michelle; Huynh, Jamie L; Hirose, Hajime; Donovan, Nicholas C; Huynh, Kelly T; Kiyohara, Eiji; Chong, Kelly; Cheng, David; Tanaka, Ryo; Wang, Jinhua; Morton, Donald L; Barkhoudarian, Garni; Kelly, Daniel F; Hoon, Dave S B

    2015-01-01

    Melanoma brain metastasis (MBM) is frequent and has a very poor prognosis with no current predictive factors or therapeutic molecular targets. Our study unravels the molecular alterations of cell-surface glycoprotein CD44 variants during melanoma progression to MBM. High expression of CD44 splicing variant 6 (CD44v6) in primary melanoma (PRM) and regional lymph node metastases from AJCC Stage IIIC patients significantly predicts MBM development. The expression of CD44v6 also enhances the migration of MBM cells by hyaluronic acid and hepatocyte growth factor exposure. Additionally, CD44v6-positive MBM migration is reduced by blocking with a CD44v6-specific monoclonal antibody or knocking down CD44v6 by siRNA. ESRP1 and ESRP2 splicing factors correlate with CD44v6 expression in PRM, and ESRP1 knockdown significantly decreases CD44v6 expression. However, an epigenetic silencing of ESRP1 is observed in metastatic melanoma, specifically in MBM. In advanced melanomas, CD44v6 expression correlates with PTBP1 and U2AF2 splicing factors, and PTBP1 knockdown significantly decreases CD44v6 expression. Overall, these findings open a new avenue for understanding the high affinity of melanoma to progress to MBM, suggesting CD44v6 as a potential MBM-specific factor with theranostic utility for stratifying patients.

  5. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  6. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  7. The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy.

    PubMed

    Erdogan, Suat; Turkekul, Kader; Serttas, Rıza; Erdogan, Zeynep

    2017-04-01

    Prostate cancer (PCa) is the second most common type of cancer and the fifth leading cause of cancer-related death among men. Development of chemoresistance, tumor relapse and metastasis remain major barriers to effective treatment and all been identified to be associated with cancer stem cells (CSCs). Natural flavonoids such as apigenin have been shown to have the ability to improve the therapeutic efficacy of common chemotherapy agents through CSCs sensitization. Thus, the aim of this study was to evaluate the combination of apigenin with cisplatin on CD44(+) PCa stem cell growth and migration. Platinum-based anti-neoplastic drugs have been used to treat a number of malignancies including PCa. However, acquired resistance and side effects unfortunately have limited cisplatin's use. A CD44(+) subpopulation was isolated from human androgen-independent PC3 PCa cells by using human CD44-PE antibody. IC50 values were determined by MTT test. RT-qPCR, Western blot analyses and image-based cytometer were used to investigate apoptosis, cell cycle and their underlying molecular mechanisms. Cell migration was evaluated by wound healing test. The combination of the IC50 doses of apigenin (15μM) and cisplatin (7.5μM) for 48h significantly enhanced cisplatin's cytotoxic and apoptotic effects through downregulation of Bcl-2, sharpin and survivin; and upregulation of caspase-8, Apaf-1 and p53 mRNA expression. The combined therapy suppressed the phosphorylation of p-PI3K and p-Akt, inhibited the protein expression of NF-κB, and downregulated the cell cycle by upregulating p21, as well as cyclin dependent kinases CDK-2, -4, and -6. Apigenin significantly increased the inhibitory effects of cisplatin on cell migration via downregulation of Snail expression. In conclusion, our study showed the possible therapeutic approach of using apigenin to potentially increase the effects of cisplatin by targeting CSCs subset in prostate cancer.

  8. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody.

    PubMed

    Weiss, L; Slavin, S; Reich, S; Cohen, P; Shuster, S; Stern, R; Kaganovsky, E; Okon, E; Rubinstein, A M; Naor, D

    2000-01-04

    Inflammatory destruction of insulin-producing beta cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4-7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44-hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes.

  9. FAM83D associates with high tumor recurrence after liver transplantation involving expansion of CD44+ carcinoma stem cells

    PubMed Central

    Lin, Binyi; Chen, Tianchi; Zhang, Qijun; Lu, Xiaoxiao; Zheng, Zhiyun; Ding, Jun; Liu, Jinfeng; Yang, Zhe; Geng, Lei; Wu, Liming; Zhou, Lin; Zheng, Shusen

    2016-01-01

    To investigate the potential oncogene promoting recurrence of hepatocellular carcinoma (HCC) following liver transplantation (LT), throughput RNA sequencing was performed in a subgroup of HCC patients. The up-regulated FAM83D in HCC tissues was found and further verified in 150 patients by real-time PCR and immunohistochemistry. FAM83D overexpression significantly correlated with high HCC recurrence rate following LT and poor HCC characteristics such as high AFP, poor differentiation. Of cancer stem cells (CSCs) markers, CD44 expression was effectively suppressed when FAM83D was knocked down by siRNA. Meanwhile, the siRNA transfected cells suppressed formation of sphere and ability of self-renew. In a xenograft tumorigenesis model, FAM83D knockdown apparently inhibited tumor growth and metastasis. Microarray assays revealed that FAM83D promotes CD44 expression via activating the MAPK, TGF-β and Hippo signaling pathways. Furthermore, CD44 knockdown presented reverse effect on above signaling pathways, which suggested that FAM83D was a key activator of loop between CD44 and above signaling pathways. In conclusion, FAM83D promotes HCC recurrence by promoting CD44 expression and CD44+ CSCs malignancy. FAM83D provides a novel therapeutic approach against HCC recurrence after LT. PMID:27769048

  10. CD44v6 overexpression related to metastasis and poor prognosis of colorectal cancer: A meta-analysis.

    PubMed

    Wang, Ji-Lin; Su, Wen-Yu; Lin, Yan-Wei; Xiong, Hua; Chen, Ying-Xuan; Xu, Jie; Fang, Jing-Yuan

    2016-12-24

    CD44v6 has recently been reported as a biomarker for colorectal cancer. However, the clinical and prognostic significance of CD44v6 in colorectal cancer remains controversial. Therefore, we performed a meta-analysis to clarify this issue. A comprehensive literature search was performed using Medline, Embase and Web of Science, and the statistical analysis was conducted using Stata software. A total of twenty-one studies including 3918 colorectal cancer cases were included. The pooled analysis showed that CD44v6 overexpression in colorectal cancer was an independent prognostic marker correlating with lower 5-year overall survival rate (OR=0.78, 95%CI =0.67-0.91, p=0.001). CD44v6 overexpression was also associated with more lymph node invasion (OR=1.48, 95%CI= 1.02-2.15, p=0.04), and advanced Dukes stage (OR=2.47, 95%CI= 1.29-4.73, p=0.01). In addition, while excluding Zolbec's study, CD44v6 overexpression was associated with distance metastasis (OR=1.65, 95%CI =1.13-2.40, p=0.01). Taken together, this meta-analysis suggested that CD44v6 is an efficient prognostic factor in colorectal cancer.

  11. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM

    PubMed Central

    1992-01-01

    The neural cell adhesion molecule NCAM is capable of mediating cell- cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM- covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell- cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP- epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction. PMID:1380002

  12. Macrosphelide B suppressed metastasis through inhibition of adhesion of sLe(x)/E-selectin molecules.

    PubMed

    Fukami, Akiko; Iijima, Kousuke; Hayashi, Masahiko; Komiyama, Kanki; Omura, Satoshi

    2002-03-08

    Macrosphelide B (MSB), a 16-membered macrolide from Microsphaeropsis sp. FO-5050, inhibits adhesion of sialyl Lewis(x) (sLe(x))-expressing HL-60 cells to LPS-activated (E-selectin-expressing) human umbilical vein endothelial cells (HUVECs) in vitro. This study examines MSB effects on metastasis of B16/BL6 mouse melanoma cells (B16/BL6 cells) and L5178Y-ML mouse lymphoma cells in vivo and analyzes the MSB antimetastatic activity mechanism. When administered MSB at 20 mg/kg/day, lung metastatic nodules of B16/BL6 cells were significantly decreased (T/C = 45%). However, no inhibition of metastasis of L5178Y-ML cells to the spleen and liver was observed. Flow cytometry analysis showed that B16/BL6 cells expressed high levels of sLe(x) antigen, whereas expression on L5178Y-ML cells was low. Under in vitro conditions, B16/BL6 cells demonstrated a greater degree of adhesion to LPS-activated HUVECs than L5178Y-ML cells, but adhesion was significantly inhibited by MSB and sLe(x) antibody. Combined therapy of MSB and cisplatin (CDDP) induced remarkable lung metastasis inhibition without adverse effects of CDDP to the host. All these findings suggest that MSB suppresses lung metastasis of B16/BL6 cells by inhibiting cell adhesion to endothelial cells through the sLe(x) molecule.

  13. Adhesion of single polyelectrolyte molecules on silica, mica, and bitumen surfaces.

    PubMed

    Long, Jun; Xu, Zhenghe; Masliyah, Jacob H

    2006-02-14

    In a recent study (Energy Fuels 2005, 19, 936), a partially hydrolyzed polyacrylamide (HPAM) was used as a process aid to recover bitumen from oil sand ores. It was found that HPAM addition at the bitumen extraction step not only improved bitumen recovery but also enhanced fine solids settling in the tailings stream. To understand the role of HPAM, single-molecule force spectroscopy was employed for the first time to measure the desorption/adhesion forces of single HPAM molecules on silica, mica, and bitumen surfaces using an atomic force microscope (AFM). Silicon wafers with an oxidized surface layer and newly cleaved mica were used, respectively, to represent sand grains and clays in oil sands. The force measurements were carried out in deionized water and in commercial plant process water under equilibrium conditions. The desorption/adhesion forces of HPAM obtained on mica, silica, and bitumen surfaces were approximately 200, 40, and 80 pN in deionized water and approximately 100, 50, and 40 pN in the plant process water, respectively. The measured adhesion forces together with the zeta potential values of these surfaces indicate that the polymer would preferentially adsorb onto clay surfaces rather than onto bitumen surfaces. It is the selective adsorption of HPAM that benefits both bitumen recovery and tailings settling when the polymer was added directly to the bitumen extraction process at an appropriate dosage.

  14. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  15. Nerve growth factor translates stress response and subsequent murine abortion via adhesion molecule-dependent pathways.

    PubMed

    Tometten, Mareike; Blois, Sandra; Kuhlmei, Arne; Stretz, Anna; Klapp, Burghard F; Arck, Petra C

    2006-04-01

    Spontaneous abortion is a frequent threat affecting 10%-25% of human pregnancies. Psychosocial stress has been suggested to be attributable for pregnancy losses by challenging the equilibrium of systems mandatory for pregnancy maintenance, including the nervous, endocrine, and immune system. Strong evidence indicates that stress-triggered abortion is mediated by adhesion molecules, i.e., intercellular adhesion molecule 1 (ICAM1) and leukocyte function associated molecule 1, now being referred to as integrin alpha L (ITGAL), which facilitate recruitment of inflammatory cells to the feto-maternal interface. The neurotrophin beta-nerve growth factor (NGFB), which has been shown to be upregulated in response to stress in multiple experimental settings including in the uterine lining (decidua) during pregnancy, increases ICAM1 expression on endothelial cells. Here, we investigated whether and how NGFB neutralization has a preventive effect on stress-triggered abortion in the murine CBA/J x DBA/2J model. We provide experimental evidence that stress exposure upregulates the frequency of abortion and the expression of uterine NGFB. Further, adhesion molecules ICAM1 and selectin platelet (SELP, formerly P-Selectin) and their ligands ITGAL and SELP ligand (SELPL, formerly P selectin glycoprotein ligand 1) respectively increase in murine deciduas in response to stress. Subsequently, decidual cytokines are biased toward a proinflammatory and abortogenic cytokine profile. Additionally, a decrease of pregnancy protective CD8alpha(+) decidual cells is present. Strikingly, all such uterine stress responses are abrogated by NGFB neutralization. Hence, NGFB acts as a proximal mediator in the hierarchical network of immune rejection by mediating an abortogenic environment comprised of classical signs of neurogenic inflammation.

  16. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  17. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  18. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells

    PubMed Central

    Wang, Zhe; von Au, Anja; Schnölzer, Martina; Hackert, Thilo; Zöller, Margot

    2016-01-01

    Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model. A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells. Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake. PMID:27419629

  19. Expression of CD44v6 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma.

    PubMed

    Shiozaki, Midori; Ishiguro, Hideyuki; Kuwabara, Yoshiyuki; Kimura, Masahiro; Mitsui, Akira; Naganawa, Yasuhiro; Shibata, Takahiro; Fujii, Yoshitaka; Takeyama, Hiromitsu

    2011-05-01

    CD44v6 has been causally associated with the development of metastases and with poor prognosis in various human malignancies. To elucidate the clinicopathological significance of CD44v6 expression in esophageal squamous cell carcinoma (ESCC), the present study aimed to investigate the expression of CD44v6 using immunohistological techniques. Using specific antibodies against CD44v6 and CD44s, expression of the proteins was analyzed immunohistochemically in 63 primary esophageal ESCCs, which were previously resected at the Nagoya City University Hospital without pre-operative induction therapy. Using light microscopy, the positive expression of CD44v6 was divided into a low- or high-expression group. The expression of CD44v6 in ESCC was analyzed with respect to various clinicopathological characteristics. The frequency of CD44v6 expression was 90.5% (57/63). The CD44v6 high-expression group comprised 55.6% of the patients (n=35) and the low expression group included 44.4% of the patients (n=28). In this study, no significant difference was observed between any clinicopathological factor and the immunohistochemical expression of CD44v6. In patients with high levels of CD44v6 expression, survival was markedly worse (p=0.0327). Favorable outcomes were observed for the clinicopathological characteristics of 6 patients whose tissue immunohistochemical expression of CD44v6 was not detected. Moreover, multivariate analysis confirmed that expression of CD44v6 was an independent prognostic indicator (risk ratio =2.793; p=0.0301). Overexpression of CD44v6 is a useful prognostic indicator of ESCC. Therefore, CD44v6 should be investigated as a potential target for therapy.

  20. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells.

    PubMed

    Wang, Zhe; von Au, Anja; Schnölzer, Martina; Hackert, Thilo; Zöller, Margot

    2016-08-23

    Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model.A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells.Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake.

  1. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions.

    PubMed Central

    Sasseville, V. G.; Newman, W.; Brodie, S. J.; Hesterberg, P.; Pauley, D.; Ringler, D. J.

    1994-01-01

    Because the mechanisms associated with recruitment of monocytes to brain in AIDS encephalitis are unknown, we used tissues from rhesus monkeys infected with simian immunodeficiency virus (SIV) to examine the relative contributions of various adhesion pathways in mediating monocyte adhesion to endothelium from encephalitic brain. Using a modified Stamper and Woodruff tissue adhesion assay, we found that the human monocytic cell lines, THP-1 and U937, and the B cell line, Ramos, preferentially bound to brain vessels from monkeys with AIDS encephalitis. Using a combined tissue adhesion/immunohistochemistry approach, these cells only bound to vessels expressing vascular cell adhesion molecule-1 (VCAM-1). Furthermore, pretreatment of tissues with antibodies to VCAM-1 or cell lines with antibodies to VLA-4 (CD49d) inhibited adhesion by more than 70%. Intercellular adhesion molecule-1 (ICAM-1)/beta 2 integrin interactions were not significant in mediating cell adhesion to the vasculature in encephalitic simian brain using a cell line (JY) capable of binding rhesus monkey ICAM-1. In addition, selectin-mediated interactions did not significantly contribute to cell binding to encephalitic brain as there was no immunohistochemical expression of E-selectin and P-selectin in either normal or encephalitic brain, nor was there a demonstrable adhesive effect from L-selectin using L-selectin-transfected 300.19 cells on simian encephalitic brain. These results demonstrate that using the tissue adhesion assay, THP-1, U937, and Ramos cells bind to vessels in brain from animals with AIDS encephalitis using VCAM-1/alpha 4 beta 1 integrin interactions and suggest that VCAM-1 and VLA-4 may be integral for monocyte recruitment to the central nervous system during the development of AIDS encephalitis. Images Figure 1 PMID:7507300

  2. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  3. cis Interaction of the Cell Adhesion Molecule CEACAM1 with Integrin β3

    PubMed Central

    Brümmer, Jens; Ebrahimnejad, Alireza; Flayeh, Raid; Schumacher, Udo; Löning, Thomas; Bamberger, Ana-Maria; Wagener, Christoph

    2001-01-01

    CEACAM1 is a cell adhesion molecule that has been implicated in a number of physiological processes (eg, tumor suppressor in epithelial tissues, potent angiogenic factor in microvessel formation, microbial receptor in human granulocytes and epithelial cells). The mechanism of CEACAM1 action is still largely unresolved but recent findings demonstrated that the cytoplasmic CEACAM1 domain is linked indirectly to the actin-based cytoskeleton. We have isolated integrin β3 as an associated protein using CEACAM1 tail affinity purification. This association depends on phosphorylation of Tyr-488 in the CEACAM1 cytoplasmic domain. Confocal laser scanning microscopy confirmed in vivo colocalization of both molecules in human granulocytes and epithelial cells. Furthermore, the concentrated colocalization at the tumor-stroma interface of invading melanoma masses suggests a functional role of CEACAM1-integrin β3 interaction in melanoma invasion. Moreover, colocalization of the two adhesion molecules is also found at the apical surface of glandular cells of pregnancy endometrium. Colocalization of CEACAM1 and integrin β3 at the transitional zone from proliferative to invasive extravillous trophoblast of the maternal-fetal interface supports a role for CEACAM1/integrin β3 complexes in cell invasion. PMID:11485912

  4. Association between genetic variants in adhesion molecules and outcomes after hematopoietic cell transplants.

    PubMed

    Thyagarajan, B; Jackson, S; Basu, S; Jacobson, P; Gross, M D; Weisdorf, D J; Arora, M

    2013-04-01

    Allogeneic hematopoietic cell transplant (HCT) is associated with a high morbidity and mortality. Adhesion molecules play an important role in endothelial activation and initiation of inflammatory response. We hypothesized that single nucleotide polymorphisms (SNPs) in the endothelial molecules may contribute to heterogeneity in HCT outcomes. We evaluated the association of 4 SNPs in ICAM1 (rs5498), PECAM1 (rs668 and rs1131012) and SELL (rs2229569) genes with acute and chronic graft-versus-host disease (GvHD) and those experiencing transplant-related mortality (TRM) within 1 year among 425 allogeneic HCT recipient-donor pairs. Using a Fine and Gray proportional hazards model to evaluate the association between genetic variants and clinical outcomes, after adjustment for recipient age, race, diagnosis, disease status, gender mismatch, cytomegalovirus serostatus, gender, donor type, conditioning regimen and year of transplant, only rs5498 in the ICAM1 gene among both recipients and donors was associated with a decreased risk of TRM (P ≤ 0.02). None of the SNPs were associated with acute or chronic GvHD risk. These findings suggest that genetic variants in the vascular adhesion molecules may be used to identify patients at high risk for TRM.

  5. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP.

  6. Neutrophil adhesion molecule expression during cardiopulmonary bypass: a comparative study of roller and centrifugal pumps.

    PubMed

    Macey, M G; McCarthy, D A; Trivedi, U R; Venn, G E; Chambers, D J; Brown, K A

    1997-09-01

    The purpose of this study was to determine whether adhesion molecules and markers of cell activation were preferentially increased on blood neutrophils during cardiopulmonary bypass (CPB) and whether such effects were influenced by the use of a roller pump or a centrifugal pump. Forty-six patients undergoing open heart surgery were randomly allocated into either the roller or centrifugal groups. Blood (1 ml volumes) was removed from arterial and venous lines immediately before and 1 h after the start of bypass. Whole blood samples were immunolabelled and flow cytometry used to measure the distribution and expression of the adhesion molecules CD11b, CD18, CD62L on neutrophils, monocytes and lymphocytes, in addition to CD64 on neutrophils and monocytes, and CD14 on monocytes. The expression of CD11b was significantly enhanced on neutrophils in arterial and venous samples from both the roller pump (mean 84% and 100% increase, respectively; p < 0.001) and centrifugal pump (mean 74% and 73% increase, respectively; p < 0.001) groups. Neutrophil L-selectin expression increased to a small but significant extent in arterial and venous samples from the centrifugal pump group (mean 16% increase; p < 0.001) and in venous samples from the roller pump group (mean 10% increase; p < 0.01). Neither the percentage of neutrophils bearing CD11b/CD18, CD62L and CD64, nor the expression of adhesion molecules on lymphocytes and monocytes were modified by 1 h of bypass. These results suggest that patients subjected to CPB with roller or centrifugal pumps are equally at risk to neutrophil activation that could lead to increased interaction of these cells with blood vessel walls.

  7. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans.

    PubMed

    Frampton, Mark W; Stewart, Judith C; Oberdörster, Günter; Morrow, Paul E; Chalupa, David; Pietropaoli, Anthony P; Frasier, Lauren M; Speers, Donna M; Cox, Christopher; Huang, Li-Shan; Utell, Mark J

    2006-01-01

    Ultrafine particles (UFPs; aerodynamic diameter < 100 nm) may contribute to the respiratory and cardiovascular morbidity and mortality associated with particulate air pollution. We tested the hypothesis that inhalation of carbon UFPs has vascular effects in healthy and asthmatic subjects, detectable as alterations in blood leukocyte expression of adhesion molecules. Healthy subjects inhaled filtered air and freshly generated elemental carbon particles (count median diameter approximately 25nm, geometric standard deviation approximately 1.6), for 2 hr, in three separate protocols: 10 microg/m3 at rest, 10 and 25 microg/m3 with exercise, and 50 microg/m3 with exercise. In a fourth protocol, subjects with asthma inhaled air and 10 microg/m3 UFPs with exercise. Peripheral venous blood was obtained before and at intervals after exposure, and leukocyte expression of surface markers was quantitated using multiparameter flow cytometry. In healthy subjects, particle exposure with exercise reduced expression of adhesion molecules CD54 and CD18 on monocytes and CD18 and CD49d on granulocytes. There were also concentration-related reductions in blood monocytes, basophils, and eosinophils and increased lymphocyte expression of the activation marker CD25. In subjects with asthma, exposure with exercise to 10 microg/m3 UFPs reduced expression of CD11b on monocytes and eosinophils and CD54 on granulocytes. Particle exposure also reduced the percentage of CD4+ T cells, basophils, and eosinophils. Inhalation of elemental carbon UFPs alters peripheral blood leukocyte distribution and expression of adhesion molecules, in a pattern consistent with increased retention of leukocytes in the pulmonary vascular bed.

  8. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  9. Tumor Specific Regulation of C-CAM Cell Adhesion Molecule in Prostate Cancer Carcinogenesis

    DTIC Science & Technology

    2002-08-01

    692 9. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M., Davidson, N. E., and Baylin, S. B...2001) 115-123 www.elsevier.com/locate/mce Androgen regulation of the cell-cell adhesion molecule-1 (Ceacam i) gene Dillon Phan a, Xiaomei Sui b, Dung...Nature Medicine, 1: 686-692, 1995. 27 34. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M

  10. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    SciTech Connect

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  11. Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties.

    PubMed

    Gambero, Sheley; Canalli, Andreia A; Traina, Fabiola; Albuquerque, Dulcinéia M; Saad, Sara T O; Costa, Fernando F; Conran, Nicola

    2007-02-01

    Propagation of the vaso-occlusive process in sickle cell anaemia (SCA) is a complex process involving the adhesion of steady-state SCA patients red cells and reticulocytes to the vascular endothelium. The effect of hydroxyurea therapy (HUT) on the adhesive properties of sickle cells and the expression of adhesion molecule genes by erythroid cells of SCA individuals is not yet fully understood. The expressions of the CD36 gene and the VLA-4-integrin subunit genes, CD49d (alpha-subunit) and CD29 (beta-subunit), were compared in the reticulocytes of steady-state SCA patients and patients on HUT using real-time PCR. Basal adhesion of red cells from these subjects was also compared using static adhesion assays, as was surface protein expression, using flow cytometry. Basal sickle red cell adhesion to fibronectin was significantly greater than that of normal cells (P < 0.01); in contrast, HUT was associated with significantly lower levels (P < 0.01) of red cell adhesion that were similar to those of control cells; this decrease could not be justified solely by altered reticulocyte numbers in this population. Accordingly, flow cytometry demonstrated that reticulocytes from patients on HUT had significantly lower CD36 and CD49d surface expressions (P < 0.01) and, importantly, significantly lower expressions of the CD36, CD49d and CD29 genes (P < 0.05) than reticulocytes of SCA patients not on HUT. Taken together, data support the hypothesis that HUT reduces the adhesive properties of sickle cells and that this decrease appears to be mediated, at least in part, by a decrease in the gene and, consequently, surface protein expression of adhesion molecules such as VLA-4 and CD36.

  12. Galectin-3 and CD44v6 as markers for preoperative diagnosis of thyroid cancer by RT-PCR.

    PubMed

    Samija, Ivan; Mateša, Neven; Lukač, Josip; Kusić, Zvonko

    2011-12-01

    The aim of the study was to determine the diagnostic value of reverse transcriptase polymerase chain reaction (RT-PCR) analysis of galectin-3 and CD44v6 as markers for preoperative diagnosis of malignancy in lesions of the thyroid. RT-PCR analysis of galectin-3 and CD44v6 expression was performed on RNA isolated from fine-needle aspirates of thyroid lesions from 428 patients. The results were evaluated against the postoperative histopathological diagnosis or definitive cytological diagnosis in cases of nodular goiter and Hashimoto thyroiditis. A total of 57 (13%) samples were inadequate for RT-PCR. Galectin-3 and CD44v6 were positive in 167 (45%) and 158 (43%) out of 371 adequate samples, respectively. Galectin-3 and CD44v6 were positive in 56 (86%) and 54 (83%) out of 65 papillary carcinomas, in 16 (29%) and 18 (32%) out of 56 Hashimoto's thyroiditis, in 61 (34%) and 52 (29%) out of 181 nodular goiters, in 23 (43%) and 23 (43%) out of 53 follicular adenomas, in 3 (100%) and 3 (100%) out of 3 follicular carcinomas, and in 8 (62%) and 8 (62%) out of 13 Hurthle cell adenomas, respectively. Specificity, sensitivity, and positive and negative predictive values in discriminating between malignant and benign thyroid nodules were 64, 87, and 35 and 96% for galectin-3; 67, 84, and 36 and 95% for CD44v6; and 79, 82, and 47 and 95% for the analysis of both markers (considered positive only if both galectin-3 and CD44v6 were positive), respectively. Owing to relatively low specificity, the clinical value of galectin-3 and CD44v6 analysis by RT-PCR as a marker for preoperative diagnosis of malignancy in thyroid lesions is limited.

  13. Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions.

    PubMed

    Duterme, Cecile; Mertens-Strijthagen, Jeannine; Tammi, Markku; Flamion, Bruno

    2009-11-27

    It has long been predicted that the members of the hyaluronidase enzyme family have important non-enzymatic functions. However, their nature remains a mystery. The metabolism of hyaluronan (HA), their major enzymatic substrate, is also enigmatic. To examine the function of Hyal2, a glycosylphosphatidylinositol-anchored hyaluronidase with intrinsically weak enzymatic activity, we have compared stably transfected rat fibroblastic BB16 cell lines with various levels of expression of Hyal2. These cell lines continue to express exclusively the standard form (CD44s) of the main HA receptor, CD44. Hyal2, CD44, and one of its main intracellular partners, ezrin-radixin-moesin (ERM), were found to co-immunoprecipitate. Functionally, Hyal2 overexpression was linked to loss of the glycocalyx, the HA-rich pericellular coat. This effect could be mimicked by exposure of BB16 cells either to Streptomyces hyaluronidase, to HA synthesis inhibitors, or to HA oligosaccharides. This led to shedding of CD44, separation of CD44 from ERM, reduction in baseline level of ERM activation, and markedly decreased cell motility (50% reduction in a wound healing assay). The effects of Hyal2 on the pericellular coat and on CD44-ERM interactions were inhibited by treatment with the Na(+)/H(+) exchanger-1 inhibitor ethyl-N-isopropylamiloride. We surmise that Hyal2, through direct interactions with CD44 and possibly some pericellular hyaluronidase activity requiring acidic foci, suppresses the formation or the stability of the glycocalyx, modulates ERM-related cytoskeletal interactions, and diminishes cell motility. These effects may be relevant to the purported in vivo tumor-suppressive activity of Hyal2.

  14. Overexpression of junctional adhesion molecule-A and EphB2 predicts poor survival in lung adenocarcinoma patients.

    PubMed

    Zhao, Chen; Wang, Aili; Lu, Funian; Chen, Hongxia; Fu, Pin; Zhao, Xianda; Chen, Honglei

    2017-02-01

    Junctional adhesion molecules are important components of tight junctions, and Eph/ephrin proteins constitute the largest family of receptor tyrosine kinases. Both junctional adhesion molecules and Eph/ephrin are involved in normal tissue development and cancer progression. However, the expression levels and clinical significances of junctional adhesion molecule-A, a member of junctional adhesion molecules, and EphB2, a member of Eph/ephrin family, in lung adenocarcinoma patients are unclear. Therefore, in this study, we aimed to identify the expression and prognostic values of junctional adhesion molecule-A and EphB2 in lung adenocarcinoma patients' cohort. In our study, 70 (55.6%) showed high expression of junctional adhesion molecule-A protein and 51 (40.5%) showed high expression of EphB2 protein in 126 lung adenocarcinoma tissues. Junctional adhesion molecule-A and EphB2 expressions were both significantly increased in tumor tissues compared with noncancerous lung tissues. Kaplan-Meier analysis and log-rank test indicated that low expression of junctional adhesion molecule-A and EphB2 proteins can predict better survival and low mortality rate of lung adenocarcinomas. In univariate analysis, high expression levels of junctional adhesion molecule-A and EphB2 were both found to be significantly correlated with poor overall survival of lung adenocarcinoma patients (hazard ratio = 1.791, 95% confidence interval = 1.041-3.084, p = 0.035; hazard ratio = 1.762, 95% confidence interval = 1.038-2.992, p = 0.036, respectively). The multivariate Cox proportional hazard model demonstrated that EphB2 expression is an independent prognosis parameter in lung adenocarcinoma patients (hazard ratio = 1.738, 95% confidence interval = 1.023-2.952, p = 0.016). Taken together, high expression of junctional adhesion molecule-A and EphB2 can predict poor overall survival and high mortality rate, and EphB2 is an independent prognostic biomarker in

  15. An ICAM-1 like cell adhesion molecule is responsible for CD34 positive haemopoietic stem cells adhesion to bone-marrow stroma.

    PubMed

    Rao, S G; Chitnis, V S; Deora, A; Tanavde, V; Desai, S S

    1996-04-01

    The microenvironment in the haematopoietic organs plays an important role in regulating and sustaining differentiation and self-renewal of haematopoietic stem cells. Although crucial for stem cell maintenance and homing, the stromal cell-stem cell interactions are poorly understood. Here we show that an ICAM-like molecule is responsible for stem cell adhesion to stromal cells in vitro. The molecule was characterized by a monoclonal antibody 3E10. Immunoblotting results indicated that the molecule had an electrophoretic mobility equal to that of intercellular cell adhesion molecule-1 (ICAM-1). Binding inhibition assays, however, showed that inhibition of binding of enriched CD34 cells by 3E10 was more prominent in comparison with that of ICAM-1.

  16. The metastasis suppressor, NDRG1, inhibits "stemness" of colorectal cancer via down-regulation of nuclear β-catenin and CD44.

    PubMed

    Wangpu, Xiongzhi; Yang, Xiao; Zhao, Jingkun; Lu, Jiaoyang; Guan, Shaopei; Lu, Jun; Kovacevic, Zaklina; Liu, Wensheng; Mi, Lan; Jin, Runsen; Sun, Jing; Yue, Fei; Ma, Junjun; Lu, Aiguo; Richardson, Des R; Wang, Lishun; Zheng, Minhua

    2015-10-20

    N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target.

  17. Diatomic molecules and metallic adhesion, cohesion, and chemisorption - A single binding-energy relation

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1983-01-01

    Potential-energy relations involving a few parameters in simple analytic forms have been found to represent well the energetics of a wide variety of diatomic molecules. However, such two-atom potential functions are not appropriate for metals. It is well known that, in the case of metals, there exist strong volume-dependent forces which can never be expressed as pairwise interactions. The present investigation has the objective to show that, in spite of the observation concerning metals, a single binding-energy relation can be found which accurately describes diatomic molecules as well as adhesion, cohesion, and chemisorption on metals. This universality reveals a commonality between the molecular and metallic bond.

  18. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

    PubMed Central

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-01-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis. PMID:27600198

  19. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    PubMed Central

    Lu, T T; Yan, L G; Madri, J A

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876219

  20. Quantitative assessment of CD44 genetic variants and cancer susceptibility in Asians: a meta-analysis

    PubMed Central

    Gupta, Usha; Mittal, Balraj; Kim, Jong Joo; Rai, Rajani

    2016-01-01

    CD44 is a well-established cancer stem cell marker playing a crucial role in tumor metastasis, recurrence and chemo-resistance. Genetic variants of CD44 have been shown to be associated with susceptibility to various cancers; however, the results are confounding. Hence, we performed a meta-analysis to clarify these associations more accurately. Overall, rs13347 (T vs. C: OR=1.30, p=<0.004, pcorr=0.032; CT vs. CC: OR=1.29, p=0.015, pcorr=0.047; TT vs. CC: OR=1.77, p=<0.000, pcorr=0.018; CT+TT vs. CC: OR=1.34, p=<0.009, pcorr=0.041) and rs187115 (GG vs. AA: OR=2.34, p=<0.000, pcorr=0.025; AG vs. AA: OR=1.59, p=<0.000, pcorr=0.038; G vs. A allele OR=1.56, p=0.000, pcorr=0.05; AG+GG vs. AA: OR=1.63, p=<0.000, pcorr=0.013) polymorphisms were found to significantly increase the cancer risk in Asians. On the other hand, rs11821102 was found to confer low risk (A vs. G: OR=0.87, p=<0.027, pcorr=0.04; AG vs. GG: OR=0.85, p=<0.017, pcorr=0.01; AG+AA vs. GG: OR=0.86, p=<0.020, pcorr=0.02). Based on our analysis, we suggest significant role of CD44 variants (rs13347, rs187115 and rs11821102) in modulating individual's cancer susceptibility in Asians. Therefore, these variants may be used as predictive genetic biomarkers for cancer predisposition in Asian populations. However, more comprehensive studies involving other cancers and/or populations, haplotypes, gene-gene and gene-environment interactions are necessary to delineate the role of these variants in conferring cancer risk. PMID:27521214

  1. Hyaluronan–CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9

    PubMed Central

    Spessotto, Paola; Rossi, Francesca Maria; Degan, Massimo; Di Francia, Raffaele; Perris, Roberto; Colombatti, Alfonso; Gattei, Valter

    2002-01-01

    Osteoclast (OC) precursors migrate to putative sites of bone resorption to form functionally active, multinucleated cells. The preOC FLG 29.1 cells, known to be capable of irreversibly differentiating into multinucleated OC-like cells, displayed several features of primary OCs, including expression of specific integrins and the hyaluronan (HA) receptor CD44. OC-like FLG 29.1 cells adhered to and extensively migrated through membranes coated with fibronectin, vitronectin, and laminins, but, although strongly binding to HA, totally failed to move on this substrate. Moreover, soluble HA strongly inhibited OC-like FLG 29.1 cell migration on the permissive matrix substrates, and this behavior was dependent on its engagement with CD44, as it was fully restored by function-blocking anti-CD44 antibodies. HA did not modulate the cell–substrate binding affinity/avidity nor the expression levels of the corresponding integrins. MMP-9 was the major secreted metalloproteinase used by OC-like FLG 29.1 cells for migration, because this process was strongly inhibited by both TIMP-1 and GM6001, as well as by MMP-9–specific antisense oligonucleotides. After HA binding to CD44, a strong down-regulation of MMP-9 mRNA and protein was detected. These findings highlight a novel role of the HA–CD44 interaction in the context of OC-like cell motility, suggesting that it may act as a stop signal for bone-resorbing cells. PMID:12235127

  2. α6 Integrin and CD44 enrich for a primary keratinocyte population that displays resistance to UV-induced apoptosis.

    PubMed

    Wray, Helen; Mackenzie, Ian C; Storey, Alan; Navsaria, Harshad

    2012-01-01

    Epidermal human keratinocytes are exposed to a wide range of environmental genotoxic insults, including the UV component of solar radiation. Epidermal homeostasis in response to cellular or tissue damage is maintained by a population of keratinocyte stem cells (KSC) that reside in the basal layer of the epithelium. Using cell sorting based on cell-surface markers, we have identified a novel α6 integrin(high+)/CD44(+) sub-population of basal keratinocytes. These α6 integrin(high+)/CD44(+) keratinocytes have both high proliferative potential, form colonies in culture that have characteristics of holoclones and have a unique pattern of resistance to apoptosis induced by UVB radiation or by agents that induce single- or double strand DNA breaks. Resistance to UVB induced apoptosis in the α6 integrin(high+)/CD44(+) cells involved increased expression of TAp63 and was overcome by PI-3 kinase inhibition. In marked contrast, the α6 integrin(high+)/CD44(+) cells were sensitive to apoptosis induced by the cross-linking agent cisplatin, and imatinib inhibition of c-Abl blocked the ability of cisplatin to kill α6 integrin(high+)/CD44(+) cells. Our findings reveal a population of basal keratinocytes with long-term proliferative properties that display specific patterns of apoptotic resistance that is dependent upon the genotoxic stimulus, and provide insights into how these cells can be targeted with chemotherapeutic agents.

  3. Common polymorphisms in CD44 gene and susceptibility to cancer: a systematic review and meta-analysis of 45 studies

    PubMed Central

    Fang, Tingting; Cai, Yangke; Xu, Yue; Yan, Cunye; Zhang, Li; Liang, Chaozhao

    2016-01-01

    CD44 is one of the commonly recognized stem cell markers, which plays a critical role in many cancer related cellular processes. Relationships between CD44 polymorphisms and cancer risk have been widely investigated previously, whereas results derived from these studies were inconclusive and controversial. We conducted present meta-analysis aiming to explore the association between CD44 polymorphisms and cancer risk. We calculated pooled odds ratios (ORs) corresponding with the 95% confidence intervals (CIs) to make the evaluation clear. Embase, Web of Science, PubMed and Cochrane Library databases were retrieved to identify all eligible publications. As a result, a total of 12 publications comprised 25,777 cases and 27,485 controls fulfilled the inclusion criteria. Nevertheless, the pooled analyses suggested that no significant association was uncovered between CD44 (rs10836347, rs11821102, rs13347, rs1425802, rs353639, rs713330 and rs187115) polymorphisms with overall cancer risk. Subsequently, we conducted subgroup analysis for rs13347 polymorphism based on source of control, and we identified a significantly increased cancer risk for the population-based (P-B) group restricted to a recessive model (TT vs. TC+CC: OR = 2.030, 95%CI: 1.163-3.545, PAdjust < 0.001). In conclusion, our meta-analysis demonstrates that CD44 polymorphisms may not represent risk factors for cancer. Future well-designed large-scale case-control studies are warranted to verify our findings. PMID:27738347

  4. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin.

    PubMed

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-20

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4-64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.

  5. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome.

    PubMed

    Brancati, Francesco; Fortugno, Paola; Bottillo, Irene; Lopez, Marc; Josselin, Emmanuelle; Boudghene-Stambouli, Omar; Agolini, Emanuele; Bernardini, Laura; Bellacchio, Emanuele; Iannicelli, Miriam; Rossi, Alfredo; Dib-Lachachi, Amina; Stuppia, Liborio; Palka, Giandomenico; Mundlos, Stefan; Stricker, Sigmar; Kornak, Uwe; Zambruno, Giovanna; Dallapiccola, Bruno

    2010-08-13

    Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known "nectinopathy" caused by mutations in a nectin adhesion molecule.

  6. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin

    PubMed Central

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-01

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4–64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis. PMID:28106089

  7. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    SciTech Connect

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  8. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  9. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury.

    PubMed

    Arafa, Emad; Bondzie, Philip A; Rezazadeh, Kobra; Meyer, Rosana D; Hartsough, Edward; Henderson, Joel M; Schwartz, John H; Chitalia, Vipul; Rahimi, Nader

    2015-10-01

    Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.

  10. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  11. Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats.

    PubMed

    Abdallah, Dalaal M; Ismael, Naglaa R

    2011-11-01

    Resveratrol, a polyphenol compound with anti-inflammatory properties, has been previously evaluated for its beneficial effects in several ulcerative colitis models. However, the current study elucidates the effect of resveratrol on adhesion molecules, as well as its antioxidant efficacy in a trinitrobenzene sulfonic acid (TNBS)-induced ulcerative-colitis model. Colitis was induced by rectal instillation of TNBS, followed by daily per os administration of either sulphasalazine (300 mg/kg) or resveratrol (2 and 10 mg/kg) for 7 days. Administration of resveratrol decreased the ulcerative area and colon mass index; these effects were further supported by the reduction in colon inflammation grades, as well as histolopathological changes, and reflected by the stalling of body mass loss. The anti-inflammatory effects of resveratrol were indicated by lowered myeloperoxidase activity, and by suppressing ICAM-1 and VCAM-1 levels in the colon and serum. In addition, it restored a reduced colonic nitric oxide level and reinstated its redox balance, as evidenced by the suppression of lipid peroxides and prevention of glutathione depletion. The anti-ulcerative effect of the higher dose of resveratrol was comparable with those of sulphasalazine. The study confirms the anti-ulcerative effect of resveratrol in TNBS-induced experimental colitis via reduction of neutrophil infiltration, inhibition of adhesive molecules, and restoration of the nitric oxide level, as well as the redox status.

  12. The Expression and Prognostic Impact of CD95 Death Receptor and CD20, CD34 and CD44 Differentiation Markers in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    M. Kamazani, Fatemeh; Bahoush-Mehdiabadi, Gholamreza; Aghaeipour, Mahnaz; Vaeli, Shahram; Amirghofran, Zahra

    2014-01-01

    Objective: This study investigated the expression and prognostic significance of the CD95 death receptor and CD20, a B cell-lineage associated marker, along with CD34 and CD44 non-lineage associated molecules in Iranian children with acute lymphoblastic leukemia (ALL). Methods: We performed immunophenotyping for expressions of the molecules in blood samples from children diagnosed with ALL by using a panel of monoclonal antibodies for flow cytometry analysis. The expression of markers was evaluated in relation to clinical and paraclinical features as well as response to treatment in the patients. Findings : CD95 showed a higher expression in T-ALL compared to B-ALL (P<0.001). Analysis of the clinical and laboratory findings at diagnosis in the group of B-ALL patients revealed an association between CD95 expression with lower white blood cell (WBC) numbers and bone marrow blasts (P<0.05). We detected a positive correlation between the expressions of CD95 and CD44 (r=0.445, P<0.01) in B-ALL patients. There was an association between CD20 expression and several poor prognostic factors that included increased extramedullary involvement (EMI) and decreased platelet numbers (P<0.008). The mean expression of CD34 in B-ALL was higher than T-ALL (P=0.004). At follow-up, complete remission duration (CRD) and survival duration did not significantly differ between patients who were positive or negative for each marker. Conclusion: Association of the studied molecules with several prognostic factors implies the significance of CD95 molecule as favorable and CD20 as unfavorable prognostic markers for childhood ALL. PMID:25755857

  13. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus.

    PubMed

    Wyss, Lena; Schäfer, Julia; Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H; Aurrand-Lions, Michel; Plate, Karl H; Imhof, Beat A; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

  14. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes

    PubMed Central

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R.

    2015-01-01

    Human cell adhesion molecules (CAMs) are essential both for a) proper development, modulation and maintenance of interactions between cells and for b) cell-to-cell (and matrix-to-cell) communication about these interactions. CAMs are thus key to proper development and plasticity of organs and tissues that include the brain. Despite recognition of the existence of these dual CAM roles and appreciation of the differential functional significance of these roles, there have been surprisingly few systematic studies that have carefully enumerated the universe of CAMs, identified the preferred roles for specific CAMs in distinct types of cellular connections and communication, or related these issues to specific brain disorders or brain circuits. In this paper, we substantially update and review the set of human genes that are likely to encode CAMs based on searches of databases, literature reviews and annotations. We describe the likely CAMs and the functional CAM subclasses into which they fall. These include “iCAMs”, whose contacts largely mediate cell to cell communication, those involved in focal adhesions, CAM genes whose products are preferentially involved with stereotyped and morphologically-identifiable connections between cells (adherens junctions, gap junctions) and smaller numbers of genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing binding partners of these iCAMs. CAM data from genetic and genomic studies of addiction in humans and mouse models provide examples of the ways in which CAM variation is likely to contribute to a specific brain-based disorder. We discuss how differences in CAM splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 could enrich this picture. CAM expression in dopamine neurons provides one of the ways in which variations in cell adhesion

  15. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  16. Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles

    PubMed Central

    Boere, Janneke; van de Lest, Chris H. A.; Libregts, Sten F. W. M.; Arkesteijn, Ger J. A.; Geerts, Willie J. C.; Nolte-'t Hoen, Esther N. M.; Malda, Jos; van Weeren, P. René; Wauben, Marca H. M.

    2016-01-01

    Extracellular vesicles (EVs) in synovial fluid (SF) are gaining increased recognition as important factors in joint homeostasis, joint regeneration, and as biomarkers of joint disease. A limited number of studies have investigated EVs in SF samples of patients with joint disease, but knowledge on the role of EVs in healthy joints is lacking. In addition, no standardized protocol is available for isolation of EVs from SF. Based on the high viscosity of SF caused by high concentrations of hyaluronic acid (HA) – a prominent extracellular matrix component – it was hypothesized that EV recovery could be optimized by pretreatment with hyaluronidase (HYase). Therefore, the efficiency of EV isolation from healthy equine SF samples was tested by performing sequential ultracentrifugation steps (10,000g, 100,000g and 200,000g) in the presence or absence of HYase. Quantitative EV analysis using high-resolution flow cytometry showed an efficient recovery of EVs after 100,000g ultracentrifugation, with an increased yield of CD44+ EVs when SF samples were pretreated with HYase. Morphological analysis of SF-derived EVs with cryo-transmission-electron microscopy did not indicate damage by high-speed ultracentrifugation and revealed that most EVs are spherical with a diameter of 20–200 nm. Further protein characterization by Western blotting revealed that healthy SF-derived EVs contain CD9, Annexin-1, and CD90/Thy1.1. Taken together, these data suggest that EV isolation protocols for body fluids that contain relatively high amounts of HA, such as SF, could benefit from treatment of the fluid with HYase prior to ultracentrifugation. This method facilitates recovery and detection of CD44+ EVs within the HA-rich extracellular matrix. Furthermore, based on the findings presented here, it is recommended to sediment SF-derived EVs with at least 100,000g for optimal EV recovery. PMID:27511891

  17. A CD44high/EGFRlow subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment.

    PubMed

    La Fleur, Linnea; Johansson, Ann-Charlotte; Roberg, Karin

    2012-01-01

    Mortality in head and neck squamous cell carcinoma (HNSCC) is high due to emergence of therapy resistance which results in local and regional recurrences that may have their origin in resistant cancer stem cells (CSCs) or cells with an epithelial-mesenchymal transition (EMT) phenotype. In the present study, we investigate the possibility of using the cell surface expression of CD44 and epidermal growth factor receptor (EGFR), both of which have been used as stem cell markers, to identify subpopulations within HNSCC cell lines that differ with respect to phenotype and treatment sensitivity. Three subpopulations, consisting of CD44(high)/EGFR(low), CD44(high)/EGFR(high) and CD44(low) cells, respectively, were collected by fluorescence-activated cell sorting. The CD44(high)/EGFR(low) population showed a spindle-shaped EMT-like morphology, while the CD44(low) population was dominated by cobblestone-shaped cells. The CD44(high)/EGFR(low) population was enriched with cells in G0/G1 and showed a relatively low proliferation rate and a high plating efficiency. Using a real time PCR array, 27 genes, of which 14 were related to an EMT phenotype and two with stemness, were found to be differentially expressed in CD44(high)/EGFR(low) cells in comparison to CD44(low) cells. Moreover, CD44(high)/EGFR(low) cells showed a low sensitivity to radiation, cisplatin, cetuximab and gefitinib, and a high sensitivity to dasatinib relative to its CD44(high)/EGFR(high) and CD44(low) counterparts. In conclusion, our results show that the combination of CD44 (high) and EGFR (low) cell surface expression can be used to identify a treatment resistant subpopulation with an EMT phenotype in HNSCC cell lines.

  18. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease.

    PubMed

    Ghatak, Shibnath; Bogatkevich, Galina S; Atnelishvili, Ilia; Akter, Tanjina; Feghali-Bostwick, Carol; Hoffman, Stanley; Fresco, Victor M; Fuchs, John C; Visconti, Richard P; Markwald, Roger R; Padhye, Subhas B; Silver, Richard M; Hascall, Vincent C; Misra, Suniti

    2014-03-14

    The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis.

  19. Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-06-01

    The aim of this study was to evaluate the expression of adhesion molecules on the surface of human endothelial cells in response to the systematic variation in materials properties by the ammonia plasma modification of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE). These adhesion molecules act as mediators of cell adhesion, play a role in the modulation of cell adhesion on biomaterials and therefore condition the response of tissues to implants. First and second passage human umbilical vein endothelial cells (HUVECs) were cultured on plasma treated and untreated PET and PTFE. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. After 1 day and 7 days, the expression of adhesion molecules platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), Integrin alphavbeta3, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin and L-selectin were evaluated using flow cytometry and immunohistochemistry. There was a slight increase in positive cell numbers expressing the adhesion molecules ICAM-1 and VCAM-1 on plasma treated PET and PTFE. A significant increase in E-selectin positive cells on untreated PTFE was demonstrated after 7 days. Stimulation with TNF-alpha demonstrated a significant increase in the proportion of ICAM-1. VCAM-1 and E-selectin positive cells. Almost all cells expressed PECAM-1 and integrin alphavbeta3, on both materials and controls but did not express P- and L-selectin on any surface. When second passage cells were used, the expression of the adhesion molecules ICAM-1 and VCAM-1 was markedly increased on all surfaces but not with TNF-alpha. These significant differences were not observed in other adhesion molecules. These results were supported by immunohistochemical studies. The effects of plasma treated PET and PTFE on cell adhesion and proliferation was also studied. There was a 1.3-fold

  20. The Enhancement of Metallic Silver Monomer Evaporation by the Adhesion of Polar Molecules to Silver Nanocluster Ions

    DTIC Science & Technology

    1994-09-21

    POLAR MOLECULES TO SILVER NANOCLUSTER IONS by Clifton Fagerquist, Dilip K. Sensharma, Angel Rubio, Marvin L. Cohen and M. A. EI-Sayed Prepared for...MOLECULES TO SILVER NANOCLUSTER IONS Clifton K. Fagerquist#, Dilip K. Sensharma and Mostafa A. E1-Sayed* Department of Chemistry and Biochemistry...CZVERED 4. TITLE AND SUBTITLE S. .:UNO:NG :.UMBERS Tl1E ENANCDEET OF METALLIC SILVER MONOMER EVAPORATION .- 1 9Y THE ADHESION OF POLAR MOLECULES TO SILVER

  1. CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells

    PubMed Central

    Gracz, Adam D.; Fuller, Megan K.; Wang, Fengchao; Li, Linheng; Stelzner, Matthias; Dunn, James C.Y.; Martin, Martin G.; Magness, Scott T.

    2013-01-01

    Recent seminal studies have rapidly advanced the understanding of intestinal epithelial stem cell (IESC) biology in murine models. However, the lack of techniques suitable for isolation and subsequent downstream analysis of IESCs from human tissue has hindered the application of these findings toward the development of novel diagnostics and therapies with direct clinical relevance. This study demonstrates that the cluster of differentiation genes CD24 and CD44 are differentially expressed across LGR5 positive “active” stem cells as well as HOPX positive “facultative” stem cells. Fluorescence-activated cell sorting enables differential enrichment of LGR5 cells (CD24−/CD44+) and HOPX (CD24+/CD44+) cells for gene expression analysis and culture. These findings provide the fundamental methodology and basic cell surface signature necessary for isolating and studying intestinal stem cell populations in human physiology and disease. PMID:23553902

  2. Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-12-01

    We used a coculture model to evaluate the inflammatory potential of ammonia gas plasma modified PET and PTFE by flow cytometry and immunohistochemistry. In these studies, human endothelial cells from umbilical cord (HUVEC) and promonocytic U937 cells were used. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. U937 adhesion to endothelium on each surface was evaluated at day 1 and day 7. To further investigate the role of leukocyte-endothelial cell adhesion molecules (CAMs) in cell-to-cell interaction on material surfaces, the expression of the leukocyte-endothelial CAMs: ICAM-1, VCAM-1, PECAM-1, and E-selectin on HUVECs were evaluated after U937 cell adhesion. The results demonstrated that plasma treated PET (T-PET) and treated PTFE (T-PTFE) did not increase U937 cell adhesion compared to the negative control. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7, which is consistent with our prior observation that T-PET and T-PTFE did not cause HUVECs to increase the expression of adhesion molecules. After U937 cell adhesion, the expression of ICAM-1 and VCAM-1 of HUVECs were not different on T-PET and T-PTFE compared with the negative control. However, the expression of E-selectin was reduced on day 1, but not on day 7. The effects of plasma treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, the cell number increased significantly on the surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion and expression of

  3. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  4. Nomogram Incorporating CD44v6 and Clinicopathological Factors to Predict Lymph Node Metastasis for Early Gastric Cancer

    PubMed Central

    Eom, Bang Wool; Joo, Jungnam; Park, Boram; Jo, Min Jung; Choi, Seung Ho; Cho, Soo-Jeong; Ryu, Keun Won; Kim, Young-Woo; Kook, Myeong-Cherl

    2016-01-01

    Background Treatment strategy for early gastric cancer depends on the probability of lymph node metastasis. The aim of this study is to develop a nomogram predicting lymph node metastasis in early gastric cancer using clinicopathological factors and biomarkers. Methods A literature review was performed to identify biomarkers related to lymph node metastasis in gastric cancer. Seven markers were selected and immunohistochemistry was performed in 336 early gastric cancer tissues. Based on the multivariable analysis, a prediction model including clinicopatholgical factors and biomarkers was developed, and benefit of adding biomarkers was evaluated using the area under the receiver operating curve and net reclassification improvement. Functional study in gastric cancer cell line was performed to evaluate mechanism of biomarker. Results Of the seven biomarkers studied, α1 catenin and CD44v6 were significantly associated with lymph node metastasis. A conventional prediction model, including tumor size, histological type, lymphatic blood vessel invasion, and depth of invasion, was developed. Then, a new prediction model including both clinicopathological factors and CD44v6 was developed. Net reclassification improvement analysis revealed a significant improvement of predictive performance by the addition of CD44v6, and a similar result was shown in the internal validation using bootstrapping. Prediction nomograms were then constructed based on these models. In the functional study, CD44v6 was revealed to affect cell proliferation, migration and invasion. Conclusions Overexpression of CD44v6 was a significant predictor of lymph node metastasis in early gastric cancer. The prediction nomograms incorporating CD44v6 can be useful to determine treatment plans in patients with early gastric cancer. PMID:27482895

  5. Overexpression of CD44 is associated with the occurrence and migration of non-small cell lung cancer

    PubMed Central

    Li, Guanghu; Gao, Yufei; Cui, Yongsheng; Zhang, Tao; Cui, Rui; Jiang, Yang; Shi, Jingwei

    2016-01-01

    Non-small cell lung cancer (NSCLC) is a potentially fatal disease and the incidence is increasing annually. In order to diagnose and treat NSCLC effectively, greater understanding of its molecular mechanism is required. In the present study, 36 NSCLC tissues and 10 normal tissues were selected. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the CD44 mRNA expression level in NSCLC tissue and DNA sequencing was performed to further verify the CD44 expression level. Differentially expressed genes between tumor tissues and controls were determined by DNA sequencing and the Gene_act_net between CD44 and its associated genes was constructed. Gene Ontology (GO) term enrichment analysis of the differentially expressed genes was performed by the Biological Networks Gene Ontology tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed based on the Expression Analysis Systematic Explorer test applied in the Database for Annotation, Visualization and Integrated Discovery. RT-qPCR results showed that CD34 was overexpressed in 21 of the 36 NSCLC tissues (58.3%). The Gene_act_net indicated that there were 20 differentially expressed genes with 17 upregulated and 3 downregulated. Among them, CD44, MET, ERBB2, EGFR, AKT1, IQGAP1 and STAT3 were associated with the occurrence and migration of NSCLC. In KEGG pathway analysis, extracellular matrix-receptor interaction and hematopoietic cell lineage pathways were the most affected by overexpressed CD44; and thus may be important in the development and migration of NSCLC. In conclusion, CD44 was overexpressed in NSCLC and the overexpression was associated with the occurrence of NSCLC and migration of NSCLC cells. PMID:27573351

  6. Key Roles of Hyaluronan and Its CD44 Receptor in the Stemness and Survival of Cancer Stem Cells

    PubMed Central

    Chanmee, Theerawut; Ontong, Pawared; Kimata, Koji; Itano, Naoki

    2015-01-01

    Cancer stem cells (CSCs) represent a unique subpopulation of self-renewing oncogenic cells that drive cancer initiation and progression. CSCs often acquire multidrug and oxidative stress resistance and are thereby thought to be responsible for tumor recurrence following treatment and remission. Although the mechanisms responsible for CSC generation, maintenance, and expansion have become a major focus in cancer research, the molecular characteristics of CSCs remain poorly understood. The stemness and subsequent expansion of CSCs are believed to be highly influenced by changes in microenvironmental signals as well as genetic and epigenetic alterations. Hyaluronan (HA), a major component of the extracellular matrix, has recently been demonstrated to provide a favorable microenvironment for the self-renewal and maintenance of stem cells. HA directly and indirectly affects CSC self-renewal by influencing the behavior of both cancer and stromal cells. For instance, HA in the tumor microenvironment modulates the function of tumor-associated macrophages to support CSC self-renewal, and excessive HA production promotes the acquisition of CSC signatures through epithelial-to-mesenchymal transition. The importance of HA in mediating CSC self-renewal has been strengthened by the finding that interactions between HA and its receptor, CD44, propagate the stemness of CSCs. HA–CD44 interactions evoke a wide range of signals required for CSC self-renewal and maintenance. CD44 also plays a critical role in the preservation and multidrug resistance (MDR) of CSCs by transmitting survival and anti-apoptotic signals. Thus, a better understanding of the molecular mechanisms involved in HA and CD44 control of CSC stemness may help in the design of more effective therapies for cancer patients. In this review, we address the key roles of HA and CD44 in CSC self-renewal and maintenance. We also discuss the involvement of CD44 in the oxidative stress and MDR of CSCs. PMID:26322272

  7. Targeting CD44 with nanoparticles in head and neck squamous cell carcinoma: A novel therapeutic strategy against cancer stem cells

    NASA Astrophysics Data System (ADS)

    Thapa, Ranjeeta

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide and is associated with significant morbidity and mortality. Advances in multi-modality treatments have only minimally improved survival rates in the past several years. Recent attention has been focused on the hypothesis that cancer stem cells (CSCs) may be responsible for the failure of current treatments. In HNSCC, a CSC population is contained within the cell fraction that expresses high levels of CD44. CD44 is a cell surface glycoprotein and was the first CSC marker to be described in solid malignancies. in this study, hyaluronan conjugated, dextran-coated super paramagnetic iron-oxide nanoparticles (HA-DESPIONs) were used to target the CD44 population in CD44-overexpressed HNSCC cell lines for treatment by establishing the interaction of HA-DESPIONs with radiation and hyperthermia therapy. The first part of this dissertation studied the cytotoxic, radiosensitizing, and hyperthermic properties of the HA-DESPIONs using cell proliferation and clonogenic survival assays. Cells were grown, plated, treated with HA-DESPIONs, irradiated/exposed to local hyperthermia, and then analyzed for apoptosis. HA-DESPIONs proved to be relatively non-toxic and nonradiosensitizing. However, temperature-dependent cell survival reduction upon incubation with HA-DESPIONs was observed with evidence of apoptotic cell death. These results supported further development of an alternating magnetic field (AMF) approach to activate the HADESPIONs attached to CSCs. In the second part of the dissertation, an AMF generator was constructed and its heat generating effect was tested via kinetic and dose-dependent bulk heating experiments by exposing magnetic nanoparticles to AMF. For elimination of the CD44 population, cells were treated with HA-DESPIONs/DESPIONs, exposed to AMF, and processed for flow cytometrybased apoptosis analysis. Magnetic nanoparticles caused concentration-dependent bulk heating

  8. Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the epithelium of the pig oviduct during oestrus.

    PubMed

    Tienthai, P; Yokoo, M; Kimura, N; Heldin, P; Sato, E; Rodriguez-Martinez, H

    2003-01-01

    Hyaluronan is related to essential reproductive processes in pigs. Hyaluronan produced by cumulus cells builds, via specific cell surface receptors, an extracellular matrix responsible for cumulus cell cloud expansion during final oocyte maturation, a preparatory event for ovulation and fertilization. In addition, hyaluronan that has been localized in the pig oviduct both in the intraluminal fluid and on the surface of the lining epithelium of the preovulatory sperm reservoir, has proven beneficial during in vitro fertilization and embryo culture, thus indicating that it has a role in vivo. This study monitored the immunolocalization, protein determination and gene expression of the major cell surface hyaluronan receptor CD44 in the epithelial lining of the pig oviduct during selected stages of standing oestrus, in relation to spontaneous ovulation. The CD44 immunostaining in the lining epithelium was localized to the surface membrane and the supranuclear domain of mainly the secretory cells, particularly in the sperm reservoir of both treatment (inseminated) and control (non-inseminated) specimens. Up to four hyaluronan-binding protein (HABP) bands (60, 90, 100 and 200 kDa) were detected in the tubal epithelium, and the 200 kDa band was determined as CD44 by immunoblotting. The expression of CD44 mRNA was higher before than after ovulation (P < 0.05), most conspicuously in the uterotubal junction (UTJ). In addition, CD44 expression in the preovulatory UTJ and the ampullary-isthmic junction (AIJ) of control animals was higher than in those that were inseminated (P < 0.05 and P < 0.01 for UTJ and AIJ, respectively). The results demonstrate for the first time that the specific hyaluronan receptor CD44 is expressed by the oviduct epithelial cells during spontaneous oestrus, and is particularly abundant in the sperm reservoir before ovulation. Presence of spermatozoa in this segment seemed to downregulate the receptor. The variation in the expression of CD44 in

  9. Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44.

    PubMed

    Wessels, Deborah; Lusche, Daniel F; Voss, Edward; Kuhl, Spencer; Buchele, Emma C; Klemme, Michael R; Russell, Kanoe B; Ambrose, Joseph; Soll, Benjamin A; Bossler, Aaron; Milhem, Mohammed; Goldman, Charles; Soll, David R

    2017-01-01

    Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs.

  10. Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44

    PubMed Central

    Voss, Edward; Kuhl, Spencer; Buchele, Emma C.; Klemme, Michael R.; Russell, Kanoe B.; Ambrose, Joseph; Soll, Benjamin A.; Bossler, Aaron; Milhem, Mohammed; Goldman, Charles

    2017-01-01

    Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs. PMID:28264026

  11. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation

    PubMed Central

    Ling, Ping; Ngo, Karen; Nguyen, Steven; Thurmond, Robin L; Edwards, James P; Karlsson, Lars; Fung-Leung, Wai-Ping

    2004-01-01

    During mast cell degranulation, histamine is released in large quantities. Human eosinophils were found to express histamine H4 but not H3 receptors. The possible effects of histamine on eosinophils and the receptor mediating these effects were investigated in our studies. Histamine (0.01–30 μM) induced a rapid and transient cell shape change in human eosinophils, but had no effects on neutrophils. The maximal shape change was at 0.3 μM histamine with EC50 at 19 nM. After 60 min incubation with 1 μM histamine, eosinophils were desensitized and were refractory to shape change response upon histamine restimulation. Histamine (0.01–1 μM) also enhanced the eosinophil shape change induced by other chemokines. Histamine-induced eosinophil shape change was mediated by the H4 receptor. This effect was completely inhibited by H4 receptor-specific antagonist JNJ 7777120 (IC50 0.3 μM) and H3/H4 receptor antagonist thioperamide (IC50 1.4 μM), but not by selective H1, H2 or H3 receptor antagonists. H4 receptor agonists imetit (EC50 25 nM) and clobenpropit (EC50 72 nM) could mimic histamine effect in inducing eosinophil shape change. Histamine (0.01–100 μM) induced upregulation of adhesion molecules CD11b/CD18 (Mac-1) and CD54 (ICAM-1) on eosinophils. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 and thioperamide. Histamine (0.01–10 μM) induced eosinophil chemotaxis with an EC50 of 83 nM. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 (IC50 86 nM) and thioperamide (IC50 519 nM). Histamine (0.5 μM) also enhanced the eosinophil shape change induced by other chemokines. In conclusion, we have demonstrated a new mechanism of eosinophil recruitment driven by mast cells via the release of histamine. Using specific histamine receptor ligands, we have provided a definitive proof that the H4 receptor mediates eosinophil chemotaxis, cell shape change and

  12. Epithelial Cell Adhesion Molecule (EpCAM) Regulates Claudin Dynamics and Tight Junctions* ♦

    PubMed Central

    Wu, Chuan-Jin; Mannan, Poonam; Lu, Michael; Udey, Mark C.

    2013-01-01

    Epithelial cell adhesion molecule (EpCAM) (CD326) is a surface glycoprotein expressed by invasive carcinomas and some epithelia. Herein, we report that EpCAM regulates the composition and function of tight junctions (TJ). EpCAM accumulated on the lateral interfaces of human colon carcinoma and normal intestinal epithelial cells but did not co-localize with TJ. Knockdown of EpCAM in T84 and Caco-2 cells using shRNAs led to changes in morphology and adhesiveness. TJ formed readily after EpCAM knockdown; the acquisition of trans-epithelial electroresistance was enhanced, and TJ showed increased resistance to disruption by calcium chelation. Preparative immunoprecipitation demonstrated that EpCAM bound tightly to claudin-7. Co-immunoprecipitation documented associations of EpCAM with claudin-7 and claudin-1 but not claudin-2 or claudin-4. Claudin-1 associated with claudin-7 in co-transfection experiments, and claudin-7 was required for association of claudin-1 with EpCAM. EpCAM knockdown resulted in decreases in claudin-7 and claudin-1 proteins that were reversed with lysosome inhibitors. Immunofluorescence microscopy revealed that claudin-7 and claudin-1 continually trafficked into lysosomes. Although EpCAM knockdown decreased claudin-1 and claudin-7 protein levels overall, accumulations of claudin-1 and claudin-7 in TJ increased. Physical interactions between EpCAM and claudins were required for claudin stabilization. These findings suggest that EpCAM modulates adhesion and TJ function by regulating intracellular localization and degradation of selected claudins. PMID:23486470

  13. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  14. CD133+, CD166+CD44+, and CD24+CD44+ phenotypes fail to reliably identify cell populations with cancer stem cell functional features in established human colorectal cancer cell lines.

    PubMed

    Muraro, Manuele Giuseppe; Mele, Valentina; Däster, Silvio; Han, Junyi; Heberer, Michael; Cesare Spagnoli, Giulio; Iezzi, Giandomenica

    2012-08-01

    Increasing evidence that cancers originate from small populations of so-called cancer stem cells (CSCs), capable of surviving conventional chemotherapies and regenerating the original tumor, urges the development of novel CSC-targeted treatments. Screening of new anticancer compounds is conventionally conducted on established tumor cell lines, providing sufficient material for high-throughput studies. Whether tumor cell lines might comprise CSC populations resembling those of primary tumors, however, remains highly debated. We have analyzed the expression of defined phenotypic profiles, including CD133+, CD166+CD44+, and CD24+CD44+, reported as CSC-specific in human primary colorectal cancer (CRC), on a panel of 10 established CRC cell lines and evaluated their correlation with CSC properties. None of the putative CSC phenotypes consistently correlated with stem cell-like features, including spheroid formation ability, clonogenicity, aldehyde dehydrogenase-1 activity, and side population phenotype. Importantly, CRC cells expressing putative CSC markers did not exhibit increased survival when treated with chemotherapeutic drugs in vitro or display higher tumorigenicity in vivo. Thus, the expression of CD133 or the coexpression of CD166/CD44 or CD24/CD44 did not appear to reliably identify CSC populations in established CRC cell lines. Our findings question the suitability of cell lines for the screening of CSC-specific therapies and underline the urgency of developing novel platforms for anticancer drug discovery.

  15. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerv