Science.gov

Sample records for adhesion molecule icam

  1. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    SciTech Connect

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2003-02-18

    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  2. De novo expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in pancreas cancer.

    PubMed

    Schwaeble, W; Kerlin, M; Meyer zum Büschenfelde, K H; Dippold, W

    1993-01-21

    We examined the expression of intercellular--adhesion molecule-I (ICAM-I, CD54) in 6 surgically removed pancreatic tumors and 8 pancreatic tumor cell lines. Immunohistochemistry revealed a varying percentage of ICAM-I-positive pancreas tumor cells, while normal pancreatic tissue (except for slight reactivity of endothelial cells) was not stained. The presence of the ICAM-I molecule on the cell surface and the expression of ICAM-I mRNA were investigated for 8 different pancreatic tumor cell lines. Three of these (Capan-I, Capan-2, QGP-I) expressed ICAM-I constitutively. In 4 of the ICAM-I-negative pancreas cancer cell lines, it was possible to induce a remarkable expression of ICAM-I by incubating the cells in the presence of inflammatory cytokines, whereas one cell line, 818-4, remained ICAM-I-negative. The responsiveness to either IFN-gamma, TNF-alpha, or IL-I beta treatment was shown to vary from cell line to cell line, indicating complex mechanisms that regulate the expression of ICAM-I at both, the transcriptional and the post-transcriptional level. Interestingly, ICAM-I is shed by pancreatic tumor cells, since soluble sICAM-I was detected in the cell-culture supernatants. In comparison with normal sera, the mean level of sICAM-I in sera of patients with pancreas carcinoma is elevated 2-fold.

  3. Experimental Cerebral Malaria Develops Independently of Endothelial Expression of Intercellular Adhesion Molecule-1 (ICAM-1)*

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Darley, Meghan M.; McDonald, Kristin; Crawford, David F.; Barnum, Scott R.

    2013-01-01

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM. PMID:23493396

  4. Experimental cerebral malaria develops independently of endothelial expression of intercellular adhesion molecule-1 (icam-1).

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Darley, Meghan M; McDonald, Kristin; Crawford, David F; Barnum, Scott R

    2013-04-19

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM.

  5. Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis.

    PubMed Central

    Wuthrich, R. P.; Jevnikar, A. M.; Takei, F.; Glimcher, L. H.; Kelley, V. E.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is a cell-surface protein regulating interactions among immune cells. To determine whether altered expression of ICAM-1 occurs in autoimmune lupus nephritis, we studied ICAM-1 expression in kidneys of normal and autoimmune MRL-lpr and (NZBX NZW)F1 (NZB/W) mice. By immunoperoxidase staining, ICAM-1 is constitutively expressed at low levels in proximal tubules (PT), endothelium and interstitial cells in normal C3H/FeJ mice. In nephritic MRL-lpr and NZB/W kidneys, staining for ICAM-1 is increased in the PT, particularly in the brush border, and is prominent in the glomerular mesangium and the endothelium of large vessels. By Western blot analysis, ICAM-1 is not detected in the urine of normal BALB/c and C3H/FeJ or autoimmune MRL-lpr. By Northern blot analysis, nephritic MRL-lpr and NZB/W have a two- to fivefold increase in steady state levels of ICAM-1 transcripts in the kidney as compared with normal or prenephritic mice. This is paralleled by an increase in MHC class II transcripts. In cultured PT cells, ICAM-1 is expressed at basal levels in PT and is increased by the cytokines interferon-gamma, IL-1 alpha, and TNF-alpha. Thus cytokine-mediated upregulation of ICAM-1 in lupus nephritis may promote interaction of immune cells with renal tissue. The predominant apical expression of ICAM-1 opposite to the basolateral Ia expression suggests a novel role for this adhesion molecule in PT. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:1968316

  6. Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.

    PubMed Central

    Nario, R C; Hubbard, A K

    1997-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721

  7. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    SciTech Connect

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  8. Intercellular Adhesion Molecule-1 (ICAM-1) Polymorphisms and Cancer Risk: A Meta-Analysis

    PubMed Central

    CHENG, Daye; LIANG, Bin

    2015-01-01

    Background: Intercellular adhesion molecule-1 (ICAM-1) Lys469Glu (K469E) polymorphism and Gly 241Arg (G241R) polymorphism might play important roles in cancer development and progression. However, the results of previous studies are inconsistent. The aim of this study was to evaluate the association between ICAM-1 K469E and G241R polymorphisms and the risk of cancer by meta-analysis. Methods: A comprehensive literature search (last search updated in November 2013) was conducted to identify case-control studies that investigated the association between ICAM-1 K469E and G241R polymorphisms and cancer risk. Results: A total of 18 case-control studies for ICAM-1 polymorphisms were included in the meta-analysis, including 4,844 cancer cases and 5,618 healthy controls. For K469E polymorphism, no significant association was found between K469E polymorphism and cancer risk. However, subgroup analysis by ethnicity revealed one genetic comparison (GG vs. AA) presented the relationship with cancer risk in Asian subgroup, and two genetic models (GG+GA vs. AA and GA vs. AA) in European subgroup, respectively. For G241R polymorphism, G241R polymorphism was significantly association with cancer risk in overall analysis. The subgroup analysis by ethnicity showed that G241R polymorphism was significantly associated with cancer risk in European subgroup. Conclusion: ICAM-1 G241R polymorphism might be associated with cancer risk, especially in European populations, but the results doesn’t support ICAM-1 K469E polymorphism as a risk factor for cancer. PMID:26284202

  9. Expression of intercellular adhesion molecule 1 (ICAM-1) on the human oviductal epithelium and mediation of lymphoid cell adherence.

    PubMed

    Utreras, E; Ossandon, P; Acuña-Castillo, C; Varela-Nallar, L; Müller, C; Arraztoa, J A; Cardenas, H; Imarai, M

    2000-09-01

    The epithelium of the human oviduct expresses the major histocompatibility complex (MHC) class II and shows endocytic properties towards luminal antigens. Therefore, the epithelial cells might behave as antigen-presenting cells, inducing a local immune response. The activation of antigen-specific T cells not only requires presentation of the peptide antigen by MHC class II, but also the presence of co-stimulatory molecules in the antigen-presenting cells. Therefore, the expression of the intercellular adhesion molecule 1 (ICAM-1) was examined in the epithelium of the human oviduct. Most oviducts showed epithelial ICAM-1 expression, as assessed by immunocytochemistry, western blot analysis and RT-PCR assay, and the expression was restricted to the luminal border of ciliated and secretory cells. Interferon gamma, interleukin 1 and lipopolysaccharide treatments increased the percentage of ICAM-1-positive cells in primary cultures, indicating that the expression of ICAM-1 in the oviduct might be upregulated in vivo by inflammatory cytokines or bacterial infections. Binding assays between allogenic phytohaemagglutinin-activated lymphocytes and epithelial monolayers expressing ICAM-1 demonstrated that this molecule stimulated lymphocyte adherence. The presence of ICAM-1, in addition to MHC class II, supports the putative role of the oviductal epithelium in antigen presentation. The exclusive apical distribution of ICAM-1 indicates that T-cell activation would occur in a polarized manner. Binding of lymphoid cells to the surface of the oviductal epithelium may help to retain these immune cells that are required for the clearance of pathogens.

  10. Prognostic value of soluble intercellular adhesion molecule-1 (s-ICAM-1) in HIV-infected children.

    PubMed

    Gaddi, E; Laucella, S; Balbaryski, J; Cantisano, C; Barboni, G; Candi, M; Giraudi, V

    2000-12-01

    Central events in the host defence system and immune-mediated damage are tightly regulated by cell adhesion molecules. Sera from 28 human immunodeficiency virus (HIV)-1 infected children divided into groups according to disease severity, six seroreverting (SR) children and 25 healthy controls were studied to detect the presence of soluble intercellular adhesion molecule-1 (s-ICAM-1). Soluble ICAM-1 levels were found to be significantly increased in HIV-infected children in comparison with SR children or healthy controls. Levels of soluble ICAM-1 were higher in patients with severe forms of HIV-infection than in those with a milder form of the disease. Significant differences in titers of s-ICAM-1 were recorded between SR children and HIV-infected children with mild disease or healthy controls. There was a significant correlation between s-ICAM-1 levels and the concentrations of beta 2 microglobulin (beta 2m) and, to a lesser extend, immunoglobulin A levels (IgA). Soluble ICAM-1 levels didn't change considerably in HIV-infected children in stable clinical conditions, independently of their clinical stage of the disease, during a follow-up period of 9-12 months. Conversely, s-ICAM-1 levels increased simultaneously with the appearance of new well-defined clinical disorders or decreased during the improvement of clinical conditions. A significant negative correlation was recorded between the titers of the s-ICAM-1 and the CD4(+) T-cell levels. These results suggest that the s-ICAM-1 might be another useful tool to evaluate disease progression.

  11. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  12. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Regardless of the known anti-inflammatory potential of heterocyclic antidepressants, the mechanisms concerning their modulating effects are not completely known. In our earlier work, maprotiline, a heterocyclic antidepressants, considerably inhibited infiltration of polymorphonuclear cell leucocytes into the inflamed paw. To understand the mechanism involved, we evaluated the effect of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1) expression in stimulated endothelial cells. Endothelial cells were stimulated with lipopolysaccharide (LPS) in the presence and absence of maprotiline (10-8 to 10-6 M) and ICAM-1 and VCAM-1 expression were measured using real-time quantitative reverse transcription polymerase chain reaction. Maprotiline significantly decreased the LPS-induced expression of VCAM-1 at all applied concentrations. The expression of ICAM-1 decreased in the presence of maprotiline at 10-6 M concentration (P<0.05). Since maprotiline inhibits the expression of adhesion molecules, ICAM-1 and VCAM-1 in LPS-stimulated human endothelial cells, it can be a possible way through which maprotiline exerts its anti-inflammatory properties. PMID:27168753

  13. An ICAM-1 like cell adhesion molecule is responsible for CD34 positive haemopoietic stem cells adhesion to bone-marrow stroma.

    PubMed

    Rao, S G; Chitnis, V S; Deora, A; Tanavde, V; Desai, S S

    1996-04-01

    The microenvironment in the haematopoietic organs plays an important role in regulating and sustaining differentiation and self-renewal of haematopoietic stem cells. Although crucial for stem cell maintenance and homing, the stromal cell-stem cell interactions are poorly understood. Here we show that an ICAM-like molecule is responsible for stem cell adhesion to stromal cells in vitro. The molecule was characterized by a monoclonal antibody 3E10. Immunoblotting results indicated that the molecule had an electrophoretic mobility equal to that of intercellular cell adhesion molecule-1 (ICAM-1). Binding inhibition assays, however, showed that inhibition of binding of enriched CD34 cells by 3E10 was more prominent in comparison with that of ICAM-1.

  14. Intercellular adhesion molecule-1 (ICAM-1) in Graves' disease: contrast between in vivo and in vitro results.

    PubMed Central

    Ciampolillo, A; Napolitano, G; Mirakian, R; Miyasaki, A; Giorgino, R; Bottazzo, G F

    1993-01-01

    We have reassessed the possible role of the adhesion molecule ICAM-1 in the pathogenesis of thyroid autoimmunity. In order to do that, we have investigated its expression in eight Graves' thyroids both in vivo (i.e. on cryostat sections and on cell suspensions), and in vitro (i.e. on cells cultured in monolayers for 3 days), and the results were compared with those obtained with similar preparations from four normal glands. On cryostat sections, the expression of ICAM-1, and for comparison that of HLA Class I and Class II molecules, was studied by immunofluorescence (IFL), but the former were also assessed by a distinct immunohistochemical technique. ICAM-1 was not detected in thyrocytes in vivo of both normal and Graves' glands, but solely in endothelial cells and antigen-presenting cells (APC). This selective reaction was confirmed by a four-layer technique using specific markers which identify endothelial cells and thyrocytes. HLA Class II molecules were confirmed to be inappropriately expressed in thyrocytes of Graves' glands, but there was no co-expression of these products and ICAM-1 in the same cells. In contrast, ICAM-1 appeared de novo in a proportion of Graves' and normal thyrocytes soon after the attachment and spreading of these cells in monolayer cultures (36-48 h). Graves' thyrocytes showed a quantitatively higher degree of expression compared with that detected on normal thyroid cells (40-70% versus 12-20%). Under these experimental conditions, the four-layer staining with thyroid microsomal antibodies confirmed that thyrocytes were indeed the positive cells which expressed ICAM-1. Blocking experiments with cultured thyrocytes from two Graves' glands and MoAbs to tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) did not prevent the occurrence of ICAM-1 expression. As a result of our study, we failed to demonstrate that Graves' thyrocytes express ICAM-1 in vivo. The unexpected case of inducing ICAM-1 on thyroid cells under

  15. Intercellular adhesion molecule-1 (ICAM-1) deficiency protects mice against severe forms of experimentally induced colitis

    PubMed Central

    Bendjelloul, F; Malý, P; Mandys, V; Jirkovská, M; Prokešová, L; Tučková, L; Tlaskalová-Hogenová, H

    2000-01-01

    ICAM-1 (CD54), the ligand for LFA-1 and Mac-1, is up-regulated during inflammatory reaction on the activated vascular endothelium. To determine its role in intestinal inflammation, we induced acute experimental colitis in mice with a deleted ICAM-1 gene, by feeding them with 3% dextran sodium sulphate (DSS) in drinking water for 7 days. Chronic colitis was elicited by DSS similarly, followed by 2 weeks with water. In the acute phase of inflammation, ICAM-1-deficient mice exhibited a significantly lower mortality rate (5%) than control C57Bl/6J mice (35%). Control animals, but not the ICAM-1-deficient mice, exhibited diarrhoea and rectal bleeding. Histological examination of large-bowel samples evaluated the intensity of inflammatory changes, and type and extent of mucosal lesions. In the acute phase, 33.3% of samples from ICAM-1-deficient mice exhibited mucosal defects (flat and fissural ulcers), predominantly mild to moderate inflammatory infiltrate within the lamina propria mucosae and lower grades of mucosal lesions. Much stronger inflammatory changes were present in control animals, flat ulcers (sometimes multiple) and fissural ulcers being observed in 62.5% of samples. Mucosal inflammatory infiltrate was moderate to severe, typically with higher grades of mucosal lesions. In chronic colitis, smaller inflammatory changes were found in the large bowel. The two mouse strains differed, the chronic colitis being accompanied by an increased serum level of anti-epithelial IgA autoantibodies in C57Bl/6 control mice but not in ICAM-1-deficient mice. These findings provide direct evidence of the participation of ICAM-1 molecule in the development of experimentally induced intestinal inflammation. PMID:10606964

  16. Soluble intercellular adhesion molecule-1 (sICAM-1) as a marker of disease relapse in idiopathic uveoretinitis.

    PubMed Central

    Zaman, A G; Edelsten, C; Stanford, M R; Graham, E M; Ellis, B A; Direskeneli, H; D'Cruz, D P; Hughes, G R; Dumonde, D C; Wallace, G R

    1994-01-01

    This study reports the results of a point prevalence study of markers of endothelial dysfunction in the serum of patients with idiopathic uveoretinitis. sICAM-1, soluble endothelial leucocyte adhesion molecule (sELAM), anti-endothelial cell antibodies (AECA) and von Willebrand factor (vWF) levels were measured in 32 patients with isolated idiopathic uveoretinitis and seven with uveitis in association with systemic disease, using commercial and in-house ELISAs. Raised levels of AECA were found in 31% of patients with isolated uveitis, vWF in 28%, sELAM in 15.6% and sICAM-1 in 31%. Further analysis revealed that raised sICAM-1 levels were closely associated with recent relapse of disease (P = 0.00003). Patients with accompanying systemic disease were found to have a similar prevalence of these serum abnormalities to those with isolated ocular disease. In conclusion, vascular endothelial dysfunction may contribute to pathogenesis in uveoretinitis, and in particular sICAM-1 may prove a marker of disease relapse in this condition. PMID:7507016

  17. Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection

    PubMed Central

    Arkatkar, Tanvi; Gupta, Rishein; Li, Weidang; Yu, Jieh-Juen; Wali, Shradha; Neal Guentzel, M; Chambers, James P; Christenson, Lane K; Arulanandam, Bernard P

    2015-01-01

    The hallmark of chlamydial infection is the development of upper genital pathology in the form of hydrosalpinx and oviduct and/or tubal dilatation. Although molecular events leading to genital tissue presentation and cellular architectural remodelling are unclear, early-stage host immune responses are believed to contribute to these long-term sequelae. Recently, we reported the contribution of selected infection-associated microRNAs (miRs) in the generation of host immunity at early-stage infection (day 6 after intravaginal Chlamydia muridarum challenge in C57BL/6 mice). In this report, we describe the contribution of an infection-associated microRNA, i.e. miR-214, to host immunity. Chlamydia muridarum infection in the C57BL/6 mouse genital tract significantly down-regulated miR-214 while up-regulating intracellular adhesion molecule 1 (ICAM1) gene expression. These in vivo observations were confirmed by establishing direct regulation of ICAM-1 by miR-214 in ex vivo genital cell cultures in the presence of miR-214 mimic and inhibitor. Because, ICAM-1 contributes to recruitment of neutrophils following infection, we also demonstrated that alteration of ICAM1 by miR-214 in interleukin-17A-deficient (IL-17A−/−) mice correlated with reduction of neutrophils infiltrating genital tissue at day 6 after challenge. Additionally, these early-stage events resulted in significantly decreased genital pathology in IL-17A−/− mice compared with C57BL/6 mice. This report provides evidence for early-stage regulation of ICAM1 by microRNAs, resulting in reduction of genital pathology associated with chlamydial infection. PMID:25865776

  18. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) – A Receptor Associated with Severe Plasmodium falciparum Malaria

    PubMed Central

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R.; Craig, Alister; Hviid, Lars; Jensen, Anja T. R.

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields. PMID:23936131

  19. Expression of intercellular adhesion molecule-3 (ICAM-3/CD50) in malignant lymphoproliferative disorders and solid tumors.

    PubMed

    Terol, M J; Cid, M C; López-Guillermo, A; Juan, M; Yagüe, J; Miralles, A; Vilella, R; Vives, J; Cardesa, A; Montserrat, E; Campo, E

    1996-10-01

    ICAM-3/CD50 is a recently described LFA-1 counter receptor that seems to play an important role in the initiation of immune responses. In this study we have examined the expression of ICAM-3/CD50 in a large series of human neoplasms including 101 Non-Hodgkin's lymphomas (NHL), 26 Hodgkin's disease, and 38 solid tumors to define the distribution patterns of this molecule in malignant neoplasms and their possible correlation with clinical and pathological characteristics of the patients. In NHL, ICAM-3/CD50 was expressed in almost all the tumors with a tendency to be lost in high grade lymphomas. Reed-Sternberg cells and their variants in Hodgkin's disease were always negative independently of the histological subtype of the disease. No expression was observed in tumor epithelial cells of the 38 solid tumors examined. Strong endothelial cell staining was observed in 31% of the NHL and 31% of Hodgkin's disease. ICAM-3 expression in these cases was restricted to small tumor vessels. ICAM-3 expression in endothelial cells of NHL was significantly more frequent in high grade (40%) than in low grade lymphomas (14%) (p = 0.012). In addition, tumor vessels were also positive in 29% of solid tumors independently of the histological type. No correlation was observed between ICAM-3 expression in tumor or endothelial cells and other clinical and pathological characteristics of the patients. These findings indicate that ICAM-3 expression in human tumors is restricted to hematological neoplasms with a tendency to be lost in high grade lymphomas and Hodgkin's disease. ICAM-3 is also expressed by endothelial cells from tumor-associated neovascularization in both lymphoid and solid tumors.

  20. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  1. Adhesion molecules in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Geboes, K.; Al-Kharashi, S.; Tabbara, K.; Missotten, L.; Desmet, V.

    1997-01-01

    AIMS/BACKGROUND—Adhesion molecules play a key role in the selective recruitment of different leucocyte population to inflammatory sites. The purpose of the present study was to investigate the presence and distribution of adhesion molecules in the conjunctiva of patients with vernal keratoconjunctivitis (VKC).
METHODS—The presence and distribution of adhesion molecules were studied in 14 conjunctival biopsy specimens from seven patients with active VKC and in four normal conjunctival biopsy specimens. We used a panel of specific monoclonal antibodies (mAbs) directed against intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-3 (ICAM-3), lymphocyte function associated antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leucocyte adhesion molecule-1 (ELAM-1). In addition, a panel of mAbs were used to characterise the composition of the inflammatory infiltrate.
RESULTS—In the normal conjunctiva, ICAM-1 was expressed on the vascular endothelium only, LFA-1 and ICAM-3 on epithelial and stromal mononuclear cells , and VLA-4 on stromal mononuclear cells. The expression of VCAM-1 and ELAM-1 was absent. The number of cells expressing adhesion molecules was found to be markedly increased in all VKC specimens. This was concurrent with a heavy inflammatory infiltrate. Strong ICAM-1 expression was induced on the basal epithelial cells, and vascular endothelial cells. Furthermore, ICAM-1 was expressed on stromal mononuclear cells. LFA-1 and ICAM-3 were expressed on the majority of epithelial and stromal infiltrating mononuclear cells. VLA-4 expression was noted on stromal mononuclear cells. Compared with controls, VKC specimens showed significantly more ICAM-3+, LFA-1+, and VLA-4+ cells. VCAM-1 and ELAM-1 were induced on the vascular endothelial cells.
CONCLUSIONS—Increased expression of adhesion molecules may play an important role in the pathogenesis of VKC.

 PMID

  2. Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 (ICAM-1) expression of the ECV304 cell line: implications for macular degeneration.

    PubMed

    Penfold, P L; Wen, L; Madigan, M C; Gillies, M C; King, N J; Provis, J M

    2000-09-01

    Whilst animal studies and a pilot clinical trial suggest that intravitreal triamcinolone acetonide (TA) may be useful in the treatment of age-related macular degeneration (AMD), its mode of action remains to be fully elucidated. The present study has investigated the capacity of TA to modulate the expression of adhesion molecules and permeability using a human epithelial cell line (ECV304) as a model of the outer blood-retinal barrier (BRB). The influence of TA on the expression of ICAM-1 and MHC-I was studied on resting and phorbol myristate acetate (PMA)- or interferon-gamma (IFN-gamma)- and/or tumour necrosis factor-alpha (TNF-alpha)-activated cells using flow cytometry and immunocytochemistry. Additionally, ECV304 cells were grown to confluence in uncoated Transwell chambers; transepithelial resistance (TER) across resting and PMA-activated cells was monitored. TA significantly decreased the paracellular permeability of ECV304 cells and down-regulated ICAM-1 expression, consistent with immunocytochemical observations. PMA-induced permeability changes were dose-dependent and TA decreased permeability of both resting and PMA-activated monolayers. MHC-I expression by ECV304 cells however, was not significantly affected by TA treatment. The modulation of TER and ICAM-1 expression in vitro correlate with clinical observations, suggesting re-establishment of the BRB and down-regulation of inflammatory markers are the principal effects of intravitreal TA in vivo. The results further indicate that TA has the potential to influence cellular permeability, including the barrier function of the retinal pigment epithelium (RPE) in AMD-affected retinae.

  3. Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule 1 (ICAM-1) on the surface of cultured human keratinocytes

    SciTech Connect

    Norris, D.A.; Lyons, M.B.; Middleton, M.H.; Yohn, J.J.; Kashihara-Sawami, M. )

    1990-08-01

    Interactions of the ligand/receptor pair LFA-1(CD11a/CD18) and ICAM-1(CD54) initiate and control the cell-cell interactions of leukocytes and interactions of leukocytes with parenchymal cells in all phases of the immune response. Induction of the intercellular adhesion molecule 1 (ICAM-1) on the surface of epidermal keratinocytes has been proposed as an important regulator of contact-dependent aspects of cutaneous inflammation. Ultraviolet radiation (UVR) also modifies cutaneous inflammation, producing both up- and down-regulation of contact hypersensitivity. We have found that UVR has a biphasic effect on the induction of keratinocyte CD54. Using immunofluorescence and FACS techniques to quantitate cell-surface CD54 staining, we have shown that UVR significantly (p less than 0.01) inhibits keratinocyte CD54 induction by gamma interferon 24 h after irradiation. However, at 48, 72, and 96 h after UVR, CD54 expression is significantly induced to levels even greater than are induced by gamma interferon (20 U/ml). In addition, at 48, 72, or 96 h following UVR (30-100 mJ/cm2), the gamma-interferon-induced CD54 expression on human keratinocytes is also strongly (p less than 0.05 to p less than 0.001) enhanced. In this cell-culture system, gamma interferon and TNF-alpha are both strong CD54 inducers and are synergistic, but GM-CSF, TFG-beta, and IL-1 have no direct CD54-inducing effects. Thus the effects of UVR on CD54 induction are biphasic, producing inhibition at 24 h and induction at 48, 72, and 96 h. This effect on CD54 may contribute to the biphasic effects of UVR on delayed hypersensitivity in vivo. The early inhibition of ICAM-1 by UVR may also contribute to the therapeutic effects of UVR. We also speculate that the late induction of ICAM-1 by UVR might be an important step in the induction of photosensitive diseases such as lupus erythematosus.

  4. Distribution of LCA protein subspecies and the cellular adhesion molecules LFA-1, ICAM-1 and p150,95 within human foetal thymus.

    PubMed Central

    Harvey, J E; Jones, D B

    1990-01-01

    The distribution of leucocyte common antigen (LCA) protein subspecies and the cellular adhesion molecules LFA-1 (CD11a), ICAM-1 (CD54) and p150,95 (CD11c) has been established within frozen sections of human foetal thymus. Whereas over 95% of foetal cortical thymocytes and approximately 85% of medullary thymocytes were CD45RO positive, CD45RA was only expressed by approximately 29% of medullary thymocytes. The majority of foetal thymocytes also expressed CD11a, whereas CD54 was expressed by thymic epithelial and accessory cells and also apparently by some cortical thymocytes adjacent to epithelial cells. The distribution of CD54 and the major histocompatibility complex (MHC) class II molecule HLA-DR, demonstrated with a monoclonal antibody to a monomorphic determinant, was similar. The CD11c molecule was present on a population of dendritic-type accessory cells, but was absent from the large, scavenger, KiM8-positive macrophages occurring throughout the thymic cortex. Images Figure 1 Figure 2 PMID:1973681

  5. MIP-1α enhances Jurkat cell transendothelial migration by up-regulating endothelial adhesion molecules VCAM-1 and ICAM-1.

    PubMed

    Ma, Yi-Ran; Ma, Ying-Huan

    2014-11-01

    The aim of this study is to evaluate the expression of macrophage inflammatory protein-1α (MIP-1α) in Jurkat cells and its effect on transendothelial migration. In the present study, human acute lymphoblastic leukemia Jurkat cells (Jurkat cells) were used as a model of T cells in human T-cell acute lymphoblastic leukemia (T-ALL), which demonstrated significantly higher MIP-1α expression compared with that in normal T-cell controls. The ability of Jurkat cells to cross a human brain microvascular endothelial cell (HBMEC) monolayer was almost completely abrogated by MIP-1α siRNA. In addition, the overexpression of MIP-1α resulted in the up-regulated expression of endothelial adhesion molecules, which enhanced the migration of Jurkat cells through a monolayer of HBMEC. MIP-1α levels in Jurkat cells appeared to be an important factor for its transendothelial migration, which may provide the theoretical basis to understand the mechanisms of brain metastases of T-ALL at cellular and molecular levels.

  6. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes.

    PubMed

    Glowinska, Barbara; Urban, Miroslawa; Peczynska, Jadwiga; Florys, Bozena

    2005-08-01

    The attachment of monocytes and lymphocytes to endothelial cells, which initiates atherosclerosis, arises under the influence of adhesion molecules. The preclinical phase of this disease lasts many decades, and this provides an opportunity for the presymptomatic detection of high-risk subjects. We evaluated levels of the adhesion molecules: sICAM-1 (soluble intercellular adhesion molecule 1), sVCAM-1 (soluble vascular adhesion molecule 1), sE selectin, sP selectin, and sL selectin in children with atherosclerosis risk factors (n = 123, mean age 15.1 years) (obese [n = 17], hypertensive [n = 25], obese with hypertension [n = 30], type 1 diabetic [n = 51]). Twenty-seven healthy children formed the control group, mean age 15.2 years. sICAM-1 was higher in the study group compared with control (314.1 +/- 61 vs 264.9 +/- 55 ng/mL, P < .01). The same was found for sVCAM-1 (513.7 +/- 187 vs 407.9 +/- 76 ng/mL, P < .05) and E selectin (86.04 +/- 33.6 vs 62.1 +/- 20.3 ng/mL, P < .01). sP-selectin and sL-selectin levels were not different compared with controls. E selectin correlated with body mass index (BMI; r = 0.18, P = .03), total cholesterol (r = 0.2, P = .016), and triglycerides (r = 0.22, P = .008). sICAM-1 correlated with BMI (r = 0.19, P = .019) and systolic blood pressure (r = 0.13, P = .045). In multiple linear regression analysis, sE selectin was found to be associated with triglycerides (R2 = 0.29, P = .045), sICAM-1 dependent on BMI (R2 = 0.58, P = .047), and sVCAM-1 dependent on total cholesterol (R2 = 0.51, P = .006). Elevated concentrations of sICAM-1, sVCAM-1, and E selectin were found in obese, hypertensive, and diabetic children. We conclude that endothelial activation appears in these children, and adhesion molecules are related to the earliest stages of atherosclerosis.

  7. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  8. The Effect of Dexmedetomidine on Oxidative Stress Response Following Cerebral Ischemia-Reperfusion in Rats and the Expression of Intracellular Adhesion Molecule-1 (ICAM-1) and S100B

    PubMed Central

    Li, Yanwen; Liu, Shikun

    2017-01-01

    Background Ischemia-reperfusion injury of whole brain involves a complicated pathophysiology mechanism. Dexmedetomidine (Dex) has been shown to have neuro protective functions. This study observed the effect of Dex on serum S100B and cerebral intracellular adhesion molecule-1 (ICAM-1) in a rat model of cerebral ischemia-reperfusion. Material/Methods Healthy Sprague Dawley (SD) rats (males, 7 weeks old) were randomly divided into sham, model, and Dex groups (n=20 each). A cerebral ischemia-reperfusion model was prepared by clipping of the bilateral common carotid artery combined with hypotension. Dex (9 μg/kg) was infused intravenously immediately after reperfusion in the Dex group, while the other two groups received an equal volume of saline. Neural defect score (NDS) was measured at 6 hours, 24 hours, and 72 hours after surgery, with pathological observation of brain tissues. ELISA was then used to test serum S100B protein level. Malondialdehyde (MDA) and superoxide dismutase (SOD) were assayed by spectrometry. Nuclear factor-kappa B (NF-κB) and ICAM-1 levels were determined by real-time (RT)-PCR. Results Model rats had significant injury in the hippocampal CA1 region as shown by elevated NDS, S100B, and MDA levels, higher NF-κB and ICAM-1 mRNA expression, and lower SOD levels (p<0.05). Dex treatment improved pathological injury, decreased NDS, S100B, and MDA levels, decreased expression of mRNA of NF-κB and ICAM-1, and increased SOD levels. Conclusions Dex alleviated ischemia-reperfusion damage to rat brains, and inhibited NF-κB and ICAM-1 expression in brain tissues, possibly via inhibiting oxidative stress and inflammatory response. PMID:28212354

  9. The Effect of Dexmedetomidine on Oxidative Stress Response Following Cerebral Ischemia-Reperfusion in Rats and the Expression of Intracellular Adhesion Molecule-1 (ICAM-1) and S100B.

    PubMed

    Li, Yanwen; Liu, Shikun

    2017-02-17

    BACKGROUND Ischemia-reperfusion injury of whole brain involves a complicated pathophysiology mechanism. Dexmedetomidine (Dex) has been shown to have neuro protective functions. This study observed the effect of Dex on serum S100B and cerebral intracellular adhesion molecule-1 (ICAM-1) in a rat model of cerebral ischemia-reperfusion. MATERIAL AND METHODS Healthy Sprague Dawley (SD) rats (males, 7 weeks old) were randomly divided into sham, model, and Dex groups (n=20 each). A cerebral ischemia-reperfusion model was prepared by clipping of the bilateral common carotid artery combined with hypotension. Dex (9 μg/kg) was infused intravenously immediately after reperfusion in the Dex group, while the other two groups received an equal volume of saline. Neural defect score (NDS) was measured at 6 hours, 24 hours, and 72 hours after surgery, with pathological observation of brain tissues. ELISA was then used to test serum S100B protein level. Malondialdehyde (MDA) and superoxide dismutase (SOD) were assayed by spectrometry. Nuclear factor-kappa B (NF-kB) and ICAM-1 levels were determined by real-time (RT)-PCR. RESULTS Model rats had significant injury in the hippocampal CA1 region as shown by elevated NDS, S100B, and MDA levels, higher NF-κB and ICAM-1 mRNA expression, and lower SOD levels (p<0.05). Dex treatment improved pathological injury, decreased NDS, S100B, and MDA levels, decreased expression of mRNA of NF-κB and ICAM-1, and increased SOD levels. CONCLUSIONS Dex alleviated ischemia-reperfusion damage to rat brains, and inhibited NF-κB and ICAM-1 expression in brain tissues, possibly via inhibiting oxidative stress and inflammatory response.

  10. Intermediate monomer-dimer equilibrium structure of native ICAM-1: implication for enhanced cell adhesion.

    PubMed

    Oh, Hyun-Mee; Kwon, Min-Sung; Kim, Hyang-Jin; Jeon, Byeong-Hun; Kim, Hye-Ran; Choi, Hyang-Ok; Na, Bo-Ra; Eom, Soo-Hyun; Song, Nam Woong; Jun, Chang-Duk

    2011-01-15

    Dimeric intercellular adhesion molecule-1 (ICAM-1) has been known to more efficiently mediate cell adhesion than monomeric ICAM-1. Here, we found that truncation of the intracellular domain of ICAM-1 significantly enhances surface dimerization based on the two criteria: 1) the binding degree of monomer-specific antibody CA-7 and 2) the ratio of dimer/monomer when a mutation (L42→C42) was introduced in the interface of domain 1. Mutation analysis revealed that the positively charged amino acids, including very membrane-proximal ⁵⁰⁵R, are essential for maintaining the structural transition between the monomer and dimer. Despite a strong dimer presentation, the ICAM-1 mutants lacking an intracellular domain (IC1ΔCTD) or containing R to A substitution in position 505 (⁵⁰⁵R/A) supported a lower degree of cell adhesion than did wild-type ICAM-1. Collectively, these results demonstrate that the native structure of surface ICAM-1 is not a dimer, but is an intermediate monomer-dimer equilibrium structure by which the effectiveness of ICAM-1 can be fully achieved.

  11. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes.

    PubMed

    Colmenares, María; Puig-Kröger, Amaya; Pello, Oscar Muñiz; Corbí, Angel L; Rivas, Luis

    2002-09-27

    Dendritic cells (DCs) play a critical role in the initiation of the immunological response against Leishmania parasites. However, the receptors involved in amastigote-dendritic cell interaction are unknown, especially in absence of opsonizing antibodies. We have studied the interaction of Leishmania pifanoi axenic amastigotes with the C-type lectin DC-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin (DC-SIGN, CD209), a receptor for ICAM-2, ICAM-3, human immunodeficiency virus gp120, and Ebola virus. L. pifanoi amastigotes interact with immature human dendritic cells and CD209-transfected K562 cells in a time- and dose-dependent manner. Leishmania amastigote binding to human dendritic cells and DC-SIGN-transfected cells is inhibited by a function-blocking DC-SIGN-specific monoclonal antibody. More importantly, this monoclonal antibody dramatically reduces internalization of Leishmania amastigotes by immature human DCs. These results constitute the first description of a nonviral pathogen ligand for DC-SIGN and provide evidence for a relevant role of DC-SIGN in Leishmania amastigote uptake by dendritic cells. Our finding has important implications for Leishmania host-cell interaction and the immunoregulation of cutaneous leishmaniasis.

  12. Association of Polymorphisms in Intercellular Adhesion Molecule 1 (ICAM-1) Gene with Cancer Susceptibility: A Meta-Analysis of 14 Case-Control Studies.

    PubMed

    Zhang, Xiaolong; Huang, Junjie; Bai, Jian; Lu, Wei; Zhang, Meng; Mei, Hongbing

    2016-02-21

    BACKGROUND Many epidemiology studies have indicated that polymorphisms in ICAM-1 are associated with a variety of cancers, but published data are contradictory and inconclusive. Therefore, we conducted the current meta-analysis to elaborate the effects of ICAM-1 polymorphisms (rs5491, rs3093030, rs281432, and rs1799969) on cancer susceptibility. MATERIAL AND METHODS We conducted a comprehensive literature search in PubMed, Web of Science, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between ICAM-1 polymorphisms and cancer susceptibility. RESULTS We enrolled 14 published case-control studies including 4608 cancer cases and 4913 controls. We found an increased susceptibility of cancer in polymorphism rs1799969 (C vs. T: OR=1.662, 95%CI=1.288-2.143, p=0141; CT vs. TT: OR=1.860, 95%CI=1.398-2.474, p=0.507; CC+CT vs. TT: OR=1.812, 95%CI=1.373-2.391, p=0.284) of ICAM-1 among the overall population. However, no association between polymorphisms rs5491, rs3093030, or rs281432 of ICAM-1 and cancer susceptibility was identified. In the stratification analysis by ethnicity, we identified an increased susceptibility for Asians in rs3093030 polymorphism (CC vs. TC+TT: OR=1.728, 95% CI=1.234-2.421, p=0.787). CONCLUSIONS Our results suggest that the ICAM-1 polymorphism rs1799969 is significantly associated with increased susceptibility to overall cancer. Further studies (preferably prospective) are warranted to validate these relationships.

  13. Recruitment and proliferation of T lymphocytes is supported by IFNgamma- and TNFalpha-activated human osteoblasts: Involvement of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and CXCR3 chemokine receptor.

    PubMed

    Lisignoli, Gina; Toneguzzi, Stefania; Piacentini, Anna; Cristino, Sandra; Cattini, Luca; Grassi, Francesco; Facchini, Andrea

    2004-03-01

    The mechanism by which osteoblasts (OB) interact and modulate the phenotype and proliferation of T lymphocytes during inflammation is not well known. The effects of two regulatory cytokines, TNFalpha and IFNgamma, on the expression of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and the CXCR3 ligands (CXCL9, CXCL10, CXCL11), were assessed in a primary culture of human OB by real-time PCR, flow cytometry, and immunohistochemistry. In addition, we functionally evaluated the recruitment and proliferation of T lymphocytes grown with resting or stimulated OB. According to the present data IFNgamma, either alone or in combination with TNFalpha, significantly up-regulates the expression of CD54 and CD106 and induces the expression and release of CXCL9, CXCL10, CXCL11 in OB. The supernatant of TNFalpha- and IFNgamma-activated OB induces the recruitment of T lymphocytes more significantly than stimulation by CXCR3 ligands. T lymphocyte proliferation is significantly enhanced by direct contact with TNFalpha- and IFNgamma-activated OB or by incubation with the supernatant of TNFalpha- and IFNgamma-activated OB. Blocking experiments with anti-CD11a, anti-CD49d, anti-CXCR3, and Bordetella pertussis toxin demonstrate that adhesion molecules and the CXCR3 chemokine receptor play a key role in the proliferation of T lymphocytes. The present study demonstrates the involvement of adhesion molecules (CD11a and CD49d) and chemokine receptor (CXCR3) in the mechanism by which OB recruit, interact, and modulate T lymphocyte proliferation under inflammatory conditions.

  14. Role of ICAM-1 polymorphisms (G241R, K469E) in mediating its single-molecule binding ability: Atomic force microscopy measurements on living cells

    SciTech Connect

    Bai, Rui; Yi, Shaoqiong; Zhang, Xuejie; Liu, Huiliang; Fang, Xiaohong

    2014-06-13

    Highlights: • We evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations. • AFM was used to measure single-molecule binding ability on living cells. • The SNP of ICAM-1 may induce changes in expressions rather than single-molecule binding ability. - Abstract: Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP induced changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands. In the current study, we evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations – GK (G241/K469), GE (G241/E469), RK (R241/K469) and RE (R241/E469). No difference in adhesion ability was observed via cell adhesion assay or atomic force microscopy (AFM) measurement when comparing the GK, GE, RK, or RE genotypes of ICAM-1 to each other. On the other hand, flow cytometry suggested that there was significantly higher expression of GE genotype of ICAM-1 on transfected CHO cells. Thus, we concluded that genetic susceptibility to diseases related to ICAM-1 polymorphisms, G241R or K469E, might be due to the different expressions of ICAM-1 variants rather than to the single-molecule binding ability of ICAM-1.

  15. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  16. Functional Mineralocorticoid Receptors in Human Vascular Endothelial Cells Regulate ICAM-1 Expression and Promote Leukocyte Adhesion

    PubMed Central

    Caprio, Massimiliano; Newfell, Brenna G.; la Sala, Andrea; Baur, Wendy; Fabbri, Andrea; Rosano, Giuseppe; Mendelsohn, Michael E.; Jaffe, Iris Z.

    2008-01-01

    In clinical trials, aldosterone antagonists decrease cardiovascular mortality and ischemia by unknown mechanisms. The steroid hormone aldosterone acts by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor. In humans, aldosterone causes MR-dependent endothelial cell (EC) dysfunction and in animal models, aldosterone increases vascular macrophage infiltration and atherosclerosis. MR antagonists inhibit these effects without changing blood pressure, suggesting a direct role for vascular MR in EC function and atherosclerosis. Whether human vascular EC express functional MR is not known. Here we show that human coronary artery and aortic EC express MR mRNA and protein and that EC MR mediates aldosterone-dependent gene transcription. Human EC also express the enzyme 11-beta hydroxysteroid dehydrogenase-2(11βHSD2) and inhibition of 11βHSD2 in aortic EC enhances gene transactivation by cortisol, supporting that EC 11βHSD2 is functional. Furthermore, aldosterone stimulates transcription of the proatherogenic leukocyte-EC adhesion molecule Intercellular Adhesion Molecule-1(ICAM1) gene and protein expression on human coronary artery EC, an effect inhibited by the MR antagonist spironolactone and by MR knock-down with siRNA. Cell adhesion assays demonstrate that aldosterone promotes leukocyte-EC adhesion, an effect that is inhibited by spironolactone and ICAM1 blocking antibody, supporting that aldosterone induction of EC ICAM1 surface expression via MR mediates leukocyte-EC adhesion. These data show that aldosterone activates endogenous EC MR and proatherogenic gene expression in clinically important human EC. These studies describe a novel mechanism by which aldosterone may influence ischemic cardiovascular events and support a new explanation for the decrease in ischemic events in patients treated with aldosterone antagonists. PMID:18467630

  17. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  18. Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice.

    PubMed Central

    Komatsu, S.; Flores, S.; Gerritsen, M. E.; Anderson, D. C.; Granger, D. N.

    1997-01-01

    Although circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) are frequently used as an indicator of the severity of different immune, inflammatory, or neoplastic diseases, little is known about the factors that govern plasma sICAM-1 concentration and its relationship to the membranous form of ICAM-1 (mICAM-1) expressed on vascular endothelial cells. Plasma sICAM-1 concentration (measured by enzyme-linked immunosorbent assay) and mICAM-1 expression (measured using the dual radiolabeled monoclonal antibody technique) in different vascular beds (eg, lung, small intestine, and spleen) were monitored in wild-type (C57BL) and ICAM-1-deficient mice, before and after administration of tumor necrosis factor (TNF)-alpha. In wild-type mice, TNF-alpha elicited time-dependent increases in lung and intestine mICAM-1 (plateau achieved at 12 hours), with a corresponding increase in plasma sICAM-1 (peaked at 5 hours and then declined). The initial increases in mICAM-1 and pulmonary leukocyte sequestration (measured as lung myeloperoxidase activity) induced by TNF-alpha preceded any detectable elevation in sICAM-1. In ICAM-1-deficient mice, plasma sICAM-1 was reduced by approximately 70%, with > 95% reductions of mICAM-1 in lung and intestine, and > 75% reduction in splenic accumulation of anti-ICAM-1 antibody. Although TNF-alpha doubled plasma sICAM-1 in ICAM-1-deficient mice, mICAM-1 was unaffected in all tissues. Either splenectomy or pretreatment with cycloheximide resulted in an attenuated TNF-induced increase in sICAM-1, without affecting mICAM-1 expression. These findings indicate that plasma sICAM-1 concentration does not accurately reflect the level of ICAM-1 expression on endothelial cells in different vascular beds. PMID:9212746

  19. Interactions between intercellular adhesion molecule-5 positive elements and their surroundings in the rodent visual cortex.

    PubMed

    Kelly, Emily A; Tremblay, Marie-Ève; Gahmberg, Carl G; Tian, Li; Majewska, Ania K

    2013-11-01

    The telencephalon-associated intercellular adhesion molecule 5 (Telencephalin; ICAM-5) regulates dendritic maturation, a process dependent on extracellular proteases in the developing brain. Using transmission electron microscopy, we have reported previously that ICAM-5 is localized primarily in dendritic protrusions during a period of robust synaptogenesis (P14 in mouse visual cortex). As dendritic protrusions mature (P28), ICAM-5 immuno-reactivity shifts from dendritic protrusions into dendritic shafts. ICAM-5 immuno-reactivity does not shift in animals lacking the matrix metalloproteinase-9 (MMP-9), a protease shown to regulate ICAM-5 cleavage. Cleaved ICAM-5 (soluble fraction; sICAM-5) has been shown to bind to a number of receptors located in neighboring structures, resulting in a variety of downstream signaling events, including enhanced neurotransmission. Here, we investigated the potential MMP-regulated ICAM-5 signaling by examining the relationship between ICAM-5 immuno-positive elements and the structures that directly neighbor them.

  20. Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5.

    PubMed

    Conant, Katherine; Lonskaya, Irina; Szklarczyk, Arek; Krall, Caroline; Steiner, Joseph; Maguire-Zeiss, Kathleen; Lim, Seung T

    2011-08-01

    Methamphetamine (MA) is a highly addictive psychostimulant that, used in excess, may be neurotoxic. Although the mechanisms that underlie its addictive potential are not completely understood, in animal models matrix metalloproteinase (MMP) inhibitors can reduce behavioral correlates of addiction. In addition, evidence from genome-wide association studies suggests that polymorphisms in synaptic cell-adhesion molecules (CAMs), known MMP substrates, are linked to addictive potential in humans. In the present study, we examined the ability of MA to stimulate cleavage of intercellular adhesion molecule-5 (ICAM-5), a synaptic CAM expressed on dendritic spines in the telencephalon. Previous studies have shown that shedding of ICAM-5 is associated with maturation of dendritic spines, and that MMP-dependent shedding occurs with long term potentiation. Herein, we show that MA stimulates ectodomain cleavage of ICAM-5 in vitro, and that this is abrogated by a broad spectrum MMP inhibitor. We also show that an acute dose of MA, administered in vivo, is associated with cleavage of ICAM-5 in murine hippocampus and striatum. This occurs within 6 h and is accompanied by an increase in MMP-9 protein. In related experiments, we examined the potential consequences of ICAM-5 shedding. We demonstrate that the ICAM-5 ectodomain can interact with β(1) integrins, and that it can stimulate β(1) integrin-dependent phosphorylation of cofilin, an event that has previously been linked to MMP-dependent spine maturation. Together these data support an emerging appreciation of MMPs as effectors of synaptic plasticity and suggest a mechanism by which MA may influence the same.

  1. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  2. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  3. Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase

    PubMed Central

    1994-01-01

    Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase

  4. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    SciTech Connect

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-15

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  5. TNF-α mediates PKCδ/JNK1/2/c-Jun-dependent monocyte adhesion via ICAM-1 induction in human retinal pigment epithelial cells.

    PubMed

    Lee, I-Ta; Liu, Shiau-Wen; Chi, Pei-Ling; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Retinal inflammatory diseases induced by cytokines, such as tumor necrosis factor-α (TNF-α) are associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the retinal pigment epithelial cells (RPECs). Retinal pigment epithelium (RPE) is a monolayer of epithelial cells that forms the outer blood-retinal barrier in the posterior segment of the eye, and is also implicated in the pathology of, such as neovascularization in age-related macular degeneration (AMD). However, the detailed mechanisms of TNF-α-induced ICAM-1 expression are largely unclear in human RPECs. We demonstrated that in RPECs, TNF-α could induce ICAM-1 protein and mRNA expression and promoter activity, and monocyte adhesion. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of PKCs (Ro318220), PKCδ (Rottlerin), MEK1/2 (U0126), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, TRAF2, JNK2, p42, or c-Jun. We showed that TNF-α could stimulate the TNFR1 and TRAF2 complex formation. TNF-α-stimulated JNK1/2 was also reduced by Rottlerin or SP600125. However, Rottlerin had no effect on TNF-α-induced p42/p44 MAPK phosphorylation. We observed that TNF-α induced c-Jun phosphorylation which was inhibited by Rottlerin or SP600125. On the other hand, TNF-α-stimulated ICAM-1 promoter activity was prominently lost in RPECs transfected with the point-mutated AP-1 ICAM-1 promoter plasmid. These results suggest that TNF-α-induced ICAM-1 expression and monocyte adhesion is mediated through a TNFR1/TRAF2/PKCδ/JNK1/2/c-Jun pathway in RPECs. These findings concerning TNF-α-induced ICAM-1 expression in RPECs imply that TNF-α might play an important role in ocular inflammation and diseases.

  6. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells.

    PubMed

    Rains, Justin L; Jain, Sushil K

    2011-08-01

    Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0-10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes.

  7. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells

    PubMed Central

    Rains, Justin L.

    2011-01-01

    Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0–10 mM) or β-hydroxybutyrate (BHB) (0–10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0–10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes. PMID:21540444

  8. Role of intercellular adhesion molecule 1 in pathogenesis of staphylococcal arthritis and in host defense against staphylococcal bacteremia.

    PubMed Central

    Verdrengh, M; Springer, T A; Gutierrez-Ramos, J C; Tarkowski, A

    1996-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a member of the immunoglobulin superfamily that interacts with two integrins, LFA-1 and Mac-1. These interactions are critical for leukocyte extravasation into inflamed tissue. To assess the role of ICAM-1 expression in the pathogenesis of bacterial infection, homozygously mutant mice lacking the ICAM-1 gene were exposed to Staphylococcus aureus. Within 6 days after inoculation 50% of the animals in the ICAM-1(-/-) group, but none of the controls, had died. Despite the high level of mortality, ICAM-1(-/-) mice developed less frequent and less severe arthritis than their wild-type littermates. In agreement, normal mice inoculated with staphylococci and administered anti-ICAM-1 antibodies exhibited a higher frequency of mortality but less severe arthritis than the controls. Our results indicate that ICAM-1 on the one hand provides protection against systemic disease but on the other hand aggravates the local disease manifestation. PMID:8698512

  9. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  10. Identification and characterization of the intercellular adhesion molecule-2 gene as a novel p53 target

    PubMed Central

    Ogi, Kazuhiro; Nakagaki, Takafumi; Koyama, Ryota; Idogawa, Masashi; Hiratsuka, Hiroyoshi; Tokino, Takashi

    2016-01-01

    The p53 tumor suppressor inhibits cell growth through the activation of both cell cycle arrest and apoptosis, which maintain genome stability and prevent cancer development. Here, we report that intercellular adhesion molecule-2 (ICAM2) is transcriptionally activated by p53. Specifically, ICAM2 is induced by the p53 family and DNA damage in a p53-dependent manner. We identified a p53 binding sequence located within the ICAM2 gene that is responsive to wild-type p53, TAp73, and TAp63. In terms of function, we found that the ectopic expression of ICAM2 inhibited cancer cell migration and invasion. In addition, we demonstrated that silencing endogenous ICAM2 in cancer cells caused a marked increase in extracellular signal-regulated kinase (ERK) phosphorylation levels, suggesting that ICAM2 inhibits migration and invasion of cancer cells by suppressing ERK signaling. Moreover, ICAM2 is underexpressed in human cancer tissues containing mutant p53 as compared to those with wild-type p53. Notably, the decreased expression of ICAM2 is associated with poor survival in patients with various cancers. Our findings demonstrate that ICAM2 induction by p53 has a key role in inhibiting migration and invasion. PMID:27556181

  11. ICAM-1: Isoforms and Phenotypes

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Barnum, Scott R.

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, immunological synapse formation and, numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane bound and soluble ICAM-1 isoforms which arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types is poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced due to alternative splicing. These mice along with true ICAM-1-deficient mice and newly generated ICAM-1 transgenic mice have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis. PMID:24795464

  12. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  13. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells.

    PubMed

    Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2006-04-01

    Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion

  14. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications

    PubMed Central

    Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-01-01

    Background Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Methods Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Results Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (P<0.05). No significant differences were found in sVCAM-1 and CD146 levels between the study and the control group. Although patients were subdivided into groups according to the type of microvascular complications that they experienced, cell adhesion molecule levels were not correlated with the complication type. Conclusion In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. PMID:28345319

  15. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  16. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  17. Role of intercellular adhesion molecule-1 in glucan-induced pulmonary granulomatosis in the rat.

    PubMed

    Barton, P A; Imlay, M M; Flory, C M; Warren, J S

    1996-08-01

    Glucan-induced pulmonary granulomatous vasculitis in the rat mimics several human lung diseases (e.g., Wegener's granulomatosis, intravenous talcosis). We sought to clarify the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of glucan-induced granulomatous vasculitis. Immunohistochemical analysis of lung sections from rats with florid vasculitis (48 hours) revealed marked alveolar septal and lesional expression of ICAM-1. An ex vivo binding analysis with isotope-labeled antibodies and lung sections taken at various times up to 48 hours after glucan infusion revealed a progressive increase in whole-lung ICAM-1 expression. In vivo measurements of vascular wall-associated ICAM-1 expression revealed an earlier rise that began less than 6 hours after glucan infusion, peaked at 24 to 48 hours, and then declined to near baseline during the ensuing 24 to 96 hours. To assess whether ICAM-1 expression both within blood vessel walls and within lesions per se is important in granuloma development, we carried out in vivo neutralization experiments with several different routes of administration of antibody to ICAM-1. Monoclonal antibody to rat ICAM-1 was either infused intravenously at time 0 (when glucan was infused), infused intravenously at time 0 and after 24 hours, instilled only intratracheally 24 hours after glucan infusion, or given both intravenously (time = 0 and 24 hours) and intratracheally (time = 24 hours). Infusions of monoclonal antibody to rat ICAM-1 resulted in dose-dependent reductions in mean granuloma number and cross-sectional area. Intrapulmonary instillation of antibody to rat ICAM-1 (via tracheostomy 24 hours after glucan infusion) resulted in a modest reduction in mean granuloma number and cross-sectional area. When antibody to ICAM-1 was both infused and instilled via the trachea, we found an additive reduction in mean granuloma size and number. There was a 12-fold increase in adhesion of ED-1-positive peripheral blood

  18. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm(2), compared with the observed value of 3431.8μm(2) in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm(2) (vitiligo) and 8966.7μm(2) (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1.

  19. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  20. Kinetics of LFA-1 mediated adhesion of human neutrophils to ICAM-1-role of E-selectin signaling post-activation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LFA-1 and Mac-1 are the two integrins involved in the arrest and firm adhesion of neutrophils. LFA-1 plays a role in the early stage of cell arrest while Mac-1 stabilizes firm adhesion. Here, we further elucidated the kinetics of LFA-1 activation and its role in mediating neutrophil adhesion to ICAM...

  1. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  2. T-lymphocyte responsiveness in murine schistosomiasis mansoni is dependent upon the adhesion molecules intercellular adhesion molecule-1, lymphocyte function-associated antigen-1, and very late antigen-4.

    PubMed Central

    Langley, J G; Boros, D L

    1995-01-01

    Granuloma formation in murine schistosomiasis is dependent on CD4+ Th lymphocytes and requires recruitment and accumulation of inflammatory cells at the site of egg deposition. The present study examined the role of three adhesion molecules, intercellular adhesion molecule-1 (ICAM-1), lymphocyte function-associated antigen-1 (LFA-1), and very late antigen-4 (VLA-4), that participate in cellular recruitment, interaction, and lymphocyte activation during in vitro activation of acutely and chronically infected spleen and liver granuloma lymphocytes. Blockade of ICAM-1, LFA-1, or VLA-4 by rat monoclonal antibody inhibited spleen and granuloma lymphocyte interleukin-2 (IL-2) and IL-4 production as well as lymphoproliferative responses at similar levels (66 to 87%). The down-modulated cytokine and proliferative responses of chronically infected lymphocytes were inhibited to the same extent as their acutely infected counterparts. Cell sorting analysis demonstrated that acutely and chronically infected splenic and granuloma lymphocytes expressed similar levels of LFA-1, ICAM-1, and VLA-4 and that more ICAM-1 was expressed on infected than on uninfected mouse lymphocytes. By exposure of cells to paired monoclonal antibodies at suboptimal doses, it was determined that whereas all three adhesion molecules may participate, only ICAM-1 and LFA-1 showed synergistic interactions in determining lymphocyte responsiveness. These data suggest that spleen and liver granuloma lymphocytes are equally well armed with functional adhesion receptors. Thus, ICAM-1, LFA-1, and VLA-4 play an important accessory role in inflammatory cytokine production and lymphocyte proliferation, and therefore these adhesion molecules may participate in the initiation and maintenance of the granulomatous inflammation. PMID:7558308

  3. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice

    PubMed Central

    1994-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is one of three immunoglobulin superfamily members that bind to the integrins lymphocyte function associated 1 (LFA-1) and Mac-1 on leukocytes. We have generated mice that are genetically and functionally deficient in ICAM-1. These mice have elevated numbers of circulating neutrophils and lymphocytes, as well as diminished allogeneic T cell responses and delayed type hypersensitivity. Mutant mice are resistant to lethal effects of high doses of endotoxin (lipopolysaccharide [LPS]), and this correlates with a significant decrease in neutrophil infiltration in the liver. Production of inflammatory cytokines such as tumor necrosis factor alpha or interleukin 1 is normal in ICAM-1-deficient mice, and thus protection appears to be related to a diminution in critical leukocyte-endothelial interactions. After sensitization with D- galactosamine (D-Gal), ICAM-1-deficient mice are resistant to the lethal effect of low doses of exotoxin (Staphylococcus aureus enterotoxin B [SEB]), which has been shown to mediate its toxic effects via the activation of specific T cells. In this model, ICAM-1-mediated protection against SEB lethality correlates with a decrease in the systemic release of inflammatory cytokines, as well as with prevention of extensive hepatocyte necrosis and hemorrhage. ICAM-1-deficient mice sensitized with D-Gal, however, are not protected from lethality when challenged with low doses of endotoxin (LPS). These studies show that the different contribution of ICAM-1 in the activation of either T cells or macrophages is decisive for the fatal outcome of the shock in these two models. This work suggests that anti-ICAM-1 therapy may be beneficial in both gram-positive and -negative septic shock, either by reducing T cell activation or by diminishing neutrophil infiltration. PMID:7911822

  4. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.

    PubMed

    Jonjić, N; Peri, G; Bernasconi, S; Sciacca, F L; Colotta, F; Pelicci, P; Lanfrancone, L; Mantovani, A

    1992-10-01

    The mesothelium is a flat epithelial lining of serous cavities that could gate the traffic of molecules and cells between the circulation and these body compartments. The present study was designed to elucidate the capacity of mesothelial cells to express adhesion molecules and chemoattractant cytokines, two fundamental mechanisms of regulation of leukocyte recruitment. Cultured human mesothelial cells express appreciable levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and these were increased by in vitro exposure to tumor necrosis factor (TNF), interferon gamma (IFN-gamma), or TNF and IFN-gamma. Interleukin 1 (IL-1) was a less consistent stimulus for adhesion molecule expression in vitro. Unlike endothelial cells, used as a reference cell population, resting or stimulated mesothelial cells did not express E-selectin and ICAM-2, as assessed by flow cytometry. Analysis of VCAM-1 mRNA by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that mesothelial cells expressed both the seven- and the six-Ig domain transcripts, with predominance of the longer species. Monocytes bound appreciably to "resting" and, to a greater extent, to stimulated mesothelial cells. Monocytes exposed to IFN-gamma and lipopolysaccharide, used as prototypic activation signals, showed increased capacity to bind mesothelial cells. Anti-CD18 monoclonal antibody significantly inhibited binding of monocytes to mesothelial cells, and this blocking effect was amplified by anti-very late antigen 4. Mesothelial cells were able to express the chemotactic cytokines IL-8 and monocyte chemotactic protein 1 at the mRNA and protein levels. These results indicate that mesothelial cells can express a set of adhesion molecules (ICAM-1 and VCAM-1) overlapping with, but distinct from, that expressed in vascular endothelium (ICAM-1, ICAM-2, VCAM-1, E-selectin), and that these are functionally relevant for interacting with

  5. Soluble Adhesion Molecules in Patients Coinfected with HIV and HCV: A Predictor of Outcome

    PubMed Central

    Aldámiz-Echevarría, Teresa; Berenguer, Juan; Miralles, Pilar; Jiménez-Sousa, María A.; Carrero, Ana; Pineda-Tenor, Daniel; Díez, Cristina; Tejerina, Francisco; Pérez-Latorre, Leire; Bellón, José M.; Resino, Salvador

    2016-01-01

    Background Higher serum levels of adhesion molecules (sICAM-1 and sVCAM-1) are associated with advanced liver fibrosis in patients coinfected with human immunodeficiency virus and hepatitis C virus. We assessed the relationship between serum levels of adhesion molecules and liver-related events (LRE) or death, in coinfected patients. Methods We studied clinical characteristics and outcomes of 182 coinfected patients with a baseline liver biopsy (58 with advanced fibrosis) and simultaneous plasma samples who were followed for median of 9 years. We used receiver-operating characteristic (ROC) curves to calculate optimized cutoff values (OCV) of sICAM-1 and sVCAM-1, defined as the values with the highest combination of sensitivity and specificity for LRE. We used multivariate regression analysis to test the association between OCVs of sICAM-1 and sVCAM-1 and outcomes. The variables for adjustment were age, HIV transmission category, liver fibrosis, baseline CD4+ T-cell counts, antiretroviral therapy, and sustained virologic response (SVR). Results During the study period 51 patients had SVR, 19 had LRE, and 16 died. The OCVs for LRE were 5.68 Log pg/mL for sICAM-1 and 6.25 Log pg/mL for sVCAM-1, respectively. The adjusted subhazard ratio (aSHR) (95% confidence interval [CI]) of death or LRE, whichever occurred first, for sICAM-1 and sVCAM-1 > OCV were 3.98 ([1.14; 13.89], P = 0.030) and 2.81 ([1.10; 7.19], respectively (P = 0.030). Conclusions Serum levels of sICAM-1 and sVCAM-1 can serve as markers of outcome in HIV/HCV-coinfected patients. Therapies targeting necroinflammatory damage and fibrogenesis may have a role in the management chronic hepatitis C. PMID:26849641

  6. Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients.

    PubMed

    Rubio-Guerra, Alberto Francisco; Vargas-Robles, Hilda; Serrano, Alberto Maceda; Vargas-Ayala, German; Rodriguez-Lopez, Leticia; Escalante-Acosta, Bruno Alfonso

    2010-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and in hypertension, and is associated with inflammation, increased levels of circulating soluble adhesion molecules, and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in hypertensive type-2 diabetic patients. We studied 30 hypertensive type-2 diabetic patients in whom VCAM-1, ICAM-1, and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. We found significant correlations between ICAM-1 (r = 0.5) levels and maximal carotid artery intimal-medial thickness these patients. No correlation was observed with E-selectin and VCAM-1. Our results suggest that ICAM-1 is associated and correlated with the degree of atherosclerosis in type-2 diabetic hypertensive patients.

  7. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients

    PubMed Central

    Vargas-Robles, Hilda; Serrano, Alberto Maceda; Lozano-Nuevo, Jose Juan; Escalante-Acosta, Bruno Alfonso

    2009-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and is associated with inflammation, increased levels of circulating soluble adhesion molecules and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in normotensive type-2 diabetic patients. Results: We found significant correlations between ICAM-1 (r = 0.69, p < 0.001 95% IC 0.65 to 0.82) and VCAM-1 (r = 0.4, p < 0.03, 95% IC 0.65 to 0.82) levels and maximal carotid artery intimal-medial thickness, whereas no correlation was observed with E-selectin. Methods: We studied 30 normotensive type-2 diabetic patients in whom VCAM-1, ICAM-1 and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. Conclusion: Our results suggest that ICAM-1 and VCAM-1 are markers associated, and correlated with the degree of atherosclerosis in normotensive type-2 diabetic patients. PMID:19717975

  8. P-selectin cross-links PSGL-1 and enhances neutrophil adhesion to fibrinogen and ICAM-1 in a Src kinase-dependent, but GPCR-independent mechanism.

    PubMed

    Xu, Tao; Zhang, Lei; Geng, Zhen H; Wang, Hai-Bo; Wang, Jin-Tao; Chen, Ming; Geng, Jian-Guo

    2007-01-01

    Endothelial and platelet P-selectin (CD62P) and leukocyte integrin alpha(M)beta(2) (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab')2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of alpha(M)beta(2), but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (<0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.

  9. Construction of ICAM-1-GFP and its binding with Molt-4 cells.

    PubMed

    Chen, Wei-Hua; DA, Wan-Ming; Gao, Chun-Ji

    2009-06-01

    This study was aimed to clone human intercellular adhesion molecule-1 (ICAM-1) gene, to transfect the constructed eukaryotic expression vector ICAM-1-GFP into CHO cells, as well as to detect ICAM-1-GFP expression in CHO cells binding with Molt-4 cells. ICAM-1 cDNA gene was amplified by RT-PCR and inserted in PMD(18)-T vector. Then ICAM-1 cDNA from pMD18-ICAM-1 vector was subcloned into eukaryotic expression vector pEGFP-C1 to construct recombinant ICAM-1-pEGFP-C1 vector. Restriction analysis and DNA sequencing were used to confirm the recombinant vector. After stable transfection of CHO-K1 cells with the recombinant vector, the expression and subcellular localization of ICAM-1-GFP were detected by RT-PCR, flow cytometry and fluorescence microscopy. The function of ICAM-1-GFP fusion protein was assessed by the binding of ICAM-1-GFP/CHO cells to Molt-4 cells. The results showed that 1622 bp full-length ICAM-1 cDNA obtained and was successfully ligated with pMD(18)-T-vector, subcloned to construct recombinant ICAM-1-pEGFP-C1 vector. Restriction analysis and DNA sequencing indicated that recombinant ICAM-1-GFP was successfully constructed and ICAM-1-GFP was expressed stably in CHO cells. ICAM-1-GFP expression was only observed in the cytoplasm of ICAM-1-GFP/CHO cells by fluorescence microscopy. The ICAM-1-GFP/CHO cells were bound to PMA-treated Molt-4 cells. The expression of MEM-148 was very weak in PMA-treated Molt-4 cells. It is concluded that the ICAM-1-GFP eukaryotic expression vector has been constructed successfully and expresses stably in CHO cells. PMA can increase the binding of Molt-4 cells to ICAM-1-GFP/CHO cells by inducing specialized form of ICAM-1 clustering.

  10. Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.

    PubMed Central

    Fisher, K L; Lu, J; Riddle, L; Kim, K J; Presta, L G; Bodary, S C

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1. Images PMID:9188101

  11. Polymorphisms in the intercellular adhesion molecule 1 gene and cancer risk: a meta-analysis

    PubMed Central

    Tang, Weifeng; Wang, Yafeng; Chen, Yuanmei; Gu, Haiyong; Chen, Shuchen; Kang, Mingqiang

    2015-01-01

    Objectives: The correlation between intercellular adhesion molecule 1 (ICAM-1) common polymorphisms (rs5498 A>G and rs3093030 C>T) and cancer susceptibility has been explored in various ethnic groups and different cancer types; however, these investigations have yielded contradictory results. To address the relationship more precisely, we performed this meta-analysis. Design and methods: EmBase, PubMed and China National Knowledge Infrastructure (CNKI) databases were searched by two authors independently for eligible publications before April 8, 2015. Random-effects or fixed-effects model was harnessed to calculate the pooled odds ratios (ORs) and 95% confidence intervals (CIs) when appropriate. Results: The result suggested that the ICAM-1 rs5498 A>G polymorphism is not associated with cancer susceptibility in overall cancer. In a stratified analysis by ethnicity, a significant increased cancer risk was identified among Asians, but the inverse association was found among Caucasians. In a stratified analysis by cancer type, ICAM-1 rs5498 A>G polymorphism was associated with a significantly increased risk of oral cancer, but with protection from colorectal cancer and melanoma. ICAM-1 rs3093030 C>T polymorphism is not correlated with cancer susceptibility. Conclusions: In summary, this meta-analysis highlights that the ICAM-1 rs5498 A>G polymorphism probably contributes to decreased susceptibility to cancer, especially in Caucasians, in melanoma and colorectal cancer subgroup, but it may be a risk factor for oral cancer and Asians. PMID:26550112

  12. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca.

    PubMed Central

    Zamuner, Stella R; Teixeira, Catarina F P

    2002-01-01

    It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study. PMID:12581499

  13. Intraocular soluble intracellular adhesion molecule-1 correlates with subretinal fluid height of diabetic macular edema

    PubMed Central

    Zhu, Dan; Zhu, He; Wang, Chunyan; Yang, Dayong

    2014-01-01

    Objective: To investigate the correlations between aqueous concentrations of vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), soluble intracellular adhesion molecule-1 (sICAM-1) and diabetic macular edema (DME). Materials and Methods: VEGF, MCP-1 and sICAM-1 concentrations in aqueous humor samples of 22 patients with DME and 23 patients with cataract of a control group were measured with solid-phase chemiluminescence immunoassay. Results: Aqueous VEGF (89.2 ± 58.5 pg/ml versus 48.5 ± 27.8 pg/ml, P = 0.006), MCP-1 (684.2 ± 423.4 pg/ml versus 432.4 ± 230.4 pg/ml, P = 0.019) and sICAM-1 (3213.8 ± 2581.6 pg/ml versus 260.2 ± 212.2 pg/ml, P < 0.001) all vary significantly between DME group and control group. Maximum height of submacular fluid measured by Optical coherence tomography (OCT) was significantly associated with aqueous sICAM-1 (r = -0.45, P = 0.034). The maximum height of macular thickness measured by OCT was not significantly associated with either VEGF (P = 0.300), MCP-1 (P = 0.320) or sICAM-1 (P = 0.285). Conclusions: Our results suggest that sICAM-1 may majorly contribute to the formation of subretinal fluid in DME patients and imply that MCP-1 and sICAM-1 may be the potential therapy targets, besides VEGF. PMID:23619489

  14. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies.

    PubMed

    Yuan, Hong; Gaber, M Waleed; McColgan, Tamara; Naimark, Michael D; Kiani, Mohammad F; Merchant, Thomas E

    2003-04-18

    We assessed the acute effects of radiation on the rat blood-brain barrier. A cranial window model and intravital microscopy were used to measure changes in permeability and leukocyte adhesion in pial vessels after a localized, single dose of 20 Gy. Permeability was assessed using five sizes of fluorescein isothiocyanate (FITC)-dextran molecules (4.4-, 10-, 38.2-, 70-, and 150-kDa) with measurements performed before and 2, 24, 48, 72 and 96 h after irradiation for the 4.4 and 38.2-kDa molecules and before and 24 h after irradiation for the other three molecules. To demonstrate the nature of blood-brain barrier permeability, we concurrently studied the permeability of microvessels in the cremaster muscle. In both tissues, permeability to FITC-dextran was significantly greater 24 h after irradiation than before (P<0.05). The exception was that radiation did not affect the permeability of pial vessels to the 150-kDa molecule. The particle-size dependence of the permeability changes in the brain were indicative of altered integrity of endothelial tight junctions and occurred concomitantly with an increase in cell adhesion which was determined by fluorescent labeling of leukocytes with rhodamine 6G. An early inflammatory response to irradiation was apparent in the brain 2 h after irradiation. The numbers of rolling and adherent leukocytes increased significantly and peaked at 24 h. Injection with the anti-ICAM-1 mAb significantly reduced leukocyte adhesion and permeability thereby linking the two processes. These findings provide a target to reduce radiation-related permeability and cell adhesion and potentially the side effects of radiation in the CNS.

  15. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies.

    PubMed

    Bengtsson, Anja; Joergensen, Louise; Rask, Thomas S; Olsen, Rebecca W; Andersen, Marianne A; Turner, Louise; Theander, Thor G; Hviid, Lars; Higgins, Matthew K; Craig, Alister; Brown, Alan; Jensen, Anja T R

    2013-01-01

    Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.

  16. Intercellular adhesion molecule-1 expression in experimental alcoholic liver disease: relationship to endotoxemia and TNF alpha messenger RNA.

    PubMed

    Nanji, A A; Griniuviene, B; Yacoub, L K; Fogt, F; Tahan, S R

    1995-02-01

    We used the intragastric feeding rat model for alcoholic liver disease to evaluate the relationship among intercellular adhesion molecule-1 (ICAM-1) expression, tumor necrosis factor-alpha (TNF-alpha), plasma endotoxin, and inflammatory changes in the liver. Rats were fed different dietary fats (saturated fat, corn oil, and fish oil) with ethanol; control rats were fed isocaloric amounts of dextrose instead of ethanol. At sacrifice the following were evaluated: liver pathologic changes, TNF-alpha mRNA by reverse transcription-PCR, plasma endotoxin, and ICAM-1 by immunohistochemistry and immunoblot analysis. Upregulation of ICAM-1 in endothelial lining cells in central and portal veins was observed in rats showing evidence of pathologic changes. Rats fed fish oil and ethanol, which exhibited the most severe inflammation, also showed hepatocyte ICAM-1 staining. The presence of ICAM-1 staining, in general, correlated with the level of TNF-alpha mRNA expression and plasma endotoxin levels. Upregulation of ICAM-1 in rats fed ethanol may contribute to the inflammatory changes seen in this model. The association between ICAM-1 upregulation and endotoxin and TNF-alpha mRNA suggests a role for these mediators in the inflammatory process in alcoholic liver injury.

  17. The effect of inhaled sodium cromoglycate on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in asthmatics.

    PubMed

    Hoshino, M; Nakamura, Y

    1997-04-01

    There is no direct evidence of the anti-inflammatory effect of inhaled sodium cromoglycate (SCG). To investigate whether inhaled SCG has any effect on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in patients with asthma, biopsies of the bronchial mucosa were taken from nine patients with atopic bronchial asthma before and after treatment with inhaled SCG (8 mg x day(-1)) from a metered-dose inhaler (MDI). Eosinophils were stained with anti-EG2, neutrophils with anti-NP57, mast cells with anti-AA1, T-lymphocytes with anti-CD4, CD8 and CD3, and macrophages with anti-CD68. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and P-selectin were stained at the same time as adhesion molecules expressed in vascular endothelium. The intensity of ICAM-1 expression in the bronchial epithelium was also evaluated. The numbers of eosinophils, mast cells, T-lymphocytes and macrophages were significantly reduced as a result of SCG administration, and the expression of ICAM-1, VCAM-1 and ELAM-1 was also significantly inhibited. A significant correlation was found between ICAM-1 expression and T-lymphocytes and between VCAM-1 expression and eosinophils. It was concluded that sodium cromoglycate does have an effect on the infiltration of the bronchial mucosa by inflammatory cells and also on the expression of adhesion molecules.

  18. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD.

    PubMed

    Kuo, Ko-Lin; Hung, Szu-Chun; Lee, Tzong-Shyuan; Tarng, Der-Cherng

    2014-11-01

    High-dose intravenous iron supplementation is associated with adverse cardiovascular outcomes in patients with CKD, but the underlying mechanism is unknown. Our study investigated the causative role of iron sucrose in leukocyte-endothelium interactions, an index of early atherogenesis, and subsequent atherosclerosis in the mouse remnant kidney model. We found that expression levels of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and adhesion of U937 cells increased in iron-treated human aortic endothelial cells through upregulated NADPH oxidase (NOx) and NF-κB signaling. We then measured mononuclear-endothelial adhesion and atherosclerotic lesions of the proximal aorta in male C57BL/6 mice with subtotal nephrectomy, male apolipoprotein E-deficient (ApoE(-/-)) mice with uninephrectomy, and sham-operated mice subjected to saline or parenteral iron loading. Iron sucrose significantly increased tissue superoxide production, expression of tissue cell adhesion molecules, and endothelial adhesiveness in mice with subtotal nephrectomy. Moreover, iron sucrose exacerbated atherosclerosis in the aorta of ApoE(-/-) mice with uninephrectomy. In patients with CKD, intravenous iron sucrose increased circulating mononuclear superoxide production, expression of soluble adhesion molecules, and mononuclear-endothelial adhesion compared with healthy subjects or untreated patients. In summary, iron sucrose aggravated endothelial dysfunction through NOx/NF-κB/CAM signaling, increased mononuclear-endothelial adhesion, and exacerbated atherosclerosis in mice with remnant kidneys. These results suggest a novel causative role for therapeutic iron in cardiovascular complications in patients with CKD.

  19. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  20. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  1. Sesamin attenuates intercellular cell adhesion molecule-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in apolipoprotein-E-deficient mice.

    PubMed

    Wu, Wen-Huey; Wang, Shu-Huei; Kuan, I-I; Kao, Ya-Shi; Wu, Pei-Jhen; Liang, Chan-Jung; Chien, Hsiung-Fei; Kao, Chiu-Hua; Huang, Ching-Jang; Chen, Yuh-Lien

    2010-09-01

    Sesame lignans have antioxidative and anti-inflammatory properties. We focused on the effects of the lignans sesamin and sesamol on the expression of endothelial-leukocyte adhesion molecules in tumor necrosis factor-alpha (TNF-alpha)-treated human aortic endothelial cells (HAECs). When HAECs were pretreated with sesamin (10 or 100 microM), the TNF-alpha-induced expression of intercellular cell adhesion molecule-1 (ICAM-1) was significantly reduced (35 or 70% decrease, respectively) by Western blotting. Sesamol was less effective at inhibiting ICAM-1 expression (30% decrease at 100 microM). Sesamin and sesamol reduced the marked TNF-alpha-induced increase in human antigen R (HuR) translocation and the interaction between HuR and the 3'UTR of ICAM-1 mRNA. Both significantly reduced the binding of monocytes to TNF-alpha-stimulated HAECs. Sesamin significantly attenuated TNF-alpha-induced ICAM-1 expression and cell adhesion by downregulation of extracellular signal-regulated kinase 1/2 and p38. Furthermore, in vivo, sesamin attenuated intimal thickening and ICAM-1 expression seen in aortas of apolipoprotein-E-deficient mice. Taken together, these data suggest that sesamin inhibits TNF-alpha-induced extracellular signal-regulated kinase/p38 phosphorylation, nuclear translocation of NF-kappaB p65, cytoplasmic translocalization of HuR and thereby suppresses ICAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that sesamin may prevent the development of atherosclerosis and inflammatory responses.

  2. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization.

    PubMed

    Serrador, J M; Alonso-Lebrero, J L; del Pozo, M A; Furthmayr, H; Schwartz-Albiez, R; Calvo, J; Lozano, F; Sánchez-Madrid, F

    1997-09-22

    During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane-cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, beta-actin and alpha-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti-ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin-ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin-ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which

  3. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    SciTech Connect

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  4. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.

    PubMed

    Carman, Christopher V; Jun, Chang-Duk; Salas, Azucena; Springer, Timothy A

    2003-12-01

    Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.

  5. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  6. Priming by chemokines restricts lateral mobility of the adhesion receptor LFA-1 and restores adhesion to ICAM-1 nano-aggregates on human mature dendritic cells.

    PubMed

    Borgman, Kyra J E; van Zanten, Thomas S; Manzo, Carlo; Cabezón, Raquel; Cambi, Alessandra; Benítez-Ribas, Daniel; Garcia-Parajo, Maria F

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.

  7. Wound Healing Characteristics of ICAM-1 Null Mice Devoid of All Isoforms of ICAM-1

    PubMed Central

    Gay, Andre N.; Mushin, Oren P.; Lazar, David A.; Naik-Mathuria, Bindi J.; Yu, Ling; Gobin, Andre; Smith, C. Wayne; Olutoye, Oluyinka O.

    2011-01-01

    Background Intercellular Adhesion Molecule-1 (ICAM-1) permits leukocyte-endothelial adhesion and transmigration during inflammation. Membrane-bound ICAM-1 knockout mice have been used to understand this molecule’s role in wound-healing, but expressed spliced isoforms of ICAM-1 may have impacted results. We aimed to characterize wound-healing in an ICAM-1 null model devoid of all ICAM-1 isoforms. Methods Full-thickness 8-mm wounds were created on C57/BL6 wild-type (n=24) and ICAM-1 null (n=24) mice. Wound area was calculated using daily photographs. Histologic samples were harvested on post-operative Days 1,3,7, and 14. Wound margins were evaluated for mRNA expression of 13 inflammatory cytokines. A separate group of wild-type and ICAM-1 null mice (n=24) received full-thickness incisions with tensiometry measured at Day 14. Separately, complete blood counts were measured in unwounded wild-type (n=4) and ICAM-1 null mice (n=4). Results Wound-closure was significantly delayed in ICAM-1 null mice through Day 7 by gross and histologic measurement. mRNA expression of VEGF-A was increased in ICAM-1 null mice on Day 3, although no increase in VEGF-A was observed in the wound bed by immunohistochemistry. ICAM-1 null wounds demonstrated higher stiffness upon Day 14 tensiometry compared to the wild-type (1880 ± 926 kPa vs. 478 ± 117 kPa;p<0.01), and had higher counts of white blood cells (10,009 vs. 5,720 cells/microliter,p<0.05), neutrophils (2,130 vs. 630 cells/microliter,p<0.01), and lymphocytes (7,130 vs. 4,740 cells/microliter, p<0.05). Conclusions ICAM-1 null mice demonstrate delayed wound-healing and decreased wound elasticity compared to wild-type controls. This lag, however, was less than observed in earlier membrane-bound ICAM-1 knockouts, suggesting that other ICAM-1 isoforms may promote delayed wound-healing. PMID:21872884

  8. Nerve growth factor translates stress response and subsequent murine abortion via adhesion molecule-dependent pathways.

    PubMed

    Tometten, Mareike; Blois, Sandra; Kuhlmei, Arne; Stretz, Anna; Klapp, Burghard F; Arck, Petra C

    2006-04-01

    Spontaneous abortion is a frequent threat affecting 10%-25% of human pregnancies. Psychosocial stress has been suggested to be attributable for pregnancy losses by challenging the equilibrium of systems mandatory for pregnancy maintenance, including the nervous, endocrine, and immune system. Strong evidence indicates that stress-triggered abortion is mediated by adhesion molecules, i.e., intercellular adhesion molecule 1 (ICAM1) and leukocyte function associated molecule 1, now being referred to as integrin alpha L (ITGAL), which facilitate recruitment of inflammatory cells to the feto-maternal interface. The neurotrophin beta-nerve growth factor (NGFB), which has been shown to be upregulated in response to stress in multiple experimental settings including in the uterine lining (decidua) during pregnancy, increases ICAM1 expression on endothelial cells. Here, we investigated whether and how NGFB neutralization has a preventive effect on stress-triggered abortion in the murine CBA/J x DBA/2J model. We provide experimental evidence that stress exposure upregulates the frequency of abortion and the expression of uterine NGFB. Further, adhesion molecules ICAM1 and selectin platelet (SELP, formerly P-Selectin) and their ligands ITGAL and SELP ligand (SELPL, formerly P selectin glycoprotein ligand 1) respectively increase in murine deciduas in response to stress. Subsequently, decidual cytokines are biased toward a proinflammatory and abortogenic cytokine profile. Additionally, a decrease of pregnancy protective CD8alpha(+) decidual cells is present. Strikingly, all such uterine stress responses are abrogated by NGFB neutralization. Hence, NGFB acts as a proximal mediator in the hierarchical network of immune rejection by mediating an abortogenic environment comprised of classical signs of neurogenic inflammation.

  9. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway.

    PubMed

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  10. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    PubMed

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  11. ICAM-1 expression by lung cancer cell lines: effects of upregulation by cytokines on the interaction with LAK cells.

    PubMed

    Melis, M; Spatafora, M; Melodia, A; Pace, E; Gjomarkaj, M; Merendino, A M; Bonsignore, G

    1996-09-01

    Intercellular adhesion molecule-1 (ICAM-1) expression by tumour cells may be involved in their interaction with defensive cells. In this study the surface ICAM-1 expression and soluble ICAM-1 (sICAM-1) production by five small cell lung cancer (SCLC) and five non-SCLC (NSCLC) cell lines was investigated. In addition, the effects of ICAM-1 upregulation by cytokines on the adhesion of lung cancer cells to allogeneic lymphokine-activated killer (LAK) cells and susceptibility to LAK cytotoxicity was also evaluated. ICAM-1 expression was assessed by flow cytometry. Soluble ICAM-1 release was measured by enzyme-linked immunosorbent assay (ELISA). Interaction with LAK cells was tested by adhesion and cytotoxicity assays. At baseline, SCLC lines did not express ICAM-1, while 4 of the 5 NSCLC lines expressed ICAM-1. ICAM-1 expression was induced by interferon-gamma (IFN-gamma) in 4 of the 5 SCLC lines and upregulated in 1 of the 5 NSCLC lines. ICAM-1 expression was induced by tumour necrosis factor-alpha (TNF-alpha) in 1 of the 5 SCLC lines (National Cancer Institute (NCI) H211), and upregulated in 2 of the 5 NSCLC lines (NCI H460 and NCI H838). Among the latter lines, one (NCI H838) released significant amounts of sICAM-1. Adhesion to LAK cells and susceptibility to LAK cytotoxicity were significantly higher in TNF-alpha-treated NCI H460 and NCI H211 cells, compared to untreated NCI H460 and NCI H211 cells. In contrast, no difference in adhesion to LAK cells and susceptibility to LAK cytotoxicity was detected between baseline and TNF-alpha-treated NCI H838 cells. Intercellular adhesion molecule-1 surface expression and soluble intercellular adhesion molecule-1 release may play an important role in interactions between lymphokine-activated killer cells and lung cancer cells.

  12. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  13. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

    PubMed Central

    Bengtsson, Anja; Joergensen, Louise; Rask, Thomas S.; Olsen, Rebecca W.; Andersen, Marianne A.; Turner, Louise; Theander, Thor G.; Higgins, Matthew K.; Craig, Alister; Brown, Alan

    2013-01-01

    Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1–binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1–binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding–like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum–exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1–specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration. PMID:23209327

  14. miR-221 suppresses ICAM-1 translation and regulates interferon-γ-induced ICAM-1 expression in human cholangiocytes

    PubMed Central

    Hu, Guoku; Gong, Ai-Yu; Liu, Jun; Zhou, Rui; Deng, Caishu

    2010-01-01

    Aberrant cholangiocyte reactions in response to inflammatory stimuli are important pathogenic factors for the persistent biliary inflammation in patients with cholangiopathies. Overexpression of intercellular cell adhesion molecule-1 (ICAM-1) in cholangiocytes is a common pathological feature in inflammatory cholangiopathies and can promote cholangiocyte interactions with effector lymphocytes in the portal region. In this study, we tested the involvement of miRNA-mediated posttranscriptional regulation in IFN-γ-induced ICAM-1 expression in cholangiocytes. Using both immortalized and nonimmortalized human cholangiocyte cell lines, we found that IFN-γ activated ICAM-1 transcription and increased ICAM-1 protein expression. Inhibition of ICAM-1 transcription could only partially block IFN-γ-induced ICAM-1 expression at the protein level. In silico target prediction analysis revealed complementarity of miR-221 to the 3′-untranslated region of ICAM-1 mRNA. Targeting of ICAM-1 3′-untranslated region by miR-221 resulted in translational repression in cholangiocytes but not ICAM-1 mRNA degradation. Functional inhibition of miR-221 with anti-miR-221 induced ICAM-1 protein expression. Moreover, IFN-γ stimulation decreased miR-221 expression in cholangiocytes in a signal transducer and activator of transcription 1-dependent manner. Transfection of miR-221 precursor abolished IFN-γ-stimulated ICAM-1 protein expression. In addition, miR-221-mediated expression of ICAM-1 on cholangiocytes showed a significant influence on the adherence of cocultured T cells. These findings indicate that both transcriptional and miRNA-mediated posttranscriptional mechanisms are involved in IFN-γ-induced ICAM-1 expression in human cholangiocytes, suggesting an important role for miRNAs in the regulation of cholangiocyte inflammatory responses. PMID:20110463

  15. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    PubMed

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients.

  16. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    PubMed Central

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  17. Bordetella pertussis infection of human respiratory epithelial cells up-regulates intercellular adhesion molecule-1 expression: role of filamentous hemagglutinin and pertussis toxin.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2002-09-01

    Adhesion molecules on respiratory epithelial cells play a critical role in inflammatory cell recruitment and accumulation at sites of inflammation. Bordetella pertussis colonizes the human respiratory tract by infecting epithelial cells, leading to an inflammatory response. In this study, the role of bacterial factors in the expression of intercellular adhesion molecule-1 (ICAM-1) on human respiratory epithelial cells was investigated in response to B. pertussis. Flow cytometry and real time RT-PCR analysis showed that BEAS-2B human bronchial epithelial cells expressed increased levels of ICAM-1 mRNA and surface protein in response to B. pertussis infection. Filamentous hemagglutinin (FHA) played a role in this response because of the impaired capability of a FHA-deficient isogenic strain. A mutant strain in which an Arg-Gly-Asp (RGD) site of FHA had been changed to Arg-Ala-Asp had diminished ability to up-regulate ICAM-1 expression. RGD sequence-associated up-regulation of ICAM-1 expression was also observed in primary normal human bronchial epithelial cells. Pretreatment of cells with integrin antagonists such as RGD-containing peptide and antibody against very late antigen-5 (VLA-5) inhibited the up-regulation of ICAM-1 expression, suggesting the participation of VLA-5 integrin in this response. Pertussis toxin (PT) prevented the up-regulation of ICAM-1 expression because a PT-deficient mutant strain induced higher levels of ICAM-1 mRNA and surface protein than the parental strain. Consistent with this, purified PT suppressed the up-regulation of epithelial ICAM-1 expression. These findings demonstrate that B. pertussis FHA up-regulates ICAM-1 expression on respiratory epithelial cells through interaction of its RGD site with host cell VLA-5 integrin, and that PT impairs this response.

  18. The effect of iron treatment on adhesion molecules in patients with iron deficiency anemia.

    PubMed

    Yuksel, Arif; Kebapcilar, Levent; Erdur, Erkan; Bozkaya, Giray; Sari, Ismail; Alacacioglu, Ahmet; Kebapcilar, Ayse Gul; Sop, Gulten

    2010-12-01

    The present study was aimed to determine the effect of iron supplementation on levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in patients with iron deficiency anemia (IDA). In this study, 26 female patients diagnosed with iron deficiency were treated approximately 3 months of oral iron supplementation (99 ± 10 days; ferrous glycine sulfate; 100 mg/day of elemental iron). Levels of sICAM-1 and sVCAM-1 were assessed prior to treatment and after approximately 3 months of treatment and compared with 26 healthy female subjects. A significant increase in sVCAM levels was found in the patients with iron deficiency at the end of the treatment relative to pretreatment levels compared to controls, whereas no significant differences were determined in sICAM levels. In the posttreatment period, no significant change was observed in sICAM levels compared to the pretreatment levels, whereas sVCAM levels decreased. However, after the treatment period, the sVCAM, hemoglobin, mean corpuscular volume (MCV), and serum ferritin levels did not return to the normal range compared to the controls. Pretreatment sVCAM-1 levels were inversely correlated with levels of hemoglobin, hemotocrit, MCV, serum iron, and ferritin. After treatment, the sVCAM-1 levels were negatively correlated with ferritin levels. Levels of sVCAM were significantly higher in patients with IDA than controls. After the treatment period, the sVCAM levels were not completely normalized in patients with IDA compared to controls, regardless of the presence of inadequate levels of hemoglobin, MCV, and serum ferritin. Thus, iron supplementation not only ameliorates anemia, but may also reduce the inflammation markers in cases with IDA.

  19. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    SciTech Connect

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-10-15

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist {beta}-naphthoflavone ({beta}-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist {alpha}-naphthoflavone ({alpha}-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with {beta}-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis.

  20. The Effect of Vitamin D Administration on Intracellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Hemodialysis Patients: A Placebo-controlled, Double-blinded Clinical Trial

    PubMed Central

    Naeini, Afsoon Emami; Moeinzadeh, Firouzeh; Vahdat, Sahar; Ahmadi, Akbar; Hedayati, Zahra Parin; Shahzeidi, Safoora

    2017-01-01

    Objective: Vitamin D deficiency is quite common among end-stage renal disease (ESRD) patients, and Vitamin D administration could reduce morbidity and mortality in these patients through different mechanisms. Cardiovascular diseases are the most common cause of mortality in these patients that are caused by vascular injuries. Intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) are vascular inflammation indicators. The goal of this study is to find the effect of Vitamin D administration on ICAM-1 and VCAM-1 serum levels in ESRD patients on hemodialysis. Methods: The current study is a double-blind, randomized, placebo-controlled clinical trial on 64 patients in two groups of control and treatment. Serum levels of Vitamin D, ICAM-1, and VCAM-1 were measured before and after the study. Treatment group was treated with Vitamin D pearls while control group underwent treatment with placebo pearls. Average serum levels of Vitamin D, ICAM, and VCAM were measured in both groups before and after the study and were analyzed by ANOVA, paired t-test, and Chi-square test using SPSS software. Findings: Sixty-four ESRD patients were recruited for this study consisting of 32 male and 32 female subjects within the ages of 18 and 76 years. The change in serum level of Vitamin D was significant in treatment group (P = 0.001) but not in control group (P > 0.05). Serum levels of ICAM and VCAM also changed significantly in treatment group (P = 0.001) but not in control group (P > 0.05) Conclusion: Based on the findings of this study, it could be said that Vitamin D administration in ESRD patients may increase serum level of Vitamin D up to four times. It also reduces serum levels of ICAM and VCAM which might improve the vascular condition of these patients.

  1. Differential ICAM-1 Isoform Expression Regulates the Development and Progression of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Wohler, Jillian E.; Schoeb, Trenton R.; Bullard, Daniel C.

    2013-01-01

    Intercellular adhesion molecule-1 (ICAM-1) functions in leukocyte trafficking, activation, and the formation of the immunological synapse. ICAM-1 is a member of the immunoglobulin superfamily of adhesion proteins, which share a similar structure of repeating Ig-like domains. Many genes in this family, including ICAM-1, show alternative splicing leading to the production of different protein isoforms, although little functional information is available regarding the expression patterns, ligand interactions, and functions of these isoforms, especially those arising from the ICAM-1 gene. In this study, we show using different lines of mutant mice (Icam1tm1Jcgr and Icam1tm1Bay) that alterations in the expression of the alternatively spliced ICAM-1 isoforms can significantly influence the disease course during the development of EAE. Icam1tm1Jcgr mutant mice, unlike Icam1tm1Bay mutants, do not express isoforms containing the Mac-1 binding domain and had significantly attenuated of EAE. In contrast, Icam1tm1Bay mice developed severe EAE in both active and adoptive transfer models compared to both Icam1tm1Jcgr and wild type mice. We also observed that T cells from Icam1tm1Bay mice displayed increased proliferation kinetics and produced higher levels of IFN-γ compared to Icam1tm1Jcgr and wild type mice. Thus, our investigations show that the alternatively spliced ICAM-1 isoforms are functional, and play key roles during the progression of CNS inflammation and demyelination in EAE. Furthermore, our findings suggest that these isoforms may also play key roles in controlling the development of inflammatory diseases such as multiple sclerosis, possibly through differential engagement with ICAM-1 ligands such as Mac-1. PMID:20371120

  2. Differential ICAM-1 isoform expression regulates the development and progression of experimental autoimmune encephalomyelitis.

    PubMed

    Hu, Xianzhen; Barnum, Scott R; Wohler, Jillian E; Schoeb, Trenton R; Bullard, Daniel C

    2010-05-01

    Intercellular adhesion molecule-1 (ICAM-1) functions in leukocyte trafficking, activation, and the formation of the immunological synapse. ICAM-1 is a member of the immunoglobulin superfamily of adhesion proteins, which share a similar structure of repeating Ig-like domains. Many genes in this family, including ICAM-1, show alternative splicing leading to the production of different protein isoforms, although little functional information is available regarding the expression patterns, ligand interactions, and functions of these isoforms, especially those arising from the ICAM-1 gene. In this study, we show using different lines of mutant mice (Icam1(tm1Jcgr) and Icam1(tm1Bay)) that alterations in the expression of the alternatively spliced ICAM-1 isoforms can significantly influence the disease course during the development of EAE. Icam1(tm1Jcgr) mutant mice, unlike Icam1(tm1Bay) mutants, do not express isoforms containing the Mac-1 binding domain and had significantly attenuated of EAE. In contrast, Icam1(tm1Bay) mice developed severe EAE in both active and adoptive transfer models compared to both Icam1(tm1Jcgr) and wild type mice. We also observed that T cells from Icam1(tm1Bay) mice displayed increased proliferation kinetics and produced higher levels of IFN-gamma compared to Icam1(tm1Jcgr) and wild type mice. Thus, our investigations show that the alternatively spliced ICAM-1 isoforms are functional, and play key roles during the progression of CNS inflammation and demyelination in EAE. Furthermore, our findings suggest that these isoforms may also play key roles in controlling the development of inflammatory diseases such as multiple sclerosis, possibly through differential engagement with ICAM-1 ligands such as Mac-1.

  3. Altered Monocyte and Endothelial Cell Adhesion Molecule Expression Is Linked to Vascular Inflammation in Human Immunodeficiency Virus Infection

    PubMed Central

    Kulkarni, Manjusha; Bowman, Emily; Gabriel, Janelle; Amburgy, Taylor; Mayne, Elizabeth; Zidar, David A.; Maierhofer, Courtney; Turner, Abigail Norris; Bazan, Jose A.; Koletar, Susan L.; Lederman, Michael M.; Sieg, Scott F.

    2016-01-01

    Background. Human immunodeficiency virus (HIV)-infected individuals have increased risk for vascular thrombosis, potentially driven by interactions between activated leukocytes and the endothelium. Methods. Monocyte subsets (CD14+CD16−, CD14+CD16+, CD14DimCD16+) from HIV negative (HIV−) and antiretroviral therapy-treated HIV positive (HIV+) participants (N = 19 and 49) were analyzed by flow cytometry for adhesion molecule expression (lymphocyte function-associated antigen 1 [LFA-1], macrophage-1 antigen [Mac-1], CD11c/CD18, very late antigen [VLA]-4) and the fractalkine receptor (CX3CR1); these receptors recognize ligands (intercellular adhesion molecules [ICAMs], vascular cell adhesion molecule [VCAM]-1, fractalkine) on activated endothelial cells (ECs) and promote vascular migration. Plasma markers of monocyte (soluble [s]CD14, sCD163) and EC (VCAM-1, ICAM-1,2, fractalkine) activation and systemic (tumor necrosis factor receptor [TNFR-I], TNFR-II) and vascular (lipoprotein-associated phospholipase A2 [Lp-PLA2]) inflammation were measured by enzyme-linked immunosorbent assay. Results. Proportions of CD16+ monocyte subsets were increased in HIV+ participants. Among all monocyte subsets, levels of LFA-1 were increased and CX3CR1 levels were decreased in HIV+ participants (P < .01). Levels of sCD163, sCD14, fractalkine, ICAM-1, VCAM-1, TNFR-II, and Lp-PLA2 were also increased in HIV+ participants (P < .05), and levels of sCD14, TNFR-I, and TNFR-II were directly related to ICAM-1 and VCAM-1 levels in HIV+ participants. Expression of CX3CR1 on monocyte subsets was inversely related to plasma Lp-PLA2 (P < .05 for all). Conclusions. Increased proportions of CD16+ monocytes, cells with altered adhesion molecule expression, combined with elevated levels of their ligands, may promote vascular inflammation in HIV infection. PMID:28066794

  4. Defective antigen presentation by monocytes in ESRD patients not responding to hepatitis B vaccination: impaired HBsAg internalization and expression of ICAM-1 and HLA-DR/Ia molecules

    PubMed Central

    Barth, C.; Pollok, M.; Michałkiewicz, J.; Madaliński, K.; Maciejewski, J.; Baldamis, C. A.

    1995-01-01

    This study was undertaken to evaluate the monocyte function of uraemic non-responders to hepatitis B vaccination. Therefore, some parameters concerning antigen processing by monocytes (Mo) as antigen presenting cells (APC) were analysed. It was found that in uraemic non-responders, (1) the internalization of HBsAg by monocytes was significantly decreasjed—HBsAg complexed with specific IgG or as immune complex isolated from patients is better internalized compared with free HBsAg; (2) during antigen presentation the expression of adhesion (ICAM-1) and accessory (HLA-DR/Ia) molecules was significantly decreased in uraemic patients, especially in non-responders; and (3) impaired internalization of HBsAg as well as a decrease in ICAM-1 and HLA-DR/Ia expression, correlated well with the blunted proliferation of CD4+ T cells stimulated by autologous monocytes induced by HBsAg. PMID:18475616

  5. Expression of HLA-ABC, HLA-DR and intercellular adhesion molecule-1 in oesophageal carcinoma.

    PubMed Central

    Rockett, J C; Darnton, S J; Crocker, J; Matthews, H R; Morris, A G

    1995-01-01

    AIM--To examine the expression of HLA-ABC and HLA-DR major histocompatibility (MHC) antigens and intercellular adhesion molecule (ICAM)-1 in normal, inflamed, metaplastic, and neoplastic oesophageal tissue and in freshly disaggregated tumours. METHODS--Sequential sections of frozen tissue and cytospins of freshly disaggregated tumour were stained using the ABC peroxidase system and monoclonal antibodies specific for HLA-ABC, HLA-DR and ICAM-1. RESULTS--Normal oesophageal tissue showed positive staining for HLA-ABC in the basal layers of the oesophageal squamous epithelium and on the epithelial cells of the submucosal oesophageal glands. HLA-DR and ICAM-1 were not detected in either of these cell types. In 20 of 37 (54%) carcinomas HLA-ABC was expressed weakly, with heterogeneous expression in nine (24%). Two tumours showed strong expression of HLA-ABC, but 15 of 37 (41%) were negative. HLA-DR and ICAM-1 were expressed weakly in six of 37 (16%) carcinomas without correlation with each other or with the expression of HLA-ABC. CONCLUSIONS--HLA-ABC is absent from a high proportion of oesophageal carcinomas (41%) and is otherwise variably and weakly expressed with strong expression in only a small fraction (3%). In other carcinomas there is a higher level of HLA-ABC expression. This discrepancy may partly explain the aggressive nature of oesophageal carcinomas. HLA-DR and ICAM-1 are not normally expressed on those cells from which oesophageal carcinomas are thought to arise. The limited expression found here could suggest a partial or inhibited immune response against oesophageal carcinoma. In vivo repressive factors may be involved. Images PMID:7665697

  6. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions.

    PubMed Central

    Sasseville, V. G.; Newman, W.; Brodie, S. J.; Hesterberg, P.; Pauley, D.; Ringler, D. J.

    1994-01-01

    Because the mechanisms associated with recruitment of monocytes to brain in AIDS encephalitis are unknown, we used tissues from rhesus monkeys infected with simian immunodeficiency virus (SIV) to examine the relative contributions of various adhesion pathways in mediating monocyte adhesion to endothelium from encephalitic brain. Using a modified Stamper and Woodruff tissue adhesion assay, we found that the human monocytic cell lines, THP-1 and U937, and the B cell line, Ramos, preferentially bound to brain vessels from monkeys with AIDS encephalitis. Using a combined tissue adhesion/immunohistochemistry approach, these cells only bound to vessels expressing vascular cell adhesion molecule-1 (VCAM-1). Furthermore, pretreatment of tissues with antibodies to VCAM-1 or cell lines with antibodies to VLA-4 (CD49d) inhibited adhesion by more than 70%. Intercellular adhesion molecule-1 (ICAM-1)/beta 2 integrin interactions were not significant in mediating cell adhesion to the vasculature in encephalitic simian brain using a cell line (JY) capable of binding rhesus monkey ICAM-1. In addition, selectin-mediated interactions did not significantly contribute to cell binding to encephalitic brain as there was no immunohistochemical expression of E-selectin and P-selectin in either normal or encephalitic brain, nor was there a demonstrable adhesive effect from L-selectin using L-selectin-transfected 300.19 cells on simian encephalitic brain. These results demonstrate that using the tissue adhesion assay, THP-1, U937, and Ramos cells bind to vessels in brain from animals with AIDS encephalitis using VCAM-1/alpha 4 beta 1 integrin interactions and suggest that VCAM-1 and VLA-4 may be integral for monocyte recruitment to the central nervous system during the development of AIDS encephalitis. Images Figure 1 PMID:7507300

  7. Synaptic Clusters of MHC Class II Molecules Induced on DCs by Adhesion Molecule–mediated Initial T-Cell ScanningV⃞

    PubMed Central

    de la Fuente, Hortensia; Mittelbrunn, María; Sánchez-Martín, Lorena; Vicente-Manzanares, Miguel; Lamana, Amalia; Pardi, Ruggero; Cabañas, Carlos; Sánchez-Madrid, Francisco

    2005-01-01

    Initial adhesive contacts between T lymphocytes and dendritic cells (DCs) facilitate recognition of peptide-MHC complexes by the TCR. In this report, we studied the dynamic behavior of adhesion and Ag receptors on DCs during initial contacts with T-cells. Adhesion molecules LFA-1- and ICAM-1,3-GFP as well as MHC class II-GFP molecules were very rapidly concentrated at the DC contact area. Binding of ICAM-3, and ICAM-1 to a lesser extent, to LFA-1 expressed by mature but not immature DC, induced MHC-II clustering into the immune synapse. Also, ICAM-3 binding to DC induced the activation of the Vav1-Rac1 axis, a regulatory pathway involved in actin cytoskeleton reorganization, which was essential for MHC-II clustering on DCs. Our results support a model in which ICAM-mediated MHC-II clustering on DC constitutes a priming mechanism to enhance antigen presentation to T-cells. PMID:15872088

  8. Association between genetic variants in adhesion molecules and outcomes after hematopoietic cell transplants.

    PubMed

    Thyagarajan, B; Jackson, S; Basu, S; Jacobson, P; Gross, M D; Weisdorf, D J; Arora, M

    2013-04-01

    Allogeneic hematopoietic cell transplant (HCT) is associated with a high morbidity and mortality. Adhesion molecules play an important role in endothelial activation and initiation of inflammatory response. We hypothesized that single nucleotide polymorphisms (SNPs) in the endothelial molecules may contribute to heterogeneity in HCT outcomes. We evaluated the association of 4 SNPs in ICAM1 (rs5498), PECAM1 (rs668 and rs1131012) and SELL (rs2229569) genes with acute and chronic graft-versus-host disease (GvHD) and those experiencing transplant-related mortality (TRM) within 1 year among 425 allogeneic HCT recipient-donor pairs. Using a Fine and Gray proportional hazards model to evaluate the association between genetic variants and clinical outcomes, after adjustment for recipient age, race, diagnosis, disease status, gender mismatch, cytomegalovirus serostatus, gender, donor type, conditioning regimen and year of transplant, only rs5498 in the ICAM1 gene among both recipients and donors was associated with a decreased risk of TRM (P ≤ 0.02). None of the SNPs were associated with acute or chronic GvHD risk. These findings suggest that genetic variants in the vascular adhesion molecules may be used to identify patients at high risk for TRM.

  9. Kinin B1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of Mac-1, LFA-1 and intercellular adhesion molecule-1.

    PubMed

    Figueroa, Carlos D; Matus, Carola E; Pavicic, Francisca; Sarmiento, Jose; Hidalgo, Maria A; Burgos, Rafael A; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela

    2015-04-01

    Kinins are pro-inflammatory peptides that mimic the cardinal features of inflammation. We examined the concept that expression levels of endothelial intercellular adhesion molecule-1 (ICAM-1) and neutrophil integrins Mac-1 and LFA-1 are modulated by the kinin B1 receptor (B1R) agonist, Lys-des[Arg(9)]bradykinin (LDBK). Stimulation of endothelial cells with LDBK increased the levels of ICAM-1 mRNA transcripts/protein, and also of E-selectin and platelet endothelial adhesion molecule-1. ICAM-1 levels increased in a magnitude comparable with that produced by TNF-α. This stimulatory effect was reduced when endothelial cells, which had been previously transfected with a B1R small interfering RNA, were stimulated with LDBK, under comparable conditions. Similarly, LDBK produced a significant increase in protein levels of LFA-1 and Mac-1 integrins in human neutrophils, an effect that was reversed by pretreatment of cells with 10 µg/ml cycloheximide or a B1R antagonist. Functional experiments performed with post-confluent monolayers of endothelial cells stimulated with LDBK and neutrophils primed with TNF-α, and vice versa, resulted in enhanced adhesiveness between both cells. Neutralizing Abs to ICAM-1 and Mac-1 reduced the adhesion between them. Our results indicate that kinin B1R is a novel modulator that promotes adhesion of leukocytes to endothelial cells, critically enhancing the movement of neutrophils from the circulation to sites of inflammation.

  10. Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries

    PubMed Central

    Kim, Kwangwoo; Brown, Elizabeth E; Choi, Chan-Bum; Alarcón-Riquelme, Marta E; Kelly, Jennifer A; Glenn, Stuart B; Ojwang, Joshua O; Adler, Adam; Lee, Hye-Soon; Boackle, Susan A; Criswell, Lindsey A; Alarcón, Graciela S; Edberg, Jeffrey C; Stevens, Anne M; Jacob, Chaim O; Gilkeson, Gary S; Kamen, Diane L; Tsao, Betty P; Anaya, Juan-Manuel; Guthridge, Joel M; Nath, Swapan K; Richardson, Bruce; Sawalha, Amr H; Kang, Young Mo; Shim, Seung Cheol; Suh, Chang-Hee; Lee, Soo-Kon; Kim, Chang-sik; Merrill, Joan T; Petri, Michelle; Ramsey-Goldman, Rosalind; Vilá, Luis M; Niewold, Timothy B; Martin, Javier; Pons-Estel, Bernardo A; Vyse, Timothy J; Freedman, Barry I; Moser, Kathy L; Gaffney, Patrick M; Williams, Adrienne; Comeau, Mary; Reveille, John D; James, Judith A; Scofield, R Hal; Langefeld, Carl D; Kaufman, Kenneth M; Harley, John B; Kang, Changwon; Kimberly, Robert P; Bae, Sang-Cheol

    2012-01-01

    Objective Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. Methods The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. Results The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5). Conclusion These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE. PMID:22523428

  11. Intercellular adhesion molecule 1 is a sensitive and diagnostically useful immunohistochemical marker of papillary thyroid cancer (PTC) and of PTC-like nuclear alterations in Hashimoto's thyroiditis

    PubMed Central

    ZHANG, KE; GE, SHU-JIAN; LIN, XIAO-YAN; LV, BEI-BEI; CAO, ZHI-XIN; LI, JIA-MEI; XU, JIA-WEN; WANG, QIANG-XIU

    2016-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is important in the progression of inflammatory responses. Recently, increased levels of ICAM-1 have been reported in a number of types of malignancy. The present study aimed to investigate ICAM-1 expression in papillary thyroid cancer (PTC) and in Hashimoto's thyroiditis (HT) with PTC-like nuclear alterations, and to assess the predictive value of ICAM-1 in thyroid lesions. ICAM-1 expression was retrospectively investigated in 132 consecutive cases of PTC, 72 cases of HT, 10 of follicular cancer, 15 of follicular adenoma, 16 of nodular goiter and 8 samples of normal thyroid tissue using immunohistochemical analyses, and in 42 PTC patients using western blotting. ICAM-1 expression was not detected in normal follicular cells, follicular lesions (adenoma and cancer) and benign nodular hyperplasia, but was frequently overexpressed in PTC cells. ICAM-1 overexpression was associated with extra-thyroidal invasion and lymph node metastasis; no association was found with age, gender, tumor size, multifocality, pathological stage, recurrence or distant metastasis. ICAM-1 expression in HT patients with PTC-like nuclear alterations was significantly higher than that in HT cases with non-PTC-like features. Compared with antibodies against cytokeratin 19, galectin-3 and Hector Battifora mesothelial-1, ICAM-1 was the most sensitive marker for the detection of PTC-like features in HT. These findings demonstrate that ICAM-1 expression is upregulated in PTC and in HT with PTC-like nuclear alterations. This feature may be an important factor in the progression of cancer of the thyroid gland. PMID:26998068

  12. Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/CD18-mediated interactions with neutrophils.

    PubMed Central

    Parkos, C. A.; Colgan, S. P.; Diamond, M. S.; Nusrat, A.; Liang, T. W.; Springer, T. A.; Madara, J. L.

    1996-01-01

    BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 m

  13. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier.

    PubMed

    Gorina, Roser; Lyck, Ruth; Vestweber, Dietmar; Engelhardt, Britta

    2014-01-01

    In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.

  14. Characterization and functional analysis of the expression of intercellular adhesion molecule-1 in human papillomavirus-related disease of cervical keratinocytes.

    PubMed Central

    Coleman, N.; Greenfield, I. M.; Hare, J.; Kruger-Gray, H.; Chain, B. M.; Stanley, M. A.

    1993-01-01

    We have investigated the expression of intercellular adhesion molecule-1 (ICAM-1) in squamous neoplasia of the cervix and have noted a significant induction of the molecule in high-grade intra-epithelial lesions. Using monolayer and organotypic in vitro tissue culture systems, we have shown that there is no constitutive ICAM-1 expression on cervical keratinocytes immortalized but not transformed by human papillomavirus type 16, whereas two human papillomaviruses type 16 containing and fully transformed cervical keratinocyte lines do constitutively express the molecule. All cell types, including human papillomavirus-negative normal cervical keratinocytes, can be induced to up-regulate their expression of ICAM-1 by pro-inflammatory cytokines such as interferon-gamma. In addition, we have used an in vitro adhesion assay to show that ICAM-1:lymphocyte function antigen-1 interaction is functionally important in lymphocyte binding to cervical keratinocytes, suggesting a role for ICAM-1 in retaining and enabling functional activity of lymphocytes in the cervix in intraepithelial neoplasia. Images Figure 1 Figure 2 Figure 5 Figure 9 PMID:8102029

  15. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    PubMed Central

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated human umbilical vein endothelial cells (HUVEC) using the PTK inhibitors genistein and herbimycin A, and the protein tyrosine phosphatase (PTP) inhibitor sodium orthovanadate. 2. Maximal E-selectin expression induced by incubation of HUVEC for 4 h with IL-1 alpha (100 u ml-1) and TNF alpha (100 u ml-1) was dose-dependently inhibited by genistein and herbimycin A. Although similar effects were seen on phorbol 12-myristate, 13-acetate (PMA)-induced expression, this was not due to inhibition of protein kinase C (PKC) activity as the selective inhibitors of PKC, bisindolylmaleimide (BIM), Ro31-7549 or Ro31-8220 did not affect IL-1 alpha- or TNF alpha-induced E-selectin expression at concentrations which maximally inhibited PMA-induced expression. 3. Genistein inhibited VCAM-1 expression induced by incubation of HUVEC for 24 h with TNF alpha or IL-1 alpha whereas it did not affect ICAM-1 expression induced by 24 h incubation with either of these cytokines. Herbimycin A inhibited both VCAM-1 and ICAM-1 expression induced by TNF alpha. 4. Basal expression of E-selectin, VCAM-1 and ICAM-1 was dose-dependently enhanced by sodium orthovanadate. In contrast, vanadate differentially affected TNF alpha-induced expression of these molecules with maximal E-selectin and ICAM-1 expression being slightly enhanced and VCAM-1 expression dose-dependently reduced. 5. We also studied the effects of PTK and PTP inhibitors on adhesion of the human pre-myeloid cell line U937 to TNF alpha-stimulated HUVEC

  16. Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-06-01

    The aim of this study was to evaluate the expression of adhesion molecules on the surface of human endothelial cells in response to the systematic variation in materials properties by the ammonia plasma modification of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE). These adhesion molecules act as mediators of cell adhesion, play a role in the modulation of cell adhesion on biomaterials and therefore condition the response of tissues to implants. First and second passage human umbilical vein endothelial cells (HUVECs) were cultured on plasma treated and untreated PET and PTFE. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. After 1 day and 7 days, the expression of adhesion molecules platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), Integrin alphavbeta3, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin and L-selectin were evaluated using flow cytometry and immunohistochemistry. There was a slight increase in positive cell numbers expressing the adhesion molecules ICAM-1 and VCAM-1 on plasma treated PET and PTFE. A significant increase in E-selectin positive cells on untreated PTFE was demonstrated after 7 days. Stimulation with TNF-alpha demonstrated a significant increase in the proportion of ICAM-1. VCAM-1 and E-selectin positive cells. Almost all cells expressed PECAM-1 and integrin alphavbeta3, on both materials and controls but did not express P- and L-selectin on any surface. When second passage cells were used, the expression of the adhesion molecules ICAM-1 and VCAM-1 was markedly increased on all surfaces but not with TNF-alpha. These significant differences were not observed in other adhesion molecules. These results were supported by immunohistochemical studies. The effects of plasma treated PET and PTFE on cell adhesion and proliferation was also studied. There was a 1.3-fold

  17. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense.

  18. Expression of a single ICAM-1 isoform on T cells is sufficient for development of experimental autoimmune encephalomyelitis.

    PubMed

    Bullard, Daniel C; Hu, Xianzhen; Crawford, David; McDonald, Kristin; Ramos, Theresa N; Barnum, Scott R

    2014-04-01

    Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, induction of cellular immune responses, and immunological synapse formation. As a member of the immunoglobulin superfamily of adhesion proteins, ICAM-1 is composed of repeating Ig-like domains, a transmembrane domain, and short cytoplasmic tail that participates in intracellular signaling events. At least seven ICAM-1 protein isoforms are generated by alternative splicing, however little is known regarding their immunobiology. We have previously shown using different lines of ICAM-1 mutant mice (Icam1(tm1Jcgr) and Icam1(tm1Bay) ) that expression of alternatively spliced ICAM-1 isoforms can significantly influence the disease course during the development of EAE. In this study, we show using a newly developed transgenic mouse (CD2-Icam1(D4del) /Icam1(null) ) that T-cell-specific expression of a single ICAM-1 isoform composed of Ig domains 1, 2, 3, and 5 can mediate the initiation and progression of EAE. Our results indicate that the ICAM-1 isoform lacking Ig domain 4 can drive pathogenesis in demyelinating disease and may be a novel therapeutic target for treating multiple sclerosis.

  19. Expression of a single ICAM-1 isoform on T cells is sufficient for development of experimental autoimmune encephalomyelitis

    PubMed Central

    Bullard, Daniel C.; Hu, Xianzhen; Crawford, David; McDonald, Kristen; Ramos, Theresa N.; Barnum, Scott R.

    2014-01-01

    Summary Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, induction of cellular immune responses, and immunological synapse formation. As a member of the immunoglobulin superfamily of adhesion proteins, ICAM-1 is composed of repeating Ig-like domains, a transmembrane domain, and short cytoplasmic tail that participates in intracellular signaling events. At least seven ICAM-1 protein isoforms are generated by alternative splicing, however little is known regarding their immunobiology. We have previously shown using different lines of ICAM-1 mutant mice (Icam1tm1Jcgr and Icam1tm1Bay) that expression of alternatively spliced ICAM-1 isoforms can significantly influence the disease course during the development of EAE. In this study, we show using a newly developed transgenic mouse (CD2-Icam1D4del/Icam1null) that T cell-specific expression of a single ICAM-1 isoform composed of Ig domains 1, 2, 3 and 5, can mediate the initiation and progression of EAE. Our results indicate that the ICAM-1 isoform lacking Ig domain 4 can drive pathogenesis in demyelinating disease and may be a novel therapeutic target for treating multiple sclerosis. PMID:24435747

  20. Mast cells play a key role in Th2 cytokine-dependent asthma model through production of adhesion molecules by liberation of TNF-α.

    PubMed

    Chai, Ok Hee; Han, Eui-Hyeog; Lee, Hern-Ku; Song, Chang Ho

    2011-01-31

    Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.

  1. Differential roles of ICAM-1 and VCAM-1 in leukocyte-endothelial cell interactions in skin and brain of MRL/faslpr mice

    PubMed Central

    Norman, M. Ursula; James, Will G.; Hickey, Michael J.

    2008-01-01

    MRL/faslpr mice, which undergo a systemic autoimmune disease with similarities to systemic lupus erythematosus (SLE), display reduced pathology and prolonged survival if rendered deficient in ICAM-1. However, it remains unclear whether this is a result of the ability of ICAM-1 to promote the immune response or mediate leukocyte recruitment. Therefore, the aim of these studies was to compare the role of ICAM-1 in the elevated leukocyte-endothelial interactions, which affect MRL/faslpr mice. Intravital microscopy was used to compare leukocyte rolling and adhesion in postcapillary venules in the dermal and cerebral (pial) microcirculations of wild-type (ICAM+/+) and ICAM-1-deficient (ICAM-1−/−) MRL/faslpr mice. In the dermal microcirculation of 16-week MRL/faslpr mice, leukocyte adhesion was increased relative to nondiseased MRL+/+ mice. However, this increase was abolished in ICAM-1−/− MRL/faslpr mice. ICAM-1 deficiency was also associated with reduced dermal pathology. In contrast, in the pial microcirculation, the elevation in leukocyte adhesion observed in ICAM+/+ MRL/faslpr mice also occurred in ICAM-1−/− MRL/faslpr mice. VCAM-1 expression was detectable in both vascular beds, but higher levels were detected in the pial vasculature. Furthermore, VCAM-1 blockade significantly reduced leukocyte adhesion and rolling in the cerebral microcirculation of ICAM-1−/− MRL/faslpr mice. Therefore, ICAM-1 was critical for leukocyte adhesion in the skin but not the brain, where VCAM-1 assumed the major function. Given the ongoing development of anti-adhesion molecule therapies and their potential in inflammatory diseases such as SLE, these data indicate that implementation of these therapies in SLE should take into account the potential for tissue-specific functions of adhesion molecules. PMID:18426970

  2. Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration

    PubMed Central

    Dong, Z; Fu, S; Xu, X; Yang, Y; Du, L; Li, W; Kan, S; Li, Z; Zhang, X; Wang, L; Li, J; Liu, H; Qu, X; Wang, C

    2014-01-01

    Background: Our previous study indicates that leptin enhances gastric cancer (GC) invasion. However, the exact effect of leptin on GC metastasis and its underlying mechanism remain unclear. Intercellular adhesion molecule-1 (ICAM-1), a major molecule in stabilising cell–cell and cell–extracellular matrix interactions, is overexpressed and has crucial roles in tumour metastasis. Methods: Here, we investigated leptin and ICAM-1 expression in GC tissues. Furthermore, we characterised the influence of leptin on ICAM-1 expression in GC cells and elucidated the underlying mechanism. Results: Leptin and ICAM-1 were overexpressed in GC tissues, and a strong positive correlation was observed. They were also related with clinical stage or lymph node metastasis. Furthermore, leptin induced GC cell (AGS and MKN-45) migration by upregulating ICAM-1, and knockdown of ICAM-1 by small interference RNA (siRNA) blocked this process. Cell surface ICAM-1, as well as soluble ICAM-1 (sICAM-1), was also enhanced by leptin. Moreover, leptin increased ICAM-1 expression through Rho/ROCK pathway, which was attenuated by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated protein kinase (ROCK) (Y-27632). Conclusions: Our findings indicate that leptin enhances GC cell migration by increasing ICAM-1 through Rho/ROCK pathway, which might provide new insight into the significance of leptin in GC. PMID:24548863

  3. Rosiglitazone influences the expression of leukocyte adhesion molecules and CD14 receptor in type 2 diabetes mellitus patients.

    PubMed

    Štulc, T; Svobodová, H; Krupičková, Z; Doležalová, R; Marinov, I; Češka, R

    2014-01-01

    Diabetes mellitus is associated with increased inflammatory response, which may contribute to atherosclerosis progression. Experimental results demonstrated anti-inflammatory activity of glitazones; their effect on leukocyte adhesion molecules has not been studied to date. We therefore studied the effect of rosiglitazone treatment on leukocyte surface expression of adhesion molecules in patients with type 2 diabetes mellitus and compared our results with findings in healthy subjects. 33 subjects with type 2 diabetes and 32 healthy controls were included; patients were examined at baseline and after 5 months of rosiglitazone treatment (4 mg/d). Leukocyte expression of adhesion molecules LFA-1, CD18 and ICAM-1 was quantified using flow cytometry; in addition, CD14 (lipopolysaccharide receptor) expression was analyzed as a marker of nonspecific immunity. The expression of examined molecules at baseline was higher in patients compared to controls. Despite only mild decrease in blood glucose, rosiglitazone treatment induced substantial decrease of CD18 and CD14 expression and borderline decrease of LFA-1 and ICAM-1 expression (on monocytes only). We thus observed improvement in the expression of leukocyte inflammatory markers after rosiglitazone treatment. This effect is supposed to be mediated by direct effect of rosiglitazone on PPAR-gamma receptors on leukocytes.

  4. Differential expression of ezrin/radixin/moesin (ERM) and ERM-associated adhesion molecules in the blastocyst and uterus suggests their functions during implantation.

    PubMed

    Matsumoto, Hiromichi; Daikoku, Takiko; Wang, Haibin; Sato, Eimei; Dey, S K

    2004-03-01

    Development of the blastocyst to implantation competency, differentiation of the uterus to the receptive state, and a cross talk between the implantation-competent blastocyst and the uterine luminal epithelium are all essential to the process of implantation. In the present investigation, we examined the possibility for a potential cross talk between the blastocyst and uterus involving the ezrin/radixin/moesin (ERM) proteins and ERM-associated cytoskeletal cross-linker proteins CD43, CD44, ICAM-1, and ICAM-2. In normal Day 4 blastocysts and after rendering dormant blastocysts to implantation-competent by estrogen in vivo (activated), the outer surface of mural trophectoderm cells showed much higher levels of radixin as compared to those in the polar trophectoderm cells, inner cell mass (ICM), and primitive endoderm. In contrast, ezrin was present on both the mural and the polar trophectoderm cell surfaces of normal Day 4 and activated blastocysts at higher intensity than dormant blastocysts. A distinct localization was noted in the primitive endoderm of dormant blastocysts that was not apparent in activated or normal Day 4 blastocysts. The expression of moesin was modestly higher at the mural trophectoderm of implantation-competent blastocysts, while the localization appeared to be present primarily on the polar trophectoderm cell surface of Day 4 blastocysts. The localization of ERM-associated adhesion molecules CD43, CD44, and ICAM-2 was more intense in the implantation-competent blastocysts compared with the dormant blastocysts. However, while CD44 was present both in the trophectoderm and in ICM, CD43 and ICAM-2 were localized primarily to the trophectoderm. The signal for ICAM-1 was very intense in the ICM but was modest in the trophectoderm. No significant changes in fluorescence intensity were noted between activated and dormant blastocysts. In the receptive uterus on Day 4 of pregnancy, ERM proteins were localized to the uterine epithelium, while on Day 5

  5. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis

    PubMed Central

    Yang, M; Liu, J; Piao, C; Shao, J; Du, J

    2015-01-01

    Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell–cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1−/−) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1−/− macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression. PMID:26068788

  6. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    PubMed

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  7. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia

    PubMed Central

    2011-01-01

    Background A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1) plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs), we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM) function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1) is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Methods Using the surfactant protein C (SPC) promoter, we developed a transgenic mouse (SPC-sICAM-1) that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. Results SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. Conclusions We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections. PMID:21247482

  8. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology.

    PubMed

    Brousse, Valentine; Colin, Yves; Pereira, Catia; Arnaud, Cecile; Odièvre, Marie Helene; Boutemy, Anne; Guitton, Corinne; de Montalembert, Mariane; Lapouméroulie, Claudine; Picot, Julien; Le Van Kim, Caroline; El Nemer, Wassim

    2015-01-01

    Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.

  9. Manassantin A and B isolated from Saururus chinensis inhibit TNF-alpha-induced cell adhesion molecule expression of human umbilical vein endothelial cells.

    PubMed

    Kwon, Oh Eok; Lee, Hyun Sun; Lee, Seung Woong; Chung, Mi Yeon; Bae, Ki Hwan; Rho, Mun-Chual; Kim, Young-Kook

    2005-01-01

    Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and B (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with TNF-alpha, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with IC50 values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited TNF-alpha-induced up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by TNF-alpha, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

  10. Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy.

    PubMed Central

    Limb, G A; Chignell, A H; Green, W; LeRoy, F; Dumonde, D C

    1996-01-01

    AIMS: This study investigated the presence of the cytokine tumour necrosis factor alpha (TNF alpha) and the vascular adhesion glycoproteins ICAM-1, VCAM-1, E-selectin, P-selectin, and PECAM within fibrovascular membranes of eyes with proliferative diabetic retinopathy (PDR). METHODS: The presence of these molecules was determined by immunohistochemical staining using monoclonal antibodies and the APAAP technique. RESULTS: Staining for TNF alpha was observed on the retinal vascular endothelium of five of 12 specimens, on infiltrating cells within all membranes, and on the extracellular matrix of nine specimens. This staining wa abolished by absorption of the monoclonal antibody with human recombinant TNF alpha. Likewise, ICAM-1 staining was given by infiltrating cells and extracellular matrix of nine membranes and by the endothelium of three of the specimens. VCAM-1, E-selectin, and P-selectin staining was observed on the vascular endothelium of 5/12, 4/12, and 3/12 epiretinal membranes respectively. PECAM was expressed by the endothelium of 4/12 specimens, by infiltrating cells of 8/12 membranes, and also by the extracellular matrix of two of the specimens. CONCLUSION: The widespread distribution of TNF alpha and the nature of the adhesion molecules expressed by vascular endothelial cells in PDR membranes suggest that local activation of TNF alpha and enhanced expression of vascular cell adhesion molecules may play an important role in the development of the proliferative phase of diabetic retinopathy. Images PMID:8814750

  11. Vascular and extravascular immunoreactivity for Intercellular Adhesion Molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes

    PubMed Central

    Miguel-Hidalgo, Jose Javier; Overholser, James C.; Jurjus, George J.; Meltzer, Herbert Y.; Dieter, Lesa; Konick, Lisa; Stockmeier, Craig A.; Rajkowska, Grazyna

    2011-01-01

    Background Vascular and immune alterations in the prefrontal cortex may contribute to major depression in elderly subjects. Intercellular adhesion molecule-1 (ICAM-1), major inflammatory mediator in vessels and astrocytes, could be altered in geriatric depression, but little is known about its age-dependent expression in subjects with depression and its relationship to astrocytes identified by the marker glial fibrillary acidic protein (GFAP), found to be reduced in depression. Methods We measured the percentage of gray matter area fraction covered by ICAM-1 immunoreactivity in blood vessels and in extravascular accumulations of ICAM-1 immunoreactivity in 19 non-psychiatric comparison subjects and 18 subjects with major depression, all characterized by postmortem psychological diagnosis. Association of extravascular ICAM-1 to GFAP-positive astrocytes was investigated by double-labeling immunofluorescence. Results Vascular and extravascular fractions of ICAM-1 immunoreactivity were lower in subjects with MDD than in non-psychiatric comparison subjects. Non-psychiatric comparison subjects older than 60 experienced dramatic increase in extravascular ICAM-1 immunoreactivity, but this increase was attenuated in elderly subjects with MDD, particularly in those dying by suicide. Most extracellular ICAM-1 immunoreactivity was coextensive with GFAP-immunoreactive astrocytes in both groups. Limitations Heterogeneity in type and dosage of antidepressant medication. Difficulty in determining the exact onset of depression in subjects older than 60 at the time of death. Routine cerebrovascular pathological screening may miss subtle subcellular and molecular changes. Conclusions There is significant attenuation of extravascular and vascular ICAM-1 immunoreactivity in elderly subjects with major depression suggesting an astrocyte-associated alteration in immune function in the aging orbitofrontal cortex of subjects with MDD. PMID:21536333

  12. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families

    PubMed Central

    Kulkarni, Hemant; Mamtani, Manju; Peralta, Juan; Almeida, Marcio; Dyer, Thomas D.; Goring, Harald H.; Johnson, Matthew P.; Duggirala, Ravindranath; Mahaney, Michael C.; Olvera, Rene L.; Almasy, Laura; Glahn, David C.; Williams-Blangero, Sarah; Curran, Joanne E.; Blangero, John

    2016-01-01

    Objective While the role of type 2 diabetes (T2D) in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vessel cell adhesion molecule 1 (sVCAM-1) with incident T2D. Methods Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI) and net reclassification improvement (NRI) indexes. Results Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT) individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment—insulin resistance (HOMA-IR). Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low

  13. Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-12-01

    We used a coculture model to evaluate the inflammatory potential of ammonia gas plasma modified PET and PTFE by flow cytometry and immunohistochemistry. In these studies, human endothelial cells from umbilical cord (HUVEC) and promonocytic U937 cells were used. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. U937 adhesion to endothelium on each surface was evaluated at day 1 and day 7. To further investigate the role of leukocyte-endothelial cell adhesion molecules (CAMs) in cell-to-cell interaction on material surfaces, the expression of the leukocyte-endothelial CAMs: ICAM-1, VCAM-1, PECAM-1, and E-selectin on HUVECs were evaluated after U937 cell adhesion. The results demonstrated that plasma treated PET (T-PET) and treated PTFE (T-PTFE) did not increase U937 cell adhesion compared to the negative control. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7, which is consistent with our prior observation that T-PET and T-PTFE did not cause HUVECs to increase the expression of adhesion molecules. After U937 cell adhesion, the expression of ICAM-1 and VCAM-1 of HUVECs were not different on T-PET and T-PTFE compared with the negative control. However, the expression of E-selectin was reduced on day 1, but not on day 7. The effects of plasma treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, the cell number increased significantly on the surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion and expression of

  14. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease.

    PubMed

    Pak, Victoria M; Grandner, Michael A; Pack, Allan I

    2014-02-01

    Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA.

  15. Constitutive Expression and Enzymatic Cleavage of ICAM-1 in the Spontaneously Hypertensive Rat

    PubMed Central

    Tong, Sheng; Neboori, Hanmanth J.; Tran, Edward D.; Schmid-Schönbein, Geert W.

    2011-01-01

    Background/Aims: Leukocyte adhesion to the endothelium is abnormal in hypertension. We have recently shown that spontaneously hypertensive rats (SHRs) have circulating leukocytes with enhanced CD18 receptor cleavage. In the current study, we investigate expression levels of its counter receptor, intercellular adhesion molecule (ICAM-1), and its possible proteolytic cleavage in the SHR and control Wistar rat. Methods ICAM-1 was labeled on tissue sections with two antibodies targeting its extracellular and intracellular domains and evaluated by light absorption measurements. The in situ cleavage of ICAM-1 was assessed by treating vessel sections with matrix metalloproteinase (MMP)-7, MMP-9 and elastase. Results SHRs showed a significant increase in ICAM-1 expression in liver and kidney compared with Wistar rats. The liver and kidney glomeruli exhibit a discrepancy in label density between intra- and extracellular antibodies, which suggests that enzymatic cleavage may be a factor determining ICAM-1 distribution. MMP-7 and MMP-9, which are elevated in SHR plasma, and elastase, which has elevated activity in SHR neutrophils, cleave the extracellular domain of ICAM-1 when applied to the tissue. Conclusion ICAM-1 expression in SHRs is upregulated in a tissue-specific manner. Proteolytic cleavage of the extracellular domain of ICAM-1 and accumulation in kidney glomeruli may play a role in the renal involvement of inflammation. PMID:21464573

  16. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated.

  17. Borrelia burgdorferi upregulates expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro.

    PubMed Central

    Sellati, T J; Burns, M J; Ficazzola, M A; Furie, M B

    1995-01-01

    The accumulation of leukocytic infiltrates in perivascular tissues is a key step in the pathogenesis of Lyme disease, a chronic inflammatory disorder caused by Borrelia burgdorferi. During an inflammatory response, endothelial cell adhesion molecules mediate the attachment of circulating leukocytes to the blood vessel wall and their subsequent extravasation into perivascular tissues. Using cultured human umbilical vein endothelial cells (HUVEC) in a whole-cell enzyme-linked immunosorbent assay, we demonstrated that B. burgdorferi activated endothelium in a dose- and time-dependent fashion as measured by upregulation of the adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1). As few as one spirochete per endothelial cell stimulated increased expression of these molecules. Expression of E-selectin peaked after spirochetes and HUVEC were coincubated for 4 h and returned to near-basal levels by 24 h. In contrast, expression of VCAM-1 and ICAM-1 peaked at 12 h and remained elevated at 24 h. HUVEC monolayers cultured on acellular amniotic tissue were used to investigate the consequences of endothelial cell activation by spirochetes. After incubation of HUVEC-amnion cultures with B. burgdorferi, subsequently added neutrophils migrated across the endothelial monolayers. This process was mediated by E-selectin and by CD11/CD18 leukocytic integrins. The extent of migration depended on both the number of spirochetes used to stimulate the HUVEC and the length of the coincubation period. These results raise the possibility that B. burgdorferi induces a host inflammatory response and accompanying perivascular damage through activation of vascular endothelium. PMID:7591083

  18. Neural cell adhesion molecule expression in dilated cardiomyopathy is associated with intramyocardial inflammation and hypertrophy.

    PubMed

    Ostermann, Karsten; Schultheiss, Heinz-Peter; Noutsias, Michel

    2017-03-18

    Chronic intramyocardial inflammation (inflammatory cardiomyopathy/DCMi) is linked to the pathogenesis of dilated cardiomyopathy (DCM). Neural cell adhesion molecule (NCAM) is involved in orchestrating cardiac muscle morphogenesis, but is down-regulated after embryogenesis. We investigated NCAM expression in adult DCM hearts, its possible association with DCMi-parameters, and with cardiomyocyte hypertrophy (CMH). Endomyocardial biopsies (EMBs) from DCM patients (n=85; n=37 females; age: 48±19years; LVEF <40%) and controls from non-cardiac deaths were immunostained for DCMi markers and for NCAM expression, and quantified by digital image analysis (DIA). NCAM expression on the intercalated discs and the sarcolemma was confirmed in n=46 (54%) of the DCM-EMBs. In the 17 controls, NCAM expression was confined to scattered intramyocardial nerves, but was absent on cardiomyocytes. DIA-quantified area fraction (AF) of NCAM was significantly (p=0.0001) higher in the DCM hearts (0.0044±0.017) compared with the controls (0.0006±0.0004). Multivariate analysis of DIA-quantified NCAM-AF revealed significant associations with infiltrates (CD18(+), CD11a/LFA-1(+), CD11b/Mac-1(+), TNFα(+), CD3(+)) and with endothelial cell adhesion molecules (CAM; CD54/ICAM-1 and CD29; p<0.05). The mean cardiomyocyte diameter (MCD) correlated highly significantly (p<0.01) with NCAM-AF, ICAM-1-AF, CD29-AF, CD18(+) and TNFa(+) infiltrates, and was associated less significantly (p<0.05) with CD3(+), CD11a/LFA-1(+), and CD11b/Mac-1(+) infiltrates. In conclusion, NCAM-expression in ca. 50% of adult DCM hearts is associated with CMH, and may be induced by inflammatory pathways.

  19. ICAM-1 expression on chondrocytes in rheumatoid arthritis: induction by synovial cytokines

    PubMed Central

    Sharma, H.; Pigott, R.

    1992-01-01

    The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1α, TNFα and IFNγ or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus. PMID:18475445

  20. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    PubMed

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.

  1. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells

    PubMed Central

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-01-01

    5,7-Dihydroxy-3′,4′,6′-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. PMID:22862554

  2. [Role of "leukocyte adhesion molecules" in early periodontal disease].

    PubMed

    Vierucci, S

    1992-01-01

    The purpose of this paper is to focus on functional characteristics of leukocyte adhesion molecules, on their localization and specific ligands. In fact, leukocyte chemotaxis and adhesion to endothelium is an essential step in promoting adequate immune response to bacterial infections. Since periodontal health is highly dependent on neutrophil function against the microbial dental plaque, defects in chemotaxis and adhesion of leukocytes to endothelium often result in severe, early onset periodontitis. Furthermore, oral lesions may be the only clinical manifestation of neutrophil impairment.

  3. Cell adhesion molecules: detection with univalent second antibody

    PubMed Central

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens. PMID:6970200

  4. Soluble intercellular adhesion molecule-1, D-lactate and diamine oxidase in patients with inflammatory bowel disease

    PubMed Central

    Song, Wei-Bing; Lv, Yong-Hui; Zhang, Zhen-Shu; Li, Ya-Nan; Xiao, Li-Ping; Yu, Xin-Pei; Wang, Yuan-Yuan; Ji, Hong-Li; Ma, Li

    2009-01-01

    AIM: To study the levels of serum soluble intercellular adhesion molecule-1 (sICAM-1), plasma D-lactate and diamine oxidase (DAO) in patients with inflammatory bowel disease (IBD), and the potential clinical significance. METHODS: Sixty-nine patients with IBD and 30 healthy controls were included in this study. The concentration of sICAM-1 was detected with enzyme-linked immunosorbent assay, the level of D-lactate and DAO was measured by spectroscopic analysis, and the number of white blood cells (WBC) was determined by routine procedure. RESULTS: The levels of sICAM-l, DAO, and WBC in IBD patients were significantly higher than those in the control group (P < 0.01). sICAM-l in IBD patients was found to be closely related to the levels of DAO and D-lactate (212.94 ± 69.89 vs 6.35 ± 2.35, P = 0.000), DAO 212.94 ± 69.89 vs 8.65 ± 3.54, P = 0.000) and WBC (212.94 ± 69.89 vs 7.40 ± 2.61, P = 0.000), but no significant difference was observed between patients with ulcerative colitis and patients with Crohn’s disease. The post-treatment levels of sICAM-l, D-lactate and WBC were significantly lower than before treatment (sICAM-l 206.57 ± 79.21 vs 146.21 ± 64.43, P = 0.000), (D-lactate 1.46 ± 0.94 vs 0.52 ± 0.32, P = 0.000) and (WBC 7.24 ± 0.2.33 vs 5.21 ± 3.21, P = 0.000). CONCLUSION: sICAM-1, D-lactate and DAO are closely related to the specific conditions of IBD, and thus could be used as a major diagnostic index. PMID:19701972

  5. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    PubMed

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE.

  6. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques.

    PubMed

    Kim, J-Y; Kim, D H; Kim, J H; Lee, D; Jeon, H B; Kwon, S-J; Kim, S M; Yoo, Y J; Lee, E H; Choi, S J; Seo, S W; Lee, J I; Na, D L; Yang, Y S; Oh, W; Chang, J W

    2012-04-01

    Presently, co-culture of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) with BV2 microglia under amyloid-β42 (Aβ42) exposure induced a reduction of Aβ42 in the medium as well as an overexpression of the Aβ-degrading enzyme neprilysin (NEP) in microglia. Cytokine array examinations of co-cultured media revealed elevated release of soluble intracellular adhesion molecule-1 (sICAM-1) from hUCB-MSCs. Administration of human recombinant ICAM-1 in BV2 cells and wild-type mice brains induced NEP expression in time- and dose-dependent manners. In co-culturing with BV2 cells under Aβ42 exposure, knockdown of ICAM-1 expression on hUCB-MSCs by small interfering RNA (siRNA) abolished the induction of NEP in BV2 cells as well as reduction of added Aβ42 in the co-cultured media. By contrast, siRNA-mediated inhibition of the sICAM-1 receptor, lymphocyte function-associated antigen-1 (LFA-1), on BV2 cells reduced NEP expression by ICAM-1 exposure. When hUCB-MSCs were transplanted into the hippocampus of a 10-month-old transgenic mouse model of Alzheimer's disease for 10, 20, or 40 days, NEP expression was increased in the mice brains. Moreover, Aβ42 plaques in the hippocampus and other regions were decreased by active migration of hUCB-MSCs toward Aβ deposits. These data suggest that hUCB-MSC-derived sICAM-1 decreases Aβ plaques by inducing NEP expression in microglia through the sICAM-1/LFA-1 signaling pathway.

  7. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease.

    PubMed

    Azeredo, Elzinandes L; Zagne, Sonia M O; Alvarenga, Allan R; Nogueira, Rita M R; Kubelka, Claire F; de Oliveira-Pinto, Luzia M

    2006-06-01

    The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.

  8. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation.

    PubMed

    Barreiro, Olga; Yáñez-Mó, María; Sala-Valdés, Mónica; Gutiérrez-López, María Dolores; Ovalle, Susana; Higginbottom, Adrian; Monk, Peter N; Cabañas, Carlos; Sánchez-Madrid, Francisco

    2005-04-01

    Tetraspanins associate with several transmembrane proteins forming microdomains involved in intercellular adhesion and migration. Here, we show that endothelial tetraspanins relocalize to the contact site with transmigrating leukocytes and associate laterally with both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Alteration of endothelial tetraspanin microdomains by CD9-large extracellular loop (LEL)-glutathione S-transferase (GST) peptides or CD9/CD151 siRNA oligonucleotides interfered with ICAM-1 and VCAM-1 function, preventing lymphocyte transendothelial migration and increasing lymphocyte detachment under shear flow. Heterotypic intercellular adhesion mediated by VCAM-1 or ICAM-1 was augmented when expressed exogenously in the appropriate tetraspanin environment. Therefore, tetraspanin microdomains have a crucial role in the proper adhesive function of ICAM-1 and VCAM-1 during leukocyte adhesion and transendothelial migration.

  9. Adhesion Molecule-Modified Biomaterials for Neural Tissue Engineering

    PubMed Central

    Rao, Shreyas S.; Winter, Jessica O.

    2009-01-01

    Adhesion molecules (AMs) represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review discusses common AMs used in neural biomaterials and the mechanism of cell attachment to these AMs. Methods to modify materials with AMs are discussed and compared. Additionally, patterning of AMs for achieving specific neuronal responses is explored. PMID:19668707

  10. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  11. Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats.

    PubMed

    Abdallah, Dalaal M; Ismael, Naglaa R

    2011-11-01

    Resveratrol, a polyphenol compound with anti-inflammatory properties, has been previously evaluated for its beneficial effects in several ulcerative colitis models. However, the current study elucidates the effect of resveratrol on adhesion molecules, as well as its antioxidant efficacy in a trinitrobenzene sulfonic acid (TNBS)-induced ulcerative-colitis model. Colitis was induced by rectal instillation of TNBS, followed by daily per os administration of either sulphasalazine (300 mg/kg) or resveratrol (2 and 10 mg/kg) for 7 days. Administration of resveratrol decreased the ulcerative area and colon mass index; these effects were further supported by the reduction in colon inflammation grades, as well as histolopathological changes, and reflected by the stalling of body mass loss. The anti-inflammatory effects of resveratrol were indicated by lowered myeloperoxidase activity, and by suppressing ICAM-1 and VCAM-1 levels in the colon and serum. In addition, it restored a reduced colonic nitric oxide level and reinstated its redox balance, as evidenced by the suppression of lipid peroxides and prevention of glutathione depletion. The anti-ulcerative effect of the higher dose of resveratrol was comparable with those of sulphasalazine. The study confirms the anti-ulcerative effect of resveratrol in TNBS-induced experimental colitis via reduction of neutrophil infiltration, inhibition of adhesive molecules, and restoration of the nitric oxide level, as well as the redox status.

  12. ICAM-1: isoforms and phenotypes.

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Barnum, Scott R

    2014-05-15

    ICAM-1 plays an important role in leukocyte trafficking, immunological synapse formation, and numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane-bound and soluble ICAM-1 isoforms that arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types are poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced as a result of alternative splicing. These mice, along with true ICAM-1-deficient mice and newly generated ICAM-1-transgenic mice, have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review, we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis.

  13. High-density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation.

    PubMed

    Huang, Xiaoqin; He, Dan; Ming, Jia; He, Yubin; Zhou, Champion; Ren, Hui; He, Xin; Wang, Chenguang; Jin, Jingru; Ji, Liang; Willard, Belinda; Pan, Bing; Zheng, Lemin

    2016-02-01

    Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis

  14. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway.

    PubMed

    Hung, Chi-Nan; Huang, Hui-Pei; Wang, Chau-Jong; Liu, Kai-Li; Lii, Chong-Kuei

    2014-10-01

    Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.

  15. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules

    PubMed Central

    Han, Jong-Min; Li, Hua; Cho, Moon-Hee; Baek, Seung-Hwa; Lee, Chul-Ho; Park, Ho-Yong; Jeong, Tae-Sook

    2017-01-01

    Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. PMID:28208647

  16. Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus- infected mouse corneas

    PubMed Central

    1996-01-01

    In a mouse model of herpes simplex virus (HSV) 1 corneal infection, tissue destruction results from a CD4+ T cell-mediated chronic inflammation, in which interleukin 2 and interferon (IFN) gamma are requisite inflammatory mediators and polymorphonuclear leukocytes (PMN) are the predominant infiltrating cells. In vivo neutralization of IFN- gamma relieved inflammation at least in part through a specific block of PMN extravasation into HSV-1-infected corneas. Intercellular adhesion molecule (ICAM) 1 and platelet endothelial cell adhesion molecule (PECAM) 1 were upregulated on the vascular endothelium of inflamed corneas. Reduced PMN extravasation in anti-IFN-gamma-treated mice was associated with a dramatic reduction of PECAM-1 but not ICAM-1 expression on vascular endothelium. PMN accumulated in the lumen of corneal vessels after in vivo IFN-gamma neutralization. PECAM-1 was readily detectable on PMN inside the vessels but was not detectable on PMN that extravasated into the infected cornea. Moreover, flow cytometric analysis revealed reduced PECAM-1 expression but elevated major histocompatibility complex class I expression on PMN that recently extravasated into the peritoneal cavity when compared with PMN in the peripheral blood. We conclude that IFN-gamma contributes to HSV- 1-induced corneal inflammation by facilitating PMN infiltration; this appears to be accomplished through upregulation of PECAM-1 expression on the vascular endothelium; and PMN downregulate PECAM-1 expression during the process of extravasation. PMID:8879215

  17. LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes

    PubMed Central

    Park, Geun-Soo; Kim, Jae-Hong

    2015-01-01

    Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this ‘MyD88-BLT2’ cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes. PMID:26299331

  18. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  19. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-03-15

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.

  20. Neutrophil Interactions with Epithelial Expressed ICAM-1 Enhances Intestinal Mucosal Wound Healing

    PubMed Central

    Sumagin, R; Brazil, JC; Nava, P; Nishio, H; Alam, A; Luissint, AC; Weber, DA; Neish, AS; Nusrat, A; Parkos, CA

    2015-01-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. While epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 plays an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing. PMID:26732677

  1. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.

    PubMed

    Sumagin, R; Brazil, J C; Nava, P; Nishio, H; Alam, A; Luissint, A C; Weber, D A; Neish, A S; Nusrat, A; Parkos, C A

    2016-09-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.

  2. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells.

    PubMed

    Thichanpiang, Peeradech; Wongprasert, Kanokpan

    2015-01-01

    Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.

  3. Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway

    PubMed Central

    Liu, Chen-Wei; Sung, Hsin-Ching; Lin, Shu-Rung; Wu, Chun-Wei; Lee, Chiang-Wen; Lee, I.-Ta; Yang, Yi-Fan; Yu, I-Shing; Lin, Shu-Wha; Chiang, Ming-Hsien; Liang, Chan-Jung; Chen, Yuh-Lien

    2017-01-01

    Resveratrol, an edible polyphenolic phytoalexin, improves endothelial dysfunction and attenuates inflammation. However, the mechanisms have not been thoroughly elucidated. Therefore, we investigated the molecular basis of the effects of resveratrol on TNF-α-induced ICAM-1 expression in HUVECs. The resveratrol treatment significantly attenuated the TNF-α-induced ICAM-1 expression. The inhibition of p38 phosphorylation mediated the reduction in ICAM-1 expression caused by resveratrol. Resveratrol also decreased TNF-α-induced IκB phosphorylation and the phosphorylation, acetylation, and translocation of NF-κB p65. Moreover, resveratrol induced the AMPK phosphorylation and the SIRT1 expression in TNF-α-treated HUVECs. Furthermore, TNF-α significantly suppressed miR-221/-222 expression, which was reversed by resveratrol. miR-221/-222 overexpression decreased p38/NF-κB and ICAM-1 expression, which resulted in reduced monocyte adhesion to TNF-α-treated ECs. In a mouse model of acute TNF-α-induced inflammation, resveratrol effectively attenuated ICAM-1 expression in the aortic ECs of TNF-α-treated wild-type mice. These beneficial effects of resveratrol were lost in miR-221/222 knockout mice. Our data showed that resveratrol counteracted the TNF-α-mediated reduction in miR-221/222 expression and decreased the TNF-α-induced activation of p38 MAPK and NF-κB, thereby suppressing ICAM-1 expression and monocyte adhesion. Collectively, our results show that resveratrol attenuates endothelial inflammation by reducing ICAM-1 expression and that the protective effect was mediated partly through the miR-221/222/AMPK/p38/NF-κB pathway. PMID:28338009

  4. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    PubMed

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-09-17

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  5. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    SciTech Connect

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A. )

    1990-08-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC.

  6. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  7. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation.

    PubMed

    Jang, Ji Hoon; Yang, Eun Sun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2012-12-01

    Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of butein on tumor necrosis factor (TNF)-α-induced adhesion molecule expression and its molecular mechanism of action. Butein significantly decreased TNF-α-induced monocyte (U937) cell adhesion to lung epithelial cells in a dose-dependent manner. Butein also inhibited the protein and mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated A549 human lung epithelial cells in a dose-dependent manner. Butein inhibited TNF-α-induced reactive oxygen species (ROS) generation and nuclear factor-κB (NF-κB) activation in A549 cells; it also inhibited the phosphorylation of MAPKs and Akt, suggesting that the MAPK/Akt signaling pathway may be involved in the butein-mediated inhibition of TNF-α-induced leukocyte adhesion to A549 cells. Collectively, our results suggest that butein affects cell adhesion through the inhibition of TNF-α-induced ICAM-1 and VCAM-1 expression by inhibiting the NF-κB/MAPK/Akt signaling pathway and ROS generation, thereby, elucidating the role of butein in the anti-inflammatory response.

  8. Involvement of ICAM-1 in impaired spermatogenesis after busulfan treatment in mice.

    PubMed

    Cai, Y; Liu, T; Fang, F; Shen, S; Xiong, C

    2016-02-01

    Expression of adherence proteins, such as P-cadherin, has been identified in the normal testis and changed in impaired testis induced by alkylating agents. Intercellular adhesion molecule-1 (ICAM-1), a member of the immunoglobulin superfamily of cell adhesion molecules, is a constituent component of the blood-testis barrier and a multifunctional molecule in homeostasis of spermatogenesis. However, the distribution of ICAM-1 in the testis of mice and expression changes after busulfan treatment remain unclear. In this study, ICAM-1 immunoreaction was detected in Sertoli and germinal cells, particularly in spermatogonia, and elongating and elongated spermatids of normal testes. Accompanied with degeneration of spermatogenesis (decrease in testicular and epididymal weights, as well as loss of germ cells in histological morphology), ICAM-1 expression declined significantly in the seminiferous tubules during a 4-week experimental period, particularly in the first 2 weeks (40 mg kg(-1) busulfan, single injection). Compared with the control group, busulphan-treated testes showed a significant increase in lipid peroxidation during weeks 1 and 2. Thus, ICAM-1 may play an important role in the homeostasis of spermatogenesis, and busulfan treatment can lead to adhesion disintegration.

  9. Selective inhibition by grape seed proanthocyanidin extracts of cell adhesion molecule expression induced by advanced glycation end products in endothelial cells.

    PubMed

    Zhang, Feng-Lei; Gao, Hai-Qing; Wu, Jian-Min; Ma, Ya-Bing; You, Bei-An; Li, Bao-Ying; Xuan, Jun-Hua

    2006-08-01

    The interaction of advanced glycation end products (AGE) with their cell surface receptors for AGEs (RAGE) has been causally implicated in the pathogenesis of diabetic vascular complications and has been shown to stimulate cell adhesion molecule expression in endothelial cells via induction of reactive oxygen species (ROS). Alternatively, grape seed proanthocyanidin extracts (GSPE), which are naturally occurring polyphenolic compounds, have been reported to possess potent radical scavenging and antioxidant properties and to display significant cardiovascular protective action. In this study, we investigated whether GSPE could inhibit AGE-induced cell adhesion molecule expression through interference with ROS generations in human umbilical vein endothelial cells. AGE-modified bovine serum albumin (AGE-BSA) was prepared by incubating BSA with a high concentration of glucose. Stimulation of cultured human umbilical vein endothelial cells with 200 microg/mL of AGE-BSA significantly enhanced intracellular ROS formation and subsequently upregulated the expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM-1), whereas both unmodified BSA and GSPE alone were without effect. However, preincubation of different concentrations of GSPE markedly downregulated AGE-BSA-induced VCAM-1 expression at the surface protein and mRNA level in a concentration-dependent manner, but the increased ICAM-1 expression was not affected by GSPE treatment. Meanwhile, the inhibition by GSPE of intracellular ROS generation was also observed at defined time periods. These results demonstrate that GSPE can inhibit the enhanced VCAM-1 expression but not ICAM-1 in AGE-exposed endothelial cells by suppressing ROS generation. Hence, GSPE may have therapeutic potential in the prevention and treatment of vascular complications in patients with diabetes.

  10. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway.

    PubMed

    Rui, Wei; Guan, Longfei; Zhang, Fang; Zhang, Wei; Ding, Wenjun

    2016-01-01

    The aim of this study was to explore the intracellular mechanisms underlying the cardiovascular toxicity of air particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) in a human umbilical vein cell line, EA.hy926. We found that PM2.5 exposure triggered reactive oxygen species (ROS) generation, resulting in a significant decrease in cell viability. Data from Western blots showed that PM2.5 induced phosphorylation of Jun N-terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), and activation of nuclear factor kappa B (NF-κB). We further observed a significant increase in expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in a time- and dose-dependent manner. Moreover, the adhesion of monocytic THP-1 cells to EA.hy926 cells was greatly enhanced in the presence of PM2.5 . However, N-acetylcysteine (NAC), a scavenger of ROS, prevented the increase of ROS generation, attenuated the phosphorylation of the above kinases, and decreased the NF-κB activation as well as the expression of ICAM-1 and VCAM-1. Furthermore, ERK inhibitor (U0126), AKT inhibitor (LY294002) and NF-κB inhibitor (BAY11-7082) significantly down-regulated PM2.5 -induced ICAM-1 and VCAM-1 expression as well as adhesion of THP-1 cells, but not JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580), indicating that ERK/AKT/NF-κB is involved in the signaling pathway that leads to PM2.5 -induced ICAM-1 and VCAM-1 expression. These findings suggest PM2.5 -induced ROS may function as signaling molecules triggering ICAM-1 and VCAM-1 expressions through activating the ERK/AKT/NF-κB-dependent pathway, and further promoting monocyte adhesion to endothelial cells.

  11. Adhesion molecules in breast carcinoma: a challenge to the pathologist.

    PubMed

    Rossetti, Claudia; Reis, Beatriz da Costa Aguiar Alves; Delgado, Pamela de Oliveira; Azzalis, Ligia Ajaime; Junqueira, Virginia B C; Feder, David; Fonseca, Fernando

    2015-01-01

    The role of adhesion molecules is very important both in the activation of carcinogenesis and in the differentiation of subtypes of breast carcinoma, aiding in diagnosis, prognosis and therapeutic choice in these tumors. Therefore, understanding the functions and interrelationships among these molecules is crucial to the pathologist, who often uses these factors as a resource to differentiate tumors and further classify them according to a molecular point of view. Our goal is to describe the applicability and the difficulties encountered by the pathologist in the diagnosis of breast carcinoma, discussing the most commonly used markers of adhesion in routine analyses.

  12. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes

    PubMed Central

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R.

    2015-01-01

    Human cell adhesion molecules (CAMs) are essential both for a) proper development, modulation and maintenance of interactions between cells and for b) cell-to-cell (and matrix-to-cell) communication about these interactions. CAMs are thus key to proper development and plasticity of organs and tissues that include the brain. Despite recognition of the existence of these dual CAM roles and appreciation of the differential functional significance of these roles, there have been surprisingly few systematic studies that have carefully enumerated the universe of CAMs, identified the preferred roles for specific CAMs in distinct types of cellular connections and communication, or related these issues to specific brain disorders or brain circuits. In this paper, we substantially update and review the set of human genes that are likely to encode CAMs based on searches of databases, literature reviews and annotations. We describe the likely CAMs and the functional CAM subclasses into which they fall. These include “iCAMs”, whose contacts largely mediate cell to cell communication, those involved in focal adhesions, CAM genes whose products are preferentially involved with stereotyped and morphologically-identifiable connections between cells (adherens junctions, gap junctions) and smaller numbers of genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing binding partners of these iCAMs. CAM data from genetic and genomic studies of addiction in humans and mouse models provide examples of the ways in which CAM variation is likely to contribute to a specific brain-based disorder. We discuss how differences in CAM splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 could enrich this picture. CAM expression in dopamine neurons provides one of the ways in which variations in cell adhesion

  13. Role of nuclear factor-kappa B in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2003-10-01

    Previous work has demonstrated that infection of human bronchial epithelial cells by Bordetella pertussis up-regulates intercellular adhesion molecule-1 (ICAM-1) gene and protein expression. It has also been shown that interaction of the Arg-Gly-Asp (RGD) site of filamentous hemagglutinin (FHA) with host cell very late antigen (VLA)-5 (alpha 5 beta 1 integrin) is required for the up-regulation of epithelial ICAM-1 expression, and that pertussis toxin (PT) impairs this response. We therefore examined the molecular mechanisms leading to B. pertussis-induced ICAM-1 up-regulation in BEAS-2B human bronchial epithelial cells. A colorimetric nuclear factor kappa B (NF-kappa B) activation assay demonstrated that NF-kappa B was activated in response to infection of these cells with B. pertussis. This activation occurred in an FHA(RGD)-dependent manner, and was blocked by an antibody against VLA-5, implying that binding of the RGD to VLA-5 integrin is involved in NF-kappa B activation. Western blot analysis revealed that the activation of NF-kappa B by B. pertussis was preceded by degradation of I kappa B alpha, a major cytoplasmic inhibitor of NF-kappa B. Pretreatment of the BEAS-2B cells with the NF-kappa B inhibitors pyrrolidine dithiocarbamate (PDTC), MG-132, and SN50 resulted in a marked decrease in B. pertussis-induced ICAM-1 expression, implying the involvement of NF-kappa B in ICAM-1 expression. Purified PT abrogated both NF-kappa B activation and I kappa B alpha degradation. These results suggest that ligation of VLA-5 integrin by FHA induces RGD-dependent NF-kappa B activation, thus leading to the up-regulation of epithelial ICAM-1 expression, and that a PT-sensitive G protein may be involved in this signaling pathway.

  14. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  15. Hyperhyaluronanemia in alcoholic hepatitis is associated with increased levels of circulating soluble intercellular adhesion molecule-1.

    PubMed

    Hill, D B; Deaciuc, I V; McClain, C J

    1998-09-01

    The purpose of this study was to evaluate the role of the sinusoidal endothelial cell (SEC) during the clinical course of alcoholic hepatitis. Twenty consenting patients (mean age: 49.4 +/- 11.0 years) with moderate or severe hepatitis were studied. The patients were selected and characterized according to their history of drinking and laboratory profile, including serum aminotransferases, bilirubin, total white blood cell and neutrophil count, and prothrombin times. C-reactive protein and interleukin-6 were also measured as markers of the hepatic acute phase response. A marker of the SEC functional state, the circulating level of hyaluronan, was measured in parallel with the circulating levels of soluble intercellular adhesion molecule (sICAM)-1 over a 6-month observation period. All patients were hospitalized for the first month and encouraged to abstain from drinking for the duration of the study. The initial increased levels of both hyaluronan (542 +/- 32 ng x ml(-1) serum) and sICAM-1 (488 +/- 70 ng x ml(-1) serum), gradually fell during the 6-month observation period, eventually reaching values close to those seen in healthy subjects. A positive correlation was obtained between changes in these two markers of SEC function/activation on the one hand, and between these two tests and bilirubin, on the other hand. These data indicate that abnormalities of SEC function/activation, as reflected by serum hyaluronan and siCAM-1, are prominent in alcoholic hepatitis, and these alterations improve within relatively short periods of time after cessation of alcohol consumption.

  16. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium

    PubMed Central

    Narizhneva, Natalya V.; Razorenova, Olga V.; Podrez, Eugene A.; Chen, Juhua; Chandrasekharan, Unni M.; DiCorleto, Paul E.; Plow, Edward F.; Topol, Eric J.; Byzova, Tatiana V.

    2006-01-01

    Expression of cell adhesion molecules (CAM) responsible for leukocyte-endothelium interactions plays a crucial role in inflammation and atherogenesis. Up-regulation of vascular CAM-1 (VCAM-1), intracellular CAM-1 (ICAM-1), and E-selectin expression promotes monocyte recruitment to sites of injury and is considered to be a critical step in atherosclerotic plaque development. Factors that trigger this initial response are not well understood. As platelet activation not only promotes thrombosis but also early stages of atherogenesis, we considered the role of thrombospondin-1 (TSP-1), a matricellular protein released in abundance from activated platelets and accumulated in sites of vascular injury, as a regulator of CAM expression. TSP-1 induced expression of VCAM-1 and ICAM-1 on endothelium of various origins, which in turn, resulted in a significant increase of monocyte attachment. This effect could be mimicked by a peptide derived from the C-terminal domain of TSP-1 and known to interact with CD47 on the cell surface. The essential role of CD47 in the cellular responses to TSP-1 was demonstrated further using inhibitory antibodies and knockdown of CD47 with small interfering RNA. Furthermore, we demonstrated that secretion of endogenous TSP-1 and its interaction with CD47 on the cell surface mediates endothelial response to the major proinflammatory agent, tumor necrosis factor α (TNF-α). Taken together, this study identifies a novel mechanism regulating CAM expression and subsequent monocyte binding to endothelium, which might influence the development of anti-atherosclerosis therapeutic strategies. PMID:15833768

  17. Elevation of soluble intercellular adhesion molecule-1 levels, but not angiopoietin 2, in the plasma of human immunodeficiency virus-infected African women with clinical Kaposi sarcoma.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Richardson, Barbra A; Jaoko, Walter; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2014-10-01

    Circulating levels of endothelial activation biomarkers are elevated in during infection with human immunodeficiency virus 1 (HIV-1) and may also be increased in Kaposi sarcoma (KS). We compared 23 HIV-1-seropositive women with clinically diagnosed KS with 46 randomly selected controls matched for visit year, CD4 count, and antiretroviral therapy status. Conditional logistic regression was used to identify differences between cases and controls. The odds of clinical KS increased with increasing plasma viral load and with intercellular adhesion molecule 1 (ICAM-1) levels above or equal to the median. There was a borderline association between increasing plasma angiopoietin 2 levels and KS. In multivariable modeling including plasma viral load, angiopoietin 2, and ICAM-1, plasma ICAM-1 levels above or equal to the median remained associated with clinical KS (odds ratio = 14.2, 95% confidence interval = 2.3-87.7). Circulating ICAM-1 levels should be evaluated as a potential biomarker for disease progression and treatment response among HIV-infected KS patients.

  18. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  19. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  20. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  1. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  2. Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs.

    PubMed

    Petrovich, Ekaterina; Feigelson, Sara W; Stoler-Barak, Liat; Hatzav, Miki; Solomon, Adam; Bar-Shai, Amir; Ilan, Neta; Li, Jin-Ping; Engelhardt, Britta; Vlodavsky, Israel; Alon, Ronen

    2016-05-01

    The pulmonary vasculature constitutively expresses the integrin lymphocyte function-associated antigen-1 ligands intercellular adhesion molecule (ICAM)-1 and -2. In this study, effector T cells were temporarily entrapped by the lung vasculature on their way to inflamed lymph nodes, and this entrapment was strongly reduced in ICAM-1 and -2 double-deficient mice (79 and 86% reduction for CD8(+) and CD4(+) effectors, respectively, compared with wild-type mice). Although the pulmonary vasculature has been suggested to be masked by the heparan sulfate-containing glycocalyx, which is susceptible to heparanase-mediated shedding, lung and lymphocyte heparanase have been found to be unnecessary for this entrapment. Systemic LPS induced rapid neutrophil entrapment in the lung vasculature, but in contrast to T-cell entrapment, this sequestration was ICAM-1, ICAM-2, and heparanase independent. Furthermore, neutrophil migration into the bronchoalveolar space induced by LPS inhalation and LPS-induced leakage of red blood cells into this space were not dependent on lung ICAMs or heparanase activity. Nevertheless, heparanase was critical for neutrophil accumulation in smoke-exposed lungs. Our results indicate that, whereas T cells use ICAM-1 and -2 for temporary pulmonary entrapment, neutrophils get sequestered and extravasate into inflamed lungs independent of ICAMs. This is the first demonstration that the pulmonary vasculature is differentially recognized by T cells and neutrophils.-Petrovich, E., Feigelson, S. W., Stoler-Barak, L., Hatzav, M., Solomon, A., Bar-Shai, A., Ilan, N., Li, J.-P., Engelhardt, B., Vlodavsky, I., Alon, R. Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs.

  3. ICAM-1-dependent tuning of memory CD8 T-cell responses following acute infection.

    PubMed

    Cox, Maureen A; Barnum, Scott R; Bullard, Daniel C; Zajac, Allan J

    2013-01-22

    CD8 T-cell responses are critical for protection against intracellular pathogens and tumors. The induction and properties of these responses are governed by a series of integrated processes that rely heavily on cell-cell interactions. Intercellular adhesion molecule (ICAM)-1 functions to enhance the strength of antigenic stimulation, extend the duration of contact with antigen-presenting cells, and augment cytokine signals, which are all factors that influence peripheral CD8 T-cell differentiation. Although previous studies suggest that ICAM-1 is essential for establishing memory T-cell populations following peptide immunization, the roles of ICAM-1 in antiviral cellular immunity are less well understood. Here we show that, following a prototypic acute viral infection, the formation and maintenance of memory-phenotype CD127(hi), KLRG-1(lo) CD8 T cells does not require ICAM-1. Nevertheless, ICAM-1 expression on nonlymphocytes dictates the phenotypic and functional attributes of the antiviral CD8 T-cell populations that develop and promotes the gradual attrition of residual effector-like CD127(lo), KLRG-1(hi) CD8 T cells during the memory phase of the response. Although memory T cells do emerge and are maintained if ICAM-1 expression is abolished, the secondary proliferative capacity of these T cells is severely curtailed. Collectively, these studies reveal potential dual roles for ICAM-1 in both promoting the decay of effector responses and programming the sensitivity of memory CD8 T cells to secondary stimuli.

  4. T cells, adhesion molecules and modulation of apoptosis in visceral leishmaniasis glomerulonephritis

    PubMed Central

    2010-01-01

    Background Immune complex deposition is the accepted mechanism of pathogenesis of VL glomerulopathy however other immune elements may participate. Further in the present study, no difference was seen between immunoglobulin and C3b deposit intensity in glomeruli between infected and non-infected dogs thus T cells, adhesion molecules and parameters of proliferation and apoptosis were analysed in dogs with naturally acquired VL from an endemic area. The dog is the most important domestic reservoir of the protozoa Leishmania (L.) chagasi that causes visceral leishmaniasis (VL). The similarity of VL manifestation in humans and dogs renders the study of canine VL nephropathy of interest with regard to human pathology. Methods From 55 dogs with VL and 8 control non-infected dogs from an endemic area, kidney samples were analyzed by immunohistochemistry for immunoglobulin and C3b deposits, staining for CD4+ and CD8+ T cells, ICAM-1, P-selectin and quantified using morphometry. Besides proliferation marker Ki-67, apoptosis markers M30 and TUNEL staining, and related cytokines TNF-α, IL-1α were searched and quantified. Results We observed similar IgG, IgM and IgA and C3b deposit intensity in dogs with VL and non-infected control dogs. However we detected the Leishmania antigen in cells in glomeruli in 54, CD4+ T cells in the glomeruli of 44, and CD8+ T cells in 17 of a total of 55 dogs with VL. Leishmania antigen was absent and T cells were absent/scarse in eight non-infected control dogs. CD 4+ T cells predominate in proliferative patterns of glomerulonephritis, however the presence of CD4+ and CD8+ T cells were not different in intensity in different patterns of glomerulonephritis. The expression of ICAM-1 and P-selectin was significantly greater in the glomeruli of infected dogs than in control dogs. In all patterns of glomerulonephritis the expression of ICAM-1 ranged from minimum to moderately severe and P-selectin from absent to severe. In the control animals the

  5. Effects of 17 β-estradiol on lipopolysacharride-induced intracellular adhesion molecule-1 mRNA expression and Ca2+ homeostasis alteration in human endothelial cells

    PubMed Central

    Thor, Der; Zhang, Rui; Anderson, Leigh; Bose, Diptiman; Dubé, Gregory P.; Rahimian, Roshanak

    2010-01-01

    Recent evidence showed that 17 β-estradiol (E2) decreased cytokine-induced expression of cell adhesion molecules (CAM). Changes in intracellular Ca2+ concentration ([Ca2+]i) has been shown to be associated with CAM expression in endothelial cells. Here, the effects of E2 (1 μM, 24 h) on the expression of intracellular adhesion molecule-1 (ICAM-1) and [Ca2+]i were investigated in a lipopolysaccharide (LPS) (100 ng/mL, 18 h)-stimulated human endothelial cell line, EA.hy926, using real-time PCR and spectrofluorometry, respectively. PCR analysis revealed a significant increase in ICAM-1 expression in calcium ionophore A23187 (1 nM)- or LPS-stimulated cells. Pretreatment of cells with E2 significantly inhibited LPS-induced ICAM-1 mRNA expression. [Ca2+]i was monitored in Fura-2 AM-loaded cells in the presence and absence of extracellular Ca2+ with thapsigargin (TG, 1 μM), a sarco/endoplasmic reticulum ATPase inhibitor or ATP (100 μM). The extent of TG- or ATP-induced [Ca2+]i increase was significantly higher in LPS-stimulated cells than in control cells. Pre-treatment of LPS-stimulated cells with E2 limited the Ca2+ response to the same level as in control cells. Furthermore, ICI 182,780, an estrogen receptor antagonist, attenuated the inhibitory actions of E2 on ICAM-1 mRNA expression and Ca2+ responses, suggesting that estrogen receptors mediate, at least in part, the effects of estrogen. These data suggest a potential underlying mechanism for the protective effect of E2 against atherosclerosis. PMID:20843480

  6. Effect of mycophenolic acid on TNFα-induced expression of cell adhesion molecules in human venous endothelial cells in vitro

    PubMed Central

    Hauser, Ingeborg A; Johnson, David R; Thévenod, Frank; Goppelt-Strübe, Margarete

    1997-01-01

    Mycophenolic acid (MPA) is an inhibitor of inosine-5′-monophosphate dehydrogenase and therefore interferes with cellular GTP biosynthesis. Recently, MPA has been used as an antiproliferative and immunosuppressive agent. In the present study, the effect of MPA on the expression of the endothelial cell adhesion molecules (CAMs), intercellular (I) CAM-1, vascular (V) CAM-1 and endothelial (E)-selectin, was investigated in tumour necrosis factor-α (TNFα)-activated cultured human venous endothelial cells (EC).Surface expression of CAMs was measured by flow cytometry and mRNA expression by Northern blot analysis. Transcriptional activation of CAMs by the nuclear factor NF-κB was determined by an electromobility shift assay. The function of CAMs was studied by a static adhesion assay with human monocyte-like undifferentiated U937 cells.Pretreatment of TNFα- (5  ng ml−1, 12 h) activated EC with MPA (10 μM, 24 h) increased the binding of U937 cells, which had not been treated with MPA, by ≈amp;2 fold. MPA-pretreatment of EC did not affect TNFα-induced surface expression of ICAM-1. However, VCAM-1 and E-selectin were increased 2–3 fold and remained elevated up to 24 h, by which time TNFα-activated control EC had returned to baseline levels of expression. The effect of MPA on the surface expression of CAMs was half-maximal at ≈amp;1 μM and required ⩾12 h of pretreatment. Guanosine (0.3 mM), a precursor of GTP, did not prevent the effect of MPA on the expression of CAMs in TNFα-activated EC.Kinetics of mRNA expression of CAMs mirrored protein expression: mRNA for ICAM-1 was unaffected, whereas TNFα-induced mRNA expression for E-selectin and VCAM-1 was prolonged and increased by MPA. This effect was not due to increased transcription mediated by the nuclear transcription factor NF-κB. However, half-life for E-selectin mRNA was increased 10 fold by MPA, whereas ICAM-1 mRNA half-life was unchanged.The data demonstrate that apart from its

  7. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  8. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-11-17

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.

  9. The impact of ICAM1 and VCAM1 gene polymorphisms on chronic allograft nephropathy and transplanted kidney function.

    PubMed

    Kłoda, K; Domański, L; Pawlik, A; Wiśniewska, M; Safranow, K; Ciechanowski, K

    2013-01-01

    ICAM-1 and VCAM-1 adhesion molecules play important roles in the immune response and emergence of chronic allograft nephropathy (CAN). The several polymorphisms of ICAM1 and VCAM1 genes are associated with changes in molecular expression therefore affecting allograft function and immune responses after kidney transplantation. The aim of this study was to examine the impact of polymorphisms in ICAM1 and VCAM1 genes on biopsy-proven CAN and renal allograft function. The 270 Caucasian renal transplant recipients (166 men and 104 women) were genotyped for the rs5498 ICAM1 and rs1041163 and rs3170794 VCAM1 gene polymorphisms using real-time polymerase chain reaction. There was no correlation between polymorphisms and CAN. Creatinine concentrations in the first month after transplantation differed between the rs5498 ICAM1 genotypes (P = .095), being higher for GG carriers (AA + AG vs GG, P =.07) albeit not with statistical significance. Creatinine concentrations at 12, 24, and 36 months after transplantation differed significantly among rs5498 ICAM1 genotypes (P = .0046, P =.016, and P = .02) and were higher among GG carriers (AA + AG vs GG, P = .001, P = .004, and P = .006). Rs5498 ICAM1 GG genotype and receipient male gender were independent factors associated with higher creatinine concentrations. These results suggest that the rs5498 ICAM1 GG genotype may be associated with long-term allograft function.

  10. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    PubMed Central

    Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172

  11. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds.

    PubMed

    Martines, E; Zhong, J; Muzard, J; Lee, A C; Akhremitchev, B B; Suter, D M; Lee, G U

    2012-08-22

    Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.

  12. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis.

    PubMed

    Riser, B L; Varani, J; Cortes, P; Yee, J; Dame, M; Sharba, A K

    2001-01-01

    Intraglomerular hypertension is a primary causal factor in the progressive glomerulosclerosis that characterizes diabetic nephropathy or severe renal ablation. However, inflammation of the glomerular mesangium also participates in at least the early phase of these diseases. In glomerulonephritis, where inflammation is thought to be the predominant causal factor, intraglomerular hypertension is also often present. Mesangial cells (MCs) are critical in orchestrating key functions of the glomerulus including extracellular matrix metabolism, cytokine production, and interaction with leukocytes. Because MCs are subject to increased stretching when intraglomerular hypertension is present, and in glomerulonephritis MC/leukocyte interactions seem to be mediated primarily via the up-regulation of intercellular adhesion molecule-1 (ICAM-1), we examine the possibility that cyclic stretching is a stimulus for increased MC ICAM-1 activity. We demonstrate that the normal low levels of MC ICAM-1 mRNA and protein are dramatically up-regulated by even short intervals of cyclic stretch. This effect is dose- and time-dependent, and requires little amplitude and a brief period of elongation for significant induction. Stretch-induced MC ICAM-1 also leads to a marked elevation in phagocytic leukocyte adherence. This stimulated adherence is equal or greater than that induced by the inflammatory cytokine tumor necrosis factor-alpha, whereas an additive effect occurs when both are applied in combination. Our results indicate that stretch-induced ICAM-1 may provide a direct link between hypertension and inflammation in the progression of injury and glomerulosclerosis in diabetes, renal ablation, and other forms of glomerulonephritis.

  13. The Serum Changes of Neuron-Specific Enolase and Intercellular Adhesion Molecule-1 in Patients With Diffuse Axonal Injury Following Progesterone Administration: A Randomized Clinical Trial

    PubMed Central

    Shahrokhi, Nader; Soltani, Zahra; Khaksari, Mohammad; Karamouzian, Saeid; Mofid, Behshad; Asadikaram, Gholamreza

    2016-01-01

    Background Improvement of neurologic outcome in progesterone-administered patients with diffuse axonal injury (DAI) has been found in a recent study. Also, there has been interest in the importance of serum parameters as predictors of outcome in traumatic brain injury. Objectives The aim of this study was to examine the effect of progesterone administration on serum levels of neuron-specific enolase (NSE), and intercellular adhesion molecule-1 (ICAM-1) in clinical DAI. Patients and Methods In this study, the serum levels of ICAM-1 and NSE of 32 male DAI patients (18 - 60 years of age, a Glasgow coma scale of 12 or less, and admitted within 4 hours after injury) who were randomized for a controlled phase II trial of progesterone were analyzed. The analysis was performed between the control and progesterone groups at admission time, and 24 hours and six days after DAI, respectively. Results A reduction in the serum level of ICAM-1 was noticed in the progesterone group 24 hours after the injury (P < 0.05). There was no significant difference in the serum level of NSE between the study groups during evaluation. At 24 hours after the injury, the level of ICAM-1 in the control group was higher than that at admission time (P < 0.05). The lowest level of NSE in the two groups was seen six days after DAI (P < 0.01). Conclusions In summary, progesterone administration reduced serum ICAM-1, and whereby may attenuate blood brain barrier disruption, the latter needs further investigation for confirmation. PMID:27800469

  14. Soluble interleukin-2 receptor, intercellular adhesion molecule-1 and interleukin-10 serum levels in patients with melanoma.

    PubMed

    Boyano, M D; Garcia-Vázquez, M D; López-Michelena, T; Gardeazabal, J; Bilbao, J; Cañavate, M L; Galdeano, A G; Izu, R; Díaz-Ramón, L; Raton, J A; Díaz-Pérez, J L

    2000-10-01

    Serum soluble interleukin-2 receptor (sIL-2R), intercellular adhesion molecule-1 (sICAM-1) and interleukin-10 (IL-10) have each been reported as useful markers for melanoma progression. To evaluate the clinical relevance of these three markers, we simultaneously analysed their serum levels in patients with melanoma. A longitudinal study with a 3-year follow-up was performed and different stages of the disease were considered. Mean values of sIL-2R were significantly higher than in normal controls in all stages and correlated with the disease progression. The prognosis of patients with levels > 529 U/ml of sIL-2R was significantly poorer than in patients with sIL-2R levels < 529 U/ml. Levels of sICAM-1 were also elevated in melanoma patients, specially at the time of the metastatic disease. Serum IL-10 levels were more frequently detectable in the patients that developed metastasis during follow-up, and the prognosis of patients with detectable IL-10 levels was significantly poorer than in those patients with IL-10 undetected levels. Statistical analysis based on Logistic and Cox regression models showed that only sex, stage and sIL-2R value are factors significantly associated with metastatic progression. Moreover, high levels of sIL-2R could be a risk factor for malignant progression in melanoma.

  15. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation

    PubMed Central

    Ling, Ping; Ngo, Karen; Nguyen, Steven; Thurmond, Robin L; Edwards, James P; Karlsson, Lars; Fung-Leung, Wai-Ping

    2004-01-01

    During mast cell degranulation, histamine is released in large quantities. Human eosinophils were found to express histamine H4 but not H3 receptors. The possible effects of histamine on eosinophils and the receptor mediating these effects were investigated in our studies. Histamine (0.01–30 μM) induced a rapid and transient cell shape change in human eosinophils, but had no effects on neutrophils. The maximal shape change was at 0.3 μM histamine with EC50 at 19 nM. After 60 min incubation with 1 μM histamine, eosinophils were desensitized and were refractory to shape change response upon histamine restimulation. Histamine (0.01–1 μM) also enhanced the eosinophil shape change induced by other chemokines. Histamine-induced eosinophil shape change was mediated by the H4 receptor. This effect was completely inhibited by H4 receptor-specific antagonist JNJ 7777120 (IC50 0.3 μM) and H3/H4 receptor antagonist thioperamide (IC50 1.4 μM), but not by selective H1, H2 or H3 receptor antagonists. H4 receptor agonists imetit (EC50 25 nM) and clobenpropit (EC50 72 nM) could mimic histamine effect in inducing eosinophil shape change. Histamine (0.01–100 μM) induced upregulation of adhesion molecules CD11b/CD18 (Mac-1) and CD54 (ICAM-1) on eosinophils. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 and thioperamide. Histamine (0.01–10 μM) induced eosinophil chemotaxis with an EC50 of 83 nM. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 (IC50 86 nM) and thioperamide (IC50 519 nM). Histamine (0.5 μM) also enhanced the eosinophil shape change induced by other chemokines. In conclusion, we have demonstrated a new mechanism of eosinophil recruitment driven by mast cells via the release of histamine. Using specific histamine receptor ligands, we have provided a definitive proof that the H4 receptor mediates eosinophil chemotaxis, cell shape change and

  16. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    PubMed

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  17. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    PubMed

    Byeseda, Sarah E; Burns, Alan R; Dieffenbaugher, Sean; Rumbaut, Rolando E; Smith, C Wayne; Li, Zhijie

    2009-08-01

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epithelial gammadelta T cells at 24 hours after epithelial abrasion. ICAM-1(-/-) mice had 50.9% (P < 0.01) fewer gammadelta T cells resident in unwounded corneal epithelium, which failed to increase in response to epithelial abrasion. Anti-ICAM-1 blocking antibody in wild-type mice reduced epithelial gammadelta T cells to a number comparable to that of ICAM-1(-/-) mice, and mice deficient in lymphocyte function-associated antigen-1 (CD11a/CD18), a principal leukocyte receptor for ICAM-1, exhibited a 48% reduction (P < 0.01) in peak epithelial gammadelta T cells. Re-epithelialization and epithelial cell division were both significantly reduced ( approximately 50% at 18 hours, P < 0.01) after abrasion in ICAM-1(-/-) mice versus wild-type, and at 96 hours, recovery of epithelial thickness was only 66% (P < 0.01) of wild-type. ICAM-1 expression by corneal epithelium in response to epithelial abrasion appears to be critical for accumulation of gammadelta T cells in the epithelium, and deficiency of ICAM-1 significantly delays wound healing. Since gammadelta T cells are necessary for efficient epithelial wound healing, ICAM-1 may contribute to wound healing by facilitating gammadelta T cell migration into the corneal epithelium.

  18. Neuroprotectant androst-3β, 5α, 6β-triol suppresses TNF-α-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-κB pathway.

    PubMed

    Yan, Min; Leng, Tiandong; Tang, Lipeng; Zheng, Xiaoke; Lu, Bingzheng; Li, Yuan; Sheng, Longxiang; Lin, Suizhen; Shi, Haitao; Yan, Guangmei; Yin, Wei

    2017-02-05

    Neuroinflammation is one of key pathologic element in neurological diseases including stroke, traumatic brain injury, Alzheimer' s Disease, Parkinson's Disease, and multiple sclerosis as well. Up-regulation of endothelial adhesion molecules, which facilitate leukocyte adhesion to the endothelium, is the vital process of endothelial cells mediated neuroinflammation. Androst-3β, 5α, 6β-triol (Triol) is a synthetic steroid which has been reported to have neuroprotective effects in hypoxia/re-oxygenation-induced neuronal injury model. In the present study, we firstly investigated whether Triol inhibited the TNF-α-induced inflammatory response in rat brain microvascular endothelial cells (RBMECs). Our data showed that Triol decreased TNF-α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and the adhesion of neutrophil to RBMECs. We also found that Triol inhibited TNF-α-induced degradation of IκBα and phosphorylation of NF-κBp65 that are required for NF-κB activation. Furthermore, Triol significantly reversed TNF-α-induced down-expression of CYLD, which is a deubiquitinase that negatively regulates activation of NF-κB. These results suggest that Triol displays an anti-inflammatory effect on TNF-α-induced RBMECs via downregulating of CYLD-NF-κB signaling pathways and might have a potential benefit in therapeutic neuroinflammation related diseases.

  19. Effects of benidipine, a dihydropyridine-Ca2+ channel blocker, on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells.

    PubMed

    Matsubara, Masahiro; Hasegawa, Kazuhide

    2004-09-13

    Benidipine hydrochloride (benidipine) is a dihydropyridine-Ca2+ channel blocker with antioxidant properties. We examined the effects of benidipine on cytokine-induced expression of adhesion molecules and chemokines, which play important roles in the adhesion of monocytes to endothelium. Pretreatment of human aortic endothelial cells (HAECs) with benidipine (0.3-10 micromol/l) for 24 h significantly suppressed cytokine-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) mRNA and protein expression, resulting in reduced adhesion of THP-1 monocytes. Benidipine also suppressed induction of monocyte chemoattractant protein (MCP)-1 and interleukin-8. Benidipine inhibited redox-sensitive transcriptional nuclear factor-kappaB (NF-kappaB) pathway, as determined by Western blotting of inhibitory kappaB (IkappaB) phosphorylation and luciferase reporter assay. Results of analysis using optical isomers of benidipine and antioxidants suggested that these inhibitory effects were dependent on pharmacological effects other than Ca2+ antagonism such as antioxidant effects. Benidipine may thus have anti-inflammatory properties and benefits for in the treatment of atherosclerosis.

  20. Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor

    PubMed Central

    Papademetriou, Jason; Garnacho, Carmen; Serrano, Daniel; Bhowmick, Tridib; Schuchman, Edward H.; Muro, Silvia

    2012-01-01

    Targeting lysosomal enzymes to receptors involved in transport into and across cells holds promise to enhance peripheral and brain delivery of enzyme replacement therapies for lysosomal storage disorders. Receptors being explored include those associated with clathrin-mediated pathways, yet other pathways seem also viable. Well characterized examples are that of transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1), involved in iron transport and leukocyte extravasation, respectively. TfR and ICAM-1 support ERT delivery via clathrin- vs. cell adhesion molecule-mediated mechanisms, displaying different valency and size restrictions. To comparatively assess this, we used antibodies vs. larger multivalent antibody-coated carriers and evaluated TfR vs. ICAM-1 binding and endocytosis in endothelial cells, as well as in vivo biodistribution and delivery of a model lysosomal enzyme required in peripheral organs and brain: acid sphingomyelinase (ASM), deficient in types A–B Niemann Pick disease. We found similar binding of antibodies to both receptors under control conditions, with enhanced binding to activated endothelium for ICAM-1, yet only anti-TfR induced endocytosis efficiently. Contrarily, antibody-coated carriers showed enhanced binding, engulfment, and endocytosis for ICAM-1. In mice, anti-TfR enhanced brain targeting over anti-ICAM, with an opposite outcome in the lungs, while carriers enhanced ICAM-1 targeting over TfR in both organs. Both targeted carriers enhanced ASM delivery to the brain and lungs vs. free ASM, with greater enhancement for anti-ICAM carriers. Therefore, targeting TfR or ICAM-1 improves lysosomal enzyme delivery. Yet, TfR targeting may be more efficient for smaller conjugates or fusion proteins, while ICAM-1 targeting seems superior for multivalent carrier formulations. PMID:22968581

  1. [Neutrophils expression of adhesion molecules in diabetic nephropaty patients].

    PubMed

    Shcherban', T D

    2013-01-01

    CD11b and CD54 expression on neutrophils in patients with diabetic nephropathy (DN), arterial hypertension patients and healthy donors were examined. Development of DN associates with an increase of the number of CD11b and CD54 positive cells and violation of cellular co-operation. In the conditions of diabetic microenvironment expression of adhesion molecules rises substantially, what may characterized the mechanism of connection between hyperglycemia and vascular and tissues injury at DN. Authentication of morphological and biochemical markers of intercellular co-operation must in a prospect assist the deeper understanding of pathogenic mechanisms of DN.

  2. Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: a novel HOSCN-specific oxidant mechanism to amplify inflammation.

    PubMed

    Wang, Jian-Guo; Mahmud, Shawn A; Nguyen, Julia; Slungaard, Arne

    2006-12-15

    Both eosinophil peroxidase (EPO) and neutrophil myeloperoxidase (MPO) preferentially oxidize SCN(-) to generate HOSCN, a weak, sulfhydryl-reactive oxidant, as a major physiologic product. We here show that HOSCN is a uniquely potent phagocyte oxidant inducer of E-selectin, ICAM-1, and VCAM-1 expression in HUVEC as detected by Western blot and flow cytometry. EMSA and inhibitor studies show that HOSCN up-regulation of these adhesion molecules is transcriptionally mediated through a mechanism that is dependent upon activation of the NF-kappaB p65/p50 transcription factor and constitutively suppressed by PI3K-Akt pathway activity. HUVEC monolayers exposed to HOSCN bind 8-fold more neutrophils and 3- to 4-fold more Aml14.3D10 cells (a differentiated cell line model of mature eosinophils) than control monolayers. Blocking Ab studies confirm the involvement of E-selectin and ICAM-1 but not VCAM-1 in neutrophil adhesion and of all three in Aml14.3D10 adhesion. Intraperitoneal injection of HOSCN evoked an 8-fold increase in neutrophil peritoneal extravasation. In addition to NF-kappaB, HOSCN also activates the potentially proinflammatory transcription factors Stat4, CDP, GRE, CBF, Ets-1/PEA3, and TFIID, a pattern easily distinguishable from that induced by LPS. These results suggest that phagocyte peroxidases function to amplify inflammation through a novel, HOSCN-specific oxidant mechanism.

  3. Keishibukuryogan (Gui-Zhi-Fu-Ling-Wan), a Kampo Formula, Decreases Disease Activity and Soluble Vascular Adhesion Molecule-1 in Patients with Rheumatoid Arthritis

    PubMed Central

    Nozaki, Kazuya; Hikiami, Hiroaki; Goto, Hirozo; Nakagawa, Takako; Shibahara, Naotoshi; Shimada, Yutaka

    2006-01-01

    An increasing death rate due to cardiovascular disease in patients with rheumatoid arthritis (RA) has been reported. Keishibukuryogan (KBG) is a traditional Chinese/Japanese (Kampo) formula that has been administered to patients with blood stagnation, e.g. thrombotic disease and atherosclerosis. The objective of this study was to evaluate the efficacy of KBG on disease activity and endothelial dysfunction in RA patients. Sixteen RA patients were enrolled and administered KBG (12 g per day) for 12 weeks in addition to continuing other drugs. The disease activity of RA was assessed by modified disease activity scores for 28 joints (DAS28). Plasma levels of adhesion molecules, soluble E-selectin (sE-selectin), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were evaluated. C-reactive protein (CRP), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and lipid peroxide (LPO) were also evaluated. Fourteen patients completed the study. The disease activity of RA, tender joint count, swollen joint count and DAS28 decreased significantly. Among adhesion molecules, only sVCAM-1 decreased significantly. LPO also decreased significantly, whereas CRP and inflammatory cytokines remained unchanged. These results suggest that KBG has insufficient anti-inflammatory or immunomodulating effect but does have a beneficial effect on articular symptoms and a protective effect against endothelial dysfunction in RA patients. PMID:16951720

  4. Wallerian degeneration and axonal regeneration after sciatic nerve crush are altered in ICAM-1-deficient mice.

    PubMed

    Kirsch, Matthias; Campos Friz, Marianella; Vougioukas, Vassilios I; Hofmann, Hans-Dieter

    2009-10-01

    The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1(-/-) mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75(NTR)) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.

  5. Junctional Adhesion Molecule C Mediates Leukocyte Adhesion to Rheumatoid Arthritis Synovium

    PubMed Central

    Rabquer, Bradley J.; Pakozdi, Angela; Michel, James E.; Gujar, Bansari S.; Haines, G. Kenneth; Imhof, Beat A.; Koch, Alisa E.

    2010-01-01

    Objective Leukocyte infiltration into the rheumatoid arthritis (RA) synovium is a multistep process in which leukocytes leave the bloodstream and invade the synovial tissue (ST). Leukocyte transendothelial migration and adhesion to RA ST requires adhesion molecules on the surface of endothelial cells and RA ST fibroblasts. This study was undertaken to investigate the role of junctional adhesion molecule C (JAM-C) in mediating leukocyte recruitment and retention in the RA joint. Methods Immunohistologic analysis was performed on RA, osteoarthritis (OA), and normal ST samples to quantify JAM-C expression. Fibroblast JAM-C expression was also analyzed using Western blotting, cell surface enzyme-linked immunosorbent assay, and immunofluorescence. To determine the role of JAM-C in leukocyte retention in the RA synovium, in vitro and in situ adhesion assays and RA ST fibroblast transmigration assays were performed. Results JAM-C was highly expressed by RA ST lining cells, and its expression was increased in OA ST and RA ST endothelial cells compared with normal ST endothelial cells. JAM-C was also expressed on the surface of OA ST and RA ST fibroblasts. Furthermore, we demonstrated that myeloid U937 cell adhesion to both OA ST and RA ST fibroblasts and to RA ST was dependent on JAM-C. U937 cell migration through an RA ST fibroblast monolayer was enhanced in the presence of neutralizing antibodies against JAM-C. Conclusion Our results highlight the novel role of JAM-C in recruiting and retaining leukocytes in the RA synovium and suggest that targeting JAM-C may be important in combating inflammatory diseases such as RA. PMID:18821692

  6. Modifications of microvascular EC surface modulate phototoxicity of a porphycene anti-ICAM-1 immunoconjugate; therapeutic implications

    PubMed Central

    Rosàs, Elisabet; Santomá, Pablo; Duran-Frigola, Miquel; Hernandez, Bryan; Llinàs, Maria C.; Ruiz-González, Rubén; Nonell, Santi; Sánchez-García, David; Edelman, Elazer R.; Balcells, Mercedes

    2013-01-01

    Inflammation and shear stress can upregulate expression of cellular adhesion molecules in endothelial cells (EC). The modified EC surface becomes a mediating interface between the circulating blood elements and the endothelium, and grants opportunity for immunotherapy. In photodynamic therapy (PDT), immunotargeting might overcome the lack of selectivity of currently used sensitizers. In this study, we hypothesized that differential ICAM-1 expression modulates the effects of a drug targeted to surface ICAM-1. A novel porphycene-anti-ICAM-1 conjugate was synthesized and applied to treat endothelial cells from macro and microvasculature. Results show that the conjugate induces phototoxicity in inflamed, but not in healthy, microvascular EC. Conversely, macrovascular EC exhibited phototoxicity regardless of their state. These findings have two major implications; the relevance of ICAM-1 as a modulator of drug effects in microvasculature, and the potential of the porphycene bioconjugate as a promising novel PDT agent. PMID:23844929

  7. Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    PubMed Central

    Koper, Andre; Schenck, Annette; Prokop, Andreas

    2012-01-01

    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need

  8. Effects of nitrogen dioxide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxicity: studies in human bronchial epithelial cells.

    PubMed

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2007-02-01

    Nitrogen Dioxide (NO2) is a product of high-temperature combustion and an environmental oxidant of concern. We have recently reported that early changes in NO2-exposed human bronchial epithelial cells are causally linked to increased generation of proinflammatory mediators, such as nitric oxide/nitrite and cytokines like interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and IL-8. The objective of the present in vitro study was to further delineate the cellular mechanisms of NO2-mediated toxicity, and to define the nature of cell death that ensues upon exposure of normal human bronchial epithelial (NHBE) cells to a brief high dose of NO2. Our results demonstrate that the NHBE cells undergo apoptotic cell death during the early post-NO2 period, but this is independent of any significant increase in caspase-3 activity. However, necrotic cell death was more prevalent at later time intervals. Interestingly, an increased expression of HO-1, a redox-sensitive stress protein, was observed in NO2-exposed NHBE cells at 24 h. Since neutrophils (PMNs) play an active role in acute lung inflammation and resultant oxidative injury, we also investigated changes in human PMN-NHBE cell interactions. As compared to normal cells, increased adhesion of PMNs to NO2-exposed cells was observed, which resulted in an increased NHBE cell death. The latter was also increased in the presence of IL-8 and TNF-alpha + interferon (IFN)-gamma, which correlated with upregulation of intercellular adhesion molecule-1 (ICAM-1). Our results confirmed an involvement of nitric oxide (NO) in NO2-induced cytotoxicity. By using NO synthase inhibitors such as L-NAME and 3-aminoguanidine (AG), a significant decrease in cell death, PMN adhesion, and ICAM-1 expression was observed. These findings indicate a role for the L-arginine/NO synthase pathway in the observed NO2-mediated toxicity in NHBE cells. Therapeutic strategies aimed at controlling excess generation of NO and/or inflammatory cytokines may

  9. Annexin A2 Limits Neutrophil Transendothelial Migration by Organizing the Spatial Distribution of ICAM-1.

    PubMed

    Heemskerk, Niels; Asimuddin, Mohammed; Oort, Chantal; van Rijssel, Jos; van Buul, Jaap D

    2016-03-15

    ICAM-1 is required for firm adhesion of leukocytes to the endothelium. However, how the spatial organization of endothelial ICAM-1 regulates leukocyte adhesion is not well understood. In this study, we identified the calcium-effector protein annexin A2 as a novel binding partner for ICAM-1. ICAM-1 clustering promotes the ICAM-1-annexin A2 interaction and induces translocation of ICAM-1 into caveolin-1-rich membrane domains. Depletion of endothelial annexin A2 using RNA interference enhances ICAM-1 membrane mobility and prevents the translocation of ICAM-1 into caveolin-1-rich membrane domains. Surprisingly, this results in increased neutrophil adhesion and transendothelial migration under flow conditions and reduced crawling time, velocity, and lateral migration distance of neutrophils on the endothelium. In conclusion, our data show that annexin A2 limits neutrophil transendothelial migration by organizing the spatial distribution of ICAM-1.

  10. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    PubMed Central

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  11. Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Mankelow, Tosti; Parsons, Stephen; Spring, Frances; An, Xiuli; Mohandas, Narla; Anstee, David; Chasis, Joel Anne

    2006-11-01

    Growing evidence shows that adhesion molecules on sickle erythrocytes interact with vascular endothelium leading to vaso-occlusion. Erythrocyte intercellular adhesion molecule-4 (ICAM-4) binds alphaV-integrins, including alphaVbeta3 on endothelial cells. To explore the contribution of ICAM-4 to vascular pathology of sickle cell disease, we tested the effects of synthetic peptides, V(16)PFWVRMS (FWV) and T(91)RWATSRI (ATSR), based on alphaV-binding domains of ICAM-4 and capable of inhibiting ICAM-4 and alphaV-binding in vitro. For these studies, we utilized an established ex vivo microvascular model system that enables intravital microscopy and quantitation of adhesion under shear flow. In this model, the use of platelet-activating factor, which causes endothelial oxidant generation and endothelial activation, mimicked physiological states known to occur in sickle cell disease. Infusion of sickle erythrocytes into platelet-activating factor-treated ex vivo rat mesocecum vasculature produced pronounced adhesion of erythrocytes; small-diameter venules were sites of maximal adhesion and frequent blockage. Both FWV and ATSR peptides markedly decreased adhesion, and no vessel blockage was observed with either of the peptides, resulting in improved hemodynamics. ATSR also inhibited adhesion in unactivated microvasculature. Although infused fluoresceinated ATSR colocalized with vascular endothelium, pretreatment with function-blocking antibody to alphaVbeta3-integrin markedly inhibited this interaction. Our data strengthen the thesis that ICAM-4 on sickle erythrocytes binds endothelium via alphaVbeta3 and that this interaction contributes to vaso-occlusion. Thus peptides or small molecule mimetics of ICAM-4 may have therapeutic potential.

  12. Regulation of Endothelial Glutathione by ICAM-1 governs VEGF-A mediated eNOS Activity and Angiogenesis

    PubMed Central

    Langston, Will; Chidlow, John H.; Booth, Blake A.; Barlow, Shayne C.; Lefer, David J.; Patel, Rakesh P.; Kevil, Christopher G.

    2007-01-01

    Previous studies suggest that inflammatory cell adhesion molecules may modulate endothelial cell migration and angiogenesis through unknown mechanisms. Using a combination of in vitro and in vivo approaches, herein we reveal a novel redox sensitive mechanism by which ICAM-1 modulates endothelial GSH that controls VEGF-A induced eNOS activity, endothelial chemotaxis, and angiogenesis. In vivo disk angiogenesis assays showed attenuated VEGF-A mediated angiogenesis in ICAM-1−/− mice. Moreover, VEGF-A dependent chemotaxis, eNOS phosphorylation, and nitric oxide (NO) production were impaired in ICAM-1−/− MAEC compared to WT MAEC. Decreasing intracellular GSH in ICAM-1−/− MAEC to levels observed in WT MAEC with 150 μM buthionine sulfoximine (BSO) restored VEGF-A responses. Conversely, GSH supplementation of WT MAEC with 5 mM glutathione ethyl ester (GEE) mimicked defects observed in ICAM-1−/− cells. Deficient angiogenic responses in ICAM-1−/− cells were associated with increased expression of the lipid phosphatase, PTEN, consistent with antagonism of signaling pathways leading to eNOS activation. PTEN expression was also sensitive to GSH status, decreasing or increasing in proportion to intracellular GSH concentrations. These data suggest a novel role for ICAM-1 in modulating VEGF-A induced angiogenesis and eNOS activity through regulation of PTEN expression via modulation of intracellular GSH status. PMID:17291995

  13. ICAM-1–dependent tuning of memory CD8 T-cell responses following acute infection

    PubMed Central

    Cox, Maureen A.; Barnum, Scott R.; Bullard, Daniel C.; Zajac, Allan J.

    2013-01-01

    CD8 T-cell responses are critical for protection against intracellular pathogens and tumors. The induction and properties of these responses are governed by a series of integrated processes that rely heavily on cell–cell interactions. Intercellular adhesion molecule (ICAM)-1 functions to enhance the strength of antigenic stimulation, extend the duration of contact with antigen-presenting cells, and augment cytokine signals, which are all factors that influence peripheral CD8 T-cell differentiation. Although previous studies suggest that ICAM-1 is essential for establishing memory T-cell populations following peptide immunization, the roles of ICAM-1 in antiviral cellular immunity are less well understood. Here we show that, following a prototypic acute viral infection, the formation and maintenance of memory-phenotype CD127hi, KLRG-1lo CD8 T cells does not require ICAM-1. Nevertheless, ICAM-1 expression on nonlymphocytes dictates the phenotypic and functional attributes of the antiviral CD8 T-cell populations that develop and promotes the gradual attrition of residual effector-like CD127lo, KLRG-1hi CD8 T cells during the memory phase of the response. Although memory T cells do emerge and are maintained if ICAM-1 expression is abolished, the secondary proliferative capacity of these T cells is severely curtailed. Collectively, these studies reveal potential dual roles for ICAM-1 in both promoting the decay of effector responses and programming the sensitivity of memory CD8 T cells to secondary stimuli. PMID:23297203

  14. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    PubMed

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-02-05

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  15. Effect of Hyperketonemia (Acetoacetate) on Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Activation Mediated Intercellular Adhesion Molecule 1 Upregulation in Endothelial Cells

    PubMed Central

    Rains, Justin L.

    2015-01-01

    Abstract Background: Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured with AA (0–8 mM) or BHB (0–10 mM) for 0–24 hr. Western blotting was used to determine NF-κB activation in whole-cell lysates. ICAM-1 expression was measured using flow cytometry. Results: Results show a 2.4-fold increase in NF-κB activation in cells treated with 8 mM AA compared to the control. BHB had little or no effect on NF-κB activation. Pretreatment with a reactive oxygen species (ROS) inhibitor [N-acetyl-l-cysteine (NAC)] reduced NF-κB to near-control levels. The expression of AA-induced ICAM-1 was significantly reduced when cells were pretreated with either NAC or p38 MAPK inhibitor. Conclusions: These results suggest that NF-κB and p38 MAPK mediate upregulation of ICAM-1 expression in endothelial cells exposed to elevated levels of AA, which may contribute to the development of vascular disease in diabetes. PMID:25489974

  16. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  17. Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals

    PubMed Central

    Ptak, W; Klimek, M; Bryniarski, K; Ptak, M; Majcher, P

    1998-01-01

    The increased incidence of bacterial and mycotic infections in poorly controlled diabetic patients or animals is frequently attributed to impaired activities of professional phagocytes (granulocytes, macrophages) in hypoinsulinaemic milieu. We measured production of monokines (IL-6 and tumour necrosis factor-alpha (TNF-α)), active NO and reactive oxygen intermediates (ROIs), as well as expression of several cell surface adhesion molecules (Mac-1, -2 and -3, intercellular adhesion molecule-1 (ICAM-1) and FcγRII), by thioglycollate medium-induced peritoneal macrophages of normoglycaemic and alloxan diabetic CBA/J mice (blood glucose level in the range 300 or 500 mg/dl). Macrophages of animals with moderate diabetes (300 mg/dl) produced significantly more IL-6 and TNF-α and ROIs than cells of control mice and showed an increased expression of all cell surface molecules, except Mac-3. NO/NO2 production was not affected. Administration of insulin restored enhanced values to normal levels, except for the production of ROIs which remained unusually high. We conclude that two separate mechanisms influence macrophage physiology in diabetes—lack of saturation of insulin receptors on macrophages and an indirect effect due to formation of advanced glycosylation endproducts (AGE) on their surfaces. The latter is possibly responsible for increased generation of ROIs, since it cannot be down-regulated by prolonged insulin treatment. How the increased activity of macrophages of moderately diabetic mice (enhanced production of proinflammatory monokines and oxygen radicals as well as expression of molecules) is related to their ability to kill bacteria is now under investigation. PMID:9764597

  18. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  19. Pharmacology of Cell Adhesion Molecules of the Nervous System

    PubMed Central

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders. PMID:19305742

  20. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  1. Junction adhesion molecule is a receptor for reovirus.

    PubMed

    Barton, E S; Forrest, J C; Connolly, J L; Chappell, J D; Liu, Y; Schnell, F J; Nusrat, A; Parkos, C A; Dermody, T S

    2001-02-09

    Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.

  2. Interleukin-18-induced cell adhesion molecule expression is associated with feedback regulation by PPAR-γ and NF-κB in Apo E-/- mice.

    PubMed

    Bhat, Owais Mohammad; Uday Kumar, P; Harishankar, N; Ravichandaran, L; Bhatia, A; Dhawan, Veena

    2017-02-07

    Focal recruitment of monocytes and lymphocytes is one of the earliest detectable cellular responses in atherosclerotic lesion formation. Endothelium may regulate leukocyte recruitment by expressing specific adhesion molecules. Interleukin-18 is a proinflammatory cytokine that plays an important role in vascular pathologies. The present study highlights the modulation of adhesion molecules and PPAR-γ by IL-18 and proposes a novel feedback mechanism by which PPAR-γ may regulate IL-18 expression. Three groups of normal chow diet-fed, male Apo E-/- mice, aged 12 weeks (n = 6/group) were employed: Gp I, phosphate-buffered saline (PBS) (2 mo): Gp II, recombinant IL-18 (rIL-18) (1 mo) followed by PBS (1 mo); Gp III, rIL-18 (1 mo) followed by pyrrolidine dithiocarbamate (PDTC) (1 mo). Significantly augmented mRNA expression of ICAM-1 (~5.7-fold), VCAM-1 (~3.6-fold), and NF-κB (~7-fold) was observed in Gp II mice as compared to Gp I, whereas PPAR-γ expression was not altered. PDTC treatment caused a significant downregulation of ICAM-1 (~4.2-fold), VCAM-1(~2-fold), and NF-κB (~4.5-fold) and upregulation of PPAR-γ expression (~5-fold) in Gp III mice. A similar trend was observed in protein expression. In vivo imaging results demonstrated a marked increase in probe (CF750 dye conjugated to VCAM-1 antibody) fluorescence intensity for VCAM-1 expression in Gp II mice, whereas it was moderately decreased in Gp III. PPAR-γ was found to significantly downregulate both IL-18 levels and IL-18-induced adhesion molecules. The underlying mechanism was found to be via inhibition of NF-κB activity by PDTC, thereby leading to decreased adherence of monocytes to the activated endothelial cells and a step to halt the progression and development of atherosclerotic lesions.

  3. Analysis of ICAM1 gene polymorphism in Slovak multiple sclerosis patients.

    PubMed

    Shawkatová, Ivana; Javor, Juraj; Párnická, Zuzana; Bucová, Mária; Čopíková-Cudráková, Daniela; Michalík, Jozef; Gmitterová, Karin; Čierny, Daniel; Buc, Milan; Ďurmanová, Vladimíra

    2017-01-27

    Infiltration of immune cells into CNS is one of the essential events in multiple sclerosis (MS) development. Adhesion molecules like the intercellular adhesion molecule 1 (ICAM-1) play critical role in this process. Therefore, the ICAM1 gene containing two important single-nucleotide polymorphisms (SNPs) belongs to candidate loci with possible involvement in MS susceptibility and/or severity. The objective of our case-control study was to analyze the association of two functional ICAM1 polymorphisms rs1799969 (or G241R) and rs5498 (or K469E) with susceptibility to MS and evaluate their influence on the age at disease onset, severity, neurological disability and progression rate. Two hundred forty-eight MS subjects (mean 39.2 years) and 208 age-matched controls (mean 35.6 years) were involved in the study. Genotyping of ICAM1 rs1799969 and rs5498 SNPs was performed by PCR-RFLP. Presence of the rs3135388 polymorphism tagging the major MS risk allele HLA-DRB1*15:01 allele was determined as well. Our analysis revealed no statistically significant association of ICAM1 polymorphisms with risk of MS development in the Slovak population. Stratification of study cohorts by gender, age at onset and presence of the HLA-DRB1*15:01 risk allele showed only moderate changes. Correlation of clinical findings as age at onset, Kurtzke Expanded Disability Status Scale, Multiple Sclerosis Severity Score and progression index with ICAM1 genotypes in MS patients revealed no significant association; however, patients with earlier onset of MS showed slightly higher frequencies of the homozygous G allele at rs5498 in comparison to other genotypes (P = 0.04), suggesting that GG carriers tend to induce MS at an earlier age.

  4. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    PubMed

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  5. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  6. Deletion of both ICAM-1 and C3 Enhances Severity of Experimental Autoimmune Encephalomyelitis Compared to C3-Deficient Mice

    PubMed Central

    Smith, Sherry S.; Ludwig, Michael; Wohler, Jillian E.; Bullard, Daniel C.; Szalai, Alex J.; Barnum, Scott R.

    2008-01-01

    Multiple sclerosis (MS) is an autoimmune disease characterized by central nervous system (CNS) inflammation and leukocyte infiltration, demyelination of neurons, and blood-brain barrier breakdown. The development of experimental autoimmune encephalomyelitis (EAE), the animal model for MS is dependent on a number of components of the immune system including complement and adhesion molecules. Previous studies in our lab have examined the role of C3, the central complement component, and intercellular adhesion molecule-1 (ICAM-1) a key cell adhesion molecule involved in leukocyte trafficking to sites of inflammation including the CNS. In these studies we demonstrated that myelin oligodendrocyte glycoprotein (MOG)-induced EAE is markedly attenuated in both ICAM-1−/− and C3−/− mice. Given the pivotal role that these proteins play in EAE, we hypothesized that EAE in ICAM-1−/− and C3−/− double mutant mice would likely fail to develop. Unexpectedly, EAE in ICAM-1−/− × C3−/− mice was only modestly attenuated compared to wild type mice and significantly worse than C3−/− mice. Leukocyte infiltration was commensurate with disease severity between the three groups of mice. Spinal cord T cells from ICAM-1−/− × C3−/− mice produced the highest levels of IFN-γ and TNF-α, despite reduced disease severity compared to wild type mice. The mechanisms behind the elevated EAE severity in ICAM-1−/− × C3−/− mice may relate to altered homing of leukocytes or processing of self-antigens in the double mutant background. PMID:18634851

  7. Hemorrhage and resuscitation alter the expression of ICAM-1 and P-selectin in mice.

    PubMed

    Shenkar, R; Cohen, A J; Vestweber, D; Miller, Y E; Tuder, R; Abraham, E

    1995-01-01

    Acute inflammatory lung injury is a common clinical occurrence following blood loss and trauma, and is characterized by massive neutrophil infiltration into the lung. In order to better examine cell trafficking that may contribute to lung injury in this setting, we investigated in vivo mRNA levels and immunohistochemically determined expression of the adhesion molecules P-selectin and the intercellular adhesion molecule (ICAM)-1 in murine lungs over the 3-day period following hemorrhage and resuscitation. Significant increases in P-selectin mRNA levels were present in lungs obtained 3 days after hemorrhage. ICAM-1 mRNA levels were significantly increased 6 and 72 hr after hemorrhage. Immunohistochemical staining for P-selectin was enhanced on pulmonary vascular endothelium in all visible vessels at 6, 24, and 72 hr after hemorrhage. ICAM-1 immunoreactivity was significantly increased on the alveolar epithelium at 6 and 72 hr post-hemorrhage. These results suggest that increased expression of adhesion molecules in the lung at early post-hemorrhage timepoints may contribute to neutrophil infiltration into the lungs and the frequent development of acute lung injury following blood loss and trauma.

  8. Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: effects upon IkappaB and Nrf2.

    PubMed

    Liao, Being-Chyuan; Hsieh, Chia-Wen; Liu, Yen-Chin; Tzeng, Tsai-Teng; Sun, Yung-Wei; Wung, Being-Sun

    2008-06-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNFalpha-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-kappaB, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IkappaB-alpha, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNFalpha-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.

  9. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.

  10. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    PubMed

    Appleby, Sarah L; Cockshell, Michaelia P; Pippal, Jyotsna B; Thompson, Emma J; Barrett, Jeffrey M; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F; Bonder, Claudine S

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+) population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from 'early' endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  11. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  12. Expression of LFA-1/ICAM-1 in CNS lymphomas: possible mechanism for lymphoma homing into the brain.

    PubMed

    Bashir, R; Coakham, H; Hochberg, F

    1992-02-01

    We examined a possible role for the adhesion molecules LFA-1 and ICAM-1 in localizing central nervous system non-Hodgkin's lymphomas (CNS-NHLs) to the brain. Fresh frozen sections from 12 monoclonal CNS NHLs (11 primary, one secondary) were stained with monoclonal antibodies to LFA-1 alpha chain (CD11a), beta chain (CD18) and, ICAM-1 (CD54). Additional staining made use of rat monoclonal antibodies to the human and mouse high endothelial venule antigens HECA 452 and MECA 79 and mouse ICAM-1. The expression of these same molecules was also studied in mice with severe combined immunodeficiency (SCID) mice, bearing intracranial human lymphoblastoid cells. Eleven of the CNS-NHL tumors expressed LFA-1 alpha (one strongly, one intermediate, nine weakly). Nine of the tumors weakly expressed LFA-1 beta.. Nine of twelve tumors weakly expressed ICAM-1. In six of seven tumors definite blood vessels stained for ICAM-1. Non-tumor brain from two patients and non-tumor cerebral blood vessels showed no staining with CD11a, CD18 or CD54 antibodies. Strong expression of LFA-alpha and LFA-beta as well as ICAM-1 was noted in human lymphoblastoid cells (LCLs)/SCID mouse CNS lymphomas. Tumor blood vessels in these mice stained for mouse ICAM-1. Normal SCID mouse brains showed no staining with CD11a, CD18, CD54 or mouse ICAM-1 antibodies. Human, human/mouse CNS lymphomas, normal human, and mouse brains showed no staining with either HECA 452 or MECA 79.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Tocotrienol is the most effective vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes.

    PubMed

    Theriault, Andre; Chao, Jun-Tzo; Gapor, Abdul; Chao, Jun Tzo; Gapor, Abeli

    2002-01-01

    Alpha-tocopherol and its esterified derivatives have been shown to be effective in reducing monocytic-endothelial cell adhesion. However, the effect of alpha-tocotrienol (alpha-T3) has not been characterized. In the present study, using human umbilical vein endothelial cells (HUVEC) as the model system, we examined the relative inhibitory effects of alpha-T3 and other vitamin E derivatives on cell surface adhesion molecule expression under TNF-alpha stimulation. Using enzyme-linked immunosorbent assay, we demonstrated that alpha-T3 markedly inhibited the surface expression of vascular cell adhesion molecule-1 in TNF-alpha activated HUVEC in a dose- and time-dependent manner. The optimal inhibition was observed at 25 micromol/l alpha-T3 within 24 h (77+/-5%) without cytotoxicity. In addition, the surface expression of intercellular adhesion molecule-1 and E-selectin were also reduced by 40+/-7 and 42+/-5%, respectively. In order to further evaluate the effects of alpha-T3 on the vascular endothelium, we investigated the ability of monocytes to adhere to endothelial cells. Interestingly, a 63+/-3% decrease in monocytic cell adherence was observed. Compared to alpha-tocopherol and alpha-tocopheryl succinate, alpha-T3 displayed a more profound inhibitory effect on adhesion molecule expression and monocytic cell adherence. This inhibitory action by alpha-T3 on TNF-alpha-induced monocyte adhesion was shown to be NF-kappaB dependent and was interestingly reversed with co-incubation with farnesol and geranylgeraniol, suggesting a role for prenylated proteins in the regulation of adhesion molecule expression. In summary, the above results suggest that alpha-T3 is a potent and effective agent in the reduction of cellular adhesion molecule expression and monocytic cell adherence.

  14. ICAM-1 expression and organization in human endothelial cells is sensitive to gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Sang, Chen; Paulsen, Katrin; Arenz, Andrea; Zhao, Ziyan; Jia, Xiaoling; Ullrich, Oliver; Zhuang, Fengyuan

    2010-11-01

    Transendothelial migration (TEM) of immune cells is a crucial process during a multitude of physiological and pathological conditions such as development, defense against infections and wound healing. Migration within the body tissues and through endothelial barriers is strongly dependent and regulated both by cytoskeletal processes and by expression of surface adhesion molecules such as ICAM-1 and VCAM-1. Space flight experiments have confirmed that TEM will be inhibited and may cause astronauts' immune function decreased and make them easy for infection. We used NASA RCCS to provide a simulated microgravity environment; endothelial cells were cultured on microcarrier beads and activated by TNF-α. Results demonstrate after clinorotation ICAM-1 expression increased, consistent with the notion in parabolic flights. However, VCAM-1 showed no significant change between activated or inactivated cells. Depolymerization of F-actin and clustering of ICAM-1 on cell membrane were also observed in short-term simulated microgravity, and after 24 h clinorotation, actin fiber rearrangement was initiated and clustering of ICAM-1 became stable. ICAM-1 mRNA and VCAM-1 mRNA were up-regulated after 30 min clinorotation, and returned to the same level with controls after 24 h clinorotation.

  15. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice.

    PubMed

    The, Frans O; de Jonge, Wouter J; Bennink, Roel J; van den Wijngaard, Rene M; Boeckxstaens, Guy E

    2005-09-01

    Intestinal manipulation (IM) during abdominal surgery triggers the influx of inflammatory cells, leading to postoperative ileus. Prevention of this local muscle inflammation, using intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1-specific antibodies, has been shown to shorten postoperative ileus. However, the therapeutic use of antibodies has considerable disadvantages. The aim of the current study was to evaluate the effect of ISIS-3082, a mouse-specific ICAM-1 antisense oligonucleotide, on postoperative ileus in mice. Mice underwent a laparotomy or a laparotomy combined with IM after treatment with ICAM-1 antibodies, 0.1-10 mg kg(-1) ISIS-3082, saline or ISIS-8997 (scrambled control antisense oligonucleotides, 1 and 3 mg kg(-1)). At 24 h after surgery, gastric emptying of a 99mTC labelled semi-liquid meal was determined using scintigraphy. Intestinal inflammation was assessed by myeloperoxidase (MPO) activity in ileal muscle whole mounts. IM significantly reduced gastric emptying compared to laparotomy. Pretreatment with ISIS-3082 (0.1-1 mg kg(-1)) as well as ICAM-1 antibodies (10 mg kg(-1)), but not ISIS-8997 or saline, improved gastric emptying in a dose-dependent manner. This effect diminished with higher doses of ISIS-3082 (3-10 mg kg(-1)). Similarly, ISIS-3082 (0.1-1 mg kg(-1)) and ICAM-1 antibodies, but not ISIS-8997 or higher doses of ISIS-3082 (3-10 mg kg(-1)), reduced manipulation-induced inflammation. Immunohistochemistry showed reduction of ICAM-1 expression with ISIS-3082 only. ISIS-3082 pretreatment prevents postoperative ileus in mice by reduction of manipulation-induced local intestinal muscle inflammation. Our data suggest that targeting ICAM-1 using antisense oligonucleotides may represent a new therapeutic approach to the prevention of postoperative ileus.

  16. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease.

    PubMed

    Pflugfelder, Stephen C; Stern, Michael; Zhang, Steven; Shojaei, Amir

    Dry eye disease (DED) is a common ocular disorder associated with inflammation of the lacrimal gland and ocular surface. The interaction of the integrin lymphocyte function-associated antigen-1 (LFA-1) with its cognate ligand intercellular adhesion molecule-1 (ICAM-1) is known to have important roles in the interaction of a variety of cells involved in immune responses and inflammation, including those prominent in ocular surface inflammation. Lifitegrast, an LFA-1 antagonist that blocks binding of ICAM-1 to LFA-1, has recently been approved in the United States for the treatment of signs and symptoms of DED. In this review, we evaluate research findings to explore the potential role of LFA-1/ICAM-1 interaction in the pathophysiology of DED, and the evidence supporting LFA-1/ICAM-1 interaction as a rational therapeutic target in DED. The results of our review suggest that LFA-1/ICAM-1 interaction may play important roles in the cell-mediated immune response and inflammation associated with DED, including facilitating the homing of dendritic cells to the lymph nodes, interaction of dendritic cells with T cells and subsequent T cell activation/differentiation, migration of activated CD4(+) T cells from the lymph nodes to the ocular surface, reactivation of T cells by resident antigen-presenting cells at the ocular surface, and recruitment and retention of LFA-1-expressing T cells in the conjunctival epithelium. Based on the available evidence, inhibition of LFA-1/ICAM-1 interaction represents a rational targeted approach in treating DED. Notably, inhibition of LFA-1/ICAM-1 binding with lifitegrast offers a novel approach to reducing ocular surface inflammation in this condition.

  17. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease

    PubMed Central

    Stern, Michael; Zhang, Steven; Shojaei, Amir

    2017-01-01

    Abstract Dry eye disease (DED) is a common ocular disorder associated with inflammation of the lacrimal gland and ocular surface. The interaction of the integrin lymphocyte function-associated antigen-1 (LFA-1) with its cognate ligand intercellular adhesion molecule-1 (ICAM-1) is known to have important roles in the interaction of a variety of cells involved in immune responses and inflammation, including those prominent in ocular surface inflammation. Lifitegrast, an LFA-1 antagonist that blocks binding of ICAM-1 to LFA-1, has recently been approved in the United States for the treatment of signs and symptoms of DED. In this review, we evaluate research findings to explore the potential role of LFA-1/ICAM-1 interaction in the pathophysiology of DED, and the evidence supporting LFA-1/ICAM-1 interaction as a rational therapeutic target in DED. The results of our review suggest that LFA-1/ICAM-1 interaction may play important roles in the cell-mediated immune response and inflammation associated with DED, including facilitating the homing of dendritic cells to the lymph nodes, interaction of dendritic cells with T cells and subsequent T cell activation/differentiation, migration of activated CD4+ T cells from the lymph nodes to the ocular surface, reactivation of T cells by resident antigen-presenting cells at the ocular surface, and recruitment and retention of LFA-1-expressing T cells in the conjunctival epithelium. Based on the available evidence, inhibition of LFA-1/ICAM-1 interaction represents a rational targeted approach in treating DED. Notably, inhibition of LFA-1/ICAM-1 binding with lifitegrast offers a novel approach to reducing ocular surface inflammation in this condition. PMID:27906544

  18. Specific inhibition of ICAM-1 effectively reduces bladder inflammation in a rat model of severe non-bacterial cystitis

    PubMed Central

    Zhang, Xiang; He, Hongchao; Lu, Guoliang; Xu, Tianyuan; Qin, Liang; Wang, Xianjin; Jin, Xingwei; Liu, Boke; Zhao, Zhonghua; Shen, Zhoujun; Shao, Yuan

    2016-01-01

    The development and progression of bladder pain syndrome/interstitial cystitis (BPS/IC) is closely related to bladder inflammation. Intercellular adhesion molecule 1 (ICAM-1) is associated with bladder inflammation in BPS/IC. We investigated the effect of specific inhibition of ICAM-1 using an anti-ICAM-1 antibody (AIA) on bladder inflammation in a rat model of severe non-bacterial cystitis (NBC) resembling BPS/IC by evaluating the bladder inflammation grade, mast cell infiltration and related cytokines and receptors. We also compared the effects of AIA with the COX-2 inhibitor celecoxib and the neurokinin-1 receptor (NK1R) inhibitor aprepitant. Our NBC model was established by intraperitoneal injection of cyclophosphamide combined with intravesical protamine/lipopolysaccharide, which resulted in severe bladder inflammation and increased mast cell infiltration, similar to the pathological changes of BPS/IC. Inhibition of ICAM-1 by AIA significantly decreased the bladder inflammation grade and mast cell counts, which was accompanied by a reduction of purinergic receptors (P2X2/P2X3), prostaglandin E2, EP1/EP2 receptors, TNF-α, NK1R, and ICAM-1. Moreover, AIA showed superior effects to those of celecoxib and aprepitant treatment in improving the bladder inflammatory response. Our results suggest that ICAM-1 may play a critical role in bladder inflammation in severe NBC and may be used as a novel therapeutic target in non-bacterial bladder inflammation such as BPS/IC. PMID:27782122

  19. Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins

    PubMed Central

    Um, Ji Won; Pramanik, Gopal; Ko, Ji Seung; Song, Min-Young; Lee, Dongmin; Kim, Hyun; Park, Kang-Sik; Südhof, Thomas C.; Tabuchi, Katsuhiko; Ko, Jaewon

    2014-01-01

    SUMMARY Multiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in heterologous synapse-formation assays. Calsyntenin-3 (CST-3) was highly expressed during various postnatal periods of mouse brain development. The simultaneous knockdown of all three CSTs, but not CST-3 alone, decreased inhibitory, but not excitatory, synapse densities in cultured hippocampal neurons. Moreover, the knockdown of CSTs specifically reduced inhibitory synaptic transmission in vitro and in vivo. Remarkably, the loss of CSTs induced a concomitant decrease in neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) were affinity-purified as components of a CST-3 complex involved in CST-3-mediated presynaptic differentiation. However, CST-3 did not directly bind to Nrxs. Viewed together, these data suggest that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse function, and neuron development in concert with Nrxs. PMID:24613359

  20. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  1. Role of glucocorticoids in neutrophil and endothelial adhesion molecule expression and function

    PubMed Central

    Talbot, Vivienne

    1992-01-01

    Glucocorticoids are very effective inhibitors of both the acute and chronic inflammatory response. In this study the hypothesis that glucocorticoids inhibit an early component of the inflammatory response, neutrophil adhesion to endothelium, by down-regulation of adhesion molecules on neutrophils or endothelium was examined. No effect of dexamethasone on neutrophil adhesion to endothelium or of antigen expression by neutrophils or endothelium was found. The mechanism of action of glucocorticoids in the inflammatory response is probably not mediated by alterations in adhesion molecules. PMID:18475448

  2. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  3. Serum Interleukin-18, Fetuin-A, Soluble Intercellular Adhesion Molecule-1, and Endothelin-1 in Ankylosing Spondylitis, Psoriatic Arthritis, and SAPHO Syndrome

    PubMed Central

    Przepiera-Będzak, Hanna; Fischer, Katarzyna; Brzosko, Marek

    2016-01-01

    To examine serum interleukin 18 (IL-18), fetuin-A, soluble intercellular adhesion molecule-1 (sICAM-1), and endothelin-1 (ET-1) levels in ankylosing spondylitis (AS), psoriatic arthritis (PsA), and Synovitis Acne Pustulosis Hyperostosis Osteitis syndrome (SAPHO). We studied 81 AS, 76 PsA, and 34 SAPHO patients. We measured serum IL-18, fetuin-A, sICAM-1, ET-1, IL-6, IL-23, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). IL-18 levels were higher in AS (p = 0.001), PsA (p = 0.0003), and SAPHO (p = 0.01) than in controls, and were positively correlated with CRP (p = 0.03), VEGF (p = 0.03), and total cholesterol (TC, p = 0.006) in AS and with IL-6 (p = 0.03) in PsA. Serum fetuin-A levels were lower in AS (p = 0.001) and PsA (p = 0.001) than in controls, and negatively correlated with C-reactive protein (CRP) in AS (p = 0.04) and SAPHO (p = 0.03). sICAM-1 positively correlated with CRP (p = 0.01), erythrocyte sedimentation rate (ESR, p = 0.01), and IL-6 (p = 0.008) in AS, and with IL-6 (p = 0.001) in SAPHO. Serum ET-1 levels were lower in AS (p = 0.0005) than in controls. ET-1 positively correlated with ESR (p = 0.04) and Disease Activity Score 28 (DAS28, p = 0.003) in PsA. In spondyloarthritis, markers of endothelial function correlated with disease activity and TC. PMID:27527149

  4. Serum Interleukin-18, Fetuin-A, Soluble Intercellular Adhesion Molecule-1, and Endothelin-1 in Ankylosing Spondylitis, Psoriatic Arthritis, and SAPHO Syndrome.

    PubMed

    Przepiera-Będzak, Hanna; Fischer, Katarzyna; Brzosko, Marek

    2016-08-03

    To examine serum interleukin 18 (IL-18), fetuin-A, soluble intercellular adhesion molecule-1 (sICAM-1), and endothelin-1 (ET-1) levels in ankylosing spondylitis (AS), psoriatic arthritis (PsA), and Synovitis Acne Pustulosis Hyperostosis Osteitis syndrome (SAPHO). We studied 81 AS, 76 PsA, and 34 SAPHO patients. We measured serum IL-18, fetuin-A, sICAM-1, ET-1, IL-6, IL-23, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). IL-18 levels were higher in AS (p = 0.001), PsA (p = 0.0003), and SAPHO (p = 0.01) than in controls, and were positively correlated with CRP (p = 0.03), VEGF (p = 0.03), and total cholesterol (TC, p = 0.006) in AS and with IL-6 (p = 0.03) in PsA. Serum fetuin-A levels were lower in AS (p = 0.001) and PsA (p = 0.001) than in controls, and negatively correlated with C-reactive protein (CRP) in AS (p = 0.04) and SAPHO (p = 0.03). sICAM-1 positively correlated with CRP (p = 0.01), erythrocyte sedimentation rate (ESR, p = 0.01), and IL-6 (p = 0.008) in AS, and with IL-6 (p = 0.001) in SAPHO. Serum ET-1 levels were lower in AS (p = 0.0005) than in controls. ET-1 positively correlated with ESR (p = 0.04) and Disease Activity Score 28 (DAS28, p = 0.003) in PsA. In spondyloarthritis, markers of endothelial function correlated with disease activity and TC.

  5. Interleukin-4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth factor-beta induce ramification and reduce adhesion molecule expression of rat microglial cells.

    PubMed

    Wirjatijasa, Florentina; Dehghani, Faramarz; Blaheta, Roman A; Korf, Horst-Werner; Hailer, Nils P

    2002-06-01

    The activity of microglial cells is strictly controlled in order to maintain central nervous system (CNS) immune privilege. We hypothesized that several immunomodulatory factors present in the CNS parenchyma, i.e., the Th2-derived cytokines interleukin (IL)-4 and IL-10, interleukin-1-receptor-antagonist (IL-1-ra), or transforming growth factor (TGF)-beta can modulate microglial morphology and functions. Microglial cells were incubated with IL-4, IL-10, IL-1-ra, TGF-beta, or with astrocyte conditioned media (ACM) and were analyzed for morphological changes, expression of intercellular adhesion molecule (ICAM)-1, and secretion of IL-1beta or tumor necrosis factor (TNF)-alpha. Whereas untreated controls showed an amoeboid morphology both Th2-derived cytokines, IL-1-ra, and ACM induced a morphological transformation to the ramified phenotype. In contrast, TGF-beta-treated microglial cells showed an amoeboid morphology. Even combined with the neutralizing antibodies against IL-4, IL-10, or TGF-beta ACM induced microglial ramification. Furthermore, ACM did not contain relevant amounts of IL-4 and IL-10, as measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry showed that lipopolysaccharide (LPS)-induced ICAM-1-expression on microglial cells was strongly suppressed by ACM, significantly modulated by IL-4, IL-10, or IL-1-ra, but not influenced by TGF-beta. The LPS-induced secretion of IL-1beta and TNF-alpha was only reduced after application of ACM, whereas IL-4 or IL-10 did not inhibit IL-1beta- or TNF-alpha secretion. TGF-beta enhanced IL-1beta- but not TNF-alpha secretion. In summary, we demonstrate that IL-4, IL-10, and IL-1-ra induce microglial ramification and reduce ICAM-1-expression, whereas the secretion of proinflammatory cytokines is not prevented. TGF-beta has no modulating effects. Importantly, unidentified astrocytic factors that are not identical with IL-4, IL-10, or TGF-beta possess strong immunomodulatory properties.

  6. Adhesion molecules and the extracellular matrix as drug targets for glioma.

    PubMed

    Shimizu, Toshihiko; Kurozumi, Kazuhiko; Ishida, Joji; Ichikawa, Tomotsugu; Date, Isao

    2016-04-01

    The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

  7. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells.

    PubMed

    Yamada, Tomohiro; Kuramitsu, Kaori; Rikitsu, Etsuko; Kurita, Souichi; Ikeda, Wataru; Takai, Yoshimi

    2013-11-01

    Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.

  8. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  9. Comparative immunoexpression of ICAM-1, TGF-β1 and ki-67 in periapical and residual cysts

    PubMed Central

    Armada, Luciana; dos Santos, Teresa-Cristina; Pires, Fabio-Ramoa

    2017-01-01

    Background This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF-β1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. Material and Methods The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF-β1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when p<0.05%. Results There were no differences between the expression of ICAM-1 (p=0.239) and TGF-β1 (p=0.258) when comparing both groups. Ki-67 labeling index was higher in residual cysts compared to periapical cysts (p=0.017). Conclusions Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair. Key words:Periapical cyst, radicular cyst, residual cyst, transforming growth factor beta 1 (TGF-β1), intercellular adhesion molecule 1 (ICAM-1), ki-67. PMID:27918735

  10. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    PubMed

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner.

  11. Chinese Herbal Cardiotonic Pill Stabilizes Vulnerable Plaques in Rabbits by Decreasing the Expression of Adhesion Molecules

    PubMed Central

    Chen, Liang; Li, Xiaonan; Li, Changjiang; Rong, Yuanyuan; Xiao, Yawei; Xu, Xinsheng; Yao, Guihua; Jiang, Guihua

    2016-01-01

    Abstract: The cardiotonic pill (CP), consisting of a mixture of Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, has been widely used in the prevention and treatment of cardiovascular disease. Adhesion molecules, including intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, are involved in the development of vulnerable plaque. We investigated the effect of the CP in a rabbit model of vulnerable plaque established by local transfection with p53 gene. Compared with the control group, rabbits with vulnerable plaque showed a significantly lower intima-media thickness and plaque burden after CP treatment for 12 weeks. Moreover, the reduction in rate of plaque rupture and vulnerability index was similar. On enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry analysis, the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 was inhibited with CP treatment. CP treatment could postpone atherosclerotic plaque development and stabilize vulnerable plaque by inhibiting the expression of adhesion molecules in treatment of cardiovascular disease. PMID:27110743

  12. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  13. Combined Treatment with Amlodipine and Atorvastatin Calcium Reduces Circulating Levels of Intercellular Adhesion Molecule-1 and Tumor Necrosis Factor-α in Hypertensive Patients with Prediabetes

    PubMed Central

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-01-01

    Objective: To assess the effect of amlodipine and atorvastatin on intercellular adhesion molecule (ICAM)-1 and tumor necrosis factor (TNF)-α expression, as endothelial function and inflammation indicators, respectively, in hypertensive patients with and without prediabetes. Methods: Forty-five consecutive patients with hypertension, diagnosed according to JNC7, were divided into two groups based on the presence (HD group, n = 23) or absence (H group, n = 22) of prediabetes, diagnosed according to 2010 ADA criteria, including impaired glucose tolerance (IGT) and fasting glucose tests. All patients simultaneously underwent 12-week treatment with daily single-pill amlodipine besylate/atorvastatin calcium combination (5/10 mg; Hisun-Pfizer Pharmaceuticals Co. Ltd). Serum isolated before and after treatment from overnight fasting blood samples was analyzed by ELISA. Results: In the HD and H groups after vs. before 12-week amlodipine/atorvastatin treatment, there were significantly (all P < 0.01) lower levels of ICAM-1 (3.06 ± 0.34 vs. 4.07 ± 0.70 pg/ml; 3.26 ± 0.32 vs. 3.81 ± 0.60 pg/ml, respectively) and TNF-α (78.71 ± 9.19 vs. 110.94 ± 10.71 pg/ml; 80.95 ± 9.33 vs. 101.79 ± 11.72 pg/ml, respectively), with more pronounced reductions in HD vs. H group (ICAM-1Δ: 1.01 ± 0.80 vs. 0.55 ± 0.64 pg/ml, respectively, P = 0.037; TNF-αΔ: 32.23 ± 14.33 vs. 20.84 ± 14.89 pg/ml, respectively, P = 0.011), independent of the blood pressure (BP) and cholesterol level reduction. Conclusions: Amlodipine/atorvastatin improved endothelial function and inflammation, as reflected by lower circulating levels of ICAM-1 and TNF-α, more prominently in hypertensives with than without prediabetes. Starting statin treatment before overt diabetes in hypertensives might thus improve cardiovascular outcomes. PMID:27610083

  14. Multifunctional interleukin-1beta promotes metastasis of human lung cancer cells in SCID mice via enhanced expression of adhesion-, invasion- and angiogenesis-related molecules.

    PubMed

    Yano, Seiji; Nokihara, Hiroshi; Yamamoto, Akihiko; Goto, Hisatsugu; Ogawa, Hirohisa; Kanematsu, Takanori; Miki, Toyokazu; Uehara, Hisanori; Saijo, Yasuo; Nukiwa, Toshihiro; Sone, Saburo

    2003-03-01

    We examined whether interleukin-1 (IL-1), a multifunctional proinflammatory cytokine, progresses or regresses metastasis of lung cancer. Exogenous IL-1beta enhanced expression of various cytokines (IL-6, IL-8, and vascular endothelial growth factor (VEGF)) and intracellular adhesion molecule-1 (ICAM-1) by A549, PC14, RERF-LC-AI, and SBC-3 cells expressing IL-1 receptors. A549 cells transduced with human IL-1beta-gene with the growth-hormone signaling-peptide sequence (A549/IL-1beta) secreted a large amount of IL-1beta protein. Overexpression of IL-1beta resulted in augmentation of expression of the cytokines, ICAM-1, and matrix metalloproteinase-2 (MMP-2). A549/IL-1beta cells intravenously inoculated into severe combined immunodeficiency (SCID) mice distributed to the lung more efficiently and developed lung metastasis much more rapidly than did control A549 cells. Treatment of SCID mice with anti-IL-1beta antibody inhibited formation of lung metastasis by A549/IL-1beta cells. Moreover, A549/IL-1beta cells inoculated in the subcutis grew more rapidly, without necrosis, than did control A549 cells, which produced smaller tumors with central necrosis, suggesting involvement of angiogenesis in addition to enhanced binding in the high metastatic potential of A549/IL-1beta cells. Histological analyses showed that more host-cell infiltration, fewer apoptotic cells, more vascularization, and higher MMP activity were observed in tumors derived from A549/IL-1beta cells, compared with tumors derived from control A549 cells. These findings suggest that IL-1beta facilitates metastasis of lung cancer via promoting multiple events, including adhesion, invasion and angiogenesis.

  15. CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p56lck in Jurkat T cell line

    PubMed Central

    1994-01-01

    The leukocyte differentiation antigen, CD50, has been recently identified as the intercellular adhesion molecule 3 (ICAM-3), the third counter-receptor of leukocyte function-associated antigen 1 (LFA-1). This molecule seems to be specially involved in the adhesion events of the initial phases of the immune response. To characterize the role of CD50 in leukocyte interactions, the different molecular events induced after cross-linking of CD50 on T cell-derived Jurkat cell line have been analyzed. When cells were incubated with anti-CD50 mAbs and cross- linked with polyclonal goat anti-mouse immunoglobulins, a rise in intracellular calcium concentration ([Ca2+]i) was observed. This increase in [Ca2+]i was mainly due to the uptake of extracellular Ca2+. This Ca2+ flux involved tyrosine phosphorylations and was further increased by CD3 costimulation. These data, together with those obtained by phosphotyrosine (P-Tyr) immunoprecipitation and in vitro kinase assays, suggested the involvement of protein-tyrosine kinases (PTK) in CD50 transduction pathways. By using specific antisera, the presence of p56lck and p59fyn protein tyrosine kinases (PTK) was clearly demonstrated in the CD50 immunoprecipitates. These findings suggest that the interaction of CD50 with its natural ligand (LFA-1) may result in T lymphocyte activation events, in which CD50 could play a very active role after antigen triggering. PMID:7515097

  16. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Choi, Sunga; Kim, Cuk-Seong; Ryoo, Sungwoo; Park, Jin Bong; Jeon, Byeong Hwa

    2015-01-01

    Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells. PMID:26608360

  17. Tanshinone IIA inhibits TNF-α-mediated induction of VCAM-1 but not ICAM-1 through the regulation of GATA-6 and IRF-1.

    PubMed

    Nizamutdinova, Irina Tsoy; Kim, Young Min; Jin, Hana; Son, Kun Ho; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung

    2012-12-01

    The goal of this study was to investigate the differential effect of tanshinone IIA on the induction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by TNF-α and the possible molecular mechanisms by which it regulates ICAM-1 and VCAM-1 expression differentially. Stimulation of human umbilical vein endothelial cells (HUVEC) with TNF-α increased ICAM-1 and VCAM-1 expressions, and the pretreatment with tanshinone IIA concentration dependently inhibited VCAM-1 expression but not ICAM-1 expression. In previous study, PI3K/Akt, PKC and Jak/STAT-3 pathways were involved in the TNF-α-mediated induction of VCAM-1 but not ICAM-1. Thus, we examined the effect of tanshinone IIA on TNF-α-mediated activations of PI3K/Akt, PKC and Jak/STAT-3 pathways. Tanshinone IIA efficiently inhibited the phosphorylations of Akt, PKC and STAT-3 by TNF-α. Moreover, we determined the effect of tanshinone IIA on IRF-1 or GATAs induction and binding activity to VCAM-1 promoter since the upstream promoter region of VCAM-1 but not ICAM-1 contains IRF-1 and GATA binding motifs. Western blot analysis and ChIP assay showed that tanshinone IIA efficiently inhibited TNF-α-increased nuclear level of IRF-1 and GATA-6 and their binding affinity to VCAM-1 promoter region. Taken together, tanshinone IIA selectively inhibits TNF-α-mediated expression of VCAM-1 but not ICAM-1 through modulation of PI3/Akt, PKC and Jak/STAT-3 pathway as well as IRF-1 and GATA-6 binding activity.

  18. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    PubMed

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  19. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy.

    PubMed

    Takahashi, Shu; Kato, Kazunori; Nakamura, Kiminori; Nakano, Rika; Kubota, Kazuishi; Hamada, Hirofumi

    2011-04-01

    In adenovirus-derived gene therapy, one of the problems is the difficulty in specific targeting. We have recently demonstrated that monoclonal antibody (mAb) libraries screened by fiber-modified adenovirus vector (Adv-FZ33), which is capable of binding to immunoglobulin-G (IgG), provide a powerful approach for the identification of suitable target antigens for prostate cancer therapy. Hybridoma libraries from mice immunized with androgen-dependent prostate cancer cell line LNCaP were screened and mAb were selected. Through this screening, we obtained one mAb, designated LNI-29, that recognizes a glycoprotein with an apparent molecular mass of 100 kD. It was identified as neural cell adhesion molecule 2 (NCAM2). Some prostate and breast cancer cell lines highly expressed NCAM2 whereas normal prostate cell lines expressed NCAM2 at low levels. In contrast to the low efficiency of gene transduction by Adv-FZ33 with a control antibody, LNI-29-mediated Adv-FZ33 infection induces high rates of gene delivery in NCAM2-positive cancers. NCAM2-mediated therapeutic gene transduction of uracil phosphoribosyltransferase (UPRT) had a highly effective cytotoxic effect on NCAM2-positive cancer cells, whereas it had less of an effect in cases with a control antibody. In conclusion, NCAM2 should be a novel gene therapy target for the treatment of prostate and breast cancer.

  20. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  1. ICAM-1, ELAM-1, TNF-alpha and IL-6 in serum and blister liquid of pemphigus vulgaris patients.

    PubMed

    Alecu, M; Alecu, S; Coman, G; Gălăţescu, E; Ursaciuc, C

    1999-01-01

    The levels of ICAM-1, ELAM-1, TNF-alpha and IL-6 were determined in 12 patients with pemphigus vulgaris (PV) both in serum and the blister liquid. As a control, the same parameters were determined in 7 patients with herpes zoster (HZ). The patients with PV presented significantly higher values of ICAM-1 in the blister liquid, as compared to the serum values. The values of TNF-alpha and IL-6 were increased both in serum and the blister liquid. The ELAM-1 values did not show significant differences between serum and the blister liquid. In HZ patients, the blister liquid values did not significantly exceed the serum values both for ICAM-1 and ELAM-1. TNF-alpha and IL-6 presented high values both in serum and the blister liquid. We consider that the high values of ICAM-1 in the blister liquid from PV patients suggest the involvement of this adhesion molecule in the PV pathogenic features. The implication of ICAM-1 could be nonspecific and limited, and could possibly represent a reaction to the destruction of the desmosomal bonds within keratinocytes.

  2. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells.

    PubMed

    Yang, Rong-Chi; Chang, Cheng-Chieh; Sheen, Jer-Ming; Wu, Hsiao-Ting; Pang, Jong-Hwei S; Huang, Sheng-Teng

    2014-01-01

    Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

  3. Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule.

    PubMed

    Cordero, M I; Rodríguez, J J; Davies, H A; Peddie, C J; Sandi, C; Stewart, M G

    2005-01-01

    The amygdala is a brain area which plays a decisive role in fear and anxiety. Since exposure to chronic stress can induce profound effects in emotion and cognition, plasticity in specific amygdaloid nuclei in response to prior stress has been hypothesized to account for stress-induced emotional alterations. In order to identify amygdala nuclei which may be affected under chronic stress conditions we evaluated the effects of 21-days chronic restraint stress on the expression of a molecule implicated crucially in alterations in structural plasticity: the polysialylated neural cell adhesion molecule. We found that polysialylated neural cell adhesion molecule-immunoreactivity within the amygdala, present in somata and neuronal processes, has a regional gradient with the central medial and medial amygdaloid nuclei showing the highest levels. Our results demonstrate that chronic restraint stress induced an overall reduction in polysialylated neural cell adhesion molecule-immunoreactivity in the amygdaloid complex, mainly due to a significant decrease in the central medial amygdaloid and medial amygdaloid nuclei. Our data suggest that polysialylated neural cell adhesion molecule in these nuclei may play a prominent role in functional and structural remodeling induced by stress, being a potential mechanism for cognitive and emotional modulation. Furthermore, these finding provide the first clear evidence that life experiences can regulate the expression of polysialylated neural cell adhesion molecule in the amygdaloid complex.

  4. Dynamics of adhesion molecule domains on neutrophil membranes: surfing the dynamic cell topography.

    PubMed

    Gaborski, Thomas R; Sealander, Michael N; Waugh, Richard E; McGrath, James L

    2013-12-01

    Lateral organization and mobility of adhesion molecules play a significant role in determining the avidity with which cells can bind to target cells or surfaces. Recently, we have shown that the lateral mobility of the principal adhesion molecules on neutrophils is lower for rolling associated adhesion molecules (RAAMs: L-selectin and PSGL-1) than for β2 integrins (LFA-1 and Mac-1). Here we report that all four adhesion molecules exhibit distinct punctate distributions that are mobile on the cell surface. Using uniform illumination image correlation microscopy, we measure the lateral mobility of these topologically distinct domains. For all four molecules, we find that diffusion coefficients calculated from domain mobility agree with measurements we made previously using fluorescence recovery after photobleaching. This agreement indicates that the transport of receptors on the surface of the resting neutrophil is dominated by the lateral movement of domains rather than individual molecules. The diffusion of pre-assembled integrin domains to zones of neutrophil/endothelial contact may provide a mechanism to facilitate high avidity adhesion during the earliest stages of firm arrest.

  5. Hepatitis C virus (HCV) genotype, tissue HCV antigens, hepatocellular expression of HLA-A,B,C, and intercellular adhesion-1 molecules. Clues to pathogenesis of hepatocellular damage and response to interferon treatment in patients with chronic hepatitis C.

    PubMed Central

    Ballardini, G; Groff, P; Pontisso, P; Giostra, F; Francesconi, R; Lenzi, M; Zauli, D; Alberti, A; Bianchi, F B

    1995-01-01

    To obtain information on the mechanisms of hepatocellular damage and the determinants of response to interferon, hepatitis C virus (HCV) genotype, tissue HCV antigens, hepatocellular expression of HLA-A,B,C and intercellular adhesion-1 molecules, and the number of lobular T lymphocytes were studied in 38 anti-HCV-positive patients. 14 patients did not show a primary response to interferon treatment. HCV genotype 1b was detected in 11 of them. They displayed higher scores of HCV-positive hepatocytes, HLA-A,B,C, and ICAM-1 molecules expression than with the responders. HCV-infected hepatocytes maintained the capacity to express HLA-A,B,C and ICAM-1 molecules. CD8-positive T cells in contact with infected hepatocytes and Councilman-like bodies were observed. A significant correlation was found between the number of lobular CD8-positive T cells and alanine amino transferase levels. No differences were observed in clinical, biochemical, and histological features between patients with high and low number of hepatocytes containing HCV antigens. These data suggest a prominent role of T cell-mediated cytotoxicity in the genesis of hepatocellular damage. The high expression of interferon-inducible antigens like HLA-A,B,C molecules suggests the presence of strong activation of the interferon system possibly related to high HCV replication in nonresponder patients infected with genotype 1b. Images PMID:7738174

  6. Endogenous PMN sialidase activity exposes activation epitope on CD11b/CD18 which enhances its binding interaction with ICAM-1.

    PubMed

    Feng, Chiguang; Zhang, Lei; Almulki, Lama; Faez, Sepideh; Whitford, Melissa; Hafezi-Moghadam, Ali; Cross, Alan S

    2011-08-01

    Diapedesis is a dynamic, highly regulated process by which leukocytes are recruited to inflammatory sites. We reported previously that removal of sialyl residues from PMNs enables these cells to become more adherent to EC monolayers and that sialidase activity within intracellular compartments of resting PMNs translocates to the plasma membrane following activation. We did not identify which surface adhesion molecules were targeted by endogenous sialidase. Upon activation, β2 integrin (CD11b/CD18) on the PMN surface undergoes conformational change, which allows it to bind more tightly to the ICAM-1 and ICAM-2 on the EC surface. Removal of sialyl residues from CD18 and CD11b, by exogenous neuraminidase or mobilization of PMN sialidase, unmasked activation epitopes, as detected by flow cytometry and enhanced binding to ICAM-1. One sialidase isoform, Neu1, colocalized with CD18 on confocal microscopy. Using an autoperfused microflow chamber, desialylation of immobilized ICAM-1 enhanced leukocyte arrest in vivo. Further, treatment with a sialidase inhibitor in vivo reversed endotoxin-induced binding of leukocytes to ICAM-1, thereby suggesting a role for leukocyte sialidase in the cellular arrest. These data suggest that PMN sialidase could be a physiologic source of the enzymatic activity that removes sialyl residues on β2 integrin and ICAM-1, resulting in their enhanced interaction. Thus, PMN sialidase may be an important regulator of the recruitment of these cells to inflamed sites.

  7. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons

    PubMed Central

    Földy, Csaba; Darmanis, Spyros; Aoto, Jason; Malenka, Robert C.; Quake, Stephen R.; Südhof, Thomas C.

    2016-01-01

    In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity. PMID:27531958

  8. Latrophilins Function as Heterophilic Cell-adhesion Molecules by Binding to Teneurins

    PubMed Central

    Boucard, Antony A.; Maxeiner, Stephan; Südhof, Thomas C.

    2014-01-01

    Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance. PMID:24273166

  9. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway.

    PubMed

    Hou, Chun-Han; Lin, Feng-Ling; Tong, Kai-Biao; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-06-15

    Osteosarcoma is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Transforming growth factor alpha (TGF-α) is classified as the EGF (epidermal growth factor)-like family, which is involved in cancer cellular activities such as proliferation, motility, migration, adhesion and invasion abilities. However, the effect of TGF-α on human osteosarcoma is largely unknown. We found that TGF-α increased the cell migration and expression of intercellular adhesion molecule-1 (ICAM-1) in human osteosarcoma cells. Transfection of cells with ICAM-1 siRNA reduced TGF-α-mediated cell migration. We also found that the phosphatidylinositol 3'-kinase (PI3K)/Akt/NF-κB pathway was activated after TGF-α treatment, and TGF-α-induced expression of ICAM-1 and cell migration was inhibited by the specific inhibitors and siRNAs of PI3K, Akt, and NF-κB cascades. In addition, knockdown of TGF-α expression markedly decreased cell metastasis in vitro and in vivo. Our results indicate that TGF-α/EGFR interaction elicits PI3K and Akt activation, which in turn activates NF-κB, resulting in the expression of ICAM-1 and contributing the migration of human osteosarcoma cells.

  10. Single-molecule manipulation experiments to explore friction and adhesion

    NASA Astrophysics Data System (ADS)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  11. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts.

    PubMed

    Rimpelová, Silvie; Kasálková, Nikola Slepičková; Slepička, Petr; Lemerová, Helena; Švorčík, Václav; Ruml, Tomáš

    2013-04-01

    The cell-material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules.

  12. The changes in the endothelial expression of cell adhesion molecules and iNOS in the vessel wall after the short-term administration of simvastatin in rabbit model of atherosclerosis.

    PubMed

    Nachtigal, Petr; Kopecky, Martin; Solichova, Dagmar; Zdansky, Petr; Semecky, Vladimir

    2005-02-01

    Cell adhesion molecules P-selectin, VCAM-1 and ICAM-1 play an important role in the pathogenesis of atherosclerosis. High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerotic processes. Simvastatin is an HMG-CoA reductase inhibitor responsible for many clinical benefits. The aim of this study was to detect and quantify changes in endothelial expression of P-selectin, VCAM-1, ICAM-1 and iNOS in the vessel wall after the shortterm administration of simvastatin in a rabbit model of atherosclerosis. Eighteen New Zealand White rabbits were randomly divided into three groups (n=6). In the cholesterol group, rabbits consumed an atherogenic diet (0.4% cholesterol) for eight weeks. In the simvastatin group, rabbits consumed an atherogenic diet for six weeks and then consumed an atherogenic diet supplemented with simvastatin (10 mg kg(-1)) for two weeks. Biochemical analysis showed that administration of simvastatin led to an almost two-fold lowering of the total serum cholesterol, VLDL, LDL and HDL, but not triglycerides, compared with the cholesterol-fed rabbits only. Stereological analysis of the immunohistochemical staining revealed that administration of simvastatin (10 mg kg(-1) daily) in an atherogenic diet decreased the endothelial expression of P-selectin, ICAM-1 and iNOS in both aortic arch and carotid artery compared with the cholesterol fed-rabbits only. We conclude that simvastatin has beneficial effects on endothelial function by decreasing expression of P-selectin, ICAM-1 and iNOS in endothelial cells in the very early stages of atherogenesis.

  13. Evidence for Association of Cell Adhesion Molecules Pathway and NLGN1 Polymorphisms with Schizophrenia in Chinese Han Population

    PubMed Central

    Jiang, Sisi; Liao, Jinmin; Lu, Tianlan; Wang, Lifang; Zhang, Dai; Yue, Weihua

    2015-01-01

    Multiple risk variants of schizophrenia have been identified by Genome-wide association studies (GWAS). As a complement for GWAS, previous pathway-based analysis has indicated that cell adhesion molecules (CAMs) pathway might be involved in the pathogenesis of schizophrenia. However, less replication studies have been reported. Our objective was to investigate the association between CAMs pathway and schizophrenia in the Chinese Han population. We first performed a pathway analysis utilizing our previous GWAS data. The CAMs pathway (hsa04514) was significantly associated with schizophrenia using hybrid gene set-based test (P = 1.03×10−10) and hypergeometric test (P = 5.04×10−6). Moreover, 12 genes (HLA-A, HLA-C, HLA-DOB, HLA-DPB1, HLA-DQA2, HLA-DRB1, MPZ, CD276, NLGN1, NRCAM, CLDN1 and ICAM3) were modestly significantly associated with schizophrenia (P<0.01). Then, we selected one promising gene neuroligin 1 (NLGN1) to further investigate the association between eight significant SNPs and schizophrenia in an independent sample (1814 schizophrenia cases and 1487 healthy controls). Our study showed that seven SNPs of NLGN1 and two haplotype blocks were significantly associated with schizophrenia. This association was confirmed by the results of combined analysis. Among them, SNP rs9835385 had the most significant association with schizophrenia (P = 2.83×10−7). Furthermore, in silico analysis we demonstrated that NLGN1 is preferentially expressed in human brain and SNP rs1488547 was related to the expression level. We validated the association of CAMs pathway with schizophrenia in pathway-level and identified one susceptibility gene NLGN1. Further investigation of the roles of CAMs pathway in the pathogenesis of schizophrenia is warranted. PMID:26674772

  14. Involvement of oxidative stress and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in inflammatory bowel disease

    PubMed Central

    Tanida, Satoshi; Mizoshita, Tsutomu; Mizushima, Takashi; Sasaki, Makoto; Shimura, Takaya; Kamiya, Takeshi; Kataoka, Hiromi; Joh, Takashi

    2011-01-01

    The pathophysiology of inflammatory bowel disease involves excessive immune effects of inflammatory cells against gut microbes. In genetically predisposed individuals, these effects are considered to contribute to the initiation and perpetuation of mucosal injury. Oxidative stress is a fundamental tissue-destructive mechanisms that can occur due to the reactive oxygen species and reactive nitrogen metabolites which are released in abundance from numerous inflammatory cells that have extravasated from lymphatics and blood vessels to the lamina propria. This extravasation is mediated by interactions between adhesion molecules including mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of lymphocytes or neutrophils and their ligands on endothelial cells. Thus, reactive oxygen species and adhesion molecules play an important role in the development of inflammatory bowel disease. The present review focuses on the involvement of oxidative stress and adhesion molecules, in particular mucosal addressin cell adhesion molecule-1, in inflammatory bowel disease. PMID:21373262

  15. Effects of a healthy life exercise program on arteriosclerosis adhesion molecules in elderly obese women

    PubMed Central

    Lim, Seung-Taek; Min, Seok-Ki; Park, Hyuntae; Park, Jong-Hwan; Park, Jin-Kee

    2015-01-01

    [Purpose] The aim of this study was to investigate the change in the arteriosclerosis adhesion molecules after a healthy life exercise program that included aerobic training, anaerobic training, and traditional Korean dance. [Subjects] The subjects were 20 elderly women who were over 65 years of age and had 30% body fat. [Methods] The experimental group underwent a 12-week healthy life exercise program. To evaluate the effects of the healthy life exercise program, measurements were performed before and after the healthy life exercise program in all the subjects. [Results] After the healthy life exercise program, MCP-1 and the arteriosclerosis adhesion molecules sE-selectin and sVCAM-1 were statistically significantly decreased. [Conclusion] The 12-week healthy life exercise program reduced the levels of arteriosclerosis adhesion molecules. Therefore, the results of our study suggest that a healthy life exercise program may be useful in preventing arteriosclerosis and improving quality of life in elderly obese women. PMID:26157257

  16. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  17. High-level endothelial E-selectin (CD62E) cell adhesion molecule expression by a lipopolysaccharide-deficient strain of Neisseria meningitidis despite poor activation of NF-κB transcription factor

    PubMed Central

    DIXON, G L J; HEYDERMAN, R S; VAN DER LEY, P; KLEIN, N J

    2004-01-01

    Binding of host inflammatory cells to the endothelium is a critical contributor to the vascular damage characteristic of severe meningococcal disease and is regulated by endothelial cell adhesion molecules such as ICAM-1, VCAM-1 and CD62E. Intact meningococci induce far higher levels of CD62E than lipopolysaccharide (LPS) alone, whereas LPS is at least as potent as meningococci at inducing both VCAM-1 and ICAM-1 expression. This suggests that meningococci possess additional factors other than LPS present in whole bacteria that result in differential adhesion molecule expression. To investigate this possibility, we studied the capacity of an LPS-deficient isogenic strain of serogroup B Neisseria meningitidis H44/76 (lpxA-) to induce endothelial cell adhesion molecule expression and translocation of the transcription factor NF-κB, and compared it to both parent and unencapsulated strains of both B1940 and H44/76 and purified LPS. Although the LPS-deficient isogenic mutant of strain H44/76 was found to be a poor inducer of NF-κB, it induced higher levels of CD62E expression than LPS alone. These data provide evidence that intact meningococci induce a range of signals in the endothelium that are distinct from those seen with purified LPS alone and that they occur in a LPS-dependent and LPS-independent manner. These signals may explain the potent effects of N. meningitidis on CD62E expression on vascular endothelium and provide a basis for the complex endothelial dysregulation seen in meningococcal sepsis. PMID:14678268

  18. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies

    PubMed Central

    Hua, Susan

    2013-01-01

    Targeted drug delivery to sites of inflammation will provide effective, precise, and safe therapeutic interventions for treatment of diverse disease conditions, by limiting toxic side effects and/or increasing drug action. Disease-site targeting is believed to play a major role in the enhanced efficacy observed for a variety of drugs when formulated inside lipid vesicles. This article will focus on the factors and mechanisms involved in drug targeting to sites of inflammation and the importance of cell adhesion molecules, in particular intercellular adhesion molecule-1, in this process. PMID:24109453

  19. Sequences from the First Fibronectin Type III Repeat of the Neural Cell Adhesion Molecule Allow O-Glycan Polysialylation of an Adhesion Molecule Chimera*

    PubMed Central

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Thompson, Matthew G.; Mendiratta, Shalu Shiv; Colley, Karen J.

    2010-01-01

    Polysialic acid is a developmentally regulated, anti-adhesive polymer that is added to N-glycans on the fifth immunoglobulin domain (Ig5) of the neural cell adhesion molecule (NCAM). We found that the first fibronectin type III repeat (FN1) of NCAM is required for the polysialylation of N-glycans on the adjacent Ig5 domain, and we proposed that the polysialyltransferases recognize specific sequences in FN1 to position themselves for Ig5 N-glycan polysialylation. Other studies identified a novel FN1 acidic surface patch and α-helix that play roles in NCAM polysialylation. Here, we characterize the contribution of two additional FN1 sequences, Pro510-Tyr511-Ser512 (PYS) and Gln516-Val517-Gln518 (QVQ). Replacing PYS or the acidic patch dramatically decreases the O-glycan polysialylation of a truncated NCAM protein, and replacing the α-helix or QVQ shifts polysialic acid to FN1 O-glycans in full-length NCAM. We also found that the FN1 domain of the olfactory cell adhesion molecule, a homologous but unpolysialylated protein, could partially replace NCAM FN1. Inserting Pro510-Tyr511 eliminated N-glycan polysialylation and enhanced O-glycosylation of an NCAM- olfactory cell adhesion molecule chimera, and inserting other FN1 sequences unique to NCAM, predominantly the acidic patch, created a new polysialyltransferase recognition site. Taken together, our results highlight the role of the FN1 α-helix and QVQ sequences in N-glycan polysialylation and demonstrate that the acidic patch primarily functions in O-glycan polysialylation. PMID:20805222

  20. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  1. Role of the interferon-inducible IFI16 gene in the induction of ICAM-1 by TNF-alpha.

    PubMed

    Sponza, Simone; De Andrea, Marco; Mondini, Michele; Gugliesi, Francesca; Gariglio, Marisa; Landolfo, Santo

    2009-01-01

    The Interferon-inducible gene IFI16, a member of the HIN200 family, is activated by oxidative stress and cell density, in addition to Interferons, and it is implicated in the regulation of endothelial cell proliferation and vessel formation in vitro. We have previously shown that IFI16 is required for proinflammatory gene stimulation by IFN-gamma through the NF-kappaB complex. To examine whether IFI16 induction might be extended to other proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha, we used the strategy of the RNA interference to knock down IFI16 expression, and analyze the capability of TNF-alpha to stimulate intercellular adhesion molecule-1 (ICAM-1 or CD54) expression in the absence of functional IFI16. Our studies demonstrate that IFI16 mediates ICAM-1 stimulation by TNF-alpha through the NF-kappaB pathway, thus reinforcing the role of the IFI16 molecule in the inflammation process.

  2. Resistance to cerebral malaria in tumor necrosis factor-alpha/beta-deficient mice is associated with a reduction of intercellular adhesion molecule-1 up-regulation and T helper type 1 response.

    PubMed Central

    Rudin, W.; Eugster, H. P.; Bordmann, G.; Bonato, J.; Müller, M.; Yamage, M.; Ryffel, B.

    1997-01-01

    Tumor necrosis factor (TNF) induced by Plasmodium berghei ANKA (PbA) infection was suggested to play an important role in the development of cerebral malaria (CM). We asked whether TNF-alpha/beta double-deficient mice, which have a complete disruption of the TNF-signaling pathways, are protected from CM and what might be the possible mechanisms of protection. PbA infection induces fatal CM in wild-type mice, which die within 5 to 8 days with severe neurological signs. In contrast, TNF-alpha/beta-deficient mice are completely resistant to PbA-induced CM. As PbA-induced up-regulation of endothelial intercellular adhesion molecule (ICAM)-1 expression as well as the systemic release of nitric oxide is found only in wild-type mice, TNF is apparently central for the recruitment of mononuclear cells and microvascular damage. Mononuclear cell adhesion to the endothelium, vascular leak and, perivascular hemorrhage are found only in the brain of wild-type mice. By contrast, the development of parasitemia and anemia is independent of TNF. Resistance to CM in TNF-alpha/beta-deficient mice is associated with reduced interferon-gamma and interleukin-12 expression in the brain, in the absence of increased T helper type 2 cytokines. In conclusion, TNF apparently is required for PbA-induced endothelial ICAM-1 up-regulation and subsequent microvascular pathology resulting in fatal CM. In the absence of TNF, ICAM-1 and nitric oxide up-regulation are reduced, and PbA infection fails to cause fatal CM. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9006341

  3. Dimerization of Cell-Adhesion Molecules Can Increase Their Binding Strength.

    PubMed

    Huang, Wenmao; Qin, Meng; Li, Ying; Cao, Yi; Wang, Wei

    2017-02-14

    Cell-adhesion molecules (CAMs) often exist as homodimers under physiological conditions. However, owing to steric hindrance, simultaneous binding of two ligands to the homodimers at the same location can hardly be satisfied, and the molecular mechanism underlying this natural design is still unknown. Here, we present a theoretical model to understand the rupture behavior of cell-adhesion bonds formed by multiple binding ligands with a single receptor. We found that the dissociation forces for the cell-adhesion bond could be greatly enhanced in comparison with the monomer case through a ligand rebinding and exchange mechanism. We also confirmed this prediction by measuring dimeric cRGD (cyclic Arg-Gly-Asp) unbinding from integrin (αvβ3) using atomic force microscopy-based single-molecule force spectroscopy. Our finding addresses the mechanism of increasing the binding strength of cell-adhesion bonds through dimerization at the single-molecule level, representing a key step toward the understanding of complicated cell-adhesion behaviors. Moreover, our results also highlight a wealth of opportunities to design mechanically stronger bioconjunctions for drug delivery, biolabeling, and surface modification.

  4. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  5. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Astrophysics Data System (ADS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-08-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to CEA, an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  6. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  7. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  8. The effects of spaceflight on adrenergic receptors and agonists and cell adhesion molecule expression

    NASA Technical Reports Server (NTRS)

    Mills, Paul J.; Perez, Christy J.; Adler, Karen A.; Ziegler, Michael G.; Meck, J. V. (Principal Investigator)

    2002-01-01

    Twenty-two astronauts who flew aboard 10 different US Space Shuttle flights were studied 10 days before launch, on landing day, and 2-4 days post-landing. After landing, plasma levels of norepinephrine (p<0.01) were elevated. Lymphocyte beta(2)-adrenergic receptors were desensitized 2-4 days post-landing (p<0.02). The density of CD62L on lymphocytes was unchanged but the densities of CD11a (p<0.01) and CD54 (p<0.001) were down-regulated. CD11a density was also down-regulated on monocytes (p<0.01). Neutrophils showed an up-regulation of CD11a (p<0.01) and a down-regulation of CD54 (p<0.01). CD11a density on neutrophils remained up-regulated (p<0.01) and CD54 density remained down-regulated (p<0.01) at 2-4 days post-landing. Circulating levels of soluble ICAM-1 (CD54) and soluble E-selectin (CD62E) were decreased after landing (p's<0.05). The data suggest that spaceflight leads to an environment that would support reduced leukocyte-endothelial adhesion. Sympathetic activation may contribute to this phenomenon.

  9. Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4beta1 integrin.

    PubMed

    Ludwig, Ralf J; Hardt, Katja; Hatting, Max; Bistrian, Roxana; Diehl, Sandra; Radeke, Heinfried H; Podda, Maurizio; Schön, Michael P; Kaufmann, Roland; Henschler, Reinhard; Pfeilschifter, Josef M; Santoso, Sentot; Boehncke, Wolf-Henning

    2009-10-01

    Junctional adhesion molecule-A (JAM-A), JAM-B and JAM-C have been implicated in leucocyte transmigration. As JAM-B binds to very late activation antigen (VLA)-4, a leucocyte integrin that contributes to rolling and firm adhesion of lymphocytes to endothelial cells through binding to vascular cell adhesion molecule (VCAM)-1, we hypothesized that JAM-B is also involved in leucocyte rolling and firm adhesion. To test this hypothesis, intravital microscopy of murine skin microvasculature was performed. Rolling interactions of murine leucocytes were significantly affected by blockade of JAM-B [which reduced rolling interactions from 9.1 +/- 2.6% to 3.2 +/- 1.2% (mean +/- standard deviation)]. To identify putative ligands, T lymphocytes were perfused over JAM-B-coated slides in a dynamic flow chamber system. JAM-B-dependent rolling and sticking interactions were observed at low shear stress [0.3 dyn/cm(2): 220 +/- 71 (mean +/- standard deviation) versus 165 +/- 88 rolling (P < 0.001; Mann-Whitney rank sum test) and 2.6 +/- 1.3 versus 1.0 +/- 0.7 sticking cells/mm(2)/min (P = 0.026; Mann-Whitney rank sum test) on JAM-B- compared with baseline], but not at higher shear forces (1.0 dyn/cm(2)). As demonstrated by antibody blocking experiments, JAM-B-mediated rolling and sticking of T lymphocytes was dependent on alpha4 and beta1 integrin, but not JAM-C expression. To investigate whether JAM-B-mediated leucocyte-endothelium interactions are involved in a disease-relevant in vivo model, adoptive transfer experiments in 2,4,-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity reactions were performed in mice in the absence or in the presence of a function-blocking JAM-B antibody. In this model, JAM-B blockade during the sensitization phase impaired the generation of the immune response to DNFB, which was assessed as the increase in ear swelling in untreated, DNFB-challenged mice, by close to 40% [P = 0.037; analysis of variance (anova)]. Overall, JAM-B appears to

  10. Spatio-Temporally Restricted Expression of Cell Adhesion Molecules during Chicken Embryonic Development

    PubMed Central

    Roy, Priti; Bandyopadhyay, Amitabha

    2014-01-01

    Differential cell adhesive properties are known to regulate important developmental events like cell sorting and cell migration. Cadherins and protocadherins are known to mediate these cellular properties. Though a large number of such molecules have been predicted, their characterization in terms of interactive properties and cellular roles is far from being comprehensive. To narrow down the tissue context and collect correlative evidence for tissue specific roles of these molecules, we have carried out whole-mount in situ hybridization based RNA expression study for seven cadherins and four protocadherins. In developing chicken embryos (HH stages 18, 22, 26 and 28) cadherins and protocadherins are expressed in tissue restricted manner. This expression study elucidates precise expression domains of cell adhesion molecules in the context of developing embryos. These expression domains provide spatio-temporal context in which the function of these genes can be further explored. PMID:24806091

  11. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  12. The effect of dietary walnuts compared to fatty fish on eicosanoids, cytokines, soluble endothelial adhesion molecules and lymphocyte subsets: a randomized, controlled crossover trial.

    PubMed

    Chiang, Yu-Lan; Haddad, Ella; Rajaram, Sujatha; Shavlik, David; Sabaté, Joan

    2012-01-01

    We tested the hypothesis that walnut consumption can exert effects on markers of inflammation and endothelial activation similar to those produced by fish consumption. In a crossover dietary intervention trial, 25 normal to mildly hyperlipidemic men and women were randomly assigned to one of three isoenergetic diets: a walnut diet incorporating 42.5 g of walnuts per 10.1 mJ 6 times per week (1.8% of energy n-3 fat); a fish diet providing 113 g of fatty fish per 10.1 mJ 2 times per week (0.8% of energy n-3 fat), or a control diet (no nuts or fish, 0.4% of energy n-3 fat) for 4 weeks on each diet. Both the walnut and fish diets inhibited circulating concentrations of prostaglandin E metabolite (PGEM) and 11-dehydro thromboxane B2, but demonstrated no effect on blood interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α¯ (TNF-α¯), and C-reactive protein (CRP) or the number of circulating lymphocyte subsets. On the walnut diet the proportion of plasma phospholipid α¯-linolenic acid (ALA) increased 140% and arachidonic acid (AA) decreased 7% compared to both the control and fish diets. The proportion of plasma phospholipid eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased about 200% and 900% respectively on the fish diet relative to either the control or walnut diet. The walnut diet inhibited E-selectin by 12.7% relative to the fish diet, and the fish diet inhibited secretory intercellular adhesion molecule-1 (s-ICAM-1) by 4.5% relative to the control diet. Both walnuts and fish in commonly consumed amounts may have modest albeit distinct effects on circulating adhesion molecules.

  13. Squamosamide derivative FLZ inhibits TNF-α-induced ICAM-1 expression via down-regulation of the NF-κB signaling pathway in ARPE-19 cells

    PubMed Central

    Feng, Ting-Ting; Liang, Ze-Yu; Chen, Song

    2015-01-01

    Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). It has been reported that tumor necrosis factor-α (TNF-α) could induce intercellular adhesion molecule-1 (ICAM-1) expression in RPE cells. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant anti-inflammatory activity. However, the effects of FLZ on TNF-α-induced ICAM-1 expression in RPE cells remain unknown. Therefore, in the present study, we evaluated the effects of FLZ on TNF-α-induced ICAM-1 expression in RPE cells. We found that FLZ prevented TNF-α-induced ICAM-1 expression and the ability of monocytes to adhere to ARPE-19 cells induced by TNF-α. Furthermore, FLZ inhibited TNF-α-induced NF-κB p65 expression, as well as phosphorylation of IκBα in ARPE-19 cells. Taken together, these results suggest that FLZ inhibited TNF-α-induced ICAM-1 expression through blocking NF-κB signaling pathway in ARPE-19 cells. Thus, FLZ could be used for designing novel therapeutic agents against AMD. PMID:26464656

  14. Squamosamide derivative FLZ inhibits TNF-α-induced ICAM-1 expression via down-regulation of the NF-κB signaling pathway in ARPE-19 cells.

    PubMed

    Feng, Ting-Ting; Liang, Ze-Yu; Chen, Song

    2015-01-01

    Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). It has been reported that tumor necrosis factor-α (TNF-α) could induce intercellular adhesion molecule-1 (ICAM-1) expression in RPE cells. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant anti-inflammatory activity. However, the effects of FLZ on TNF-α-induced ICAM-1 expression in RPE cells remain unknown. Therefore, in the present study, we evaluated the effects of FLZ on TNF-α-induced ICAM-1 expression in RPE cells. We found that FLZ prevented TNF-α-induced ICAM-1 expression and the ability of monocytes to adhere to ARPE-19 cells induced by TNF-α. Furthermore, FLZ inhibited TNF-α-induced NF-κB p65 expression, as well as phosphorylation of IκBα in ARPE-19 cells. Taken together, these results suggest that FLZ inhibited TNF-α-induced ICAM-1 expression through blocking NF-κB signaling pathway in ARPE-19 cells. Thus, FLZ could be used for designing novel therapeutic agents against AMD.

  15. Adhesion molecules in gonarthrosis and knee prosthesis aseptic loosening follow-up: possible therapeutic implications.

    PubMed

    Dambra, P; Loria, M P; Moretti, B; D'Oronzio, L; Patella, V; Pannofino, A; Cavallo, E; Pesce, V; Dell'Osso, A; Simone, C

    2003-05-01

    The involvement of the synovium is common in phlogistic processes of various joint diseases. Apart from synoviocytes and the other cells in the synovial tissue, circulating cells recruited from peripheral blood also participate in the phlogistic process. The increased expression of adhesion molecules on both circulating and endothelial cell surface may further this recruitment. We studied 15 patients affected by serious gonarthrosis requiring a prosthetic implant (GPI) and 7 with knee prosthesis aseptic loosening (KPL) to evaluate adhesion molecule expression and phlogistic infiltration in the synovium using immunohistochemistry and microscopic analysis. As control we studied 10 subjects affected by degenerative meniscopathies undergoing a selective arthroscopic surgical meniscectomy. Analysis with Kruskal-Wallis test showed no statistical significant differences in the expression of CD54, CD11a, CD11b and CD18 in three groups examined. The model of variance analysis (Friedman test), showed that CD54 expression is greater in patients with GPI and KPL in comparison with the other molecules. Adhesion molecules and their functions are important in arthropathies not only because their evaluation can allow us to identify the degree of inflammation and to predict its evolution, but also because pharmacological control of their expression could have important therapeutic implications.

  16. Distribution of carcinoembryonic antigen-related cellular adhesion molecules in human gingiva.

    PubMed

    Huynh-Torlakovic, Hong; Bjerkan, Louise; Schenck, Karl; Blix, Inger J S

    2012-10-01

    Carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs) are glycoproteins produced in epithelial, endothelial, lymphoid, and myeloid cells. Carcinoembryonic antigen-related cellular adhesion molecules mediate cell-cell contact and host-pathogen interactions. The aims of this study were to map the distribution and examine the regulation of CEACAMs in human gingival sites. Quantitative real-time PCR performed on human gingival biopsies from periodontitis sites revealed mRNA coding for CEACAM1, -5, -6, and -7. Immunohistochemistry showed that CEACAMs were not found in oral gingival epithelium, except for CEACAM5 in periodontitis. Carcinoembryonic antigen-related cellular adhesion molecules 1, 5, and 6 were present in the oral sulcular epithelium of periodontitis but not in that of healthy gingiva. In junctional epithelium, all three molecules were present in healthy gingiva, but in periodontitis only CEACAM1 and -6 were detected. Staining for CEACAM1 and -6 was also seen in the inflammatory cell infiltrate in periodontitis. No staining for CEACAM7 was found. Proinflammatory mediators, including lipopolysaccharide (LPS), tumour necrosis factor-α (TNF-α)/interleukin-1β (IL-1β), and interferon-γ (IFN-γ), increased the expression of CEACAM1 and CEACAM6 mRNAs in cultured human oral keratinocytes. CEACAM1 and CEACAM6 mRNAs were also strongly up-regulated upon stimulation with lysophosphatidic acid. In conclusion, the distribution of different CEACAMs was related to specific sites in the gingiva. This might reflect different functional roles in this tissue.

  17. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  18. Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/NF-κB activation in poly(I:C)-stimulated astrocytes

    PubMed Central

    An, Soo Yeon; Youn, Gi Soo; Kim, Hyejin; Choi, Soo Young; Park, Jinseu

    2017-01-01

    In the central nervous system, viral infection can induce inflammation by up-regulating pro-inflammatory mediators that contribute to enhanced infiltration of immune cells into the central nervous areas. Celastrol is known to exert various regulatory functions, including anti-microbial activities. In this study, we investigated the regulatory effects and the mechanisms of action of celastrol against astrocytes activated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, as a model of pro-inflammatory mediated responses. Celastrol significantly inhibited poly(I:C)-induced expression of adhesion molecules, such as ICAM-1/VCAM-1, and chemokines, such as CCL2, CXCL8, and CXCL10, in CRT-MG human astroglioma cells. In addition, celastrol significantly suppressed poly(I:C)-induced activation of JNK MAPK and STAT1 signaling pathways. Furthermore, celastrol significantly suppressed poly(I:C)-induced activation of the NF-κB signaling pathway. These results suggest that celastrol may exert its regulatory activity by inhibiting poly(I:C)-induced expression of pro-inflammatory mediators by suppressing activation of JNK MAPK-STAT1/NF-κB in astrocytes. PMID:28027722

  19. Decrease of breast cancer cell invasiveness by sodium phenylacetate (NaPa) is associated with an increased expression of adhesive molecules.

    PubMed

    Vasse, M; Thibout, D; Paysant, J; Legrand, E; Soria, C; Crépin, M

    2001-03-23

    Sodium phenylacetate (NaPa), a non-toxic phenylalanine metabolite, has been shown to induce in vivo and in vitro cytostatic and antiproliferative effects on various cell types. In this work, we analysed the effect of NaPa on the invasiveness of breast cancer cell (MDA-MB-231, MCF-7 and MCF-7 ras). Using the highly invasive breast cancer cell line MDA-MB-231, we demonstrated that an 18-hour incubation with NaPa strongly inhibits the cell invasiveness through Matrigel (86% inhibition at 20 mM of NaPa). As cell invasiveness is greatly influenced by the expression of urokinase (u-PA) and its cell surface receptor (u-PAR) as well as the secretion of matrix metalloproteinases (MMP), we tested the effect of NaPa on these parameters. An 18-hour incubation with NaPa did not modify u-PA expression, either on MDA-MB-231 or on MCF-7 and MCF-7 ras cell lines, and induced a small u-PA decrease after 3 days of treatment of MDA-MB-321 with NaPa. In contrast, an 18 h incubation of MDA-MB-231 increased the expression of u-PAR and the secretion of MMP-9. As u-PAR is a ligand for vitronectin, a composant of the extracellular matrix, these data could explain the increased adhesion of MDA-MB-231 to vitronectin, while cell adhesivity of MCF-7 and MCF-7 ras was unmodified by NaPa treatment. NaPa induced also an increased expression of both Lymphocyte Function-Associated-1 (LFA-1) and Intercellular Adhesion Molecule-1 (ICAM-1), which was obvious from 18 hour incubation with NaPa for the MDA-MB-231 cells, but was delayed (3 days) for MCF-7 and MCF-7 ras. Only neutralizing antibodies against LFA-1 reversed the decreased invasiveness of NaPa-treated cells. Therefore we can conclude that the strong inhibition of MDA-MB-231 invasiveness is not due to a decrease in proteases involved in cell migration (u-PA and MMP) but could be related both to the modification of cell structure and an increased expression of adhesion molecules such as u-PAR and LFA-1.

  20. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates.

    PubMed

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-25

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  1. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-01

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  2. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  3. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease.

    PubMed

    Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping

    2016-11-14

    T helper (Th)17 cells, a subset of CD4(+) T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP(+))-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP(+)-treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.

  4. Reduction of atherosclerosis in cholesterol-fed rabbits and decrease of expressions of intracellular adhesion molecule-1 and vascular endothelial growth factor in foam cells by a water-soluble fraction of Polygonum multiflorum.

    PubMed

    Yang, Peng-Yuan; Almofti, Mohamad Radwan; Lu, Ling; Kang, Hui; Zhang, Jing; Li, Tie-Jun; Rui, Yao-Cheng; Sun, Lian-Na; Chen, Wan-Sheng

    2005-11-01

    Polygonum multiflorum stilbeneglycoside (PMS) is a water-soluble fraction of Polygonum multiflorum Thunb., one of the most famous tonic traditional Chinese medicines, that has protective effects on the cardiovascular system. The purpose of the present study is to elucidate the effects of PMS on macrophage-derived foam cell functions and the reduction of severity of atherosclerosis in hypercholesterolemic New Zealand White (NZW) rabbits. NZW rabbits were fed for 12 weeks with a normal diet, a high cholesterol diet, or a high cholesterol diet associated with irrigation with different doses of PMS (25, 50, or 100 mg/kg). Treatment of NZW rabbits fed with high cholesterol diet with 100 mg/kg PMS attenuated the increase in plasma cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and plasma triglyceride. Treatment with 50 and 100 mg/kg PMS caused 43% and 60% decrease in atherosclerotic lesioned area ratio to total surface area, respectively. In U937 foam cells, PMS could decrease the high expression of intercellular adhesion molecule (ICAM)-1 protein and the vascular endothelial growth factor (VEGF) protein levels in the medium induced by oxidized lipoprotein when analyzed by flow cytometry. The results proved that PMS is a powerful agent against atherosclerosis and that PMS action could possibly be through the inhibition of the expression of ICAM-1 and VEGF in foam cells.

  5. Human immunodeficiency virus type 1 induces cellular polarization, intercellular adhesion molecule-1 redistribution, and multinucleated giant cell generation in human primary monocytes but not in monocyte-derived macrophages.

    PubMed

    Fais, S; Borghi, P; Gherardi, G; Logozzi, M; Belardelli, F; Gessani, S

    1996-12-01

    In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) on some morphologic and functional changes in cultured human monocytes/macrophages at different stages of differentiation. Freshly isolated monocytes infected with HIV-1 24 hours after seeding exhibited marked morphologic changes such as uropod formation, polarization of intercellular adhesion molecule-1 (ICAM-1) on the cytoplasmic projection, the redistribution of alpha-actinin on cell-membrane dots, and an increased release of soluble ICAM-1. These changes preceded the increase in monocyte-monocyte fusion and the formation of multinucleated giant cells. In contrast, HIV-1 infection did not affect monocyte-derived macrophages in terms of either cellular polarization or multinucleated giant cell formation. Immunocytochemistry showed that HIV-1 matrix protein was present mostly in bi- and trinucleated cells, which suggests that multinucleated giant cells may represent a long-lived and highly productive cellular source of HIV. The treatment of the HIV-1-infected monocytes with azidodeoxythymidine virtually abolished all viral-induced morphofunctional changes. On the whole, these results indicate that blood monocytes and differentiated macrophages may be affected differently by HIV infection, as monocytes seem to be much more prone to polarize, undergo homotypic fusion, and form multinucleated giant cells. These changes may confer to HIV-infected monocytes an increased ability to transmigrate through endothelia into tissues, whereas differentiated macrophages may have a predominant role as a widespread reservoir of HIV.

  6. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse

    PubMed Central

    Gagen, Debjani; Laubinger, Sara; Li, Zhijie; Petrescu, Matei S.; Brown, Evelyn S.; Smith, C. Wayne; Burns, Alan R.

    2010-01-01

    Corneal epithelial abrasion elicits an inflammatory response involving neutrophil (PMN) recruitment from the limbal vessels into the corneal stroma. These migrating PMNs make surface contact with collagen and stromal keratocytes. Using mice deficient in PMN integrin CD18, we previously showed that PMN contact with stromal keratocytes is CD18-dependent, while contact with collagen is CD18-independent. In the present study, we wished to extend these observations and determine if ICAM-1, a known ligand for CD18, mediates PMN contact with keratocytes during corneal wound healing. Uninjured and injured right corneas from C57Bl/6 wild type (WT) mice and ICAM-1−/− mice were processed for transmission electron microscopy and imaged for morphometric analysis. PMN migration, stromal thickness, and ICAM-1 staining were evaluated using light microscopy. Twelve hours after epithelial abrasion, PMN surface contact with paralimbal keratocytes in ICAM-1−/− corneas was reduced to ~50% of that observed in WT corneas; PMN surface contact with collagen was not affected. Stromal thickness (edema), keratocyte network surface area and keratocyte shape were similar in ICAM-1−/− and WT corneas. WT keratocyte ICAM-1 expression was detected at baseline and ICAM-1 staining intensity increased following injury. Since ICAM-1 is readily detected on mouse keratocytes and PMN-keratocyte surface contact in ICAM-1−/− mice is markedly reduced, the data suggest PMN adhesive interactions with keratocyte stromal networks is in part regulated by keratocyte ICAM-1 expression. PMID:20713042

  7. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  8. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM

    PubMed Central

    1992-01-01

    The neural cell adhesion molecule NCAM is capable of mediating cell- cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM- covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell- cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP- epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction. PMID:1380002

  9. Macrosphelide B suppressed metastasis through inhibition of adhesion of sLe(x)/E-selectin molecules.

    PubMed

    Fukami, Akiko; Iijima, Kousuke; Hayashi, Masahiko; Komiyama, Kanki; Omura, Satoshi

    2002-03-08

    Macrosphelide B (MSB), a 16-membered macrolide from Microsphaeropsis sp. FO-5050, inhibits adhesion of sialyl Lewis(x) (sLe(x))-expressing HL-60 cells to LPS-activated (E-selectin-expressing) human umbilical vein endothelial cells (HUVECs) in vitro. This study examines MSB effects on metastasis of B16/BL6 mouse melanoma cells (B16/BL6 cells) and L5178Y-ML mouse lymphoma cells in vivo and analyzes the MSB antimetastatic activity mechanism. When administered MSB at 20 mg/kg/day, lung metastatic nodules of B16/BL6 cells were significantly decreased (T/C = 45%). However, no inhibition of metastasis of L5178Y-ML cells to the spleen and liver was observed. Flow cytometry analysis showed that B16/BL6 cells expressed high levels of sLe(x) antigen, whereas expression on L5178Y-ML cells was low. Under in vitro conditions, B16/BL6 cells demonstrated a greater degree of adhesion to LPS-activated HUVECs than L5178Y-ML cells, but adhesion was significantly inhibited by MSB and sLe(x) antibody. Combined therapy of MSB and cisplatin (CDDP) induced remarkable lung metastasis inhibition without adverse effects of CDDP to the host. All these findings suggest that MSB suppresses lung metastasis of B16/BL6 cells by inhibiting cell adhesion to endothelial cells through the sLe(x) molecule.

  10. Adhesion of single polyelectrolyte molecules on silica, mica, and bitumen surfaces.

    PubMed

    Long, Jun; Xu, Zhenghe; Masliyah, Jacob H

    2006-02-14

    In a recent study (Energy Fuels 2005, 19, 936), a partially hydrolyzed polyacrylamide (HPAM) was used as a process aid to recover bitumen from oil sand ores. It was found that HPAM addition at the bitumen extraction step not only improved bitumen recovery but also enhanced fine solids settling in the tailings stream. To understand the role of HPAM, single-molecule force spectroscopy was employed for the first time to measure the desorption/adhesion forces of single HPAM molecules on silica, mica, and bitumen surfaces using an atomic force microscope (AFM). Silicon wafers with an oxidized surface layer and newly cleaved mica were used, respectively, to represent sand grains and clays in oil sands. The force measurements were carried out in deionized water and in commercial plant process water under equilibrium conditions. The desorption/adhesion forces of HPAM obtained on mica, silica, and bitumen surfaces were approximately 200, 40, and 80 pN in deionized water and approximately 100, 50, and 40 pN in the plant process water, respectively. The measured adhesion forces together with the zeta potential values of these surfaces indicate that the polymer would preferentially adsorb onto clay surfaces rather than onto bitumen surfaces. It is the selective adsorption of HPAM that benefits both bitumen recovery and tailings settling when the polymer was added directly to the bitumen extraction process at an appropriate dosage.

  11. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  12. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  13. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  14. Activities and Accomplishments of ICAM

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1997-01-01

    A brief historical background on establishing the Institute for Computational and Applied Mechanics (ICAM) is presented and basic goals and objectives are discussed. It is emphasized that the goal of the ICAM has been to develop and maintain a self-sustaining center of excellence in computational methods at Old Dominion University (ODU). Information is provided on funding sources and budget disposition, recent activities and accomplishments, list of graduate students supported on the program, and number of students who received graduate degrees (M.S. as well as Ph.D.). Information is also provided on research coordination with various scientists and engineers, and on different reports specifically written for ICAM. ICAM has been supported, in part, by NASA Langley Research Center through Grant NAG-1-363. This report constitutes the final report for ICAM for the period ending December 1996. The grant has been monitored by the University Affairs Officers at NASA Langley.

  15. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration.

    PubMed

    Morin, Nicole A; Oakes, Patrick W; Hyun, Young-Min; Lee, Dooyoung; Chin, Y Eugene; Chin, Eugene Y; King, Michael R; Springer, Timothy A; Shimaoka, Motomu; Tang, Jay X; Reichner, Jonathan S; Kim, Minsoo

    2008-01-21

    Precise spatial and temporal regulation of cell adhesion and de-adhesion is critical for dynamic lymphocyte migration. Although a great deal of information has been learned about integrin lymphocyte function-associated antigen (LFA)-1 adhesion, the mechanism that regulates efficient LFA-1 de-adhesion from intercellular adhesion molecule (ICAM)-1 during T lymphocyte migration is unknown. Here, we show that nonmuscle myosin heavy chain IIA (MyH9) is recruited to LFA-1 at the uropod of migrating T lymphocytes, and inhibition of the association of MyH9 with LFA-1 results in extreme uropod elongation, defective tail detachment, and decreased lymphocyte migration on ICAM-1, without affecting LFA-1 activation by chemokine CXCL-12. This defect was reversed by a small molecule antagonist that inhibits both LFA-1 affinity and avidity regulation, but not by an antagonist that inhibits only affinity regulation. Total internal reflection fluorescence microscopy of the contact zone between migrating T lymphocytes and ICAM-1 substrate revealed that inactive LFA-1 is selectively localized to the posterior of polarized T lymphocytes, whereas active LFA-1 is localized to their anterior. Thus, during T lymphocyte migration, uropodal adhesion depends on LFA-1 avidity, where MyH9 serves as a key mechanical link between LFA-1 and the cytoskeleton that is critical for LFA-1 de-adhesion.

  16. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells

    PubMed Central

    Lin, Chih-Chung; Yang, Chien-Chung; Cho, Rou-Ling; Wang, Chen-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with

  17. cis Interaction of the Cell Adhesion Molecule CEACAM1 with Integrin β3

    PubMed Central

    Brümmer, Jens; Ebrahimnejad, Alireza; Flayeh, Raid; Schumacher, Udo; Löning, Thomas; Bamberger, Ana-Maria; Wagener, Christoph

    2001-01-01

    CEACAM1 is a cell adhesion molecule that has been implicated in a number of physiological processes (eg, tumor suppressor in epithelial tissues, potent angiogenic factor in microvessel formation, microbial receptor in human granulocytes and epithelial cells). The mechanism of CEACAM1 action is still largely unresolved but recent findings demonstrated that the cytoplasmic CEACAM1 domain is linked indirectly to the actin-based cytoskeleton. We have isolated integrin β3 as an associated protein using CEACAM1 tail affinity purification. This association depends on phosphorylation of Tyr-488 in the CEACAM1 cytoplasmic domain. Confocal laser scanning microscopy confirmed in vivo colocalization of both molecules in human granulocytes and epithelial cells. Furthermore, the concentrated colocalization at the tumor-stroma interface of invading melanoma masses suggests a functional role of CEACAM1-integrin β3 interaction in melanoma invasion. Moreover, colocalization of the two adhesion molecules is also found at the apical surface of glandular cells of pregnancy endometrium. Colocalization of CEACAM1 and integrin β3 at the transitional zone from proliferative to invasive extravillous trophoblast of the maternal-fetal interface supports a role for CEACAM1/integrin β3 complexes in cell invasion. PMID:11485912

  18. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP.

  19. Neutrophil adhesion molecule expression during cardiopulmonary bypass: a comparative study of roller and centrifugal pumps.

    PubMed

    Macey, M G; McCarthy, D A; Trivedi, U R; Venn, G E; Chambers, D J; Brown, K A

    1997-09-01

    The purpose of this study was to determine whether adhesion molecules and markers of cell activation were preferentially increased on blood neutrophils during cardiopulmonary bypass (CPB) and whether such effects were influenced by the use of a roller pump or a centrifugal pump. Forty-six patients undergoing open heart surgery were randomly allocated into either the roller or centrifugal groups. Blood (1 ml volumes) was removed from arterial and venous lines immediately before and 1 h after the start of bypass. Whole blood samples were immunolabelled and flow cytometry used to measure the distribution and expression of the adhesion molecules CD11b, CD18, CD62L on neutrophils, monocytes and lymphocytes, in addition to CD64 on neutrophils and monocytes, and CD14 on monocytes. The expression of CD11b was significantly enhanced on neutrophils in arterial and venous samples from both the roller pump (mean 84% and 100% increase, respectively; p < 0.001) and centrifugal pump (mean 74% and 73% increase, respectively; p < 0.001) groups. Neutrophil L-selectin expression increased to a small but significant extent in arterial and venous samples from the centrifugal pump group (mean 16% increase; p < 0.001) and in venous samples from the roller pump group (mean 10% increase; p < 0.01). Neither the percentage of neutrophils bearing CD11b/CD18, CD62L and CD64, nor the expression of adhesion molecules on lymphocytes and monocytes were modified by 1 h of bypass. These results suggest that patients subjected to CPB with roller or centrifugal pumps are equally at risk to neutrophil activation that could lead to increased interaction of these cells with blood vessel walls.

  20. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans.

    PubMed

    Frampton, Mark W; Stewart, Judith C; Oberdörster, Günter; Morrow, Paul E; Chalupa, David; Pietropaoli, Anthony P; Frasier, Lauren M; Speers, Donna M; Cox, Christopher; Huang, Li-Shan; Utell, Mark J

    2006-01-01

    Ultrafine particles (UFPs; aerodynamic diameter < 100 nm) may contribute to the respiratory and cardiovascular morbidity and mortality associated with particulate air pollution. We tested the hypothesis that inhalation of carbon UFPs has vascular effects in healthy and asthmatic subjects, detectable as alterations in blood leukocyte expression of adhesion molecules. Healthy subjects inhaled filtered air and freshly generated elemental carbon particles (count median diameter approximately 25nm, geometric standard deviation approximately 1.6), for 2 hr, in three separate protocols: 10 microg/m3 at rest, 10 and 25 microg/m3 with exercise, and 50 microg/m3 with exercise. In a fourth protocol, subjects with asthma inhaled air and 10 microg/m3 UFPs with exercise. Peripheral venous blood was obtained before and at intervals after exposure, and leukocyte expression of surface markers was quantitated using multiparameter flow cytometry. In healthy subjects, particle exposure with exercise reduced expression of adhesion molecules CD54 and CD18 on monocytes and CD18 and CD49d on granulocytes. There were also concentration-related reductions in blood monocytes, basophils, and eosinophils and increased lymphocyte expression of the activation marker CD25. In subjects with asthma, exposure with exercise to 10 microg/m3 UFPs reduced expression of CD11b on monocytes and eosinophils and CD54 on granulocytes. Particle exposure also reduced the percentage of CD4+ T cells, basophils, and eosinophils. Inhalation of elemental carbon UFPs alters peripheral blood leukocyte distribution and expression of adhesion molecules, in a pattern consistent with increased retention of leukocytes in the pulmonary vascular bed.

  1. Tumor Specific Regulation of C-CAM Cell Adhesion Molecule in Prostate Cancer Carcinogenesis

    DTIC Science & Technology

    2002-08-01

    692 9. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M., Davidson, N. E., and Baylin, S. B...2001) 115-123 www.elsevier.com/locate/mce Androgen regulation of the cell-cell adhesion molecule-1 (Ceacam i) gene Dillon Phan a, Xiaomei Sui b, Dung...Nature Medicine, 1: 686-692, 1995. 27 34. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M

  2. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    SciTech Connect

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  3. Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties.

    PubMed

    Gambero, Sheley; Canalli, Andreia A; Traina, Fabiola; Albuquerque, Dulcinéia M; Saad, Sara T O; Costa, Fernando F; Conran, Nicola

    2007-02-01

    Propagation of the vaso-occlusive process in sickle cell anaemia (SCA) is a complex process involving the adhesion of steady-state SCA patients red cells and reticulocytes to the vascular endothelium. The effect of hydroxyurea therapy (HUT) on the adhesive properties of sickle cells and the expression of adhesion molecule genes by erythroid cells of SCA individuals is not yet fully understood. The expressions of the CD36 gene and the VLA-4-integrin subunit genes, CD49d (alpha-subunit) and CD29 (beta-subunit), were compared in the reticulocytes of steady-state SCA patients and patients on HUT using real-time PCR. Basal adhesion of red cells from these subjects was also compared using static adhesion assays, as was surface protein expression, using flow cytometry. Basal sickle red cell adhesion to fibronectin was significantly greater than that of normal cells (P < 0.01); in contrast, HUT was associated with significantly lower levels (P < 0.01) of red cell adhesion that were similar to those of control cells; this decrease could not be justified solely by altered reticulocyte numbers in this population. Accordingly, flow cytometry demonstrated that reticulocytes from patients on HUT had significantly lower CD36 and CD49d surface expressions (P < 0.01) and, importantly, significantly lower expressions of the CD36, CD49d and CD29 genes (P < 0.05) than reticulocytes of SCA patients not on HUT. Taken together, data support the hypothesis that HUT reduces the adhesive properties of sickle cells and that this decrease appears to be mediated, at least in part, by a decrease in the gene and, consequently, surface protein expression of adhesion molecules such as VLA-4 and CD36.

  4. Overexpression of junctional adhesion molecule-A and EphB2 predicts poor survival in lung adenocarcinoma patients.

    PubMed

    Zhao, Chen; Wang, Aili; Lu, Funian; Chen, Hongxia; Fu, Pin; Zhao, Xianda; Chen, Honglei

    2017-02-01

    Junctional adhesion molecules are important components of tight junctions, and Eph/ephrin proteins constitute the largest family of receptor tyrosine kinases. Both junctional adhesion molecules and Eph/ephrin are involved in normal tissue development and cancer progression. However, the expression levels and clinical significances of junctional adhesion molecule-A, a member of junctional adhesion molecules, and EphB2, a member of Eph/ephrin family, in lung adenocarcinoma patients are unclear. Therefore, in this study, we aimed to identify the expression and prognostic values of junctional adhesion molecule-A and EphB2 in lung adenocarcinoma patients' cohort. In our study, 70 (55.6%) showed high expression of junctional adhesion molecule-A protein and 51 (40.5%) showed high expression of EphB2 protein in 126 lung adenocarcinoma tissues. Junctional adhesion molecule-A and EphB2 expressions were both significantly increased in tumor tissues compared with noncancerous lung tissues. Kaplan-Meier analysis and log-rank test indicated that low expression of junctional adhesion molecule-A and EphB2 proteins can predict better survival and low mortality rate of lung adenocarcinomas. In univariate analysis, high expression levels of junctional adhesion molecule-A and EphB2 were both found to be significantly correlated with poor overall survival of lung adenocarcinoma patients (hazard ratio = 1.791, 95% confidence interval = 1.041-3.084, p = 0.035; hazard ratio = 1.762, 95% confidence interval = 1.038-2.992, p = 0.036, respectively). The multivariate Cox proportional hazard model demonstrated that EphB2 expression is an independent prognosis parameter in lung adenocarcinoma patients (hazard ratio = 1.738, 95% confidence interval = 1.023-2.952, p = 0.016). Taken together, high expression of junctional adhesion molecule-A and EphB2 can predict poor overall survival and high mortality rate, and EphB2 is an independent prognostic biomarker in

  5. Combination of anti-ICAM-1 and anti-LFA-1 monoclonal antibody therapy prolongs allograft survival in rat hind-limb transplants.

    PubMed

    Ozer, K; Siemionow, M

    2001-10-01

    Immunosuppressive effects of monoclonal antibodies against adhesion molecules were validated in solid organ transplants. There have been only a few reports on the effect of these antibodies on limb transplantation. In this study, the authors investigated the effects of anti-ICAM-1 and anti-LFA-1 therapy in the rat hind-limb-cremaster transplantation model. Twenty transplantations were performed across a major histocompatibility barrier between Lewis Brown Norway (LBN, RT-1(l+n)) and Lewis (LEW, RT-1(l)) rats in four experimental groups of five animals each. Group 1 animals received only vehicle solution; Groups 2 and 3 received monoclonal antibodies against ICAM-1 and LFA-1, respectively; Group 4 received a combination dose. Treatments were continued for 7 days. Clinical signs of rejection were noted daily, and correlated with in vivo microcirculatory measurements. The activation of adhering leukocytes was significantly lower in rats treated with anti-ICAM-1, anti-LFA-1, and combination than in controls (p < 0.05). Transmigrating leukocytes were also reduced in antibody-treated groups, when compared to the control group (p < 0.05). The mean number of rolling lymphocytes was significantly reduced only in the combination group (p < 0.05). Endothelial edema index, a measure of endothelial swelling, was lowest in the combination group (p < 0.05). The first clinical signs of rejection were noted between the 5(th) and 9(th) days in the control group, on the 9(th) day in the anti-ICAM-1 or anti-LFA-1 groups, and on the 13(th) day with combination therapy. Monoclonal antibodies against LFA-1 or ICAM-1 alone inhibit the activation of leukocytes at the microcirculatory level but do not prolong graft survival. However, the combination of anti-ICAM-1 and anti-LFA-1 monoclonal antibodies significantly prolonged allograft survival in this composite tissue transplantation model.

  6. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro.

    PubMed Central

    Steffen, B. J.; Breier, G.; Butcher, E. C.; Schulz, M.; Engelhardt, B.

    1996-01-01

    The expression of cell adhesion molecules (CAMs) in the choroid plexus was studied in normal brain and during experimental autoimmune encephalomyelitis (EAE) in the SJL/J mouse during inflammation induced by intracerebral injection of killed Corynebacterium parvum in the C3H/He mouse. Both ICAM-1 and VCAM-1, but not MAdCAM-1, were constitutively expressed on choroid plexus epithelium but not on the fenestrated capillary endothelial cells within the choroid plexus. During EAE, we observed an up-regulation of ICAM-1 and VCAM-1 and de novo expression of MAdCAM-1 on choroid plexus epithelial cells. In contrast, endothelial cells in the choroid plexus were not induced to express any of the investigated CAMs. In in situ hybridization analysis we demonstrated that ICAM-1, VCAM-1, and MAdCAM-1 were locally synthesized and that the amount of their mRNAs increased in the inflamed choroid plexus. In vitro, primary choroid plexus epithelial cells could be induced to express ICAM-1, VCAM-1, and MAdCAM-1 on their surface after treatment with proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1, interferon-gamma, and lipopolysaccharide. To investigate the functional status of the expressed CAMs we performed Stamper-Woodruff binding assays on frozen sections of inflamed and naive brains. ICAM-1, VCAM-1, and MAdCAM-1 expressed in choroid plexus epithelial cells mediated binding of lymphocytes via their known ligands LFA-1 and alpha4-integrin, respectively. The expression of ICAM-1, VCAM-1, and MAdCAM-1 on choroid plexus epithelial cells together with the lack of their expression on the fenestrated choroid plexus endothelium raises the possibility that the epithelial blood-cerebrospinal-fluid barrier plays an important role in the immunosurveillance of the central nervous system. Images Figure 1 Figure 2 Figure 3A Figure 3B Figure 3 Figure 4 Figure 5 Figure 5 Figure 6 Figure 7 PMID:8669469

  7. Disialyl GD2 ganglioside suppresses ICAM-1-mediated invasiveness in human breast cancer MDA-MB231 cells

    PubMed Central

    Kwon, Kyung-Min; Chung, Tae-Wook; Kwak, Choong-Hwan; Choi, Hee-Jung; Kim, Kyung-Woon; Ha, Sun-Hyung; Cho, Seung-Hak; Lee, Young-Choon; Ha, Ki-Tae; Lee, Moon-Jo; Kim, Cheorl-Ho

    2017-01-01

    The disialoganglioside GD3 has been considered to be involved in tumor progression or suppression in various tumor cells. However, the significance of the biological functions of GD3 in breast cancer cells is still controversial. This prompted us to study the possible relationship(s) between GD3 expression and the metastatic potential of a breast cancer MDA-MB231 cells as an estrogen receptor negative (ER-) type. The human GD3 synthase cDNA was transfected into MDA-MB231 cells, and G-418 bulk selection was used to select cells stably overexpressing the GD3 synthase. In vitro invasion potentials of the GD3 synthase over-expressing cells (pc3-GD3s) were significantly suppressed when compared with control cells. Expression of intercellular adhesion molecule-1 (ICAM-1; CD54) was down-regulated in the pc3-GD3s cells and the decrease in ICAM-I expression is directly related to the decrease in invasiveness of the pc3-GD3s cells. Another type of ER negative SK-BR3 cells exhibited the similar level of ICAM-1 expression as MDA-MB231 cells, while the ER positive MCF-7 cells (ER+) showed the increased expression level of ICAM-1. Then, we investigated signaling pathways known to control ICAM-1 expression. No difference was observed in the phosphorylation of ERK and p38 between the pc3-GD3s and control cells (pc3), but the activation of AKT was inhibited in pc3-GD3s, and not in the control (pc3). In addition, the composition of total gangliosides was changed between control (pc3) and pc3-GD3s cells, as confirmed by HPTLC. The pc3-GD3s cells had an accumulation of the GD2 instead of the GD3. RT-PCR results showed that not only GD3 synthase, but also GM2/GD2 synthase (β4-GalNc T) expression was increased in pc3-GD3s cells. Overexpression of GD3 synthase suppresses the invasive potential of human breast cancer MDA-MB-231 cells through down-regulation of ICAM-1 and the crucial pathway to allow the apoptotic effect has been attributed to accumulation of the GD2 ganglioside. ER has

  8. Diatomic molecules and metallic adhesion, cohesion, and chemisorption - A single binding-energy relation

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1983-01-01

    Potential-energy relations involving a few parameters in simple analytic forms have been found to represent well the energetics of a wide variety of diatomic molecules. However, such two-atom potential functions are not appropriate for metals. It is well known that, in the case of metals, there exist strong volume-dependent forces which can never be expressed as pairwise interactions. The present investigation has the objective to show that, in spite of the observation concerning metals, a single binding-energy relation can be found which accurately describes diatomic molecules as well as adhesion, cohesion, and chemisorption on metals. This universality reveals a commonality between the molecular and metallic bond.

  9. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

    PubMed Central

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-01-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis. PMID:27600198

  10. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    PubMed Central

    Lu, T T; Yan, L G; Madri, J A

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876219

  11. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels

    PubMed Central

    Choi, Ji-Young; Yoon, Sang-Sun; Kim, Sang-Eun; Ahn Jo, Sangmee

    2017-01-01

    Intercellular adhesion molecule 1 (ICAM1) mediates the adhesion and transmigration of leukocytes across the endothelium, promoting inflammation. We investigated the epigenetic mechanism regulating ICAM1 expression. The pro-inflammatory cytokine TNF-α dramatically increased ICAM1 mRNA and protein levels in human brain microvascular endothelial cells and mouse brain microvessels. Chromatin immunoprecipitation revealed that TNF-α reduced methylation of histone H3 at lysines 9 and 27 (H3K9 and H3K27), well-known residues involved in gene suppression. Inhibition of G9a and EZH2, histone methyltransferases responsible for methylation at H3K9 and H3K27, respectively as well as G9a overexpression demonstrated the involvement of G9a in TNF-α-induced ICAM1 expression and leukocyte adhesion and transmigration. A specific role for KDM4B, a histone demethylase targeting H3K9me2, in TNF-α-induced ICAM1 upregulation was validated with siRNA. Moreover, treating mice with a KDM4 inhibitor ML324 blocked TNF-α-mediated neutrophil adhesion. Similarly, TNF-α-induced VCAM1 expression was suppressed by G9a overexpression and KDM4B knockdown. Collectively, we demonstrated that modification of H3K9me2 by G9a and KDM4B regulates expression of vascular adhesion molecules, and that depletion of these proteins or KDM4B reduces inflammation-induced leukocyte extravasation. Thus, blocking ICAM1 or KDM4B could offer a novel therapeutic opportunity treating brain diseases. PMID:28327608

  12. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin.

    PubMed

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-20

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4-64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.

  13. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome.

    PubMed

    Brancati, Francesco; Fortugno, Paola; Bottillo, Irene; Lopez, Marc; Josselin, Emmanuelle; Boudghene-Stambouli, Omar; Agolini, Emanuele; Bernardini, Laura; Bellacchio, Emanuele; Iannicelli, Miriam; Rossi, Alfredo; Dib-Lachachi, Amina; Stuppia, Liborio; Palka, Giandomenico; Mundlos, Stefan; Stricker, Sigmar; Kornak, Uwe; Zambruno, Giovanna; Dallapiccola, Bruno

    2010-08-13

    Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known "nectinopathy" caused by mutations in a nectin adhesion molecule.

  14. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin

    PubMed Central

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-01

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4–64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis. PMID:28106089

  15. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    SciTech Connect

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  16. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  17. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury.

    PubMed

    Arafa, Emad; Bondzie, Philip A; Rezazadeh, Kobra; Meyer, Rosana D; Hartsough, Edward; Henderson, Joel M; Schwartz, John H; Chitalia, Vipul; Rahimi, Nader

    2015-10-01

    Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.

  18. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  19. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus.

    PubMed

    Wyss, Lena; Schäfer, Julia; Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H; Aurrand-Lions, Michel; Plate, Karl H; Imhof, Beat A; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

  20. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  1. Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh.

    PubMed

    Karim, Md Rezaul; Rahman, Mashiur; Islam, Khairul; Mamun, Abdullah Al; Hossain, Shakhawoat; Hossain, Ekhtear; Aziz, Abdul; Yeasmin, Fouzia; Agarwal, Smita; Hossain, Md Imam; Saud, Zahangir Alam; Nikkon, Farjana; Hossain, Mostaque; Mandal, Abul; Jenkins, Richard O; Haris, Parvez I; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2013-09-01

    Elevated exposure to arsenic has been suggested to be associated with atherosclerosis leading to cardiovascular disease (CVD). However, biochemical events underlying the arsenic-induced atherosclerosis have not yet been fully documented. The aim of this study was to investigate the associations of circulating molecules involved in atherosclerosis with arsenic exposure in the individuals exposed to arsenic in Bangladesh. A total of 324 study subjects, 218 from arsenic-endemic areas and 106 from nonendemic areas in Bangladesh, were recruited. Drinking water, hair, nail, and blood samples were collected from the study subjects for analysis. Total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels were lower in arsenic-endemic subjects than those of nonendemic subjects. Oxidized LDL (Ox-LDL), C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) levels were significantly higher in arsenic-endemic subjects than those in nonendemic subjects. All these circulating molecules showed significant correlations with arsenic exposure (water, hair, and nail arsenic concentrations), and all these relations were significant before and after adjusting for relevant covariates. Among the circulating molecules tested in this study, HDL, Ox-LDL, and CRP showed dose-response relationships with arsenic exposure. Ox-LDL/HDL ratios were increased with the increasing concentrations of arsenic in the water, hair, and nails. Furthermore, non-HDL cholesterol and TC/HDL ratios were significantly correlated with arsenic exposure before and after adjusting for relevant covariates. Thus, all the observed associations may be the major features of arsenic exposure-related atherosclerosis leading to CVD.

  2. Adult Schistosoma mansoni worms positively modulate soluble egg antigen-induced inflammatory hepatic granuloma formation in vivo. Stereological analysis and immunophenotyping of extracellular matrix proteins, adhesion molecules, and chemokines.

    PubMed Central

    Jacobs, W.; Bogers, J.; Deelder, A.; Wéry, M.; Van Marck, E.

    1997-01-01

    Synchronized liver granulomas were induced by injecting Sepharose beads to which SEA soluble egg antigen (SEA) or the concanavalin A binding fraction of SEA had been coupled into a mesenteric vein in naive, single-sex (35 days) and bisexually (28 days) Schistosoma mansoni-infected and Plasmodium berghei-immunized mice. Stereological analysis revealed that peak granuloma formation was already reached 8 days after injection in single-sex infected mice compared with 16 days in naive animals. No difference in granuloma formation between naive and P. berghei-immunized animals and between unisexually and bisexually S. mansoni-infected mice was observed. This suggests that the positive immunomodulatory effect on the granulomogenesis is worm specific and not likely to be due to arousal of the immune system by unrelated factors, nor is it influenced by the gender or degree of maturation of female worms. At all stages in time, the concanavalin A binding-fraction-induced granulomas reached only 65 to 70% of the volume of SEA-induced granulomas. Immunophenotyping of extracellular matrix proteins around deposited heads revealed that fibronectin was the dominant extracellular matrix protein and that also type I and IV collagen and laminin were deposited. Temporal analysis of the expression of the adhesion molecules ICAM-1, LFA-1, VLA-4, and VLA-6 was performed. Morphological evidence is presented for the role of adhesion molecules in the initiation and maintenance of hepatic granuloma formation. The chemokine monocyte chemoattractant protein-1 was expressed in the granuloma and in hepatic artery branches. From these data, it is concluded that adult S. mansoni worms positively modulate schistosomal hepatic granuloma formation in vivo. Adhesion molecules and chemokines play important roles in schistosomal granuloma formation. Images Figure 1 Figure 2 Figure 3 PMID:9176396

  3. PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3K/Akt/GSK-3β/GATA-6 signaling pathways in TNF-α-activated human endothelial cells.

    PubMed

    Tsoyi, Konstantin; Jang, Hwa Jin; Nizamutdinova, Irina Tsoy; Park, Kyungok; Kim, Young Min; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl

    2010-11-01

    Phosphotase and tensin homolog deleted on chromosome 10 (PTEN) is a potent negative regulator of PI3K/Akt pathway. Here, we tried to elucidate the role of PTEN in the regulation of endothelial adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1, induced by TNF-α in human endothelial cells (ECs). Transfection with PTEN overexpressing vector resulted in the significant decrease in phosphorylation of Akt in TNF-α-treated ECs. PTEN strongly inhibited VCAM-1 but not ICAM-1, however this inhibitory effect was reversed by co-transfection with constitutively active-Akt (CA-Akt-HA) in TNF-α-stimulated ECs. Additionally, silencing of PTEN with specific siRNA showed significant increase of phosphor-Akt compared with TNF-α alone treated ECs. siPTEN significantly upregulated VCAM-1 but was indifferent to ICAM-1 in TNF-α-treated cells. Further, chromatin immunoprecipitation (ChIP) assay showed that PTEN targets GATA-6 but not IRF-1 binding to VCAM-1 promoter. In addition, GATA-6 is associated with glycogen synthesis kinase-3beta (GSK-3β) which is in turn regulated by PTEN-dependent Akt activity. Finally, PTEN significantly prevented monocyte adhesion to TNF-α-induced ECs probably through VCAM-1 regulation. It is concluded that PTEN selectively inhibits expression of VCAM-1 but not ICAM-1 through modulation of PI3K/Akt/GSK-3β/GATA-6 signaling cascade in TNF-α-treated ECs.

  4. ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer

    PubMed Central

    Guo, Peng; Yang, Jiang; Jia, Di; Moses, Marsha A.; Auguste, Debra T.

    2016-01-01

    Lipocalin 2 (Lcn2) is a promising therapeutic target as well as a potential diagnostic biomarker for breast cancer. It has been previously shown to promote breast cancer progression by inducing the epithelial to mesenchymal transition in breast cancer cells as well as by enhancing angiogenesis. Lcn2 levels in urine and tissue samples of breast cancer patients has also been correlated with breast cancer status and poor patient prognosis. In this study, we have engineered a novel liposomal small interfering RNA (siRNA) delivery system to target triple negative breast cancer (TNBC) via a recently identified molecular target, intercellular adhesion molecule-1 (ICAM-1). This ICAM-1-targeted, Lcn2 siRNA- encapsulating liposome (ICAM-Lcn2-LP) binds human TNBC MDA-MB-231cells significantly stronger than non-neoplastic MCF-10A cells. Efficient Lcn2 knockdown by ICAM-Lcn2-LPs led to a significant reduction in the production of vascular endothelial growth factor (VEGF) from MDA-MB-231 cells, which, in turn, led to reduced angiogenesis both in vitro and in vivo. Angiogenesis (neovascularization) is a requirement for solid tumor growth and progression, and its inhibition is an important therapeutic strategy for human cancers. Our results indicate that a tumor-specific strategy such as the TNBC-targeted, anti-angiogenic therapeutic approach developed here, may be clinically useful in inhibiting TNBC progression. PMID:26722369

  5. The Enhancement of Metallic Silver Monomer Evaporation by the Adhesion of Polar Molecules to Silver Nanocluster Ions

    DTIC Science & Technology

    1994-09-21

    POLAR MOLECULES TO SILVER NANOCLUSTER IONS by Clifton Fagerquist, Dilip K. Sensharma, Angel Rubio, Marvin L. Cohen and M. A. EI-Sayed Prepared for...MOLECULES TO SILVER NANOCLUSTER IONS Clifton K. Fagerquist#, Dilip K. Sensharma and Mostafa A. E1-Sayed* Department of Chemistry and Biochemistry...CZVERED 4. TITLE AND SUBTITLE S. .:UNO:NG :.UMBERS Tl1E ENANCDEET OF METALLIC SILVER MONOMER EVAPORATION .- 1 9Y THE ADHESION OF POLAR MOLECULES TO SILVER

  6. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography.

    PubMed

    Danila, Delia; Partha, Ranga; Elrod, Don B; Lackey, Melinda; Casscells, S Ward; Conyers, Jodie L

    2009-01-01

    We evaluated the specific binding of anti-intercellular adhesion molecule 1 (ICAM-1) conjugated liposomes (immunoliposomes, or ILs) to activated human coronary artery endothelial cells (HCAEC) with the purpose of designing a computed tomographic imaging agent for early detection of atherosclerotic plaques. Covalent attachment of anti-ICAM-1 monoclonal antibodies to pre-formed liposomes stabilized with polyethylene glycol yielded ILs, with a coupling efficiency of the ICAM-1 to the liposomes of 10% to 24%. The anti-ICAM-1-labeled ILs had an average diameter of 136 nm as determined by dynamic light-scattering and cryogenic electron microscopy. The ILs' encapsulation of 5-[N-acetyl-(2,3-dihydroxypropyl)-amino)-N, N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-benzene-1,3-dicarboxamide (iohexol) was determined to be 18% to 19% by a dialysis technique coupled with ultraviolet detection of free iohexol. This encapsulation corresponded to 30 to 38 mg iodine per mL IL solution, and the ILs exhibited 91% to 98.5% iohexol retention at room temperature and under physiologic conditions. The specific binding of the ILs to cultured, activated HCAEC was measured using flow cytometry, enzyme-linked immunosorbent assays, and fluorescence microscopy. The immunosorbent assays demonstrated the specificity of binding of anti-ICAM-1 to ICAM-1 compared with control studies using nonspecific immunoglobulin G-labeled ILs. Flow cytometry and fluorescence microscopy experiments demonstrated the expression of ICAM-1 on the surface of activated HCAEC. Therefore, our iohexol-filled ILs demonstrated potential for implementation in computed tomographic angiography to noninvasively detect atherosclerotic plaques that are prone to rupture.

  7. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  8. Up-regulation of ICAM-1, CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes stimulated by Streptococcus suis serotype 2

    PubMed Central

    AL-NUMANI, D; SEGURA, M; DORÉ, M; GOTTSCHALK, M

    2003-01-01

    Streptococcus suis serotype 2 is known to be a major pathogen of swine, causing mainly meningitis. It is also a zoonotic agent leading predominantly to meningitis in humans working in close contact with pigs. In this study, we investigated the ability of S. suis to up-regulate the expression of adhesion molecules involved in inflammation, using an enzyme-linked immunosorbent assay. S. suis serotype 2 stimulated the up-regulation of the expression of intercellular adhesion molecule-1 (ICAM-1, CD54), CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes, but did not change that of ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, CD106) and E-selectin (CD62E) on human endothelial cells. The up-regulation of adhesion molecules was time- and bacterial concentration-dependent, and cell wall components were largely responsible for such stimulation. To a lesser extent, purified haemolysin of S. suis also stimulated adhesion molecule expression. Stimulation of monocytes with strains of different origin showed that there was no clear tendency for human strains to induce a higher expression of adhesion molecules than strains from diseased pigs. Finally, monocytes stimulated with S. suis also showed an increase in adherence to endothelial cells. Hence, S. suis is capable of up-regulating important adhesion molecules involved in inflammation, which may result in an increased leucocyte recruitment into sites of infection, thus providing a possible mechanism for some of the inflammatory features of meningitis caused by this pathogen. PMID:12823280

  9. Caspase-1-independent IL-1 release mediates blister formation in autoantibody-induced tissue injury through modulation of endothelial adhesion molecules.

    PubMed

    Sadeghi, Hengameh; Lockmann, Anike; Hund, Anna-Carina; Samavedam, Unni K S R L; Pipi, Elena; Vafia, Katerina; Hauenschild, Eva; Kalies, Kathrin; Pas, Hendri H; Jonkman, Marcel F; Iwata, Hiroaki; Recke, Andreas; Schön, Michael P; Zillikens, Detlef; Schmidt, Enno; Ludwig, Ralf J

    2015-04-15

    Although reports documented aberrant cytokine expression in autoimmune bullous dermatoses (AIBDs), cytokine-targeting therapies have not been established in these disorders. We showed previously that IL-6 treatment protected against tissue destruction in experimental epidermolysis bullosa acquisita (EBA), an AIBD caused by autoantibodies to type VII collagen (COL7). The anti-inflammatory effects of IL-6 were mediated by induction of IL-1ra, and prophylactic IL-1ra administration prevented blistering. In this article, we demonstrate elevated serum concentrations of IL-1β in both mice with experimental EBA induced by injection of anti-COL7 IgG and in EBA patients. Increased IL-1α and IL-1β expression also was observed in the skin of anti-COL7 IgG-injected wild-type mice compared with the significantly less diseased IL-1R-deficient or wild-type mice treated with the IL-1R antagonist anakinra or anti-IL-1β. These findings suggested that IL-1 contributed to recruitment of inflammatory cells into the skin. Accordingly, the expression of ICAM-1 was decreased in IL-1R-deficient and anakinra-treated mice injected with anti-COL7. This effect appeared to be specifically attributable to IL-1 because anakinra blocked the upregulation of different endothelial adhesion molecules on IL-1-stimulated, but not on TNF-α-stimulated, cultured endothelial cells. Interestingly, injection of caspase-1/11-deficient mice with anti-COL7 IgG led to the same extent of skin lesions as in wild-type mice. Collectively, our data suggest that IL-1, independently of caspase-1, contributes to the pathogenesis of EBA. Because anti-IL-1β in a prophylactic setting and anakinra in a quasi-therapeutic setting (i.e., when skin lesions had already developed) improved experimental EBA, IL-1 appears to be a potential therapeutic target for EBA and related AIBDs.

  10. Suitable in vitro Eimeria arloingi macromeront formation in host endothelial cells and modulation of adhesion molecule, cytokine and chemokine gene transcription.

    PubMed

    Silva, Liliana M R; Vila-Viçosa, Maria J M; Cortes, Helder C E; Taubert, Anja; Hermosilla, Carlos

    2015-01-01

    Eimeria arloingi infections can cause severe haemorrhagic enteritis in young goat kids, thereby leading to high economic losses in goat industry worldwide. We aimed to isolate a new E. arloingi strain and establish a suitable in vitro culture system for the first merogony. E. arloingi oocysts were collected from naturally infected goat kids in the province of Alentejo, Portugal. For the maintenance of E. arloingi (strain A), kids kept under strict parasite-free conditions were orally infected with 10(3) sporulated oocysts each. Further, a new excystation protocol was successfully established to obtain viable sporozoites for further in vitro development in primary bovine umbilical vein endothelial cells (BUVEC). Overall, E. arloingi first merogony was successfully accomplished in BUVEC leading to macromeront formation (up to 150 μm) and the release of fully developed merozoites I stages. Moreover, host endothelial cell-parasite interactions were investigated in order to determine the extent of modulation carried out by E. arloingi in BUVEC during the first merogony. Gene transcription of adhesion molecules (E-selectin, P-selectin, VCAM-1, ICAM-1) was enhanced in the first hours post-infection (p.i.) in E. arloingi-infected BUVEC. BUVEC activation due to invasion was also shown by increased chemokine (CXCL8, CCL2, CCL5), cytokine (GM-CSF) and COX-2 gene transcription. The new E. arloingi (strain A) will be useful for better comprehension of early host innate immune reactions against this parasite in vitro/in vivo as well as to further our investigations in the complex Eimeria-host endothelial cell interactions.

  11. Rhein lysinate inhibits monocyte adhesion to human umbilical vein endothelial cells by blocking p38 signaling pathway.

    PubMed

    Lin, Yajun; Zhen, Yongzhan; Liu, Jiang; Wei, Jie; Tu, Ping; Hu, Gang

    2013-11-01

    The objective of this study was to investigate the effect of rhein lysinate (RHL) on monocyte adhesion and its mechanism. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the growth inhibition by drugs. The monocyte chemoattractant protein (MCP)-1 levels were assayed using MCP-1 ELISA. The expression of proteins was detected by Western blotting analysis. The results indicated that RHL inhibited monocyte adhesion in a dose- and time-dependent manner. RHL (<20 μmol/L) and lipopolysaccharide (LPS) had no effect on viability of human umbilical vein endothelial cells. Therefore, 20 μmol/L RHL was selected for this study. RHL inhibited secretion of MCP-1 induced by LPS and expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1. In the meantime, both RHL and p38 inhibitor (SB203580) inhibited phosphorylation of p38 and mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK-2) and transcription and expression of ICAM-1 and VCAM-1. In conclusion, RHL inhibits the transcription and expression of ICAM-1 and VCAM-1 by the p38/MAPKAPK-2 signaling pathway, and the effect of RHL on transcription and expression of ICAM-1 and VCAM-1 is similar to p38 inhibitor. RHL could be a prophylactic drug for atherosclerosis.

  12. Selective biocatalytic aminolysis of (±)-epichlorohydrin: synthesis and ICAM-1 inhibitory activity of (S)-(+)-3-arylamino-1-chloropropan-2-ols.

    PubMed

    Gupta, Pankaj; Bhatia, Sumati; Dhawan, Ashish; Balwani, Sakshi; Sharma, Shatrughan; Brahma, Raju; Singh, Rajpal; Ghosh, Balaram; Parmar, Virinder S; Prasad, Ashok K

    2011-04-01

    Regio- and enantioselective synthesis of (S)-(+)-3-arylamino-1-chloropropan-2-ols has been achieved by the epoxide ring opening of (±)-epichlorohydrin with different aromatic amines in the presence of Candida rugosa lipase. Activities of seven model (S)-(+)-3-arylamino-1-chloropropan-2-ols, out of 10 compounds synthesized, have been evaluated for the inhibition of tumor necrosis factor-α TNF-α) induced expression of intercellular adhesion molecule-1 (ICAM-1), which is one of the factors responsible for the modulation of inflammation in biological systems; (S)-(+)-1-chloro-3-(2'-chlorophenylamino)-propan-2-ol has been found to exhibit highest activity, that is, 86% inhibition of TNF-α induced expression of ICAM-1 at a concentration of 40 μg/ml.

  13. Epithelial Cell Adhesion Molecule (EpCAM) Regulates Claudin Dynamics and Tight Junctions* ♦

    PubMed Central

    Wu, Chuan-Jin; Mannan, Poonam; Lu, Michael; Udey, Mark C.

    2013-01-01

    Epithelial cell adhesion molecule (EpCAM) (CD326) is a surface glycoprotein expressed by invasive carcinomas and some epithelia. Herein, we report that EpCAM regulates the composition and function of tight junctions (TJ). EpCAM accumulated on the lateral interfaces of human colon carcinoma and normal intestinal epithelial cells but did not co-localize with TJ. Knockdown of EpCAM in T84 and Caco-2 cells using shRNAs led to changes in morphology and adhesiveness. TJ formed readily after EpCAM knockdown; the acquisition of trans-epithelial electroresistance was enhanced, and TJ showed increased resistance to disruption by calcium chelation. Preparative immunoprecipitation demonstrated that EpCAM bound tightly to claudin-7. Co-immunoprecipitation documented associations of EpCAM with claudin-7 and claudin-1 but not claudin-2 or claudin-4. Claudin-1 associated with claudin-7 in co-transfection experiments, and claudin-7 was required for association of claudin-1 with EpCAM. EpCAM knockdown resulted in decreases in claudin-7 and claudin-1 proteins that were reversed with lysosome inhibitors. Immunofluorescence microscopy revealed that claudin-7 and claudin-1 continually trafficked into lysosomes. Although EpCAM knockdown decreased claudin-1 and claudin-7 protein levels overall, accumulations of claudin-1 and claudin-7 in TJ increased. Physical interactions between EpCAM and claudins were required for claudin stabilization. These findings suggest that EpCAM modulates adhesion and TJ function by regulating intracellular localization and degradation of selected claudins. PMID:23486470

  14. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  15. BLOOD LEUKOCYTE EXPRESSION OF LFA-1 AND INTRACELLULAR ADHESION MOLECULE-1 (ICAM-1) AFTER INHALATION OF ULTRAFINE CARBON PARTICLES. (R827354C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury

    PubMed Central

    He, Qian-ru; Cong, Meng; Chen, Qing-zhong; Sheng, Ya-feng; Li, Jian; Zhang, Qi; Ding, Fei; Gong, Yan-pei

    2016-01-01

    The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration. PMID:28197202

  17. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis

    PubMed Central

    Zuko, Amila; Oguro-Ando, Asami; Post, Harm; Taggenbrock, Renske L. R. E.; van Dijk, Roland E.; Altelaar, A. F. Maarten; Heck, Albert J. R.; Petrenko, Alexander G.; van der Zwaag, Bert; Shimoda, Yasushi; Pasterkamp, R. Jeroen; Burbach, J. Peter H.

    2016-01-01

    In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment. PMID:28018171

  18. L1 CELL ADHESION MOLECULE IS NEUROPROTECTIVE OF ALCOHOL INDUCED CELL DEATH

    PubMed Central

    Gubitosi-Klug, Rose; Larimer, Corena G.; Bearer, Cynthia F.

    2009-01-01

    L1 cell adhesion molecule (L1), a protein critical for appropriate development of the central nervous system, is a target for ethanol teratogenicity. Ethanol inhibits both L1 mediated cell adhesion as well as L1 mediated neurite outgrowth. L1 has been shown to increase cell survival in cerebellar granule cells while ethanol has been shown to increase cell death. We sought to determine if L1 protected cells from ethanol induced cell death. Cerebellar granule cells from postnatal day 6 rat pups were cultured on either poly L-lysine with or without an L1 substratum. Alcohol was added at 2 hours post plating and cell survival was measured at various times. L1 substratum significantly increased cell survival at 72 and 120 hours. Ethanol significantly reduced cell survival at 48 hours, with no effect at 72 or 120 hours, both in the presence and absence of L1. At 48 hours, L1 significantly increased cell survival in the presence of ethanol. We conclude that ethanol interferes with processes other than L1-L1 interactions in causing cell death, and that ethanol effects would be more severe in the absence of L1. PMID:17267039

  19. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  20. PRIMING EFFECT OF HOMOCYSTEINE ON INDUCIBLE VASCULAR CELL ADHESION MOLECULE-1 EXPRESSION IN ENDOTHELIAL CELLS

    PubMed Central

    Séguin, Chantal; Abid, Md. Ruhul; Spokes, Katherine C.; Schoots, Ivo G; Brkovic, Alexandre; Sirois, Martin G.; Aird, William C.

    2017-01-01

    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis, as well as for arterial and venous thrombosis. However, the mechanisms through which elevated circulating levels of homocysteine cause vascular injury and promote thrombosis remain unclear. Here, we tested the hypothesis that homocysteine (Hcy) sensitizes endothelial cells to the effect of inflammatory mediators. Human umbilical vein endothelial cells (HUVEC) were incubated with Hcy 1.0 mM for varying time points, and then treated in the absence or presence of 1.5 U/ml thrombin or 10 ng/ml lipopolysaccharide (LPS). Hcy alone had no effect on the expression of vascular cell adhesion molecule (VCAM)-1. However, Hcy enhanced thrombin- and LPS-mediated induction of VCAM-1 mRNA and protein levels. Consistent with these results, pretreatment of HUVEC with Hcy resulted in a two-fold increase in LSP-mediated induction of leukocyte adhesion. The latter effect was significantly inhibited by anti-VCAM-1 antibodies. Together, these findings suggest that Hcy sensitizes HUVEC to the effect of inflammatory mediators thrombin and LPS, at least in part through VCAM-1 expression and function. PMID:18406566

  1. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  2. Chick neural retina adhesion and survival molecule is a retinol-binding protein

    SciTech Connect

    Schubert, D.; LaCorbiere, M.; Esch, F.

    1986-01-01

    A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells. Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds (/sup 3/H)retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approx.3.000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.

  3. Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro.

    PubMed

    Furtado, João M; Bharadwaj, Arpita S; Chipps, Timothy J; Pan, Yuzhen; Ashander, Liam M; Smith, Justine R

    2012-10-01

    Retinal infection is the most common clinical manifestation of toxoplasmosis. The route by which circulating Toxoplasma gondii tachyzoites cross the vascular endothelium to enter the human retina is unknown. Convincing studies using murine encephalitis models have strongly implicated leukocyte taxis as one pathway used by the parasite to access target organs. To establish whether tachyzoites might also interact directly with vascular endothelium, we populated a transwell system with human ocular endothelial cells. Human retinal endothelial monolayers permitted transmigration of tachyzoites of RH and three natural isolate strains. Antibody blockade of intercellular adhesion molecule-1 significantly reduced this migration, but did not impact tachyzoite movement across an endothelial monolayer derived from the choroid, which lies adjacent to the retina within the eye. In demonstrating that tachyzoites are capable of independent migration across human vascular endothelium in vitro, this study carries implications for the development of therapeutics aimed at preventing access of T. gondii to the retina.

  4. Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association between Caveolins, Inflammation and Adhesion Molecules

    PubMed Central

    Grenon, S. Marlene; Jeanne, Marion; Aguado-Zuniga, Jesus; Conte, Michael S.; Hughes-Fulford, Millie

    2013-01-01

    Mechanical forces including gravity affect endothelial cell (ECs) function, and have been implicated in vascular disease as well as physiologic changes associated with low gravity environments. The goal of this study was to investigate the impact of gravitational mechanical unloading on ECs phenotype as determined by patterns of gene expression. Human umbilical vascular endothelial cells were exposed to 1-gravity environment or mechanical unloading (MU) for 24 hours, with or without periods of mechanical loading (ML). MU led to a significant decrease in gene expression of several adhesion molecules and pro-inflammatory cytokines. On the contrary, eNOS, Caveolin-1 and -2 expression were significantly increased with MU. There was a decrease in the length and width of the cells with MU. Addition of ML during the MU period was sufficient to reverse the changes triggered by MU. Our results suggest that gravitational loading could dramatically affect vascular endothelial cell function. PMID:23511048

  5. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.

    PubMed

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M; Rainger, G Ed; Meda, Paolo; Imhof, Beat A; Nourshargh, Sussan

    2011-06-26

    The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.

  6. Interactions between rs5498 polymorphism in the ICAM1 gene and traditional risk factors influence susceptibility to coronary artery disease.

    PubMed

    Sarecka-Hujar, Beata; Zak, Iwona; Krauze, Jolanta

    2009-06-01

    Coronary artery disease (CAD) depends on multiple genetic and environmental factors. Adhesion molecules are markers of endothelium dysfunction. Intercellular adhesion molecule-1 (ICAM-1) interacts with leukocyte integrins and promotes atherosclerotic process at the surface of endothelial cells. The aim of the study was to assess the association between ICAM1 rs5498 polymorphism and CAD and to establish whether there are any interactions between this polymorphism and traditional risk factors in determining the risk of CAD. We studied 191 cases with angiographically documented CAD and 203 controls with no signs of cardiovascular diseases. The ICAM1 polymorphism was genotyped using PCR-RFLP method. Data were analyzed with the STATISTICA 7.1 and EpiInfo 6 softwares. We did not observe significant differences in the distribution of genotypes and alleles of rs5498 between cases and controls. We only found a tendency to a higher prevalence of G allele carriers (AG + GG) in patients compared to controls (68 vs. 64%, P = 0.399). A synergistic effect of G allele carrier-state and smoking that had influenced the risk of CAD [synergy index multiplicative (SIM = 2.09)] was observed. Smoking carriers of G allele compared to non-smoking AA were more prevalent in CAD group (39.8%) than among controls (13.3%, P < 0.0001, OR 4.81). Moreover, there was also a synergistic effect between G allele carrier-state and an elevated level of triacylglycerols (TG) (SIM = 1.28) increasing the risk of CAD. There is a synergistic interaction between rs5498 genotype and smoking that increases the risk of CAD.

  7. Neutrophil and monocyte adhesion molecules in bronchopulmonary dysplasia, and effects of corticosteroids

    PubMed Central

    Ballabh, P; Simm, M; Kumari, J; Krauss, A; Jain, A; Califano, C; Lesser, M; Cunningham-Rundle..., S

    2004-01-01

    Aims: To study a longitudinal change in the expression of adhesion molecules CD11b, CD18, and CD62L on neutrophils and monocytes in very low birth weight babies who develop respiratory distress syndrome, to compare these levels between bronchopulmonary dysplasia (BPD) and non-BPD infants, and to assess the effect of corticosteroid treatment on these adhesion molecules. Methods: Of 40 eligible neonates, 11 neonates were oxygen dependent at 36 weeks (BPD 36 weeks), 16 infants were oxygen dependent at 28 days, but not at 36 weeks (BPD d28), and 13 infants did not develop BPD. Seventeen neonates received a six day course of steroid treatment. Expression of CD11b, CD18, and CD62L was measured on neutrophils and monocytes in arterial blood on days 1, 3, 7, 14, 21, and 28, and before and 2–3 days after initiation of dexamethasone treatment by flow cytometry. Results: CD18 expression on neutrophils and monocytes and CD62L on neutrophils, measured as mean fluorescent intensity, was significantly decreased in BPD neonates compared to non-BPD neonates on days 1–28. Dexamethasone treatment significantly decreased CD11b, CD18, and CD62L expression on neutrophils, and CD11b and CD18L expression on monocytes. Conclusions: Decreased CD18 expression on neutrophils and monocytes, and decreased CD62L expression on neutrophils, measured as mean fluorescent intensity during the first four weeks of life in micropremies may be risk factors and early predictors of BPD. Dexamethasone use was associated with decreased expression of CD11b, CD18, and CD62L. PMID:14711863

  8. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  9. Cyclosporin A reduces expression of adhesion molecules in the kidney of rats with chronic serum sickness

    PubMed Central

    Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B

    2000-01-01

    Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158

  10. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion.

    PubMed

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor; Haferkamp, Axel; Blaheta, Roman A

    2016-04-12

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.

  11. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation.

    PubMed

    Chaar, Vicky; Laurance, Sandrine; Lapoumeroulie, Claudine; Cochet, Sylvie; De Grandis, Maria; Colin, Yves; Elion, Jacques; Le Van Kim, Caroline; El Nemer, Wassim

    2014-04-18

    Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.

  12. Association of ICAM-1, VCAM-1, CYCLIN D1 and Cathepsin D with Clinicopathological Parameters in Breast Carcinoma; an Immunohistochemical Study

    PubMed Central

    Külahcı, Özgür; Esen, H. Hasan; Asut, Elife; Güngör, Salim

    2017-01-01

    Objective Breast carcinoma is the most common malignant tumor detected in women. The hypothesis that increased levels of adhesion molecules and Cathepsin D affect cancerous cells moving away the primary tumor and contributes to migration of the cancerous cell and may cause remote organ metastases is defended. The aim of the present study was to search the association of intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), Cyclin D1, cathepsin D immunohistochemically with clinicopathological parameters in the patients diagnosed with invasive ductal breast carcinoma. Materials and Methods The pathological slides of 153 patients diagnosed with invasive ductal carcinoma were evaluated retrospectively. Three groups were created. Group 1 consisted of patients with positive lymph node metastasis and extranodal tumor invasion; Group 2 consisted of patients with positive axillary lymph node metastasis and negative extranodal tumor invasion and Group 3 consisted of the patients with negative axillary lymph node metastasis. In all groups, 20 paraffin blocks belonging to the primary tumor in the breast were stained by ICAM-1, VCAM-1, Cyclin D1 and Cathepsin D. Findings were examined by comparing with clinicopathological parameters. Results The highest number of metastatic axillary lymph nodes and the highest rate of cathepsin D staining were statistically found in the cases with positive axillary lymph node metastasis and extranodal tumor invasion. CerbB2 was negative in the cases with negative ICAM-1 whereas estrogen receptor and progesterone receptor were positive in the cases with positive VCAM-1. Conclusion The present study reveals significant results for the patients diagnosed with invasive ductal carcinoma through breast biopsy especially before mastectomy in terms of increased number of metastatic axillary lymph nodes and extranodal tumor invasion by immunohistochemical Cathepsin D stain without any additional invasive intervention

  13. Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation.

    PubMed Central

    Iglesias, T; Caubín, J; Stunnenberg, H G; Zaballos, A; Bernal, J; Muñoz, A

    1996-01-01

    Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3-regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha-tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c-erbA) were identified in the isolated clones by gel-shift and footprinting assays. Sites in the NCAM (in an intron), alpha-tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid-deficient humans and experimental animals. Images PMID:8861959

  14. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro

    PubMed Central

    WANG, YUE; CAO, JIATIAN; FAN, YUQI; XIE, YUSHUI; XU, ZUOJUN; YIN, ZHAOFANG; GAO, LIN; WANG, CHANGQIAN

    2016-01-01

    The adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) plays a crucial role in the initiation of atherosclerosis. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important molecules involved in the adhesion of monocytes to HUVECs. Previous studies have suggested that artemisinin, apart from an anti-malarial agent, also has other effects. In the present study, we found that artemisinin significantly decreased the adhesion of monocytes to tumor necrosis factor-α (TNF-α)-stimulated HUVECs in a dose-dependent manner and suppressed the mRNA and protein level of ICAM-1 and VCAM-1 in the TNF-α-stimulated HUVECs. In addition, the nuclear factor-κB (NF-κB) inhibitor, Bay 11-7082, and mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and U0126) respectively reduced the adhesion of monocytes to TNF-α-stimulated HUVECs, and suppressed ICAM-1 and VCAM-1 expression in TNF-α stimulated HUVECs. Moreover, artemisinin impeded the activation of the NF-κB and MAPK signaling pathways. Furthermore, Bay 11-7082 significantly decreased the phosphorylation of levels extracellular signal-regulated protein kinase (ERK)1/2, p38 and c-Jun N-terminal kinase (JNK). Taken together, the findings of our study indicated that artemisinin blocked monocyte adhesion to TNF-α-stimulated to HUVECs by downregulating ICAM-1 and VCAM-1 expression in the TNF-α-stimulated HUVECs. Artemisinin may thus have potential for use in the protection against the early development of atherosclerotic lesions. PMID:27122190

  15. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  16. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  17. Chemokines, chemokine receptors and adhesion molecules on different human endothelia: discriminating the tissue-specific functions that affect leucocyte migration

    PubMed Central

    HILLYER, P; MORDELET, E; FLYNN, G; MALE, D

    2003-01-01

    The selective accumulation of different leucocyte populations during inflammation is regulated by adhesion molecules and chemokines expressed by vascular endothelium. This study examined how chemokine production and the expression of adhesion molecules and chemokine receptors vary between endothelia from different vascular beds. Human saphenous vein endothelium was compared with lung and dermal microvascular endothelia and with umbilical vein endothelium and a bone-marrow endothelial cell line. All endothelia produced CCL2 and CXCL8 constitutively, whereas CXCL10 and CCL5 were only secreted after tumour necrosis factor (TNF)-α or interferon (IFN)-γ stimulation. In combination with TNF-α, IFN-γ suppressed CXCL8 but enhanced CCL5 and CXCL10, whereas transforming growth factor (TGF)-β reduced secretion of all chemokines. Basal chemokine secretion was higher from umbilical vein than other endothelial cells. Chemokine receptors, CXCR1, CXCR3 and CCR3, were present on all endothelia but highest on saphenous vein. CCR4, CCR5, CCR6, CXCR2, CXCR4 and CXCR5 were also detected at variable levels on different endothelia. The variation between endothelia in chemokine secretion was much greater than the variations in adhesion molecules, both on resting cells and following cytokine stimulation. These results indicate that it is the tissue-specific variations in endothelial chemokine secretion rather than variations in adhesion molecules that can explain the different patterns of inflammation and leucocyte traffic seen in non-lymphoid tissues. PMID:14632748

  18. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  19. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  20. Association between NF-κB Pathway Gene Variants and sICAM1 Levels in Taiwanese

    PubMed Central

    Wu, Semon; Teng, Ming-Sheng; Er, Leay-Kiaw; Hsiao, Wan-Yi; Hsu, Lung-An; Yeh, Ching-Hua; Lin, Jeng-Feng; Lin, Yi-Ying; Su, Cheng-Wen; Ko, Yu-Lin

    2017-01-01

    Intercellular adhesion molecule–1 (ICAM1) is crucial to the development and progression of atherosclerosis. Recent genome-wide association studies (GWAS) have revealed that single nucleotide polymorphisms (SNPs) in two of the nuclear factor-κB (NF-κB) pathway genes, NFKBIK and RELA, are associated with soluble ICAM1 (sICAM1) levels. However, neither of these two gene variants is found in the Asian populations. This study aimed to elucidate whether other candidate gene variants involved in the NF-κB pathway may be associated with sICAM1 levels in Taiwanese. After excluding carriers of the ICAM1 rs5491-T allele, three SNPs in the ICAM1 gene and eight SNPs in six of the NF-κB pathway genes (NFKB1, PDCD11, TNFAIP3, NKAPL, IKBKE, and PRKCB) were analyzed for their association with sICAM1 levels in 480 individuals. Our data showed that two SNPs, rs5498 of ICAM1 and rs1635 of NKAPL, were significantly associated with sICAM1 levels (P = 0.002 and 0.004, respectively) in the Taiwanese population. Using a multivariate analysis, rs5498 and rs1635 as well as the previously reported ABO genotypes and rs12051272 of the CDH13 gene were independently associated with sICAM1 levels (P = 0.001, 0.001, 0.006 and 0.031, respectively). An analysis with combined risk alleles of four candidate SNPs in the ICAM1, NKAPL, ABO, and CDH13 genes showed an increase in sICAM1 levels with added numbers of risk alleles and weighted genetic risk score. Our findings thus expanded the repertoire of gene variants responsible for the regulation of sICAM1 levels in the Asian populations. PMID:28095483

  1. Intracellular zinc status influences cisplatin-induced endothelial permeability through modulation of PKCα, NF-κB and ICAM-1 expression.

    PubMed

    Bodiga, Vijaya Lakshmi; Inapurapu, Santhi Priya; Vemuri, Praveen Kumar; Kudle, Madhukar Rao; Bodiga, Sreedhar

    2016-11-15

    Platinum-based chemotherapeutic regimen induces vascular dysfunction. Action of cisplatin on endothelial cells is mediated by protein kinase C (PKC-α), which further activates nuclear factor-κB (NF-κB) and induces canonical transient receptor potential channel (TRPC1) and intercellular adhesion molecule (ICAM-1) expression. Increased ICAM-1 contributes to hyperadhesion of monocytes and endothelial dysfunction. PKC-α is also involved in phosphorylation of TRPC1, resulting in store-operated calcium entry (SOCE) and further activation of NF-κB. Although the role of altered intracellular zinc status is not known in cisplatin-induced vascular dysfunction, because of the ability of zinc to modulate PKC-α, NF-κB activity, we hypothesized that zinc can ameliorate the extent of endothelial dysfunction induced by cisplatin. Human umbilical vein endothelial cells treated with cisplatin (8.0μg/ml) showed lowered intracellular free zinc, concomitant with enhanced activation of PKC-α, NF-κΒ activation, TRPC1, SOCE and ICAM-1 levels. Zinc deficiency per se induced using membrane permeable chelator (TPEN) mimicked the cisplatin-induced PKC-α, NF-κB activation and ICAM-1 expression, but also activated Activator Protein-1 (AP-1). Zinc supplementation (2.0-10.0μM) to the endothelial cells during cisplatin treatment or TPEN-induced zinc deficiency suppressed PKC-α, NF-κB, TRPC1, SOCE activation and lowered the ICAM-1 expression. Zinc supplementation thereby effectively decreased the cisplatin-induced endothelial permeability and adherence of the activated endothelial cells to U937 monocytes.

  2. Developmental role of the cell adhesion molecule Contactin-6 in the cerebral cortex and hippocampus

    PubMed Central

    Zuko, Amila; Oguro-Ando, Asami; van Dijk, Roland; Gregorio-Jordan, Sara; van der Zwaag, Bert; Burbach, J. Peter H.

    2016-01-01

    ABSTRACT The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6−/− mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6−/− mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6−/− mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6−/− mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks. PMID:26939565

  3. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-03

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth.

  4. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  5. Learning under stress: a role for the neural cell adhesion molecule NCAM.

    PubMed

    Bisaz, Reto; Conboy, Lisa; Sandi, Carmen

    2009-05-01

    Stress is known to be a potent modulator of brain function and cognition. While prolonged and/or excessive stress generally exerts negative effects on learning and memory processes, acute stress can have differential effects on memory function depending on a number of factors (such as stress duration, stress intensity, timing and the source of the stress, as well as the learning type under study). Here, we have focused on the effects of 'acute' stress, and examined the literature attending to whether the "source of stress" is 'intrinsic' (i.e., when stress is originated by the cognitive task) or 'extrinsic' (i.e., when stress is induced by elements not related to the cognitive task). We have questioned here whether the neural cell adhesion molecule of the immunoglobulin superfamily (NCAM) contributes to the neurobiological mechanisms that translate the effects of these two different stress sources into the different behavioral and cognitive outcomes. NCAM is a cell adhesion macromolecule known to play a critical role in development and plasticity of the nervous system. NCAM and its post-translational modified form PSA-NCAM are critically involved in mechanisms of learning and memory and their expression levels are known to be highly susceptible to modulation by stress. Whereas available data are insufficient to conclude as to whether NCAM mediates extrinsic stress effects on learning and memory processes, we present systematic evidence supporting a key mediating role for both NCAM and PSA-NCAM in the facilitation of memory consolidation induced by intrinsic stress. Furthermore, NCAM is suggested to participate in some of the bidirectional effects of stress on memory processes, with its enhanced synaptic expression involved in facilitating stress actions while its reduced expression being related to impairing effects of stress on memory function.

  6. Immunohistochemistry of adhesion molecules, metalloproteinases and NO-synthases in extravillous trophoblast of tubal pregnancy.

    PubMed

    Dubernard, G; Galtier-Fougairolles, M; Cortez, A; Uzan, S; Challier, J C

    2005-12-12

    Trophoblast invasion in uterine pregnancy is fine-tuned for the remodelling of the uterine wall and its vascularization. Tubal pregnancy, which occurs in a limited number of patients, involves a dramatic trophoblast invasion in a context of a poor decidualization. By studying the histology of the extravillous trophoblast (EVC) in the anchoring villi, the Ki67 labelling, the location of several adhesion markers (cytokeratin-7, alpha1, alpha6, alphaV, beta1, beta4 integrin subunits and E-cadherin, V/E-cadherin), metalloproteinases (MMP-2, 9 and11), NOS2 and 3, we aimed to detect the specificity of tubal compared to intrauterine pregnancies. No difference could be observed between meso or anti-salpingial trophoblast proliferation or invasion using Ki67. Cytokeratin-7 allowed detection of spindle-shape EVCs and we identified some decidualized stromal cells. Integrins alpha1, beta1 and alphaV, and V/E-cadherin were expressed mainly in the distal EVC correspondingly to intrauterine pregnancy, with a poor expression of alpha1. Integrins alpha6 and beta4, E-cadherin were detected in the distal EVC in contrast to uterine pregnancy. MMP-2, 9, 11 were also shown in distal EVC. NOS2 and 3 labelled the perivascular EVC and NOS3 the endothelial cells of the tubal vessels. These changed distributions of adhesion molecules and MMP together with that of the basic and inducible NOS expressions could be related to mechanical effects in superficial implantation or to a failure of decidualization in tubal pregnancies.

  7. C-reactive protein (CRP) induces chemokine secretion via CD11b/ICAM-1 interaction in human adherent monocytes.

    PubMed

    Montecucco, Fabrizio; Steffens, Sabine; Burger, Fabienne; Pelli, Graziano; Monaco, Claudia; Mach, François

    2008-10-01

    Several studies support C-reactive protein (CRP) as a systemic cardiovascular risk factor. The recent detection of CRP in arterial intima suggests a dual activity in atherosclerosis as a circulating and tissue mediator on vascular and immune cells. In the present paper, we focused on the inflammatory effects of CRP on human monocytes, which were isolated by Ficoll-Percoll gradients and cultured in adherence to polystyrene, endothelial cell monolayer, or in suspension. Chemokine levels, adhesion molecule, and chemokine receptor expression were detected by ELISA, flow cytometry, and real-time RT-PCR. Migration assays were performed in a Boyden chamber. Stimulation with CRP induced release of CCL2, CCL3, and CCL4 in adherent monocytes through the binding to CD32a, CD32b, and CD64, whereas no effect was observed in suspension culture. This was associated with CRP-induced up-regulation of adhesion molecules membrane-activated complex 1 (Mac-1) and ICAM-1 on adherent monocytes. Blockade of Mac-1/ICAM-1 interaction inhibited the CRP-induced chemokine secretion. In addition, CRP reduced mRNA and surface expression of corresponding chemokine receptors CCR1, CCR2, and CCR5 in adherent monocytes. This effect was a result of chemokine secretion, as coincubation with neutralizing anti-CCL2, anti-CCL3, and anti-CCL4 antibodies reversed the effect of CRP. Accordingly, a reduced migration of CRP-treated monocytes to CCL2 and CCL3 was observed. In conclusion, our data suggest an in vitro model to study CRP activities in adherent and suspension human monocytes. CRP-mediated induction of adhesion molecules and a decrease of chemokine receptors on adherent monocytes might contribute to the retention of monocytes within atherosclerotic lesions and recruitment of other circulating cells.

  8. Effect of soy nuts on adhesion molecules and markers of inflammation in hypertensive and normotensive postmenopausal women.

    PubMed

    Nasca, Melita M; Zhou, Jin-Rong; Welty, Francine K

    2008-07-01

    Recently, it was shown that substituting soy nuts for nonsoy protein in a therapeutic lifestyle change (TLC) diet lowered systolic and diastolic blood pressure by 9.9% and 6.8%, respectively, in postmenopausal women with hypertension and by 5.2% and 2.9%, respectively, in normotensive postmenopausal women. In this study, to examine mechanisms for these reductions, markers of inflammation were measured, including soluble vascular cell adhesion molecule-1, soluble intercellular adhesion molecule-1, C-reactive protein, interleukin-6, and matrix metalloproteinase-9. Sixty healthy postmenopausal women (48 normotensive and 12 with hypertension) were randomized in a crossover design to a TLC diet alone or a TLC diet in which 0.5 cups of soy nuts (25 g soy protein and 101 mg aglycone isoflavones) replaced 25 g of nonsoy protein daily. Each diet was followed for 8 weeks. Compared with the TLC diet alone, levels of soluble vascular cell adhesion molecule-1 were significantly lower on the soy diet in women with hypertension (623.6 +/- 153.8 vs 553.8 +/- 114.4 ng/ml, respectively, p = 0.003), whereas no significant differences were observed in normotensive women. Soy nuts were associated with a trend toward reduction in C-reactive protein in normotensive women. No effect on levels of soluble intercellular adhesion molecule-1, interleukin-6, or matrix metalloproteinase-9 was observed. In conclusion, the reduction in soluble vascular cell adhesion molecule-1 with soy nuts in women with hypertension suggests an improvement in endothelial function that may reflect an overall improvement in the underlying inflammatory process underlying atherosclerosis.

  9. The association of ICAM-1 Exon 6 (E469K) but not of ICAM-1 Exon 4 (G241R) and PECAM-1 Exon 3 (L125V) polymorphisms with the development of differentiation syndrome in acute promyelocytic leukemia.

    PubMed

    Dore, Adriana I; Santana-Lemos, Barbara A A; Coser, Virginia M; Santos, Flávia L S; Dalmazzo, Leandro F; Lima, Ana S G; Jacomo, Rafael H; Elias, Jorge; Falcão, Roberto Passetto; Pereira, Waldir V; Rego, Eduardo M

    2007-11-01

    The use of all trans-retinoic acid (ATRA) is the basis of treatment of acute promyelocytic leukemia (APL) and represents the paradigm of differentiation therapy. In general, ATRA is well-tolerated but may be associated with a potentially lethal side-effect, referred to as retinoic acid or differentiation syndrome (DS). The cellular and molecular mechanisms of DS are poorly understood and involve changes in the adhesive qualities and cytokine secretion of leukemic cells during ATRA-induced differentiation. As leukocyte extravasation is a key event in DS pathogenesis, we analyzed the association between the polymorphisms at Exon 4 (G241R) and Exon 6 (E469K) of ICAM-1 and Exon 3 (L125V) of PECAM-1 genes with DS development in APL patients treated with ATRA and anthracyclines. DS was diagnosed in 23/127 (18.1%) APL patients at an average of 11.5 days after the start of ATRA. All patients presented respiratory distress associated with increased ground-glass opacity in chest radiographies. Other accompanying symptoms were: fever not attributable to infection (65.2%), generalized edema (37.5%), weight gain (37.5%), and impairment of renal function (8.6%). We detected an association between development of DS and the AA genotype at Codon 469 of ICAM-1 (odds ratio of 3.5; 95% confidence interval: 1.2-10.2). Conversely, no significant association was detected between G241R or L125V polymorphisms at Exon 4 of ICAM-1 and Exon 3 of PECAM-1, respectively. Our results suggest that susceptibility to DS in APL patients may be influenced by genetic variation in adhesion molecule loci.

  10. Co-localization of neural cell adhesion molecule and fibroblast growth factor receptor 2 in early embryo development.

    PubMed

    Vesterlund, Liselotte; Töhönen, Virpi; Hovatta, Outi; Kere, Juha

    2011-01-01

    During development there is a multitude of signaling events governing the assembly of the developing organism. Receptors for signaling molecules such as fibroblast growth factor receptor 2 (FGFR2) enable the embryo to communicate with the surrounding environment and activate downstream pathways. The neural cell adhesion molecule (NCAM) was first characterized as a cell adhesion molecule highly expressed in the nervous system, but recent studies have shown that it is also a signaling receptor. Using a novel single oocyte adaptation of the proximity ligation assay, we here show a close association between NCAM and FGFR2 in mouse oocytes and 2-cell embryos. Real-time PCR analyses revealed the presence of messenger RNA encoding key proteins in downstream signaling pathways in oocytes and early mouse embryos. In summary these findings show a co-localization of NCAM and FGFR2 in early vertebrate development with intracellular signaling pathways present to enable a cellular response.

  11. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox) and MAPKs/AP-1 pathways.

    PubMed

    Yen, Feng-Lin; Tsai, Ming-Horng; Yang, Chuen-Mao; Liang, Chan-Jung; Lin, Chun-Ching; Chiang, Yao-Chang; Lee, Hui-Chun; Ko, Horng-Huey; Lee, Chiang-Wen

    2013-01-01

    Upregulation of intercellular adhesion molecule-1 (ICAM-1) involves adhesions between both circulating and resident leukocytes and the human lung epithelial cells during lung inflammatory reactions. We have previously demonstrated that curcumin-loaded polyvinylpyrrolidone nanoparticles (CURN) improve the anti-inflammatory and anti-oxidative properties of curcumin in hepatocytes. In this study, we focused on the effects of CURN on the expression of ICAM-1 in TNF-α-treated lung epithelial cells and compared these to the effects of curcumin water preparation (CURH). TNF-αinduced ICAM-1 expression, ROS production, and cell-cell adhesion were significantly attenuated by the pretreatment with antioxidants (DPI, APO, or NAC) and CURN, but not by CURH, as revealed by western blot analysis, RT-PCR, promoter assay, and ROS detection and adhesion assay. In addition, treatment of TNF-α-treated cells with CURN and antioxidants also resulted in an inhibition of activation of p47 (phox) and phosphorylation of MAPKs, as compared to that using CURH. Our findings also suggest that phosphorylation of MAPKs may eventually lead to the activation of transcription factors. We also observed that the effects of TNF-α treatment for 30 min, which includes a significant increase in the binding activity of AP-1 and phosphorylation of c-jun and c-fos genes, were reduced by CURN treatment. In vivo studies have revealed that CURN improved the anti-inflammation activities of CURH in the lung epithelial cells of TNF-α-treated mice. Our results indicate that curcumin-loaded polyvinylpyrrolidone nanoparticles may potentially serve as an anti-inflammatory drug for the treatment of respiratory diseases.

  12. Expression of cell adhesion molecules and doublecortin in canine anaplastic meningiomas.

    PubMed

    Ide, T; Uchida, K; Suzuki, K; Kagawa, Y; Nakayama, H

    2011-01-01

    Tumor cell invasion into the surrounding nervous tissue is one of the histologic hallmarks of anaplastic meningiomas. To identify other possible markers for aggression in canine meningiomas, the relationship between histologic features and the expression of molecules involved in cell adhesion, cell proliferation, and invasion was examined. Immunohistochemistry for epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), β-catenin, doublecortin (DCX), and Ki-67 was performed for 55 cases of canine meningioma. DCX was preferentially expressed in tumor cells invading the brain parenchyma (12 of 14 cases), suggesting its involvement in the invasion process. Regardless of the histologic type, E-cadherin and N-cadherin expression was observed in 31 of 55 and 44 of 55 cases, respectively. There was a significant positive correlation between DCX and N-cadherin expression and a significant negative correlation between E-cadherin and N-cadherin expression, suggesting that decreased E-cadherin and increased N-cadherin expression induce DCX expression. Typical membranous β-catenin expression was observed in 10 of 55 cases, whereas nuclear translocation was observed in 33 cases. Nuclear β-catenin expression was frequently found in anaplastic meningiomas (12 of 14 cases). The Ki-67 labeling indices were significantly higher in anaplastic meningiomas than in other types. These findings indicate that the expression of N-cadherin and DCX and the nuclear translocation of β-catenin are closely associated with the presence of invasion and anaplasia in canine meningiomas. Notably, granular cell meningiomas were negative for almost all the molecules examined, suggesting that they have a different tumor biology than other meningiomas.

  13. Cell Migration in the Immune System: the Evolving Inter-Related Roles of Adhesion Molecules and Proteinases

    PubMed Central

    Graesser, Donnasue

    2000-01-01

    Leukocyte extravasation into perivascular tissue during inflammation and lymphocyte homing to lymphoid organs involve transient adhesion to the vessel endothelium, followed by transmigration through the endothelial cell (EC) layer and establishment of residency at the tissue site for a period of time. In these processes, leukocytes undergo multiple attachments to, and detachments from, the vessel-lining endothelial cells, prior to transendothelial cell migration. Transmigrating leukocytes must traverse a subendothelial basement membrane en route to perivascular tissues and utilize enzymes known as matrix metalloproteinases to make selective clips in the extracellular matrix components of the basement membrane. This review will focus on the evidence for a link between adhesion of leukocytes to endothelial cells, the induction of matrix metalloproteinases mediated by engagement of adhesion receptors on leukocytes, and the ability to utilize these matrix metalloproteinases to facilitate leukocyte invasion of tissues. Leukocytes with invasive phenotypes express high levels of MMPs, and expression of MMPs enhances the migratory and invasive properties of these cells. Furthermore, MMPs may be used by lymphocytes to proteolytically cleave molecules such as adhesion receptors and membrane bound cytokines, increasing their efficiency in the immune response. Engagement of leukocyte adhesion receptors may modulate adhesive (modulation of integrin affinities and expression), synthetic (proteinase induction and activation), and surface organization (clustering of proteolyric complexes) behaviors of invasive leukocytes. Elucidation of these pathways will lead to better understanding of controlling mechanisms in order to develop rational therapeutic approaches in the areas of inflammation and autoimmunity. PMID:11097205

  14. Lymphocyte adhesion-dependent calcium signaling in human endothelial cells

    PubMed Central

    1995-01-01

    Vascular endothelial cells (ECs) can undergo dramatic phenotypic and functional alterations in response to humoral and cellular stimuli. These changes promote endothelial participation in the inflammatory response through active recruitment of immune effector cells, increased vascular permeability, and alteration in vascular tone. In an attempt to define early events in lymphocyte-mediated EC signaling, we investigated cytosolic-free calcium (Ca2+) changes in single, Fluo-3- labeled human umbilical vein ECs (HUVECs), using an ACAS interactive laser cytometer. Of all lymphocyte subsets tested, allogeneic CD3-, CD56+ natural killer (NK) cells uniquely elicited oscillatory EC Ca2+ signals in cytokine (interleukin [IL]-1- or tumor necrosis factor [TNF])-treated ECs. The induction of these signals required avid intercellular adhesion, consisted of both Ca2+ mobilization and extracellular influx, and was associated with EC inositol phosphate (IP) generation. Simultaneous recording of NK and EC Ca2+ signals using two-color fluorescence detection revealed that, upon adhesion, NK cells flux prior to EC. Lymphocyte Ca2+ buffering with 1,2-bis-5-methyl-amino- phenoxylethane-N,N,N'-tetra-acetoxymethyl acetate (MAPTAM) demonstrated that lymphocyte fluxes are, in fact, prerequisites for the adhesion- dependent EC signals. mAb studies indicate that the beta 2 integrin- intercellular adhesion molecule (ICAM)-1 adhesion pathway is critically involved. However, ICAM-1 antisense oligonucleotide inhibition of IL-1- mediated ICAM-1 hyperinduction had no effect on EC Ca2+ signaling in lymphocyte-EC conjugates, indicating that additional cytokine-induced EC alteration is required. These experiments combine features of lymphocyte-endothelial interactions, intercellular adhesion, EC cytokine activation and transmembrane signaling. The results implicate the IP/Ca2+ second messenger pathway in EC outside-in signaling induced by cytotoxic lymphocytes, and suggest that these signals may play a

  15. Nanoscale organization of synaptic adhesion proteins revealed by single-molecule localization microscopy.

    PubMed

    Chamma, Ingrid; Levet, Florian; Sibarita, Jean-Baptiste; Sainlos, Matthieu; Thoumine, Olivier

    2016-10-01

    The advent of superresolution imaging has created a strong need for both optimized labeling strategies and analysis methods to probe the nanoscale organization of complex biological structures. We present a thorough description of the distribution of synaptic adhesion proteins at the nanoscopic scale, namely presynaptic neurexin-[Formula: see text] ([Formula: see text]), and its two postsynaptic binding partners neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2). We monitored these proteins in the membrane of neurons by direct stochastic optical reconstruction microscopy, after live surface labeling with Alexa647-conjugated monomeric streptavidin. The small probe ([Formula: see text]) efficiently penetrates into crowded synaptic junctions and reduces the distance to target. We quantified the organization of the single-molecule localization data using a tesselation-based analysis technique. We show that Nlg1 exhibits a fairly disperse organization within dendritic spines, while LRRTM2 is organized in compact domains, and [Formula: see text] in presynaptic terminals displays a dual-organization pattern intermediate between that of Nlg1 and LRRTM2. These results suggest that part of [Formula: see text] interacts transsynaptically with Nlg1 and the other part with LRRTM2.

  16. Homocysteine, circulating vascular cell adhesion molecule and carotid atherosclerosis in postmenopausal vegetarian women and omnivores.

    PubMed

    Su, Ta-Chen; Jeng, Jiann-Shing; Wang, Jung-Der; Torng, Pao-Ling; Chang, Sue-Joan; Chen, Chen-Fang; Liau, Chiau-Suong

    2006-02-01

    Since the adoption of vegetarian diets as a healthy lifestyle has become popular, the cardiovascular effects of long-term vegetarianism need to be explored. The present study aimed to compare the presence and severity of carotid atherosclerosis (CA), and the blood levels of Vitamin B12, homocysteine (Hcy) and soluble vascular cell adhesion molecule-1 (sVCAM-1) between 57 healthy postmenopausal vegetarians and 61 age-matched omnivores. Carotid atherosclerosis, as measured by ultrasound, was found to be of no significant difference between the two groups. Yet, fasting blood glucose, low-density lipoprotein cholesterol, and Vitamin B12 were significantly lower, while Hcy and sVCAM-1 were higher in the vegetarians as comparing with the omnivores. Multivariate regression analysis showed that the level of Vitamin B12 was negatively associated with the level of Hcy. Vegetarianism itself and Hcy level were significantly associated with sVCAM-1 level in univariate analysis; however, after adjustment for covariates, we identified age but not vegetarianism as the determinant of sVCAM-1 level. Multiple linear regression analysis identified age and systolic blood pressure, but not vegetarianism, as determinants of common carotid artery IMT. In conclusion, there was no significant difference in CA between apparently healthy postmenopausal vegetarians and omnivores. The findings of elevated Hcy in vegetarians indicate the importance of prevention of Vitamin B12 deficiency.

  17. Genetic polymorphisms of cell adhesion molecules in Behcet’s disease in a Chinese Han population

    PubMed Central

    Zheng, Minming; Zhang, Lijun; Yu, Hongsong; Hu, Jiayue; Cao, Qingfeng; Huang, Guo; Huang, Yang; Yuan, Gangxiang; Kijlstra, Aize; Yang, Peizeng

    2016-01-01

    Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population. PMID:27108704

  18. Role of endothelial cell-selective adhesion molecule in hematogeneous metastasis

    PubMed Central

    Cangara, Husni M.; Ishida, Tatsuro; Hara, Tetsuya; Sun, Li; Toh, Ryuji; Rikitake, Yoshiyuki; Kundu, Ramendra K.; Quertermous, Thomas; Hirata, Ken-ichi; Hayashi, Yoshitake

    2016-01-01

    The spread of malignant cells from a localized tumor is thought to be directly related to the number of microvessels in the tumor. The endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin superfamily that mediates homophilic interactions between endothelial cells. Previous studies have indicated that ESAM regulates angiogenesis in the primary tumor growth and endothelial permeability. In this study, we aimed to further elucidate the role of ESAM in tumor metastasis through angiogenic processes. ESAM expression was higher in hypervascular metastatic tumor tissues than in normal tissues in human lungs. Cell culture studies found that conditioned medium from B16F10 melanoma cells increased ESAM expression in endothelial cells and promoted endothelial migration and tube formation. The B16F10 medium-induced endothelial migration and tube formation were significantly attenuated when ESAM was downregulated by siRNA transfection. Intravenous injection of B16F10 cells into ESAM+/+ and ESAM−/− mice for comparison of metastatic potential resulted in the number of metastatic lung nodules in ESAM−/− mice being 83% lower than of those in ESAM+/+ mice. The microvascular density in the tumor was also lower in ESAM−/− than in ESAM+/+ mice. These findings indicate that ESAM regulates tumor metastasis through endothelial cell migration and tube formation in metastatic nodules. Inhibition of ESAM may therefore inhibit tumor metastasis by inhibiting the angiogenic processes. PMID:20153339

  19. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival*

    PubMed Central

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-01-01

    The cell adhesion molecule L1 is a Lewisx-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewisx-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg687 yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  20. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity

    PubMed Central

    Heinrich, Garrett; Muturi, Harrison T.; Rezaei, Khadijeh; Al-Share, Qusai Y.; DeAngelis, Anthony M.; Bowman, Thomas A.; Ghadieh, Hilda E.; Ghanem, Simona S.; Zhang, Deqiang; Garofalo, Robert S.; Yin, Lei; Najjar, Sonia M.

    2017-01-01

    Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

  1. Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUAM).

    PubMed

    Almeida, Raul A; Luther, Douglas A; Park, Hee-Myung; Oliver, Stephen P

    2006-06-15

    The ability to attach to the host cell surface has been considered an important virulence strategy in many bovine mammary gland pathogens, including Streptococcus uberis. Research conducted in our laboratory lead to the identification of an S. uberis adhesion molecule (SUAM) with affinity for bovine lactoferrin (LF) and delineation of its role in adherence of S. uberis to bovine mammary epithelial cells. Using a selected bacterial surface protein extraction protocol and affinity chromatography, a 112-kDa protein that had a similar molecular mass and the LF affinity as one of the identified S. uberis LBP described by Fang and Oliver in 1999 was found. To further characterize SUAM, the N-terminal amino acid sequence of this protein was elucidated. A protein query versus translated database TBLASTN search of the National Center for Biotechnology (NCBI), non-redundant database, nr, with the LBP N-terminal amino acid sequence showed no significant similarity with previous entries. Antibodies directed against SUAM and a 17 amino acid long N-terminal sequence (pep-SUAM) inhibited adherence to and internalization of S. uberis UT888 into bovine mammary epithelial cells. Data presented suggests that we have discovered a novel bacterial protein involved in the pathogenesis of this economically important mastitis pathogen.

  2. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts.

    PubMed

    Belgiovine, Cristina; Chiodi, Ilaria; Mondello, Chiara

    2011-11-01

    Studying neoplastic transformation of telomerase immortalized human fibroblasts (cen3tel), we found that the transition from normal to tumorigenic cells was associated with the loss of growth contact inhibition, the acquisition of an epithelial-like morphology and a change in actin organization, from stress fibers to cortical bundles. We show here that these variations were paralleled by an increase in N-cadherin expression and relocalization of different adhesion molecules, such as N-cadherin, α-catenin, p-120 and β-catenin. These proteins presented a clear membrane localization in tumorigenic cells compared to a more diffuse, cytoplasmic distribution in primary fibroblasts and non-tumorigenic immortalized cells, suggesting that tumorigenic cells could form strong cell-cell contacts and cell contacts did not induce growth inhibition. The epithelial-like appearance of tumorigenic cells did not reflect a mesenchymal-epithelial transition; in fact, cen3tel cells expressed vimentin and did not express cytokeratins at all transformation stages. Moreover, they did not express epithelial proteins such as occluding and claudin-1. In contrast, ZO-1 showed higher levels and a more defined membrane localization in tumorigenic cells compared to non-tumorigenic cells; this confirms its role in adherens junction formation in mesenchymal cells and is in agreement with the strong cell-cell contact formation by neoplastically transformed cells. Finally, we found α-catenin and ZO-1 nuclear localization in non-transformed cells, suggestive of possible additional roles of these proteins besides cell junc