Science.gov

Sample records for adhesion molecule inhibitors

  1. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  2. Intercellular Adhesion Molecule and Endogenous NOS Inhibitor: Asymmetric Dimethylarginine in Pregnant Women with Gestational Diabetes Mellitus

    PubMed Central

    Poniedziałek-Czajkowska, Elżbieta; Mierzyński, Radzisław; Szymula, Dariusz; Leszczyńska-Gorzelak, Bożena; Oleszczuk, Jan

    2016-01-01

    Objective. The aim of the study was to evaluate the concentrations of soluble intercellular adhesion molecule-1 (s-ICAM-1) and endogenous NOS inhibitor, asymmetric dimethylarginine (ADMA), as markers of endothelium dysfunction in patients with gestational diabetes mellitus (GDM). Patients and Methods. The levels of s-ICAM-1 and ADMA were analysed in the group of 56 patients with GDM and compared to 25 healthy pregnant women. The concentrations of s-ICAM-1 and ADMA were measured in serum using ELISA tests. Results. The groups did not differ by baseline descriptors: age (30.75 ± 6.32 versus 28.50 ± 4.95 years, NS) and gestational age (28.96 ± 2.85 versus 29.12 ± 2.96 hbd, NS). The patients with GDM were more obese (BMI 27.93 ± 7.02 versus 22.34 ± 4.21 kg/m2, p = 0.032) and had higher concentration of C-reactive protein (6.46 ± 6.03 versus 3.18 ± 3.83 mg/L, p = 0.029). In the GDM group the level of ADMA was lower (0.38 ± 0.17 versus 0.60 ± 0.28 μmol/L, p = 0.001) and the level of s-ICAM-1 was significantly higher (289.95 ± 118.12 versus 232.56 ± 43.31 ng/mL, p = 0.036) compared to controls. Conclusions. The pregnant women with GDM are characterized by higher concentration of s-ICAM-1 that reflects the activation and dysfunction of the endothelial cells. The decreased ADMA level in GDM patients seems to be preventive in the limitation of NO synthesis caused by the impaired insulin action and the endothelial dysfunction. PMID:26981539

  3. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  4. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  5. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  6. Carboxylated, heteroaryl-substituted chalcones as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases.

    PubMed

    Meng, Charles Q; Ni, Liming; Worsencroft, Kimberly J; Ye, Zhihong; Weingarten, M David; Simpson, Jacob E; Skudlarek, Jason W; Marino, Elaine M; Suen, Ki-Ling; Kunsch, Charles; Souder, Amy; Howard, Randy B; Sundell, Cynthia L; Wasserman, Martin A; Sikorski, James A

    2007-03-22

    Starting from a simple chalcone template, structure-activity relationship (SAR) studies led to a series of carboxylated, heteroaryl-substituted chalcone derivatives as novel, potent inhibitors of vascular cell adhesion molecule-1 (VCAM-1) expression. Correlations between lipophilicity determined by calculated logP values and inhibitory efficacy were observed among structurally similar compounds of the series. Various substituents were found to be tolerated at several positions of the chalcone backbone as long as the compounds fell into the right range of lipophilicity. The chalcone alpha,beta-unsaturated ketone moiety seemed to be the pharmacophore required for inhibition of VCAM-1 expression. Compound 19 showed significant antiinflammatory effects in a mouse model of allergic inflammation, indicating that this series of compounds might have therapeutic value for human asthma and other inflammatory disorders. PMID:17323940

  7. MEK Inhibitors, Novel Anti-Adhesive Molecules, Reduce Sickle Red Blood Cell Adhesion In Vitro and In Vivo, and Vasoocclusion In Vivo

    PubMed Central

    Zennadi, Rahima

    2014-01-01

    In sickle cell disease, sickle erythrocyte (SSRBC) interacts with endothelial cells, leukocytes, and platelets, and activates coagulation and inflammation, promoting vessel obstruction, which leads to serious life-threatening complications, including acute painful crises and irreversible damage to multiple organs. The mitogen-activated protein kinase, ERK1/2, is abnormally activated in SSRBCs. However, the therapeutic potential of SSRBC ERK1/2 inactivation has never been investigated. I tested four different inhibitors of MEK1/2 (MEK), the kinase that activates ERK1/2, in a model of human SSRBC adhesion to TNFα-activated endothelial cells (ECs). SSRBC MEK inhibition abrogated adhesion to non-activated and TNFα-activated ECs to levels below baseline SSRBC adhesion to non-activated ECs in vitro. SSRBC MEK inhibition also prevented SSRBCs from activating naïve neutrophils to adhere to endothelium. To determine the effect of MEK inhibitors on SSRBC adherence in vivo, sham-treated or MEK inhibitor-treated SSRBCs were infused to nude mice previously treated with TNFα. Sham-treated SSRBCs displayed marked adhesion and occlusion of enflamed vessels, both small and large. However, SSRBC treatment with MEK inhibitors ex vivo showed poor SSRBC adhesion to enflamed vessels with no visible vasoocclusion in vivo. In addition, MEK inhibitor treatment of SSRBCs reduced SSRBC organ trapping and increased the number of SSRBCs circulating in bloodstream. Thus, these data suggest that SSRBC ERK1/2 plays potentially a critical role in sickle pathogenesis, and that MEK inhibitors may represent a valuable intervention for acute sickle cell crises. PMID:25330306

  8. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  9. Adxanthromycins A and B, new inhibitors of ICAM-1/LFA-1 mediated cell adhesion molecule from Streptomyces sp. NA-148. II. Physico-chemical properties and structure elucidation.

    PubMed

    Takahashi, S; Nakano, T; Koiwa, T; Noshita, T; Funayama, S; Koshino, H; Nakagawa, A

    2000-02-01

    Adxanthromycins A and B are new inhibitors of ICAM-1/LFA-1 mediated cell adhesion molecule isolated from the fermentation broth of Streptomyces sp. NA-148. The molecular formula of adxanthromycins A and B were determined as C42H40O17 and C48H50O22, respectively by FAB-MS and NMR spectral analyses, and the structures of both compounds were elucidated to be a dimeric anthrone peroxide skeleton containing alpha-D-galactose by various NMR spectral analyses and chemical degradation. PMID:10805577

  10. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases.

    PubMed

    Meng, Charles Q; Somers, Patricia K; Hoong, Lee K; Zheng, X Sharon; Ye, Zhihong; Worsencroft, Kimberly J; Simpson, Jacob E; Hotema, Martha R; Weingarten, M David; MacDOnald, Mathew L; Hill, Russell R; Marino, Elaine M; Suen, Ki-Ling; Luchoomun, Jayraz; Kunsch, Charles; Landers, Laura K; Stefanopoulos, Dimitria; Howard, Randy B; Sundell, Cynthia L; Saxena, Uday; Wasserman, Martin A; Sikorski, James A

    2004-12-01

    Vascular cell adhesion molecule-1 (VCAM-1) mediates recruitment of leukocytes to endothelial cells and is implicated in many inflammatory conditions. Since part of the signal transduction pathway that regulates the activation of VCAM-1 expression is redox-sensitive, compounds with antioxidant properties may have inhibitory effects on VCAM-1 expression. Novel phenolic compounds have been designed and synthesized starting from probucol (1). Many of these compounds demonstrated potent inhibitory effects on cytokine-induced VCAM-1 expression and displayed potent antioxidant effects in vitro. Some of these derivatives (4o, 4p, 4w, and 4x) inhibited lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and IL-6 from human peripheral blood mononuclear cells (hPBMCs) in a concentration-dependent manner in vitro and showed antiinflammatory effects in an animal model. Compounds 4ad and 4ae are currently in clinical trials for the treatment of rheumatoid arthritis (RA) and prevention of chronic organ transplant rejection, respectively. PMID:15566311

  11. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  12. Small molecule inhibitors of the Pyk2 and FAK kinases modulate chemoattractant-induced migration, adhesion and Akt activation in follicular and marginal zone B cells.

    PubMed

    Tse, Kathy W K; Lin, Kevin B L; Dang-Lawson, May; Guzman-Perez, Angel; Aspnes, Gary E; Buckbinder, Leonard; Gold, Michael R

    2012-01-01

    B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells. PMID:22507871

  13. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  14. Adhesion molecules in inflammatory bowel disease.

    PubMed Central

    Jones, S C; Banks, R E; Haidar, A; Gearing, A J; Hemingway, I K; Ibbotson, S H; Dixon, M F; Axon, A T

    1995-01-01

    The ability of leucocytes to adhere to endothelium is essential for leucocyte migration into inflammatory sites. Some of these adhesion molecules are released from the cell surface and can be detected in serum. The soluble adhesion molecules intercellular adhesion molecule 1 (ICAM-1), E selectin, and vascular cell adhesion molecule 1 (VCAM-1) were studied in the serum of patients with Crohn's disease, ulcerative colitis, and healthy controls. A second blood sample was taken from patients with active disease after one month of treatment and a third two months after remission was achieved. Tissue expression of the same adhesion molecules was studied by immunohistology. Circulating VCAM-1 concentrations were significantly higher in patients with active ulcerative colitis (n = 11, median = 165 U/ml) compared with patients with inactive ulcerative colitis (n = 10, median = 117 U/ml, p < 0.005), active Crohn's disease (n = 12, median = 124 U/ml, p < 0.02), and controls (n = 90, median = 50 U/ml, p < 0.0001). Within each disease group there were no significant differences in E selectin or ICAM-1 concentrations between the active and inactive states, however, patients with active Crohn's disease had significantly higher ICAM-1 concentrations (n = 12, median = 273 ng/ml) than controls (n = 28, median = 168, p < 0.003). VCAM-1 concentrations fell significantly from pretreatment values to remission in active ulcerative colitis (p < 0.01). In Crohn's disease there was a significant fall in ICAM-1 both during treatment (p < 0.01) and two months after remission (p < 0.02). Vascular expression of ICAM-1 occurred more often and was more intense in inflamed tissue sections from patients with ulcerative colitis and Crohn's disease than from controls. Vascular labelling with antibody to E selectin also occurred more often in patients with active inflammatory bowel disease. In conclusion, increased circulating concentrations of selected adhesion molecules are associated with

  15. Expression of adhesion molecules in leprosy lesions.

    PubMed Central

    Sullivan, L; Sano, S; Pirmez, C; Salgame, P; Mueller, C; Hofman, F; Uyemura, K; Rea, T H; Bloom, B R; Modlin, R L

    1991-01-01

    Leprosy presents as a clinical spectrum that is precisely paralleled by a spectrum of immunological reactivity. The disease provides a useful and accessible model, in this case in the skin, in which to study the dynamics of cellular immune responses to an infectious pathogen, including the role of adhesion molecules in those responses. In lesions characterized by strong delayed-type hypersensitivity against Mycobacterium leprae (tuberculoid, reversal reaction, and Mitsuda reaction), the overlying epidermis exhibited pronounced keratinocyte intracellular adhesion molecule 1 (ICAM-1) expression and contained lymphocytes expressing the ICAM-1 ligand, LFA-1. Conversely, in lesions in which delayed-type hypersensitivity was lacking (lepromatous), keratinocyte ICAM-1 expression was low and LFA-1+ lymphocytes were rare. Expression of these adhesion molecules on the cells within the dermal granulomas was equivalent throughout the spectrum of leprosy. The percentage of lymphocytes in these granulomas containing mRNA coding for gamma interferon and tumor necrosis factor alpha, synergistic regulators of ICAM-1 expression, paralleled epidermal ICAM-1 expression. In lesions of erythema nodosum leprosum, a reactional state of lepromatous leprosy thought to be due to immune complex deposition, keratinocyte ICAM-1 expression and gamma interferon mRNA+ cells were both prominent. Antibodies to LFA-1 and ICAM-1 blocked the response of both alpha beta and gamma delta T-cell clones in vitro to mycobacteria. Overall, the expression of adhesion molecules by immunocompetent epidermal cells, as well as the cytokines which regulate such expression, correlates with the outcome of the host response to infection. Images PMID:1718871

  16. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  17. Antibody Fragments Directed against Different Portions of the Human Neural Cell Adhesion Molecule L1 Act as Inhibitors or Activators of L1 Function

    PubMed Central

    Wang, Yan; Loers, Gabriele; Pan, Hong-Chao; Gouveia, Ricardo; Zhao, Wei-Jiang; Shen, Yan-Qin; Kleene, Ralf; Costa, Julia; Schachner, Melitta

    2012-01-01

    The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1–4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1–3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H2O2 by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1–4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1–3 trigger L1 functions of cultured neuroblastoma cells. PMID:23272240

  18. Effect of PIP3 on Adhesion Molecules and Adhesion of THP-1 Monocytes to HUVEC Treated with High Glucose

    PubMed Central

    Su, Prasenjit Manna; Jain, shil K.

    2014-01-01

    Background Phosphatidylinositol-3,4,5-triphosphate (PIP3), a well-known lipid second messenger, plays a key role in insulin signaling and glucose homeostasis. Using human umbilical vein endothelial cells (HUVEC) and THP-1 monocytes, we tested the hypothesis that PIP3 can downregulate adhesion molecules and monocyte adhesion to endothelial cells. Methods HUVEC and monocytes were exposed to high glucose (HG, 25 mM, 20 h) with or without PIP3 (0-20 nM), or PIT-1 (25 μM), an inhibitor of PIP3. Results Both HG and PIT-1 caused a decrease in cellular PIP3 in monocytes and HUVEC compared to controls. Treatment with PIT-1 and HG also increased the ICAM-1 (intercellular adhesion molecule 1) total protein expression as well as its surface expression in HUVEC, CD11a (a subunit of lymphocyte function-associated antigen 1, LFA-1) total protein expression as well as its surface expression in monocytes, and adhesion of monocytes to HUVEC. Exogenous PIP3 supplementation restored the intracellular PIP3 concentrations, downregulated the expression of adhesion molecules, and reduced the adhesion of monocytes to HUVEC treated with HG. Conclusion This study reports that a decrease in cellular PIP3 is associated with increased expression of adhesion molecules and monocyte-endothelial cell adhesion, and may play a role in the endothelial dysfunction associated with diabetes. PMID:24752192

  19. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  20. [Effect of erythromycin on neutrophil adhesion molecules].

    PubMed

    Kusano, S; Mukae, H; Morikawa, T; Asai, T; Sawa, H; Morikawa, N; Oda, H; Sakito, O; Shukuwa, C; Senju, R

    1993-01-01

    The mechanisms of erythromycin (EM) in chronic lower respiratory tract diseases including diffuse panbronchiolitis (DPB) has been reported. In this study we investigated the effect of EM on peripheral neutrophil adhesion molecules such as LFA-1 and Mac-1 obtained from six healthy subjects. Pretreatment of neutrophils with each concentration (10 ng/ml approximately 100 micrograms/ml) of EM resulted in no significant reduction in the expression of LFA-1 alpha, beta and Mac-1. Moreover, EM had no capability of reducing these expressions even when neutrophils were pretreated with 1 microgram/ml of EM at time from 0 to 60 min. These findings indicate that EM does not directly reduce the expression of LFA-1 alpha, beta and Mac-1 on peripheral neutrophil obtained from healthy subjects. PMID:8450276

  1. Immune receptors and adhesion molecules in human pulmonary leptospirosis.

    PubMed

    Del Carlo Bernardi, Fabiola; Ctenas, Bruno; da Silva, Luiz Fernando Ferraz; Nicodemo, Antonio Carlos; Saldiva, Paulo Hilário Nascimento; Dolhnikoff, Marisa; Mauad, Thais

    2012-10-01

    Pulmonary involvement in leptospirosis has been increasingly reported in the last 20 years, being related to the severity and mortality of the disease. The pathogenesis of pulmonary hemorrhage in leptospirosis is not understood. Lung endothelial cells have been proposed as targets in the pathogenesis of lung involvement in leptospirosis through the activation of Toll-like receptor 2 or the complement system, which stimulates the release of cytokines that lead to the activation of adhesion molecules. The aim of this study was to investigate the involvement of immune pathways and of the intercellular and vascular cell adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule, respectively) in the lungs of patients with pulmonary involvement of leptospirosis. We studied the lungs of 18 patients who died of leptospirosis and compared them with 2 groups of controls: normal and noninfectious hemorrhagic lungs. Using immunohistochemistry and image analysis, we quantified the expression of the C3a anaphylatoxin receptor, intercellular adhesion molecule, vascular cell adhesion molecule, and Toll-like receptor 2 in small pulmonary vessels and in the alveolar septa. There was an increased expression of intercellular adhesion molecule (P < .03) and C3a anaphylatoxin receptor (P < .008) in alveolar septa in the leptospirosis group compared with the normal and hemorrhagic controls. In the vessels of the leptospirosis group, there was an increased expression of intercellular adhesion molecule (P = .004), vascular cell adhesion molecule (P = .030), and Toll-like receptor 2 (P = .042) compared with the normal group. Vascular cell adhesion molecule expression in vessels was higher in the leptospirosis group compared with the hemorrhagic group (P = .015). Our results indicate that immune receptors and adhesion molecules participate in the phenomena leading to pulmonary hemorrhage in leptospirosis. PMID:22436623

  2. The influence of tobacco smoking on adhesion molecule profiles

    PubMed Central

    Scott, DA; Palmer, RM

    2003-01-01

    Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein.

  3. The influence of tobacco smoking on adhesion molecule profiles

    PubMed Central

    Scott, DA; Palmer, RM

    2003-01-01

    Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein. PMID:19570245

  4. SOLUABLE ADHESION MOLECULES, SURROGATE MARKERS OF CARDIOVASCULAR DISEASE?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules expression on the surface of endothelial and immune cells are important for immune and endothelial cells interaction during the inflammatory process. Several of these adhesion molecules have been identified and are believed to be important in the pathogenesis of atherosclerosis. T...

  5. Adhesion molecules in antibacterial defenses: effects of bacterial extracts.

    PubMed

    Marchant, A; Duchow, J; Goldman, M

    1992-01-01

    Adhesion of polymorphonuclear leukocytes (PMN) to vascular endothelium is one of the first events in their response against local bacterial infection. Different adhesion molecules sequentially mediate PMN adherence to endothelium and extravasation into inflamed tissues. We show that bacterial extracts OM-85 BV and OM-89 increase the expression of adhesion molecules at the surface of PMN and we suggest that this upregulation could be linked to the beneficial effect of bacterial extracts in the prevention of respiratory tract infections. PMID:1439236

  6. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease

    PubMed Central

    Pak, Victoria M.; Grandner, Michael A.; Pack, Allan I.

    2013-01-01

    SUMMARY Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA. PMID:23618532

  7. CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.

    PubMed

    Liu, Ju-Fang; Hou, Sheng-Mou; Tsai, Chun-Hao; Huang, Chun-Yin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-05-01

    CCN4 is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov family of matricellular proteins. Here, we investigated the intracellular signaling pathways involved in CCN4-induced vascular cell adhesion molecule-1 expression in human osteoarthritis synovial fibroblasts. Stimulation of OASFs with CCN4 induced VCAM-1 expression. CCN4-induced VCAM-1 expression was attenuated by αvβ5 or α6β1 integrin antibody, Syk inhibitor, PKCδ inhibitor (rottlerin), JNK inhibitor (SP600125), and AP-1 inhibitors (curcumin and tanshinone). Stimulation of cells with CCN4 increased Syk, PKCδ, and JNK activation. Treatment of OASFs with CCN4 also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element in the VCAM-1 promoter. Moreover, up-regulation of VCAM-1 increased the adhesion of monocytes to OASF monolayers, and this adhesion was attenuated by transfection with a VCAM-1 siRNA. Our results suggest that CCN4 increases VCAM-1 expression in human OASFs via the Syk, PKCδ, JNK, c-Jun, and AP-1 signaling pathways. The CCN4-induced VCAM-1 expression promoted monocyte adhesion to human OASFs. PMID:23313051

  8. Cell adhesion molecules and in vitro fertilization.

    PubMed

    Simopoulou, Maria; Nikolopoulou, Elena; Dimakakos, Andreas; Charalabopoulos, Konstantinos; Koutsilieris, Michael

    2014-01-01

    This review addresses issues regarding the need in the in vitro fertilization (IVF) field for further predictive markers enhancing the standing embryo selection criteria. It aims to serve as a source of defining information for an audience interested in factors related to the wide range of multiple roles played by cell adhesion molecules (CAMs) in several aspects of IVF ultimately associated with the success of an IVF cycle. We begin by stressing the importance of enriching the standing embryo selection criteria available aiming for the golden standard: "extract as much information as possible focusing on non-invasive techniques" so as to guide us towards selecting the embryo with the highest implantation potential. We briefly describe the latest trends on how to best select the right embryo, moving closer towards elective single embryo transfer. These trends are: frozen embryo transfer for all, preimplantation genetic screening, non-invasive selection criteria, and time-lapse imaging. The main part of this review is dedicated to categorizing and presenting published research studies focused on the involvement of CAMs in IVF and its final outcome. Specifically, we discuss the association of CAMs with conditions and complications that arise from performing assisted reproductive techniques, such as ovarian hyperstimulation syndrome, the state of the endometrium, and tubal pregnancies, as well as the levels of CAMs in biological materials available in the IVF laboratory such as follicular fluid, trophectoderm, ovarian granulosa cells, oocytes, and embryos. To conclude, since CAMs have been successfully employed as a diagnostic tool in several pathologies in routine clinical work, we suggest that their multi-faceted nature could serve as a prognostic marker in assisted reproduction, aiming to enrich the list of non-invasive selection and predictive criteria in the IVF setting. We propose that in light of the well-documented involvement of CAMs in the developmental

  9. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells.

    PubMed

    Ma, Zeng-Chun; Hong, Qian; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Cai, Shao-Hua; Gao, Yue

    2010-01-01

    Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes. Since adhesion molecules play an important role in facilitating the immune response at the inflammation sites, interfering with the expression of these molecules may be an important therapeutic target of radiation induced inflammation. Many adhesion molecules such as intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) have been identified in radiation. Ferulic acid (FA), an effective radioprotector during radiotherapy, is widely used in endothelium protection. The present study examined the effect of FA on the induction of adhesion molecules by gamma-radiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 18 h with FA and then exposed to 10 Gy radiation. The result of cell adhesion assay showed FA inhibited radiation-induced U937 adhesion to HUVECs. FA prevented induction of ICAM-1 and VCAM-1 expression in a concentration-dependent manner after stimulation with radiation at the level of mRNA and protein. Inhibitors of the extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways were used to determine which pathway was involved in FA action; the result showed that the inhibitory effect of FA on adhesion molecule expression was mediated by the blockade of JNK. FA appears to be a potential therapeutic agent for treating various inflammatory disorders including radiation induced inflammation. PMID:20460750

  10. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  11. Effects of MMP inhibitors incorporated within dental adhesives.

    PubMed

    Almahdy, A; Koller, G; Sauro, S; Bartsch, J W; Sherriff, M; Watson, T F; Banerjee, A

    2012-06-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce adhesive bond degradation when applied as a pre-conditioner, adding to clinical steps in the placement of adhesives, but their incorporation within dental adhesives has not been fully explored. This study examined the effect of including 2 MMP inhibitors (BB94 and GM6001) within the primers of 3 commercially available adhesives. Fluorometric assay and zymography showed that adhesives with MMP inhibitors had high affinity toward both synthetic fluorogenic FRET peptides (95%) and dentin powder substrates, respectively. The immediate microtensile bond strength was enhanced for 2 types of adhesives following the addition of both inhibitors. However, no changes were detected between the control and the inhibitor groups following 3-month storage. The modified two-step etch-and-rinse and single-step systems showed less Rhodamine B penetration to the "hybrid layer" and to the "adhesive", respectively. The incorporation of BB94 and GM6001 within the primers resulted in the inhibition of dentin MMPs with improved initial bond strength and enhanced sealing ability. PMID:22518030

  12. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  13. Small-Molecule Inhibitors of Urea Transporters

    PubMed Central

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  14. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-01-01

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript. © 2016 American Physiological Society. Compr Physiol 6:945-973, 2016. PMID:27065171

  15. Effects of MMP Inhibitors Incorporated within Dental Adhesives

    PubMed Central

    Almahdy, A.; Koller, G.; Sauro, S.; Bartsch, J.W.; Sherriff, M.; Watson, T.F.; Banerjee, A.

    2012-01-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce adhesive bond degradation when applied as a pre-conditioner, adding to clinical steps in the placement of adhesives, but their incorporation within dental adhesives has not been fully explored. This study examined the effect of including 2 MMP inhibitors (BB94 and GM6001) within the primers of 3 commercially available adhesives. Fluorometric assay and zymography showed that adhesives with MMP inhibitors had high affinity toward both synthetic fluorogenic FRET peptides (95%) and dentin powder substrates, respectively. The immediate microtensile bond strength was enhanced for 2 types of adhesives following the addition of both inhibitors. However, no changes were detected between the control and the inhibitor groups following 3-month storage. The modified two-step etch-and-rinse and single-step systems showed less Rhodamine B penetration to the “hybrid layer” and to the “adhesive”, respectively. The incorporation of BB94 and GM6001 within the primers resulted in the inhibition of dentin MMPs with improved initial bond strength and enhanced sealing ability. PMID:22518030

  16. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease.

    PubMed Central

    Ruco, L. P.; Pomponi, D.; Pigott, R.; Gearing, A. J.; Baiocchini, A.; Baroni, C. D.

    1992-01-01

    The immunocytochemical expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelial leukocyte adhesion molecule (ELAM-1), endothelial cell adhesion molecule (EndoCAM CD31), and HLA-DR antigens was investigated in sections of 24 reactive lymph nodes and in 15 cases of Hodgkin's disease. ICAM-1 was detected in sinus macrophages, follicular dendritic reticulum cells (FDRCs), interdigitating reticulum cells (IDRCs), epithelioid macrophages, Hodgkin's cells (HCs), and vascular endothelium. ICAM-1 expression was often associated with that of HLA-DR antigens. VCAM-1 was detected in FDRCs, in fibroblast reticulum cells (FRCs), in macrophages, and in rare blood vessels. EndoCAM (CD31) was constitutively expressed in all types of endothelial cells, sinus macrophages, and in epithelioid granulomas. ELAM-1 was selectively expressed by activated endothelial cells of high endothelium venules (HEVs). When expression of the inducible adhesion molecules ICAM-1, VCAM-1 and ELAM-1 was comparatively evaluated in HEVs, it was found that ICAM-1 + HEVs were present in all reactive and HD nodes, whereas ELAM-1 and/or VCAM-1 were expressed only in those pathologic conditions characterized by high levels of interleukin-1/tumor necrosis factor (IL-1/TNF) production, such as granulomatosis and Hodgkin's disease. In Hodgkin's disease, the expression of ELAM-1/VCAM-1 was more pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. Images Figure 1 Figure 2 PMID:1605306

  17. Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions.

    PubMed

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Mor, Adam

    2016-01-01

    Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair. PMID:27404581

  18. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  19. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  20. Pentoxifylline Decreases Serum Level of Adhesion Molecules in Atherosclerosis Patients

    PubMed Central

    Mohammadpour, Amir Hooshang; Falsoleiman, Homa; Shamsara, Jamal; Abadi, Ghazaleh Allah; Rasooli, Ramin; Ramezani, Mohammad

    2014-01-01

    Background: Inflammation is involved in development, progression, and complications of atherosclerotic disease. Clinical studies have indicated that the level of monocyte chemoattractant protein 1 (MCP-1), IL-18, and adhesion molecules correlates with the severity of atherosclerosis and can predict future cardiovascular events. Experimental studies have shown pentoxifylline (PTX) reduces these factors in animal models. The purpose of the present pilot study was to evaluate effect of PTX on a group of inflammatory biomarkers in patients with coronary artery disease (CAD). Methods: Forty patients with angiographically documented CAD, who fulfilled inclusion and exclusion criteria, were entered in the double-blind, randomized, pilot clinical study. The patients were randomly given PTX (400 mg three times daily) or placebo (3 tab/day) for 2 months. Serum concentrations of MCP-1, IL-18, intercellular adhesion Molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured before and at the end of intervention by enzyme-linked immunosorbant assay. Results: Our study showed that the serum levels of ICAM-1 and VCAM-1 was decreased in the study population after two-month treatment (P<0.05). Conclusion: Based on the results of our pilot study, administration of PTX in CAD patients significantly decreases adhesion molecules levels. PMID:24375159

  1. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  2. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  3. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  4. L1 cell adhesion molecule as a therapeutic target in cancer.

    PubMed

    Yu, Xinzhe; Yang, Feng; Fu, De-Liang; Jin, Chen

    2016-03-01

    L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy. PMID:26781307

  5. Effects of photodynamic therapy on adhesion molecules and metastasis.

    PubMed

    Rousset, N; Vonarx, V; Eléouet, S; Carré, J; Kerninon, E; Lajat, Y; Patrice, T

    1999-01-01

    Photodynamic therapy (PDT) induces among numerous cell targets membrane damage and alteration in cancer cell adhesiveness, an important parameter in cancer metastasis. We have previously shown that hematoporphyrin derivative (HPD)-PDT decreases cancer cell adhesiveness to endothelial cells in vitro and that it reduces the metastatic potential of cells injected into rats. The present study analyzes the influence of PDT in vivo on the metastatic potential of cancers cells and in vitro on the expression of molecules involved in adhesion and in the metastatic process. Photofrin and benzoporphyrin derivative monoacid ring A (BPD) have been evaluated on two colon cancer cell lines obtained from the same cancer [progressive (PROb) and regressive (REGb)] with different metastatic properties. Studies of BPD and Photofrin toxicity and phototoxicity are performed by colorimetric MTT assay on PROb and REGb cells to determine the PDT doses inducing around 25% cell death. Flow cytometry is then used to determine adhesion-molecule expression at the cell surface. ICAM-I, MHC-I, CD44V6 and its lectins (àHt1.3, PNA, SNA and UEA) are studied using cells treated either with BPD (50 ng/ml, 457 nm light, 10 J/cm2) or Photofrin (0.5 microgram/ml, 514 nm light, 25 J/cm2). Changes of metastatic patterns of PROb cells have been assessed by the subcutaneous injection of non-lethally treated BPD or Photofrin cells and counting lung metastases. First, we confirm the metastatic potential reduction induced by PDT with respectively a 71 or 96% decrease of the mean number of metastases (as compared with controls) for PROb cells treated with 50 ng/ml BPD and 10 or 20 J/cm2 irradiation. Concerning Photofrin-PDT-treated cells, we find respectively a 90 or 97% decrease (as compared with controls) of the mean number of metastases for PROb cells treated with 0.5 microgram/ml Photofrin and 25 or 50 J/cm2 irradiation. Then, we observe that CD44V6, its lectins (àHt1.3, PNA, SNA) and MHC-I are

  6. Immunohistochemical analysis of adhesion molecules in airway biopsies.

    PubMed

    J Wilson, S; T Holgate, S

    2000-01-01

    Adhesion molecules are receptors found on the surface of leukocytes and endothelial cells, which bind to their ligands, either on other cells or on the extracellular matrix. The function of adhesion molecules is to allow leukocytes to interact with other hemopoetic cells or with foreign antigens (Ags) in the blood, to transiently adhere to the vascular endothelium, to migrate between endothelial cells and through the basement membrane into the surrounding tissue, and to adhere to the epithelium. There are three main groups of adhesion molecules: the integrins, immunoglobulin (Ig) supergene family, and the selectins: These are summarized in Table 1 (1-7). Table 1 Summary of Adhesion Molecules Group CD number Name Expressed on Ligand Integrins CD 49a VLA-1 T lymphocytes, fibroblasts, basement membrane Laminin, collagen B1 very late antigens CD 49b VLA-2 Activated T lymphocytes, platelets, fibroblasts, endothelium, epithelium Collagen, laminin CD 49c VLA-3 Epithelium, fibroblasts Laminin, collagen, fibronectin CD 49d VLA-4 Leukocytes, fibroblasts VCAM-1, fibronectin CD 49e VLA-5 Leukocytes, platelets, epithelium Fibronectin CD 49f VLA-6 T lymphocytes, platelets Laminin B2 leukocyte integrins CD 11a LFA-1 Leukocytes ICAM-1, ICAM-2, ICAM-3 CD 11b Mac-1 Macrophages, monocytes, granulocytes ICAM-1, fibrinogen, C3bi CD 11c p150.95 Macrophages, monocytes, granulocytes Fibrinogen, C3bi IG Supergene family CD 54 ICAM-1 Endothelium, leukocytes, epithelium LFA-1 Mac-1 CD 102 ICAM-2 Endothelium, leukocytes LFA-1 CD 106 VCAM-1 Endothelium, dendritic cells, tissue macrophages VLA-4 Selectins CD 62E E selectin Endothelium Sialyl Lewis x CD 62P P selectin Platelets, endothelium Sialyl Lewis x CD 62L L selectin Leukocytes Mannose-6-P, fructose-6-P. PMID:21312133

  7. Structural requirements for neural cell adhesion molecule-heparin interaction.

    PubMed Central

    Reyes, A A; Akeson, R; Brezina, L; Cole, G J

    1990-01-01

    Two biological domains have been identified in the amino terminal region of the neural cell adhesion molecule (NCAM): a homophilic-binding domain, responsible for NCAM-NCAM interactions, and a heparin-binding domain (HBD). It is not known whether these two domains exist as distinct structural entities in the NCAM molecule. To approach this question, we have further defined the relationship between NCAM-heparin binding and cell adhesion. A putative HBD consisting of two clusters of basic amino acid residues located close to each other in the linear amino acid sequence of NCAM has previously been identified. Synthetic peptides corresponding to this domain were shown to bind both heparin and retinal cells. Here we report the construction of NCAM cDNAs with targeted mutations in the HBD. Mouse fibroblast cells transfected with the mutant cDNAs express NCAM polypeptides with altered HBD (NCAM-102 and NCAM-104) or deleted HBD (HBD-) at levels similar to those of wild-type NCAM. Mutant NCAM polypeptides purified from transfected cell lines have substantially reduced binding to heparin and fail to promote chick retinal cell attachment. Furthermore, whereas a synthetic peptide that contains both basic amino acid clusters inhibits retinal-cell adhesion to NCAM-coated dishes, synthetic peptides in which either one of the two basic regions is altered to contain only neutral amino acids do not inhibit this adhesion. These results confirm that this region of the NCAM polypeptide does indeed mediate not only the large majority of NCAM's affinity for heparin but also a significant portion of the cell-adhesion-mediating capability of NCAM. Images PMID:2078567

  8. Glycosylation Inhibitors Efficiently Inhibit P-Selectin-Mediated Cell Adhesion to Endothelial Cells

    PubMed Central

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD

  9. Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior.

    PubMed

    Tsuneki, Masayuki; Madri, Joseph A

    2014-12-01

    Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors. PMID:25266662

  10. Small molecule phagocytosis inhibitors for immune cytopenias.

    PubMed

    Neschadim, Anton; Kotra, Lakshmi P; Branch, Donald R

    2016-08-01

    Immune cytopenias are conditions characterized by low blood cell counts, such as platelets in immune thrombocytopenia (ITP) and red blood cells in autoimmune hemolytic anemia (AIHA). Chronic ITP affects approximately 4 in 100,000 adults annually while AIHA is much less common. Extravascular phagocytosis and massive destruction of autoantibody-opsonized blood cells by macrophages in the spleen and liver are the hallmark of these conditions. Current treatment modalities for ITP and AIHA include the first-line use of corticosteroids; whereas, IVIg shows efficacy in ITP but not AIHA. One main mechanism of action by which IVIg treatment leads to the reduction in platelet destruction rates in ITP is thought to involve Fcγ receptor (FcγR) blockade, ultimately leading to the inhibition of extravascular platelet phagocytosis. IVIg, which is manufactured from the human plasma of thousands of donors, is a limited resource, and alternative treatments, particularly those based on bioavailable small molecules, are needed. In this review, we overview the pathophysiology of ITP, the role of Fcγ receptors, and the mechanisms of action of IVIg in treating ITP, and outline the efforts and progress towards developing novel, first-in-class inhibitors of phagocytosis as synthetic, small molecule substitutes for IVIg in ITP and other conditions where the pathobiology of the disease involves phagocytosis. PMID:27296447

  11. Adhesion Molecules Associated with Female Genital Tract Infection

    PubMed Central

    Li, Lin-Xi; Carrascosa, José Manuel; Cabré, Eduard; Dern, Olga; Sumoy, Lauro; Requena, Gerard; McSorley, Stephen J.

    2016-01-01

    Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes. PMID:27272720

  12. Small Molecule Inhibitors of Anthrax Lethal Factor Toxin

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Cardinale, Steven C.; Butler, Michelle M.; Bowlin, Terry L.; Peet, Norton P.

    2014-01-01

    This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds. PMID:24290062

  13. Probing translation using small molecule inhibitors

    PubMed Central

    Blanchard, Scott C.; Cooperman, Barry S.; Wilson, Daniel N.

    2010-01-01

    Summary The translational apparatus of the bacterial cell remains one of the principal targets of antibiotics for the clinical treatment of infection worldwide. Since the introduction of specific translation inhibitors into clinical practise in the late 1940’s, intense efforts have been made to understand their precise mechanisms of action. Such research has often revealed significant and sometimes unexpected insights into many fundamental aspects of the translation mechanism. Central to progress in this area, high-resolution crystal structures of the bacterial ribosome identifying the sites of antibiotic binding are now available, which, together with recent developments in single-molecule and fast-kinetic approaches, provide an integrated view of the dynamic translation process. Assays employing these approaches and focusing on specific steps of the overall translation process are amenable for drug-screening. Such assays, coupled with structural studies, have the potential not only to accelerate the discovery of novel and effective antimicrobial agents, but also to refine our understanding of the translation mechanism, since antibiotics often stabilize specific functional states of the ribosome and allow distinct translation steps to be dissected in molecular detail. PMID:20609413

  14. Direct observation of catch bonds involving cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  15. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  16. Cytoplasmic Tail Regulates the Intercellular Adhesion Function of the Epithelial Cell Adhesion Molecule

    PubMed Central

    Balzar, Maarten; Bakker, Hellen A. M.; Briaire-de-Bruijn, Inge H.; Fleuren, Gert Jan; Warnaar, Sven O.; Litvinov, Sergey V.

    1998-01-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of α-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with α-actinin. Binding of α-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for α-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via α-actinin. PMID:9671492

  17. Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell adhesion molecule.

    PubMed

    Balzar, M; Bakker, H A; Briaire-de-Bruijn, I H; Fleuren, G J; Warnaar, S O; Litvinov, S V

    1998-08-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of alpha-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with alpha-actinin. Binding of alpha-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for alpha-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via alpha

  18. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  19. A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl)-3, 5, 7-triaza-1-azoniatricyclo [3.3.1.1(3,7)]decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo.

    PubMed

    Golubovskaya, Vita M; Figel, Sheila; Ho, Baotran T; Johnson, Christopher P; Yemma, Michael; Huang, Grace; Zheng, Min; Nyberg, Carl; Magis, Andrew; Ostrov, David A; Gelman, Irwin H; Cance, William G

    2012-05-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is overexpressed in most solid types of tumors and plays an important role in the survival signaling. Recently, we have developed a novel computer modeling combined with a functional assay approach to target the main autophosphorylation site of FAK (Y397). Using these approaches, we identified 1-(2-hydroxyethyl)-3, 5, 7-triaza-1-azoniatricyclo [3.3.1.1(3,7)]decane; bromide, called Y11, a small molecule inhibitor targeting Y397 site of FAK. Y11 significantly and specifically decreased FAK autophosphorylation, directly bound to the N-terminal domain of FAK. In addition, Y11 decreased Y397-FAK autophosphorylation, inhibited viability and clonogenicity of colon SW620 and breast BT474 cancer cells and increased detachment and apoptosis in vitro. Moreover, Y11 significantly decreased tumor growth in the colon cancer cell mouse xenograft model. Finally, tumors from the Y11-treated mice demonstrated decreased Y397-FAK autophosphorylation and activation of poly (ADP ribose) polymerase and caspase-3. Thus, targeting the major autophosphorylation site of FAK with Y11 inhibitor is critical for development of cancer therapeutics and carcinogenesis field. PMID:22402131

  20. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  1. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  2. Carbohydrate ligands for endothelial - Leukocyte adhesion molecule 1

    SciTech Connect

    Tiemeyer, M.; Swiedler, S.J.; Ishihara, Masayuki; Moreland, M.; Schweingruber, H.; Hirtzer, P.; Brandley, B.K. )

    1991-02-15

    The acute inflammatory response requires that circulating leukocytes bind to and penetrate the vascular wall to access the site of injury. Several receptors have been implicated in this interaction, including a family of putative carbohydrate-binding proteins. The authors report here the identification of an endogenous carbohydrate ligand for one of these receptors, endothelial-leukocyte adhesion molecule 1 (ELAM-1). Radiolabeled COS cells transfected with a plasmid containing the cDNA for ELAM-1 were used as probes to screen glycolipids extracted from human leukocytes. COS cells transfected with this plasmid adhered to a subset of sialylated glycolipids resolved on TLC plates or adsorbed on polyvinyl chloride microtiter wells. Adhesion to these glycolipids required calcium but was not inhibited by heparin, chondroitin sulfate, keratan sulfate, or yeast phosphomannan. Monosaccharide composition, linkage analysis, and fast atom bombardment mass spectrometry of the glycolipids indicate that the ligands for ELAM-1 are terminally sialylated lactosylceramides with a variable number of N-acetyllactosamine repeats and at least one fucosylated N-acetylglucosamine residue.

  3. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro.

    PubMed

    Behrends, U; Peter, R U; Hintermeier-Knabe, R; Eissner, G; Holler, E; Bornkamm, G W; Caughman, S W; Degitz, K

    1994-11-01

    Intercellular adhesion molecule-1 (ICAM-1) plays a central role in various inflammatory reactions and its expression is readily induced by inflammatory stimuli such as cytokines or ultraviolet irradiation. We have investigated the effect of ionizing radiation (IR) on human ICAM-1 expression in human cell lines and skin cultures. ICAM-1 mRNA levels in HL60, HaCaT, and HeLa cells were elevated at 3-6 h after irradiation and increased with doses from 10-40 Gy. The rapid induction of ICAM-1 occurred at the level of transcription, was independent of de novo protein synthesis, and did not involve autocrine stimuli including tumor necrosis factor-alpha and interleukin-1. IR also induced ICAM-1 cell surface expression within 24 h. Immunohistologic analysis of cultured human split skin revealed ICAM-1 upregulation on epidermal keratinocytes and dermal microvascular endothelial cells 24 h after exposure to 6 Gy. In conclusion, we propose ICAM-1 as an important radiation-induced enhancer of immunologic cell adhesion, which contributes to inflammatory reactions after local and total body irradiation. PMID:7963663

  4. Cell adhesion molecule control of planar spindle orientation.

    PubMed

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  5. Serum polysialylated neural cell adhesion molecule in childhood neuroblastoma.

    PubMed Central

    Glüer, S.; Schelp, C.; Madry, N.; von Schweinitz, D.; Eckhardt, M.; Gerardy-Schahn, R.

    1998-01-01

    Neuroblastoma cells express the polysialylated form of the neural cell adhesion molecule (NCAM), which normally becomes restricted to a few neural tissues after embryogenesis. In this study, we investigated serum levels of polysialylated NCAM in 14 children with different grades and stages of neuroblastoma using an immunoluminescence assay, and compared the results to 269 healthy control subjects. Simultaneously, the polysialylated NCAM content of the tumours was determined by immunohistochemistry. Serum levels were dramatically elevated (more than sixfold) in children with advanced stages and fatal courses of disease, whereas children with differentiated tumour types and limited disease had low or normal levels. Serum concentrations correlated with the polysialylated NCAM content of the tumours, and they decreased during successful therapy. We therefore suggest polysialylated NCAM to be a useful marker monitoring childhood neuroblastoma. Images Figure 2 Figure 3 PMID:9662259

  6. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal

    PubMed Central

    Su, Yang; Lei, Xi; Wu, Lingyun; Liu, Lixin

    2012-01-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4·0–5·5 hr, with 84–92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications. PMID:22681228

  7. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    PubMed Central

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidates that is involved in the development of pathological lesions; it is an intercellular adhesion molecule that is expressed in various types of cells such as pulmonary cells, neurons, and mast cells. Recent studies have revealed that alterations in the transcriptional or post-transcriptional expressions of CADM1 correlate with the pathogenesis of pulmonary diseases and allergic diseases. In this review, we specifically focus on how CADM1 is involved in the development of pathological lesions in pulmonary emphysema and atopic dermatitis. PMID:26636084

  8. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  9. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  10. Heterogeneity of cell adhesion molecules in the developing nervous system

    SciTech Connect

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  11. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways.

    PubMed

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-05-01

    Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  12. Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer.

    PubMed

    Arabzadeh, A; Chan, C; Nouvion, A-L; Breton, V; Benlolo, S; DeMarte, L; Turbide, C; Brodt, P; Ferri, L; Beauchemin, N

    2013-02-14

    Liver metastasis is the predominant cause of colorectal cancer (CRC)-related mortality in developed countries. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell adhesion molecule with reduced expression in early phases of CRC development and thus functions as a tumor growth inhibitor. However, CEACAM1 is upregulated in metastatic colon cancer, suggesting a bimodal role in CRC progression. To investigate the role of this protein in the host metastatic environment, Ceacam1(-/-) mice were injected intrasplenically with metastatic MC38 mouse CRC cells. A significant reduction in metastatic burden was observed in Ceacam1(-/-) compared with wild-type (WT) livers. Intravital microscopy showed decreased early survival of MC38 cells in Ceacam1(-/-) endothelial environment. Metastatic cell proliferation within the Ceacam1(-/-) livers was also diminished. Bone marrow-derived cell recruitment, attenuation of immune infiltrates and diminished CCL2, CCL3 and CCL5 chemokine production participated in the reduced Ceacam1(-/-) metastatic phenotype. Transplantations of WT bone marrow (BM) into Ceacam1(-/-) mice fully rescued metastatic development, whereas Ceacam1(-/-) BM transfer into WT mice showed reduced metastatic burden. Chimeric immune cell profiling revealed diminished recruitment of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) to Ceacam1(-/-) metastatic livers and adoptive transfer of MDSCs confirmed the involvement of these immune cells in reduction of liver metastasis. CEACAM1 may represent a novel metastatic CRC target for treatment. PMID:22469976

  13. Purification, composition, and structure of macrophage adhesion molecule

    SciTech Connect

    Remold-O'Donnell, E.; Savage, B.

    1988-01-12

    Macrophage adhesion molecule (MAM) is a surface heterodimer consisting of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-..cap alpha..) and the glycopeptide gp93 (MAM-..beta..). MAM, which is the guinea pig analog of Mo1 and Mac-1, was purified from detergent lysates of peritoneal neutrophils by lentil lectin chromatography and M2-antibody chromatography. The pure heterodimer molecule was dissociated by acidic conditions (pH 3.5), and MAM-..cap alpha.. and MAM-..beta.. were separated by M7-antibody chromatography. MAM-..beta.. is an approx. 640 amino acid residue polypeptide with exceptionally high cysteine content. At 7.2 residues per 100 amino acids, Cys/2 of MAM-..beta.. is more than 3 times the mean for 200 purified proteins. Reactivity with six ..beta..-subunit-specific /sup 125/I-labeled monoclonal antibodies recognizing at least four epitopes demonstrated that intrapeptide disulfide bonds are required to maintain the structure of MAM-..beta... All six antibodies failed to react when MAM-..beta.. was treated with reducing agents. MAM-..beta.. is 18% carbohydrate; the major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid. MAM-..beta.. is estimated to contain five to six N-linked carbohydrate units. MAM-..cap alpha.. is an approx. 1100-residue polypeptide with lower Cys/2 content (2.0 residues per 100 amino acid residues). MAM-..cap alpha.. is 21% carbohydrate. The major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid; the mannose content is higher in MAM-..cap alpha.. than MAM-..beta.. is estimated to contain 12 N-linked carbohydrate units.

  14. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis.

    PubMed

    Sfikakis, P P; Tesar, J; Baraf, H; Lipnick, R; Klipple, G; Tsokos, G C

    1993-07-01

    In view of recent data demonstrating increased expression of intercellular adhesion molecule-1 (ICAM-1) in the skin of patients with systemic sclerosis (SSc) we studied whether levels of soluble ICAM-1 (s-ICAM-1) shed into the circulation are increased in patients with this disorder. We also compared blood levels of s-ICAM-1 in SSc with those in systemic lupus erythematosus (SLE) and we investigated any possible association of s-ICAM-1 with soluble IL-2 receptor (s-IL 2R) levels, the latter being considered as a marker of lymphocyte activation. Patients with SSc had increased levels of sICAM-1 compared with healthy control subjects (mean +/- SEM, 587 +/- 34 versus 373 +/- 27 ng/ml, P < 0.0001). Patients with diffuse rapidly progressive disease had the highest s-ICAM-1 levels. No association was observed between the extent of skin or internal organ involvement and s-ICAM-1 levels. Patients with digital ulcers had significantly elevated s-ICAM-1, but not s-IL 2R, levels. No correlation was detected between individual s-ICAM-1 and S-IL 2R levels in SSc patients. These novel findings suggest that circulating s-ICAM-1 levels may be a useful marker of endothelial activation in SSc; however, further studies are needed to determine the role of ICAM-1 in the pathogenesis of this disorder. PMID:8099861

  15. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  16. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  17. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    SciTech Connect

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  18. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  19. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  20. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  1. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  2. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration.

    PubMed

    Sumagin, Ronen; Parkos, Charles A

    2015-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  3. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction.

    PubMed

    Sager, Hendrik B; Dutta, Partha; Dahlman, James E; Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F; Kauffman, Kevin J; Xing, Yiping; Shaw, Taylor E; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K; Anderson, Daniel G; Nahrendorf, Matthias

    2016-06-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  4. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  5. Modulation of lens cell adhesion molecules by particle beams.

    PubMed

    McNamara, M P; Bjornstad, K A; Chang, P Y; Chou, W; Lockett, S J; Blakely, E A

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  6. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  7. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

    PubMed

    Ren, Guangwen; Zhao, Xin; Zhang, Liying; Zhang, Jimin; L'Huillier, Andrew; Ling, Weifang; Roberts, Arthur I; Le, Anh D; Shi, Songtao; Shao, Changshun; Shi, Yufang

    2010-03-01

    Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. PMID:20130212

  8. Signal transduction in endothelial cells by the angiogenesis inhibitor histidine-rich glycoprotein targets focal adhesions

    SciTech Connect

    Lee, Chunsik; Dixelius, Johan; Thulin, Asa; Kawamura, Harukiyo; Claesson-Welsh, Lena; Olsson, Anna-Karin . E-mail: Anna-Karin.Olsson@genpat.uu.se

    2006-08-01

    Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein. We have shown that a fragment released from the central histidine/proline-rich (His/Pro-rich) domain of HRGP blocks endothelial cell migration in vitro and vascularization and growth of murine fibrosarcoma in vivo. The minimal active HRGP domain exerting the anti-angiogenic effect was recently narrowed down to a 35 amino acid peptide, HRGP330, derived from the His/Pro-rich domain of HRGP. By use of a signal transduction antibody array representing 400 different signal transduction molecules, we now show that HRGP and the synthetic peptide HRGP330 specifically induce tyrosine phosphorylation of focal adhesion kinase and its downstream substrate paxillin in endothelial cells. HRGP/HRGP330 treatment of endothelial cells induced disruption of actin stress fibers, a process reversed by treatment of cells with the FAK inhibitor geldanamycin. In addition, VEGF-mediated endothelial cell tubular morphogenesis in a three-dimensional collagen matrix was inhibited by HRGP and HRGP330. In contrast, VEGF-induced proliferation was not affected by HRGP or HRGP330, demonstrating the central role of cell migration during tube formation. In conclusion, our data show that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures.

  9. En route from artificial to natural: Evaluation of inhibitors of mannose-specific adhesion of E. coli under flow.

    PubMed

    Möckl, Leonhard; Fessele, Claudia; Despras, Guillaume; Bräuchle, Christoph; Lindhorst, Thisbe K

    2016-09-01

    We investigated the properties of six Escherichia coli adhesion inhibitors under static and under flow conditions. On mannan-covered model substrates and under static conditions, all inhibitors were able to almost completely abolish lectin-mediated E. coli adhesion. On a monolayer of living human microvascular endothelial cells (HMEC-1), the inhibitors reduced adhesion under static conditions as well, but a large fraction of bacteria still managed to adhere even at highest inhibitor concentrations. In contrast, under flow conditions E. coli did not exhibit any adhesion to HMEC-1 not even at inhibitor concentrations where significant adhesion was detected under static conditions. This indicates that the presence of shear stress strongly affects inhibitor properties and must be taken into account when evaluating the potency of bacterial adhesion inhibitors. PMID:27345501

  10. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  11. A new small molecule inhibitor of soluble guanylate cyclase

    PubMed Central

    Mota, Filipa; Gane, Paul; Hampden-Smith, Kathryn; Allerston, Charles K.; Garthwaite, John; Selwood, David L.

    2015-01-01

    Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay. PMID:26264842

  12. Synthetic Small-Molecule Prohormone Convertase 2 Inhibitors

    PubMed Central

    Kowalska, Dorota; Liu, Jin; Appel, Jon R.; Ozawa, Akihiko; Nefzi, Adel; Mackin, Robert B.; Houghten, Richard A.; Lindberg, Iris

    2009-01-01

    The proprotein convertases are believed to be responsible for the proteolytic maturation of a large number of peptide hormone precursors. Although potent furin inhibitors have been identified, thus far, no small-molecule prohormone convertase 1/3 or prohormone convertase 2 (PC2) inhibitors have been described. After screening 38 small-molecule positional scanning libraries against recombinant mouse PC2, two promising chemical scaffolds were identified: bicyclic guanidines, and pyrrolidine bis-piperazines. A set of individual compounds was designed from each library and tested against PC2. Pyrrolidine bis-piperazines were irreversible, time-dependent inhibitors of PC2, exhibiting noncompetitive inhibition kinetics; the most potent inhibitor exhibited a Ki value for PC2 of 0.54 μM. In contrast, the most potent bicyclic guanidine inhibitor exhibited a Ki value of 3.3 μM. Cross-reactivity with other convertases was limited: pyrrolidine bis-piperazines exhibited Ki values greater than 25 μM for PC1/3 or furin, whereas the Ki values of bicyclic guanidines for these other convertases were more than 15 μM. We conclude that pyrrolidine bis-piperazines and bicyclic guanidines represent promising initial leads for the optimization of therapeutically active PC2 inhibitors. PC2-specific inhibitors may be useful in the pharmacological blockade of PC2-dependent cleavage events, such as glucagon production in the pancreas and ectopic peptide production in small-cell carcinoma, and to study PC2-dependent proteolytic events, such as opioid peptide production. PMID:19074544

  13. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    PubMed Central

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  14. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    PubMed Central

    Ashander, Liam M.; Appukuttan, Binoy; Ma, Yuefang; Gardner-Stephen, Dione; Smith, Justine R.

    2016-01-01

    Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1) mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1), in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α), and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (si)RNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans. PMID:27293321

  15. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    SciTech Connect

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-10-15

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist {beta}-naphthoflavone ({beta}-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist {alpha}-naphthoflavone ({alpha}-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with {beta}-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis.

  16. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  17. [The expression level of adhesion molecules on neutrophils depending at segmentation of their nuclei].

    PubMed

    Kashutin, S L; Danilov, S I; Vereshchagina, E N; Kluchareva, S V

    2013-11-01

    The article deals with results of detection of expression level of adhesion molecules on neutrophils and segmentation of their nuclei. It is established that in conditions of absence of antigen stimulation neutrophils of circulating pool express molecules of L-selectin in 53.34%, LFA-1 molecules in 65.64%, ICAM-1 in 40.51%, LE4-3 in 58.72% and PECAM-1 in 59.74%. The full readiness to realization of phase of sliding, strong adhesion and immediately transmigration itselfis detected in neutrophils with five segments in nucleus. PMID:24640111

  18. Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases.

    PubMed

    Llona-Minguez, Sabin; Baiget, Jessica; Mackay, Simon P

    2013-07-01

    The transcription factors NF-κB and IFN control important signaling cascades and mediate the expression of a number of important pro-inflammatory cytokines, adhesion molecules, growth factors and anti-apoptotic survival proteins. IκB kinase (IKK) and IKK-related kinases (IKKε and TBK1) are key regulators of these biological pathways and, as such, modulators of these enzymes may be useful in the treatment of inflammatory diseases and cancer. We have reviewed the most recent IKK patent literature (2008-2012), added publications of interest overlooked in previous patent reviews and identified all the players involved in small-molecule inhibitors of the IKKs. This will provide the reader with a decisive summary of the IKK arena, a field that has reached maturity over a decade of research. PMID:24237125

  19. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  20. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-01

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest. PMID:24269238

  1. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis

    PubMed Central

    Mruk, Dolores D.; Xiao, Xiang; Lydka, Marta; Li, Michelle W.M.; Bilinska, Barbara; Cheng, C. Yan

    2013-01-01

    Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies. PMID:23942142

  2. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  3. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies.

    PubMed Central

    Banks, R. E.; Gearing, A. J.; Hemingway, I. K.; Norfolk, D. R.; Perren, T. J.; Selby, P. J.

    1993-01-01

    Cellular adhesion molecules have been implicated in tumour progression and metastasis. This study examines for the first time the serum concentrations of circulating VCAM-1 and E-selectin in a consecutive series of 110 cancer patients seen in a general medical oncology clinic, and confirms and extends previous studies reporting measurement of circulating ICAM-1. Soluble ICAM-1 and VCAM-1 levels were significantly higher in all the patient groups compared with the controls whereas soluble E-selectin was significantly higher in the ovarian, breast and GI cancer groups and lower in the myeloma group. The significance of these results together with the possible sources and stimuli for release of these adhesion molecules are discussed. PMID:7686390

  4. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  5. Integrins and adhesion molecules as targets to treat inflammatory bowel disease.

    PubMed

    Bravatà, Ivana; Allocca, Mariangela; Fiorino, Gionata; Danese, Silvio

    2015-12-01

    Inflammatory bowel diseases (IBD) present a typically relapsing-remitting behavior and are characterized by a disabling and progressive course. Anti-tumor necrosis factor (TNF)-α agents have drastically changed the therapeutic management of IBD. However, a significant proportion of patients does not have a primary response, some patients lose response overtime and/or experience side effects. Recently, anti-adhesion molecules were investigated and showed efficacy with a good safety profile. Vedolizumab was recently approved for both Crohn's disease (CD) and ulcerative colitis (UC) and several other molecules are under evaluation in this field. Anti-adhesion molecules could represent a potential therapeutic option for future therapy in IBD. In this review we report the efficacy and safety of major anti-adhesion drugs in active IBD patients. PMID:26687159

  6. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    PubMed

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-01-01

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis. PMID:26393541

  7. ADHESION AND REPULSION MOLECULES IN DEVELOPMENTAL NEUROTOXIC INJURY

    EPA Science Inventory

    Work during the next year will focus on establishing structural and functional correlations between the changes in Eph/ephrin expression and MeHg exposure. We have begun to characterize the cellular expression of the specific molecules using in situ hybridization ...

  8. Immunohistochemical detection of cytokines and cell adhesion molecules in the synovial membrane.

    PubMed

    Parker, A; Smith, M D

    1999-06-01

    This paper describes the immunohistochemical techniques which can be used to detect cytokines and cell adhesion molecules in synovial membrane tissue, including a list of reagents and possible problems in each technique. It also describes three methods of quantitation of the resultant immunohistochemical detection, including the recent innovation computer-assisted digital video image analysis, and lists the advantages and disadvantages of each quantitation technique. This information will be a useful summary for any scientist interested in applying such techniques to the detection of cytokines and cell adhesion molecules in human tissue sections. PMID:10420385

  9. Identification and characterization of small-molecule inhibitors of hepsin

    PubMed Central

    Chevillet, John R.; Park, Gemma J.; Bedalov, Antonio; Simon, Julian A.; Vasioukhin, Valeri I.

    2009-01-01

    Hepsin is a type-II transmembrane serine protease overexpressed in the majority of human prostate cancers. We recently demonstrated that hepsin promotes prostate cancer progression and metastasis and thus represents a potential therapeutic target. Here we report the identification of novel small-molecule inhibitors of hepsin catalytic activity. We utilized purified human hepsin for high-throughput screening of established drug and chemical diversity libraries and identified sixteen inhibitory compounds with IC50 values against hepsin ranging from 0.23–2.31μM and relative selectivity of up to 86-fold or greater. Two compounds are orally administered drugs established for human use. Four compounds attenuated hepsin-dependent pericellular serine protease activity in a dose dependent manner with limited or no cytotoxicity to a range of cell types. These compounds may be used as leads to develop even more potent and specific inhibitors of hepsin to prevent prostate cancer progression and metastasis. PMID:18852137

  10. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1.

    PubMed

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G; Higgins, Matthew K

    2013-02-22

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  11. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    PubMed Central

    Ercan, Ertugrul; Bozdemir, Huseyin; Tengiz, Istemihan; Sekuri, Cevad; Aliyev, Emil; Akilli, Azem; Akin, Mustafa

    2004-01-01

    Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1) in patients with unstable angina pectoris (AP). Methods Thirty-five patients with unstable AP (Group I), ten patients with stable AP (Group II) and ten subjects who had angiographycally normal coronary arteries (Group III) were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15) received tirofiban and Group IB (n = 20) did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h) in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point. PMID:15059285

  12. Wnt/beta-Catenin Signaling and Small Molecule Inhibitors

    PubMed Central

    Voronkov, Andrey; Krauss, Stefan

    2012-01-01

    Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions. PMID:23016862

  13. Estrogen down-regulates nicotine-induced adhesion molecule expression via nongenomic signal pathway in endothelial cells.

    PubMed

    Wang, Yajing; Wang, Zhaoxia; Wang, Lianyun; Zhou, Ying; Zhao, Yangxing; Liu, Liming; Yao, Chenjiang; Qiao, Zhongdong

    2006-06-01

    Although gonadal hormone mostly causes genotropic actions through the members of nuclear receptor family, it also can regulate these actions via membrane receptor. To explore the possibility of plasma membrane estrogen receptors (mER) mediating genotropic events, we have investigated estrogen's effect on nicotine-stimulated adhesion molecule expression and evaluated whether this effect depends on calcium, MAPK signal pathway. Fluorescence Spectroscopy analysis of Ca2+ from human umbilical vein endothelial cells (HUVECs) showed through mER, estrogen induced a rapid rise of intracellular free Ca2+ concentration and this rise could not be inhibited by tamoxifen (classic ER inhibitor). In the context of nicotine stimulating, however, estrogen attenuated phosphorylation of mitogen-activated protein kinase (MAPK) family members, extracellular signal regulated kinase 1/2 (ERK1/2), p38 but not c-Jun-N-terminal kinase (JNK) in HUVECs and this effect could not still be prevented by tamoxifen. In the meantime, estrogen also down-regulated surface/soluble vascular cell adhesion molecule (VCAM-1, sVCAM-1) and endothelial selectin (E-selectin, sE-selectin) levels, which was not abolished by tamoxifen either. Moreover, calcium chelator BAPTA, ERK1/2 inhibitor PD98059, p38 inhibitor SB203580 significantly reduced the production of nicotine-activated surface/soluble VCAM-1 and E-selectin and both of the remained levels were no longer regulated by estrogen. Our study here provides the information of decrease effect of mER-mediated estrogen through Ca2+ and ERK1/2, p38 MAPK signaling pathway on nicotine-stimulated expression of surface/soluble VCAM-1 and E-selectin in HUVECs. PMID:16644474

  14. Novel Pyridazinone Inhibitors for Vascular Adhesion Protein-1 (VAP-1): Old target – New Inhibition Mode

    PubMed Central

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J.; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A.

    2014-01-01

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Though they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors. PMID:24304424

  15. Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-01

    Inflammatory cell infiltration of the lung is a predominant histopathological change that occurs during radiation pneumonitis. Emigration of inflammatory cells from the circulation requires the interaction between cell adhesion molecules on the vascular endothelium and molecules on the surface of leukocytes. We studied the immunohistochemical pattern of expression of cell adhesion molecules in lungs from mice treated with thoracic irradiation. After X-irradiation, the endothelial leukocyte adhesion molecule 1 (ELAM-1; E-selectin) was primarily expressed in the pulmonary endothelium of larger vessels and minimally in the microvascular endothelium. Conversely, the intercellular adhesion molecule 1 (ICAM-1; CD54) was expressed in the pulmonary capillary endothelium and minimally in the endothelium of larger vessels. Radiation-mediated E-selectin expression was first observed at 6 h, whereas ICAM-1 expression initially increased at 24 h after irradiation. ICAM-1 and E-selectin expression persisted for several days. P-selectin is constitutively expressed in Weibel-Palade bodies in the endothelium, which moved to the vascular lumen within 30 min after irradiation. P-selectin was not detected in the pulmonary endothelium at 6 h after irradiation. The radiation dose required for increased cell adhesion molecule expression within the pulmonary vascular endothelium was 2 Gy, and expression increased in a dose-dependent manner. These data demonstrate that ICAM-1 and E-selectin expression is increased in the pulmonary endothelium following thoracic irradiation. The pattern of expression of E-selectin, P-selectin, and ICAM-1 is distinct from one another. PMID:9187101

  16. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells.

    PubMed

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS. PMID:19632255

  17. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  18. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  19. Effect of ultraviolet light on the expression of adhesion molecules and T lymphocyte adhesion to human dermal microvascular endothelial cells.

    PubMed

    Chung, Kee Yang; Chang, Nam Soo; Park, Yoon Kee; Lee, Kwang Hoon

    2002-04-01

    In order to determine the effect of ultraviolet radiation (UVR) on the cell adhesion molecules expressed in human dermal microvascular endothelial cells (HDMEC), the cells were exposed to varying UVR doses and the cell surface was examined for expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM- 1), and E-selectin. The effect of UVB irradiation on the binding of T lymphocytes to HDMEC was also examined. UVA irradiation did not affect the surface expression of ICAM-1, VCAM-1, or E-selectin on the HDMEC. However, following UVB exposure, ELISA demonstrated a significant increase in the baseline ICAM-1 cell surface expression on the HDMEC. However, no induction of either E-selectin or VCAM-1 was noted. UVB also significantly augmented ICAM-1 induction by IL-1alpha and TNF-alpha. VCAM-1 was induced by stimulating HDMEC with IL-1alpha following a UVB irradiation dose of 100 mJ/cm2. Flow cytometric analysis of the HDMEC stimulated with IL-1alpha for 24h demonstrated that 12% of the cells expressed VCAM-1 but either IL-1alpha or UVB irradiation alone failed to induce VCAM-1 expression. Enhancement of T cell-HDMEC binding by IL-1alpha or TNF-alpha treatment was not significantly affected after UVB irradiation. This study demonstrated that UVB irradiation can alter ICAM-1 and VCAM-1 expression on the HDMEC surface and that augmentation of ICAM-1 expression and the IL-1alpha-dependent induction of VCAM-1 following UVB exposure might be important steps in the pathogenesis of sunburn. PMID:11971210

  20. A novel small-molecule inhibitor of HIV-1 entry

    PubMed Central

    Heredia, Alonso; Latinovic, Olga S; Barbault, Florent; de Leeuw, Erik PH

    2015-01-01

    Background Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance. Results We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas. Conclusion Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention. PMID:26491257

  1. Reduction in cellular and vascular rejection by blocking leukocyte adhesion molecule receptors.

    PubMed Central

    Sadahiro, M.; McDonald, T. O.; Allen, M. D.

    1993-01-01

    Whether antibody blockage of leukocyte receptors for intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 would prevent cardiac graft rejection was studied in a rabbit heterotopic transplant model. Monoclonal antibody 60.3, anti-CD18 (intercellular adhesion molecule-1 receptor, Group 1, n = 10) and monoclonal antibody HP1/2, anti-VLA-alpha 4 (vascular cell adhesion molecule-1 receptor, Group 2, n = 10) were administered to transplanted unimmunosuppressed animals. At 7 days, donor heart histology was compared to transplanted untreated controls (Group 3, n = 11). Peripheral white blood cell counts on postoperative day 2 were significantly higher in both treatment groups than controls. Significant increases in circulating neutrophils occurred in Group 1 (P < or = 0.05); lymphocytes predominated in Group 2 (P < or = 0.05). A significant reduction in cellular rejection was seen in Group 1 (P < or = 0.05) but not Group 2 hearts. Group 1 hearts demonstrated localization of lymphocytes to perivenular collections, whereas Group 2 hearts evidenced diffuse interstitial infiltration. Both treatment groups demonstrated a reduction in transplant arteritis compared to controls. Results suggest that monoclonal antibody 60.3 (anti-CD18) may hold promise as a therapeutic agent for both cellular and vascular rejection. Monoclonal antibody HP1/2 (anti-VLA-alpha 4) may reduce vascular rejection disproportionate to cellular rejection. Images Figure 2 Figure 3 Figure 4 PMID:8096120

  2. Two waves of neutrophil emigration in response to corneal epithelial abrasion: Distinct adhesion molecule requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: Corneal abrasion results in an inflammatory response characterized by leukocyte emigration into the corneal stroma. Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. In this study, the contributions of two...

  3. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options.

    PubMed

    Sluiter, Nina; de Cuba, Erienne; Kwakman, Riom; Kazemier, Geert; Meijer, Gerrit; Te Velde, Elisabeth Atie

    2016-06-01

    Peritoneal dissemination is diagnosed in 10-25 % of colorectal cancer patients. Selected patients are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. For these patients, earlier diagnosis, optimised selection criteria and a personalised approach are warranted. Biomarkers could play a crucial role here. However, little is known about possible candidates. Considering tumour cell adhesion as a key step in peritoneal dissemination, we aim to provide an overview of the functional importance of adhesion molecules in peritoneal dissemination and discuss the prognostic, diagnostic and therapeutic options of these candidate biomarkers. A systematic literature search was conducted according to the PRISMA guidelines. In 132 in vitro, ex vivo and in vivo studies published between 1995 and 2013, we identified twelve possibly relevant adhesion molecules in various cancers that disseminate peritoneally. The most studied molecules in tumour cell adhesion are integrin α2β1, CD44 s and MUC16. Furthermore, L1CAM, EpCAM, MUC1, sLe(x) and Le(x), chemokine receptors, Betaig-H3 and uPAR might be of clinical importance. ICAM1 was found to be less relevant in tumour cell adhesion in the context of peritoneal metastases. Based on currently available data, sLe(a) and MUC16 are the most promising prognostic biomarkers for colorectal peritoneal metastases that may help improve patient selection. Different adhesion molecules appear expressed in haematogenous and transcoelomic spread, indicating two different attachment processes. However, our extensive assessment of available literature reveals that knowledge on metastasis-specific genes and their possible candidates is far from complete. PMID:27074785

  4. Coupling factor 6 downregulates platelet endothelial cell adhesion molecule-1 via c-Src activation and acts as a proatherogenic molecule.

    PubMed

    Kumagai, Akiko; Osanai, Tomohiro; Katoh, Chisato; Tanaka, Makoto; Tomita, Hirofumi; Morimoto, Takeshi; Murakami, Reiichi; Magota, Koji; Okumura, Ken

    2008-09-01

    Coupling factor 6 (CF6), a component of ATP synthase, suppresses the generation of prostacyclin and nitric oxide (NO). Platelet endothelial cell adhesion molecule-1 (PECAM-1) is involved in shear-induced NO production. To investigate the linkage between the actions of CF6 and PECAM-1, we examined the effects of CF6 on PECAM-1 expression and shear-mediated NO release, comparatively with those of angiotensin II (AngII). Treatment of human umbilical vein endothelial cells (HUVEC) and aortic endothelial cells (HAEC) with CF6 at 10(-7)M or AngII at 10(-7)M for 24h suppressed PECAM-1 gene and protein expression. CF6 or AngII activated c-Src at 15 min in HUVEC, and blockade of c-Src with PP1, its specific inhibitor, restored them. Efrapeptin, an inhibitor of ATPase, attenuated CF6-induced suppression of PECAM-1 gene expression by blockade of acidification, whereas superoxide dismutase or apocinin, an inhibitor of NADPH oxidase, blocked AngII-induced suppression of PECAM-1. Exposure of the cells to shear stress at 25 dynes/cm(2) for 30 min enhanced phosphorylation of eNOS at Ser(1177) and NO release. Pretreatment with CF6 or AngII for 24h attenuated them in HUVEC and HAEC. These suggest that CF6 downregulates PECAM-1 expression via c-Src activation and attenuates shear-induced NO release presumably by suppressing eNOS phosphorylation. PMID:18243211

  5. Ambient but not incremental oxidant generation effects intercellular adhesion molecule 1 induction by tumour necrosis factor alpha in endothelium.

    PubMed

    Arai, T; Kelly, S A; Brengman, M L; Takano, M; Smith, E H; Goldschmidt-Clermont, P J; Bulkley, G B

    1998-05-01

    Proinflammatory cytokines upregulate endothelial adhesion molecule expression, thereby initiating the microvascular inflammatory response. We re-evaluated the reported role of reactive oxygen metabolites (ROMs) in signalling upregulation of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by tumour necrosis factor alpha (TNF-alpha) in vitro. TNF-alpha upregulation of endothelial-cell ICAM-1 expression was inhibited by the cell-permeable antioxidants, or by the adenovirus-mediated intracellular overexpression of Cu,Zn-superoxide dismutase, but not by the exogenous (extracellular) administration of the cell-impermeable antioxidants, superoxide dismutase and/or catalase. This ICAM-1 upregulation was also inhibited by inhibitors of NADH dehydrogenase, cytochrome bc1 complex and NADPH oxidase. However, a measurable increase in net cellular ROM generation in response to TNF-alpha was not seen using four disparate sensitive ROM assays. Moreover, the stimulation of exogenous or endogenous ROM generation did not upregulate ICAM-1, nor enhance ICAM-1 upregulation by TNF-alpha. These findings suggest that an ambient background flux of ROMs, generated intracellularly, but not their net incremental generation, is necessary for TNF-alpha to induce ICAM-1 expression in endothelium in vitro. PMID:9560314

  6. Small-molecule inhibitors of ricin and Shiga toxins.

    PubMed

    Wahome, Paul G; Robertus, Jon D; Mantis, Nicholas J

    2012-01-01

    This review summarizes the successes and continuing challenges associated with the identification of small-molecule inhibitors of ricin and Shiga toxins, members of the RNA N-glycosidase family of toxins that irreversibly inactivate eukaryotic ribosomes through the depurination of a conserved adenosine residue within the sarcin-ricin loop (SRL) of 28S rRNA. Virtual screening of chemical libraries has led to the identification of at least three broad classes of small molecules that bind in or near the toxin's active sites and thereby interfere with RNA N-glycosidase activity. Rational design is being used to improve the specific activity and solubility of a number of these compounds. High-throughput cell-based assays have also led to the identification of small molecules that partially, or in some cases, completely protect cells from ricin- and Shiga-toxin-induced death. A number of these recently identified compounds act on cellular proteins associated with intracellular trafficking or pro-inflammatory/cell death pathways, and one was reported to be sufficient to protect mice in a ricin challenge model. PMID:22006183

  7. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    PubMed

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  8. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways

    PubMed Central

    LU, ZI-YUAN; CHEN, WAN-CHENG; LI, YONG-HUA; LI, LI; ZHANG, HANG; PANG, YAN; XIAO, ZHI-FANG; XIAO, HAO-WEN; XIAO, YANG

    2016-01-01

    The migration of circulating mesenchymal stem cells (MSCs) to injured tissue is an important step in tissue regeneration and requires adhesion to the microvascular endothelium. The current study investigated the underlying mechanism of MSC adhesion to endothelial cells during inflammation. In in vitro MSC culture, tumor necrosis factor-α (TNF-α) increased the level of vascular cell adhesion molecule-1 (VCAM-1) expression in a dose-dependent manner. The nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway inhibitors, pyrrolidine dithiocarbamate (PDTC), U0126 and SP600125, respectively, suppressed VCAM-1 expression induced by TNF-α at the mRNA and protein levels (P<0.05). TNF-α augmented the activation of NF-κB, ERK and JNK, and promoted MSC adhesion to human umbilical vein endothelial cells; however, the inhibitors of NF-κB, ERK and JNK did not affect this process in these cells. The results of the current study indicate that adhesion of circulating MSCs to the endothelium is regulated by TNF-α-induced VCAM-1 expression, which is potentially mediated by the NF-κB, ERK and JNK signaling pathways. PMID:27221006

  9. Intercellular Adhesion Molecule-1 (ICAM-1) in the Pathogenesis of Asthma

    NASA Astrophysics Data System (ADS)

    Wesgner, Craig D.; Gundel, Robert H.; Reilly, Patricia; Haynes, Nancy; Letts, L. Gordon; Rothlein, Robert

    1990-01-01

    Airway eosinophilia, epithelial desquamation, and hyperresponsiveness are characteristics of the airway inflammation underlying bronchial asthma. The contribution of intercellular adhesion molecule-1 (ICAM-1) to eosinophil migration and airway responsiveness was studied. ICAM-1 partially mediated eosinophil adhesion to endothelium in vitro and was upregulated on inflamed bronchial endothelium in vivo. ICAM-1 expression was also upregulated on inflamed airway epithelium in vitro and in vivo. In a primate model of asthma, a monoclonal antibody to ICAM-1 attenuated airway eosinophilia and hyperresponsiveness. Thus, antagonism of ICAM-1 may provide a therapeutic approach to reducing airway inflammation, hyperresponsiveness, and asthma symptoms.

  10. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma.

    PubMed

    Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo; Deshane, Jessy; Kuo, Hui-Chien; Jiang, Chunsun; Wang, Yong; Liu, Gang; Schwiebert, Lisa; Miyata, Toshio; Thannickal, Victor J

    2016-02-15

    Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling. PMID:26702150

  11. Small Molecule Proprotein Convertase Inhibitors for Inhibition of Embryo Implantation

    PubMed Central

    Ho, Huiting; Singh, Harmeet; Heng, Sophea; Nero, Tracy L.; Paule, Sarah; Parker, Michael W.; Johnson, Alan T.; Jiao, Guan-Sheng; Nie, Guiying

    2013-01-01

    Uterine proprotein convertase (PC) 6 plays a critical role in embryo implantation and is pivotal for pregnancy establishment. Inhibition of PC6 may provide a novel approach for the development of non-hormonal and female-controlled contraceptives. We investigated a class of five synthetic non-peptidic small molecule compounds that were previously reported as potent inhibitors of furin, another PC member. We examined (i) the potency of these compounds in inhibiting PC6 activity in vitro; (ii) their binding modes in the PC6 active site in silico; (iii) their efficacy in inhibiting PC6-dependent cellular processes essential for embryo implantation using human cell-based models. All five compounds showed potent inhibition of PC6 activity in vitro, and in silico docking demonstrated that these inhibitors could adopt a similar binding mode in the PC6 active site. However, when these compounds were tested for their inhibition of decidualization of primary human endometrial stromal cells, a PC6-dependent cellular process critical for embryo implantation, only one (compound 1o) showed potent inhibition. The lack of activity in the cell-based assay may reflect the inability of the compounds to penetrate the cell membrane. Because compound's lipophilicity is linked to cell penetration, a measurement of lipophilicity (logP) was calculated for each compound. Compound 1o is unique as it appears the most lipophilic among the five compounds. Compound 1o also inhibited another crucial PC6-dependent process, the attachment of human trophoblast spheroids to endometrial epithelial cells (a model for human embryo attachment). We thus identified compound 1o as a potent small molecule PC6 inhibitor with pharmaceutical potential to inhibit embryo implantation. Our findings also highlight that human cell-based functional models are vital to complement the biochemical and in silico analyses in the selection of promising drug candidates. Further investigations for compound 1o are warranted in

  12. Small molecule inhibitors of HCV replication from Pomegranate

    NASA Astrophysics Data System (ADS)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  13. Small molecule inhibitors of HCV replication from pomegranate.

    PubMed

    Reddy, B Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-01-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and'no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications. PMID:24958333

  14. Small molecule inhibitors of HCV replication from Pomegranate

    PubMed Central

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-01-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and‘no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications. PMID:24958333

  15. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  16. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses.

    PubMed

    Dustin, Michael L

    2007-10-01

    The immunological synapse is a stable adhesive junction between a polarized immune effector cell and an antigen-bearing cell. Immunological synapses are often observed to have a striking radial symmetry in the plane of contact with a prominent central cluster of antigen receptors surrounded by concentric rings of adhesion molecules and actin-rich projections. There is a striking similarity between the radial zones of the immunological synapse and the dynamic actinomyosin modules employed by migrating cells. Breaking the symmetry of an immunological synapse generates a moving adhesive junction that can be defined as a kinapse, which facilitates signal integration by immune cells while moving over the surface of antigen-presenting cells. PMID:17923403

  17. Inhibition of gamma-irradiation induced adhesion molecules and NO production by alginate in human endothelial cells.

    PubMed

    Son, E W; Cho, C K; Rhee, D K; Pyo, S

    2001-10-01

    Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with gamma-irradiation (gammaIR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannuronic acid-containing alginate (HMA) inhibits gammaIR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited gammaIR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules. PMID:11693551

  18. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  19. Insulin Resistance May Contribute to Upregulation of Adhesion Molecules on Endothelial Cells in Psoriatic Plaques.

    PubMed

    Schlüter, Kathrin; Diehl, Sandra; Lang, Victoria; Kaufmann, Roland; Boehncke, Wolf-Henning; Bürger, Claudia

    2016-02-01

    Psoriasis primarily affects the skin, but also has a systemic dimension and is associated with severe comorbidities. Since endothelial cells play an important role in psoriasis as well as in the development of cardiovascular comorbidities, we investigated whether a common mechanism, namely cytokine-induced insulin resistance, underlies both pathologies. Activation of the insulin pathway was studied in psoriatic skin and dermal endothelial cells. Expression of adhesion molecules was assessed by flow cytometry, as well as their biological function in flow chamber experiments. The phosphorylation status of Akt, a central kinase in the insulin pathway, suggests that endothelial cells within psoriatic plaques are rendered insulin resistant by pro-inflammatory cytokines. Insulin counteracts the expression of adhesion molecules, but has limited effects on interactions between T cells and endothelial cells. Pro-inflammatory cytokines induce insulin resistance in endothelial cells, which may contribute to the development of the inflammatory infiltrate in psoriasis. PMID:26315601

  20. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    SciTech Connect

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. )

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  1. Association between two single base polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease

    PubMed Central

    Habibi, Manijeh; Naderi, Nosratllah; Farnood, Alma; Balaii, Hedieh; Dadaei, Tahereh; Almasi, Shohreh; Zojaji, Homayoun; Asadzadeh Aghdae, Hamid; Zali, Mohammad Reza

    2016-01-01

    Aim: The present study evaluated the association between G241R and K469E polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease in Iranian population. Background: Inflammatory bowel disease including ulcerative colitis and Crohn’s disease, is a chronic idiopathic inflammatory disease of the gastrointestinal tract. There are two single base polymorphisms of intercellular adhesion molecule 1gene, G241R and K469E, reported to be associated with inflammatory disorders. Patients and methods: In this case-control study, 156 inflammatory bowel disease patients (110 ulcerative colitis and 46 Crohn’s disease patients) and 131 healthy controls were enrolled. Two polymorphisms of intercellular adhesion molecule 1 gene, including G241R and K469E, were assessed by polymerase chain reaction followed by restriction fragment length polymorphism. Results: The E469 allele of K469E polymorphism was significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 1.83; 95% CI: 1.13 to 2.96). The mutant homozygote genotype of K469E polymorphism (E/E) was also significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 4.23; 95% CI: 1.42 to 12.59). No difference was observed in the frequency of K469E polymorphism among ulcerative colitis patients compared to controls. There were no significant differences in genotype and allele frequencies of G241R polymorphism among ulcerative colitis and Crohn’s disease patients compared to control subjects. Conclusion: According to our findings, K469E polymorphism of intercellular adhesion molecule 1 gene may probably participate in the pathogenesis of Crohn’s disease in Iran. PMID:27099667

  2. Characterization of the inflammatory infiltrate and expression of endothelial cell adhesion molecules in lupus erythematosus tumidus.

    PubMed

    Kuhn, Annegret; Sonntag, Monika; Lehmann, Percy; Megahed, Mosaad; Vestweber, Dietmar; Ruzicka, Thomas

    2002-03-01

    Lupus erythematosus tumidus (LET) is a disease with characteristic clinical and histopathologic features that has not always been considered a subset of cutaneous lupus erythematosus (CLE). Although LET was first mentioned in the literature in 1930, it has rarely been documented, and immunohistochemical studies have never been performed. The aim of the present study was to characterize the inflammatory infiltrate and to analyze the expression of endothelial cell adhesion molecules in skin specimens from patients with LET and to compare the results with those from patients with other variants of CLE, such as discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE). Cryostat sections of lesional skin specimens from ten patients with LET demonstrated an infiltrate composed of more than 75% CD4+, CD8+, and HLA-DR+ cells. Interestingly, CD45RO+ cells, in contrast to CD45RA+ cells, were the prevailing inflammatory cell population. Compared with skin specimens from patients with DLE and SCLE, the mean expression of CD4+ and CD8+ cells was higher (but not significantly so) in LET, and no differences were observed with the other three antibodies. Furthermore, in contrast to controls, intercellular adhesion molecule-1, vascular adhesion molecule-1, E-selectin, and P-selectin showed the same expression pattern in skin specimens from patients with DLE, SCLE, and LET. In conclusion, the inflammatory infiltrate of LET primarily consists of CD4+/CD8+ lymphocytes. Furthermore, expression of endothelial cell adhesion molecules was equally upregulated in LET compared with the expression in DLE and SCLE, suggesting a similar immunopathomechanism of these subtypes of CLE. PMID:12071156

  3. The control of tumor vessels: what you would not expect from a neural adhesion molecule

    PubMed Central

    Angiolini, Francesca; Cavallaro, Ugo

    2015-01-01

    The neural adhesion molecule L1 is involved in development and plasticity of the nervous system. We recently reported aberrant expression of L1 in the vasculature of various human tumor types. Genetic and functional inactivation of endothelial L1 in a mouse tumor model resulted in decreased tumor angiogenesis and promoted vascular normalization. Thus, endothelial L1 might represent a novel therapeutic target for vessel-targeted treatments of solid tumors. PMID:27308446

  4. The surface energy of various biomaterials coated with adhesion molecules used in cell culture.

    PubMed

    Harnett, Elaine M; Alderman, John; Wood, Terri

    2007-03-15

    This study calculates the surface energy of polystyrene tissue culture plastic, silicon, silicon dioxide and indium tin oxide, all of which have applications in tissue culture. The adhesion molecules: collagen, fibronectin, poly-L-ornithine and poly-D-lysine, were coated onto these various surfaces, and the surface energy of the coated substrates calculated. Coating with fibronectin was found to produce a monopolar acidic surface while poly-D-lysine, poly-L-ornithine and collagen coatings were found to produce monopolar basic surfaces. The calculated surface energy components of the coated materials were then used to give a quantitative determination of the magnitude of their hydrophobicity. It was concluded that collagen, polylysine and polyornithine could provide a hydrophobic or hydrophilic surface depending on the underlying substrates they were coated on. The measurement obtained for fibronectin, unlike the other adhesion molecules, was independent of the underlying surface and remained hydrophobic on all substrates tested. Wetting experiments were carried out on the coated substrates, using the tissue culture medium Dulbeccos modified eagles medium, both containing and not containing serum proteins, and saline solution. These liquids that are commonly used in tissue culture, were then used to provide information how these liquids behave on various substrates coated with the adhesion molecules. Results show that fibronectin coated surfaces represent the most phobic surface for all three liquids. The findings of this study can be used in cell manipulation studies and provide a valuable data set for the biomedical and research industries. PMID:17207976

  5. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients

    PubMed Central

    Vargas-Robles, Hilda; Serrano, Alberto Maceda; Lozano-Nuevo, Jose Juan; Escalante-Acosta, Bruno Alfonso

    2009-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and is associated with inflammation, increased levels of circulating soluble adhesion molecules and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in normotensive type-2 diabetic patients. Results: We found significant correlations between ICAM-1 (r = 0.69, p < 0.001 95% IC 0.65 to 0.82) and VCAM-1 (r = 0.4, p < 0.03, 95% IC 0.65 to 0.82) levels and maximal carotid artery intimal-medial thickness, whereas no correlation was observed with E-selectin. Methods: We studied 30 normotensive type-2 diabetic patients in whom VCAM-1, ICAM-1 and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. Conclusion: Our results suggest that ICAM-1 and VCAM-1 are markers associated, and correlated with the degree of atherosclerosis in normotensive type-2 diabetic patients. PMID:19717975

  6. Differential Associations between CDH13 Genotypes, Adiponectin Levels, and Circulating Levels of Cellular Adhesive Molecules

    PubMed Central

    Teng, Ming-Sheng; Wu, Semon; Hsu, Lung-An; Chou, Hsin-Hua; Ko, Yu-Lin

    2015-01-01

    CDH13 gene variants with lower adiponectin levels are paradoxically associated with a more favorable metabolic profile. We investigated the statistical association between CDH13 locus variants and adiponectin levels by examining 12 circulating inflammation marker levels and adiposity status in 530 Han Chinese people in Taiwan. After adjustments for clinical covariates, adiponectin levels were positively associated with soluble vascular cell adhesion molecule-1 (sVCAM1) levels and negatively associated with adiposity status and levels of C-reactive protein (CRP), soluble E-selectin (sE-selectin), and soluble intercellular adhesion molecule-1 (sICAM1). In addition, minor alleles of the CDH13 rs12051272 polymorphism were found to have lower adiponectin levels and higher CRP, sE-selectin, sICAM1, and sVCAM1 levels as well as higher body mass indices and waist circumferences in participants (all P < 0.05). In a subgroup analysis stratified by sex, significant associations between CDH13 genotypes and sE-selectin levels occurred only in men (P = 3.9 × 10−4 and interaction P = 0.005). CDH13 locus variants and adiponectin levels are associated with circulating levels of cellular adhesion molecules and adiposity status in a differential manner that interacts with sex. These results provide further evidence for the crucial role of adiponectin levels and CDH13 gene variants in immune-mediated and inflammatory diseases. PMID:26600672

  7. Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines.

    PubMed

    Nagao, F; Suzui, M; Takeda, K; Yagita, H; Okumura, K

    2000-10-01

    The change of plasma catecholamine concentration correlates with the change of natural killer (NK) activity and NK cell number in peripheral blood mononuclear cells (PBMC) during and after moderate exercise. We studied the causal relation between exercise-induced catecholamine and expression of adhesion molecules on NK cells during and after exercise. The expression of CD44 and CD18 on CD3(-)CD56(+) NK cells was significantly reduced during exercise (P < 0.01). When PBMC were stimulated with 10(-8)M norepinephrine in vitro, the expression of these adhesion molecules on CD3(-)CD56(+) NK cells was downmodulated within 30 min. The binding capacity of NK cells to a CD44 ligand, hyaluronate, was reduced by the stimulation with norepinephrine (P < 0.01). The intravenous injection of norepinephrine in mice decreased the expression of CD44 and CD18 on CD3(-)NK1.1(+) cells (P < 0.01) and increased the number of CD3(-)NK1.1(+) cells in PBMC (P < 0.01). These findings suggest that exercise-induced catecholamines modulate the expression of adhesion molecules on NK cells, resulting in the mobilization of NK cells into the circulation. PMID:11003990

  8. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  9. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions.

    PubMed

    Quarmby, S; Kumar, P; Kumar, S

    1999-07-30

    The late onset of necrosis and fibrosis in normal tissues can be a serious consequence of radiotherapy in cancer patients. Because radiation-induced vascular injury precedes the tissue damage, vascular injury is regarded as crucial in the pathogenesis of tissue damage. An understanding of the processes responsible is essential to develop strategies for the amelioration of radiation-induced normal tissue damage. Leukocyte infiltration is commonly observed at sites of irradiation and is likely to lead to the acceleration and/or induction of parenchymal atrophy, fibrosis and necrosis in normal tissues following radiotherapy. The molecular mechanisms mediating leukocyte infiltration of tissues during inflammation have been studied extensively. It is now well established that cell adhesion molecules (CAMs) expressed on leukocytes and endothelial cells control the trafficking of leukocytes from the blood vessel lumen in these conditions. CAMs including E (endothelial), P (platelet) and L (leukocyte)-selectins, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), beta1 and beta2 integrins and CD31 are involved in the cascade of events resulting in rolling, arrest and transmigration of leukocytes through the inflamed endothelium. Whether a similar sequence of molecular events induces leukocyte sequestration in irradiated normal tissues is not known. This review is focussed on the role of CAMs in radiation-induced leukocyte infiltration of normal tissues and the therapeutic implications of these findings. PMID:10399956

  10. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals.

    PubMed

    Law, Chris O; Kirby, Rebecca J; Aghamohammadzadeh, Soheil; Furley, Andrew J W

    2008-08-01

    When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord (VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets. PMID:18550718

  11. The blot rolling assay: a method for identifying adhesion molecules mediating binding under shear conditions.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2006-01-01

    Adhesive interactions of cells with blood vessel walls under flow conditions are critical to a variety of processes, including hemostasis, leukocyte trafficking, tumor metastasis, and atherosclerosis. We have developed a new technique for the observation of binding interactions under shear, which we have termed the "blot rolling assay." In this method, molecules in a complex mixture are resolved by gel electrophoresis and transferred to a membrane. This membrane can be rendered semitransparent and incorporated into a parallel-plate flow chamber apparatus. Cells or particles bearing adhesion proteins of interest are then introduced into the chamber under controlled flow, and their interactions with individual components of the immobilized substrates can be visualized in real time. The substrate molecules can be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. Thus, this method allows for the identification, within a complex mixture and without previous isolation or purification, of both known and novel adhesion molecules capable of binding under shear conditions. PMID:16799202

  12. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  13. [Allergens-induced sensitization alters airway epithelial adhesion molecules expression in mice].

    PubMed

    Zeng, Dan; Tan, Mei-Ling; Xiang, Yang; Qin, Xiao-Qun; Zhu, Li-Ming; Dai, Ai-Guo

    2015-12-25

    To explore the relationship between the epithelial adhesion molecules and immune responses of airway epithelium, we observed the expression of integrin β4 and intercellular adhesion molecule-1 (ICAM-1) in the mice airway epithelium after sensitization with allergens. BALB/c mice were sensitized with intraperitoneal injection of ovalbumin (OVA) or house dust mite (HDM) and then developed airway hyper-responsiveness as determined by barometric whole-body plethysmography. Both OVA and HDM sensitization led to increases of the number of peripheral leukocytes as well as inflammatory cells infiltration in lungs. OVA sensitized mice showed more severe inflammatory cells infiltration than HDM sensitized mice. Immunohistochemistry analysis of mice lung tissues revealed that sensitization with both allergens also led to a decrease of integrin β4 expression and an increase of ICAM-1 expression in airway epithelia. OVA sensitized mice showed a more significant increase of ICAM-1 expression compared with HDM sensitized mice. siRNA mediated silencing of integrin β4 gene in 16HBE cells resulted in an up-regulation of ICAM-1 expression. Our results indicate a possible role of airway epithelial adhesion molecules in allergen-induced airway immune responses. PMID:26701635

  14. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  15. Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell–Cell Interactions Mediated by Classic Cadherins

    PubMed Central

    Litvinov, Sergey V.; Balzar, Maarten; Winter, Manon J.; Bakker, Hellen A.M.; Bruijn, Inge H. Briaire-de; Prins, Frans; Fleuren, Gert Jan; Warnaar, Sven O.

    1997-01-01

    The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in

  16. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  17. The Epithelial Cell Adhesion Molecule (Ep-CAM) as a Morphoregulatory Molecule Is a Tool in Surgical Pathology

    PubMed Central

    Winter, Manon J.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Litvinov, Sergey V.

    2003-01-01

    Cell adhesion receptors (CAMs) are actively involved in regulating various cell processes, including growth, differentiation, and cell death. Therefore, CAMs represent a large group of morphoregulating molecules, mediating cross-talk between cells and of cells with their environment. From this perspective, CAMs do contribute to cells and tissue organization, and in diseased tissue, to the disease development and biological characteristics. Therefore, observed changes in expression patterns of adhesion molecules may contribute to establish a diagnosis. A distinct shift in expression patterns in neoplastic epithelium has been described, for example for cadherins, integrins, and CD44. A relatively novel cell CAM, Ep-CAM, was first reported to be a pan-carcinoma antigen, although it is rather a marker of epithelial lineage. Several antibodies directed to Ep-CAM have been generated, and many epithelial tissues and their neoplastic appendages have been studied. This article outlines the results of these studies. Based on the results of these studies, we conclude that Ep-CAM immunohistochemistry can be a useful tool in the diagnosis of disturbed epithelial tissues. PMID:14633587

  18. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  19. Adhesion molecules in atopic dermatitis: patch tests elicited by house dust mite.

    PubMed

    Jung, K; Linse, F; Pals, S T; Heller, R; Moths, C; Neumann, C

    1997-10-01

    Different T-helper subsets, which are characterized by the secretion of distinct cytokines (Th1, Th2), have been found in house dust mite-exposed skin of sensitized individuals and in nickel-specific T lymphocytes from nickel contact allergic and non-allergic individuals. In order to evaluate the role which adhesion molecules may play in the homing of different T-cell subsets into allergen-exposed skin of atopic and normal individuals, we compared the expression pattern of adhesion molecules in patch test reactions to house dust mite antigen (D.pt.), nickel sulfate (Ni) and the irritant anthralin. Biopsies were taken at various time points after application of these agents and studied by immuncytochemistry. To exclude an endogenous difference in adhesion molecule expression in atopic and non-atopic skin, sequential biopsies from Ni patch tests of 2 normal individuals were also included in this study. The expression of E-selectin, P-selectin, CD31, VCAM-1 and ICAM-1 on endothelial cells and other cells in the skin was quantified by microscopic evaluation. Skin homing T cells were also quantified using antibodies to CD3, CD4, CD8, UCHL-1, L-selectin and the cutaneous lymphocyte antigen (CLA). Independent of the eliciting substance, all lesions showed an upregulation of all adhesion molecules tested, with the exception of CD62. The appearance of E-selectin and an increase in ICAM-1 and VCAM-1 expression were first observed at 12 h after application of the various agents. In parallel, the number of CLA+ and L-selectin+ lymphocytes increased steadily. No principle differences could be established between the various types of skin reactions in atopic individuals, nor did the skin of patients with AD differ from normal controls. Our results provide evidence that differential expression of adhesion molecules does not play a major part in observed differential homing of Th1 and Th2-cell subsets into patch test sites provoked by house dust mite and nickel sulfate in atopic

  20. Small-Molecule Inhibitors of the Myc Oncoprotein

    PubMed Central

    Fletcher, Steven; Prochownik, Edward V.

    2014-01-01

    The c-Myc (Myc) oncoprotein is among the most attractive of cancer targets given that is deregulated in the majority of tumors and that its inhibition profoundly affects their growth and/or survival. However, its role as a seldom-mutated transcription factor, its lack of enzymatic activity for which suitable pharmaceutical inhibitors could be crafted and its expression by normal cells have largely been responsible for its being viewed as “undruggable”. Work over the past several years, however, has begun to reverse this idea by allowing us to view Myc within the larger context of global gene regulatory control. Thus, Myc and its obligate heterodimeric partner, Max, are integral to the coordinated recruitment and post-translational modification of components of the core transcriptional machinery. Moreover, Myc over-expression re-programs numerous critical cellular functions and alters the cell’s susceptibility to their inhibition. This new knowledge has therefore served as a framework upon which to develop new pharmaceutical approaches. These include the continuing development of small molecules which act directly to inhibit the critical Myc-Max interaction, those which act indirectly to prevent Myc-directed post-translational modifications necessary to initiate productive transcription and those which inhibit vital pathways upon which the Myc-transformed cell is particularly reliant. PMID:24657798

  1. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  2. Arsenite enhances tumor necrosis factor-{alpha}-induced expression of vascular cell adhesion molecule-1

    SciTech Connect

    Tsou, T.-C. . E-mail: tctsou@nhri.org.tw; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-11-15

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-{alpha} (TNF-{alpha}), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-{alpha}-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-{kappa}B (NF-{kappa}B). To elucidate the role of GSH in regulation of AP-1, NF-{kappa}B, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific {gamma}-glutamylcysteine synthetase ({gamma}-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-{alpha}-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-{kappa}B activations by TNF-{alpha}. Moreover, we found that depletion of GSH would also attenuate the TNF-{alpha}-induced VCAM-1 expression with a down-regulation of the TNF-{alpha}-induced NF-{kappa}B activation and without significant effect on AP-1. On the other hand, the TNF-{alpha}-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-{kappa}B activity, suggesting that activation of both AP-1 and NF-{kappa}B was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-{alpha}-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-{kappa}B activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions

  3. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  4. Identification of a small molecule [beta]-secretase inhibitor that binds without catalytic aspartate engagement

    SciTech Connect

    Steele, Thomas G.; Hills, Ivory D.; Nomland, Ashley A.; de León, Pablo; Allison, Timothy; McGaughey, Georgia; Colussi, Dennis; Tugusheva, Katherine; Haugabook, Sharie J.; Espeseth, Amy S.; Zuck, Paul; Graham, Samuel L.; Stachel, Shawn J.

    2010-09-02

    A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.

  5. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.

    PubMed

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  6. Expression and structural studies of fasciclin I, an insect cell adhesion molecule.

    PubMed

    Wang, W C; Zinn, K; Bjorkman, P J

    1993-01-15

    Fasciclin I is a lipid-linked cell-surface glycoprotein that can act as a homophilic adhesion molecule in tissue culture cells. It is thought to be involved in growth cone guidance in the embryonic insect nervous system. To facilitate structure-function studies, we have generated Chinese hamster ovary (CHO) cell lines expressing high levels of cell surface grasshopper and Drosophila fasciclin I. Grasshopper fasciclin I released by phospholipase C cleavage was purified on an immunoaffinity column and single crystals were obtained that diffracted to approximately 5-A resolution. We also generated CHO and Drosophila S2 cell lines that produce a secreted form of fasciclin I. Fasciclin I expressed in S2 cells contains significantly less carbohydrate than the protein expressed in CHO cells, and may therefore be more suitable for crystallization. Biochemical characterization of purified fasciclin I indicates that the extracellular portion exists as a monomer in solution. Circular dichroism studies suggest that fasciclin I is primarily alpha-helical. Its structure is therefore different from other known cell adhesion molecules, which are predicted to be elongated beta-sheet structures. This suggests that fasciclin I may define a new structural motif used to mediate adhesive interactions between cell surfaces. PMID:8419345

  7. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  8. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  9. Adhesive hierarchy involving the cell adhesion molecules L1, CD24, and alpha 6 integrin in murine neuroblastoma N2A cells.

    PubMed

    Kadmon, G; Imhof, B A; Altevogt, P; Schachner, M

    1995-09-01

    The aggregation rate of resuspended neuroblastoma N2A cells depends on the density of the cells in culture prior to their resuspension: isolated, fast growing cells have a weak tendency to aggregate whereas confluent, slowly growing cells reaggregate very strongly. L1 antibody 557 strongly inhibited the slow aggregation of isolated, fast growing cells but not the reaggregation of confluent cells. CD24 (nectadrin) antibodies did not affect the aggregation of isolated or confluent cells but stimulated the aggregation of subconfluent cells. In all stages aggregation was not inhibited when antibody 557 was used together with CD24 antibodies at 37 degrees C in the presence of divalent cations. EA-1 antibody to alpha 6 integrin chain stimulated the aggregation of subconfluent cells but inhibited the reaggregation of confluent cells. Therefore, L1 appears to be an early recognition molecule mediating weak primary adhesion. CD24 appears to participate in activating secondary adhesion mechanisms during primary adhesion, possibly in cooperation with L1, and alpha 6 integrin seems to serve as a secondary, strong adhesion molecule that in early adhesion phases also mediates the activation of itself or of other adhesion mechanisms. These results indicate that neural cells might employ a strategy of adhesion cascade in establishing stable contacts. PMID:7669058

  10. Identification of two structural types of calcium-dependent adhesion molecules in the chicken embryo.

    PubMed Central

    Crittenden, S L; Rutishauser, U; Lilien, J

    1988-01-01

    By using an immunological and peptide mapping approach two calcium-dependent cell-cell adhesion molecules (calCAMs) in the embryonic chicken are compared. A third closely related molecule is identified and compared to the two calCAMs. One of the calCAMs appears to be identical to the previously identified adhesion molecule N-cadherin, originally identified in chicken retina and localized to neural tissues. The second is the same as L-CAM, originally identified in chicken liver but localized to a variety of epithelial tissues. The third, also found in liver, is similar to L-CAM but is much closer in structure to N-cadherin. It is, however, immunologically distinct from N-cadherin. We therefore refer to this newly identified molecule as CRM-L for cadherin-related molecule in liver. CRM-L, N-cadherin, and L-CAM are all cell-surface proteins with a similar stability to tryptic digestion in the presence of calcium. CRM-L has the same molecular mass and isoelectric point as N-cadherin but is distinct from L-CAM in these properties. Two-dimensional peptide maps of complete tryptic digests reveal that CRM-L shares 69% of its peptides with N-cadherin and 20% with L-CAM. On the basis of these data, we suggest that there are at least two distinguishable types of calCAMs in the chicken embryo: one represented by the closely related molecules N-cadherin and CRM-L, and another represented by L-CAM. Images PMID:3368455

  11. The Neural Cell Adhesion Molecules L1 and CHL1 Are Cleaved by BACE1 Protease in Vivo*

    PubMed Central

    Zhou, Lujia; Barão, Soraia; Laga, Mathias; Bockstael, Katrijn; Borgers, Marianne; Gijsen, Harry; Annaert, Wim; Moechars, Diederik; Mercken, Marc; Gevaer, Kris; De Strooper, Bart

    2012-01-01

    The β-site amyloid precursor protein-cleaving enzyme BACE1 is a prime drug target for Alzheimer disease. However, the function and the physiological substrates of BACE1 remain largely unknown. In this work, we took a quantitative proteomic approach to analyze the secretome of primary neurons after acute BACE1 inhibition, and we identified several novel substrate candidates for BACE1. Many of these molecules are involved in neuronal network formation in the developing nervous system. We selected the adhesion molecules L1 and CHL1, which are crucial for axonal guidance and maintenance of neural circuits, for further validation as BACE1 substrates. Using both genetic BACE1 knock-out and acute pharmacological BACE1 inhibition in mice and cell cultures, we show that L1 and CHL1 are cleaved by BACE1 under physiological conditions. The BACE1 cleavage sites at the membrane-proximal regions of L1 (between Tyr1086 and Glu1087) and CHL1 (between Gln1061 and Asp1062) were determined by mass spectrometry. This work provides molecular insights into the function and the pathways in which BACE1 is involved, and it will help to predict or interpret possible side effects of BACE1 inhibitor drugs in current clinical trials. PMID:22692213

  12. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment

    PubMed Central

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S.; Romaguera, Jorge; McCarty, Nami

    2016-01-01

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  13. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment.

    PubMed

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S; Romaguera, Jorge; McCarty, Nami

    2016-03-22

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  14. Neutrophil transmigration under shear flow conditions in vitro is junctional adhesion molecule-C independent.

    PubMed

    Sircar, Monica; Bradfield, Paul F; Aurrand-Lions, Michel; Fish, Richard J; Alcaide, Pilar; Yang, Lin; Newton, Gail; Lamont, Deanna; Sehrawat, Seema; Mayadas, Tanya; Liang, Tony W; Parkos, Charles A; Imhof, Beat A; Luscinskas, Francis W

    2007-05-01

    Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration. PMID:17442972

  15. Syntenin-1 and Ezrin Proteins Link Activated Leukocyte Cell Adhesion Molecule to the Actin Cytoskeleton*

    PubMed Central

    Tudor, Cicerone; te Riet, Joost; Eich, Christina; Harkes, Rolf; Smisdom, Nick; Bouhuijzen Wenger, Jessica; Ameloot, Marcel; Holt, Matthew; Kanger, Johannes S.; Figdor, Carl G.; Cambi, Alessandra; Subramaniam, Vinod

    2014-01-01

    Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side. PMID:24662291

  16. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. PMID:23910523

  17. Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption.

    PubMed Central

    Teraki, Y.; Moriya, N.; Shiohara, T.

    1994-01-01

    The mechanism(s) and the factor(s) that contribute to preferential localization of fixed drug eruption (FDE) lesions to certain skin sites remain speculative. Previous studies suggested that populations of T cells residing in the lesional epidermis may be involved in selective destruction of the epidermis in FDE. In this study, to define the earliest cellular and molecular events with potential relevance to activation of the epidermal T cells, expression of adhesion molecules on keratinocytes (KC) and vascular endothelium was examined sequentially in the lesional skin of FDE patients after challenge with the causative drug. Rapid and intense intercellular adhesion molecule-1 (ICAM-1) expression was induced on the vascular endothelium and KC as early as 1.5 hours after challenge, at which time E-selectin and vascular cell adhesion molecule-1 (VCAM-1) were not up-regulated. In vitro studies using skin organ culture showed that the lesional KC and endothelium responded more rapidly and intensely to express ICAM-1 to tumor necrosis factor-alpha or interferon-gamma compared with those in the nonlesional skin. Surprisingly, such selective induction of KC ICAM-1 restricted to the lesional skin was also observed after exposure to the causative drug alone in skin organ culture. Pretreatment of the lesional skin with anti-tumor necrosis factor completely abrogated in vitro induction of KC ICAM-1 expression by the drug. Drug-induced, TNF-alpha-dependent KC ICAM-1 expression in the lesional skin suggests that induction of ICAM-1 expression by the lesional KC after ingestion of the drug would probably provide a localized initiating stimulus for activation of the disease-associated epidermal T cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7915886

  18. Concentration of soluble adhesion molecules in cerebrospinal fluid and serum of epilepsy patients.

    PubMed

    Luo, Jing; Wang, Wei; Xi, Zhiqin; Dan, Chen; Wang, Liang; Xiao, Zheng; Wang, Xuefeng

    2014-12-01

    Mounting evidence supports the involvement of brain inflammation and the associated blood-brain barrier damage from which spontaneous and recurrent seizures originate. Detection of the soluble form of adhesion molecules (AM) has also been proven to predict outcomes in central nervous system (CNS) disorders. A recent study has shown that expression of AM in brain vessels was upregulated 24 h after kainic acid (KA) induced seizures. The aim of the present study was to investigate soluble AM levels in the cerebrospinal fluid (CSF) and serum of epilepsy patients. Paired CSF and serum samples were analyzed by sandwich enzyme-linked immunosorbent assay (ELISA) to determine the concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1). Increased serum concentrations of sICAM-1 were present in epileptic patients (41 localization-related of unknown etiology, 19 idiopathic generalized). Serum sICAM-1 level in drug-refractory epilepsy was elevated as compared to new diagnosis epilepsy and drug-responsive epilepsy. CSF sVCAM-1 and serum sVCAM-1 concentrations in the epilepsy group were higher as compared to the neurosis group. Moreover, CSF sVCAM-1 and serum sVCAM-1 concentrations in drug-refractory epilepsy were raised as compared to drug-responsive epilepsy and new diagnosis epilepsy. However, there were no significant differences in concentrations of CSF sICAM-1 between the epilepsy and neurosis groups. Our results suggest that sVCAM-1 and sICAM-1 could play an important role in the drug-refractory epilepsy. PMID:25001004

  19. Soluble cell adhesion molecules in human Chagas' disease: association with disease severity and stage of infection.

    PubMed

    Laucella, S; De Titto, E H; Segura, E L; Orn, A; Rottenberg, M E

    1996-12-01

    Formation of inflammatory lesions, one of the pathologic consequences of infection with Trypanosoma cruzi, involves intricate cell-cell interactions in which cell adhesion molecules (CAMs) are involved. Sera from 56 Chagas' disease patients grouped according to disease severity were studied for the presence of soluble intercellular adhesion molecule-1 (s-ICAM-1), soluble endothelial selectin (s-E-selectin), soluble vascular cell adhesion molecule-1 (s-VCAM-1), soluble platelet selectin (s-P-selectin), and s-CD44 were studied to determine if they could be used alone or in different combinations as markers for specific diagnostic procedures. Comparisons were made between congenitally, acutely, and chronically infected patients and aged-matched, noninfected individuals, as well as between patients with chronic Chagas' disease grouped according to the severity of their heart-related pathology. No differences in levels of s-CAMs were detected between sera from children with congenital T. cruzi infection and sera from noninfected infants born from chagasic mothers. In contrast, titers of s-ICAM-1, s-VCAM-1, s-selectin, and s-CD44 but not s-P-selectin were significantly increased in sera from patients during the acute phase of infection with T. cruzi. Titers of s-VCAM-1 and s-P-selectin were increased in chronically infected patients. A positive association with disease severity in sera from patients with chronic disease was observed for the levels of s-P-selectin. In contrast, we found no association between clinical symptoms and levels of s-VCAM-1. Patients with chronic disease with severe cardiopathy also showed diminished levels of s-CD44 in comparison with healthy controls or patients with mild disease. The results are discussed in the context of pathology of Chagas' disease. PMID:9025689

  20. Propranolol affects stress-induced leukocytosis and cellular adhesion molecule expression.

    PubMed

    Kühlwein, E C; Irwin, M R; Ziegler, M G; Woods, V L; Kennedy, B; Mills, P J

    2001-12-01

    In this study, the impact of the beta-adrenergic antagonist propranolol on resting and acute psychological- and physical-stress-induced circulating leukocyte numbers and the density of cellular adhesion molecules was investigated. In a randomized double-blind crossover design, 45 healthy volunteers performed a 15-min public speaking task and 21 subjects performed a 16-min bicycle exercise after 5 days of ingesting a placebo and after 5 days of ingesting 100 mg/day propranolol. One week of ingesting propranolol modestly elevated the numbers of CD62L+ (P<0.019) but not CD62L- T-lymphocytes. Moreover, propranolol preferentially blunted-psychological stress-induced increases in naïve T-helper (CD4+CD62L+; P<0.049) and naïve T-cytotoxic lymphocytes (CD8+CD62L+; P<0.003), as well as activated T-cytotoxic lymphocytes (CD8+CD29+; P<0.005). However, exercise-induced increases in leukocyte numbers were enhanced following propranolol treatment (P<0.04). In contrast to the effect on the numbers of adhesion-molecule-bearing cells, there was only a modest effect of propranolol on stress-induced alterations of the density of CD62L, CD54 and CD11a. In this study, propranolol treatment interfered with the adrenergic regulation of circulating leukocyte numbers by blunting psychological stress effects but enhancing exercise effects. Propranolol affected the cell activation status to a lesser extent, as reflected by the density of adhesion molecules. PMID:11822472

  1. Neurite Fasciculation Mediated by Complexes of Axonin-1 and Ng Cell Adhesion Molecule

    PubMed Central

    Kunz, Stefan; Spirig, Marianne; Ginsburg, Claudia; Buchstaller, Andrea; Berger, Philipp; Lanz, Rainer; Rader, Christoph; Vogt, Lorenz; Kunz, Beat; Sonderegger, Peter

    1998-01-01

    Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons. PMID:9852159

  2. Intercellular Adhesion Molecule-1–Dependent Neutrophil Adhesion to Endothelial Cells Induces Caveolae-Mediated Pulmonary Vascular Hyperpermeability

    PubMed Central

    Hu, Guochang; Vogel, Stephen M.; Schwartz, David E.; Malik, Asrar B.; Minshall, Richard D.

    2009-01-01

    We investigated the role of caveolae in the mechanism of increased pulmonary vascular permeability and edema formation induced by the activation of polymorphonuclear neutrophils (PMNs). We observed that the increase in lung vascular permeability induced by the activation of PMNs required caveolin-1, the caveolae scaffold protein. The permeability increase induced by PMN activation was blocked in caveolin-1 knockout mice and by suppressing caveolin-1 expression in rats. The response was also dependent on Src phosphorylation of caveolin-1 known to activate caveolae-mediated endocytosis in endothelial cells. To address the role of PMN interaction with endothelial cells, we used an intercellular adhesion molecule (ICAM)-1 blocking monoclonal antibody. Preventing the ICAM-1–mediated PMN binding to endothelial cells abrogated Src phosphorylation of caveolin-1, as well as the increase in endothelial permeability. Direct ICAM-1 activation by crosslinking recapitulated these responses, suggesting that ICAM-1 activates caveolin-1 signaling responsible for caveolae-mediated endothelial hyperpermeability. Our results provide support for the novel concept that a large component of pulmonary vascular hyperpermeability induced by activation of PMNs adherent to the vessel wall is dependent on signaling via caveolin-1 and increased caveolae-mediated transcytosis. Thus, it is important to consider the role of the transendothelial vesicular permeability pathway that contributes to edema formation in developing therapeutic interventions against PMN-mediated inflammatory diseases such as acute lung injury. PMID:18511851

  3. Regulation of platelet biology by platelet endothelial cell adhesion molecule-1.

    PubMed

    Jones, Chris I; Moraes, Leonardo A; Gibbins, Jonathan M

    2012-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation. PMID:22035359

  4. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    SciTech Connect

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  5. The diagnostic, predictive, and prognostic role of serum epithelial cell adhesion molecule (EpCAM) and vascular cell adhesion molecule-1 (VCAM-1) levels in breast cancer.

    PubMed

    Karabulut, S; Tas, F; Tastekin, D; Karabulut, M; Yasasever, C T; Ciftci, R; Güveli, M; Fayda, M; Vatansever, S; Serilmez, M; Disci, R; Aydıner, A

    2014-09-01

    The purpose of this study was to determine the clinical significance of vascular cell adhesion molecule-1 (VCAM-1) and epithelial cell adhesion molecule (EpCAM) in breast cancer (BC) patients. Ninety-six BC patients and 30 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich (enzyme-linked immunosorbent assay (ELISA)). The median age at diagnosis was 48 years (range 29-80 years). Majority of the patients (71 %) had luminal subtype, and 38.5 % had metastatic disease. Twenty-nine (30 %) patients showed tumor progression, and 20 (21 %) patients died during follow-up. Median progression-free survival (PFS) and overall survival (OS) were 8.6 ± 1.7 and 35.5 ± 1.5 months, respectively. The baseline serum EpCAM levels of the patients were significantly higher than those of the controls (p < 0.001). There was no significant difference in the serum levels of VCAM-1 between the patients and controls (p = 0.47). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p > 0.05). Patients with HER-2-positive and triple-negative tumors had significantly poorer PFS (p = 0.04 and p = 0.001, respectively), while metastatic disease and chemotherapy unresponsiveness had significantly adverse effect on OS analysis (p < 0.001 and p < 0.001, respectively). Neither serum VCAM-1 levels nor serum EpCAM levels were identified to have a prognostic role on either PFS or OS (VCAM-1 p = 0.76 and p = 0.32; EpCAM p = 0.16 and p = 0.69, respectively). Even though any predictive or prognostic role could not be determined for both markers, serum levels of EpCAM were found to have diagnostic value in BC patients. PMID:24891186

  6. Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    PubMed Central

    Murakami, Masato; Giampietro, Costanza; Giannotta, Monica; Corada, Monica; Torselli, Ilaria; Orsenigo, Fabrizio; Cocito, Andrea; d'Ario, Giovanni; Mazzarol, Giovanni; Confalonieri, Stefano; Di Fiore, Pier Paolo; Dejana, Elisabetta

    2011-01-01

    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target. PMID:21695058

  7. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules.

    PubMed Central

    Fraser, S E; Murray, B A; Chuong, C M; Edelman, G M

    1984-01-01

    The neural cell adhesion molecule (N-CAM) mediates neuron-neuron adhesion, is ubiquitous in the nervous system of developing and mature vertebrates, and undergoes major alterations in both amount and distribution during development. Perturbation of homophilic (N-CAM to N-CAM) binding by univalent fragments of specific anti-N-CAM antibodies has previously been found to alter neural tissue patterns in vitro. To show that significant alterations can also occur in vivo, antibodies to Xenopus N-CAM were embedded in agarose microcylinders and implanted in the tecta of juvenile Xenopus laevis frogs that were undergoing regeneration of their retinotectal projections; 1 week later, the effects of implantation on the projection pattern from the optic nerve were determined. Both polyclonal and monoclonal antibodies to N-CAM distorted the retinotectal projection pattern and greatly decreased the precision of the projection; these alterations recovered to near normal after an additional 3 weeks. Similar but smaller effects were obtained when normally developing froglets received tectal implants. In control animals, implants of immunoglobulins from preimmune serum and monoclonal antibodies not directed against N-CAM had little or no effect on the pattern. The results suggest that neuronal adhesion mediated by N-CAM is important in establishing and maintaining the precision and topography of neural patterns. Images PMID:6588385

  8. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. PMID:7704836

  9. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed Central

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. Images Fig. 2. Fig. 3. Fig. 4. PMID:7704836

  10. Diatomic molecules and metallic adhesion, cohesion, and chemisorption - A single binding-energy relation

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1983-01-01

    Potential-energy relations involving a few parameters in simple analytic forms have been found to represent well the energetics of a wide variety of diatomic molecules. However, such two-atom potential functions are not appropriate for metals. It is well known that, in the case of metals, there exist strong volume-dependent forces which can never be expressed as pairwise interactions. The present investigation has the objective to show that, in spite of the observation concerning metals, a single binding-energy relation can be found which accurately describes diatomic molecules as well as adhesion, cohesion, and chemisorption on metals. This universality reveals a commonality between the molecular and metallic bond.

  11. Use of Hydration Inhibitors to Improve Bond Durability of Aluminum Adhesive Joints

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Ahearn, J. S.; Matienzo, L. J.; Venables, J. D.

    1985-01-01

    An investigation is conducted of the mechanisms by which nitrilotris methylene phosphonic acid (NTMP) and related compounds are adsorbed onto oxidized aluminum surfaces to inhibit hydration and increase the durability of adhesive bonds formed with inhibitor-treated panels. P - O - Al bonds are identified as the basis of adsorption, and it is found that water initially adsorbed onto the etched aluminum surfaces is displaced by the NTMP. The hydration of the NTMP-treated surfaces occurs in three stages, namely the reverisble physisorption of water, the slow dissolution of NTMP followed by rapid hydration of the freshly exposed Al2O3 to AlOOH and further hydration of the surface to Al(OH)3. Five properties of an ideal inhibitor are identified.

  12. ENDOTHELIUM-DERIVED INHIBITORS EFFICIENTLY ATTENUATE THE AGGREGATION AND ADHESION RESPONSES OF REFRIGERATED PLATELETS

    PubMed Central

    Reddoch, Kristin M.; Montgomery, Robbie K.; Rodriguez, Armando C.; Meledeo, M. Adam; Pidcoke, Heather F.; Ramasubramanian, Anand K.; Cap, Andrew P.

    2016-01-01

    ABSTRACT Refrigeration of platelets (4°C) provides the possibility of improving transfusion practice over the current standard-of-care, room temperature (RT) storage. However, the increased level of platelet activation observed at 4°C in vitro is cause for concern of uncontrolled thrombosis in vivo. In this study, we assessed the safety of 4°C-stored platelets by evaluating their response to physiologic inhibitors prostacyclin (PGI2) and nitric oxide (NO). Apheresis platelets were collected from healthy donors (n = 4) and tested on Day 1 (fresh) or Day 5 (RT- and 4°C-stored) after treatment with PGI2 and NO or not for: thrombin generation; factor V (FV) activity; intracellular free calcium, cAMP and cGMP; ATP release; TRAP-induced activation; aggregation to ADP, collagen, and TRAP, and adhesion to collagen under arterial flow. Data were analyzed using two-way ANOVA and post-hoc Tukey test for multiple comparisons, with significance set at P < 0.05. Treatment with inhibitors increased intracellular cAMP and cGMP levels in fresh and stored platelets. Thrombin generation was significantly accelerated in stored platelets consistent with increased factor V levels, PS exposure, CD62P expression, intracellular free calcium, and ATP release. While treatment with inhibitors did not attenuate thrombin generation in stored platelets, activation, aggregation, and adhesion responses were inhibited by both PGI2 and NO in 4°C-stored platelets. In contrast, though RT-stored platelets were activated, they did not adhere or aggregate in response to agonists. Thus, refrigerated platelets maintain their intracellular machinery, are responsive to agonists and platelet function inhibitors, and perform hemostatically better than RT-stored platelets. PMID:26555740

  13. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  14. HOXA9 Methylation by PRMT5 Is Essential for Endothelial Cell Expression of Leukocyte Adhesion Molecules

    PubMed Central

    Bandyopadhyay, Smarajit; Harris, Daniel P.; Adams, Gregory N.; Lause, Gregory E.; McHugh, Anne; Tillmaand, Emily G.; Money, Angela; Willard, Belinda; Fox, Paul L.

    2012-01-01

    The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-α) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-α-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response. PMID:22269951

  15. Association of adipokines and adhesion molecules with indicators of obesity in women undergoing mammography screening

    PubMed Central

    2012-01-01

    Background The soluble cell adhesion molecules and adipokines are elevated in patients with obesity, hypertension, type 2 diabetes mellitus, breast cancer and atherosclerosis. Objective To investigate the relationship between anthropometric profile, dietary intake, lipid profile and fasting glycemia with serum levels of adipokines (adiponectin and PAI-1) and adhesion molecules (ICAM-1 and VCAM-1) in women without breast cancer undergoing routine mammographic screening. Design Transversal study. Subjects One hundred and forty-five women over 40-years old participated in this study. Results In 39.3% of cases the BMI was above 30 kg/m2; 46.9% had hypertension, 14.5% had type 2 Diabetes Mellitus, 31.7% had dyslipidemia and 88.3% presented a waist-to-hip ratio ≥ 0.8. A linear correlation was found between serum levels of PAI-1 and triglycerides, between serum levels of PAI-1 and WHR and between serum levels of VCAM-1 and BMI. Conclusion We found a high prevalence of obesity and metabolic syndrome. PAI-1 and VCAM-1 levels were correlated with clinical indicators of obesity and overweight. PMID:23113882

  16. Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice

    PubMed Central

    Huang, Jin; Filipe, Anne; Rahuel, Cécile; Bonnin, Philippe; Mesnard, Laurent; Guérin, Coralie; Wang, Yu; Le Van Kim, Caroline; Colin, Yves; Tharaux, Pierre-Louis

    2014-01-01

    Migration of circulating leukocytes from the vasculature into the surrounding tissue is an important component of the inflammatory response. Among the cell surface molecules identified as contributing to leukocyte extravasation is VCAM-1, expressed on activated vascular endothelium, which participates in all stages of leukocyte–endothelial interaction by binding to leukocyte surface expressed integrin VLA-4. However, not all VLA-4-mediated events can be linked to VCAM-1. A novel interaction between VLA-4 and endothelial Lutheran (Lu) blood group antigens and basal cell adhesion molecule (BCAM) proteins has been recently shown, suggesting that Lu/BCAM may have a role in leukocyte recruitments in inflamed tissues. Here, we assessed the participation of Lu/BCAM in the immunopathogenesis of crescentic glomerulonephritis. High expression of Lu/BCAM in glomeruli of mice with rapidly progressive glomerulonephritis suggests a potential role for the local expression of Lu/BCAM in nephritogenic recruitment of leukocytes. Genetic deficiency of Lu/BCAM attenuated glomerular accumulation of T cells and macrophages, crescent formation, and proteinuria, correlating with reduced fibrin and platelet deposition in glomeruli. Furthermore, we found a pro-adhesive interaction between human monocyte α4β1 integrin and Lu/BCAM proteins. Thus, Lu/BCAM may have a critical role in facilitating the accumulation of monocytes and macrophages, thereby exacerbating renal injury. PMID:24429403

  17. FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules.

    PubMed

    Williams, E J; Mittal, B; Walsh, F S; Doherty, P

    1995-11-01

    We have cultured cerebellar neurons on monolayers of cortical astrocytes in control medium or medium containing recombinant basic fibroblast growth factor (FGF). FGF was found to inhibit neurite outgrowth, with a significant effect seen at 0.5 ng/ml and a maximal effect at 10 ng/ml. FGF increased the production of arachidonic acid (AA) in cerebellar neurons, and when added directly to cultures or generated endogenously via activation of phospholipase A2 using melittin, this second messenger could mimic the inhibitory effect of FGF. FGF and AA could also specifically inhibit neurite outgrowth stimulated by three cell adhesion molecules (NCAM, N-cadherin and L1) expressed in transfected fibroblasts, or in the case of L1 bound to a tissue culture substratum. These data demonstrate that, in certain cellular contexts, FGF can act as an inhibitory cue for axonal growth and that arachidonic acid is the second messenger responsible for this activity. We discuss the possibility that arachidonic acid inhibits neurite outgrowth by desensitising the second messenger pathway underlying neuronal responsiveness to cell adhesion molecules. PMID:8586663

  18. Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression

    PubMed Central

    Sanz, María-Jesús; Nabah, Yafa Naim Abu; Cerdá-Nicolás, Miguel; O'Connor, José-Enrique; Issekutz, Andrew C; Cortijo, Julio; Morcillo, Esteban J

    2004-01-01

    Macrolides have long been used as anti-bacterial agents; however, there is some evidence that may exert anti-inflammatory activity. Therefore, erythromycin was used to characterize the mechanisms involved in their in vivo anti-inflammatory activity. Erythromycin pretreatment (30 mg kg−1 day−1 for 1 week) reduced the lipopolysaccharide (LPS; intratracheal, 0.4 mg kg−1)-induced increase in neutrophil count and elastase activity in the bronchoalveolar lavage fluid (BALF) and lung tissue myeloperoxidase activity, but failed to decrease tumor necrosis factor-α and macrophage-inflammatory protein-2 augmented levels in BALF. Erythromycin pretreatment also prevented lung P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mRNA upregulation in response to airway challenge with LPS. Mesentery superfusion with LPS (1 μg ml−1) induced a significant increase in leukocyte–endothelial cell interactions at 60 min. Erythromycin pretreatment abolished the increases in these parameters. LPS exposure of the mesentery for 4 h caused a significant increase in leukocyte rolling flux, adhesion and emigration, which were inhibited by erythromycin by 100, 93 and 95%, respectively. Immunohistochemical analysis showed that LPS exposure of the mesentery for 4 h caused a significant enhancement in P-selectin, E-selectin, ICAM-1 and VCAM-1 expression that was downregulated by erythromycin pretreatment. Flow cytometry analysis indicated that erythromycin pretreatment inhibited LPS-induced CD11b augmented expression in rat neutrophils. In conclusion, erythromycin inhibits leukocyte recruitment in the lung and this effect appears mediated through downregulation of CAM expression. Therefore, macrolides may be useful in the control of neutrophilic pulmonary diseases. PMID:15665859

  19. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    PubMed

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript. PMID:25269561

  20. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: Approaches and Challenges

    PubMed Central

    2015-01-01

    Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors has resulted in significantly fewer small molecule substrate phosphorylation site inhibitors being reported compared to ATP-competitive inhibitors. This review surveys reported substrate phosphorylation site inhibitors and methods that can be applied to the discovery of such inhibitors, including a discussion of the challenges inherent to these screening methods. PMID:25494294

  1. Targeting JNK by a New Curcumin Analog to Inhibit NF-kB-Mediated Expression of Cell Adhesion Molecules Attenuates Renal Macrophage Infiltration and Injury in Diabetic Mice

    PubMed Central

    Cai, Lu; Ren, Luqing; Tang, Longguang; Wang, Jingying; Zhao, Yunjie; Wang, Yonggang; Liu, Quan; Li, Xiaokun; Liang, Guang

    2013-01-01

    Macrophage infiltration contributes to the pathogenesis of diabetic renal injury. However, the regulatory mechanisms between macrophage infiltration and epithelial cell activation are still unclear. Our previous study found that C66, a novel curcumin analog, was able to inhibit inflammatory cytokine expression in vitro and in vivo. This study further elucidated whether C66 can prevent glucose-induced renal epithelial activation and inflammatory macrophage infiltration by a MAPK/NF-κB medicated mechanism. Our data show that pretreatment with C66 not only significantly reduced high glucose (HG)-induced over-expressions of VCAM-1, ICAM-1 and MCP-1, but also remarkably inhibited NF-κB activation, MAPKs phosphorylation, and subsequently macrophage adhesion in renal epithelial NRK-52E cells. Furthermore, we find that MAPKs, especially JNK, play important roles in HG-induced NF-κB activation, which regulates the over-expression of adhesion molecules in HG-stimulated NRK-52E cells. A molecular docking predicted that C66 may target JNK2, which leads to its anti-inflammatory actions. In vivo, administration of C66 or JNK special inhibitor SP600125 at 5 mg/kg markedly decreased diabetes-induced renal adhesion molecule expression, NF-κB activation, inflammatory cell infiltration, and pathological indexes in the kidneys of diabetic mice. These findings provide a perspective on the renoprotective effects of C66 in diabetes, and outline a novel therapeutic strategy of JNK inhibition for the treatment of diabetic nephropathy. PMID:24260158

  2. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  3. Glucosyltransferases of Viridans Group Streptococci Modulate Interleukin-6 and Adhesion Molecule Expression in Endothelial Cells and Augment Monocytic Cell Adherence

    PubMed Central

    Yeh, Chiou-Yueh; Chen, Jen-Yang; Chia, Jean-San

    2006-01-01

    Recruitment of monocytes plays important roles during vegetation formation and endocardial inflammation in the pathogenesis of infective endocarditis (IE). Bacterial antigens or modulins can activate endothelial cells through the expression of cytokines or adhesion molecules and modulate the recruitment of leukocytes. We hypothesized that glucosyltransferases (GTFs), modulins of viridans group streptococci, may act directly to up-regulate the expression of adhesion molecules and also interleukin-6 (IL-6) to augment monocyte attachment to endothelial cells. Using primary cultured human umbilical vein endothelial cells (HUVECs) as an in vitro model, we demonstrated that GTFs (in the cell-bound or free form) could specifically modulate the expression of IL-6, and also adhesion molecules, in a dose- and time-dependent manner. Results of inhibition assays suggested that enhanced expression of adhesion molecules was dependent on the activation of nuclear factor κB (NF-κB) and extracellular signal-regulated kinase and that p38 mitogen-activated protein kinase pathways also contributed to the release of IL-6. Streptococcus-infected HUVECs or treatment with purified IL-6 plus soluble IL-6 receptor α enhanced the expression of ICAM-1 and the adherence of the monocytic cell line U937. These results suggest that streptococcal GTFs might play an important role in recruiting monocytic cells during inflammation in IE through induction of adhesion molecules and IL-6, a cytokine involved in transition from neutrophil to monocyte recruitment. PMID:16428777

  4. Inhibition of smooth muscle force generation by focal adhesion kinase inhibitors in the hyperplastic human prostate.

    PubMed

    Kunit, Thomas; Gratzke, Christian; Schreiber, Andrea; Strittmatter, Frank; Waidelich, Raphaela; Rutz, Beata; Loidl, Wolfgang; Andersson, Karl-Erik; Stief, Christian G; Hennenberg, Martin

    2014-10-01

    Smooth muscle contraction may be critical for lower urinary tract symptoms (LUTS) in patients with benign prostate hyperplasia and requires stable anchorage of the cytoskeleton to the cell membrane. These connections are regulated by focal adhesion kinase (FAK). Here, we addressed the involvement of FAK in the regulation of smooth muscle contraction in hyperplastic human prostate tissues. Prostate tissues were obtained from radical prostatectomy. Expression of FAK and focal adhesion proteins was assessed by Western blot analysis and immunohistochemical stainings. Effects of the FAK inhibitors PF-573228 and Y-11 on contraction of prostate strips were examined in the organ bath. Expression of FAK and focal adhesion proteins (integrin-5α, paxilin, and c-Src) was detected by Western blot analysis in prostate samples. By double immunofluorescence staining with calponin and pan-cytokeratin, expression of FAK was observed in stromal and epithelial cells. Immunoreactivity for FAK colocalized with integrin-5α, paxilin, talin, and c-Src. Stimulation of prostate tissues with the α1-adrenergic agonist phenylephrine increased the phosphorylation state of FAK at Tyr³⁹⁷ and Tyr⁹²⁵ with different kinetics, which was blocked by the α1-adrenoceptor antagonist tamsulosin. Norepinephrine and phenylephrine induced concentration-dependent contractions of prostate strips. Both FAK inhibitors PF-573228 and Y-11 significantly inhibited norepinephrine- and phenylephrine-induced contractions. Finally, PF-573228 and Y-11 inhibited contractions induced by electric field stimulation, which was significant at the highest frequency. In conclusion, α1-adrenergic smooth muscle contraction or its regulation involves FAK in the human prostate. Consequently, FAK may be involved in the pathophysiology of LUTS and in current or future LUTS therapies. PMID:25056351

  5. DNA sequences, recombinant DNA molecules and processes producing human phospholipase inhibitor polypeptides

    SciTech Connect

    Wallner, B.P.; Pepinsky, R.B.; Garwin, J.L.

    1989-11-07

    This patent describes a recombinant DNA molecule. In comprises a DNA sequence coding for a phospholopase inhibitor polypeptide and being selected from the group consisting of: the cDNA insert of ALC, DNA sequences which code on expression for a phospholopase inhibitor, and DNA sequences which are degenerate as a result of the genetic code to either of the foregoing DNA sequences and which code on expression for a phospholipase inhibitor.

  6. Novel strategies for the treatment of inflammatory bowel disease: Selective inhibition of cytokines and adhesion molecules

    PubMed Central

    Nakamura, Kazuhiko; Honda, Kuniomi; Mizutani, Takahiro; Akiho, Hirotada; Harada, Naohiko

    2006-01-01

    The etiology of inflammatory bowel disease (IBD) has not yet been clarified and immunosuppressive agents which non-specifically reduce inflammation and immunity have been used in the conventional therapies for IBD. Evidence indicates that a dysregulation of mucosal immunity in the gut of IBD causes an overproduction of inflammatory cytokines and trafficking of effector leukocytes into the bowel, thus leading to an uncontrolled intestinal inflammation. Such recent advances in the understanding of the pathogenesis of IBD created a recent trend of novel biological therapies which specifically inhibit the molecules involved in the inflammatory cascade. Major targets for such treatment are inflammatory cytokines and their receptors, and adhesion molecules. A chimeric anti-TNF-α monoclonal antibody, infliximab, has become a standard therapy for CD and it is also likely to be beneficial for UC. Several anti-TNF reagents have been developed but most of them seem to not be as efficacious as infliximab. A humanized anti-TNF monoclonal antibody, adalimumab may be useful for the treatment of patients who lost responsiveness or developed intolerance to infliximab. Antibodies against IL-12 p40 and IL-6 receptor could be alternative new anti-cytokine therapies for IBD. Anti-interferon-γ and anti-CD25 therapies were developed, but the benefit of these agents has not yet been established. The selective blocking of migration of leukocytes into intestine seems to be a nice approach. Antibodies against α4 integrin and α4β7 integrin showed benefit for IBD. Antisense oligonucleotide of intercellular adhesion molecule 1 (ICAM-1) may be efficacious for IBD. Clinical trials of such compounds have been either recently reported or are currently underway. In this article, we review the efficacy and safety of such novel biological therapies for IBD. PMID:16937430

  7. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability.

    PubMed

    Wong, Donald; Prameya, Rukmini; Dorovini-Zis, Katerina

    2007-03-01

    The mechanisms by which polymorphonuclear leukocytes (PMN) cross the human blood-brain barrier have not been fully elucidated. Using a well characterized in vitro model of the human BBB, we examined the role of endothelial cell adhesion molecules on the adhesion and transendothelial migration of PMN across primary cultures of human brain microvessel endothelial cells (HBMEC). A small number of PMN (0.06%) adhered to unstimulated HBMEC, and the basal adhesion was not affected by anti-adhesion molecule antibodies. Treatment of HBMEC with tumor necrosis factor (TNF)-alpha resulted in increased PMN adhesion that was significantly inhibited by blocking antibodies to E-selectin and ICAM-1, but not VCAM-1 or PECAM-1. A very small number of adherent PMN migrated across unstimulated HBMEC monolayers. Migration increased 2 to 20 fold following stimulation of HBMEC with TNF-alpha. Monoclonal antibody blocking studies showed that PMN used ICAM-1, but not VCAM-1, E-selectin or PECAM-1 to move across activated monolayers. Anti-adhesion molecule antibodies did not diminish the basal PMN migration. Ultrastructurally, PMN often aggregated on top and between adjacent endothelial cells and adhered by first extending pseudopodia along the apical endothelial surface. They then flattened and inserted themselves between endothelial cells in order to migrate across the monolayers. At the end of the migration period, the cultures resumed their continuity with no evidence of disruption. Transendothelial migration of PMN decreased the transendothelial electrical resistance and increased the permeability to horseradish peroxidase, which penetrated alongside the migrating leukocytes. A blocking antibody to ICAM-1 that greatly decreased migration, had no effect on the permeability changes. These studies provide insights into the mechanisms that regulate the entry of PMN into the brain and the increased permeability of the BBB in CNS inflammation. PMID:17291598

  8. Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*

    PubMed Central

    Fu, Changliang; Tong, Chunfang; Wang, Manliu; Gao, Yuxin; Zhang, Yan; Lü, Shouqin; Liang, Shile; Dong, Cheng; Long, Mian

    2011-01-01

    Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics. PMID:21840991

  9. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism. PMID:26331549

  10. Sphingosine 1-phosphate induces platelet/endothelial cell adhesion molecule-1 phosphorylation in human endothelial cells through cSrc and Fyn.

    PubMed

    Huang, Yu-Ting; Chen, Shee-Uan; Chou, Chia-Hong; Lee, Hsinyu

    2008-08-01

    Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells. PMID:18502612

  11. A comparative phenotypical analysis of rheumatoid nodules and rheumatoid synovium with special reference to adhesion molecules and activation markers

    PubMed Central

    Elewaut, D.; De Keyser, F.; De Wever, N.; Baeten, D.; Van Damme, N.; Verbruggen, G.; Cuvelier, C.; Veys, E.

    1998-01-01

    OBJECTIVES—(1)To analyse the in situ expression of adhesion molecules in rheumatoid nodules. (2) To compare the endothelial expression of adhesion molecules in synovial tissue and subcutaneous nodules obtained from the same patients. (3) To compare the expression of adhesion molecules and activation markers on T cell lines from nodules and synovium.
METHODS—(1) Immunohistochemical analysis by APAAP technique of E selectin, CD44, ICAM-1, PECAM-1, and VCAM-1 was performed on 10 rheumatoid nodules from seven patients with rheumatoid arthritis (RA); nodules and synovium were simultaneously analysed from three patients. (2) T cell lines were generated from RA nodules (n=7) and synovium (n=7) by interleukin 2 expansion, and subsequently characterised by flow cytometry for surface expression of αEβ7, α4β7, CD44, L selectin, LFA-1a, PECAM-1, and CD30.
RESULTS—(1) In rheumatoid nodules, the palisading layer strongly stains for ICAM-1 and PECAM-1, but less pronounced for CD44. VCAM-1 staining was usually negative. ICAM-1 is upregulated in the vessels surrounding the central zone of fibrinoid necrosis. The immunohistological picture in different nodules derived from the same patient was similar. (2) The endothelial expression of adhesion molecules is comparable in RA nodules and synovium on an individual level, except for E selectin, which is overexpressed in nodule endothelium. (3) T cell lines from nodules and synovium display similar adhesion molecule profiles. However, the expression of CD30, a T cell activation marker linked with Th2 subsets, is higher in nodules compared with synovium.
CONCLUSION—These data support a recirculation hypothesis of T cells between articular and extra-articular manifestations in RA, although the activation state of the T cells in each of these localisations may differ.

 Keywords: T cells; adhesion molecules; rheumatoid nodules; rheumatoid synovium PMID:9797554

  12. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  13. Determination of the inhibitor dissociation constant of an individual unmodified enzyme molecule in free solution.

    PubMed

    Crawford, Jeremie J; Hollett, Joshua W; Craig, Douglas B

    2016-08-01

    Single enzyme molecule assays on E. coli β-galactosidase were performed using a capillary electrophoresis-based method. Three types of assays were performed. The catalytic rate of 20 individual molecules was assayed in duplicate in the presence of 50 μM substrate. The ratio of rates for the second incubation relative to the first was 0.96 ± 0.03, showing the reproducibility of the method. In the second assay, the rates were determined in the absence and presence of 210 μM L-ribose, a competitive inhibitor. The ratio of the rate in the presence of inhibitor to that in its absence for 19 individual molecules was 0.44 ± 0.23. This large relative standard deviation suggests that each individual enzyme molecule was affected to a different extent by the presence of the inhibitor, which is consistent with KI being heterogeneous. To estimate KI for individual molecules, a third assay was performed. Each molecule was incubated in the presence of 30 and 50 μM substrate and then in the presence of 50 μM substrate plus 210 μM inhibitor. Comparison of the rates in the two substrate concentrations allowed for the determination of the individual Km of each molecule. From this value and the difference in rates in the presence and absence of inhibitor, the individual molecule KI values were determined. This value was found to differ between individual molecules and was found to increase with an increase in Km . Modeling showed that a heterogeneity in KI results in an alteration in the Michaelis-Menten curve for a population of enzymes in the presence of a competitive inhibitor. PMID:27271375

  14. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues.

    PubMed Central

    Jin, L.; Hemperly, J. J.; Lloyd, R. V.

    1991-01-01

    The neural cell adhesion molecule (N-CAM) is a group of cell surface glycoproteins involved in direct cell--cell adhesion. N-CAM expression in normal and neoplastic tissues was examined with specific antibodies and oligonucleotide probes by immunohistochemistry and in situ hybridization. Most neuroendocrine cells and tumors with secretory granules expressed N-CAM protein and mRNA. Parathyroid adenomas (4) were somewhat unusual, because N-CAM mRNA, but not protein, was detected in some of these benign neoplasms. Most non-neuroendocrine cells and tumors did not express N-CAM, although uterine smooth muscle and an adrenal cortical carcinoma were both positive. Western blots disclosed proteins of 180, 140, and 120 kd in normal adult brain, whereas two pheochromocytomas, a null cell adenoma, and a gastrinoma had proteins of approximately 180 and 140 kd. These results indicate that N-CAM protein and mRNA are widely expressed in neuroendocrine cells and neoplasms. N-CAM oligonucleotide probes as well as antibodies against N-CAM can be used as broad-spectrum neuroendocrine markers. In addition, these molecular probes can be used to examine the role of N-CAM in the development and regulation of neuroendocrine tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2012179

  15. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  16. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation.

    PubMed

    Capkovic, Katie L; Stevenson, Severin; Johnson, Marc C; Thelen, Jay J; Cornelison, D D W

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression. PMID:18308302

  17. N-glycosylation controls the function of junctional adhesion molecule-A

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Graham, David M.; Wittchen, Erika; Bear, James E.; Burridge, Keith

    2015-01-01

    Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein’s functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein’s ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A–mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A’s many functions. PMID:26224316

  18. The homophilic adhesion molecule sidekick-1 contributes to augmented podocyte aggregation in HIV-associated nephropathy.

    PubMed

    Kaufman, Lewis; Yang, Guozhe; Hayashi, Kayo; Ashby, James R; Huang, Li; Ross, Michael J; Klotman, Mary E; Klotman, Paul E

    2007-05-01

    The collapsing glomerulopathy of HIV-associated nephropathy (HIVAN) is characterized by podocyte dedifferentiation and proliferation. In affected glomeruli, proliferating podocytes adhere in aggregates to form glomerular pseudocrescents and fill an enlarged Bowman's space. Previously, we reported that sidekick-1 (sdk-1), an adhesion molecule of the immunoglobulin superfamily, was highly up-regulated in HIV-1 transgenic podocytes. In the current work, we explore how sdk-1 overexpression contributes to HIVAN pathogenesis. Murine podocytes infected with HIV-1 virus expressed significantly more sdk-1 than control-infected cells. Podocytes stably transfected with an sdk-1 expression construct grew in large aggregates with a simplified morphology characterized by a disorganized actin cytoskeleton, changes similar to podocytes in HIVAN. In contrast to controls, HIV-1 infected podocytes adhered to stably transfected sdk-1 podocyte aggregates in mixing studies. Furthermore, substrate-released cell sheets of wild-type podocytes were readily dissociated by mechanical stress, whereas HIV-1 podocytes remained in aggregates. The number of HIV-1 podocyte aggregates was significantly reduced in cells expressing a short hairpin RNA (shRNA) construct specific for sdk-1 compared with cells expressing control shRNA. Finally, in a HIVAN mouse model, sdk-1 protein was detected in podocytes in collapsed glomerular tufts and in glomerular pseudocrescents. These findings suggest that sdk-1 is an important mediator of cellular adhesion in HIV-infected podocytes and may contribute to podocyte clustering that is characteristic of pseudocrescent formation in HIVAN. PMID:17307840

  19. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  20. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes.

    PubMed

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R

    2015-09-01

    Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons. PMID:25988664

  1. Circulating adhesion molecules after short-term exposure to particulate matter among welders

    PubMed Central

    Fang, S C; Eisen, E A; Cavallari, J M; Mittleman, M A; Christiani, D C

    2011-01-01

    Background Studies from several countries indicate that welders experience increased risk of mortality and morbidity from ischaemic heart disease. Although the underlying mechanisms are unclear, vascular responses to particulate matter contained in welding fumes may play a role. To investigate this, we studied the acute effects of welding fume exposure on the endothelial component of vascular function, as measured by circulating adhesion molecules involved in leukocyte adhesion (sICAM-1 and sVCAM-1) and coagulation (vWF). Methods A panel of 26 male welders was studied repeatedly across a 6 h work-shift on a high exposure welding day and/or a low exposure non-welding day. Personal PM2.5 exposure was measured throughout the work-shift. Blood samples were collected in the morning (baseline) prior to the exposure period, immediately after the exposure period, and the following morning. To account for the repeated measurements, we used linear mixed models to evaluate the effects of welding (binary) and PM2.5 (continuous) exposure on each blood marker, adjusting for baseline blood marker concentration, smoking, age and time of day. Results Welding and PM2.5 exposure were significantly associated with a decrease in sVCAM-1 in the afternoon and the following morning and an increase in vWF in the afternoon. Conclusions The data suggest that welding and short-term occupational exposure to PM2.5 may acutely affect the endothelial component of vascular function. PMID:19736177

  2. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina.

    PubMed

    Yamagata, Masahito; Weiner, Joshua A; Sanes, Joshua R

    2002-09-01

    A major determinant of specific connectivity in the central nervous system is that synapses made by distinct afferent populations are restricted to particular laminae in their target area. We identify Sidekick (Sdk)-1 and -2, homologous transmembrane immunoglobulin superfamily molecules that mediate homophilic adhesion in vitro and direct laminar targeting of neurites in vivo. sdk-1 and -2 are expressed by nonoverlapping subsets of retinal neurons; each sdk is expressed by presynaptic (amacrine and bipolar) and postsynaptic (ganglion) cells that project to common inner plexiform (synaptic) sublaminae. Sdk proteins are concentrated at synaptic sites, and Sdk-positive synapses are restricted to the 2 (of > or =10) sublaminae to which sdk-expressing cells project. Ectopic expression of Sdk in Sdk-negative cells redirects their processes to a Sdk-positive sublamina. These results implicate Sdks as determinants of lamina-specific synaptic connectivity. PMID:12230981

  3. Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association between Caveolins, Inflammation and Adhesion Molecules

    PubMed Central

    Grenon, S. Marlene; Jeanne, Marion; Aguado-Zuniga, Jesus; Conte, Michael S.; Hughes-Fulford, Millie

    2013-01-01

    Mechanical forces including gravity affect endothelial cell (ECs) function, and have been implicated in vascular disease as well as physiologic changes associated with low gravity environments. The goal of this study was to investigate the impact of gravitational mechanical unloading on ECs phenotype as determined by patterns of gene expression. Human umbilical vascular endothelial cells were exposed to 1-gravity environment or mechanical unloading (MU) for 24 hours, with or without periods of mechanical loading (ML). MU led to a significant decrease in gene expression of several adhesion molecules and pro-inflammatory cytokines. On the contrary, eNOS, Caveolin-1 and -2 expression were significantly increased with MU. There was a decrease in the length and width of the cells with MU. Addition of ML during the MU period was sufficient to reverse the changes triggered by MU. Our results suggest that gravitational loading could dramatically affect vascular endothelial cell function. PMID:23511048

  4. Expression of the cluster 1 antigen (neural cell adhesion molecule) in neuroectodermal tumours.

    PubMed Central

    Patel, K.; Frost, G.; Kiely, F.; Phimister, E.; Coakham, H. B.; Kemshead, J. T.

    1991-01-01

    In this study, we have investigated the expression of the neural cell adhesion molecule (NCAM) in the human brain, primary brain tumours and neuroblastoma. Adult brain was found to express discrete isoforms of 180, 170, 140 and 120 kDa, which on neuraminidase treatment resolved into bands of 180, 170, 140, 120 and 95 kDa. Primary brain tumours such as Schwannoma and medulloblastoma expressed embryonic NCAM characterised by a high level of glycosylation, whereas other tumours, e.g. astrocytoma, meningioma, glioma and oligodendroglioma expressed adult NCAM. Post-neuraminidase treatment, differential expression of the 180, 170, 140, 120 and 95 kDa isoforms were noted in these various tumour types. On the other hand, neuroblastoma cell lines were found to express only embryonic NCAM, which after neuraminidase treatment resulted in differential presence of only 180, 140 and 120 kDa proteins. Images Figure 1 Figure 2 PMID:2039710

  5. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    PubMed Central

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  6. Functional role of endothelial adhesion molecules in the early stages of brain metastasis

    PubMed Central

    Soto, Manuel Sarmiento; Serres, Sébastien; Anthony, Daniel C.; Sibson, Nicola R.

    2014-01-01

    Background Cellular adhesion molecules (CAMs), which are normally associated with leukocyte trafficking, have also been shown to play an essential role in tumor metastasis to non-CNS sites. However, the role played by CAMs in brain metastasis is largely unexplored. It is known that leukocyte recruitment to the brain is very atypical and that mechanisms of disease in peripheral tissues cannot be extrapolated to the brain. Here, we have established the spatiotemporal expression of 12 key CAMs in the initial phases of tumor seeding in 2 different models of brain metastasis. Methods BALB/c or SCID mice were injected intracardially (105 cells/100 μL phosphate-buffered saline with either 4T1-GFP or MDA231BR-GFP cells, respectively (n = 4–6/group), and expression of the CAMs was determined by immunohistochemistry and immunofluorescence colocalisation. Results Endothelial expression of E-selectin, VCAM-1, ALCAM, ICAM-1, VLA-4, and β4 integrin was markedly increased early in tumor seeding. At the same time, the natural ligands to these adhesion molecules were highly expressed on the metastatic tumor cells both in vitro and in vivo. Two of these ligands showed particularly high tumor cell expression (ALCAM and VLA-4), and consequently their functional role in tumor seeding was determined. Antibody neutralization of either ALCAM or VLA-4 significantly reduced tumor seeding within the brain (>60% decrease in tumor number/mm2 brain; P < .05–0.01). Conclusions These findings suggest that ALCAM/ALCAM and VLA-4/VCAM-1 interactions play an important functional role in the early stages of metastasis seeding in the brain. Moreover, this work identifies a specific subset of ligand-receptor interactions that may yield new therapeutic and diagnostic targets for brain metastasis. PMID:24311639

  7. Release of soluble intercellular adhesion molecule 1 into bile and serum in murine endotoxin shock.

    PubMed

    Jaeschke, H; Essani, N A; Fisher, M A; Vonderfecht, S L; Farhood, A; Smith, C W

    1996-03-01

    Neutrophil-induced liver injury during endotoxemia is dependent on the adhesion molecules Mac-1 (CD11b/CD18) on neutrophils and its counterreceptor on endothelial cells and hepatocytes, intercellular adhesion molecule 1 (ICAM-1). To investigate a potential release of a soluble form of ICAM-1 (sICAM-1), animals received 100 micrograms/kg Salmonella abortus equi endotoxin alone or in combination with 700 mg/kg galactosamine. In endotoxin-sensitive mice (C3Heb/FeJ), injection of endotoxin did not cause liver injury but induced a time-dependent increase of sICAM-1 in serum (300%) and in bile (615%) without affecting bile flow. In galactosamine/endotoxin-treated animals, which developed liver injury, the increase in both compartments was only 97% and 104%, respectively. In either case, the increase in sICAM-1 concentrations paralleled the enhanced ICAM-1 expression in the liver. The endotoxin-resistant strain (C3H/HeJ) did not show elevated sICAM-1 levels in serum or bile after endotoxin administration. In contrast, the intravenous injection of murine tumor necrosis factor alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) or IL-1 beta (13-23 micrograms/kg) into endotoxin-resistant mice induced a 225% to 364% increase in serum sICAM-1 and a 370% elevation of the biliary efflux of sICAM-1, again independent of changes in bile flow. These data indicate that cytokines are major inducers of sICAM-1 formation during endotoxemia in vivo. The described experimental model can be used to investigate the role of sICAM-1 in the pathophysiology of inflammatory liver disease. PMID:8617433

  8. Evaluation of soluble adhesion molecules in the diagnosis of amoebiasis, giardiasis and toxoplasmosis.

    PubMed

    el-Shazly, A M; Soliman, M; el-Kalla, M R; Rezk, H; el-Nemr, H; Handoussa, A E; el-Aaty, H E; Morsy, T A

    2001-12-01

    A total of 47 patients with toxoplasmosis (21 cases) with amoebic liver abscess (14 cases) and with giardiasis (12 cases) as well as 14 healthy control were subjected to thorough history taking, clinical examination, stool & urine analysis, complete blood picture, ESR, C-reactive protein, ASO, widal test, blood cultures, liver function tests, serum creatinine, hepatitis viral markers, rheumatoid factor, auto-antibodies, stool culture, rectal snip, chest X-ray, abdominal sonar, level of serum adhesion molecules (sICAM-1, sELAM-1), ELISA detection of Toxoplasma antibodies in serum, liver biopsy, detection and counting of Giardia cysts. In toxoplasmosis group, highly significant increase in serum levels of sICAM-1 (P<0.01) and significant increase in serum levels of sELAM-1 (P<0.05) in comparison to control. However, only sICAM-1 levels were significantly increased in IgM cases more than in IgG cases. In amoebic liver abscess group, both sICAM-1 and sELAM-1 significantly increased when compared with control. In giardiasis group, highly significant increase of serum levels of sELAM-1 was noticed than in control group (P<0.01), while sICAM-1 showed no significant difference (P>0.05). There was no correlation between sELAM-1 and number of cysts in the stool (intensity of infection). Soluble forms of adhesion molecules especially sICAM-1 have the potentiality as good markers of endothelial damage, severity of disease and to less extend load of infection. PMID:11775096

  9. Soluble Adhesion Molecules in Patients Coinfected with HIV and HCV: A Predictor of Outcome

    PubMed Central

    Aldámiz-Echevarría, Teresa; Berenguer, Juan; Miralles, Pilar; Jiménez-Sousa, María A.; Carrero, Ana; Pineda-Tenor, Daniel; Díez, Cristina; Tejerina, Francisco; Pérez-Latorre, Leire; Bellón, José M.; Resino, Salvador

    2016-01-01

    Background Higher serum levels of adhesion molecules (sICAM-1 and sVCAM-1) are associated with advanced liver fibrosis in patients coinfected with human immunodeficiency virus and hepatitis C virus. We assessed the relationship between serum levels of adhesion molecules and liver-related events (LRE) or death, in coinfected patients. Methods We studied clinical characteristics and outcomes of 182 coinfected patients with a baseline liver biopsy (58 with advanced fibrosis) and simultaneous plasma samples who were followed for median of 9 years. We used receiver-operating characteristic (ROC) curves to calculate optimized cutoff values (OCV) of sICAM-1 and sVCAM-1, defined as the values with the highest combination of sensitivity and specificity for LRE. We used multivariate regression analysis to test the association between OCVs of sICAM-1 and sVCAM-1 and outcomes. The variables for adjustment were age, HIV transmission category, liver fibrosis, baseline CD4+ T-cell counts, antiretroviral therapy, and sustained virologic response (SVR). Results During the study period 51 patients had SVR, 19 had LRE, and 16 died. The OCVs for LRE were 5.68 Log pg/mL for sICAM-1 and 6.25 Log pg/mL for sVCAM-1, respectively. The adjusted subhazard ratio (aSHR) (95% confidence interval [CI]) of death or LRE, whichever occurred first, for sICAM-1 and sVCAM-1 > OCV were 3.98 ([1.14; 13.89], P = 0.030) and 2.81 ([1.10; 7.19], respectively (P = 0.030). Conclusions Serum levels of sICAM-1 and sVCAM-1 can serve as markers of outcome in HIV/HCV-coinfected patients. Therapies targeting necroinflammatory damage and fibrogenesis may have a role in the management chronic hepatitis C. PMID:26849641

  10. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  11. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  12. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  13. Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions.

    PubMed

    Balzar, M; Briaire-de Bruijn, I H; Rees-Bakker, H A; Prins, F A; Helfrich, W; de Leij, L; Riethmüller, G; Alberti, S; Warnaar, S O; Fleuren, G J; Litvinov, S V

    2001-04-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca(2+)-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via alpha-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  14. Epidermal Growth Factor-Like Repeats Mediate Lateral and Reciprocal Interactions of Ep-CAM Molecules in Homophilic Adhesions

    PubMed Central

    Balzar, M.; Briaire-de Bruijn, I. H.; Rees-Bakker, H. A. M.; Prins, F. A.; Helfrich, W.; de Leij, L.; Riethmüller, G.; Alberti, S.; Warnaar, S. O.; Fleuren, G. J.; Litvinov, S. V.

    2001-01-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca2+-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via α-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  15. Small-Molecule Inhibitors of SETD8 with Cellular Activity

    PubMed Central

    2015-01-01

    SETD8/SET8/Pr-SET7/KMT5A is the sole protein lysine methyltransferase (PKMT) known to monomethylate lysine 20 of histone H4 in vivo. SETD8’s methyltransferase activity has been implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. Developing SETD8 inhibitors with cellular activity is a key step toward elucidating the diverse roles of SETD8 via convenient pharmacological perturbation. From the hits of a prior high throughput screen (HTS), SPS8I1–3 (NSC663284, BVT948, and ryuvidine) were validated as potent SETD8 inhibitors. These compounds contain different structural motifs and inhibit SETD8 via distinct modes. More importantly, these compounds show cellular activity by suppressing the H4K20me1 mark of SETD8 and recapitulate characteristic S/G2/M-phase cell cycle defects as observed for RNAi-mediated SETD8 knockdown. The commonality of SPS8I1–3 against SETD8, together with their distinct structures and mechanisms for SETD8 inhibition, argues for the collective application of these compounds as SETD8 inhibitors. PMID:25137013

  16. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability.

    PubMed Central

    Hasan, N. M.; Adams, G. E.; Joiner, M. C.; Marshall, J. F.; Hart, I. R.

    1998-01-01

    The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29 cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth. PMID:9667649

  17. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    PubMed

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  18. Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating

    SciTech Connect

    Kornu, R.; Kelly, M.A.; Smith, R.L.; Maloney, W.J.

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. 40 refs., 4 figs.

  19. Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation.

    PubMed Central

    Iglesias, T; Caubín, J; Stunnenberg, H G; Zaballos, A; Bernal, J; Muñoz, A

    1996-01-01

    Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3-regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha-tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c-erbA) were identified in the isolated clones by gel-shift and footprinting assays. Sites in the NCAM (in an intron), alpha-tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid-deficient humans and experimental animals. Images PMID:8861959

  20. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury.

    PubMed

    Saini, Vedangana; Loers, Gabriele; Kaur, Gurcharan; Schachner, Melitta; Jakovcevski, Igor

    2016-07-01

    The neural cell adhesion molecule (NCAM) plays important functional roles in development of the nervous system. We investigated the influence of a constitutive ablation of NCAM on the outcome of spinal cord injury. Transgenic mice lacking NCAM (NCAM-/-) were subjected to severe compression injury of the lower thoracic spinal cord using wild-type (NCAM+/+) littermates as controls. According to the single-frame motion analysis, the NCAM-/- mice showed reduced locomotor recovery in comparison to control mice at 3 and 6 weeks after injury, indicating an overall positive impact of NCAM on recovery after injury. Also the Basso Mouse Scale score was lower in NCAM-/- mice at 3 weeks after injury, whereas at 6 weeks after injury the difference between genotypes was not statistically significant. Worse locomotor function was associated with decreased monoaminergic and cholinergic innervation of the spinal cord caudal to the injury site and decreased axonal regrowth/sprouting at the site of injury. Astrocytic scar formation at the injury site, as assessed by immunohistology for glial fibrillary acidic protein at and around the lesion site was increased in NCAM-/- compared with NCAM+/+ mice. Migration of cultured monolayer astrocytes from NCAM-/- mice was reduced as assayed by scratch wounding. Numbers of Iba-1 immunopositive microglia were not different between genotypes. We conclude that constitutive NCAM deletion in young adult mice reduces recovery after spinal cord injury, validating the hypothesized beneficial role of this molecule in recovery after injury. PMID:27178448

  1. Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors

    PubMed Central

    2014-01-01

    A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model. PMID:24592914

  2. Nanomolar-Potency Small Molecule Inhibitor of STAT5 Protein

    PubMed Central

    2014-01-01

    We herein report the design and synthesis of the first nanomolar binding inhibitor of STAT5 protein. Lead compound 13a, possessing a phosphotyrosyl-mimicking salicylic acid group, potently and selectively binds to STAT5 over STAT3, inhibits STAT5–SH2 domain complexation events in vitro, silences activated STAT5 in leukemic cells, as well as STAT5′s downstream transcriptional targets, including MYC and MCL1, and, as a result, leads to apoptosis. We believe 13a represents a useful probe for interrogating STAT5 function in cells as well as being a potential candidate for advanced preclinical trials. PMID:25419444

  3. Surface morphology of platelet adhesion influenced by activators, inhibitors and shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Melanie Groan

    Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions. Results from two studies in our laboratory differed in the extent to which platelet-derived NO decreased platelet adhesion. Frilot studied the effect of L-arginine (L-A) and NG-Methyl-L-arginine acetate salt (L-NMMA) on platelet adhesion to collagen under static conditions in a Petri dish. Eshaq examined the percent coverage on collagen-coated and fibrinogen-coated microchannels under shear conditions with different levels of L-A and Adenosine Diphosphate (ADP). Frilot's results showed no effect of either L-A or L-NMMA on surface coverage, thrombus size or serotonin release, while Eshaq's results showed a decrease in surface coverage with increased levels of L-A. A possible explanation for these contrasting results is that platelet-derived NO may be more important under flow conditions than under static conditions. For this project, the effects of L-A. ADP and L-NMMA on platelet adhesion were studied at varying shear stresses on protein-coated glass slides. The surface exposed to platelet-rich-plasma in combination with each chemical solution was observed under AFM, FE-SEM and fluorescence microscopy. Quantitative and qualitative comparisons of images obtained with these techniques confirmed the presence of platelets on the protein coatings. AFM images of fibrinogen and collagen-coated slides presented characteristic

  4. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  5. Equid herpesvirus 1 infection of endothelial cells requires activation of putative adhesion molecules: an in vitro model

    PubMed Central

    SMITH, D; HAMBLIN, A; EDINGTON, N

    2002-01-01

    Antisera to activated equine endothelial cells, which detected surface molecules of 116 kD, 97 kD, 42 kD and 38 kD, were made to investigate the role of endothelial adhesion molecules in equid herpes virus 1 infection. These putative adhesion molecules could be induced by 17-β oestradiol, chorionic gonadotrophin, or IL-2, as well as by LPS and PWM. In an in vitro flow system, using equine veins or arteries, equid herpesvirus 1 in leucocytes was only transferred to infect endothelial cells if both leucocytes and endothelial cells expressed these surface molecules. Blocking of the membrane molecules with polyclonal antibodies prevented transfer of virus to the endothelial cells, indicating that the adhesion molecules had a key role in effecting transfer of virus. These in vitro observations give particular insight into the reports that in the natural course of infection in horses infection of endothelial cells is restricted to certain tissues, and in a wider context the results illustrate the complexity of factors that may direct tissue tropism. PMID:12165084

  6. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  7. Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes.

    PubMed Central

    Michaelis, D.; Goebels, N.; Hohlfeld, R.

    1993-01-01

    Understanding the immunobiology of muscle is relevant to muscular autoimmune diseases and to gene therapies based on myoblast transfer. We have investigated the constitutive and cytokine-induced intra- and extracellular expression of histocompatibility human leukocyte antigens (HLA) and cell adhesion molecules by multinucleated human myotubes using immunofluorescence microscopy. Myotubes constitutively expressed HLA class I but not HLA class II. Exposure to interferon-gamma, but not tumor necrosis factor-alpha, induced HLA-DR in the cytoplasm and on the surface membrane of approximately 40 to 95% of cultured myotubes. Surface expression was strongest in perinuclear membrane areas, and cytoplasmic expression was strongest at branching points and at the tips of myotubes. HLA-DP and HLA-DQ were not expressed in detectable amounts. Both interferon-gamma and tumor necrosis factor-alpha induced the intercellular adhesion molecule-1 (CD54) in the cytoplasm and on the surface of nearly all myotubes. The distribution of intercellular adhesion molecule-1 and HLA-DR was similar but not identical in double-positive myotubes. The leukocyte function-associated (LFA) adhesion molecules LFA-1 (CD11a/CD18), LFA-2 (CD2), and LFA-3 (CD58) could not be detected in the cytoplasm or on the surface. Our results indicate that cytokine-induced myotubes can participate in immune interactions with T lymphocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8214008

  8. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  9. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine

    PubMed Central

    Jiao, Guan-Sheng; Cregar, Lynne; Wang, Jinzhi; Millis, Sherri Z.; Tang, Cho; O'Malley, Sean; Johnson, Alan T.; Sareth, Sina; Larson, Jason; Thomas, Gary

    2006-01-01

    Furin plays a crucial role in embryogenesis and homeostasis and in diseases such as Alzheimer's disease, cancer, and viral and bacterial infections. Thus, inhibition of furin may provide a feasible and promising approach for therapeutic intervention of furin-mediated disease mechanisms. Here, we report on a class of small molecule furin inhibitors based on 2,5-dideoxystreptamine. Derivatization of 2,5-dideoxystreptamine by the addition of guanidinylated aryl groups yielded a set of furin inhibitors with nanomolar range potency against furin when assayed in a biochemical cleavage assay. Moreover, a subset of these furin inhibitors protected RAW 264.7 macrophage cells from toxicity caused by furin-dependent processing of anthrax protective antigen. These inhibitors were found to behave as competitive inhibitors of furin and to be relatively specific for furin. Molecular modeling revealed that these inhibitors may target the active site of furin as they showed site occupancy similar to the alkylating inhibitor decanoyl-Arg-Val-Lys-Arg-CH2Cl. The compounds presented here are bona fide synthetic small molecule furin inhibitors that exhibit potency in the nanomolar range, suggesting that they may serve as valuable tools for studying furin action and potential therapeutics agents for furin-dependent diseases. PMID:17179036

  10. Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1.

    PubMed

    Pocock, Roger; Bénard, Claire Y; Shapiro, Lawrence; Hobert, Oliver

    2008-01-01

    Cell adhesion molecules of the Immunoglobulin superfamily (IgCAMs) play important roles in neuronal development, homeostasis and disease. Here, we use an animal in vivo assay system to study the function of sax-7, the Caenorhabditis elegans homologue of the human L1 IgCAM, a homophilic adhesion molecule involved in several neurological diseases. We show that the 6 Ig/5 FnIII domain protein SAX-7 acts autonomously in the nervous system to maintain axon position in the ventral nerve cord of the nematode. As previously reported, sax-7 is also required to maintain the relative positioning of neuronal cell bodies in several head ganglia. We use the loss of cellular adhesiveness in sax-7 null mutants as an assay system to investigate the contribution of individual domains and sequence motifs to the function of SAX-7, utilizing transgenic rescue approaches. By shortening the hinge region between the Ig1+2 and Ig3+4 domains, we improve the adhesive function of SAX-7, thereby providing support for a previously proposed autoinhibitory "horseshoe" conformation of IgCAMs. However, we find that Ig3+4 are the only Ig domains required and sufficient for the adhesive function of SAX-7. Previous models of L1-type IgCAMs that invoke an important role of the first two Ig domains in controlling adhesion therefore do not appear to apply to SAX-7. Moreover, we find that neither the 5 FnIII domains, nor the protease cleavage site embedded in them, are required for the adhesive function of SAX-7. Lastly, we show that of the several protein binding motifs present in the intracellular region of SAX-7, only its ankyrin binding motif is required and also solely sufficient to confer the adhesive functions of SAX-7. PMID:17933550

  11. Cell adhesion molecules in the pathogenesis of and host defence against microbial infection.

    PubMed Central

    Kerr, J R

    1999-01-01

    Eukaryotic cell adhesion molecules (CAMs) are used by various cells and extracellular molecules in host defence against infection. They are involved in many processes including recognition by circulating phagocytes of a site of inflammation, transmigration through the endothelial barrier, diapedesis through basement membrane and extracellular matrix, and release of effector mechanisms at the infected site. CAMs involved in leucocyte-endothelial cell interaction include the selectins, integrins, and members of the immunoglobulin superfamily. However, CAMs are also used by various microorganisms (protozoa, fungi, bacteria, and viruses) during their pathogenesis. For example, bacteria that utilise CAMs include Mycobacterium tuberculosis, Listeria monocytogenes, Yersinia spp, enteropathogenic Escherichia coli, Shigella spp, Neisseria spp, Bordetella spp, and Borrelia burgdorferi. In addition, CAMs are involved in the pathogenetic effects of the RTX toxins of Pasteurella haemolytica, Actinobacillus actinomycetemcomitans, and the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes. A recurrent and topical theme of potential importance within the bacterial group is the intimate relation between CAMs, bacterial protein receptors, and type III secretion systems. For example, the IpaBCD protein complex is secreted by the type III system of Shigella flexneri and interacts with alpha 5 beta 1 integrin on the eukaryotic cell surface, followed by Rho mediated internalisation; this illustrates the relevance of cellular microbiology. CAMs might prove to be novel therapeutic targets. Comparative genomics has provided the knowledge of shared virulence determinants among diverse bacterial genera, and will continue to deepen our understanding of microbial pathogenesis, particularly in the context of the interaction of prokaryotic and eukaryotic molecules. PMID:10694943

  12. Recognition molecules myelin-associated glycoprotein and tenascin-C inhibit integrin-mediated adhesion of neural cells to collagen.

    PubMed

    Bachmann, M; Conscience, J F; Probstmeier, R; Carbonetto, S; Schachner, M

    1995-03-01

    Because of the importance of collagens in mediating cell-substrate interactions and the association of collagens with neural recognition molecules in the peripheral nervous system, the ability of neural recognition molecules to modify the substrate properties of collagens, in particular collagen type I, for cell adhesion was determined. Two cell lines, the N2A neuroblastoma and PC12 pheochromocytoma, were investigated for their capacity to adhere to different collagen types in the absence or presence of several neural recognition molecules. Adhesion of N2A or PC12 cells and membrane vesicles from PC12 cells to collagen type I was reduced when the collagen had been preincubated prior to its application as substrate with the extracellular domain of myelin-associated glycoprotein (s-MAG) or, as control, fibroblast tenascin-C (F-tenascin). In mixture with other collagen types, s-MAG was only able to reduce the adhesiveness of collagen types III and V, but not of collagen types II and IV. F-tenascin reduced the adhesiveness of all collagen types tested. In contrast to F-tenascin, s-MAG had to be present during fibrillogenesis to exert its effect, indicating that it must be coassembled into the collagen fibril to block the binding site. Cell adhesion to collagen type I was dependent on Mg2+ or Mn2+ and inhibited by a monoclonal antibody to the alpha 1 integrin subunit. The combined observations indicate that s-MAG and F-tenascin interfere with cell binding, most probably by modifying the integrin binding site, and that the two molecules act by different mechanisms, both leading to reduction of adhesion. PMID:7542351

  13. Protein kinase small molecule inhibitors for rheumatoid arthritis: Medicinal chemistry/clinical perspectives

    PubMed Central

    Malemud, Charles J; Blumenthal, David E

    2014-01-01

    Medicinal chemistry strategies have contributed to the development, experimental study of and clinical trials assessment of the first type of protein kinase small molecule inhibitor to target the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. The orally administered small molecule inhibitor, tofacitinib, is the first drug to target the JAK/STAT pathway for entry into the armamentarium of the medical therapy of rheumatoid arthritis. The introduction of tofacitinib into general rheumatologic practice coupled with increasing understanding that additional cellular signal transduction pathways including the mitogen-activated protein kinase and phosphatidylinositide-3-kinase/Akt/mammalian target of rapamycin pathways as well as spleen tyrosine kinase also contribute to immune-mediated inflammatory in rheumatoid arthritis makes it likely that further development of orally administered protein kinase small molecule inhibitors for rheumatoid arthritis will occur in the near future. PMID:25232525

  14. Aberrations of a cell adhesion molecule CADM4 in renal clear cell carcinoma.

    PubMed

    Nagata, Masayoshi; Sakurai-Yageta, Mika; Yamada, Daisuke; Goto, Akiteru; Ito, Akihiko; Fukuhara, Hiroshi; Kume, Haruki; Morikawa, Teppei; Fukayama, Masashi; Homma, Yukio; Murakami, Yoshinori

    2012-03-15

    Renal clear cell carcinoma (RCCC) is the most frequent subpopulation of renal cell carcinoma and is derived from the proximal uriniferous tubules. We have previously reported that an actin-binding protein, 4.1B/DAL-1, is expressed in renal proximal tubules, whereas it is inactivated in 45% of RCCC by promoter methylation. In the lung and several epithelial tissues, 4.1B is shown to associate with a tumor suppressor protein, CADM1, belonging to the immunoglobulin-superfamily cell adhesion molecules. Here, we demonstrate by immunohistochemistry that another member of the CADM-family protein, CADM4, as well as 4.1B is expressed specifically in human proximal tubules, while CADM1 and 4.1N, another member of the 4.1 proteins, are expressed in the distal tubules. Immunoprecipitation analysis coupled with Western blotting revealed that CADM4 associated with 4.1B, while CADM1 associated with 4.1N in the lysate from normal human kidney, implicating that a cascade of CADM4 and 4.1B plays an important role in normal cell adhesion of the proximal tubules. On the other hand, CADM4 expression was lost or markedly reduced in 7 of 10 (70%) RCC cell lines and 28 of 40 (70%) surgically resected RCCC, including 10 of 16 (63%) tumors with T1a. CADM4 expression was more preferentially lost in RCCC with vascular infiltration (p = 0.04), suggesting that loss of CADM4 is involved in tumor invasion. Finally, introduction of CADM4 into an RCC cell line, 786-O, dramatically suppressed tumor formation in nude mice. These findings suggest that CADM4 is a novel tumor suppressor candidate in RCCC acting with its binding partner 4.1B. PMID:21544807

  15. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.

    PubMed

    Barsegov, V; Thirumalai, D

    2005-02-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin-P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime t initially increases (catch bonds) at low (< or =10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody t monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin-G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin-sPSGL-1 complex is far (approximately 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein-protein complexes. PMID:15701706

  16. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  17. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-01

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth. PMID:26914234

  18. Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds

    PubMed Central

    Barsegov, V.; Thirumalai, D.

    2005-01-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin–P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime 〈t〉 initially increases (catch bonds) at low (≤10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody 〈t〉 monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin–G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin–sPSGL-1 complex is far (≈ 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein–protein complexes. PMID:15701706

  19. Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions.

    PubMed

    Needham, L K; Thelen, K; Maness, P F

    2001-03-01

    The neural adhesion molecule L1 mediates the axon outgrowth, adhesion, and fasciculation that are necessary for proper development of synaptic connections. L1 gene mutations are present in humans with the X-linked mental retardation syndrome CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia, hydrocephalus). Three missense mutations associated with CRASH syndrome reside in the cytoplasmic domain of L1, which contains a highly conserved binding region for the cytoskeletal protein ankyrin. In a cellular ankyrin recruitment assay that uses transfected human embryonic kidney (HEK) 293 cells, two of the pathologic mutations located within the conserved SFIGQY sequence (S1224L and Y1229H) strikingly reduced the ability of L1 to recruit 270 kDa ankyrinG protein that was tagged with green fluorescent protein (ankyrin-GFP) to the plasma membrane. In contrast, the L1 missense mutation S1194L and an L1 isoform lacking the neuron-specific sequence RSLE in the cytoplasmic domain were as effective as RSLE-containing neuronal L1 in the recruitment of ankyrin-GFP. Ankyrin binding by L1 was independent of cell-cell interactions. Receptor-mediated endocytosis of L1 regulates intracellular signal transduction, which is necessary for neurite outgrowth. In rat B35 neuroblastoma cell lines stably expressing L1 missense mutants, antibody-induced endocytosis was unaffected by S1224L or S1194L mutations but appeared to be enhanced by the Y1229H mutation. These results suggested a critical role for tyrosine residue 1229 in the regulation of L1 endocytosis. In conclusion, specific mutations within key residues of the cytoplasmic domain of L1 (Ser(1224), Tyr(1229)) destabilize normal L1-ankyrin interactions and may influence L1 endocytosis to contribute to the mechanism of neuronal dysfunction in human X-linked mental retardation. PMID:11222639

  20. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  1. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    PubMed

    Ng, Wai-Leung; Perez, Lark; Cong, Jianping; Semmelhack, Martin F; Bassler, Bonnie L

    2012-01-01

    Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives. PMID:22761573

  2. FRET Based Quantification and Screening Technology Platform for the Interactions of Leukocyte Function-Associated Antigen-1 (LFA-1) with InterCellular Adhesion Molecule-1 (ICAM-1)

    PubMed Central

    Chakraborty, Sandeep; Núñez, David; Hu, Shih-Yang; Domingo, María Pilar; Pardo, Julian; Karmenyan, Artashes; Chiou, Arthur

    2014-01-01

    The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple ‘in solution’ steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (Kd) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction. PMID:25032811

  3. Control of density-dependent, cell state-specific signal transduction by the cell adhesion molecule CEACAM1, and its influence on cell cycle regulation

    SciTech Connect

    Scheffrahn, Inka; Singer, Bernhard B.; Sigmundsson, Kristmundur; Lucka, Lothar; Oebrink, Bjoern . E-mail: bjorn.obrink@cmb.ki.se

    2005-07-15

    Growth factor receptors, extracellular matrix receptors, and cell-cell adhesion molecules co-operate in regulating the activities of intracellular signaling pathways. Here, we demonstrate that the cell adhesion molecule CEACAM1 co-regulates growth-factor-induced DNA synthesis in NBT-II epithelial cells in a cell-density-dependent manner. CEACAM1 exerted its effects by regulating the activity of the Erk 1/2 MAP kinase pathway and the expression levels of the cyclin-dependent kinase inhibitor p27{sup Kip1}. Interestingly, both inhibitory and stimulatory effects were observed. Confluent cells continuously exposed to fetal calf serum showed little Erk activity and DNA synthesis compared with sparse cells. Under these conditions, anti-CEACAM1 antibodies strongly stimulated Erk activation, decreased p27 expression, and induced DNA synthesis. In serum-starved confluent cells, re-addition of 10% fetal calf serum activated the Erk pathway, decreased p27 expression, and stimulated DNA synthesis to the same levels as in sparse cells. Under these conditions anti-CEACAM1 antibodies de-activated Erk, restored the level of p27, and inhibited DNA synthesis. These data indicate that CEACAM1 mediates contact inhibition of proliferation in cells that are constantly exposed to growth factors, but co-activates growth-factor-induced proliferation in cells that have been starved for growth factors; exposure to extracellular CEACAM1 ligands reverts these responses.

  4. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults.

    PubMed

    Vincent, Heather K; Bourguignon, Cheryl M; Weltman, Arthur L; Vincent, Kevin R; Barrett, Eugene; Innes, Karen E; Taylor, Ann G

    2009-02-01

    The objective of the study was to determine whether short-term antioxidant (AOX) supplementation affects insulin sensitivity, endothelial adhesion molecule levels, and oxidative stress in overweight young adults. A randomized, double-blind, controlled study tested the effects of AOXs on measures of insulin sensitivity (homeostasis model assessment [HOMA]) and quantitative insulin sensitivity check index), endothelial adhesion molecules (soluble intercellular adhesion molecule-1, vascular adhesion molecule, and endothelial-leukocyte adhesion molecule-1), adiponectin, and oxidative stress (lipid hydroperoxides) in overweight and normal-weight individuals (N = 48, 18-30 years). Participants received either AOX (vitamin E, 800 IU; vitamin C, 500 mg; beta-carotene, 10 mg) or placebo for 8 weeks. The HOMA values were initially higher in the overweight subjects and were lowered with AOX by week 8 (15% reduction, P = .02). Adiponectin increased in both AOX groups. Soluble intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 decreased in overweight AOX-treated groups by 6% and 13%, respectively (P < .05). Plasma lipid hydroperoxides were reduced by 0.31 and 0.70 nmol/mL in the normal-weight and overweight AOX-treated groups, respectively, by week 8 (P < .05). Antioxidant supplementation moderately lowers HOMA and endothelial adhesion molecule levels in overweight young adults. A potential mechanism to explain this finding is the reduction in oxidative stress by AOX. Long-term studies are needed to determine whether AOXs are effective in suppressing diabetes or vascular activation over time. PMID:19154960

  5. Harnessing Chaperones to Generate Small-Molecule Inhibitors of Amyloid β Aggregation

    NASA Astrophysics Data System (ADS)

    Gestwicki, Jason E.; Crabtree, Gerald R.; Graef, Isabella A.

    2004-10-01

    Protein aggregation is involved in the pathogenesis of neurodegenerative diseases and hence is considered an attractive target for therapeutic intervention. However, protein-protein interactions are exceedingly difficult to inhibit. Small molecules lack sufficient steric bulk to prevent interactions between large peptide surfaces. To yield potent inhibitors of β-amyloid (Aβ) aggregation, we synthesized small molecules that increase their steric bulk by binding to chaperones but also have a moiety available for interaction with Aβ. This strategy yields potent inhibitors of Aβ aggregation and could lead to therapeutics for Alzheimer's disease and other forms of neurodegeneration.

  6. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  7. New Small-Molecule Inhibitors Effectively Blocking Picornavirus Replication

    PubMed Central

    Ford Siltz, Lauren A.; Viktorova, Ekaterina G.; Zhang, Ben; Kouiavskaia, Diana; Dragunsky, Eugenia; Chumakov, Konstantin; Isaacs, Lyle

    2014-01-01

    ABSTRACT Few drugs targeting picornaviruses are available, making the discovery of antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited both the formation and functioning of the replication complexes, while E5(1) and E7(2) were most effective during the formation but not the functioning step. Neither of the compounds significantly inhibited VPg uridylylation. Poliovirus resistant to E7(2) had a G5318A mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target a phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ)-dependent step in viral replication. Analysis of host protein recruitment showed that E7(2) reduced the amount of GBF1 on the replication complexes; however, the level of PI4KIIIβ remained intact. E7(2) as well as another enviroxime-like compound, GW5074, interfered with viral polyprotein processing affecting both 3C- and 2A-dependent cleavages, and the resistant G5318A mutation partially rescued this defect. Moreover, E7(2) induced abnormal recruitment to membranes of the viral proteins; thus, enviroxime-like compounds likely severely compromise the interaction of the viral polyprotein with membranes. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. IMPORTANCE Diverse picornaviruses can trigger multiple human maladies, yet currently, only hepatitis A virus and poliovirus can be controlled with vaccination. The development of antipicornavirus therapeutics is

  8. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  9. The adhesion molecule PECAM-1 enhances the TGF-β-mediated inhibition of T cell function.

    PubMed

    Newman, Debra K; Fu, Guoping; Adams, Tamara; Cui, Weiguo; Arumugam, Vidhyalakshmi; Bluemn, Theresa; Riese, Matthew J

    2016-03-01

    Transforming growth factor-β (TGF-β) is an immunosuppressive cytokine that inhibits the proinflammatory functions of T cells, and it is a major factor in abrogating T cell activity against tumors. Canonical TGF-β signaling results in the activation of Smad proteins, which are transcription factors that regulate target gene expression. We found that the cell surface molecule platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitated noncanonical (Smad-independent) TGF-β signaling in T cells. Subcutaneously injected tumor cells that are dependent on TGF-β-mediated suppression of immunity for growth grew more slowly in PECAM-1(-/-) mice than in their wild-type counterparts. T cells isolated from PECAM-1(-/-) mice demonstrated relative insensitivity to the TGF-β-dependent inhibition of interferon-γ (IFN-γ) production, granzyme B synthesis, and cellular proliferation. Similarly, human T cells lacking PECAM-1 demonstrated decreased sensitivity to TGF-β in a manner that was partially restored by reexpression of PECAM-1. Co-incubation of T cells with TGF-β and a T cell-activating antibody resulted in PECAM-1 phosphorylation on an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the recruitment of the inhibitory Src homology 2 (SH2) domain-containing tyrosine phosphatase-2 (SHP-2). Such conditions also induced the colocalization of PECAM-1 with the TGF-β receptor complex as identified by coimmunoprecipitation, confocal microscopy, and proximity ligation assays. These studies indicate a role for PECAM-1 in enhancing the inhibitory functions of TGF-β in T cells and suggest that therapeutic targeting of the PECAM-1-TGF-β inhibitory axis represents a means to overcome TGF-β-dependent immunosuppression within the tumor microenvironment. PMID:26956486

  10. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones.

    PubMed

    Jain, Shruti; Welshhans, Kristy

    2016-07-01

    Down syndrome cell adhesion molecule (DSCAM) plays an important role in many neurodevelopmental processes such as axon guidance, dendrite arborization, and synapse formation. DSCAM is located in the Down syndrome trisomic region of human chromosome 21 and may contribute to the Down syndrome brain phenotype, which includes a reduction in the formation of long-distance connectivity. The local translation of a select group of mRNA transcripts within growth cones is necessary for the formation of appropriate neuronal connectivity. Interestingly, we have found that Dscam mRNA is localized to growth cones of mouse hippocampal neurons, and is dynamically regulated in response to the axon guidance molecule, netrin-1. Furthermore, netrin-1 stimulation results in an increase in locally translated DSCAM protein in growth cones. Deleted in colorectal cancer (DCC), a netrin-1 receptor, is required for the netrin-1-induced increase in Dscam mRNA local translation. We also find that two RNA-binding proteins-fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding protein (CPEB)-colocalize with Dscam mRNA in growth cones, suggesting their regulation of Dscam mRNA localization and translation. Finally, overexpression of DSCAM in mouse cortical neurons results in a severe stunting of axon outgrowth and branching, suggesting that an increase in DSCAM protein results in a structural change having functional consequences. Taken together, these results suggest that netrin-1-induced local translation of Dscam mRNA during embryonic development may be an important mechanism to regulate axon growth and guidance in the developing nervous system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 799-816, 2016. PMID:26518186

  11. Collagen-binding Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMM) of Gram-positive Bacteria Inhibit Complement Activation via the Classical Pathway*

    PubMed Central

    Kang, Mingsong; Ko, Ya-Ping; Liang, Xiaowen; Ross, Caná L.; Liu, Qing; Murray, Barbara E.; Höök, Magnus

    2013-01-01

    Members of a family of collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) from Gram-positive bacteria are established virulence factors in several infectious diseases models. Here, we report that these adhesins also can bind C1q and act as inhibitors of the classical complement pathway. Molecular analyses of Cna from Staphylococcus aureus suggested that this prototype MSCRAMM bound to the collagenous domain of C1q and interfered with the interactions of C1r with C1q. As a result, C1r2C1s2 was displaced from C1q, and the C1 complex was deactivated. This novel function of the Cna-like MSCRAMMs represents a potential immune evasion strategy that could be used by numerous Gram-positive pathogens. PMID:23720782

  12. House dust mite extracts activate cultured human dermal endothelial cells to express adhesion molecules and secrete cytokines.

    PubMed

    Arlian, Larry G; Elder, B Laurel; Morgan, Marjorie S

    2009-05-01

    The human skin contacts molecules from house dust mites that are ubiquitous in many environments. These mite-derived molecules may penetrate the skin epidermis and dermis and contact microvascular endothelial cells and influence their function. The purpose of this study was to determine the response of normal human dermal microvascular endothelial cells to extracts of the dust mites, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei with and without endotoxin (lipopolysaccharide). Endothelial cells were stimulated with mite extracts and the expression of surface molecules and the secretion of cytokines were measured in the absence and presence of polymyxin B to bind endotoxin. All three mite extracts stimulated endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and to secrete interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP-1), and granulocyte/macrophage colony stimulating factor (GM-CSF). Euroglyphus maynei-induced expression of all the cell surface molecules was not inhibited when the endotoxin activity in the mite extract was inhibited. In contrast, endothelial cells challenged with D. farinae or D. pteronyssinus extract depleted of endotoxin activity expressed only constitutive levels of ICAM-1, VCAM-1, and E-selectin. D. farinae and E. maynei extracts depleted of endotoxin activity still induced secretion of IL-8 and MCP-1 but at reduced levels. Only constitutive amounts of IL-6, G-CSF, and GM-CSF were secreted in response to any of the endotoxin-depleted mite extracts. Extracts of D. farinae, D. pteronyssinus, and E. maynei contain both endotoxins and other molecules that can stimulate expression of cell adhesion molecules and chemokine receptors and the secretion of cytokines by normal human microvascular endothelial cells. PMID:19496432

  13. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury.

    PubMed

    Lutz, David; Kataria, Hardeep; Kleene, Ralf; Loers, Gabriele; Chaudhary, Harshita; Guseva, Daria; Wu, Bin; Jakovcevski, Igor; Schachner, Melitta

    2016-07-01

    Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma. PMID:26081148

  14. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction

    PubMed Central

    Wensing, Kristina U.; Eggert, Hendrik; Scharsack, Jörn P.

    2016-01-01

    Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives. PMID:27152227

  15. Structural study of the N-glycans of intercellular adhesion molecule-5 (telencephalin).

    PubMed

    Ohgomori, Tomohiro; Funatsu, Osamu; Nakaya, Syu-ichi; Morita, Akinori; Ikekita, Masahiko

    2009-12-01

    Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendritically polarized membrane glycoprotein expressed in tissues distinct from those expressing other ICAMs. Here, we determined the N-glycan structure of ICAM-5 purified from adult rat brain and compared it with that of other ICAMs. N-glycans were released by N-glycosidase F digestion and labeled with p-amino benzoic octylester (ABOE). ABOE-labeled glycans were analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. The N-glycans obtained from rat brain ICAM-5 consisted of approximately 85% neutral, 10.2% sialylated-only, 2.8% sulfated-only, and 1.2% sialylated and sulfated glycans. Compared with the N-glycan structures of human ICAM-1 expressed in CHO cells, HEK cells, or mouse myeloma cells and ICAM-3 isolated from human T-cells, rat brain ICAM-5 had less highly branched glycans, sialylated glycans, and N-acetyllactosamine structures. In contrast, high-mannose-type N-glycans and Lewis X were more commonly found in rat brain ICAM-5 than in human ICAM-1 expressed in CHO cells, HEK cells, or mouse myeloma cells and ICAM-3 isolated from human T-cells. In addition, sulfated glycans contained GlcNAc 6-O-sulfate on the non-reducing terminal side. Our data will be important for the elucidation of the roles of the N-glycans expressed in neural cells, including those present on ICAM-5. PMID:19733219

  16. The Multivalent Adhesion Molecule SSO1327 plays a key role in Shigella sonnei pathogenesis.

    PubMed

    Mahmoud, Rasha Y; Stones, Daniel Henry; Li, Wenqin; Emara, Mohamed; El-Domany, Ramadan A; Wang, Depu; Wang, Yili; Krachler, Anne Marie; Yu, Jun

    2016-02-01

    Shigella sonnei is a bacterial pathogen and causative agent of bacillary dysentery. It deploys a type III secretion system to inject effector proteins into host epithelial cells and macrophages, an essential step for tissue invasion and immune evasion. Although the arsenal of bacterial effectors and their cellular targets have been studied extensively, little is known about the prerequisites for deployment of type III secreted proteins during infection. Here, we describe a novel S. sonnei adhesin, SSO1327 which is a multivalent adhesion molecule (MAM) required for invasion of epithelial cells and macrophages and for infection in vivo. The S. sonnei MAM mediates intimate attachment to host cells, which is required for efficient translocation of type III effectors into host cells. SSO1327 is non-redundant to IcsA; its activity is independent of type III secretion. In contrast to the up-regulation of IcsA-dependent and independent attachment and invasion by deoxycholate in Shigella flexneri, deoxycholate negatively regulates IcsA and MAM in S. sonnei resulting in reduction in attachment and invasion and virulence attenuation in vivo. A strain deficient for SSO1327 is avirulent in vivo, but still elicits a host immune response. PMID:26481305

  17. Alternatively spliced variants of the cell adhesion molecule CD44 and tumour progression in colorectal cancer.

    PubMed Central

    Gotley, D. C.; Fawcett, J.; Walsh, M. D.; Reeder, J. A.; Simmons, D. L.; Antalis, T. M.

    1996-01-01

    Increased expression of alternatively spliced variants of the CD44 family of cell adhesion molecules has been associated with tumour metastasis. In the present study, expression of alternatively spliced variants of CD44 and their cellular distribution have been investigated in human colonic tumours and in the corresponding normal mucosa, in addition to benign adenomatous polyps. The expression of CD44 alternatively spliced variants has been correlated with tumour progression according to Dukes' histological stage. CD44 variant expression was determined by immunohistochemisty using monoclonal antibodies directed against specific CD44 variant domains together with RT-PCR analysis of CD44 variant mRNA expression in the same tissue specimens. We demonstrate that as well as being expressed in colonic tumour cells, the full range of CD44 variants, CD44v2-v10, are widely expressed in normal colonic crypt epithelium, predominantly in the crypt base. CD44v6, the epitope which is most commonly associated with tumour progression and metastasis, was not only expressed by many benign colonic tumours, but was expressed as frequently in normal basal crypt epithelium as in malignant colonic tumour cells, and surprisingly, was even absent from some metastatic colorectal tumours. Expression of none of the CD44 variant epitopes was found to be positively correlated with tumour progression or with colorectal tumour metastasis to the liver, results which are inconsistent with a role for CD44 variants as indicators of colonic cancer progression. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:8695347

  18. Activated Leukocyte Cell Adhesion Molecule (ALCAM or CD166) Modulates Bone Phenotype and Hematopoiesis

    PubMed Central

    Hooker, R. Adam; Chitteti, Brahmananda R.; Egan, Patrick H.; Cheng, Ying-Hua; Himes, Evan R.; Meijome, Tomas; Srour, Edward F.; Fuchs, Robyn K.; Kacena, Melissa A.

    2015-01-01

    Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166), is expressed on osteoblasts (OB) and hematopoietic stem cells (HSC) residing in the hematopoietic niche, and may have important regulatory roles in bone formation. Because HSC numbers are reduced 77% in CD166−/− mice, we hypothesized that changes in bone phenotype and consequently the endosteal niche may partially be responsible for this alteration. Therefore, we investigated bone phenotype and OB function in CD166−/− mice. Although osteoclastic measures were not affected by loss of CD166, CD166−/− mice exhibited a modest increase in trabecular bone fraction (42%), and increases in osteoid deposition (72%), OB number (60%), and bone formation rate (152%). Cortical bone geometry was altered in CD166−/− mice resulting in up to 81% and 49% increases in stiffness and ultimate force, respectively. CD166−/− OB displayed elevated alkaline phosphatase (ALP) activity and mineralization, and increased mRNA expression of Fra 1, ALP, and osteocalcin. Overall, CD166−/− mice displayed modestly elevated trabecular bone volume fraction with increased OB numbers and deposition of osteoid, and increased OB differentiation in vitro, possibly suggesting more mature OB are secreting more osteoid. This may explain the decline in HSC number in vivo because immature OB are mainly responsible for hematopoiesis enhancing activity. PMID:25730656

  19. Up-regulation of the homophilic adhesion molecule sidekick-1 in podocytes contributes to glomerulosclerosis.

    PubMed

    Kaufman, Lewis; Potla, Uma; Coleman, Sarah; Dikiy, Stanislav; Hata, Yutaka; Kurihara, Hidetake; He, John C; D'Agati, Vivette D; Klotman, Paul E

    2010-08-13

    Focal segmental glomerulosclerosis (FSGS) is a leading cause of nephrotic syndrome and end-stage renal disease worldwide. Although the mechanisms underlying this important disease are poorly understood, the glomerular podocyte clearly plays a central role in disease pathogenesis. In the current work, we demonstrate that the homophilic adhesion molecule sidekick-1 (sdk-1) is up-regulated in podocytes in FSGS both in rodent models and in human kidney biopsy samples. Transgenic mice that have podocyte-specific overexpression of sdk-1 develop gradually progressive heavy proteinuria and severe FSGS. We also show that sdk-1 associates with the slit diaphragm linker protein MAGI-1, which is already known to interact with several critical podocyte proteins including synaptopodin, alpha-actinin-4, nephrin, JAM4, and beta-catenin. This interaction is mediated through a direct interaction between the carboxyl terminus of sdk-1 and specific PDZ domains of MAGI-1. In vitro expression of sdk-1 enables a dramatic recruitment of MAGI-1 to the cell membrane. Furthermore, a truncated version of sdk-1 that is unable to bind to MAGI-1 does not induce podocyte dysfunction when overexpressed. We conclude that the up-regulation of sdk-1 in podocytes is an important pathogenic factor in FSGS and that the mechanism involves disruption of the actin cytoskeleton possibly via alterations in MAGI-1 function. PMID:20562105

  20. Synergic interaction between amyloid precursor protein and neural cell adhesion molecule promotes neurite outgrowth

    PubMed Central

    Chen, Keping; Lu, Huixia; Gao, Tianli; Xue, Xiulei; Wang, Chunling; Miao, Fengqin

    2016-01-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The main features of AD are the pathological changes of density and distribution of intracellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. The processing of amyloid beta precursor protein (APP) to β-amyloid peptide (Aβ) is one of the critical events in the pathogenesis of AD. In this study, we evaluated the role of the interaction of neural cell adhesion molecule (NCAM) and APP in neurite outgrowth using two different experimental systems: PC12E2 cells and hippocampal neurons that were isolated from wild type, APP knock-in and APP knock-out mice. PC12E2 cells or hippocampal neurons were co-cultured with NCAM-negative or NCAM-positive fibroblasts L929 cells. We found that APP promoted neurite outgrowth of PC12E2 cells and hippocampal neurons in either the presence or absence of NCAM. Secreted APP can rescue the neurite outgrowth in hippocampal neurons from APP knock-out mice. The interaction of APP and NCAM had synergic effect in promoting neurite outgrowth in both PC12E2 cells and hippocampal neurons. Our results suggested that the interaction of APP with NCAM played an important role in AD development and therefore could be a potential therapeutic target for AD treatment. PMID:26883101

  1. L1 CELL ADHESION MOLECULE SIGNALING IS INHIBITED BY ETHANOL IN VIVO

    PubMed Central

    Littner, Yoav; Tang, Ningfeng; He, Min; Bearer, Cynthia F.

    2012-01-01

    Background Fetal alcohol spectrum disorder is an immense public health problem. In vitro studies support the hypothesis that L1 cell adhesion molecule (L1) is a target for ethanol developmental neurotoxicity. L1 is critical for the development of the central nervous system. It functions through signal transduction leading to phosphorylation and dephosphorylation of tyrosines on its cytoplasmic domain. The function of L1 is also dependent on trafficking through lipid rafts. Our hypothesis is that L1 is a target for ethanol neurotoxicity in vivo. Our objective is to demonstrate changes in L1 phosphorylation/dephosphorylation and lipid raft association in vivo. Methods Rat pups on postnatal day 6 are administered 4.5, 5.25 and 6 g/kg of ethanol divided into 2 doses 2 hours apart, then sacrificed. Cerebella are rapidly frozen for assay. Blood is analyzed for blood ethanol concentration. L1 tyrosine phosphorylation is determined by immunoprecipitation and dephosphorylation of tyrosine 1176 determined by immunoblot. Lipid rafts are isolated by sucrose density gradient and the distribution of L1 in lipid rafts is determined. Results Ethanol at all doses reduced the relative amount of Y1176 dephosphorylation as well as the relative amount of L1 phosphorylated on other tyrosines. The proportion of L1 present in lipid rafts is significantly increased in pups who received 6 g/kg ethanol compared to intubated controls. Conclusions L1 is a target for ethanol developmental neurotoxicity in vivo. PMID:23050935

  2. Junctional Adhesion Molecule-A Is Required for Hematogenous Dissemination of Reovirus

    PubMed Central

    Antar, Annukka A. R.; Konopka, Jennifer L.; Campbell, Jacquelyn A.; Henry, Rachel A.; Perdigoto, Ana L.; Carter, Bruce D.; Pozzi, Ambra; Abel, Ty W.; Dermody, Terence S.

    2009-01-01

    SUMMARY Diverse families of viruses bind immunoglobulin superfamily (IgSF) proteins located in tight junctions (TJs) and adherens junctions of epithelium and endothelium. However, little is known about the roles of these receptors in the pathogenesis of viral disease. Junctional adhesion molecule-A (JAM-A) is an IgSF protein that localizes to TJs and serves as a receptor for mammalian reovirus. We inoculated wild-type (wt) and isogenic JAM-A−/− mice perorally with reovirus and found that JAM-A is dispensable for viral replication in the intestine but required for systemic dissemination. Reovirus replication in the brain and tropism for discrete neural regions are equivalent in wt and JAM-A−/− mice following intracranial inoculation, suggesting a function for JAM-A in reovirus spread to extra-intestinal sites. JAM-A promotes reovirus infection of endothelial cells, providing a conduit for the virus into the bloodstream. These findings indicate that a broadly expressed IgSF viral receptor specifically mediates hematogenous dissemination in the host. PMID:19154988

  3. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling

    PubMed Central

    Zecchini, Silvia; Bombardelli, Lorenzo; Decio, Alessandra; Bianchi, Marco; Mazzarol, Giovanni; Sanguineti, Fabio; Aletti, Giovanni; Maddaluno, Luigi; Berezin, Vladimir; Bock, Elisabeth; Casadio, Chiara; Viale, Giuseppe; Colombo, Nicoletta; Giavazzi, Raffaella; Cavallaro, Ugo

    2011-01-01

    Epithelial ovarian carcinoma (EOC) is an aggressive neoplasm, which mainly disseminates to organs of the peritoneal cavity, an event mediated by molecular mechanisms that remain elusive. Here, we investigated the expression and functional role of neural cell adhesion molecule (NCAM), a cell surface glycoprotein involved in brain development and plasticity, in EOC. NCAM is absent from normal ovarian epithelium but becomes highly expressed in a subset of human EOC, in which NCAM expression is associated with high tumour grade, suggesting a causal role in cancer aggressiveness. We demonstrate that NCAM stimulates EOC cell migration and invasion in vitro and promotes metastatic dissemination in mice. This pro-malignant function of NCAM is mediated by its interaction with fibroblast growth factor receptor (FGFR). Indeed, not only FGFR signalling is required for NCAM-induced EOC cell motility, but targeting the NCAM/FGFR interplay with a monoclonal antibody abolishes the metastatic dissemination of EOC in mice. Our results point to NCAM-mediated stimulation of FGFR as a novel mechanism underlying EOC malignancy and indicate that this interplay may represent a valuable therapeutic target. PMID:21739604

  4. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  5. Junctional Adhesion Molecule A Promotes Epithelial Tight Junction Assembly to Augment Lung Barrier Function

    PubMed Central

    Mitchell, Leslie A.; Ward, Christina; Kwon, Mike; Mitchell, Patrick O.; Quintero, David A.; Nusrat, Asma; Parkos, Charles A.; Koval, Michael

    2016-01-01

    Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased β1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A−/− mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A−/− mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton. PMID:25438062

  6. Prognostic value of melanoma cell adhesion molecule expression in cancers: a meta-analysis

    PubMed Central

    Zhu, Guoqing; Zhang, Xiao; Wang, Yulan; Xiong, Huizi; Zhao, Yinghui; Wang, Jiayi; Sun, Fenyong

    2015-01-01

    Melanoma cell adhesion molecule (MACM) has been reported in many studies as a novel bio-marker for its prognosis value in cancers. But the prognosis significance of MACM expression in cancer remains inconclusive. Therefore, we conducted a system review and meta-analysis to assess its prognosis value in cancers. A systematic search through Pubmed, EMBASE and Cochran Library database was conducted. Hazard Ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate the prognosis value of MACM expression. Eleven studies with 2657 cases were included after sorting out 462 articles for this meta-analysis. The results of the fixed-model depending on the heterogeneity in studies demonstrated that MACM expression was significantly associated with overall survival (OS) in cancer (HR=2.84, 95% CI: 1.10-7.31, P<0.00001). Furthermore, subgroup analysis indicated that high expressed MACM predicted a poor OS in both Asian (HR=2.52, 95% CI: 1.80-3.52, P<0.00001) and Caucasian (HR=2.40, 95% CI: 2.01-2.88, P<0.00001). In conclusion, high expression of MACM was significantly associated with a poor prognostic outcome in cancer. MACM can be regarded as a novel bio-marker in different types of cancers and can be used to evaluate the prognosis of therapeutic effect during clinical practices. PMID:26550117

  7. Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population.

    PubMed

    Zheng, Minming; Zhang, Lijun; Yu, Hongsong; Hu, Jiayue; Cao, Qingfeng; Huang, Guo; Huang, Yang; Yuan, Gangxiang; Kijlstra, Aize; Yang, Peizeng

    2016-01-01

    Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet's disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population. PMID:27108704

  8. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    SciTech Connect

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-15

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  9. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  10. Genetic polymorphisms of cell adhesion molecules in Behcet’s disease in a Chinese Han population

    PubMed Central

    Zheng, Minming; Zhang, Lijun; Yu, Hongsong; Hu, Jiayue; Cao, Qingfeng; Huang, Guo; Huang, Yang; Yuan, Gangxiang; Kijlstra, Aize; Yang, Peizeng

    2016-01-01

    Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population. PMID:27108704

  11. Early Growth Response Protein 1 Promotes Restenosis by Upregulating Intercellular Adhesion Molecule-1 in Vein Graft

    PubMed Central

    Zhang, Kui; Cao, Jian; Dong, Ran; Du, Jie

    2013-01-01

    Objectives. To verify the relationship between Egr-1 and vein graft restenosis and investigate the related mechanisms. Methods. Mouse vein graft models were established in Egr-1 knockout (KO) and wild-type (WT) mice. The vein grafts in the mice were taken for pathological examination and immunohistochemical analysis. The endothelial cells (ECs) were stimulated by using a computer-controlled cyclic stress unit. BrdU staining and PCR were used to detect ECs proliferation activity and Egr-1 and ICAM-1 mRNA expression, respectively. Western-blot analysis was also used to detect expression of Egr-1 and intercellular adhesion molecule-1 (ICAM-1) proteins. Results. The lumens of vein grafts in Egr-1 KO mice were wider than in WT mice. ECs proliferation after mechanical stretch stimulation was suppressed by Egr-1 knockout (P < 0.05). Both in vein grafts and ECs from WT mice after mechanical stretch stimulation, mRNA expression and protein of Egr-1 and ICAM-1 showed increases (P < 0.05). However, ICAM-1 expression was significantly suppressed in ECs from Egr-1 knockout mice (P < 0.05). Conclusions. Egr-1 may promote ECs proliferation and result in vein graft restenosis by upregulating the expression of ICAM-1. As a key factor of vein graft restenosis, it could be a target for the prevention of restenosis after CABG surgery. PMID:24386503

  12. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding.

    PubMed

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A; Chan, Andrew M

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5'-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras-/-). An examination of the lymphoid organs of Rras-/- mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras-/- mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras-/- mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras-/- T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras-/- T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras-/- T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  13. Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium: a review.

    PubMed

    Müller, W E

    1997-09-01

    The phylogenetic relationships of the kingdom Animalia (Metazoa) have long been questioned. Whether the lowest eukaryotic multicellular organisms, the metazoan phylum Porifera (sponges), independently evolved multicellularity from a separate protist lineage (polyphyly of animals) or whether they were derived from the same protist group as the other animal phyla (monophyly) remains unclear. Analyses of the genes that are typical for multicellularity, e.g. those coding for adhesion molecules (galectin) and adhesion receptors (receptor tyrosine kinase, integrin receptor, receptors featuring scavenger receptor cysteine-rich domains) or elements involved in signal transduction pathways (G-proteins, Ser/Thr protein kinases), especially from the marine sponge Geodia cydonium, indicate that all animals, including sponges, are of monophyletic origin. PMID:9232818

  14. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Lin, Li; Li, Bo; Wang, Danming; Li, Dechun

    2006-10-01

    Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt-nuclear factor (NF)-kappaB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IkappaB kinase signalsome and, subsequently, IkappaBalpha, leading to activation of NF-kappaB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-kappaB signaling pathway by expression of dominant-negative mutants of IkappaB kinase and IkappaBalpha suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Deltap85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-kappaB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation. PMID:16709959

  15. The CO donor CORM-2 inhibits LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts

    PubMed Central

    Chi, Pei-Ling; Chuang, Yu-Chen; Chen, Yu-Wen; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-01-01

    BACKGROUND AND PURPOSE Infection with Gram-negative bacteria has been recognized as an initiator of rheumatoid arthritis, which is characterized by chronic inflammation and infiltration of immune cells. Carbon monoxide (CO) exhibits anti-inflammatory properties. Here we have investigated the detailed mechanisms of vascular cell adhesion molecule-1 (VCAM-1) expression induced by LPS and if CO inhibited LPS-induced leukocyte adhesion to synovial fibroblasts by suppressing VCAM-1 expression. EXPERIMENTAL APPROACH Human rheumatoid arthritis synovial fibroblasts (RASFs) were incubated with LPS and/or the CO-releasing compound CORM-2. Effects of LPS on VCAM-1 levels were determined by analysing mRNA expression, promoter activity, protein expression, and immunohistochemical staining. The molecular mechanisms were investigated by determining the expression, activation, and binding activity of transcriptional factors using target signal antagonists. KEY RESULTS CORM-2 significantly inhibited inflammatory responses in LPS-treated RASFs by down-regulating the expression of adhesion molecule VCAM-1 and leukocyte infiltration. The down-regulation of LPS-induced VCAM-1 expression involved inhibition of the expression of phosphorylated-NF-κB p65 and AP-1 (p-c-Jun, c-Jun and c-Fos mRNA levels). These results were confirmed by chromatin immunoprecipitation assay to detect NF-κB and AP-1 DNA binding activity. CONCLUSIONS AND IMPLICATIONS LPS-mediated formation of the TLR4/MyD88/TRAF6/c-Src complex regulated NF-κB and MAPKs/AP-1 activation leading to VCAM-1 expression and leukocyte adhesion. CORM-2, which liberates CO to elicit direct biological activities, attenuated LPS-induced VCAM-1 expression by interfering with NF-κB and AP-1 activation, and significantly reduced LPS-induced immune cell infiltration of the synovium. PMID:24628691

  16. T cells, adhesion molecules and modulation of apoptosis in visceral leishmaniasis glomerulonephritis

    PubMed Central

    2010-01-01

    Background Immune complex deposition is the accepted mechanism of pathogenesis of VL glomerulopathy however other immune elements may participate. Further in the present study, no difference was seen between immunoglobulin and C3b deposit intensity in glomeruli between infected and non-infected dogs thus T cells, adhesion molecules and parameters of proliferation and apoptosis were analysed in dogs with naturally acquired VL from an endemic area. The dog is the most important domestic reservoir of the protozoa Leishmania (L.) chagasi that causes visceral leishmaniasis (VL). The similarity of VL manifestation in humans and dogs renders the study of canine VL nephropathy of interest with regard to human pathology. Methods From 55 dogs with VL and 8 control non-infected dogs from an endemic area, kidney samples were analyzed by immunohistochemistry for immunoglobulin and C3b deposits, staining for CD4+ and CD8+ T cells, ICAM-1, P-selectin and quantified using morphometry. Besides proliferation marker Ki-67, apoptosis markers M30 and TUNEL staining, and related cytokines TNF-α, IL-1α were searched and quantified. Results We observed similar IgG, IgM and IgA and C3b deposit intensity in dogs with VL and non-infected control dogs. However we detected the Leishmania antigen in cells in glomeruli in 54, CD4+ T cells in the glomeruli of 44, and CD8+ T cells in 17 of a total of 55 dogs with VL. Leishmania antigen was absent and T cells were absent/scarse in eight non-infected control dogs. CD 4+ T cells predominate in proliferative patterns of glomerulonephritis, however the presence of CD4+ and CD8+ T cells were not different in intensity in different patterns of glomerulonephritis. The expression of ICAM-1 and P-selectin was significantly greater in the glomeruli of infected dogs than in control dogs. In all patterns of glomerulonephritis the expression of ICAM-1 ranged from minimum to moderately severe and P-selectin from absent to severe. In the control animals the

  17. Small molecules ATP-competitive inhibitors of FLT3: a chemical overview.

    PubMed

    Schenone, S; Brullo, C; Botta, M

    2008-01-01

    FLT3 is a tyrosine kinase (TK), member of the class III TK receptor family, normally expressed in hematopoietic, immune and neural systems, also playing an important role in the pathogenesis of acute leukemias, particularly acute myeloid leukemia (AML), where it is present in constitutively activated mutated forms, correlated with poor prognosis, in a notable percentage of patients. For these reasons FLT3 soon appeared as a promising target for the therapeutic intervention for this severe and aggressive malignancy; the recent determination of the crystal structure of the autoinhibited form of FLT3 gave new trend for the design and the synthesis of potent inhibitors. Small molecules tyrosine kinase inhibitors represent one of the largest drug family currently targeted by pharmaceutical companies for the treatment of cancer. Exciting examples of such molecules have reached advanced clinical trials and have been recently approved by FDA for the treatment of different solid or haematological tumors. Usually TK inhibitors share common features, namely two hydrophobic/aromatic regions bearing one or more hydrogen bonding substituents. These two regions can be connected by different spacers and almost all the molecules contain a component resembling the ATP purine structure. This review will deal with FLT3 synthetic inhibitors, reporting not only the most important molecules that are in clinical trials, but also the new compounds that have appeared in literature in the last few years. Our attention will be focused on chemical structures, mechanisms of action and structure-activity relationships. PMID:19075657

  18. Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank.

    PubMed

    Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M

    2014-06-01

    With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called "group" was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. PMID:24173824

  19. Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A

    PubMed Central

    Ingold, Esther; vom Berg-Maurer, Colette M.; Burckhardt, Christoph J.; Lehnherr, André; Rieder, Philip; Keller, Philip J.; Stelzer, Ernst H.; Greber, Urs F.; Neuhauss, Stephan C. F.; Gesemann, Matthias

    2015-01-01

    ABSTRACT The formation of functional neuronal circuits relies on accurate migration and proper axonal outgrowth of neuronal precursors. On the route to their targets migrating cells and growing axons depend on both, directional information from neurotropic cues and adhesive interactions mediated via extracellular matrix molecules or neighbouring cells. The inactivation of guidance cues or the interference with cell adhesion can cause severe defects in neuronal migration and axon guidance. In this study we have analyzed the function of the MAM domain containing glycosylphosphatidylinositol anchor 2A (MDGA2A) protein in zebrafish cranial motoneuron development. MDGA2A is prominently expressed in distinct clusters of cranial motoneurons, especially in the ones of the trigeminal and facial nerves. Analyses of MDGA2A knockdown embryos by light sheet and confocal microscopy revealed impaired migration and aberrant axonal outgrowth of these neurons; suggesting that adhesive interactions mediated by MDGA2A are required for the proper arrangement and outgrowth of cranial motoneuron subtypes. PMID:25572423

  20. Discovery of Clinical Candidate CEP-37440, a Selective Inhibitor of Focal Adhesion Kinase (FAK) and Anaplastic Lymphoma Kinase (ALK).

    PubMed

    Ott, Gregory R; Cheng, Mangeng; Learn, Keith S; Wagner, Jason; Gingrich, Diane E; Lisko, Joseph G; Curry, Matthew; Mesaros, Eugen F; Ghose, Arup K; Quail, Matthew R; Wan, Weihua; Lu, Lihui; Dobrzanski, Pawel; Albom, Mark S; Angeles, Thelma S; Wells-Knecht, Kevin; Huang, Zeqi; Aimone, Lisa D; Bruckheimer, Elizabeth; Anderson, Nathan; Friedman, Jay; Fernandez, Sandra V; Ator, Mark A; Ruggeri, Bruce A; Dorsey, Bruce D

    2016-08-25

    Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein. PMID:27527804

  1. Extracellular Matrix can Recover the Downregulation of Adhesion Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment

    PubMed Central

    He, Ningning; Xu, Yang; Du, Wei; Qi, Xin; Liang, Lu; Wang, Yuebing; Feng, Guowei; Fan, Yan; Han, Zhongchao; Kong, Deling; Cheng, Zhen; Wu, Joseph C.; He, Zuoxiang; Li, Zongjin

    2015-01-01

    The low cell engraftment after transplantation limits the successful application of stem cell therapy and the exact pathway leading to acute donor cell death following transplantation is still unknown. Here we investigated if processes involved in cell preparation could initiate downregulation of adhesion-related survival signals, and further affect cell engraftment after transplantation. Human embryonic stem cell-derived endothelial cells (hESC-ECs) were suspended in PBS or Matrigel and kept at 4 °C. Quantitative RT-PCR analysis was used to test the adhesion and apoptosis genes’ expression of hESC-ECs. We demonstrated that cell detachment can cause downregulation of cell adhesion and extracellular matrix (ECM) molecules, but no obvious cell anoikis, a form of apoptosis after cell detachment, was observed. The downregulation of adhesion and ECM molecules could be regained in the presence of Matrigel. Finally, we transplanted hESC-ECs into a mouse myocardial ischemia model. When transplanted with Matrigel, the long-term engraftment of hESC-ECs was increased through promoting angiogenesis and inhibiting apoptosis, and this was confirmed by bioluminescence imaging. In conclusion, ECM could rescue the functional genes expression after cell detached from culture dish, and this finding highlights the importance of increasing stem cell engraftment by mimicking stem cell niches through ECM application. PMID:26039874

  2. Nitric oxide pretreatment enhances atheroma component highlighting in vivo with intercellular adhesion molecule-1-targeted echogenic liposomes.

    PubMed

    Kee, Patrick H; Kim, Hyunggun; Huang, Shaoling; Laing, Susan T; Moody, Melanie R; Vela, Deborah; Klegerman, Melvin E; McPherson, David D

    2014-06-01

    We present an ultrasound technique for the detection of inflammatory changes in developing atheromas. We used contrast-enhanced ultrasound imaging with (i) microbubbles targeted to intercellular adhesion molecule-1 (ICAM-1), a molecule of adhesion involved in inflammatory processes in lesions of atheromas in New Zealand White rabbits, and (ii) pretreatment with nitric oxide-loaded microbubbles and ultrasound activation at the site of the endothelium to enhance the permeability of the arterial wall and the penetration of ICAM-1-targeted microbubbles. This procedure increases acoustic enhancement 1.2-fold. Pretreatment with nitric oxide-loaded echogenic liposomes and ultrasound activation can potentially facilitate the subsequent penetration of targeted echogenic liposomes into the arterial wall, thus allowing improved detection of inflammatory changes in developing atheromas. PMID:24613216

  3. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1.

    PubMed Central

    Walsh, L J; Trinchieri, G; Waldorf, H A; Whitaker, D; Murphy, G F

    1991-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-alpha within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-alpha protein and TNF-alpha mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-alpha. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion. Images PMID:1709737

  4. Development and implementation of a miniaturized high-throughput time-resolved fluorescence energy transfer assay to identify small molecule inhibitors of polo-like kinase 1.

    PubMed

    Sharlow, Elizabeth R; Leimgruber, Stephanie; Shun, Tong Ying; Lazo, John S

    2007-12-01

    Polo-like kinase (Plk) 1 is a key enzyme involved in regulating the mammalian cell cycle that is also a validated anticancer drug target. Nonetheless, there are relatively few readily available potent and selective small molecule inhibitors of Plk1. To increase the availability of pharmacologically valuable Plk1 inhibitors, we describe herein the development, variability assessment, validation, and implementation of a 384-well automated, miniaturized high-throughput time-resolved fluorescence energy transfer screening assay designed to identify Plk1 kinase inhibitors. Using a small molecule library of pharmaceutically active compounds to gauge high-throughput assay robustness and reproducibility, we found nine general kinase inhibitors, including H-89, which was selected as the minimum control. We then interrogated a 97,101 compound library from the National Institutes of Health repository for small molecule inhibitors of Plk1 kinase activity. The initial primary hit rate in a single 10 microM concentration format was 0.21%. Hit compounds were subjected to concentration-response confirmation and interference assays. Identified in the screen were seven compounds with 50% inhibitory concentration (IC50) values below 1 microM, 20 compounds with IC50 values between 1 microM and 5 microM, and eight compounds with IC50 values between 5 and 10 microM, which could be assigned to seven distinct chemotype classes. Hit compounds were also examined for their ability to inhibit other kinases such as protein kinase D, focal adhesion kinase, rho-associated coiled coil protein kinase 2, c-jun NH2-terminal kinase 3, and protein kinase A via experimentation or data-mining. These compounds should be useful as probes for the biological activity of Plk1 and as leads for the development of new selective inhibitors of Plk1. PMID:18181689

  5. Ambient pollutants, polymorphisms associated with microRNA processing and adhesion molecules: the Normative Aging Study

    PubMed Central

    2011-01-01

    Background Particulate air pollution has been associated with cardiovascular morbidity and mortality, but it remains unclear which time windows and pollutant sources are most critical. MicroRNA (miRNA) is thought to be involved in cardiovascular regulation. However, little is known about whether polymorphisms in genes that process microRNAs influence response to pollutant exposure. We hypothesized that averaging times longer than routinely measured one or two day moving averages are associated with higher soluble intercellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule-1 (sVCAM-1) levels, and that stationary and mobile sources contribute differently to these effects. We also investigated whether single nucleotide polymorphisms (SNPs) in miRNA-processing genes modify these associations. Methods sICAM-1 and sVCAM-1 were measured from 1999-2008 and matched to air pollution monitoring for fine particulate matter (PM2.5) black carbon, and sulfates (SO42-). We selected 17 SNPs in five miRNA-processing genes. Mixed-effects models were used to assess effects of pollutants, SNPs, and interactions under recessive inheritance models using repeated measures. Results 723 participants with 1652 observations and 1-5 visits were included in our analyses for black carbon and PM2.5. Sulfate data was available for 672 participants with 1390 observations. An interquartile range change in seven day moving average of PM2.5 (4.27 μg/m3) was associated with 3.1% (95%CI: 1.6, 4.6) and 2.5% (95%CI: 0.6, 4.5) higher sICAM-1 and sVCAM-1. Interquartile range changes in sulfates (1.39 μg/m3) were associated with 1.4% higher (95%CI: 0.04, 2.7) and 1.6% (95%CI: -0.4, 3.7) higher sICAM-1 and sVCAM-1 respectively. No significant associations were observed for black carbon. In interaction models with PM2.5, both sICAM-1 and sVCAM-1 levels were lower in rs1062923 homozygous carriers. These interactions remained significant after multiple comparisons adjustment. Conclusions PM

  6. Tie2 Signaling Enhances Mast Cell Progenitor Adhesion to Vascular Cell Adhesion Molecule-1 (VCAM-1) through α4β1 Integrin

    PubMed Central

    Kanemaru, Kazumasa; Noguchi, Emiko; Tokunaga, Takahiro; Nagai, Kei; Hiroyama, Takashi; Nakamura, Yukio; Tahara-Hanaoka, Satoko; Shibuya, Akira

    2015-01-01

    Mast cell (MC) activation contributes considerably to immune responses, such as host protection and allergy. Cell surface immunoreceptors expressed on MCs play an important role in MC activation. Although various immunoreceptors on MCs have been identified, the regulatory mechanism of MC activation is not fully understood. To understand the regulatory mechanisms of MC activation, we used gene expression analyses of human and mouse MCs to identify a novel immunoreceptor expressed on MCs. We found that Tek, which encodes Tie2, was preferentially expressed in the MCs of both humans and mice. However, Tie2 was not detected on the cell surface of the mouse MCs of the peritoneal cavity, ear skin, or colon lamina propria. In contrast, it was expressed on mouse bone marrow–derived MCs and bone marrow MC progenitors (BM-MCps). Stimulation of Tie2 by its ligand angiopoietin-1 induced tyrosine phosphorylation of Tie2 in MEDMC-BRC6, a mouse embryonic stem cell-derived mast cell line, and enhanced MEDMC-BRC6 and mouse BM-MCp adhesion to vascular cell adhesion molecule-1 (VCAM-1) through α4β1 integrin. These results suggest that Tie2 signaling induces α4β1 integrin activation on BM-MCps for adhesion to VCAM-1. PMID:26659448

  7. Single molecular recognition force spectroscopy study of a DNA aptamer with the target epithelial cell adhesion molecule.

    PubMed

    Wang, Nan; Liu, Huiqing; Hao, Jinhui; Bai, Xiaojing; Li, Huiyan; Zhang, Zhe; Wang, Hongda; Tang, Jilin

    2015-09-21

    The epithelial cell adhesion molecule (EpCAM) is a tumor-specific antigen for malignancies of the epithelialis lineage. In this study the interaction between the DNA-based EpCAM aptamer (SYL3C) and EpCAM was explored using single molecular recognition force spectroscopy (SMFS). The capability of aptamer SYL3C to recognize the EpCAM protein and the kinetic parameters were investigated. PMID:26229987

  8. Interaction of Intercellular Adhesion Molecule 1 (ICAM1) Polymorphisms and Environmental Tobacco Smoke on Childhood Asthma

    PubMed Central

    Li, Yu-Fen; Lin, Che-Chen; Tai, Chien-Kuo

    2014-01-01

    Asthma is a chronic disease that is particularly common in children. The association between polymorphisms of the gene encoding intercellular adhesion molecule 1 (ICAM1) and gene-environment interactions with childhood asthma has not been fully investigated. A cross-sectional study was undertaken to investigate these associations among children in Taiwan. The effects of two functional single-nucleotide polymorphisms (SNPs) of ICAM1, rs5491 (K56M) and rs5498 (K469E), and exposure to environmental tobacco smoke (ETS) were studied. Two hundred and eighteen asthmatic and 877 nonasthmatic children were recruited from elementary schools. It was found that the genetic effect of each SNP was modified by the other SNP and by exposure to ETS. The risk of asthma was higher for children carrying the rs5491 AT or TT genotypes and the rs5498 GG genotype (odds ratio = 1.68, 95% confidence interval 1.09–2.59) than for those with the rs5491 AA and rs5498 AA or AG genotypes (the reference group). The risk for the other two combinations of genotypes did not differ significantly from that of the reference group (p of interaction = 0.0063). The two studied ICAM1 SNPs were associated with childhood asthma among children exposed to ETS, but not among those without ETS exposure (p of interaction = 0.05 and 0.01 for rs5491 and rs5498, respectively). Both ICAM1 and ETS, and interactions between these two factors are likely to be involved in the development of asthma in childhood. PMID:25003170

  9. Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling

    PubMed Central

    Demyanenko, Galina P.; Mohan, Vishwa; Zhang, Xuying; Brennaman, Leann H.; Dharbal, Katherine E.S.; Tran, Tracy S.; Manis, Paul B.

    2014-01-01

    Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits. PMID:25143608

  10. Association of intercellular adhesion molecule 1 with the multichain high-affinity interleukin 2 receptor.

    PubMed Central

    Burton, J; Goldman, C K; Rao, P; Moos, M; Waldmann, T A

    1990-01-01

    Previously, using flow cytometric resonance energy transfer and lateral diffusion measurements, we demonstrated that a 95-kDa protein identified by two monoclonal antibodies (OKT27 and OKT27b) interacts physically with the 55-kDa alpha protein of the high-affinity interleukin 2 (IL-2) receptor. In the present study, this 95-kDa protein (p95) was purified and amino acid sequence data were obtained that showed strong homology to the human intercellular adhesion molecule 1 (ICAM-1). The identity of the p95 protein with ICAM-1 was confirmed by sequential immunoprecipitations using OKT27 and an antibody, WEHI-CAM-1, that is directed toward ICAM-1. We confirmed the physical proximity of p95/ICAM-1 to the IL-2 receptor alpha subunit by demonstrating that radiolabeled IL-2 could be cross-linked to this protein expressed on activated T cells. In functional studies, the antibodies OKT27 and OKT27b inhibited T-cell proliferative responses to OKT3, to soluble antigen, and to heterologous cells (mixed lymphocyte reaction). However, these antibodies did not inhibit IL-2-induced proliferation of an IL-2-dependent T-cell line. Taken together with our previous observations, the present studies suggest that ICAM-1 is in proximity and interacts physically with the high-affinity IL-2 receptor. The association of ICAM-1 with the IL-2 receptor may facilitate the paracrine IL-2-mediated stimulation of T cells expressing IL-2 receptors by augmenting homotypic T-T-cell interaction, by receptor-directed focusing of IL-2 release by helper T cells, and by focusing IL-2 receptors of the physically linked cells to the site of lymphocyte function-associated antigen 1-ICAM-1-IL-2 receptor interaction. Images PMID:1976256

  11. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding

    PubMed Central

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A.; Chan, Andrew M.

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  12. Role of Streptococcus uberis adhesion molecule in the pathogenesis of Streptococcus uberis mastitis.

    PubMed

    Almeida, Raúl A; Dego, Oudessa Kerro; Headrick, Susan I; Lewis, Mark J; Oliver, Stephen P

    2015-09-30

    Adherence to and internalization into mammary epithelial cells are central mechanisms in the pathogenesis of S. uberis mastitis. Through these pathogenic strategies, S. uberis reaches an intracellular environment where humoral host defenses and antimicrobials in milk are essentially ineffective, thus allowing persistence of this pathogen in the mammary gland. We reported that S. uberis expresses a surface adhesion molecule (SUAM) that has affinity for lactoferrin (LF) and a central role adherence to and internalization of S. uberis into bovine mammary epithelial cells. To define the role of SUAM in the pathogenesis of S. uberis mastitis, we created a sua gene deletion mutant clone of S. uberis UT888 (Δsua S. uberis UT888) unable to express SUAM. When tested in vitro, Δsua S. uberis UT888 was defective in adherence to and internalization into bovine mammary epithelial cells. To prove that the absence of SUAM reduces bacterial attachment, subsequent colonization and infection of bovine mammary glands, the wild type S. uberis UT888 and its isogenic Δsua S. uberis UT888 were infused into mammary quarters of dairy cows. Results showed that fewer mammary glands infused with Δsua S. uberis UT888 become infected than those infused with the isogenic parental strain. Furthermore, mammary glands infused with Δsua S. uberis UT888 had less severe clinical symptoms as compared to those infused with the isogenic parental strain. These results suggest that the SUAM mutant clone was less virulent than the isogenic parental strain which further substantiates the role of SUAM in the pathogenesis of S. uberis mastitis. PMID:26216456

  13. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10.

    PubMed

    Hebeda, C B; Teixeira, S A; Tamura, E K; Muscará, M N; de Mello, S B V; Markus, R P; Farsky, S H P

    2011-08-01

    We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 µg/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions. PMID:21564091

  14. Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice.

    PubMed Central

    Komatsu, S.; Flores, S.; Gerritsen, M. E.; Anderson, D. C.; Granger, D. N.

    1997-01-01

    Although circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) are frequently used as an indicator of the severity of different immune, inflammatory, or neoplastic diseases, little is known about the factors that govern plasma sICAM-1 concentration and its relationship to the membranous form of ICAM-1 (mICAM-1) expressed on vascular endothelial cells. Plasma sICAM-1 concentration (measured by enzyme-linked immunosorbent assay) and mICAM-1 expression (measured using the dual radiolabeled monoclonal antibody technique) in different vascular beds (eg, lung, small intestine, and spleen) were monitored in wild-type (C57BL) and ICAM-1-deficient mice, before and after administration of tumor necrosis factor (TNF)-alpha. In wild-type mice, TNF-alpha elicited time-dependent increases in lung and intestine mICAM-1 (plateau achieved at 12 hours), with a corresponding increase in plasma sICAM-1 (peaked at 5 hours and then declined). The initial increases in mICAM-1 and pulmonary leukocyte sequestration (measured as lung myeloperoxidase activity) induced by TNF-alpha preceded any detectable elevation in sICAM-1. In ICAM-1-deficient mice, plasma sICAM-1 was reduced by approximately 70%, with > 95% reductions of mICAM-1 in lung and intestine, and > 75% reduction in splenic accumulation of anti-ICAM-1 antibody. Although TNF-alpha doubled plasma sICAM-1 in ICAM-1-deficient mice, mICAM-1 was unaffected in all tissues. Either splenectomy or pretreatment with cycloheximide resulted in an attenuated TNF-induced increase in sICAM-1, without affecting mICAM-1 expression. These findings indicate that plasma sICAM-1 concentration does not accurately reflect the level of ICAM-1 expression on endothelial cells in different vascular beds. PMID:9212746

  15. Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells

    PubMed Central

    Arabzadeh, Azadeh; Dupaul-Chicoine, Jeremy; Breton, Valérie; Haftchenary, Sina; Yumeen, Sara; Turbide, Claire; Saleh, Maya; McGregor, Kevin; Greenwood, Celia M T; Akavia, Uri David; Blumberg, Richard S; Gunning, Patrick T; Beauchemin, Nicole

    2015-01-01

    Objective Nearly 20%–29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. Design Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. Results MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. Conclusions CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas. PMID:25666195

  16. Intercellular Adhesion Molecule-1 (ICAM-1) Polymorphisms and Cancer Risk: A Meta-Analysis

    PubMed Central

    CHENG, Daye; LIANG, Bin

    2015-01-01

    Background: Intercellular adhesion molecule-1 (ICAM-1) Lys469Glu (K469E) polymorphism and Gly 241Arg (G241R) polymorphism might play important roles in cancer development and progression. However, the results of previous studies are inconsistent. The aim of this study was to evaluate the association between ICAM-1 K469E and G241R polymorphisms and the risk of cancer by meta-analysis. Methods: A comprehensive literature search (last search updated in November 2013) was conducted to identify case-control studies that investigated the association between ICAM-1 K469E and G241R polymorphisms and cancer risk. Results: A total of 18 case-control studies for ICAM-1 polymorphisms were included in the meta-analysis, including 4,844 cancer cases and 5,618 healthy controls. For K469E polymorphism, no significant association was found between K469E polymorphism and cancer risk. However, subgroup analysis by ethnicity revealed one genetic comparison (GG vs. AA) presented the relationship with cancer risk in Asian subgroup, and two genetic models (GG+GA vs. AA and GA vs. AA) in European subgroup, respectively. For G241R polymorphism, G241R polymorphism was significantly association with cancer risk in overall analysis. The subgroup analysis by ethnicity showed that G241R polymorphism was significantly associated with cancer risk in European subgroup. Conclusion: ICAM-1 G241R polymorphism might be associated with cancer risk, especially in European populations, but the results doesn’t support ICAM-1 K469E polymorphism as a risk factor for cancer. PMID:26284202

  17. Soluble adhesion molecules correlate with surface expression in an in vitro model of endothelial activation.

    PubMed

    Kjaergaard, Anders G; Dige, Anders; Krog, Jan; Tønnesen, Else; Wogensen, Lise

    2013-10-01

    Endothelial activation is a pivotal event in the development and progression of inflammation. Central to endothelial activation is the up-regulation of cellular adhesion molecules (CAMs) including E-selectin (CD62E), ICAM-1 (CD54), VCAM-1 (CD106) and PECAM-1 (CD31). These CAMs are also found in soluble forms (sCAMs). In this in vitro study of endothelial activation, we examined whether the levels of sCAMs correlate with the endothelial surface expression of CAMs in a dose-dependent and time-dependent manner. Such a correlation would support the use of sCAMs as surrogate markers for endothelial activation in inflammatory conditions. Human umbilical vein endothelial cells (HUVEC) were cultured with various concentrations of TNF-α for 8 hr and at a fixed concentration of TNF-α for various durations. The levels of soluble and surface-bound E-selectin, ICAM-1, VCAM-1 and PECAM-1 were quantified by flow cytometry. TNF-α stimulation increased CAM and sCAM expression in a dose-dependent and time-dependent manner. There was a significant positive correlation between the levels of ICAM-1 and sICAM-1 and between the levels of VCAM and sVCAM-1 in both the dose-response and time-response experiments. A positive correlation between the levels of E-selectin and sE-selectin was observed in the time-response experiment. This study supports the use of sCAMs as potential biomarkers of endothelial activation. In particular, the use of sICAM-1, sVCAM-1 and sE-selectin seems promising. PMID:23724832

  18. Expression Level of Genes Coding for Cell Adhesion Molecules of Cadherin Group in Colorectal Cancer Patients

    PubMed Central

    Lorenc, Zbigniew; Opiłka, Mieszko Norbert; Kruszniewska-Rajs, Celina; Rajs, Antoni; Waniczek, Dariusz; Starzewska, Małgorzata; Lorenc, Justyna; Mazurek, Urszula

    2015-01-01

    Background Colorectal Cancer (CRC) is one of the most frequently diagnosed neoplasms and also one of the main death causes. Cell adhesion molecules are taking part in specific junctions, contributing to tissue integrality. Lower expression of the cadherins may be correlated with poorer differentiation of the CRC, and its more aggressive phenotype. The aim of the study is to designate the cadherin genes potentially useful for the diagnostics, prognostics, and the treatment of CRC. Material/Method Specimens were collected from 28 persons (14 female and 14 male), who were operated for CRC. The molecular analysis was performed using oligonucleotide microarrays, mRNA used was collected from adenocarcinoma, and macroscopically healthy tissue. The results were validated using qRT-PCR technique. Results Agglomerative hierarchical clustering of normalized mRNA levels has shown 4 groups with statistically different gene expression. The control group was divided into 2 groups, the one was appropriate control (C1), the second (C2) had the genetic properties of the CRC, without pathological changes histologically and macroscopically. The other 2 groups were: LSC (Low stage cancer) and HSC (High stage cancer). Consolidated results of the fluorescency of all of the differential genes, designated two coding E-cadherin (CDH1) with the lower expression, and P-cadherin (CDH3) with higher expression in CRC tissue. Conclusions The levels of genes expression are different for several groups of cadherins, and are related with the stage of CRC, therefore could be potentially the useful marker of the stage of the disease, also applicable in treatment and diagnostics of CRC. PMID:26167814

  19. Soluble intracellular adhesion molecule 1 in bronchoalveolar lavage fluid of allergic subjects following segmental antigen challenge.

    PubMed

    Takahashi, N; Liu, M C; Proud, D; Yu, X Y; Hasegawa, S; Spannhake, E W

    1994-09-01

    This study was undertaken to determine the relationship of soluble intercellular adhesion molecule 1 (sICAM-1) levels in bronchoalveolar lavage (BAL) fluid during allergic airway inflammation to those in the vascular compartment and to cellular components in the BAL fluids. A group of 11 allergic subjects underwent initial bronchoscopy during which a control BAL was performed and normal saline (NS) and specific antigen (Ag) were administered to two sublobar segments. A second bronchoscopy was performed 17 to 21 h later, and the NS and Ag segments were lavaged. Blood was drawn before each bronchoscopic procedure. The mean concentration of sICAM-1 in BAL fluid from NS-challenged segments was 59.2 +/- 7.6 ng/ml and was not different from that in unchallenged segments (51.5 +/- 5.6 ng/ml). In BAL fluid from Ag-challenged segments, mean concentrations of sICAM-1 increased significantly to 97.5 +/- 12.5 ng/ml. Segmental antigen challenge was associated with a small but statistically significant increase in sICAM-1 concentrations in serum. The concentrations of sICAM-1 in BAL fluid after antigen challenge exceeded levels that could be accounted for by passive transudation from the circulation, based upon the magnitude of increases in BAL albumin concentrations. The levels of sICAM-1 in BAL from Ag-challenged segments were correlated significantly with the total white cell, lymphocyte, neutrophil, and eosinophil counts in BAL fluids. These results are supportive of the notion that the local release of sICAM-1 may play a role in allergen-induced inflammatory processes in the airways. PMID:7916246

  20. Loss of cell adhesion molecule CHL1 improves homeostatic adaptation and survival in hypoxic stress.

    PubMed

    Huang, X; Sun, J; Rong, W; Zhao, T; Li, D H; Ding, X; Wu, L Y; Wu, K; Schachner, M; Xiao, Z C; Zhu, L L; Fan, M

    2013-01-01

    Close homologue of L1 (CHL1) is a transmembrane cell adhesion molecule that is critical for brain development and for the maintenance of neural circuits in adults. Recent studies revealed that CHL1 has diverse roles and is involved in the regulation of recovery after spinal cord injury. CHL1 expression was downregulated in the cerebral cortex, hypothalamus, and brain stem after the induction of acute hypoxia (AH). In the current study, we sought to address the role of CHL1 in regulating homeostasis responses to hypoxia using CHL1-knockout (CHL1(-/-)) mice. We found that, compared with wild-type littermates, CHL1(-/-) mice showed a dramatically lower mortality rate and an augmented ventilatory response after they were subjected to AH. Immunofluorescence staining revealed that CHL1 was expressed in the carotid body (CB), the key oxygen sensor in rodents, and CHL1 expression level in the CB as assayed by western blot was decreased after hypoxic exposure. The number of glomus cells and the expression of tyrosine hydroxylase (a marker for glomus cells) in the CB of CHL1(-/-) mice appeared to be increased compared with CHL1(+/+) mice. In addition, in the ex vivo CB preparation, hypoxia induced a significantly greater afferent nerve discharge in CHL1(-/-) mice compared with CHL1(+/+) mice. Furthermore, the arterial blood pressure and plasma catecholamine levels of CHL1(-/-) mice were also significantly higher than those of CHL1(+/+) mice. Our findings first demonstrate that CHL1 is a novel intrinsic factor that is involved in CB function and in the ventilatory response to AH. PMID:23949217

  1. Regulated Intramembrane Proteolysis and Degradation of Murine Epithelial Cell Adhesion Molecule mEpCAM

    PubMed Central

    Hachmeister, Matthias; Bobowski, Karolina D.; Hogl, Sebastian; Dislich, Bastian; Fukumori, Akio; Eggert, Carola; Mack, Brigitte; Kremling, Heidi; Sarrach, Sannia; Coscia, Fabian; Zimmermann, Wolfgang; Steiner, Harald; Lichtenthaler, Stefan F.; Gires, Olivier

    2013-01-01

    Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is highly and frequently expressed in carcinomas and (cancer-)stem cells, and which plays an important role in the regulation of stem cell pluripotency. We show here that murine EpCAM (mEpCAM) is subject to regulated intramembrane proteolysis in various cells including embryonic stem cells and teratocarcinomas. As shown with ectopically expressed EpCAM variants, cleavages occur at α-, β-, γ-, and ε-sites to generate soluble ectodomains, soluble Aβ-like-, and intracellular fragments termed mEpEX, mEp-β, and mEpICD, respectively. Proteolytic sites in the extracellular part of mEpCAM were mapped using mass spectrometry and represent cleavages at the α- and β-sites by metalloproteases and the b-secretase BACE1, respectively. Resulting C-terminal fragments (CTF) are further processed to soluble Aβ-like fragments mEp-β and cytoplasmic mEpICD variants by the g-secretase complex. Noteworthy, cytoplasmic mEpICD fragments were subject to efficient degradation in a proteasome-dependent manner. In addition the γ-secretase complex dependent cleavage of EpCAM CTF liberates different EpICDs with different stabilities towards proteasomal degradation. Generation of CTF and EpICD fragments and the degradation of hEpICD via the proteasome were similarly demonstrated for the human EpCAM ortholog. Additional EpCAM orthologs have been unequivocally identified in silico in 52 species. Sequence comparisons across species disclosed highest homology of BACE1 cleavage sites and in presenilin-dependent γ-cleavage sites, whereas strongest heterogeneity was observed in metalloprotease cleavage sites. In summary, EpCAM is a highly conserved protein present in fishes, amphibians, reptiles, birds, marsupials, and placental mammals, and is subject to shedding, γ-secretase-dependent regulated intramembrane proteolysis, and proteasome-mediated degradation. PMID:24009667

  2. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis.

    PubMed

    Kotteas, Elias A; Boulas, Panagiotis; Gkiozos, Ioannis; Tsagkouli, Sofia; Tsoukalas, George; Syrigos, Konstantinos N

    2014-09-01

    The intercellular cell-adhesion molecule-1 (ICAM-1) is a transmembrane molecule and a distinguished member of the Immunoglobulin superfamily of proteins that participates in many important processes, including leukocyte endothelial transmigration, cell signaling, cell-cell interaction, cell polarity and tissue stability. ICAM-1and its soluble part are highly expressed in inflammatory conditions, chronic diseases and a number of malignancies. In the present article we present the implications of ICAM-1 in the progression and prognosis of one of the major global killers of our era: lung cancer. PMID:25202042

  3. [Pathogenetic and clinical significance of the adhesion molecule expression on T cells of the lung in sarcoid alveolitis].

    PubMed

    Gerli, R; Galandrini, R; Agea, E; Bini, P; Tognellini, R

    1990-01-01

    A double immunofluorescence analysis of CD4+ cell population from bronchoalveolar lavage (BAL) fluid samples of patients with active pulmonary sarcoidosis was carried out. The results showed that, unlike BAL and peripheral blood CD4+ cells of healthy subjects, almost all BAL CD4+ cells of the patients highly express, besides CDw29 antigen, LFA-1 and ICAM-1 adhesion molecules. The co-expression of these molecules on BAL CD4+ cells during high intensity sarcoid alveolitis could represent a marker of immunological memory. The relevant pathogenetic and clinical implications of this observation are discussed. PMID:2199744

  4. Circulating adhesion molecules ICAM-1, E-selectin, and von Willebrand factor in Henoch-Schönlein purpura.

    PubMed Central

    Söylemezoglu, O; Sultan, N; Gursel, T; Buyan, N; Hasanoglu, E

    1996-01-01

    Adhesion molecules play an important part in leucocyte transendothelial migration and thus may provide a useful marker of surface expression at inflammatory sites. In 20 patients with Henoch-Schönlein purpura serum intercellular adhesion molecule 1 (ICAM-1), E-selectin, and plasma von Willebrand factor (vWF) were determined by ELISA during the active and inactive phase of the disease. Twelve healthy children were studied as a control group. Serum ICAM-1 concentrations increased during the active phase of the disease and differed significantly compared with the inactive phase (p < 0.05). However ICAM-1 in the active phase did not differ significantly compared with controls (p = 0.08). Serum E-selectin concentrations did not differ in the active and inactive phase of the disease. By contrast, vWF increased in the active phase of the disease and differed significantly compared with inactive disease and control groups (p < 0.01). Considering the adhesion molecules and vWF, only vWF correlated well with the C reactive protein measurement in the active phase, which is considered a good marker of disease activity. These data suggest that plasma vWF is a good marker of vascular inflammation and endothelial damage. Circulating ICAM-1 might be an additional parameter in some of the patients. PMID:9014604

  5. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Regardless of the known anti-inflammatory potential of heterocyclic antidepressants, the mechanisms concerning their modulating effects are not completely known. In our earlier work, maprotiline, a heterocyclic antidepressants, considerably inhibited infiltration of polymorphonuclear cell leucocytes into the inflamed paw. To understand the mechanism involved, we evaluated the effect of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1) expression in stimulated endothelial cells. Endothelial cells were stimulated with lipopolysaccharide (LPS) in the presence and absence of maprotiline (10-8 to 10-6 M) and ICAM-1 and VCAM-1 expression were measured using real-time quantitative reverse transcription polymerase chain reaction. Maprotiline significantly decreased the LPS-induced expression of VCAM-1 at all applied concentrations. The expression of ICAM-1 decreased in the presence of maprotiline at 10-6 M concentration (P<0.05). Since maprotiline inhibits the expression of adhesion molecules, ICAM-1 and VCAM-1 in LPS-stimulated human endothelial cells, it can be a possible way through which maprotiline exerts its anti-inflammatory properties. PMID:27168753

  6. Drosophila chaoptin, a member of the leucine-rich repeat family, is a photoreceptor cell-specific adhesion molecule.

    PubMed Central

    Krantz, D E; Zipursky, S L

    1990-01-01

    Drosophila chaoptin, required for photoreceptor cell morphogenesis, is a member of the leucine-rich repeat family of proteins. On the basis of biochemical and genetic analyses we previously proposed that chaoptin might function as a cell adhesion molecule. To test this hypothesis, chaoptin cDNA driven by the hsp 70 promoter was transfected into non-self-adherent Drosophila Schneider line 2 (S2) cells. Following heat shock induction of chaoptin expression, the transfected S2 cells formed multicellular aggregates. Mixing experiments of chaoptin expressing and non-expressing cells suggest that chaoptin expressing cells adhere homotypically. Previously it was shown that chaoptin is exclusively localized to photoreceptor cells. Thus, chaoptin is a cell-type-specific adhesion molecule. Biochemical analyses presented in this paper demonstrate that chaoptin is linked to the extracellular surface of the plasma membrane by covalent attachment to glycosyl-phosphatidylinositol. We propose that chaoptin and several other members of the leucine-rich repeat family of proteins define a new class of cell adhesion molecules. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. PMID:2189727

  7. Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies.

    PubMed

    Ganai, Shabir Ahmad

    2016-08-01

    Histone acetyl transferases and histone deacetylases (HDACs) are counteracting epigenetic enzymes regulating the turnover of histone acetylation thereby regulating transcriptional events in a precise manner. Deregulation of histone acetylation caused by aberrant expression of HDACs plays a key role in tumour onset and progression making these enzymes as candidate targets for anticancer drugs and therapy. Small-molecules namely histone deacetylase inhibitors (HDACi) modulating the biological function of HDACs have shown multiple biological effects including differentiation, cell cycle arrest and apoptosis in tumour models. HDACi in general have been described in plethora of reviews with respect to various cancers. However, no review article is available describing thoroughly the role of inhibitor givinostat (ITF2357 or [6-(diethylaminomethyl) naphthalen-2-yl] methyl N-[4-(hydroxycarbamoyl) phenyl] carbamate) in haematological malignancies. Thus, the present review explores the intricate role of novel inhibitor givinostat in the defined malignancies including multiple myeloma, acute myelogenous leukaemia, Hodgkin's and non-Hodgkin's lymphoma apart from myeloproliferative neoplasms. The distinct molecular mechanisms triggered by this small-molecule inhibitor in these cancers to exert cytotoxic effect have also been dealt with. The article also highlights the combination strategy that can be used for enhancing the therapeutic efficiency of this inhibitor in the upcoming future. PMID:27121910

  8. A small-molecule inhibitor of macrophage migration inhibitory factor for the treatment of inflammatory disease.

    PubMed

    Kithcart, Aaron P; Cox, Gina M; Sielecki, Thais; Short, Abigail; Pruitt, James; Papenfuss, Tracey; Shawler, Todd; Gienapp, Ingrid; Satoskar, Abhay R; Whitacre, Caroline C

    2010-11-01

    Multiple sclerosis (MS) is a chronic, debilitating disease of the central nervous system (CNS) characterized by demyelination and axon loss. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) has been shown to be elevated in the cerebrospinal fluid of patients during relapses. The purpose of this study was to evaluate a new small-molecule inhibitor of MIF and its ability to reduce the severity of an animal model of MS, experimental autoimmune encephalomyelitis (EAE). We utilized 2 structurally related isoxazolines, which show in vitro inhibition of MIF tautomerase activity. We found that administration of an inhibitor of MIF to mice with established EAE immediately reduced the severity of clinical signs and expanded a population of regulatory T lymphocytes. We also noted that the inhibitor reduced relapses of disease in a relapsing/remitting model of EAE. An analysis of leukocyte migration into the brain revealed that administration of inhibitor reduced entry of these cells. No effects on inflammatory cytokine production or T-cell activation in the periphery were noted. From these studies, we conclude that a small-molecule inhibitor of MIF reduces the severity of EAE and prevents access of immune cells into the CNS, which could be of therapeutic relevance to MS. PMID:20624927

  9. Small-Molecule Inhibitor Leads of Ribosome-Inactivating Proteins Developed Using the Doorstop Approach

    PubMed Central

    Pang, Yuan-Ping; Park, Jewn Giew; Wang, Shaohua; Vummenthala, Anuradha; Mishra, Rajesh K.; McLaughlin, John E.; Di, Rong; Kahn, Jennifer Nielsen; Tumer, Nilgun E.; Janosi, Laszlo; Davis, Jon; Millard, Charles B.

    2011-01-01

    Ribosome-inactivating proteins (RIPs) are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL), thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2), produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2) from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays. PMID:21455295

  10. Novel Oxindole Sulfonamides and Sulfamides: EPZ031686, the First Orally Bioavailable Small Molecule SMYD3 Inhibitor.

    PubMed

    Mitchell, Lorna H; Boriack-Sjodin, P Ann; Smith, Sherri; Thomenius, Michael; Rioux, Nathalie; Munchhof, Michael; Mills, James E; Klaus, Christine; Totman, Jennifer; Riera, Thomas V; Raimondi, Alejandra; Jacques, Suzanne L; West, Kip; Foley, Megan; Waters, Nigel J; Kuntz, Kevin W; Wigle, Tim J; Scott, Margaret Porter; Copeland, Robert A; Smith, Jesse J; Chesworth, Richard

    2016-02-11

    SMYD3 has been implicated in a range of cancers; however, until now no potent selective small molecule inhibitors have been available for target validation studies. A novel oxindole series of SMYD3 inhibitors was identified through screening of the Epizyme proprietary histone methyltransferase-biased library. Potency optimization afforded two tool compounds, sulfonamide EPZ031686 and sulfamide EPZ030456, with cellular potency at a level sufficient to probe the in vitro biology of SMYD3 inhibition. EPZ031686 shows good bioavailability following oral dosing in mice making it a suitable tool for potential in vivo target validation studies. PMID:26985287

  11. Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin

    PubMed Central

    Huertas, D; Soler, M; Moreto, J; Villanueva, A; Martinez, A; Vidal, A; Charlton, M; Moffat, D; Patel, S; McDermott, J; Owen, J; Brotherton, D; Krige, D; Cuthill, S; Esteller, M

    2012-01-01

    The approval of histone deacetylase inhibitors for treatment of lymphoma subtypes has positioned histone modifications as potential targets for the development of new classes of anticancer drugs. Histones also undergo phosphorylation events, and Haspin is a protein kinase the only known target of which is phosphorylation of histone H3 at Thr3 residue (H3T3ph), which is necessary for mitosis progression. Mitotic kinases can be blocked by small drugs and several clinical trials are underway with these agents. As occurs with Aurora kinase inhibitors, Haspin might be an optimal candidate for the pharmacological development of these compounds. A high-throughput screening for Haspin inhibitors identified the CHR-6494 compound as being one promising such agent. We demonstrate that CHR-6494 reduces H3T3ph levels in a dose-dependent manner and causes a mitotic catastrophe characterized by metaphase misalignment, spindle abnormalities and centrosome amplification. From the cellular standpoint, the identified small-molecule Haspin inhibitor causes arrest in G2/M and subsequently apoptosis. Importantly, ex vivo assays also demonstrate its anti-angiogenetic features; in vivo, it shows antitumor potential in xenografted nude mice without any observed toxicity. Thus, CHR-6494 is a first-in-class Haspin inhibitor with a wide spectrum of anticancer effects that merits further preclinical research as a new member of the family of mitotic kinase inhibitors. PMID:21804608

  12. Secreted adhesion molecules of Strongyloides venezuelensis are produced by oesophageal glands and are components of the wall of tunnels constructed by adult worms in the host intestinal mucosa.

    PubMed

    Maruyama, H; El-Malky, M; Kumagai, T; Ohta, N

    2003-02-01

    The parasitic female of Strongyloides venezuelensis keeps invading the epithelial layer of the host intestinal mucosa. Upon invasion, it adheres to the surface of the intestinal epithelial cells with adhesion molecules secreted from the mouth. It has been demonstrated that S. venezuelensis are expelled from the intestine because mucosal mast cells inhibit the attachment of adult worms to the mucosal surface. In the present study, we generated specific antibodies against secreted adhesion molecules to investigate their function in vivo, because these molecules have been demonstrated only in vitro in spite of the importance in the infection processes. A mouse monoclonal antibody specific to S. venezuelensis adhesion molecules inhibited the attachment of adult worms to plastic dishes and the binding of adhesion molecules to rat intestinal epithelial cells. Immunohistochemical study revealed that adhesion molecules were produced by oesophageal glands and were continuously secreted in vivo to line the wall of the tunnels formed by adult worms in the intestinal mucosa. Our findings indicate that adhesion molecules play essential roles in the infection processes of S. venezuelensis in the host intestine. PMID:12636354

  13. Soluble platelet-endothelial cell adhesion molecule-1, a biomarker of ventilator-induced lung injury

    PubMed Central

    2014-01-01

    Introduction Endothelial cell injury is an important component of acute lung injury. Platelet-endothelial cell adhesion molecule-1 (PECAM1) is a transmembrane protein that connects endothelial cells to one another and can be detected as a soluble, truncated protein (sPECAM1) in serum. We hypothesized that injurious mechanical ventilation (MV) leads to shedding of PECAM1 from lung endothelial cells resulting in increasing sPECAM1 levels in the systemic circulation. Methods We studied 36 Sprague–Dawley rats in two prospective, randomized, controlled studies (healthy and septic) using established animal models of ventilator-induced lung injury. Animals (n = 6 in each group) were randomized to spontaneous breathing or two MV strategies: low tidal volume (VT) (6 ml/kg) and high-VT (20 ml/kg) on 2 cmH2O of positive end-expiratory pressure (PEEP). In low-VT septic animals, 10 cmH2O of PEEP was applied. We performed pulmonary histological and physiological evaluation and measured lung PECAM1 protein content and serum sPECAM1 levels after four hours ventilation period. Results High-VT MV caused severe lung injury in healthy and septic animals, and decreased lung PECAM1 protein content (P < 0.001). Animals on high-VT had a four- to six-fold increase of mean sPECAM1 serum levels than the unventilated counterpart (35.4 ± 10.4 versus 5.6 ± 1.7 ng/ml in healthy rats; 156.8 ± 47.6 versus 35.6 ± 12.6 ng/ml in septic rats) (P < 0.0001). Low-VT MV prevented these changes. Levels of sPECAM1 in healthy animals on high-VT MV paralleled the sPECAM1 levels of non-ventilated septic animals. Conclusions Our findings suggest that circulating sPECAM1 may represent a promising biomarker for the detection and monitoring of ventilator-induced lung injury. PMID:24588994

  14. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis.

    PubMed

    Okuda, Ryo; Matsushima, Hidekazu; Aoshiba, Kazutetsu; Oba, Tomohiro; Kawabe, Rie; Honda, Koujiro; Amano, Masako

    2015-01-01

    The levels of soluble intercellular adhesion molecule-1 (sICAM-1) have been reported to increase in patients with idiopathic pulmonary fibrosis. However, the utility of sICAM-1 has not been reported in detail. The aim of this study was to investigate whether sICAM-1 was a useful biomarker for stable idiopathic pulmonary fibrosis (IPF) and early phase of acute exacerbation of IPF. The patients who were diagnosed with IPF between 2013 and 2015 were enrolled. The levels of sICAM-1 and other interstitial pneumonia markers were measured. In this study, 30 patients with stable IPF and 11 patients with acute exacerbation of IPF were collected. Mean sICAM-1 levels were 434 ± 139 ng/mL for the stable phase of IPF, 645 ± 247 ng/mL for early phase of acute exacerbation of IPF, 534 ± 223 ng/mL for connective tissue disease-associated interstitial pneumonia, 221 ± 42 for chronic obstructive pulmonary disease, and 150 ± 32 ng/mL in healthy volunteers. For the stable phase of IPF, sICAM-1 levels correlated with Krebs von den Lungen-6 (KL-6) (r value: 0.41; p value: 0.036). Mean sICAM-1 levels were significantly higher in patients with early phase of acute exacerbation of IPF than with stable phase of IPF (p = 0.0199). Multiple logistic analyses indicated that the predictors for early phase of acute exacerbation of IPF were only sICAM-1 and C-reactive protein (odds ratio: 1.0093; 1.6069). In patients with stable IPF, sICAM-1 levels correlated with KL-6; sICAM-1 might be a predictive indicator for prognosis. In the early phase of acute exacerbation of IPF, sICAM-1 might be more useful for diagnosis than other interstitial pneumonia markers. PMID:26543791

  15. Benzofuran Small Molecules as Potential Inhibitors of Human Protein Kinases. A Review.

    PubMed

    Kwiecień, Halina; Goszczyńska, Agata; Rokosz, Paulina

    2016-01-01

    Kinases are known to regulate the majority of human cellular processes such as communication, division, metabolism, survival and apoptosis therefore they can be promising targets in cancer diseases, viral infection and in other disorders. Small molecules acting as selective human protein kinase inhibitors are very attractive pharmacological targets. This review presents a number of examples of biologically active natural and synthetic benzo[b]furans and their derivatives, such as benzo[b]furan-2- and 3-ones, benzo[b]furan-2- and 3-carboxylic acids, as well as benzo[c]furans as potential inhibitors of various human protein kinases. The pathways of function and implication of the inhibitors in cancer and other diseases are discussed. PMID:26648467

  16. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases

    PubMed Central

    Shayman, James A.; Larsen, Scott D.

    2014-01-01

    Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review. PMID:24534703

  17. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    SciTech Connect

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  18. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Shon, C. H.; Kim, Y. S.; Kim, S.; Kim, G. C.; Kong, M. G.

    2009-11-01

    Increased expression of integrins and focal adhesion kinase (FAK) is important for the survival, growth and metastasis of melanoma cells. Based on this well-established observation in oncology, we propose to use degradation of integrin and FAK proteins as a potential strategy for melanoma cancer therapy. A low-temperature radio-frequency atmospheric microplasma jet is used to study their effects on the adhesion molecules of G361 melanoma cells. Microplasma treatment is shown to (1) cause significant cell detachment from the bottom of microtiter plates coated with collagen, (2) induce the death of human melanoma cells, (3) inhibit the expression of integrin α2, integrin α4 and FAK on the cell surface and finally (4) change well-stretched actin filaments to a diffuse pattern. These results suggest that cold atmospheric pressure plasmas can strongly inhibit the adhesion of melanoma cells by reducing the activities of adhesion proteins such as integrins and FAK, key biomolecules that are known to be important in malignant transformation and acquisition of metastatic phenotypes.

  19. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  20. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers

    PubMed Central

    Mullarky, Edouard; Lucki, Natasha C.; Beheshti Zavareh, Reza; Anglin, Justin L.; Gomes, Ana P.; Nicolay, Brandon N.; Wong, Jenny C. Y.; Christen, Stefan; Takahashi, Hidenori; Singh, Pradeep K.; Blenis, John; Fendt, Sarah-Maria; Asara, John M.; DeNicola, Gina M.; Lyssiotis, Costas A.; Lairson, Luke L.; Cantley, Lewis C.

    2016-01-01

    Cancer cells reprogram their metabolism to promote growth and proliferation. The genetic evidence pointing to the importance of the amino acid serine in tumorigenesis is striking. The gene encoding the enzyme 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the first committed step of serine biosynthesis, is overexpressed in tumors and cancer cell lines via focal amplification and nuclear factor erythroid-2-related factor 2 (NRF2)-mediated up-regulation. PHGDH-overexpressing cells are exquisitely sensitive to genetic ablation of the pathway. Here, we report the discovery of a selective small molecule inhibitor of PHGDH, CBR-5884, identified by screening a library of 800,000 drug-like compounds. CBR-5884 inhibited de novo serine synthesis in cancer cells and was selectively toxic to cancer cell lines with high serine biosynthetic activity. Biochemical characterization of the inhibitor revealed that it was a noncompetitive inhibitor that showed a time-dependent onset of inhibition and disrupted the oligomerization state of PHGDH. The identification of a small molecule inhibitor of PHGDH not only enables thorough preclinical evaluation of PHGDH as a target in cancers, but also provides a tool with which to study serine metabolism. PMID:26831078

  1. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    PubMed Central

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi

    2014-01-01

    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  2. Novel Small Molecule Inhibitors of Choline Kinase Identified by Fragment-Based Drug Discovery.

    PubMed

    Zech, Stephan G; Kohlmann, Anna; Zhou, Tianjun; Li, Feng; Squillace, Rachel M; Parillon, Lois E; Greenfield, Matthew T; Miller, David P; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Xu, Yongjin; Miret, Juan J; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2016-01-28

    Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism. PMID:26700752

  3. Mechanism of Inhibition of Cholesteryl Ester Transfer Protein by Small Molecule Inhibitors.

    PubMed

    Chirasani, Venkat R; Sankar, Revathi; Senapati, Sanjib

    2016-08-25

    Cholesteryl ester transfer protein (CETP) facilitates the bidirectional exchange of cholesteryl esters and triglycerides between high-density lipoproteins and low- or very low-density lipoproteins. Recent studies have shown that the impairment of lipid exchange processes of CETP can be an effective strategy for the treatment of cardiovascular diseases (CVDs). Understanding the molecular mechanism of CETP inhibition has, therefore, attracted tremendous attention in recent past. In this study, we explored the detailed mechanism of CETP inhibition by a series of recently reported small molecule inhibitors that are currently under preclinical testing. Our results from molecular dynamics simulations and protein-ligand docking studies suggest that the hydrophobic interactions between the CETP core tunnel residues and inhibitor moieties play a pivotal role, and physical occlusion of the CETP tunnel by these small molecules is the primary mechanism of CETP inhibition. Interestingly, bound inhibitors were found to increase the plasticity of CETP, which was explained by principal component analysis that showed a larger space of sampling of CETP C-domain due to inhibitor binding. The atomic-level details presented here could help accelerate the structure-based drug-discovery processes targeting CETP for CVD therapeutics. PMID:27111423

  4. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction.

    PubMed

    Actis, Marcelo L; Ambaye, Nigus D; Evison, Benjamin J; Shao, Youming; Vanarotti, Murugendra; Inoue, Akira; McDonald, Ezelle T; Kikuchi, Sotaro; Heath, Richard; Hara, Kodai; Hashimoto, Hiroshi; Fujii, Naoaki

    2016-09-15

    DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR. To identify small-molecule compounds that are mechanistically capable of inhibiting ICLR by targeting REV7, high-throughput screening and structure-activity relationship (SAR) analysis were performed. Compound 1 was identified as an inhibitor of the interaction of REV7 with the REV7-binding sequence of REV3L. Compound 7 (an optimized analog of compound 1) bound directly to REV7 in nuclear magnetic resonance analyses, and inhibited the reactivation of a reporter plasmid containing an ICL in between the promoter and reporter regions. The normalized clonogenic survival of HeLa cells treated with cisplatin and compound 7 was lower than that for cells treated with cisplatin only. These findings indicate that a small-molecule inhibitor of the REV7/REV3L interaction can chemosensitize cells by inhibiting ICLR. PMID:27448776

  5. Small Molecule Inhibitors of Plasminogen Activator Inhibitor-1 Elicit Anti-Tumorigenic and Anti-Angiogenic Activity

    PubMed Central

    Placencio, Veronica R.; Ichimura, Atsuhiko; Miyata, Toshio; DeClerck, Yves A.

    2015-01-01

    Numerous studies have shown a paradoxical positive correlation between elevated levels of plasminogen activator inhibitior-1 (PAI-1) in tumors and blood of cancer patients with poor clinical outcome, suggesting that PAI-1 could be a therapeutic target. Here we tested two orally bioavailable small molecule inhibitors of PAI-1 (TM5275 and TM5441) for their efficacy in pre-clinical models of cancer. We demonstrated that these inhibitors decreased cell viability in several human cancer cell lines with an IC50 in the 9.7 to 60.3 μM range and induced intrinsic apoptosis at concentrations of 50 μM. In vivo, oral administration of TM5441 (20 mg/kg daily) to HT1080 and HCT116 xenotransplanted mice increased tumor cell apoptosis and had a significant disruptive effect on the tumor vasculature that was associated with a decrease in tumor growth and an increase in survival that, however, were not statistically significant. Pharmacokinetics studies indicated an average peak plasma concentration of 11.4 μM one hour after oral administration and undetectable levels 23 hours after administration. The effect on tumor vasculature in vivo was further examined in endothelial cells (EC) in vitro and this analysis indicated that both TM5275 and TM5441 inhibited EC branching in a 3D Matrigel assay at concentrations where they had little effect on EC apoptosis. These studies bring novel insight on the activity of PAI-1 inhibitors and provide important information for the future design of inhibitors targeting PAI-1 as therapeutic agents in cancer. PMID:26207899

  6. S fimbriae of uropathogenic Escherichia coli bind to primary human renal proximal tubular epithelial cells but do not induce expression of intercellular adhesion molecule 1.

    PubMed Central

    Kreft, B; Placzek, M; Doehn, C; Hacker, J; Schmidt, G; Wasenauer, G; Daha, M R; van der Woude, F J; Sack, K

    1995-01-01

    We have recently reported an increase of expression of the intercellular adhesion molecule 1 by renal carcinoma cells in response to S fimbriae of Escherichia coli. Now we demonstrate that E. coli expressing S and P fimbriae strongly binds to human proximal tubular epithelial cells. However, in primary and simian virus 40-transfected renal tubular epithelial cells S fimbriae do not enhance the expression of intercellular adhesion molecule 1. PMID:7622256

  7. Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology.

    PubMed Central

    Hildreth, J E; Subramanium, A; Hampton, R A

    1997-01-01

    While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1. PMID:8995639

  8. Discovery of Diverse Small-Molecule Inhibitors of Mammalian Sterile20-like Kinase 3 (MST3).

    PubMed

    Olesen, Sanne H; Zhu, Jin-Yi; Martin, Mathew P; Schönbrunn, Ernst

    2016-06-01

    Increasing evidence suggests key roles for members of the mammalian Sterile20-like (MST) family of kinases in many aspects of biology. MST3 is a member of the STRIPAK complex, the deregulation of which has recently been associated with cancer cell migration and metastasis. Targeting MST3 with small-molecule inhibitors may be beneficial for the treatment of certain cancers, but little information exists on the potential of kinase inhibitor scaffolds to engage with MST3. In this study we screened MST3 against a library of 277 kinase inhibitors using differential scanning fluorimetry and confirmed 14 previously unknown MST3 inhibitors by X-ray crystallography. These compounds, of which eight are in clinical trials or FDA approved, comprise nine distinct chemical scaffolds that inhibit MST3 enzymatic activity with IC50 values between 0.003 and 23 μm. The structure-activity relationships explain the differential inhibitory activity of these compounds against MST3 and the structural basis for high binding potential, the information of which may serve as a framework for the rational design of MST3-selective inhibitors as potential therapeutics and to interrogate the function of this enzyme in diseased cells. PMID:27135311

  9. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function.

    PubMed

    Kakei, Yusuke; Yamazaki, Chiaki; Suzuki, Masashi; Nakamura, Ayako; Sato, Akiko; Ishida, Yosuke; Kikuchi, Rie; Higashi, Shouichi; Kokudo, Yumiko; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-11-01

    Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole-3-acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin-containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4-biphenylboronic acid (BBo) and 4-phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild-type Arabidopsis seedlings. Co-treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki ) of BBo and PPBo were 67 and 56 nm, respectively. In addition, PPBo did not interfere with the auxin response of auxin-marker genes when it was co-treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function. PMID:26402640

  10. A SMALL MOLECULE SCREEN IDENTIFIES SELECTIVE INHIBITORS OF UREA TRANSPORTER UT-A

    PubMed Central

    Esteva-Font, Cristina; Phuan, Puay-Wah; Anderson, Marc O.; Verkman, A.S.

    2013-01-01

    SUMMARY Urea transporter (UT) proteins, including UT-A in kidney tubule epithelia and UT-B in vasa recta microvessels, facilitate urinary concentrating function. A screen for UT-A inhibitors was developed in MDCK cells expressing UT-A1, water channel aquaporin-1, and YFP-H148Q/V163S. An inwardly directed urea gradient produces cell shrinking followed by UT-A1-dependent swelling, which was monitored by YFP-H148Q/V163S fluorescence. Screening of ~90,000 synthetic small molecules yielded four classes of UT-A1 inhibitors with low micromolar IC50 that fully and reversibly inhibited urea transport by a non-competitive mechanism. Structure-activity analysis of >400 analogs revealed UT-A1-selective and UT-A1/UT-B non-selective inhibitors. Docking computations based on homology models of UT-A1 suggested inhibitor binding sites. UT-A inhibitors may be useful as diuretics (‘urearetics’) with a novel mechanism of action that may be effective in fluid-retaining conditions in which conventional salt transport-blocking diuretics have limited efficacy. PMID:24055006

  11. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  12. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    SciTech Connect

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    1995-09-01

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereas the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.

  13. Discovery of small molecule inhibitors of xyloglucan endotransglucosylase (XET) activity by high-throughput screening.

    PubMed

    Chormova, Dimitra; Franková, Lenka; Defries, Andrew; Cutler, Sean R; Fry, Stephen C

    2015-09-01

    Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes' biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme-cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors - especially compounds that generate singlet oxygen ((1)O2) e.g., riboflavin (IC50 29 μM), retinoic acid, eosin (IC50 27 μM) and erythrosin (IC50 36 μM). The riboflavin effect was light-dependent, supporting (1)O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (-)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 μM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 μM mycophenolic acid and (-)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads. PMID:26093490

  14. Discovery of small molecule inhibitors of xyloglucan endotransglucosylase (XET) activity by high-throughput screening

    PubMed Central

    Chormova, Dimitra; Franková, Lenka; Defries, Andrew; Cutler, Sean R.; Fry, Stephen C.

    2015-01-01

    Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes’ biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme–cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors – especially compounds that generate singlet oxygen (1O2) e.g., riboflavin (IC50 29 μM), retinoic acid, eosin (IC50 27 μM) and erythrosin (IC50 36 μM). The riboflavin effect was light-dependent, supporting 1O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (−)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 μM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 μM mycophenolic acid and (−)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads. PMID:26093490

  15. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy.

    PubMed

    Dyle, Michael C; Ebert, Scott M; Cook, Daniel P; Kunkel, Steven D; Fox, Daniel K; Bongers, Kale S; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M

    2014-05-23

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  16. Focal adhesion molecules as potential target of lead toxicity in NRK-52E cell line.

    PubMed

    Giuliani, Roberta; Bettoni, Francesca; Leali, Daria; Morandini, Fausta; Apostoli, Pietro; Grigolato, Piergiovanni; Cesana, Bruno Mario; Aleo, Maria Francesca

    2005-11-01

    In this study, we investigated the influence of inorganic lead (Pb(II)), an environmental pollutant having nephrotoxic action, on the focal adhesion (FA) organization of a rat kidney epithelial cell line (NRK-52E). In particular, we evaluated the effects of the metal on the recruitment of paxillin, focal adhesion kinase, vinculin and cytoskeleton proteins at the FAs complexes. We provided evidences that, in proliferating NRK-52E cell cultures, low concentrations of Pb(II) affect the cell adhesive ability and stimulate the disassembly of FAs, thus inhibiting the integrin-activated signalling. These effects appeared to be strictly associated to the Pb-induced arrest of cell cycle at G0/G1 phase also proved in this cell line. PMID:16253243

  17. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    SciTech Connect

    Hunnicutt, G.R.

    1989-01-01

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their M{sub r}, sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine.

  18. Expression of adhesion molecules on synovial fluid and peripheral blood monocytes in patients with inflammatory joint disease and osteoarthritis

    PubMed Central

    Koller, M; Aringer, M; Kiener, H; Erlacher, L; Machold, K; Eberl, G; Studnicka-Benke, A; Graninger, W; Smolen, J

    1999-01-01

    OBJECTIVE—To determine the presence of adhesion molecules on monocytes/macrophages (Mϕ) from peripheral blood (PB) and synovial fluid (SF) in patients with osteoarthritis (OA) and inflammatory joint diseases (rheumatoid (RA) and reactive arthritis (ReA)) in order to improve our understanding of the possible mechanisms underlying the inflammatory process.
METHODS—Whole blood and SF cells were stained with monoclonal antibodies against CD11a (LFA-1), CD15 s (sialyl-Lewis X), CD44, CD54, VLA-4, and HLA-DR counterstained with anti-CD14 antibodies as a Mϕ marker for dual fluorescence analysis by flowcytometry. 
RESULTS—On PB-Mϕ, CD15s was markedly increased in both RA as well as ReA compared with OA. Furthermore, in the PB LFA-1, CD44, and HLA-DR showed a higher surface density on Mϕ in ReA than in OA. Comparison between SF and PB showed significantly higher CD44 and CD54 expression on SF-Mϕ. These molecules play an important part in lymphocyte-Mϕ interaction.
CONCLUSION—In PB from patients with inflammatory joint diseases, Mϕ are activated, allowing recruitment into the synovial compartment. These disorders, in contrast with OA seem to be "systemic" in nature. Within the SF, different adhesion molecules are expressed on CD14+ Mϕ as compared with PB.

 PMID:10531076

  19. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. PMID:26412140

  20. Selectivity by Small-Molecule Inhibitors of Protein Interactions Can Be Driven by Protein Surface Fluctuations

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2015-01-01

    Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions. PMID:25706586

  1. Targeting of the MYCN Protein with Small Molecule c-MYC Inhibitors

    PubMed Central

    Müller, Inga; Larsson, Karin; Frenzel, Anna; Oliynyk, Ganna; Zirath, Hanna; Prochownik, Edward V.; Westwood, Nicholas J.; Henriksson, Marie Arsenian

    2014-01-01

    Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH), one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH). Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma. PMID:24859015

  2. α-Tocopheryl Succinate as a Scaffold to Develop Potent Inhibitors of Breast Cancer Cell Adhesion

    PubMed Central

    Wang, Dasheng; Chuang, Hsiao-Ching; Weng, Shu-Chuan; Huang, Po-Hsien; Hsieh, Hao-Yu; Kulp, Samuel K.; Chen, Ching-Shih

    2009-01-01

    This study is aimed at the pharmacological exploitation of α-tocopheryl succinate (1) to develop potent anti-adhesion agents. Considering the structural cooperativity between the phytyl chain and the carboxylic terminus in determining the anti-adhesion activity, our structural optimization led to compound 5 ([2-(4,8-dimethyl-non-1-enyl)-2,5,7,8-tetramethyl-chroman-6-yloxy]-acetic acid), which exhibited an-order-of-magnitude higher potency than 1 in blocking the adhesion of 4T1 metastatic breast cancer cells to extracellular matrix proteins (IC50, 0.6 μM versus 10 μM). Evidence indicates that the ability of compound 5 to block cell adhesion and migration was attributable to its effect on disrupting focal adhesion and actin cytoskeletal integrity by facilitating the degradation of focal adhesion kinase. Interactions between tumor cells and the ECM in the tumor microenvironment have been increasingly recognized as critical modulators of the metastatic potential of tumor cells. Consequently, the ability of compound 5 to block such interactions provides a unique pharmacological tool to shed light onto mechanisms that govern cell adhesion and tumor metastasis. PMID:19708661

  3. Serine protease inhibitor kunitz-type 2 is downregulated in myelodysplastic syndromes and modulates cell-cell adhesion.

    PubMed

    Roversi, Fernanda Marconi; Lopes, Matheus Rodrigues; Machado-Neto, João Agostinho; Longhini, Ana Leda F; Duarte, Adriana da Silva Santos; Baratti, Mariana Ozello; Palodetto, Bruna; Corrocher, Flávia Adolfo; Pericole, Fernando Vieira; Campos, Paula de Melo; Favaro, Patricia; Traina, Fabiola; Saad, Sara Teresinha Olalla

    2014-05-15

    Myelodysplastic syndromes (MDS) are clonal disorders involving hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis. In addition to HSC defects, a defective hematopoiesis supporting capacity of mesenchymal stromal cells (MSCs) in the microenvironment niche has been implicated in MDS pathophysiology. The interaction between the dysfunctional MSCs MDS and HSC regulates diverse adhesion-related processes, such as progenitor cell survival, proliferation, differentiation, and self-renewal. As previously reported, a microarray analysis identified serine protease inhibitor kunitz-type 2 (SPINT2), an inhibitor of hepatocyte growth factor (HGF) activation, to be downregulated in MSCs from MDS patients. To define the role of SPINT2 in MDS hematopoietic microenvironment, an analysis of the effect of SPINT2 silencing in MSCs was carried out. We herein reported significantly lower levels of SPINT2 whereas HGF was expressed at higher levels in MSCs from MDS patients compared with healthy controls. SPINT2 underexpression results in an increased expression, production, and secretion of HGF and stromal cell-derived factor 1 (SDF-1) by MSCs. An increased adhesion of normal HSC or malignant cells onto MSCs silenced for SPINT2 was also observed. The altered MSCs adhesion in SPINT2-knockdown cells was correlated with increased CD49b and CD49d expression and with a decrease in CD49e expression. Our results suggest that the SPINT2 underexpression in the MSC from MDS patients is probably involved in the adhesion of progenitors to the bone marrow niche, through an increased HGF and SDF-1 signaling pathway. PMID:24410667

  4. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor

    PubMed Central

    Hirano, Kazufumi; Chen, Woei Shin; Chueng, Adeline L.W.; Dunne, Angela A.; Seredenina, Tamara; Filippova, Aleksandra; Ramachandran, Sumitra; Bridges, Angela; Chaudry, Laiq; Pettman, Gary; Allan, Craig; Duncan, Sarah; Lee, Kiew Ching; Lim, Jean; Ma, May Thu; Ong, Agnes B.; Ye, Nicole Y.; Nasir, Shabina; Mulyanidewi, Sri; Aw, Chiu Cheong; Oon, Pamela P.; Liao, Shihua; Li, Dizheng; Johns, Douglas G.; Miller, Neil D.; Davies, Ceri H.; Browne, Edward R.; Matsuoka, Yasuji; Chen, Deborah W.; Jaquet, Vincent

    2015-01-01

    Abstract Aims: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. Results: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. Innovation and Conclusions: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo. Antioxid. Redox Signal. 23, 358–374. PMID:26135714

  5. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  6. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process. PMID:26706037

  7. Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of beta 2 integrins and intercellular adhesion molecule-1.

    PubMed

    Jaeschke, H; Farhood, A; Fisher, M A; Smith, C W

    1996-11-01

    Antibodies against cellular adhesion molecules protect against neutrophil-induced hepatic injury during ischemia-reperfusion and endotoxemia. To test if beta 2 integrins on neutrophils and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells are involved in neutrophil sequestration in the hepatic vasculature, neutrophil accumulation in the liver was characterized during the early phase of endotoxemia. Intravenous injection of Salmonella enteritidis endotoxin induced a dose-dependent activation of complement, tumor necrosis factor-alpha (TNF-alpha) formation, and an increase of hepatic neutrophils with maximal numbers at 5 mg/kg (90 min: 339 +/- 14 cells/50 high power fields; controls: 18 +/- 2). Administration of 15 micrograms/kg TNF-alpha and intravascular complement activation with cobra venom factor (75 micrograms/kg) had additive effects on hepatic neutrophil accumulation compared with each mediator alone. Monoclonal antibodies (2 mg/kg) to ICAM-1 and the alpha-chain (CD11a, CD11b) or the beta-chain (CD18) of beta 2 integrins had no significant effect on hepatic neutrophil count after endotoxin. In contrast, these antibodies inhibited peritoneal neutrophil infiltration in response to glycogen administration by 28% (CD11b), 60% (CD11a, ICAM-1), and 92% (CD18). Our data suggest that TNF-alpha and complement factors contribute to hepatic neutrophil sequestration during the early phase of endotoxemia. Despite the fact that these inflammatory mediators can up-regulate integrins and ICAM-1, these adhesion molecules are not necessary for neutrophil accumulation in hepatic sinusoids. The protective effect of these antibodies against neutrophil-induced liver injury appears to be due to inhibition of transendothelial migration and adherence to parenchymal cells. PMID:8946651

  8. Small-Molecule Quinolinol Inhibitor Identified Provides Protection against BoNT/A in Mice

    PubMed Central

    Singh, Padma; Singh, Manglesh Kumar; Chaudhary, Dilip; Chauhan, Vinita; Bharadwaj, Pranay; Pandey, Apurva; Upadhyay, Nisha; Dhaked, Ram Kumar

    2012-01-01

    Botulinum neurotoxins (BoNTs), etiological agents of the life threatening neuroparalytic disease botulism, are the most toxic substances currently known. The potential for the use as bioweapon makes the development of small-molecule inhibitor against these deadly toxins is a top priority. Currently, there are no approved pharmacological treatments for BoNT intoxication. Although an effective vaccine/immunotherapy is available for immuno-prophylaxis but this cannot reverse the effects of toxin inside neurons. A small-molecule pharmacological intervention, especially one that would be effective against the light chain protease, would be highly desirable. Similarity search was carried out from ChemBridge and NSC libraries to the hit (7-(phenyl(8-quinolinylamino)methyl)-8-quinolinol; NSC 84096) to mine its analogs. Several hits obtained were screened for in silico inhibition using AutoDock 4.1 and 19 new molecules selected based on binding energy and Ki. Among these, eleven quinolinol derivatives potently inhibited in vitro endopeptidase activity of botulinum neurotoxin type A light chain (rBoNT/A-LC) on synaptosomes isolated from rat brain which simulate the in vivo system. Five of these inhibitor molecules exhibited IC50 values ranging from 3.0 nM to 10.0 µM. NSC 84087 is the most potent inhibitor reported so far, found to be a promising lead for therapeutic development, as it exhibits no toxicity, and is able to protect animals from pre and post challenge of botulinum neurotoxin type A (BoNT/A). PMID:23071727

  9. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules

    PubMed Central

    Mulvihill, N; Foley, J; Murphy, R; Curtin, R; Crean, P; Walsh, M

    2001-01-01

    OBJECTIVE—To assess prospectively the prognostic value of soluble cellular adhesion molecules (CAMs) in patients with unstable angina and non-Q wave myocardial infarction and to compare their prognostic accuracy with that of C reactive protein (CRP).
DESIGN AND SETTING—Prospective observational study of patients presenting acutely with unstable angina and non-Q wave myocardial infarction to a single south Dublin hospital.
METHODS—Patients with Braunwald IIIA unstable angina and non-Q wave myocardial infarction had serum samples taken at presentation before initiation of antithrombotic treatment and were followed for six months. The primary end point was the occurrence of major adverse cardiovascular events (recurrent unstable angina, non-fatal myocardial infarction, and cardiovascular death) at six months. Concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble endothelial selectin, and soluble platelet selectin were measured using an enzyme linked immunosorbent assay technique. CRP was measured with an immunophelometric assay.
RESULTS—91 patients (73 men and 18 women, mean (SD) age 61 (11) years) were studied; 27 patients (30%) had major adverse cardiac events during the six months of follow up. Concentration of CRP were significantly raised in patients who had an ischaemic event (mean (SEM) 11.5 (6.4) mg/l v 5.4 (2.5) mg/l, p < 0.001). Concentrations of sVCAM-1 were also significantly raised in the ischaemic event group (979 (30) ng/ml v 729 (22) ng/ml, p < 0.001). Both sVCAM-1 and CRP concentrations correlated strongly with the occurrence of an adverse event. The sensitivity of CRP > 3 mg/l and sVCAM-1 > 780 ng/ml for predicting future events was > 90%. There was no difference in concentrations of sICAM-1, soluble endothelin selectin, or soluble platelet selectin between event and non-event groups.
CONCLUSION—Raised concentrations of sVCAM-1 and CRP

  10. Unraveling the Secrets of Bacterial Adhesion Organelles Using Single-Molecule Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Björnham, Oscar; Castelain, Mickaël; Koutris, Efstratios; Schedin, Staffan; Fällman, Erik; Andersson, Magnus

    Many types of bacterium express micrometer-long attachment organelles (so-called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Force-measuring optical tweezers (FMOT) have since then been used to unravel the biomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin are situated at the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g., urine flow. It has been found that many types of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.

  11. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques

    NASA Astrophysics Data System (ADS)

    Camesano, Terri A.; Liu, Yatao; Datta, Meera

    2007-06-01

    A synopsis is provided of techniques currently used to quantify the interactions between bacterial cells and surfaces. Focus is placed on techniques which allow for direct probing of nano, pico, or femto-scale interaction forces between bacteria and surfaces of relevance for environmental science and engineering. We focus on bacterial adhesion measurements and surface characterizations via techniques that measure forces on individual bacterial cells or cellular macromolecules, particularly atomic force microscopy (AFM) and related force spectroscopy. However, we also include overviews of other techniques useful for evaluating cellular forces, such as optical tweezers, evanescent wave scattering-based techniques (i.e. total internal reflection microscopy (TIRM) and total internal reflection aqueous fluorescence (TIRAF) microscopy) and the quartz crystal microbalance (QCM). These latter techniques, while most are not providing direct measurements of forces of adhesion, can be used to explain adhesion and interaction forces in bacterial systems. We review the operating principles, advantages and limitations of each technique, and key bacterial adhesion studies from each area are presented. Qualitative and quantitative methodologies for relating force measurements to bacterial attachment, particularly to bacterial retention in porous media, are discussed.

  12. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression

    PubMed Central

    2015-01-01

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  13. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site

    PubMed Central

    Kasbekar, Monica; Fischer, Gerhard; Mott, Bryan T.; Yasgar, Adam; Hyvönen, Marko; Boshoff, Helena I. M.; Abell, Chris; Barry, Clifton E.; Thomas, Craig J.

    2016-01-01

    Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen. PMID:27325754

  14. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site.

    PubMed

    Kasbekar, Monica; Fischer, Gerhard; Mott, Bryan T; Yasgar, Adam; Hyvönen, Marko; Boshoff, Helena I M; Abell, Chris; Barry, Clifton E; Thomas, Craig J

    2016-07-01

    Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen. PMID:27325754

  15. Nuclear factor kappaB dominant negative genetic constructs inhibit X-ray induction of cell adhesion molecules in the vascular endothelium.

    PubMed

    Hallahan, D E; Virudachalam, S; Kuchibhotla, J

    1998-12-01

    X-ray-induced expression of inflammatory mediators has been proposed to contribute to radiation injury in normal tissues. Radiation-inducible inflammatory mediators include the cell adhesion molecule (CAM) E-selectin and the intercellular adhesion molecule (ICAM)-1. Nuclear factor (NF)kappaB is activated by X-rays and may participate in the transcriptional regulation of each of these inflammatory mediators. To determine whether NFkappaB inhibition abrogates X-ray induction of inflammatory mediators, we used two experimental approaches including NFkappaB inhibitory drugs and a dominant negative genetic construct. Human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells were treated with the NFkappaB inhibitors ALLN, PDTC, NAC, and MG132. After irradiation, E-selectin or ICAM-1 was measured by fluorescence-activated cell-sorting analysis. E-selectin and ICAM-1 expression was measured by use of immunofluorescence and fluorescence-activated cell-sorting analysis. E-selectin expression increased 7-fold, and ICAM-1 expression increased 4-fold after irradiation. All of the inhibitors attenuated E-selectin expression after irradiation. ALLN and MG132 attenuated radiation-induced ICAM expression. However, PDTC and NAC induced increased expression of ICAM-1 in HUVECs. Inhibition of X-ray induction of ICAM by these agents could not be demonstrated. In separate experiments, the NFkappaB dominant negative genetic construct was cotransfected with the promoter-reporter constructs by means of Lipofectin reagent. The ICAM promoter-reporter construct consists of the 1.2-kb segment of the human ICAM promoter upstream of the transcriptional start site linked to the luciferase reporter gene (pGL.FL-Luc). The E-selectin promoter-reporter construct consists of 525 bp upstream of the transcriptional start site of the human E-selectin promoter linked to the human growth hormone reporter gene (pE525-GH). Endothelial cells transfected with the ICAM-1 promoter

  16. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer.

    PubMed

    Roy, Vivek; Perez, Edith A

    2009-11-01

    HER-2 is a transmembrane, tyrosine kinase (TK) receptor whose overexpression is associated with adverse prognosis in breast cancer. The biological effects of HER-2 are mediated by kinase activity causing phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor molecule, leading to activation of downstream growth-promoting pathways. Antibody-mediated inhibition by trastuzumab as well as TK inhibition are clinically effective anti-HER-2 strategies. Kinase inhibitors offer some potential therapeutic advantages over antibody-based therapies. Being small molecules, TK inhibitors (TKIs) have oral bioavailability and ability to cross the blood-brain barrier. Because of their different mode of action, TKIs may be able to overcome some of the mechanisms of trastuzumab resistance. Preclinical, and limited clinical data also suggest that TKIs and trastuzumab have synergistic activity. Lapatinib is the only TKI available for clinical use at present, but several molecules with anti-HER-2 activity have been identified and are undergoing evaluation. These differ in the spectrum of kinases that they inhibit, potency of HER-2 inhibition, pharmacokinetic properties, and toxicity profiles, and are at various stages of clinical development. In this article we summarize selected HER-2 TKIs approved for clinical use or in development for which clinical data are available. PMID:19887469

  17. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation

    PubMed Central

    Haggarty, Stephen J.; Koeller, Kathryn M.; Wong, Jason C.; Grozinger, Christina M.; Schreiber, Stuart L.

    2003-01-01

    Protein acetylation, especially histone acetylation, is the subject of both research and clinical investigation. At least four small-molecule histone deacetylase inhibitors are currently in clinical trials for the treatment of cancer. These and other inhibitors also affect microtubule acetylation. A multidimensional, chemical genetic screen of 7,392 small molecules was used to discover “tubacin,” which inhibits α-tubulin deacetylation in mammalian cells. Tubacin does not affect the level of histone acetylation, gene-expression patterns, or cell-cycle progression. We provide evidence that class II histone deacetylase 6 (HDAC6) is the intracellular target of tubacin. Only one of the two catalytic domains of HDAC6 possesses tubulin deacetylase activity, and only this domain is bound by tubacin. Tubacin treatment did not affect the stability of microtubules but did decrease cell motility. HDAC6 overexpression disrupted the localization of p58, a protein that mediates binding of Golgi elements to microtubules. Our results highlight the role of α-tubulin acetylation in mediating the localization of microtubule-associated proteins. They also suggest that small molecules that selectively inhibit HDAC6-mediated α-tubulin deacetylation, a first example of which is tubacin, might have therapeutic applications as antimetastatic and antiangiogenic agents. PMID:12677000

  18. Promotion of Cell Migration by Neural Cell Adhesion Molecule (NCAM) Is Enhanced by PSA in a Polysialyltransferase-Specific Manner

    PubMed Central

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  19. Characterization of Mechanics and Cytocompatibility of Fibrin-Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules

    PubMed Central

    Guterl, Clare C.; Torre, Olivia M.; Purmessur, Devina; Dave, Khyati; Likhitpanichkul, Morakot; Hecht, Andrew C.; Nicoll, Steven B.

    2014-01-01

    There is an unmet clinical need for a biomaterial sealant capable of repairing small annulus fibrosus (AF) defects. Causes of these defects include painful intervertebral disc herniations, microdiscectomy procedures, morbidity associated with needle puncture injury from discography, and future nucleus replacement procedures. This study describes the enhancements of a fibrin gel through genipin crosslinking (FibGen) and the addition of the cell adhesion molecules (CAMs), fibronectin and collagen. The gel's performance as a potential AF sealant is assessed using a series of in vitro tests. FibGen gels with CAMs had equivalent adhesive strength, gene expression, cytomorphology, and cell proliferation as fibrin alone. However, FibGen gels had enhanced material behaviors that were tunable to higher shear stiffness values and approximated human annulus tissue as compared with fibrin alone, were more dimensionally stable, and had a slower in vitro degradation rate. Cytomorphology of human AF cells cultured on FibGen gels exhibited increased elongation compared with fibrin alone, and the addition of CAMs to FibGen did not significantly affect elongation. This FibGen gel offers the promise of being used as a sealant material to repair small AF defects or to be used in combination with other biomaterials as an adhesive for larger defects. PMID:24684314

  20. Carcinoembryonic antigen-related cell adhesion molecule 1 is expressed and as a function histotype in ovarian tumors.

    PubMed

    Li, Ning; Yang, Jing-Yan; Wang, Xiao-Ying; Wang, Hai-Tao; Guan, Bing-Xin; Zhou, Cheng-Jun

    2016-02-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell-cell adhesion receptor and is implicated in several cellular functions. It is rarely reported in ovarian tumors. The aim of this study is to determine the expression of CEACAM1 in ovarian tumors, trying to see whether CEACAM1 has different expression patterns as a function of histotype. Antigen expression was examined by immunohistochemistry with mouse anti-human antibody for CEACAM1. Immunohistochemistry was performed using avidin-biotin-diaminobenzide staining. The results were expressed as average score ± SD (0, negative; 8, highest) for each histotype. In ovarian tumors, the benign serous and mucinous cystadenoma negatively or weakly expressed CEACAM1, the malignant epithelial tumors strongly expressed CEACAM1, and there was significant difference between benign epithelial tumor and adenocarcinoma (P < .05). The well-differentiated serous adenocarcinoma expressed CEACAM1 mainly with membrane pattern, and the intermediately and poorly differentiated serous adenocarcinomas expressed CEACAM1 mainly with cytoplasmic pattern (P < .05). In addition, CEACAM1 expression is elevated in solid tumors of ovary but variable as a function of histotype. Compared with membranous expression, the cytoplasmic expression was observed almost in metastatic carcinoma that might decrease the adhesive interactions of the carcinoma cells with the surrounding cells, especially with tumor cells, and this could facilitate the tumor cells to metastasize to distant regions. So, we thought that cytoplasmic CEACAM1 might play an important role in tumor progression, especially in tumor metastasis. PMID:26653024

  1. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner.

    PubMed

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  2. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    SciTech Connect

    Jouet, M.; Kenwick, S.; Moncla, A.

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the first examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.

  3. Small-Molecule CFTR Inhibitors Slow Cyst Growth in Polycystic Kidney Disease

    PubMed Central

    Yang, Baoxue; Sonawane, Nitin D.; Zhao, Dan; Somlo, Stefan; Verkman, A. S.

    2008-01-01

    Cyst expansion in polycystic kidney disease (PKD) involves progressive fluid accumulation, which is believed to require chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Herein is reported that small-molecule CFTR inhibitors of the thiazolidinone and glycine hydrazide classes slow cyst expansion in in vitro and in vivo models of PKD. More than 30 CFTR inhibitor analogs were screened in an MDCK cell model, and near-complete suppression of cyst growth was found by tetrazolo-CFTRinh-172, a tetrazolo-derived thiazolidinone, and Ph-GlyH-101, a phenyl-derived glycine hydrazide, without an effect on cell proliferation. These compounds also inhibited cyst number and growth by >80% in an embryonic kidney cyst model involving 4-d organ culture of embryonic day 13.5 mouse kidneys in 8-Br-cAMP–containing medium. Subcutaneous delivery of tetrazolo-CFTRinh-172 and Ph-GlyH-101 to neonatal, kidney-specific PKD1 knockout mice produced stable, therapeutic inhibitor concentrations of >3 μM in urine and kidney tissue. Treatment of mice for up to 7 d remarkably slowed kidney enlargement and cyst expansion and preserved renal function. These results implicate CFTR in renal cyst growth and suggest that CFTR inhibitors may hold therapeutic potential to reduce cyst growth in PKD. PMID:18385427

  4. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies

    PubMed Central

    Hojjat-Farsangi, Mohammad

    2014-01-01

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK–TKIs have been developed for the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK–TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs. PMID:25110867

  5. Computer-assisted identification of novel small molecule inhibitors targeting GLUT1

    NASA Astrophysics Data System (ADS)

    Wan, Zhining; Li, Xin; Sun, Rong; Li, Yuanyuan; Wang, Xiaoyun; Li, Xinru; Rong, Li; Shi, Zheng; Bao, Jinku

    2015-12-01

    Glucose transporters (GLUTs) are the main carriers of glucose that facilitate the diffusion of glucose in mammalian cells, especially GLUT1. Notably, GLUT1 is a rate-limiting transporter for glucose uptake, and its overexpression is a common characteristic in most cancers. Thus, the inhibition of GLUT1 by novel small compounds to lower glucose levels for cancer cells has become an emerging strategy. Herein, we employed high-throughput screening approaches to identify potential inhibitors against the sugar-binding site of GLUT1. Firstly, molecular docking screening was launched against the specs products, and three molecules (ZINC19909927, ZINC19908826, and ZINC19815451) were selected as candidate GLUT1 inhibitors for further analysis. Then, taking the initial ligand β-NG as a reference, molecular dynamic (MD) simulations and molecular mechanics/generalized born surface area (MM/GBSA) method were applied to evaluate the binding stability and affinity of the three candidates towards GLUT1. Finally, we found that ZINC19909927 might have the highest affinity to occupy the binding site of GLUT1. Meanwhile, energy decomposition analysis identified several residues located in substrate-binding site that might provide clues for future inhibitor discovery towards GLUT1. Taken together, these results in our study may provide valuable information for identifying new inhibitors targeting GLUT1-mediated glucose transport and metabolism for cancer therapeutics.

  6. Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41

    PubMed Central

    Zhou, Guangyan; Wu, Dong; Snyder, Beth; Ptak, Roger G.; Kaur, Harmeet; Gochin, Miriam

    2011-01-01

    Non-peptide inhibition of fusion remains an important goal in anti-HIV research, due to its potential for low cost prophylaxis or prevention of cell–cell transmission of the virus. We report here on a series of indole compounds that have been identified as fusion inhibitors of gp41 through a structure-based drug design approach. Experimental binding affinities of the compounds for the hydrophobic pocket were strongly correlated to fusion inhibitory data (R2 = 0.91), and corresponding inhibition of viral replication confirmed the hydrophobic pocket as a valid target for low molecular weight fusion inhibitors. The most active compound bound to the hydrophobic pocket and inhibited cell-cell fusion and viral replication at sub-µM levels. A common binding mode for the inhibitors in this series was established by carrying out docking studies using structures of gp41 in the Protein Data Bank. The molecules were flexible enough to conform to the contours of the pocket, and the most active compound was able to adopt a structure mimicking the hydrophobic contacts of the D-peptide PIE7. The results enhance our understanding of indole compounds as inhibitors of gp41. PMID:21928824

  7. Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals

    PubMed Central

    Ptak, W; Klimek, M; Bryniarski, K; Ptak, M; Majcher, P

    1998-01-01

    The increased incidence of bacterial and mycotic infections in poorly controlled diabetic patients or animals is frequently attributed to impaired activities of professional phagocytes (granulocytes, macrophages) in hypoinsulinaemic milieu. We measured production of monokines (IL-6 and tumour necrosis factor-alpha (TNF-α)), active NO and reactive oxygen intermediates (ROIs), as well as expression of several cell surface adhesion molecules (Mac-1, -2 and -3, intercellular adhesion molecule-1 (ICAM-1) and FcγRII), by thioglycollate medium-induced peritoneal macrophages of normoglycaemic and alloxan diabetic CBA/J mice (blood glucose level in the range 300 or 500 mg/dl). Macrophages of animals with moderate diabetes (300 mg/dl) produced significantly more IL-6 and TNF-α and ROIs than cells of control mice and showed an increased expression of all cell surface molecules, except Mac-3. NO/NO2 production was not affected. Administration of insulin restored enhanced values to normal levels, except for the production of ROIs which remained unusually high. We conclude that two separate mechanisms influence macrophage physiology in diabetes—lack of saturation of insulin receptors on macrophages and an indirect effect due to formation of advanced glycosylation endproducts (AGE) on their surfaces. The latter is possibly responsible for increased generation of ROIs, since it cannot be down-regulated by prolonged insulin treatment. How the increased activity of macrophages of moderately diabetic mice (enhanced production of proinflammatory monokines and oxygen radicals as well as expression of molecules) is related to their ability to kill bacteria is now under investigation. PMID:9764597

  8. Experimental Evaluation of Proposed Small-Molecule Inhibitors of Water Channel Aquaporin-1.

    PubMed

    Esteva-Font, Cristina; Jin, Byung-Ju; Lee, Sujin; Phuan, Puay-Wah; Anderson, Marc O; Verkman, A S

    2016-06-01

    The aquaporin-1 (AQP1) water channel is a potentially important drug target, as AQP1 inhibition is predicted to have therapeutic action in edema, tumor growth, glaucoma, and other conditions. Here, we measured the AQP1 inhibition efficacy of 12 putative small-molecule AQP1 inhibitors reported in six recent studies, and one AQP1 activator. Osmotic water permeability was measured by stopped-flow light scattering in human and rat erythrocytes that natively express AQP1, in hemoglobin-free membrane vesicles from rat and human erythrocytes, and in plasma membrane vesicles isolated from AQP1-transfected Chinese hamster ovary cell cultures. As a positive control, 0.3 mM HgCl2 inhibited AQP1 water permeability by >95%. We found that none of the tested compounds at 50 µM significantly inhibited or increased AQP1 water permeability in these assays. Identification of AQP1 inhibitors remains an important priority. PMID:26993802

  9. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases

    PubMed Central

    Shang, Xun; Marchioni, Fillipo; Sipes, Nisha; Evelyn, Chris R.; Jerabek-Willemsen, Moran; Duhr, Stefan; Seibel, William; Wortman, Matthew; Zheng, Yi

    2012-01-01

    SUMMARY Rho GTPases have been implicated in diverse cellular functions and are potential therapeutic targets. By virtual screening, we have identified a Rho specific inhibitor, Rhosin. Rhosin contains two-aromatic rings tethered by a linker, and it binds to the surface area sandwiching Trp58 of RhoA with a submicromolar Kd and effectively inhibits GEF-catalyzed RhoA activation. In cells Rhosin specifically inhibited RhoA activity and RhoA-mediated cellular function without affecting Cdc42 or Rac1 signaling activities. By suppressing RhoA or RhoC activity Rhosin could inhibit mammary sphere formation by breast cancer cells, suppress invasion of mammary epithelial cells, and induce neurite outgrowth of PC12 cells in synergy with NGF. Thus, the rational designed RhoA subfamily specific small molecule inhibitor is useful for studying the physiological and pathologic roles of Rho GTPase. PMID:22726684

  10. Automated approach for the identification of functionally-relevant small molecule inhibitors

    SciTech Connect

    Wilson, D M III

    2000-02-16

    Radiation induces the formation of DNA damages via direct ionization or through the production of reactive oxygen intermediates that chemically modify DNA. Radiation is thought to elicit its cytotoxicity by inducing the formation of lethal DNA damage, including modified bases, baseless sites and strand breaks. To avert the deleterious effects of radiation and chromosomal modifications, cells are equipped with DNA repair systems and cellular responses that function to amend genetic imperfections and to prevent the replication of damaged DNA. The focus of this proposal is to develop a novel, function-based technology for isolating inhibitors of proteins involved in radiation-protection. Such inhibitor molecules represent potential radiosensitizing agents, which could be used to increase the biological effectiveness of a given radiation dose in anti-cancer treatment schemes. This project combines unique laboratory expertise in robotics, computational modeling, combinatorial chemistry, and DNA repair enzymology from the Biology & Biotechnology Research Program and the Chemistry and Material Science Directorate. The screening technique will utilize a simple flow-based filter system operated by robotics. Commercial laboratory instrumentation and automation are available for creating a nearly hands-off system for inhibitor molecule screening. Specifically, a general purpose dispensing instrument (i.e. the Packard Multiprobe II), using opaque, filter-backed microtiter plates, will be combined with on-deck vacuum extraction to generate a rapid screening technology. System integration tools and experience from the LLNL Human Genome Project will be leveraged. This screening capability will be applied to current lab research on proteins involved in the repair of radiation damaged DNA. Inhibitors of proteins involved in cellular resistance to radiation have potential value as co-therapeutics in anti-cancer treatments and would be licensed to pharmaceutical companies for further

  11. Comparison of Small Molecule Inhibitors of the Bacterial Cell Division Protein FtsZ and Identification of a Reliable Cross-Species Inhibitor

    PubMed Central

    Anderson, David E.; Kim, Michelle B.; Moore, Jared T.; O’Brien, Terrence E.; Sorto, Nohemy A.; Grove, Charles I.; Lackner, Laura L.; Ames, James B.; Shaw, Jared T.

    2012-01-01

    FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin’s function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two sidechains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin. PMID:22958099

  12. Semi-microdroplet assay for cell adhesion molecules. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tawa, Lawrence Shinzo

    1988-01-01

    A new cell-to-cell adhesion assay was devised. Using dissociated embryos of the sea urchin, this procedure involves rotating a 0.100 ml suspension of single cells with 0.100 ml of the solution to be tested in the bulb portion of a transfer pipet with the tip removed. After 1 hour of rotation at 60 rpm at 15 C, the contents of each bulb were transferred into individual wells of a 96 well flat bottom plate. After the plate was incubated for 1 hour at 15 C, black and white photographs were taken with a 35 mm camera attached to an inverted photomicroscope. Examining a proof sheet of the negatives directly allowed a rapid evaluation of suspected cell adhesion promoting factors. A ranking system was used to evaluate all samples. The assay was tested by examining the effect of specific solutions on the aggregation of single cells obtained from dissociated 23 hour embryos.

  13. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia.

    PubMed

    Hoyte, Lisa C; Brooks, Keith J; Nagel, Simon; Akhtar, Asim; Chen, Ruoli; Mardiguian, Sylvie; McAteer, Martina A; Anthony, Daniel C; Choudhury, Robin P; Buchan, Alastair M; Sibson, Nicola R

    2010-06-01

    The pathogenesis of stroke is multifactorial, and inflammation is thought to have a critical function in lesion progression at early time points. Detection of inflammatory processes associated with cerebral ischemia would be greatly beneficial in both designing individual therapeutic strategies and monitoring outcome. We have recently developed a new approach to imaging components of the inflammatory response, namely endovascular adhesion molecule expression on the brain endothelium. In this study, we show specific imaging of vascular cell adhesion molecule (VCAM)-1 expression in a mouse model of middle cerebral artery occlusion (MCAO), and a reduction in this inflammatory response, associated with improved behavioral outcome, as a result of preconditioning. The spatial extent of VCAM-1 expression is considerably greater than the detectable lesion using diffusion-weighted imaging (25% versus 3% total brain volume), which is generally taken to reflect the core of the lesion at early time points. Thus, VCAM-1 imaging seems to reveal both core and penumbral regions, and our data implicate VCAM-1 upregulation and associated inflammatory processes in the progression of penumbral tissue to infarction. Our findings indicate that such molecular magnetic resonance imaging (MRI) approaches could be important clinical tools for patient evaluation, acute monitoring of therapy, and design of specific treatment strategies. PMID:20087364

  14. Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and eicosanoids, and role of adhesion molecules in leukocyte infiltration.

    PubMed

    Zamuner, Stella Regina; Zuliani, Juliana Pavan; Fernandes, Cristina Maria; Gutiérrez, José Maria; de Fátima Pereira Teixeira, Catarina

    2005-12-01

    Bothrops asper venom (BaV) causes systemic and local effects characterized by an acute inflammatory reaction with accumulation of leukocytes and release of endogenous mediators. In this study, the effects of BaV on the release of the cytokines IL-1, IL-6 and TNF-alpha and the eicosanoids LTB4 and TXA2 in the peritoneal cavity of mice were analyzed. We also investigated the participation of beta2 integrin chain, l-selectin, LFA-1, ICAM-1 and PECAM-1 adhesion molecules in the BaV-induced leukocyte accumulation. Levels of proinflammatory cytokines IL-6 and TNF-alpha, as well as eicosanoids LTB4 and TXA2 were significantly increased after BaV injection (250 microg/kg), whereas no increment in IL-1 was observed. Anti-mouse l-selectin, LFA-1, ICAM-1, PECAM-1 and beta2 integrin chain monoclonal antibodies resulted in a reduction of neutrophil accumulation induced by BaV injection compared with isotype-matched control injected animals. These data suggest that BaV is able to induce the activation of leukocytes and endothelium to express adhesion molecules involved in the recruitment of neutrophils into the inflammed site. Furthermore, these results showed that BaV induces the release of cytokines and eicosanoids in the local of the venom injection; these inflammatory mediators may be important for the initiation and amplification of the inflammatory reaction characteristic from Bothrops sp envenomation. PMID:16198389

  15. The adherence of endothelial cells to Dacron induces the expression of the intercellular adhesion molecule (ICAM-1).

    PubMed Central

    Margiotta, M S; Robertson, F S; Greco, R S

    1992-01-01

    The intercellular adhesion molecule (ICAM-1) is a glycoprotein expressed by endothelial cells activated by cytokines. The lymphocyte-function-associated antigen (LFA-1) is an integrin expressed by activated white blood cells. Together, this receptor-ligand pair is responsible, in part, for the localization of neutrophils at sites of inflammation. Using an in vitro model, the authors studied the binding of antibodies against ICAM-1 by human saphenous vein endothelial cells (HSVEC) adherent to Dacron and control cultureware. After adherence to Dacron pretreated with fibronectin, 24% more HSVEC-bound antibody against ICAM-1 compared with HSVEC on controls. In contrast, 90% more HSVEC adherent to Dacron incubated with whole blood bound anti-ICAM-1 antibodies. These cells bound 17.7-fold greater amounts of antibody compared with HSVEC on controls. Pretreating Dacron with plasma resulted in no increase in antibody binding compared with control. Our studies suggest that the cellular components of blood in contact with Dacron create a microenvironment that activates HSVEC and enhances ICAM-1 expression. Induction of this adhesion molecule may play a pivotal role in the migration and localization of leukocytes at the site of the vascular prosthesis. PMID:1359845

  16. A heat-stable component of Bartonella henselae upregulates intercellular adhesion molecule-1 expression on vascular endothelial cells.

    PubMed

    Maeno, N; Yoshiie, K; Matayoshi, S; Fujimura, T; Mao, S; Wahid, M R; Oda, H

    2002-04-01

    Bartonella henselae upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). The induction level of ICAM-1 depended on the inoculation bacterial dose. ICAM-1 expression began increasing 4 h after infection and reached a sustained peak beginning at 12 h after B. henselae infection; this time course was similar to that of lipopolysaccharide (LPS) of Escherichia coli. The stimulatory effect was abolished when live B. henselae were separated from HUVECs by a filter membrane. The nonpiliated strain, which is unable to invade endothelial cells, induced ICAM-1 expression to the same extent as the piliated strain. Inactivation of B. henselae by ultraviolet (UV) irradiation, heat (56 degrees C, 30 min), or sonication did not alter its stimulatory activity. Polymyxin B, which strongly inhibited the effect of LPS, did not exert any influence on the stimulatory activity of B. henselae. Furthermore, the effect of sonicated B. henselae was not inhibited even by boiling, which was also the case with LPS. Our data suggest that some heat-stable component of B. henselae binds to the endothelial cell surface, inducing ICAM-1 expression. Though the participation of LPS could not be completely ruled out, we suppose that some unidentified heat-stable proteins, lipids, or polysaccharides may be the stimulatory factor(s). The ability of B. henselae to enhance the expression of adhesion molecules on endothelial cells may be an important mechanism in the pathogenesis of B. henselae infection. PMID:11967118

  17. Expression, crystallization and preliminary X-ray characterization of the human epithelial cell-adhesion molecule ectodomain

    PubMed Central

    Pavšič, Miha; Lenarčič, Brigita

    2011-01-01

    The epithelial cell-adhesion molecule (EpCAM; CD326) is a transmembrane glycoprotein involved in epithelial cell–cell adhesion, cell proliferation and differentiation. Its elevated expression level in various carcinomas is exploited by several antitumour therapies that are at various stages of clinical development. The 35 kDa polypeptide chain of EpCAM is divided into a large extracellular part, a transmembrane helix and a short cytoplasmic tail. The modular extracellular part of human EpCAM was cloned and mutated to prevent N-linked glycosylation. After expression in insect cells and purification using standard chromatographic techniques, the extracellular part was crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 86.83, b = 50.16, c = 66.56 Å, β = 127.9°. The crystal diffracted to 1.95 Å resolution and contained one molecule in the asymmetric unit. PMID:22102232

  18. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales.

    PubMed

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B; Ryan, Gillian L; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-04-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network. PMID:24501425

  19. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro.

    PubMed

    Ayuk, Sandra M; Abrahamse, Heidi; Houreld, Nicolette N

    2016-08-01

    Cell adhesion molecules (CAMs) are cell surface glycoproteins that facilitate cell-cell contacts and adhesion with the extracellular matrix (ECM). Cellular adhesion is affected by various disease conditions, such as diabetes mellitus (DM) and inflammation. Photobiomodulation (PBM) stimulates biological processes and expression of these cellular molecules. The aim of this experimental work was to demonstrate the role of PBM at 830nm on CAMs in diabetic wounded fibroblast cells. Isolated human skin fibroblast cells were used. Normal (N-) and diabetic wounded (DW-) cells were irradiated with a continuous wave diode laser at 830nm with an energy density of 5J/cm(2). Real time reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine the relative gene expression of 39 CAMs 48h post-irradiation. Normalized expression levels from irradiated cells were calculated relative to non-irradiated control cells according to the 2^(-ΔΔCt) method. Thirty-one genes were significantly regulated in N-cells (28 were genes up-regulated and three genes down-regulated), and 22 genes in DW-cells (five genes were up-regulated and 17 genes down-regulated). PBM induced a stimulatory effect on various CAMs namely cadherins, integrins, selectins and immunoglobulins, and hence may be used as a complementary therapy in advancing treatment of non-healing diabetic ulcers. The regulation of CAMs as well as evaluating the role of PBM on the molecular effects of these genes may expand knowledge and prompt further research into the cellular mechanisms in diabetic wound healing that may lead to valuable clinical outcomes. PMID:27295416

  20. Characterization of an adhesive molecule from Bacillus megaterium ADE-0-1.

    PubMed

    Kumar, Santosh; Shah, Avinash K

    2015-03-01

    An adhesive exopolysaccharide (EPS), from a biofilm forming marine strain ADE-0-1, identified as Bacillus megaterium using conventional microbiological test and 16S rDNA analysis, contained 75% carbohydrate, 17% uronic acid and 0.00125% pyruvate on dry weight basis as per colorimetric determinations and found anionic in nature by ion exchange chromatography. Paper chromatographic and HPLC analysis of EPS hydrolysate indicated presence of arabinose, glucose, mannose, galacturonic acid and glucuronic acid. Its molecular weight was 0.5×10(6) Da, by gel permeation chromatography. FT-IR spectroscopic analysis of EPS revealed presence of hydroxyl and carboxyl groups particularly. EPS exhibited an adhesive nature and could glue wood, metals and acrylic plastic. Using this EPS adhesive (10% w/v), maximum lap shear strength observed was 6.12 MPa at pH 7 and 50 °C (curing temperature) for wood to wood specimen as compared to 6.54 MPa obtained with fevicol (48 to 50% w/v). PMID:25498669

  1. Identification of a small molecule HIV-1 inhibitor that targets the capsid hexamer.

    PubMed

    Xu, Jimmy P; Branson, Jeffrey D; Lawrence, Rae; Cocklin, Simon

    2016-02-01

    The HIV-1 CA protein is an attractive therapeutic target for the development of new antivirals. An inter-protomer pocket within the hexamer configuration of the CA, which is a binding site for key host dependency factors, is an especially appealing region for small molecule targeting. Using a field-based pharmacophore derived from an inhibitor known to interact with this region, coupled to biochemical and biological assessment, we have identified a new compound that inhibits HIV-1 infection and that targets the assembled CA hexamer. PMID:26747394

  2. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  3. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation

    SciTech Connect

    Nguyen, Aaron N.; Stebbins, Elizabeth G.; Henson, Margaret; O'Young, Gilbert; Choi, Sun J.; Quon, Diana; Damm, Debby; Reddy, Mamatha; Ma, Jing Y.; Haghnazari, Edwin; Kapoun, Ann M.; Medicherla, Satyanarayana; Protter, Andy; Schreiner, George F.; Kurihara, Noriyoshi; Anderson, Judy; Roodman, G. David; Navas, Tony A.; Higgins, Linda S. . E-mail: lhiggin3@scius.jnj.com

    2006-06-10

    The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38{alpha} MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNF{alpha}-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNF{alpha}-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNF{alpha}-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1{alpha} as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM.

  4. The new InsP3Kinase inhibitor BIP-4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells.

    PubMed

    Schröder, Dominik; Tödter, Klaus; Gonzalez, Beatriz; Franco-Echevarría, Elsa; Rohaly, Gabor; Blecher, Christine; Lin, Hong-Ying; Mayr, Georg W; Windhorst, Sabine

    2015-07-15

    As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells. PMID:25986882

  5. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    PubMed Central

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Weiss, Manfred; Kalbitz, Miriam; Ehrnthaller, Christian; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  6. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth.

    PubMed

    Lau, Ted; Chan, Emily; Callow, Marinella; Waaler, Jo; Boggs, Jason; Blake, Robert A; Magnuson, Steven; Sambrone, Amy; Schutten, Melissa; Firestein, Ron; Machon, Ondrej; Korinek, Vladimir; Choo, Edna; Diaz, Dolores; Merchant, Mark; Polakis, Paul; Holsworth, Daniel D; Krauss, Stefan; Costa, Mike

    2013-05-15

    Most colorectal cancers (CRC) are initiated by mutations of APC, leading to increased β-catenin-mediated signaling. However, continued requirement of Wnt/β-catenin signaling for tumor progression in the context of acquired KRAS and other mutations is less well-established. To attenuate Wnt/β-catenin signaling in tumors, we have developed potent and specific small-molecule tankyrase inhibitors, G007-LK and G244-LM, that reduce Wnt/β-catenin signaling by preventing poly(ADP-ribosyl)ation-dependent AXIN degradation, thereby promoting β-catenin destabilization. We show that novel tankyrase inhibitors completely block ligand-driven Wnt/β-catenin signaling in cell culture and display approximately 50% inhibition of APC mutation-driven signaling in most CRC cell lines. It was previously unknown whether the level of AXIN protein stabilization by tankyrase inhibition is sufficient to impact tumor growth in the absence of normal APC activity. Compound G007-LK displays favorable pharmacokinetic properties and inhibits in vivo tumor growth in a subset of APC-mutant CRC xenograft models. In the xenograft model most sensitive to tankyrase inhibitor, COLO-320DM, G007-LK inhibits cell-cycle progression, reduces colony formation, and induces differentiation, suggesting that β-catenin-dependent maintenance of an undifferentiated state may be blocked by tankyrase inhibition. The full potential of the antitumor activity of G007-LK may be limited by intestinal toxicity associated with inhibition of Wnt/β-catenin signaling and cell proliferation in intestinal crypts. These results establish proof-of-concept antitumor efficacy for tankyrase inhibitors in APC-mutant CRC models and uncover potential diagnostic and safety concerns to be overcome as tankyrase inhibitors are advanced into the clinic. PMID:23539443

  7. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    PubMed

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  8. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    SciTech Connect

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.; Tzeng, T.-T.; Sun, Y.-W.; Wung, B.-S.

    2008-06-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.

  9. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  10. Cytokines induce urokinase-dependent adhesion of human myeloid cells. A regulatory role for plasminogen activator inhibitors.

    PubMed Central

    Waltz, D A; Sailor, L Z; Chapman, H A

    1993-01-01

    Differentiation of monocytic precursors often results in adhesive properties thought to be important in migration. In this study, the influence of cytokines, known to induce macrophage differentiation, on the adhesiveness of the monocytic cell line U937 was examined in vitro. Despite development of a macrophage morphology, < 5% of cytokine-stimulated U937 cells were adherent at 24 h. Addition of 1-10 nM urokinase-type plasminogen activator (uPA) induced adherence in the presence of transforming growth factor type beta-1, 1,25-(OH)2 vitamin D3, granulocyte macrophage colony-stimulating factor, or tumor necrosis factor alpha. uPA-dependent adhesiveness was reversible after 24 h of stimulation with cytokines and uPA as adherence was prevented by the subsequent addition of anti-uPA antibodies. Adherence induced by diisopropylfluorophosphate-inactivated uPA was severalfold greater than that seen with active uPA. This difference was largely due to cell-surface turnover of active uPA complexed with plasminogen activator inhibitor (PAI). These data indicate that cytokines prime monocyte progenitors for uPA receptor-mediated signals leading to adherence, continued uPA receptor occupancy is required for adherence, and PAI decreases adherence by promoting clearance of uPA/PAI complexes. Thus the interaction of uPA and PAI at the cell surface, known to affect extracellular matrix proteolysis and hence myeloid cell migration, also regulates adhesion. The coordinated regulation of these two uPA functions by PAI may enhance the migratory potential of monocytic cells. Images PMID:8386190

  11. Dtrk, a Drosophila gene related to the trk family of neurotrophin receptors, encodes a novel class of neural cell adhesion molecule.

    PubMed Central

    Pulido, D; Campuzano, S; Koda, T; Modolell, J; Barbacid, M

    1992-01-01

    We report the identification and molecular characterization of Dtrk, a Drosophila gene encoding a receptor tyrosine kinase highly related to the trk family of mammalian neurotrophin receptors. The product of the Dtrk gene, gp160Dtrk, is dynamically expressed during Drosophila embryogenesis in several areas of the developing nervous system, including neurons and fasciculating axons. gp160Dtrk has structural homology with neural cell adhesion molecules of the immunoglobulin superfamily and promotes cell adhesion in a homophilic, Ca2+ independent manner. More importantly, this adhesion process specifically activates its tyrosine protein kinase activity. These findings suggest that gp160Dtrk represents a new class of neural cell adhesion molecules that may regulate neuronal recognition and axonal guidance during the development of the Drosophila nervous system. Images PMID:1371458

  12. Apoptosis is associated with reduced expression of complement regulatory molecules, adhesion molecules and other receptors on polymorphonuclear leucocytes: functional relevance and role in inflammation.

    PubMed Central

    Jones, J; Morgan, B P

    1995-01-01

    Human polymorphonuclear leucocytes (PMN) express proteins that protect them from damage by homologous complement. Protection may be particularly important when these cells migrate to inflammatory sites where complement activation is taking place. Resolution of inflammation involves removal of these PMN. The major mechanism of removal is likely to involve PMN apoptosis followed by recognition and engulfment by macrophages. However, little attention has been paid to the possible relevance of apoptosis to PMN susceptibility to immune effectors. Here we describe a reduction in cell surface expression of two complement regulatory proteins, CD59, an inhibitor of the membrane attack complex and CD55 (decay accelerating factor), an inhibitor of the C3/C5 convertase, on a subpopulation of PMN aged in culture. Loss of these proteins, both attached to the membrane by glycosyl phosphatidylinositol (GPI) anchors, correlated closely with the appearance of apoptotic morphology. We also observed a marked reduction in expression of the GPI-anchored molecule CD16 on apoptotic PMN. Reduced expression of membrane proteins was not confined to those anchored through GPI--several transmembrane molecules including CD11a CD11b and CD18 were also reduced on apoptotic PMN, whilst other were little changed (CD35, CD46). The precipitous fall in CD16 surface expression on PMN was not specific for apoptosis--in vitro incubation of PMN with lipopolysaccharide-inhibited apoptosis but caused a reduction in CD16 expression to 'apoptotic' levels. Images Figure 2 PMID:8567034

  13. Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2

    PubMed Central

    Hornyak, Peter; Askwith, Trevor; Walker, Sarah; Komulainen, Emilia; Paradowski, Michael; Pennicott, Lewis E.; Bartlett, Edward J.; Brissett, Nigel C.; Raoof, Ali; Watson, Mandy; Jordan, Allan M.; Ogilvie, Donald J.; Ward, Simon E.; Atack, John R.; Pearl, Laurence H.; Caldecott, Keith W.; Oliver, Antony W.

    2016-01-01

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5′-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a ‘humanized’ form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2. PMID:27099339

  14. Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2.

    PubMed

    Hornyak, Peter; Askwith, Trevor; Walker, Sarah; Komulainen, Emilia; Paradowski, Michael; Pennicott, Lewis E; Bartlett, Edward J; Brissett, Nigel C; Raoof, Ali; Watson, Mandy; Jordan, Allan M; Ogilvie, Donald J; Ward, Simon E; Atack, John R; Pearl, Laurence H; Caldecott, Keith W; Oliver, Antony W

    2016-07-01

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2. PMID:27099339

  15. Small-molecule inhibitors of protein-protein interactions: progressing towards the reality

    PubMed Central

    Arkin, Michelle R.; Tang, Yinyan; Wells, James A.

    2014-01-01

    Summary The past twenty years have seen many advances in our understanding of protein-protein interactions (PPI) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of ‘lead-like’ or ‘drug-like’ molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery - structure, computation, screening, and biomarkers. PPI become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last ten years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery. PMID:25237857

  16. Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models

    PubMed Central

    Kramer, Thomas; Schmidt, Boris; Lo Monte, Fabio

    2012-01-01

    The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials. PMID:22888461

  17. Pyrvinium, a Potent Small Molecule Wnt Inhibitor, Promotes Wound Repair and Post-MI Cardiac Remodeling

    PubMed Central

    Saraswati, Sarika; Alfaro, Maria P.; Thorne, Curtis A.; Atkinson, James; Lee, Ethan; Young, Pampee P.

    2010-01-01

    Wnt signaling plays an important role in developmental and stem cell biology. To test the hypothesis that temporary inhibition of Wnt signaling will enhance granulation tissue and promote angiogenesis in tissue repair, we employed a recently characterized small molecule Wnt inhibitor. Pyrvinium is an FDA-approved drug that we identified as a Wnt inhibitor in a chemical screen for small molecules that stabilize β-catenin and inhibit Axin degradation. Our subsequent characterization of pyrvinium has revealed that its critical cellular target in the Wnt pathway is Casein Kinase 1α. Daily administration of pyrvinium directly into polyvinyl alcohol (PVA) sponges implanted subcutaneously in mice generated better organized and vascularized granulation tissue; this compound also increased the proliferative index of the tissue within the sponges. To evaluate its effect in myocardial repair, we induced a myocardial infarction (MI) by coronary artery ligation and administered a single intramyocardial dose of pyrvinium. Mice were evaluated by echocardiography at 7 and 30 days post-MI and treatment; post mortem hearts were evaluated by histology at 30 days. Pyrvinium reduced adverse cardiac remodeling demonstrated by decreased left ventricular internal diameter in diastole (LVIDD) as compared to a control compound. Increased Ki-67+ cells were observed in peri-infarct and distal myocardium of pyrvinium-treated animals. These results need to be further followed-up to determine if therapeutic inhibition of canonical Wnt may avert adverse remodeling after ischemic injury and its impact on myocardial repair and regeneration. PMID:21170416

  18. Identification of Small Molecule Inhibitors of Pre-mRNA Splicing*

    PubMed Central

    Pawellek, Andrea; McElroy, Stuart; Samatov, Timur; Mitchell, Lee; Woodland, Andrew; Ryder, Ursula; Gray, David; Lührmann, Reinhard; Lamond, Angus I.

    2014-01-01

    Eukaryotic pre-mRNA splicing is an essential step in gene expression for all genes that contain introns. In contrast to transcription and translation, few well characterized chemical inhibitors are available with which to dissect the splicing process, particularly in cells. Therefore, the identification of specific small molecules that either inhibit or modify pre-mRNA splicing would be valuable for research and potentially also for therapeutic applications. We have screened a highly curated library of 71,504 drug-like small molecules using a high throughput in vitro splicing assay. This identified 10 new compounds that both inhibit pre-mRNA splicing in vitro and modify splicing of endogenous pre-mRNA in cells. One of these splicing modulators, DDD00107587 (termed “madrasin,” i.e. 2-((7methoxy-4-methylquinazolin-2-yl)amino)-5,6-dimethylpyrimidin-4(3H)-one RNAsplicing inhibitor), was studied in more detail. Madrasin interferes with the early stages of spliceosome assembly and stalls spliceosome assembly at the A complex. Madrasin is cytotoxic at higher concentrations, although at lower concentrations it induces cell cycle arrest, promotes a specific reorganization of subnuclear protein localization, and modulates splicing of multiple pre-mRNAs in both HeLa and HEK293 cells. PMID:25281741

  19. High Throughput Screen Identifies Small Molecule Inhibitors Specific for Mycobacterium tuberculosis Phosphoserine Phosphatase*

    PubMed Central

    Arora, Garima; Tiwari, Prabhakar; Mandal, Rahul Shubhra; Gupta, Arpit; Sharma, Deepak; Saha, Sudipto; Singh, Ramandeep

    2014-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis makes identification and validation of newer drug targets a global priority. Phosphoserine phosphatase (PSP), a key essential metabolic enzyme involved in conversion of O-phospho-l-serine to l-serine, was characterized in this study. The M. tuberculosis genome harbors all enzymes involved in l-serine biosynthesis including two PSP homologs: Rv0505c (SerB1) and Rv3042c (SerB2). In the present study, we have biochemically characterized SerB2 enzyme and developed malachite green-based high throughput assay system to identify SerB2 inhibitors. We have identified 10 compounds that were structurally different from known PSP inhibitors, and few of these scaffolds were highly specific in their ability to inhibit SerB2 enzyme, were noncytotoxic against mammalian cell lines, and inhibited M. tuberculosis growth in vitro. Surface plasmon resonance experiments demonstrated the relative binding for these inhibitors. The two best hits identified in our screen, clorobiocin and rosaniline, were bactericidal in activity and killed intracellular bacteria in a dose-dependent manner. We have also identified amino acid residues critical for these SerB2-small molecule interactions. This is the first study where we validate that M. tuberculosis SerB2 is a druggable and suitable target to pursue for further high throughput assay system screening. PMID:25037224

  20. Structure-Based Drug Design of Small Molecule Peptide Deformylase Inhibitors to Treat Cancer.

    PubMed

    Gao, Jian; Wang, Tao; Qiu, Shengzhi; Zhu, Yasheng; Liang, Li; Zheng, Youguang

    2016-01-01

    Human peptide deformylase (HsPDF) is an important target for anticancer drug discovery. In view of the limited HsPDF, inhibitors were reported, and high-throughput virtual screening (HTVS) studies based on HsPDF for developing new PDF inhibitors remain to be reported. We reported here on diverse small molecule inhibitors with excellent anticancer activities designed based on HTVS and molecular docking studies using the crystal structure of HsPDF. The compound M7594_0037 exhibited potent anticancer activities against HeLa, A549 and MCF-7 cell lines with IC50s of 35.26, 29.63 and 24.63 μM, respectively. Molecular docking studies suggested that M7594_0037 and its three derivatives could interact with HsPDF by several conserved hydrogen bonds. Moreover, the pharmacokinetic and toxicity properties of M7594_0037 and its derivatives were predicted using the OSIRIS property explorer. Thus, M7594_0037 and its derivatives might represent a promising scaffold for the further development of novel anticancer drugs. PMID:27023495

  1. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma.

    PubMed

    Faria, Claudia C; Agnihotri, Sameer; Mack, Stephen C; Golbourn, Brian J; Diaz, Roberto J; Olsen, Samantha; Bryant, Melissa; Bebenek, Matthew; Wang, Xin; Bertrand, Kelsey C; Kushida, Michelle; Head, Renee; Clark, Ian; Dirks, Peter; Smith, Christian A; Taylor, Michael D; Rutka, James T

    2015-08-28

    Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma. PMID:26061748

  2. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma

    PubMed Central

    Faria, Claudia C.; Agnihotri, Sameer; Mack, Stephen C.; Golbourn, Brian J.; Diaz, Roberto J.; Olsen, Samantha; Bryant, Melissa; Bebenek, Matthew; Wang, Xin; Bertrand, Kelsey C.; Kushida, Michelle; Head, Renee; Clark, Ian; Dirks, Peter; Smith, Christian A.; Taylor, Michael D.; Rutka, James T.

    2015-01-01

    Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma. PMID:26061748

  3. High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase.

    PubMed

    Arora, Garima; Tiwari, Prabhakar; Mandal, Rahul Shubhra; Gupta, Arpit; Sharma, Deepak; Saha, Sudipto; Singh, Ramandeep

    2014-09-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis makes identification and validation of newer drug targets a global priority. Phosphoserine phosphatase (PSP), a key essential metabolic enzyme involved in conversion of O-phospho-l-serine to l-serine, was characterized in this study. The M. tuberculosis genome harbors all enzymes involved in l-serine biosynthesis including two PSP homologs: Rv0505c (SerB1) and Rv3042c (SerB2). In the present study, we have biochemically characterized SerB2 enzyme and developed malachite green-based high throughput assay system to identify SerB2 inhibitors. We have identified 10 compounds that were structurally different from known PSP inhibitors, and few of these scaffolds were highly specific in their ability to inhibit SerB2 enzyme, were noncytotoxic against mammalian cell lines, and inhibited M. tuberculosis growth in vitro. Surface plasmon resonance experiments demonstrated the relative binding for these inhibitors. The two best hits identified in our screen, clorobiocin and rosaniline, were bactericidal in activity and killed intracellular bacteria in a dose-dependent manner. We have also identified amino acid residues critical for these SerB2-small molecule interactions. This is the first study where we validate that M. tuberculosis SerB2 is a druggable and suitable target to pursue for further high throughput assay system screening. PMID:25037224

  4. Identification of Drug-Like Inhibitors of Insulin-Regulated Aminopeptidase Through Small-Molecule Screening.

    PubMed

    Engen, Karin; Rosenström, Ulrika; Axelsson, Hanna; Konda, Vivek; Dahllund, Leif; Otrocka, Magdalena; Sigmundsson, Kristmundur; Nikolaou, Alexandros; Vauquelin, Georges; Hallberg, Mathias; Jenmalm Jensen, Annika; Lundbäck, Thomas; Larhed, Mats

    2016-04-01

    Intracerebroventricular injection of angiotensin IV, a ligand of insulin-regulated aminopeptidase (IRAP), has been shown to improve cognitive functions in several animal models. Consequently, IRAP is considered a potential target for treatment of cognitive disorders. To identify nonpeptidic IRAP inhibitors, we adapted an established enzymatic assay based on membrane preparations from Chinese hamster ovary cells and a synthetic peptide-like substrate for high-throughput screening purposes. The 384-well microplate-based absorbance assay was used to screen a diverse set of 10,500 compounds for their inhibitory capacity of IRAP. The assay performance was robust with Z'-values ranging from 0.81 to 0.91, and the screen resulted in 23 compounds that displayed greater than 60% inhibition at a compound concentration of 10 μM. After hit confirmation experiments, purity analysis, and promiscuity investigations, three structurally different compounds were considered particularly interesting as starting points for the development of small-molecule-based IRAP inhibitors. After resynthesis, all three compounds confirmed low μM activity and were shown to be rapidly reversible. Additional characterization included activity in a fluorescence-based orthogonal assay and in the presence of a nonionic detergent and a reducing agent, respectively. Importantly, the characterized compounds also showed inhibition of the human ortholog, prompting our further interest in these novel IRAP inhibitors. PMID:27078680

  5. Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis

    PubMed Central

    Stone, Victoria N.; Parikh, Hardik I.; El-rami, Fadi; Ge, Xiuchun; Chen, Weihau; Zhang, Yan; Kellogg, Glen E.; Xu, Ping

    2015-01-01

    Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a “druggable” essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivalis was first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials. PMID:26544875

  6. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans.

    PubMed

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sadanandan E; Zou, Jing; Zhou, Xuedong; Wu, Hui

    2015-08-01

    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0±10.2nM for the biofilm and 8.7±1.9nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the most potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries. PMID:26022931

  7. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    PubMed Central

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C.

    2015-01-01

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported. PMID:25625291

  8. Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors.

    PubMed

    McCaw, Shannon E; Liao, Edward H; Gray-Owen, Scott D

    2004-05-01

    Individual Neisseria gonorrhoeae colony opacity-associated (Opa) protein variants can bind up to four different carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Most human cells encountered by gonococci express a combination of CEACAM receptors, thereby complicating the elucidation of intracellular signaling pathways triggered by individual receptors. Here, we compare the process of bacterial engulfment by a panel of stably transfected HeLa epithelial cell lines expressing each CEACAM receptor in isolation. CEACAM1 and CEACAM3 each contain proteinaceous transmembrane and cytoplasmic domains; however, the processes of neisserial uptake mediated by these receptors differ with respect to their susceptibilities to both tyrosine kinase inhibitors and the actin microfilament-disrupting agent cytochalasin D. Neisserial uptake mediated by glycosylphosphatidylinositol (GPI)-anchored CEACAM5 and CEACAM6 was not significantly affected by any of a broad spectrum of inhibitors tested. However, cleavage of the GPI anchor by phosphatidylinositol-specific phospholipase C reduced bacterial uptake by HeLa cells expressing CEACAM5, consistent with a single zipper-like mechanism of uptake mediated by this receptor. Regardless of the CEACAM receptor expressed, internalized gonococci were effectively killed by a microtubule-dependent process that required acidification of the bacterium-containing phagosome. Given the phase-variable nature of neisserial Opa proteins, these results indicate that the mechanism of bacterial engulfment and the cellular response to gonococcal infection depend on both the receptor specificities of the neisserial Opa protein variants expressed and the spectrum of CEACAM receptors present on target cells, each of which determines the combination of receptors ultimately engaged. PMID:15102784

  9. Coupled diffusion processes and 2D affinities of adhesion molecules at synthetic membrane junctions

    NASA Astrophysics Data System (ADS)

    Peel, Christopher; Choudhuri, Kaushik; Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.; Journot, Celine; Turberfield, Andrew; Wallace, Mark; Dustin, Michael

    A more complete understanding of the physically intrinsic mechanisms underlying protein mobility at cellular interfaces will provide additional insights into processes driving adhesion and organization in signalling junctions such as the immunological synapse. We observed diffusional slowing of structurally diverse binding proteins at synthetic interfaces formed by giant unilamellar vesicles (GUVs) on supported lipid bilayers (SLBs) that shows size dependence not accounted for by existing models. To model the effects of size and intermembrane spacing on interfacial reaction-diffusion processes, we describe a multistate diffusion model incorporating entropic effects of constrained binding. This can be merged with hydrodynamic theories of receptor-ligand diffusion and coupling to thermal membrane roughness. A novel synthetic membrane adhesion assay based on reversible and irreversible DNA-mediated interactions between GUVs and SLBs is used to precisely vary length, affinity, and flexibility, and also provides a platform to examine these effects on the dynamics of processes such as size-based segregation of binding and non-binding species.

  10. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    PubMed Central

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  11. Organ Preference of Cancer Metastasis and Metastasis-Related Cell Adhesion Molecules Including Carbohydrates.

    PubMed

    Kawaguchi, Takanori

    2016-01-01

    This review starts on one of our special interests, the organ preference of metastasis. We examined data on 1,117 autopsy cases and found that the organ distribution of metastasis of cancers of the lung, pancreas, stomach, colon, rectum, uterine cervix, liver, bile duct, and esophagus involved the lung, liver, adrenal gland, bone/bone marrow, lymph node, and pleura/peritoneum. Cancers of the kidney, thyroid, ovary, choriocarcinoma, and breast, however, manifested different metastatic patterns. The distribution of leukemia and lymphoma metastases was quite different from that of epithelial cancers. On the basis of experimental studies, we believe that the anatomical-mechanical hypothesis should be replaced by the microinjury hypothesis, which suggests that tissue microinjury induced by temporal tumor cell embolization is crucial for successful metastasis. This hypothesis may actually reflect the so-called inflammatory oncotaxis concept. To clarify the mechanisms underlying metastasis, we developed an experimental model system of a rat hepatoma AH7974 that embraced substrate adhesiveness. This model did not prove a relationship between substrate-adhesion potential and metastatic lung-colonizing potential of tumor cells, but metastatic potential was correlated with the expression of the laminin carbohydrate that was recognized by Griffonia (Bandeiraea) simplicifolia isolectin G4. Therefore, we investigated the relationship between carbohydrate expression profiles and metastasis and prognosis. We indeed found an intimate relationship between the carbohydrate expression of cancer cells and the progression of malignant tumors, organ preference of metastasis, metastatic potential of tumor cells, and prognosis of patients. PMID:26521885

  12. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture.

    PubMed Central

    Beauchamp, J. R.; Abraham, D. J.; Bou-Gharios, G.; Partridge, T. A.; Olsen, I.

    1992-01-01

    The infiltration of skeletal muscle by leukocytes occurs in a variety of myopathies and frequently accompanies muscle degeneration and regeneration. The latter involves development of new myofibers from precursor myoblasts, and so infiltrating cells may interact with muscle at all stages of differentiation. The authors have investigated the surface expression of ligands for T-cell adhesion during the differentiation of human skeletal muscle in vitro. Myoblasts expressed low levels of ICAM-1 (CD54), which remained constant during muscle cell differentiation and could be induced by cytokines such as gamma-interferon. It is therefore likely that ICAM-1 is involved in the invasive accumulation of lymphocytes during skeletal muscle inflammation. In contrast, LFA-3 (CD58) was expressed at higher levels than ICAM-1 on myoblasts, decreased significantly during myogenesis, and was unaffected by immune mediators. Both ICAM-1 and LFA-3 were able to mediate T cell binding to myoblasts, whereas adhesion to myotubes was independent of the LFA-3 ligand. Although expressed throughout myogenesis, human leukocyte antigen class I and CD44 did not appear to mediate T cell binding. The expression of ligands that facilitate interaction of myogenic cells with lymphocytes may have important implications for myoblast transplantation. Images Figure 1 Figure 3 Figure 4 PMID:1739132

  13. Sequential expression of adhesion and costimulatory molecules in graft-versus-host disease target organs after murine bone marrow transplantation across minor histocompatibility antigen barriers.

    PubMed

    Eyrich, Matthias; Burger, Gudrun; Marquardt, Katja; Budach, Wilfried; Schilbach, Karin; Niethammer, Dietrich; Schlegel, Paul G

    2005-05-01

    Graft-versus-host disease (GVHD) is a potentially fatal complication after allogeneic bone marrow transplantation. However, few data exist thus far on the molecular signals governing leukocyte trafficking during the disease. We therefore investigated the sequential pattern of distinct adhesion, costimulatory, and apoptosis-related molecules in GVHD organs (ileum, colon, skin, and liver) after transplantation across minor histocompatibility barriers (B10.D2 --> BALB/c, both H-2d). To distinguish changes induced by the conditioning regimen from effects achieved by allogeneic cell transfer, syngeneic transplant recipients (BALB/c --> BALB/c) and irradiated nontransplanted mice were added as controls. Irradiation upregulated the expression of vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-l, and B7-2 in ileum, as well as VCAM-1 and B7-2 in colon, on day 3 in all animals. Whereas in syngeneic mice these effects were reversed from day 9 on, allogeneic recipients showed further upregulation of VCAM-1, ICAM-1, B7-1, and B7-2 in these organs on day 22, when GVHD became clinically evident. Infiltration of CD4+ and CD8+ donor T cells was noted on day 9 in skin and liver and on day 22 in ileum and colon. Surprisingly, the expression of several other adhesion molecules, such as ICAM-2, platelet-endothelial cell adhesion molecule 1, E-selectin, and mucosal addressin cell adhesion molecule 1, did not change. Proapoptotic and antiapoptotic markers were balanced in GVHD organs with the exception of spleen, in which a preferential expression of the proapoptotic Bax could be noted. Our results indicate that irradiation-induced upregulation of VCAM-1, ICAM-1, and B7-2 provides early costimulatory signals to incoming donor T cells in the intestine, followed by a cascade of proinflammatory signals in other organs once the alloresponse is established. PMID:15846291

  14. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    SciTech Connect

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2003-02-18

    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  15. Comparative evaluation of the role of the adhesion molecule CD177 in neutrophil interactions with platelets and endothelium.

    PubMed

    Pliyev, Boris K; Menshikov, Mikhail

    2012-09-01

    Neutrophil-specific glycoprotein CD177 is expressed on a subset of human neutrophils and has been shown to be a counter-receptor for platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31). Previous studies have demonstrated that the interaction of CD177 with endothelial PECAM-1 supports neutrophil transendothelial migration resulting in preferential transmigration of the CD177-expressing neutrophil subset. As PECAM-1 is also abundantly expressed on platelets, we addressed a follow-up suggestion that CD177/PECAM-1 adhesive interaction may mediate platelet-neutrophil interactions and CD177-positive neutrophils may have a competitive advantage over CD177-negative neutrophils in binding platelets. Here, we report that CD177-positive and CD177-negative neutrophils do not differ significantly in their capacity to form platelet-neutrophil conjugates as assayed in whole blood and in mixed preparations of isolated platelets and neutrophils. Under flow conditions, neither platelet nor neutrophil activation resulted in preferential binding of platelets to CD177-expressing neutrophils. Furthermore, no significant difference was found in the ability of both neutrophil subsets to adhere to and migrate across surface-adherent activated platelets, whereas predominantly CD177-positive neutrophils migrated across HUVEC monolayers. In addition, we demonstrated that S(536) N dimorphism of PECAM-1, which affects CD177/PECAM-1 interaction, did not influence the equal capacity of the two neutrophil subsets to interact with platelets but influenced significantly the transendothelial migration of CD177-expressing neutrophils. Thus, CD177/PECAM-1 adhesive interaction, while contributing to neutrophil-endothelial cell interaction in neutrophil transendothelial migration, does not contribute to or is redundant in platelet-neutrophil interactions. PMID:22690867

  16. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.

    PubMed

    Carman, Christopher V; Jun, Chang-Duk; Salas, Azucena; Springer, Timothy A

    2003-12-01

    Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure. PMID:14634129

  17. Effect of junctional adhesion molecule-2 expression on cell growth, invasion and migration in human colorectal cancer

    PubMed Central

    ZHAO, HUISHAN; YU, HEFEN; MARTIN, TRACEY A.; ZHANG, YUXIANG; CHEN, GANG; JIANG, WEN G.

    2016-01-01

    The junctional adhesion molecule (JAMs) family belongs to the immunoglobulin subfamily involved in the formation of tight junctions (TJ) in both endothelial and epithelial cells. Aberrant expression of JAM-2 is associated with cancer progression but little work has been carried out in discovering how this affects changes in cell behaviour. The present study aimed to examine the expression of JAM-2 in human colon cancer specimens and cell lines and its role in the development of colon cancer. JAM-2 expression in human colon cancer specimens (normal, n=75; cancer, n=94) and cell lines was analysed using quantitative real-time PCR and conventional RT-PCR. Colon cancer cells were stably transfected with a mammalian expression vector to overexpress JAM-2-Flag. The effect on growth, adhesion and migration following overexpression of JAM-2 was then investigated using in vitro models. TJ function was assessed using a trans-epithelial resistance assay (TER, with an EVOM voltammeter). JAM-2 was lowly expressed in colon cancer cells such as RKO, HT115. JAM-2 overexpression in RKO cells (RKO-JAM-2) and HT115 cells (HT115-JAM-2) showed retarded adhesion (P<0.05). An in vivo tumour model showed that RKO-JAM-2 had significantly reduced growth (P<0.05), invasion (P<0.05) and migration (P<0.05) as well as in HT115-JAM-2, except on proliferation and migration. Expression of JAM-2 resulted in a significant increase in TER and decrease in permeability of polarized monolayers (P<0.05). Further analysis of JAM-2 transcript levels against clinical aspects demonstrated that the decreasing JAM-2 expression correlated to disease progression, metastasis and poor survival. Taken together, JAM-2 may function as a putative tumour suppressor in the progression and metastasis of colorectal cancer. PMID:26782073

  18. Small Molecules, Inhibitors of DNA-PK, Targeting DNA Repair, and Beyond

    PubMed Central

    Davidson, David; Amrein, Lilian; Panasci, Lawrence; Aloyz, Raquel

    2012-01-01

    Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining a major mechanism for the repair of double-strand breaks (DSB) in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK). The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA-PK. Computer based drug

  19. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  20. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  1. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction

    PubMed Central

    Tarazón, Estefanía; García-Manzanares, María; Montero, José Anastasio; Cinca, Juan; Portolés, Manuel; Rivera, Miguel; Roselló-Lletí, Esther

    2016-01-01

    Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin. PMID:27472518

  2. The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity.

    PubMed

    Missaire, Mégane; Hindges, Robert

    2015-06-01

    The formation of visual circuitry is a multistep process that involves cell-cell interactions based on a range of molecular mechanisms. The correct implementation of individual events, including axon outgrowth and guidance, the formation of the topographic map, or the synaptic targeting of specific cellular subtypes, are prerequisites for a fully functional visual system that is able to appropriately process the information captured by the eyes. Cell adhesion molecules (CAMs) with their adhesive properties and their high functional diversity have been identified as key actors in several of these fundamental processes. Because of their growth-promoting properties, CAMs play an important role in neuritogenesis. Furthermore, they are necessary to control additional neurite development, regulating dendritic spacing and axon pathfinding. Finally, trans-synaptic interactions of CAMs ensure cell type-specific connectivity as a basis for the establishment of circuits processing distinct visual features. Recent discoveries implicating CAMs in novel mechanisms have led to a better general understanding of neural circuit formation, but also revealed an increasing complexity of their function. This review aims at describing the different levels of action for CAMs to shape neural connectivity, with a special focus on the visual system. PMID:25649254

  3. The role of cell adhesion molecules in visual circuit formation: From neurite outgrowth to maps and synaptic specificity

    PubMed Central

    Missaire, Mégane

    2015-01-01

    ABSTRACT The formation of visual circuitry is a multistep process that involves cell–cell interactions based on a range of molecular mechanisms. The correct implementation of individual events, including axon outgrowth and guidance, the formation of the topographic map, or the synaptic targeting of specific cellular subtypes, are prerequisites for a fully functional visual system that is able to appropriately process the information captured by the eyes. Cell adhesion molecules (CAMs) with their adhesive properties and their high functional diversity have been identified as key actors in several of these fundamental processes. Because of their growth‐promoting properties, CAMs play an important role in neuritogenesis. Furthermore, they are necessary to control additional neurite development, regulating dendritic spacing and axon pathfinding. Finally, trans‐synaptic interactions of CAMs ensure cell type‐specific connectivity as a basis for the establishment of circuits processing distinct visual features. Recent discoveries implicating CAMs in novel mechanisms have led to a better general understanding of neural circuit formation, but also revealed an increasing complexity of their function. This review aims at describing the different levels of action for CAMs to shape neural connectivity, with a special focus on the visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 569–583, 2015 PMID:25649254

  4. Intercellular adhesion molecule 1 serves as a primary cognate receptor for the Type IV pilus of nontypeable Haemophilus influenzae.

    PubMed

    Novotny, Laura A; Bakaletz, Lauren O

    2016-08-01

    Nontypeable Haemophilus influenzae (NTHI) utilizes the Type IV pilus (Tfp) to adhere to respiratory tract epithelial cells thus colonizing its human host; however, the host cell receptor to which this adhesive protein binds is unknown. From a panel of receptors engaged by Tfp expressed by other bacterial species, we showed that the majority subunit of NTHI Tfp, PilA, bound to intercellular adhesion molecule 1 (ICAM1) and that this interaction was both specific and of high affinity. Further, Tfp-expressing NTHI inoculated on to polarized respiratory tract epithelial cells that expressed ICAM1 were significantly more adherent compared to Tfp-deficient NTHI or NTHI inoculated on to epithelial cells to which ICAM1 gene expression was silenced. Moreover, pre-incubation of epithelial cells with recombinant soluble PilA (rsPilA) blocked adherence of NTHI, an outcome that was abrogated by admixing rsPilA with ICAM1 prior to application on to the target cells. Epithelial cells infected with adenovirus or respiratory syncytial virus showed increased expression of ICAM1; this outcome supported augmented adherence of Tfp-expressing NTHI. Collectively, these data revealed the cognate receptor for NTHI Tfp as ICAM1 and promote continued development of a Tfp-targeted vaccine for NTHI-induced diseases of the airway wherein upper respiratory tract viruses play a key predisposing role. PMID:26857242

  5. L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding.

    PubMed

    Hubbe, M; Kowitz, A; Schirrmacher, V; Schachner, M; Altevogt, P

    1993-11-01

    L1 is a cell surface glycoprotein of the immunoglobulin superfamily which was initially shown to mediate adhesion between neural cells. Recently we have reported that L1 is expressed by bone marrow cells and the majority of mature lymphocytes (Kowitz et al., Eur. J. Immunol. 1992. 22: 1199-1205). To analyze the function of L1 on leukocytes we studied its regulation following cell activation. In vitro activation of B lymphocytes with lipopolysaccharide or T lymphocytes with phorbol 12-myristate 13-acetate/Ca2+ ionophore, concanavalin A or anti-CD3 monoclonal antibody as well as in vivo activation of V beta 8+ T cells with staphylococcal enterotoxin B (SEB) revealed a down-regulation of L1 within 48 h. A rapid loss of L1 expression was seen when mouse neutrophils were activated with PMA alone. This rapid loss paralleled the shedding of L-selectin. We also studied a possible role of L1 in the binding of leukocytes to endothelial cells. ESb-MP lymphoma cells with a high expression of L1 (L1hi) could bind to bend3 endothelioma cells without prior activation with inflammatory cytokines. The interaction was inhibited by anti-L1 antibodies. In contrast, ESb-MP cells with low L1 expression (L1lo) were only marginally bound. Latex beads coated with affinity-isolated L1 antigen were also able to bind to the endothelioma cells in a specific fashion. The binding of ESb-MP lymphoma cells required Ca2+ and Mg2+ ions and was sensitive to cold temperature. Since the endothelioma cells did not express L1 the binding mechanism studied here is distinct from the established L1-L1 homotypic interaction. It is possible that the novel L1-mediated adhesion pathway involves an unidentified ligand and could play a role in leukocyte migration. PMID:8223869

  6. A Novel Nondevelopmental Role of the SAX-7/L1CAM Cell Adhesion Molecule in Synaptic Regulation in Caenorhabditis elegans

    PubMed Central

    Opperman, Karla; Moseley-Alldredge, Melinda; Yochem, John; Bell, Leslie; Kanayinkal, Tony; Chen, Lihsia

    2015-01-01

    The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function. PMID:25488979

  7. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.

    PubMed

    Gratzinger, Dita; Canosa, Sandra; Engelhardt, Britta; Madri, Joseph A

    2003-08-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoglobulin family vascular adhesion molecule, is involved in endothelial cell migration and angiogenesis (1, 2). We found that endothelial cells lacking PECAM-1 exhibit increased single cell motility and extension formation but poor wound healing migration, reminiscent of cells in which Rho activity has been suppressed by overexpressing a GTPase-activating protein (3). The ability of PECAM-1 to restore wound healing migration to PECAM-1-deficient cells was independent of its extracellular domain or signaling via its immunoreceptor tyrosine-based inhibitory motif. PECAM-1-deficient endothelial cells had a selective defect in RhoGTP loading, and inhibition of Rho activity mimicked the PECAM-1-deficient phenotype of increased chemokinetic single cell motility at the expense of coordinated wound healing migration. The wound healing advantage of PECAM-1-positive endothelial cells was not only Rho mediated but pertussis toxin inhibitable, characteristic of migration mediated by heterotrimeric G-protein-linked seven-transmembrane receptor signaling such as signaling in response to the serum sphingolipid sphingosine-1-phosphate (S1P) (4, 5). Indeed, we found that the wound healing defect of PECAM-1 null endothelial cells is minimized in sphingolipid-depleted media; moreover, PECAM-1 null endothelial cells fail to increase their migration in response to S1P. We have also found that PECAM-1 localizes to rafts and that in its absence heterotrimeric G-protein components are differentially recruited to rafts, providing a potential mechanism for PECAM-1-mediated coordination of S1P signaling. PECAM-1 may thus support the effective S1P/RhoGTP signaling required for wound healing endothelial migration by allowing for the spatially directed, coordinated activation of Galpha signaling pathways. PMID:12890700

  8. Expression and Localization of the Cell Adhesion Molecule SgIGSF during Regeneration of the Olfactory Epithelium in Mice

    PubMed Central

    Tsukioka, Fusae; Wakayama, Tomohiko; Tsukatani, Toshiaki; Miwa, Takaki; Furukawa, Mitsuru; Iseki, Shoichi

    2007-01-01

    Spermatogenic immunoglobulin superfamily (SgIGSF) is a cell adhesion molecule originally discovered in mouse testis. SgIGSF is expressed not only in spermatogenic cells but also in lung and liver epithelial cells and in neurons and glia of the central and peripheral nervous systems. In the present study, we examined the expression and localization of SgIGSF in mouse olfactory epithelium before and after transection of the olfactory nerves, by RT-PCR, Western blotting and immunohistochemistry. In normal olfactory mucosa, SgIGSF showed 100 kDa in molecular weight, which was identical with that in the lung but different from that in the brain. SgIGSF was expressed on the membrane of all olfactory, sustentacular and basal cells, but more abundantly in the apical portions of the olfactory epithelium where the dendrites of olfactory cells are in contact with sustentacular cells. After olfactory nerve transection, mature olfactory cells disappeared in 4 days but were regenerated around 7–15 days by proliferation and differentiation of basal cells into mature olfactory cells through the step of immature olfactory cells. During this period, both the mRNA and protein for SgIGSF showed a transient increase, with peak levels at 7 days and 11 days, respectively, after the transection. Immunohistochemistry showed that the enriched immunoreactivity for SgIGSF at 7–11 days was localized primarily to the membrane of immature olfactory cells. These results suggested that, during regeneration of the olfactory epithelium, the adhesion molecule SgIGSF plays physiological roles in differentiation, migration, and maturation of immature olfactory cells. PMID:17576432

  9. Proinflammatory Cytokine, Chemokine, and Cellular Adhesion Molecule Expression during the Acute Phase of Experimental Brain Abscess Development

    PubMed Central

    Kielian, Tammy; Hickey, William F.

    2000-01-01

    Brain abscess represents the infectious disease sequelae associated with the influx of inflammatory cells and activation of resident parenchymal cells in the central nervous system. However, the immune response leading to the establishment of a brain abscess remains poorly defined. In this study, we have characterized cytokine and chemokine expression in an experimental brain abscess model in the rat during the acute stage of abscess development. RNase protection assay revealed the induction of the proinflammatory cytokines interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α as early as 1 to 6 hours after Staphylococcus aureus exposure. Evaluation of chemokine expression by reverse transcription-polymerase chain reaction demonstrated enhanced levels of the CXC chemokine KC 24 hours after bacterial exposure, which correlated with the appearance of neutrophils in the abscess. In addition, two CC chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α were induced within 24 hours after S. aureus exposure and preceded the influx of macrophages and lymphocytes into the brain. Analysis of abscess lesions by in situ hybridization identified CD11b+ cells as the source of IL-1β in response to S. aureus. Both intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule expression were enhanced on microvessels in S. aureus but not sterile bead-implanted tissues at 24 and 48 hours after treatment. These results characterize proinflammatory cytokine and chemokine expression during the early response to S. aureus in the brain and provide the foundation to assess the functional significance of these mediators in brain abscess pathogenesis. PMID:10934167

  10. Association between the Polymorphisms in Intercellular Adhesion Molecule-1 and the Risk of Coronary Atherosclerosis: A Case-Controlled Study

    PubMed Central

    Zhang, Qingjiang; Xin, Yu; Chen, Yanjun; Tian, Ye

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1), an important immune adhesion molecule, is related to the atherosclerosis. We explored the association between the polymorphisms of the ICAM-1 gene and coronary atherosclerotic stenosis to determine whether any risk factors correlate with genetic polymorphisms in Chinese patients with coronary atherosclerosis. Using the SNaPshot assay, we examined six SNPs of rs5491, rs281428, rs281432, rs5496, rs5498 and rs281437 in 604 patients diagnosed with coronary atherosclerotic stenosis by angiography and in 468 controls. We found that AG genotype of rs5498 had higher frequency in the coronary atherosclerotic stenosis patients (41.56% to 34.19%, P = 0.017, OR = 1.368,95%CI 1.057–1.770) and that the haplotype Ars5491Crs281428Grs281432 had higher frequency in patients (13.8% to 12.1%, P = 0.048). When analyzing the clinical risk factors for coronary atherosclerosis, we found that the rs5498 locus was associated with the levels of apolipoprotein A (APOA) (P = 0.0002) and triglycerides (TG) (P = 0.002). Furthermore, the levels of triglycerides (TG) were also associated with rs281432 (P = 0.040). Additionally, the TT genotype of rs281437 was associated with a higher level of apolipoprotein A (APOA) (P = 0.039) and apolipoprotein B (APOB) (P = 0.003). Finally, among those with coronary atherosclerosis, we found no differences in the haplotype analysis of polymorphisms of the ICAM-1 gene from individuals with hypertension or those who smoked. According to our results, the ICAM-1 polymorphisms were associated with risk of coronary atherosclerotic stenosis in Chinese individuals. PMID:25310099

  11. Constant pH Molecular Dynamics Reveals pH-Modulated Binding of Two Small-Molecule BACE1 Inhibitors.

    PubMed

    Ellis, Christopher R; Tsai, Cheng-Chieh; Hou, Xinjun; Shen, Jana

    2016-03-17

    Targeting β-secretase (BACE1) with small-molecule inhibitors offers a promising route for treatment of Alzheimer's disease. However, the intricate pH dependence of BACE1 function and